Устройство плавного пуска схема: Устройство плавного пуска для электроинструмента своими руками

Содержание

Плавный пуск болгарки на доступных деталях

Люди, часто пользующиеся электроинструментом иногда сталкиваются со следующей проблемой: двигатель будь то болгарки, циркулярной пилы, рубанка или другого оборудования стартует очень резко. Такой резкий старт таит в себе множество неприятностей: во-первый, присутствует высокий пусковой ток, который не лучшим образом сказывается на проводке, во-вторых, резкий старт двигателя быстро изнашивает механические части инструмента, в-третьих, снижается удобство использования, при пуске болгарку приходится крепко удерживать, она так и норовит вырваться из рук. В дорогих моделях уже встроена система плавного пуска, которая легко справляется со всеми этими неприятностями. Но что делать если этой системы нет? Выход есть – собрать схему плавного пуска самому. Кроме того, использовать её можно будет с лампочками накаливания, ведь чаще всего они перегорают именно в момент включения. Плавный пуск заметно снизит возможности лампочки быстро перегореть.

Схема

В интернете часто встречается схема плавного пуска, построенная на достаточно редкой отечественной микросхеме К1182ПМ1Р, достать которую сейчас не всегда легко. Именно поэтому я предлагаю к сборке не менее эффективную схему, ключевым звеном которой является доступная микросхема TL072, вместо неё также можно ставить LM358. Время, за которое двигатель набирает полные обороты задаётся конденсатором С1. Чем больше его ёмкость, тем больше времени понадобиться для разгона, самый оптимальный вариант – 2,2 мкФ. Конденсаторы С1 и С2 должны быть рассчитаны на напряжение как минимум 50 вольт. Конденсатор С5 – как минимум 400 вольт. Резистор R11 будет рассеивать приличное количество тепла, поэтому его мощность должна быть как минимум 1 Ватт. В схеме можно применить любые маломощные транзисторы, Т1, Т2, Т4 имеют n-p-n структуру, можно использовать BC457 или отечественные КТ3102, Т4 имеет структуру p-n-p, на его место подойдут BC557 или КТ3107. Т5 – любой подходящий по мощности и напряжению семистор, например, BTA12 или ТС-122.

Изготовление плавного пуска

Схема собирается на печатной плате размерами 45 х 35 мм, плата разведена как можно компактней, чтобы её можно было встроить внутрь корпуса инструмента, который требует плавного пуска. Провода питания лучше впаять напрямую в плату, но если мощность нагрузки небольшая, то можно установить клеммники, как я и сделал. Плата выполняется методом ЛУТ, фотографии процесса представлены ниже.
Скачать плату:

Дорожки желательно залудить перед впаиванием деталей, так улучшиться их проводимость. Микросхему можно установить в панельку, тогда её можно будет без проблем снять с платы. Сначала запаиваются резисторы, диоды, мелкие конденсаторы, а уже впоследствии самые крупные компоненты. После завершения сборки платы её обязательно нужно проверить на правильность монтажа, прозвонить дорожки, отмыть оставшийся флюс.

Первый запуск и испытания

После того, как плата полностью готова, можно проверять её на работоспособность. Первым делом, нужно найти маломощную лампочку на 5-10 ватт и через неё включить в плату в сеть 220 вольт. Т.е. плата и лампочка подключаются в сеть последовательно, а выход OUT остаётся неподключенным. Если на плате ничего не сгорело, а лампочка не зажглась, можно включать схему напрямую в сеть. Эту же маломощную лампочку можно подключить к выходу OUT для проверки. При подключении она должна плавно набрать яркость до максимума. Если схема работает исправно, можно подключать более мощные электроприборы. При продолжительной работе семистор, возможно, будет слегка нагреваться – в этом нет ничего страшного. При наличии свободного места его не помешает установить на радиатор.
На плате в процессе работы присутствует опасное сетевое напряжение, поэтому необходимо соблюдать меры предосторожности. Ни в коем случае нельзя прикасаться к деталям платы, когда она подключена к сети. Перед включением убедиться, что плата надёжна закреплена и на неё не попадут металлические предметы, способные привести к короткому замыканию. Для надёжности рекомендуется залить плату лаком или эпоксидной смолой, тогда ей не будет страшна даже влага. Успешной сборки!

Смотрите видео работы

Настройка устройства плавного пуска | Техпривод


Установка и подключение устройства плавного пуска (УПП) обычно не вызывает особых затруднений. Но надежность работы УПП зависит не только от схемы подключения, но и от его правильной настройки.


Софтстартеры различных производителей имеют разную номенклатуру настроек. В простейших моделях может быть два-три регулятора. Дорогие УПП большой мощности могут оснащаться панелью управления с ЖК-экраном и по количеству пунктов меню настроек напоминают преобразователи частоты. Рассмотрим настройки, которые встречаются в большинстве моделей устройств плавного пуска.

Время разгона


Это время, которое дается двигателю, чтобы разогнаться до номинальной скорости. Обычно значение времени разгона устанавливается равным 5-20 с. Меньшее время сводит на нет преимущества использования софтстартера, увеличивая пусковой ток и нагрузку на механику привода; большее время может понадобиться при высокоинерционной нагрузке. Увеличенное время разгона устанавливать не рекомендуется, поскольку это может привести к перегреву тиристоров устройства плавного пуска, особенно при частых пусках.

Время замедления


Этот параметр позволяет увеличить время остановки двигателя, сделав ее более плавной. Данная функция может быть полезна, например, при использовании УПП в приводе конвейера.


Стоит отметить, что речь идет не о торможении, когда время остановки оказывается меньше, чем при свободном выбеге. Устройство плавного пуска обеспечивает лишь замедление (плавный выбег), превышающее по продолжительности свободный выбег. Перед настройкой этого параметра необходимо измерить время свободного выбега, поскольку, если оно окажется больше установленного времени замедления, данная функция не будет иметь смысла. Если же время замедления установить слишком большим, это приведет к необоснованному нагреву тиристоров УПП.

Минимальное напряжение пуска


При напряжениях ниже определенного порога электродвигатель имеет низкий момент и не может начать вращение. Поэтому напряжение, с которого начинается разгон, не может быть нулевым. Для гарантированного пуска приводов насосов и вентиляторов начальное напряжение обычно устанавливают не ниже 40% от номинального. Для конвейерных линий и других применений, где требуется высокий пусковой момент, начальное напряжение может быть установлено на уровне 70% от номинала.

Параметры защиты


Данные параметры отвечают за защиту двигателя и устройства плавного пуска от перегрузки, перегрева и других проблем. В бюджетных моделях они не встречаются — в этом случае о защите оборудования пользователь должен позаботиться сам.

Ток двигателя


Обычно ток двигателя меньше либо равен номинальному току УПП. Этот параметр настраивается в процентах и может быть установлен в пределах от 50% до 130% в зависимости от модели софтстартера. На основе измерения тока двигателя обеспечивается защита привода от перегрузки в установившемся режиме (на номинальной скорости).

Ограничение тока


Этот параметр (Current Limit) обычно рассчитывается в процентном отношении от тока двигателя. Поскольку ток двигателя при пуске всегда больше номинального, ограничение тока устанавливают на уровне не менее 150%.


В некоторых моделях максимальное ограничение может быть установлено на значении 500%. В этом случае особое внимание следует обратить на время разгона (его нужно по возможности увеличить, а значение параметра ограничения уменьшить), а также на тепловой режим электродвигателя и устройства плавного пуска.

Характеристика защиты двигателя


Этот параметр (Trip class) характеризует уровень защиты нагрузки от перегрузки. Стандартные значения параметра:

  • Class 10 – нормальный пуск. Условия разгона привода: время разгона — до 20 с, ограничение тока — до 350%. Примеры применения: насосы, компрессоры, небольшие вентиляторы. Мощность софтстартера устанавливается равной мощности двигателя.
  • Class 20 – средний пуск. При таком уровне защиты разгон привода до номинальной скорости требует больше времени – до 40 с. Примеры: центрифуги, мощные вентиляторы, обрабатывающие станки. Мощность УПП рекомендуется выбирать на ступень больше.
  • Class 30 – тяжелый пуск. В этих условиях при ограничении тока 350% время разгона достигает 60 с. Примеры: дробилки, мельницы. Мощность устройства плавного пуска должна быть на ступень больше мощности двигателя, а шкаф, в котором установлено УПП, должен иметь принудительную вентиляцию.

Превышение времени пуска


Этим параметром (Excess Start Time) контролируется время разгона электродвигателя. В случае, если ток двигателя не перестал ограничиваться, а время разгона вышло, следует ошибка. После этого необходимо увеличить значение данного параметра, повысить время разгона или увеличить уровень ограничения тока.


Правильной настройкой превышения времени пуска обеспечивается дополнительная защита софтстартера и электродвигателя при тяжелом пуске.

Защиты по питанию


Такими защитами являются:

  • Тепловая защита УПП и двигателя. Температура двигателя контролируется встроенным термистором, который подключается к специальным клеммам устройства плавного пуска.
  • Защита от перекоса и обрыва фазы.
  • Защита от пониженного и повышенного напряжения.
  • Защита от короткого замыкания на выходе.


Благодаря системе диагностики можно выяснить причину срабатывания защиты и либо провести дополнительную настройку, либо устранить неисправность. Кроме того, рекомендуется использовать дополнительную защиту. Например, от перегрузки и короткого замыкания защитит автомат защиты двигателя, установленный на силовом входе УПП.


При проведении настройки устройства плавного пуска необходимо обращаться к руководству по эксплуатации. В процессе пусконаладочных работ настройки УПП обычно корректируются.


Другие полезные материалы:
Техобслуживание электродвигателя
Контроль состояния электродвигателя
Об электродвигателях с тормозом

Как сделать плавный пуск для электроинструмента своими руками

Плавный пуск получил широкое применение в безопасном запуске электродвигателей. Во время запуска двигателя происходит превышение номинального тока (Iн) в 7 раз. В результате этого процесса происходит уменьшение эксплуатационного периода мотора, а именно обмоток статора и значительная нагрузка на подшипники. Именно из-за этой причины и рекомендуется сделать плавный пуск для электроинструмента своими руками, где он не предусмотрен.

Общие сведения

Статор электродвигателя представляет собой катушку индуктивности, следовательно, существуют сопротивления с активной и реактивной составляющей.

При протекании электрического тока через радиоэлементы, имеющие сопротивление с активной составляющей, происходят потери, связанные с преобразованием части мощности в тепловой вид энергии. Например, резистор и обмотки статора электродвигателя обладают сопротивлением с активной составляющей. Вычислить активное сопротивление не составляет труда, так как происходит совпадение фаз тока (I) и напряжения (U). Используя закон Ома для участка цепи, можно рассчитать активное сопротивление: R = U/I. Оно зависит от материала, площади поперечного сечения, длины и его температуры.

Если ток проходит через реактивный тип элементов (с емкостными и индуктивными характеристиками), то, в этом случае, появляется реактивное R. Катушка индуктивности, не имеющая практически активного сопротивления (при расчетах не учитывается R ее обмоток). Этот вид R создается благодаря Электродвижущей силе (ЭДС) самоиндукции, которая прямо пропорционально зависит от индуктивности и частоты I, проходящего через ее витки: Xl = wL, где w — угловая частота переменного тока (w = 2*Пи*f, причем f — частота тока сети) и L — индуктивность (L = n * n / Rm, n — число витков и Rm — магнитное сопротивление).

При включении электродвигателя пусковой ток в 7 раз больше номинального (ток, потребляемый при работе инструмента) и происходит нагрев обмоток статора. Если статорная катушка является старой, то может произойти межвитковое КЗ, которое повлечет выход электроинструмента из строя. Для этого нужно применить устройство плавного пуска электроинструмента.

Одним из методов снижения пускового тока (Iп) является переключение обмоток. Для его осуществления необходимы 2 типа реле (времени и нагрузки) и наличие трех контакторов.

Пуск электромотора с обмотками, соединенными по типу «звезда» возможен только при 2-х не одновременно замкнутых контакторах. Через определенный интервал времени, который задает реле времени, один из контакторов отключается и включается еще один, не задействованный ранее. Благодаря такому чередованию включения обмоток и происходит снижение пускового тока. Этот способ обладает существенным недостатком, так как при одновременно замыкании двух контакторов возникает ток КЗ. Однако при использовании этого способа обмотки продолжают нагреваться.

Еще одним способом снижения пускового тока является частотное регулирование запуска электродвигателя. Принципом такого подхода является частотное изменение питающего U. Основной элемент этого вида устройств плавного пуска является частотный преобразователь, состоящий из следующих элементов:

  1. Выпрямитель.
  2. Промежуточная цепь.
  3. Инвертор.
  4. Электронная схема управления.

Выпрямитель изготавливается из мощных диодов или тиристоров, выполняющий роль преобразователя U питания сети в постоянный пульсирующий ток. Промежуточная цепь сглаживает пульсирующий постоянный ток на выходе выпрямителя, которая собирается на конденсаторах большой емкости. Инвертор необходим для непосредственного преобразования сигнала на выходе промежуточной цепи в сигнал амплитуды и частоты переменной составляющей. Электронная схема управления нужна для генерации сигналов, необходимых для управления выпрямителем, инвертором.

Принцип действия

Во время пуска электродвигателя коллекторного типа происходит значительное кратковременное увеличение тока потребления, которое и служит причиной преждевременного выхода из строя электроинструмента и сдачей его в ремонт. Происходит износ электрических частей (превышение тока в 7 раз) и механических (резкий запуск). Для организации «мягкого» пуска следует применять устройства плавного пуска (далее УПП). Эти устройства должны соответствовать основным требованиям:

  1. Плавное увеличение нагрузки.
  2. Возможность запуска двигателя через определенные интервалы времени.
  3. Обеспечение защиты от линейных скачков U, пропадания фазы (для 3-фазного электродвигателя) и различных помех электрической составляющей.
  4. Значительно повышение срока эксплуатации.

Наиболее широкое распространение получили симисторные УПП, принципом действия которых является плавное регулирование U при помощи регулировки угла открытия перехода симистора. Симистор нужно подключить напрямую к обмоткам двигателя и это позволяет уменьшить пусковой ток от 2 до 5 раз (зависит от симистора и схемы управления). К основным недостаткам симисторных УПП являются следующие:

  1. Сложные схемы.
  2. Перегрев обмоток при длительном запуске.
  3. Проблемы с запуском двигателя (приводит к значительному нагреву статорных обмоток).

Схемы усложняются при использовании мощных двигателей, однако, при небольших нагрузках и холостом ходе возможно использование простых схем.

УПП с регуляторами без обратной связи (по 1 или 3 фазам) получили широкое распространение. В моделях этого типа появляется возможность предварительного выставления времени пуска и величины U перед пуском двигателя. Однако, в этом случае невозможно регулировать величину вращающего момента при нагрузке. С этой моделью применяется специальное устройство для снижения пускового тока, защиты от пропадания и перекоса фаз, а также от перегрузок. Заводские модели имеют функцию слежения за состоянием электромотора.

Простейшие схемы однофазного регулирования исполняются на одном симисторе и используются для инструмента с мощностью до 12 кВт. Существуют более сложные схемы, позволяющие производить регулировку параметров питания двигателя мощностью до 260 кВт. При выборе УПП заводского производства необходимо учесть такие параметры: мощность, возможные режимы работы, равенство допустимы токов и количество запусков в определенный промежуток времени.

Применение в болгарке

Во время запуска угловой шлифовальной машинки (УШМ) появляются высокие нагрузки динамического характера на детали инструмента.

Дорогие модели снабжены УПП, но не обыкновенные разновидности, например, УШМ фирмы «Интерскол». Инерционный рывок способен вырвать из рук УШМ, при этом происходит угроза жизни и здоровью. Кроме того, при пуске электродвигателя инструмента происходит перегрузка по току и в результате этого — износ щеток и значительный нагрев статорных обмоток, изнашивается редуктор и возможно разрушение режущего диска, который может треснуть в любой момент и причинить вред здоровью, а может даже и жизни. Инструмент нужно обезопасить и для этого следует сделать болгарку с регулировкой оборотов и плавным пуском своими руками.

Самодельные варианты

Существует множество схем модернизации электроинструмента при помощи УПП. Среди всех разновидностей широкое применение получили устройства на симисторах. Симистор — полупроводниковый элемент, позволяющий плавно регулировать параметры питания. Существуют простые и сложные схемы, которые отличаются между собой вариантами исполнения, а также поддерживаемой мощностью, подключаемого электроинструмента. В конструктивном исполнении бывают внутренние, позволяющие встраиваться внутрь корпуса, и внешние, изготавливаемые в виде отдельного модуля, выполняющего роль ограничителя оборотов и пускового тока при непосредственном пуске УШМ.

Простейшая схема

УПП с регулированием оборотов на тиристоре КУ 202 получил широкое применение благодаря очень простой схеме исполнения (схема 1). Его подключение не требует особых навыков. Радиоэлементы для него достать очень просто. Состоит эта модель регулятора из диодного моста, переменного резистора (выполняет роль регулятора U) и схемы настройки тиристора (подача U на управляющий выход номиналом 6,3 вольта) отечественного производителя.

Схема 1. Электросхема внутреннего блока с регулировкой оборотов и плавным пуском (схема электрическая принципиальная)

Благодаря размерам и количеству деталей регулятор этого типа можно встроить в корпус электроинструмента. Кроме того, следует вывести ручку переменного резистора и сам регулятор оборотов можно доработать, встроив кнопку перед диодным мостом.

Основной принцип работы заключается в регулировке оборотов электродвигателя инструмента благодаря ограничению мощности в ручном режиме. Эта схема позволяет использовать электроинструмент мощностью до 1,5 кВт. Для увеличения этого показателя необходимо заменить тиристор на более мощный (информацию об этом можно найти в интернете или справочнике). Кроме того, нужно учесть и тот факт, что схема управления тиристором будет отличаться от исходной. КУ 202 является отличным тиристором, но его существенный недостаток состоит в его настройке (подборка деталей для схемы управления). Для осуществления плавного пуска в автоматическом режиме применяется схема 2 (УПП на микросхеме).

Плавный пуск на микросхеме

Оптимальным вариантом для изготовления УПП является схема УПП на одном симисторе и микросхеме, которая управляет плавным открытием перехода p-n типа. Питается устройство от сети 220 В и ее несложно собрать самому. Очень простая и универсальная схема плавного пуска электродвигателя позволяет также и регулировать обороты (схема 2). Симистор возможно заменить аналогичным или с характеристиками, превышающими исходные, согласно справочнику радиоэлементов полупроводникового типа.

Схема 2. Схема плавного пуска электроинструмента

Устройство реализуется на основе микросхемы КР118ПМ1 и симисторе. Благодаря универсальности устройства его можно использовать для любого инструмента. Он не требует настройки и устанавливается в разрыв кабеля питания.

При пуске электродвигателя происходит подача U на КР118ПМ1 и плавный рост заряда конденсатора С2. Тиристор открывается постепенно с задержкой, зависящей от емкости управляющего конденсатора С2. При емкости С2 = 47 мкФ происходит задержка при запуске около 2 секунд. Она зависит прямо пропорционально от емкости конденсатора (при большей емкости время запуска увеличивается). При отключении УШМ конденсатор С2 разряжается при помощи резистора R2, сопротивление которого равно 68 к, а время разрядки составляет около 4 секунд.

Для регулирования оборотов нужно заменить R1 на резистор переменного типа. При изменении параметра переменного резистора происходит изменение мощности электромотора. R2 изменяет величину тока, протекающего через вход симистора. Симистор нуждается в охлаждении и, следовательно, в корпус модуля можно встроить вентилятор.

Основной функцией конденсаторов C1 и C3 является защита и управление микросхемой. Симистор следует подбирать, руководствуясь следующими характеристиками: прямое U должно составлять 400..500 В и прямой ток должен быть не менее 25 А. При таких номиналах радиоэлементов к УПП возможно подключать инструмент с мощностью от 2 кВт до 5 кВт.

Таким образом, для запуска электродвигателей различного инструмента необходимо использовать УПП заводского изготовления или самодельные. УПП применяются для увеличения срока эксплуатации инструмента. При запуске двигателя происходит резкое увеличение тока потребления в 7 раз. Из-за этого возможно подгорание статорных обмоток и износ механической части. УПП позволяют значительно снизить пусковой ток. При изготовлении УПП самостоятельно нужно соблюдать правила безопасности при работе с электричеством.

Originally posted 2018-07-04 07:37:29.

Устройство плавного пуска: краткая характеристика, принцип работы и схемы | ENARGYS.RU

Устройства плавного пуска электродвигателей являются статическими электронными или электромеханическими устройствами, предназначенными для плавного ускорения и плавного замедления, а также для защиты трехфазных индукционных электродвигателей.

Устройства плавного пуска УПП осуществляют действия по снижению величины пускового тока и помогают осуществить согласование крутящего момента двигателя и момента нагрузки.

Принцип работы устройства плавного пуска

Управление напряжением, подаваемым на двигатель, осуществляется посредством изменения угла открытия тиристоров. В устройстве находятся два встречно-включенных тиристора, предназначенных для положительного и отрицательного полупериодов. Сила тока в третьей фазе, оставшейся без управления складывается из токов фаз под управлением.

После осуществления настройки, значение вращающего момента при пуске машины оптимизируется до предельно низкой величины пускового тока. Значение тока электродвигателя уменьшается параллельно значению установленного пускового напряжения на пуске. Величина пускового момента уменьшается в квадратичном отношении к напряжению.

Уровень напряжения осуществляет контроль пускового тока и момента двигателя при запуске и остановке двигателя.

Наличие в устройстве байпасных контактов, которые шунтируют тиристоры, способствует понижению тепловых потерь в тиристорах, а соответственно понижению нагрева всего устройства. Встроенная электронная дугогасительная система защищает контакты в случае появления повреждений в результате непредвиденных сбоев в работе, например, при прерывании подачи напряжения, возникновении вибрации или дефекте контактов.

Рис 1. Внешний вид устройства плавного пуска 3RW30

Рис 2. Внутренняя схема устройства управления плавным пуском 3RW30

Баланс полярности

Недостаток 2-фазного управления в устройстве плавного пуска асинхронного двигателя проявляется в появлении постоянного тока, вызванного фазовой отсечкой и наложением фазных токов, при которых возникает сильный акустический шум, выделяемый электродвигателем.

Применение метода «баланс полярности» значительно понижает влияние значений постоянного тока во время разгона двигателя, соответственно снижается акустическая характеристика запуска, достигается это благодаря балансированию полуволн различной полярности в процессе разгона двигателя.

Интерфейс устройства

Интерфейс устройства плавного пуска УПП «человек-машина» разрешает производить настройку параметров, существенно облегчая и упрощая осуществление процесса запуска и эксплуатации двигателя. Встроенная функция управления насосом предотвращает возникновение гидравлического удара.

Рис3. Интерфейс устройства плавного пуска

Рис. А.

 

Рис. Б. прикладной модуль AS-интерфейса

 

Рис. В.

Рис 4. Устройство плавного пуска электродвигателя — схема фидерной комбинации с AS-интерфейсом

Интерфейс состоит из двух дисплеев с сегментными индикаторами и ЖК-дисплеем, позволяющим обеспечить видимость на значительном расстоянии, включает в свой состав описание параметров и сообщений.

В возможности аппаратуры входит выбор режима программирования и языковые опции. Осуществляет копирование параметров из одного устройства в другое, увеличивая скорость программирования, повышая надежность оборудования и получая возможность корректирования и внесения идентичных параметров на одинаковых машинах.

Плавный пуск для однофазного двигателя

Устройство плавного пуска однофазного электродвигателя, применяемого в быту, активируется при подаче ~Uк выводам L1 и L2.

Рис 5. Схема лицевой панели устройства TSG предназначенного для однофазного двигателя

Происходит увеличение значение линейного напряжения в течение определенного отрезка времени до достижения его предельного значения. Выводы Т-2 и Т-3 постоянно запитаны от питающей сети. Время процесса регулируется регулятором, в диапазоне до 20 сек. С повышением параметров напряжения происходит увеличение вращающего момента. После окончания запуска, через шунтирующий контактор (байпас) происходит подключение двигателя от сети.

Рис. 6. Схема работы устройства плавного пуска TSG при положении регулятора момента вращения Моn =0, при котором начинается цикл плавного пуска

Устройство плавного пуска электродвигателя насоса

Устройство плавного пуска для насоса с использованием преобразователя частоты осуществляет следующие операции это:

  1. Осуществление плавного пуска и торможения насосного агрегата.
  2. Производство автоматического коммутирования в зависимости от показателей уровня и параметров давления жидкости.
  3. Защиту агрегата от «сухого хода», то есть без жидкости.
  4. Защита агрегата при критическом снижении параметров напряжения.
  5. Осуществление защитных действий от перенапряжения на входе преобразователя.
  6. Сигнализирует о включении, отключении агрегата, а также при аварии.
  7. Осуществляет местный обогрев.

Рис. 7. Устройство плавного пуска схема принципиальная, для автоматизации работы погружного насоса с поддержкой давления в полном автоматическом режиме

Подключение электродвигателя осуществляется от контактов U,V,W преобразующего частотного устройства. Пусковая кнопка SB2 вызывает срабатывание реле К1 через ее контактную группу происходит соединение вводов STF и PS частотного преобразователя, который производит плавный запуск электрического насоса, который осуществляется по заложенному программному обеспечению, включенному в настройку устройства.

Датчик определяющий давление ВР1 запитан от ввода преобразователя, делает возможной наличие обратной связи в цепи стабилизирующей давление. Работа этой системы происходит при обеспечении ПИД-регулятора. Потенциометр К1 или частотный преобразователь выполняют функцию по поддержанию заданных параметров давления. Насосный агрегата, при появлении «сухого» хода, должен отключаться для зашиты, в этом случае, контакты 7-8 в цепи катушки реле К3 замыкаются, отключение происходит при срабатывании датчика «сухого» хода подключенного от реле сопротивления А2 . Реле К2 осуществляет защитную функцию по отключению электродвигателя агрегата при аварии. При аварии происходит включение лампыНL1, лампа НL2 зажигается после срабатывания датчика реагирующего на понижение водяного уровня, на недопустимое значение.

Термореле ВК1 осуществляет включение подогрева шкафа управления контактором КМ1, электронагревателей ЕК1 и ЕК2. Защита устройства от тока короткого замыкания и перегруза производится автоматом QF1.

Высоковольтное устройство плавного пуска его отличительные особенности

Рис 8. Схема высоковольтного устройства плавного пуска

К отличительным особенностям относятся:

  1. Наличие оптоволоконного управления тиристорами.
  2. Управление на микропроцессорах.
  3. Способность к работе при повышенной температуре.
  4. Возможность задания различных алгоритмов и характеристик пуска и торможения для разных видов нагрузки.
  5. Способность к интеллектуальной защите.
  6. Возможность осуществления пуска при слабых источниках питания.
  7. Осуществление степени защиты от IP 00 доIP 65

Важно:при наладке устройства плавного пуска нужно чтобы установленное время разгона было больше физического времени разгона двигателя, иначе присутствует возможность получения повреждения устройства, так внутренние байпасные контакты замыкаются по истечении времени пуска. В том случае если не произошел разгон двигателя, может выйти из строя система байпасных контактов.

Важно:автоматический повторный пуск опасен не только повреждением устройства, но и может привести к смерти людей и тяжелому травматизму.


Команда запуск, обязана сбрасываться до команды сброса, так как при наличии команды запуска после команды сброса, автоматически выполняется повторный перезапуск. Особенно это касается защиты двигателя.

Для безопасности желательно присоединить выход общей ошибки в систему управления.

Рекомендация: нежелательность автоматического пуска, диктует необходимость присоединения дополнительных компонентов, например, устройства выпадения фазы или нагрузки, с цепями управляющего и главного тока.

функции прибора и правила включения, отключение двигателя и плавное торможение

Широкое использование асинхронных трехфазных двигателей в различных механизмах и оборудовании часто сталкивается с проблемой резкого пуска силовой установки, что во многих случаях влияет на долговечность эксплуатации или приводит к выходу из строя приводимых в действие элементов.

Кроме того, при резком запуске, пусковой ток электродвигателя в несколько раз превышает его рабочие показатели и тем самым влияет на срок эксплуатации не только электрического оборудования, но и сетей, к которым он подключен. Для устранения этого недостатка и негативных его последствий для оптимальной работы применяют устройство плавного пуска (УПП) электродвигателя.

Функции прибора

Аппаратура, которая осуществляет процесс плавного пуска также реализует и функцию торможения, что тоже немаловажно для лояльной работы многих агрегатов на основе электрических приводов.

Софтстартеры, так называют устройства плавного пуска, реализованы на базе симисторов, которые в отличие от других схем запуска электродвигателя обеспечивает поступательный бесступенчатый разгон двигателя, ограничивая пусковой ток.

Этот принцип не только оптимизирует пусковой момент, но выполняет функции управления и защиты, а кроме того дает вполне определяемый экономический эффект.

Следует определить, что УПП в большинстве случаев реализует функции:

  • по ограничению пускового тока до 3 – 4,5 номинального значения,
  • понижению напряжения питания  при наличии соответствующего по мощности трансформатора и подводящих шин,
  • оптимизации пускового и тормозного момента,
  • аварийной защиты сети от токовых перегрузок,
  • предотвращение заклинивания вала электродвигателя.

При этом необходимо понимать, что УПП не может производить регулировку частоты вращения, реверсировать направление вращения, увеличивать пусковой момент и снижать пусковой ток до значения ниже, чем требуется для старта вращения ротора.

Плавный пуск электродвигателя может быть реализован несколькими вариантами включения симисторов в цепи управления и разделяется на однофазные, двухфазные и трехфазные схемы включения, каждая из которых имеет функциональные отличия и стоимость исполнения соответственно. Кроме того, при использовании для питания двигателя соединения типа «треугольник» существует возможность включить симистор в разрыв обмотки.

Симистор, как известно, представляет собой включенных два встречно параллельных тиристора с управляющим входным каналом. В схеме УПП тиристоры исполняют роль быстродействующих контакторов, которые включаются напряжением, а выключаются током.

Однофазная схема регулирования (рис.

1) предполагает запуск электродвигателя мощностью не более 11 кВт в том случае, если требуется смягчить пусковой удар, а уже торможение, длительный запуск и ограничения на пусковой ток не имеют значения, так как при этом варианте реализовать такие функции нет возможности. Подобные УПП в последнее время сняты с производства как следствие значительного удешевления полупроводниковых приборов, в том числе и тиристоров.

Двухфазные УПП (рис. 2) применяются для регулирования пуска двигателей мощностью до 250 кВт. Такие устройства, хотя иногда и снабжают байпасными контакторами (by pass) с целью удешевления, но этим решением не устраняют недостаток, заключенный в несимметричности питания каждой фазы,  что в итоге может привести к перегреву.

Самой совершенной схемой, осуществляющей не только мягкий пуск электродвигателя, но и обеспечивающей универсальное применение УПП, является трехфазное регулирование.

Мощность управляемых УПП двигателей ограничивается тепловой и электрической прочностью симисторов, а функциональность таких устройств позволяет реализовать множество решений.

в том числе динамическое торможение, подхват обратного хода и симметричность ограничений силы магнитного поля и тока.

Важной составляющей устройства плавного пуска является байпасный контактор, о котором упоминалось ранее, позволяющий создать наиболее комфортные условия, как для работы электродвигателей, так и для самого УПП.

Байпасный, или иначе ,обходной контактор (БК), предназначен для облегчения теплового режима системы плавного запуска для питания двигателя при выходе на установленные обороты.

Схематично включение БК выглядит, как указано на рисунке.

Варианты схем включения УПП в систему питания и управления электродвигателем

Стандартная схема включения устройства для плавного запуска электродвигателя предусматривает использование магнитного пускателя, теплового реле, быстродействующих предохранителей или автоматических выключателей, причем, последние должны иметь регулировку по токам перегрузки. Ниже на рисунках изображено принципиальное включение элементов УПП относительно обмоток электродвигателя по трех проводной и шести проводной схеме.

Схема включения, исключающая потерю мощности

В предложенной схеме используется шунтирующий пускатель, который обеспечивает работу двигателя после его выхода на установленное число оборотов и отключает устройство плавного пуска.

Важной характеристикой шунтирующего (байпасного) пускателя является то, что он в отличие от сетевого адаптера не должен проводить через себя пусковой ток и рассчитываются его параметры только по номинальной (установившейся)  нагрузке.

Подобная схема включения УПП является единственно правильной при управлении параллельно несколькими двигателями, которые должны работать в синхронном режиме. Кроме того байпасная схема рекомендуется к применению для двигателей большой мощности.

Современные устройства плавного пуска выпускаются с возможностью сопряжения с программируемыми контролерами и компьютерными системами через совместимый интерфейс и могут включаться по требованию оператора или общей системы управления.

Кроме всех преимуществ, отмеченных выше, стоит отметить, что изменение характеристик пусковых токов несет экономическую выгоду, которая определяется сохранностью оборудования и питающих сетей и может быть просчитана в долгосрочном режиме.

Источник: http://proelectrika.com/ustrojstvo-plavnogo-puska-elektrodvigatelya-html/

Схема тиристорного устройствоа плавного пуска асинхронного электродвигателя

Рассматриваемая в статье схема позволяет осуществить безударный пуск и торможение электродвигателя, увеличить срок службы оборудования и снизить нагрузку на электросеть. Плавный пуск достигается путём регулирования напряжения на обмотках двигателя силовыми тиристорами.

Устройства плавного пуска (УПП) широко применяются в различных электроприводах. Структурная схема разработанного УПП приведена на рисунке 1, а диаграмма работы УПП – на рисунке 2. Основой УПП являются три пары встречно-параллельных тиристоров VS1 – VS6, включенных в разрыв каждой из фаз. Плавный пуск осуществляется за счёт постепенного

увеличения прикладываемого к обмоткам электродвигателя сетевого напряжения от некоторого начального значения Uначдо номинального Uном. Это достигается путём постепенного увеличения угла проводимости тиристоров VS1 – VS6 от минимального значения до максимального в течение времени Тпуск, называемого временем пуска.

Обычно значение Uначсоставляет 30…60% от Uном, поэтому пусковой момент электродвигателя существенно меньше, чем в случае подключения электродвигателя на полное напряжение сети.

При этом происходит постепенное натяжение приводных ремней и плавное зацепление зубчатых колес редуктора.

Это благоприятно сказывается на снижении динамических нагрузок электропривода и, как следствие, способствует продлению срока службы механизмов и увеличению интервала между ремонтами.

Применение УПП также позволяет снизить нагрузку на электросеть, поскольку в этом случае пусковой ток электродвигателя составляет 2 – 4 номинала тока двигателя, а не 5 – 7 номиналов, как при непосредственном пуске. Это важно при питании электроустановок от источников энергии ограниченной мощности, например, дизель-генераторных установок, источников бесперебойного питания и трансформаторных подстанций малой мощности

(особенно в сельской местности). После завершения пуска тиристоры шунтируются байпасом (обходным контактором) К, благодаря чему в течение времени Траб на тиристорах не рассеивается мощность, а значит, экономится электроэнергия.

При торможении двигателя процессы происходят в обратном порядке: после отключения контактора К угол проводимости тиристоров максимален, напряжение на обмотках электродвигателя равно сетевому за вычетом падения напряжения на тиристорах.

Затем угол проводимости тиристоров в течение времени Тторм уменьшается до минимального значения, которому соответствует напряжение отсечки Uотс, после чего угол проводимости тиристоров становится равным нулю и напряжение на обмотки не подается.

На рисунке 3 приведены диаграммы тока одной из фаз двигателя при постепенном увеличении угла проводимости тиристоров.

На рисунке 4 приведены фрагменты принципиальной электрической схемы УПП. Полностью схема приведена на сайте журнала. Для её работы требуется напряжение трех фаз А, В, С стандартной сети 380 В частотой 50 Гц. Обмотки электродвигателя при этом могут быть соединены как «звездой», так и „треугольником“.

В качестве силовых тиристоров VS1 – VS6 применены недорогие приборы типа 40TPS12 в корпусе ТО-247 с прямым током Iпр= 35 А. Допустимый ток через фазу составляет Iдоп= 2Iпр= 70 А. Будем считать, что максимальный пусковой ток составляет 4Iном, откуда следует, что Iном < Iдоп/4 = 17,5 А.

Просматривая стандартный ряд мощностей электродвигателей, находим, что к УПП допустимо подключать двигатель мощностью 7,5 кВт с номинальным током фазы Iн= 15 А.

В случае, если пусковой ток превысит Iдоп (по причине подключения двигателя большей мощности или слишком малого времени пуска), процесс пуска будет остановлен, поскольку сработает автоматический выключатель QF1 со специально подобранной характеристикой.

Параллельно тиристорам подключены демпфирующие RC-цепочки R48, C20, C21, R50, C22, C23, R52, C24, C25, предотвращающие ложное включение тиристоров, а также варисторы R49, R51 и R53, поглощающие импульсы перенапряжения свыше 700 В. Обходные реле К1, К2, К3 типа TR91-12VDC-SC-C с номинальным током 40 А шунтируют силовые тиристоры после завершения пуска.

Питание системы управления осуществляется от трансформаторного блока питания, запитанного от межфазного напряжения Uав.

В блок питания входят понижающие трансформаторы TV1, TV2, диодный мост VD1, токоограничивающий резистор R1, сглаживающие конденсаторы С1, С3, С5, помехоподавляющие конденсаторы С2, С4, С6 и линейные стабилизаторы DA1 и DA2, обеспечивающие напряжение 12 и 5 В соответственно.

Система управления построена с применением микроконтроллера DD1 типа PIC16F873. Микроконтроллер выдаёт импульсы управления тиристорами VS1 – VS6 путём «зажигания» оптосимисторов ОРТ5-ОРТ10 (MOC3052).

Для ограничения тока в цепях управления тиристоров VS1 – VS6 служат резисторы R36 – R47. Импульсы управления подаются одновременно на два тиристора с задержкой относительно начала полуволны межфазного напряжения.

Цепи синхронизации с сетевым напряжением состоят из трёх однотипных узлов, состоящих из зарядных резисторов R13, R14, R18, R19, R23, R24, диодов VD3 – VD8, транзисторов VT1 – VT3, накопительных конденсаторов С17 – С19 и оптопар OPT2 – OPT4.

C выхода 4 оптопар OPT2, OPT3, OPT4 на входы микроконтроллера RC2, RC1, RC0 поступают импульсы длительностью примерно 100 мкс, соответствующие началу отрицательной полуволны фазных напряжений Uab, Ubc, Uca.

Диаграммы работы узла синхронизации приведены на рисунке 5. Если принять верхний график за сетевое напряжение Uав, то среднийграфик будет соответствовать напряжению на конденсаторе С17, а нижний – току через фотодиод оптопары ОРТ2.

Микроконтроллер регистрирует поступающие на его входы синхроимпульсы, определяет наличие, порядок чередования, отсутствие «слипания» фаз, а также производит расчёт времени задержки импульсов управления тиристорами.

Входы цепей синхронизации защищены от перенапряжения варисторами R17, R22 и R27.

С помощью потенциометров R2, R3, R4 задаются параметры, соответствующие диаграмме работы УПП, приведённой на рисунке 2; соответственно R2 – Tпуск, R3 – Тторм, R4 – Uначи Uотс.

Напряжения уставок с движков R2, R3, R4 поступают на входы RA2, RA1, RA0 микросхемы DD1 и преобразуются с помощью АЦП.

Время пуска и торможения регулируется в пределах от 3 до 15 с, а начальное напряжение – от нуля до напряжения, соответствующего углу проводимости тиристора в 60 электрических градусов. Конденсаторы С8 – С10 – помехоподавляющие.

Команда «ПУСК» подаётся путём замыкания контактов 1 и 2 разъёма XS2, при этом на выходе 4 оптопары OPT1 появляется лог.

1; конденсаторы С14 и С15 производят подавление колебаний, возникающих вследствие „дребезга“ контактов. Разомкнутому положению контактов 1 и 2 разъёма XS2 соответствует команда „СТОП“.

Коммутацию цепи управления запуском можно реализовать кнопкой с фиксацией, тумблером или контактами реле.

Силовые тиристоры защищены от перегрева термостатом B1009N с нормально-замкнутыми контактами, размещёнными на теплоотводе. При достижении температуры 80°С контакты термостата размыкаются, и на вход RC3 микроконтроллера поступает уровень лог. 1, свидетельствующий о перегреве.

Светодиоды HL1, HL2, HL3 служат индикаторами следующих состояний:

  • HL1 (зелёный) «Готовность» – отсутствие аварийных состояний, готовность к запуску;
  • HL2 (зелёный) «Работа» – мигающий светодиод означает, что УПП производит пуск или торможение двигателя, постоянное свечение – работа на байпасе;
  • HL3 (красный) «Авария» – свидетельствует о перегреве теплоотвода, отсутствии или „слипании“ фазных напряжений.

Включение обходных реле К1, К2, К3 производится путём подачи микроконтроллером лог. 1 на базу транзистора VT4.

Программирование микроконтроллера – внутрисхемное, для чего используется разъём XS3, диод VD2 и микропереключатель Дж1. Элементы ZQ1, C11, C12 образуют цепь запуска тактового генератора, R5 и С7 – цепь сброса по питанию, С13 осуществляет фильтрацию помех по шинам питания микроконтроллера.

На рисунке 6 приведён упрощённый алгоритм работы УПП.

После инициализации микроконтроллера вызывается подпрограмма Error_Test, которая определяет наличие аварийных ситуаций: перегрев теплоотвода, невозможность синхронизироваться с сетевым напряжением вследствие потери фазы, неверного подключения к сети или сильных помех.

Если аварийная ситуация не фиксируется, то переменной Error присваивается значение «0», после возврата из подпрограммы зажигается светодиод „Готовность“, и схема переходит в режим ожидания команды „ПУСК“.

После регистрации команды „ПУСК“ микроконтроллер производит аналого!цифровое преобразование напряжений уставок
на потенциометрах и расчёт параметров Тпуск и Uнач, после чего выдаёт импульсы управления силовыми тиристорами. По окончании пуска включается байпас. При торможении двигателя процессы управления выполняются в обратном
порядке.

Источник: http://www.zvezda-el.ru/articles/stati-ob-elektrotekhnike/tiristornoe-ustrojjstvo-plavnogo-puska-asinkhronnogo-elektrodvigatelja/

Схема плавного запуска трехфазного двигателя, выполненная на базе микросхем КР1182ПМ1

Устройства плавного пуска электродвигателя

Плавный пуск электродвигателя в последнее время применяется все чаще. Области его применении разнообразны и многочисленны. Это промышленность, электротранспорт, коммунальное и сельское хозяйство. Применение подобных устройств позволяет значительно снизить пусковые нагрузки на электродвигатель  и исполнительные механизмы, тем самым, продлив срок их службы.

Пусковые токи достигают значений в 7-10 раз выше, чем в рабочем режиме.

Это привод к «просаживанию» напряжения в питающей сети, что отрицательно сказывается не только на работе остальных потребителей, но и самого двигателя.

Время пуска затягивается, что может привести к перегреву обмоток и постепенному разрушению их изоляции. Это способствует преждевременному выходу электродвигателя из строя.

Устройства плавного пуска позволяют значительно снизить пусковые нагрузки на электродвигатель и электросеть, что особенно актуально в сельской местности либо при питании двигателя от автономной электростанции.

В момент запуска двигателя момент на его валу очень нестабилен и превышает номинальное значение более чем в пять раз.

Поэтому пусковые нагрузки исполнительных механизмов также повышены по сравнению с работой в установившемся режиме и могут достигать до 500 процентов.

Нестабильность момента при пуске приводит к ударным нагрузкам на зубья шестерен, срезанию шпонок и иногда даже к скручиванию валов.

Устройства плавного пуска электродвигателя значительно уменьшают пусковые нагрузки на механизм: плавно выбираются зазоры между зубьями шестерен, что препятствует их поломке. В ременных передачах также плавно натягиваются приводные ремни, что уменьшает износ механизмов.

Кроме плавного пуска на работе механизмов благотворно сказывается режим плавного торможения. Если двигатель приводит в движение насос, то плавное торможение позволяют избежать гидравлического удара при выключении агрегата.

Устройства плавного пуска промышленного изготовления

Устройства плавного пуска в настоящее время выпускается многими фирмами, например, Siemens, Danfoss, Scheider Electric. Такие устройства обладают многими функциями, которые программируются пользователем. Это время разгона, время торможения, защита от перегрузок и множество других дополнительных функций.

При всех достоинствах фирменных устройства обладают одним недостатком, — достаточно высокой ценой. Вместе с тем можно создать подобное устройство самостоятельно. Стоимость его при этом получится небольшой.

Устройство плавного пуска на микросхеме КР1182ПМ1

На основе микросхемы КР1182ПМ1 возможно создание достаточно простого устройства плавного пуска трехфазного электродвигателя. Схема устройства показана на Рис.1.

Рис.1. Схема устройства плавного пуска двигателя

Плавный пуск осуществляется при помощи постепенного увеличения напряжения на обмотках двигателя от нулевого значения до номинального. Это достигается за счет увеличения угла открывания тиристорных ключей за время, называемое временем запуска.

Описание схемы

В конструкции используется трехфазный электродвигатель 50 Гц, 350 В. Обмотки двигателя, соединенные «звездой», подключаются к выходным цепям, обозначенным на схеме как L1, L2, L3. Средняя точка «звезды» подключается к сетевой нейтрали (N).

Выходные ключи выполнены на тиристорах, включенных встречно-параллельно. В конструкции применены импортные тиристоры типа 40ТРS12. При небольшой стоимости они обладают достаточно большим током – до 35 А, а их обратное напряжение – 1200 В.

Кроме них в ключах присутствуют еще несколько элементов.

Их назначение следующее: демпфирующие RC-цепочки, включенные параллельно тиристорам, предотвращают ложные включения последних (на схеме это R8С11, R9С12, R10С13), а с помощью варисторов RU1- RU3 поглощаются коммутационные помехи, амплитуда которых превышает 500В.

В качестве управляющих узлов для выходных ключей используются микросхемы DA1-DA3 типа КР1182ПМ1. Конденсаторы С5-С10 внутри микросхемы формируют пилообразное напряжение, которое синхронизировано сетевым. Сигналы управления тиристорами в микросхеме формируются путем сравнения пилообразного напряжения с напряжением между выводами микросхемы 3 и 6.

Для питания реле К1-К3 в устройстве имеется блок питания, который состоит из нескольких элементов. Это трансформатор Т1, выпрямительный мостик VD1, сглаживающий конденсатор С4. На выходе выпрямителя установлен интегральный стабилизатор DA4 типа 7812 обеспечивающий на выходе напряжение 12 В, и защиту от коротких замыканий и перегрузок на выходе.

Описание  работы устройства плавного пуска электродвигателей

Сетевое напряжение на схему подается при замыкании силового выключателя Q1. Однако, двигатель еще не запускается. Это происходит потому, что обмотки реле К1…К3 пока обесточены, и их нормально-замкнутые контакты шунтируют выводы 3 и 6 микросхем DA1…DA3 через резисторы R1…R3. Это обстоятельство не дает заряжаться конденсаторам С1…С3, поэтому управляющие импульсы микросхемы не вырабатывают.

Пуск устройства в работу

При замыкании тумблера SA1 напряжение 12 В включает реле К1…К3. Их нормально-замкнутые контакты размыкаются, что обеспечивает возможность зарядки конденсаторов С1…С3 от внутренних генераторов тока.

Вместе с увеличением напряжения на этих конденсаторах увеличивается и угол открывания тиристоров. Тем самым достигается плавное увеличение напряжения на обмотках двигателя.

Когда конденсаторы зарядятся полностью, угол включения тиристоров достигнет максимальной величины, и частота вращения электродвигателя достигнет номинальной.

Отключение двигателя, плавное торможение

Для выключения двигателя следует разомкнуть выключатель SA1, Это приведет к отключению реле К1…К3. Их нормально – замкнутые контакты замкнутся, что приведет к разряду конденсаторов С1…С3 через резисторы R1…R3. Разряд конденсаторов будет длиться несколько секунд, за это же время произойдет останов двигателя.

При пуске двигателя в нулевом проводе могут протекать значительные токи.

Это происходит оттого, что в процессе плавного разгона токи в обмотках двигателя несинусоидальные, но особо бояться этого не стоит: процесс пуска достаточно кратковременный.

В установившемся же режиме этот ток будет много меньше (не более десяти процентов тока фазы в номинальном режиме), что обусловлено лишь технологическим разбросом параметров обмоток и «перекосом» фаз. От этих явлений избавиться уже невозможно.

Детали и конструкция

Для сборки устройства необходимы следующие детали:

Трансформатор мощностью не более 15 Вт, с напряжением выходной обмотки 15…17 В.

В качестве реле К1…К3 подойдут любые с напряжением катушки 12 В, имеющие нормально-замкнутый или переключающий контакт, например TRU-12VDC-SB-SL.

Конденсаторы С11…С13 типа К73-17 на рабочее напряжение не менее 600 В.

Устройство выполнено на печатной плате. Собранное устройство следует поместить в пластмассовый корпус подходящих размеров, на лицевой панели которого разместить выключатель SA1 и светодиоды HL1 и HL2.

Подключение двигателя

Подключение выключателя Q1 и двигателя выполняется проводами, сечение которых соответствует мощности последнего. Нулевой провод выполняется тем же проводом, что и фазные. При указанных на схеме номиналах деталей возможно подключение двигателей мощностью до четырех киловатт.

Если предполагается использовать двигатель мощностью не более полутора киловатт, а частота пусков не будет превышать 10…15 в час, то мощность, рассеиваемая на тиристорных ключах незначительна, поэтому радиаторы можно не ставить.

Если же предполагается использовать более мощный двигатель или запуски будут более частыми, потребуется установка тиристоров на радиаторы, изготовленные из алюминиевой полосы. Если же радиатор предполагается использовать общий, то тиристоры следует изолировать от него при помощи слюдяных прокладок. Для улучшения условий охлаждения можно воспользоваться теплопроводящей пастой КПТ– 8.

Проверка и наладка устройства

Перед включением, прежде всего, следует проверить монтаж на соответствие принципиальной схеме. Это основное правило, и отступать от него нельзя.

Ведь пренебрежение этой проверкой может привести к куче обугленных деталей, и надолго отбить охоту делать «опыты с электричеством».

Найденные ошибки следует устранить, ведь все же эта схема питается от сети, а с нею шутки плохи. И даже после указанной проверки подключать двигатель еще рано.

Сначала следует вместо двигателя подключить три одинаковых лампы накаливания, мощностью 60…100 Вт. При испытаниях следует добиться, чтобы лампы «разжигались» равномерно.

Неравномерность времени включения обусловлена разбросом емкостей конденсаторов С1…С3, которые имеют значительный допуск по емкости. Поэтому лучше перед установкой сразу подобрать их с помощью прибора, хотя бы с точностью процентов до десяти.

Время выключения обусловлено еще сопротивлением резисторов R1…R3. С их помощью можно выровнять время выключения. Эти настройки следует выполнять в том случае, если разброс времени включения – выключения в разных фазах превышает 30 процентов.

Двигатель можно подключать лишь после того, как вышеуказанные проверки прошли нормально, не сказать бы даже на отлично.

Что можно еще добавить в конструкцию

Выше уже было сказано, что такие устройства в настоящее время выпускаются разными фирмами. Конечно, все функции фирменных устройств в подобном самодельном повторить невозможно, но одну все-таки, скопировать, наверно, удастся.

Речь идет о так называемом шунтирующем контакторе. Назначение его следующее: после того, как двигатель достиг номинальных оборотов, контактор просто перемыкает тиристорные ключи своими контактами.

Ток идет через них в обход тиристоров. Такую конструкцию часто называют байпасом (от английского bypass – обход). Для такого усовершенствования придется ввести дополнительные элементы в блок управления.

Источник: http://meandr.org/archives/9842

Плавный пуск электродвигателя

Электродвигатели – самые распространенные в мире электрические машины. Ни одно промышленное предприятие, ни один технологический процесс без них не обходится. Вращение вентиляторов, насосов, перемещение лент конвейеров, движение кранов – вот неполный, но уже весомый перечень задач, решаемых с помощью двигателей.

Однако есть один нюанс работы всех без исключения электромоторов: в момент старта они кратковременно потребляют большой ток, называемый пусковым.

Чем опасен пусковой ток электродвигателя

При подаче напряжения на обмотку статора скорость вращения ротора равна нулю. Ротор нужно стронуть с места и раскрутить до номинального частоты вращения. На это тратится значительно большая энергия, чем та, что нужна для номинального режима работы.

Под нагрузкой пусковые токи больше, чем на холостом ходу. К весу ротора прибавляется механическое сопротивление вращению от приводимого двигателем в движение механизма. На практике влияние этого фактора стремятся минимизировать. Например, у мощных вентиляторов на момент запуска автоматически закрываются шиберы в воздуховодах.

В момент протекания пускового тока из сети потребляется значительная мощность, расходуемая на выведение электродвигателя на номинальный режим работы. Чем мощнее электромотор, тем большая мощность для разгона ему требуется. Не все электрические сети переносят этот режим без последствий.

Перегрузка питающих линий неизбежно приводит к снижению напряжения в сети. Это не только еще более затрудняет процесс запуска электродвигателей, но и влияет на других потребителей.

Да и сами электродвигатели во время пусковых процессов испытывают повышенные механические и электрические нагрузки. Механические связаны с увеличением вращающего момента на валу. Электрические же, связанные с кратковременным увеличением тока, воздействуют на изоляцию обмоток статора и ротора, контактные соединения и пусковую аппаратуру.

Методы снижения пусковых токов

Маломощные электромоторы с недорогой пускорегулирующей аппаратурой вполне достойно запускаются и без применения каких-либо средств. Снижать их пусковые токи или изменять частоту вращения нецелесообразно экономически.

Но, когда влияние на режим работы сети в процессе запуска оказывается существенным, пусковые токи требуют снижения. Этого добиваются за счет:

  • применения электродвигателей с фазным ротором;
  • использование схемы для переключения обмоток со звезды на треугольник;
  • использование устройств плавного пуска;
  • использование частотных преобразователей.

Для каждого механизма подходит один или несколько указанных методов.

Электродвигатели с фазным ротором

Применение асинхронных электродвигателей с фазным ротором на участках работы с тяжелыми условиями труда – самая древняя форма снижения пусковых токов. Без них невозможна работа электрифицированных кранов, экскаваторов, а также – дробилок, грохотов, мельниц, редко запускающихся при отсутствии продукции в приводимом механизме.

Снижение пускового тока достигается за счет поэтапного вывода из цепи ротора резисторов. Первоначально, в момент подачи напряжения, к ротору подключено максимально возможное сопротивление. По мере разгона реле времени один за другим включают контакторы, шунтирующие отдельные резистивные секции. В конце разгона добавочное сопротивление, включенное к цепи ротора, равно нулю.

Крановые двигатели не имеют автоматического переключения ступеней с резисторами. Это происходит по воле крановщика, передвигающего рычаги управления.

Переключение схемы соединения обмоток статора

В брно (блок распределения начала обмоток) любого трехфазного электромотора выведено 6 выводов от обмоток всех фаз. Таким образом, их можно соединить либо в звезду, либо в треугольник.

За счет этого достигается некоторая универсальность применения асинхронных электродвигателей. Схема включения звездой рассчитывается на большую ступень напряжения (например, 660В), треугольником – на меньшую (в данном примере – 380В).

Но при номинальном напряжении питания, соответствующем схеме с треугольником, можно воспользоваться схемой со звездой для предварительного разгона электромотора. При этом обмотка работает на пониженном напряжении питания (380В вместо 660), и пусковой ток снижается.

Для управления процессом переключения потребуется дополнительный кабель в брно электродвигателя, так как задействуются все 6 выводов обмоток. Устанавливаются дополнительные пускатели и реле времени для управления их работой.

Частотные преобразователи

Первые два метода можно применить не везде. А вот последующие, ставшие доступными относительно недавно, позволяют осуществить плавный пуск любого асинхронного электродвигателя.

Частотный преобразователь – сложное полупроводниковое устройство, сочетающее силовую электронику и элементы микропроцессорной техники. Силовая часть выпрямляет и сглаживает сетевое напряжение, превращая его в постоянное. Выходная часть из этого напряжения формирует синусоидальное с изменяемой частотой от нуля до номинального значения – 50 Гц.

За счет этого достигается экономия электроэнергии: приводимые во вращение агрегаты не работают с избыточной производительностью, находясь в строго требуемом режиме. К тому же технологический процесс получает возможность тонко настраиваться.

Но важное в спектре рассматриваемой проблемы: частотные преобразователи позволяют осуществлять плавный пуск электродвигателя, без толчков и рывков. Пусковой ток полностью отсутствует.

Устройства плавного пуска

Устройство плавного пуска электродвигателя – это тот же частотный преобразователь, но с ограниченным функционалом. Работает он только при разгоне электродвигателя, плавно изменяя скорость его вращения от минимально заданного значения до номинальной.

Чтобы исключить бесполезную работу устройства по окончании разгона электродвигателя, рядом устанавливается шунтирующий контактор. Он подключает электродвигатель напрямую к сети после завершения запуска.

При выполнении модернизации оборудования – это самый простой метод. Он зачастую может быть реализован своими руками, без привлечения узкопрофильных специалистов. Устройство устанавливается на место магнитного пускателя, управляющего пуском электромотора. Может потребоваться замена кабеля на экранированный. Затем в память устройства вносятся параметры электромотора, и оно готово к действию.

А вот с полноценными частотными преобразователями справиться самостоятельно по силам не каждому. Поэтому их применение в единичных экземплярах обычно лишено смысла. Установка частотных преобразователей оправдана лишь при проведении общей модернизации электрооборудования предприятия.

Источник: http://ElectrikTop.ru/baza-znaniy/plavnyj-pusk-elektrodvigatelya.html

Плавный пуск для болгарки своими руками – экономия ваших средств и защита электроинструмента

В связи с особенностями конструкции, старт угловой шлифовальной машины сопряжен с высокими динамическими нагрузками. За счет массы рабочего диска, в начале вращения на ось редуктора действуют силы инерции. Это влечет за собой некоторые негативные моменты:

    1. Нагрузки на ось при резком старте создают инерционный рывок, который при большом диаметре и массе диска может вырвать электроинструмент из рук;

ВАЖНО! При запуске болгарки, всегда держите инструмент обеими руками, и будьте готовы к его удержанию. В противном случае можно получить травму. Данное предупреждение особенно актуально для тяжелых алмазных или стальных дисков.

    1. При резкой подаче рабочего напряжения на двигатель, возникает перегрузка по току, которая проходит после набора номинальных оборотов;

В результате чего изнашиваются щетки и перегреваются обе обмотки электромотора. При постоянном включении и выключении электроинструмента, перегрев может оплавить изоляцию обмоток и привести к короткому замыканию, с последующим дорогостоящим ремонтом.

    1. Большой крутящий момент при резком наборе оборотов преждевременно изнашивает шестерни редуктора УШМ;

В некоторых случаях возможно отламывание зубьев и заклинивание редуктора.

    1. Перегрузки, которые воспринимает рабочий диск, могут разрушить его при запуске двигателя.

Поэтому наличие защитного кожуха обязательно.

ВАЖНО! Во время запуска болгарки, открытый сектор кожуха должен быть направлен в сторону, противоположную от оператора.

Чтобы лучше понять механику работы, рассмотрим устройство болгарки на чертеже. Хорошо видны все элементы, испытывающие перегрузку при резком старте.

Схематический чертеж расположение рабочих органов и систем управления в болгарке

Для уменьшения пагубных воздействий резкого пуска, производители выпускают болгарки с регулировкой оборотов и плавным пуском.

Регулировка оборотов находится на рукоятке инструмента

Но таким приспособлением оснащаются лишь модели средней и высокой ценовой категории. Многие домашние мастера приобретают УШМ без регулятора и замедления пусковых оборотов.

Особенно это касается мощных экземпляров с диаметром отрезного диска более 200 мм. Такую болгарку мало того что тяжело удержать в руках во время запуска, износ механики и электрической части происходит гораздо быстрее.
Выход один – установить плавный пуск болгарки самостоятельно.

Существуют готовые заводские устройства с регулятором оборотов и замедлением старта двигателя при запуске.

Такие блоки устанавливаются внутрь корпуса, при наличии свободного места. Однако, большинство пользователей УШМ предпочитают изготавливать схему для плавного пуска болгарки самостоятельно, и подключать ее в разрыв питающего кабеля.

Как изготовить схему плавного пуска угловой шлифовальной машины своими руками

Популярная схема реализуется на основе управляющей микросхемы фазового регулирования КР118ПМ1, а силовая часть выполнена на симисторах. Такое устройство достаточно просто монтируется, не требует дополнительной настройки после сборки, а стало быть, изготовить ее может мастер без специализированного образования, достаточно уметь держать в руках паяльник.

Электрическая схема регулировки плавного пуска для болгарки

Предложенный блок можно подключить к любому электроинструменту, рассчитанному на переменное напряжение 220 вольт. Отдельный вынос кнопки питания не требуется, доработанный электроинструмент включается штатной клавишей. Схему можно установить как внутрь корпуса болгарки, таки и в разрыв питающего кабеля в отдельном корпусе.

При замыкании клавиши пуска болгарки, по общей цепи питания подается напряжение на микросхему DA1. На управляющем конденсаторе происходит плавное нарастание напряжения.

По мере заряда оно достигает рабочей величины. За счет этого тиристоры в составе микросхемы открываются не сразу, а с задержкой, время которой определяется зарядом конденсатора.

Симистор VS1, управляемый тиристорами, открывается с такой же паузой.

Посмотрите видео с подробным разъяснением как сделать и какую схему применить

В каждом полупериоде переменного напряжения, задержка уменьшается в арифметической прогрессии, в результате чего напряжение на входе в электроинструмент плавно возрастает. Этот эффект и определяет плавность запуска двигателя болгарки. Следовательно обороты диска возрастают постепенно, и вал редуктора не испытывает инерционного шока.

Время набора оборотов до рабочего значения определяется емкостью конденсатора С2. Величина 47 мкФ обеспечивает плавный пуск за 2 секунды. При такой задержке нет особого дискомфорта для начала работы с инструментом, и в то же время сам электроинструмент не подвергается избыточным нагрузкам от резкого старта.

После выключения УШМ, конденсатор С2 разряжается сопротивлением резистора R1. При номинале 68 кОм время разряда составляет 3 секунды. После чего устройство плавного пуска готово к новому циклу запуска болгарки.

Таким образом, в одном корпусе можно выполнить регулятор оборотов двигателя и устройство плавного пуска электроинструмента.

Остальные детали схемы работают следующим образом:

  • Резистор R2 контролирует величину силы тока, протекающую через управляющий вход симистора VS1;
  • Конденсаторы С1 и С2 являются компонентами управления микросхемой КР118ПМ1, используемыми в типовой схеме включения.

Для простоты и компактности монтажа, резисторы и конденсаторы припаиваются прямо к ножкам микросхемы.

Симистор VS1 может быть любым, со следующими характеристиками: максимальное напряжение до 400 вольт, минимальный пропускной ток 25 ампер. Величина тока зависит от мощности угловой шлифовальной машины.

По причине плавного пуска болгарки, ток не будет превышать номинального рабочего значения для выбранного электроинструмента. Для экстренных случаев, например, заклинивания диска УШМ – необходим запас по току. Поэтому значение номинальной величины в амперах следует увеличить вдвое.

Номиналы радиодеталей, использованных в предлагаемой электросхеме – испытаны на УШМ мощностью 2 кВт. Запас по мощности имеется до 5 кВт, это связано с особенностью работы микросхемы КР118ПМ1.
Схема рабочая, многократно исполненная домашними мастерами.

Источник: http://obinstrumente.ru/elektroinstrument/bolgarka/plavnyj-pusk-dlya-bolgarki-svoimi-rukami.html

Устройство плавного пуска электродвигателя :

Характерным для любого электродвигателя в процессе запуска является многократное превышение тока и механической нагрузки на приводимое в действие оборудование. При этом также возникают перегрузки питающей сети, создающие просадку напряжения и ухудшающие качество электроэнергии. Во многих случаях требуется устройство плавного пуска (УПП).

Необходимость плавного пуска электродвигателей

Статорная обмотка является катушкой индуктивности, состоящей из активного сопротивления и реактивного. Значение последнего зависит от частоты подаваемого напряжения. При запуске двигателя реактивное сопротивление изменяется от нуля, а пусковой ток имеет большую величину, многократно превышающую номинальный.

Момент вращения также велик и может разрушить приводимое в движение оборудование. В режиме торможения также появляются броски тока, приводящие к повышению температуры статорных обмоток. При аварийной ситуации, связанной с перегревом двигателя, возможен ремонт, но параметры трансформаторной стали изменяются и номинальная мощность снижается на 30 %.

Поэтому необходим плавный пуск.

Запуск электродвигателя переключением обмоток

Обмотки статора могут соединяться «звездой» и «треугольником». Когда у двигателя выведены все концы обмоток, можно снаружи коммутировать схемы «звезда» и «треугольник».

Устройство плавного пуска электродвигателя собирается из 3 контакторов, реле нагрузки и времени.

Электродвигатель запускается по схеме «звезда», когда контакты К1 и К3 замкнуты. Через интервал, заданный реле времени, К3 отключается и производится подключение схемы «треугольник» контактором К2. При этом двигатель выходит на полные обороты. Когда он разгоняется до номинальных оборотов, пусковые токи не такие большие.

Недостатком схемы является возникновение короткого замыкания при одновременном включении двух автоматов. Этого можно избежать, применив вместо них рубильник. Для организации реверса нужен еще один блок управления. Кроме того, по схеме «треугольник» электродвигатель больше нагревается и жестко работает.

Частотное регулирование скорости вращения

Вал электродвигателя вращается магнитным полем статора. Скорость зависит от частоты питающего напряжения. Электропривод будет работать эффективней, если дополнительно менять напряжение.

В состав устройства плавного пуска асинхронных двигателей может входить частотный преобразователь.

Первой ступенью устройства является выпрямитель, на который подается напряжение трехфазной или однофазной сети. Он собирается на диодах или тиристорах и предназначен для формирования пульсирующего напряжения постоянного тока.

В промежуточной цепи пульсации сглаживаются.

В инверторе выходной сигнал преобразуется в переменный заданной частоты и амплитуды. Он работает по принципу изменения амплитуды или ширины импульсов.

Все три элемента получают сигналы от электронной схемы управления.

Принцип действия УПП

Увеличение пускового тока в 6-8 раз и вращающего момента требуют применения УПП для выполнения следующих действий при запуске или торможении двигателя:

  • постепенное увеличение нагрузки;
  • снижение просадки напряжения;
  • управление запуском и торможением в определенные моменты времени;
  • снижение помех;
  • защита от скачков напряжения, при пропадании фазы и др.;
  • повышение надежности электропривода.

Устройство плавного пуска двигателя ограничивает величину напряжения, подаваемого в момент пуска. Оно регулируется путем изменения угла открытия симисторов, подключенных к обмоткам.

Пусковые токи необходимо снижать до величины, не более чем в 2-4 раза превышающей номинал.

Наличие байпасного контактора предотвращает перегрев симисторов после его подключения после того, как двигатель раскрутится. Варианты включения бывают одно-, двух- и трехфазные.

Каждая схема функционально отличается и имеет разную стоимость. Наиболее совершенным является трехфазное регулирование. Оно наиболее функционально.

Недостатки УПП на симисторах:

  • простые схемы применяются только с небольшими нагрузками или при холостом запуске;
  • продолжительный запуск приводит к перегреву обмоток и полупроводниковых элементов;
  • момент вращения вала снижается и двигатель может не запуститься.

Виды УПП

Наиболее распространены регуляторы без обратной связи по двум или трем фазам. Для этого предварительно устанавливается напряжение и время пуска.

Недостатком является отсутствие регулирования момента по нагрузке на двигатель.

Эту проблему решает устройство с обратной связью наряду с выполнением дополнительных функций снижения пускового тока, создания защиты от перекоса фаз, перегрузки и пр.

Наиболее современные УПП имеют цепи непрерывного слежения за нагрузкой. Они подходят для тяжело нагруженных приводов.

Выбор УПП

Большинство УПП — это регуляторы напряжения на симисторах, различающиеся функциями, схемами регулирования и алгоритмами изменения напряжения. В современных моделях софтстартеров применяются фазовые методы регулирования электроприводов с любыми режимами пуска. Электрические схемы могут быть с тиристорными модулями на разное количество фаз.

Одно из самых простых — это устройство плавного пуска с однофазным регулированием через один симистор, позволяющее только смягчать механические ударные нагрузки двигателей мощностью до 11 кВт.

Двухфазное регулирование также смягчает механические удары, но не ограничивает токовые нагрузки. Допустимая мощность двигателя составляет 250 кВт. Оба способа применяются из расчета приемлемых цен и особенностей конкретных механизмов.

Многофункциональное устройство плавного пуска с трехфазным регулированием имеет самые лучшие технические характеристики. Здесь обеспечивается возможность динамического торможения и оптимизации его работы. В качестве недостатков можно отметить только большие цены и габариты.

В качестве примера можно взять устройство плавного пуска Altistart. Можно подобрать модели для запуска асинхронных двигателей, мощность которых достигает 400 кВт.

Устройство выбирается по номинальной мощности и режиму работы (нормальный или тяжелый).

Выбор УПП

Основными параметрами, по которым выбираются устройства плавного пуска, являются:

  • предельная сила тока УПП и двигателя должны быть правильно подобраны и соответствовать друг другу;
  • параметр количества запусков в час задается как характеристика софтстартера и не должен превышаться при эксплуатации двигателя;
  • заданное напряжение устройства не должно быть меньше сетевого.

Упп для насосов

Устройство плавного пуска для насоса предназначено преимущественно для снижения гидравлических ударов в трубопроводах. Для работы с приводами насосов подходят УПП Advanced Control. Устройства практически полностью устраняют гидроудары при заполненных трубопроводах, позволяя увеличить ресурс оборудования.

Плавный запуск электроинструментов

Для электроинструмента характерны высокие динамические нагрузки и большие обороты. Его наглядным представителем является угловая шлифовальная машинка (УШМ). На рабочий диск действуют значительные силы инерции в начале вращения редуктора. Большие перегрузки по току возникают не только при запуске, но и при каждой подаче инструмента.

Устройство плавного пуска электроинструмента применяется только для дорогих моделей. Экономичным решением является его установка своими руками. Это может быть готовый блок, который помещается внутри корпуса инструмента. Но многие пользователи собирают простую схему самостоятельно и подключают ее в разрыв питающего кабеля.

При замыкании цепи двигателя, на регулятор фазы КР1182ПМ1 подается напряжение и начинает заряжаться конденсатор С2. За счет этого симистор VS1 включается с задержкой, которая постепенно уменьшается. Ток двигателя плавно нарастает и обороты набираются постепенно. Двигатель разгоняется примерно за 2 сек. Мощность, отдаваемая в нагрузку, достигает 2,2 кВт.

Устройство можно применять для любого электроинструмента.

Выбирая устройство плавного пуска, необходимо анализировать требования к механизму и характеристикам электродвигателя. Характеристики производителя находятся в прилагаемой к оборудованию документации. Ошибки при выборе быть не должно, поскольку нарушится функционирование устройства. Важен учет диапазона скоростей, чтобы выбрать лучшее сочетание преобразователя и двигателя.

Источник: https://www.syl.ru/article/287360/new_ustroystvo-plavnogo-puska-elektrodvigatelya

назначение, принцип действия и изготовление своими руками

Электрические двигатели получили широкое применение в любых сферах деятельности человека. Однако при запуске электродвигателя происходит семикратное потребление тока, вызывающее не только перегрузку сети питания, но и нагрев обмоток статора, а также выход из строя механических частей. Для устранения этого нежелательного эффекта радиолюбители советуют применять устройства плавного пуска электродвигателя.

Плавный пуск двигателя

Статор электродвигателя представляет собой катушку индуктивности, следовательно, существуют активная и реактивная составляющие сопротивления (R). Значение реактивной составляющей зависит от частотных характеристик питания и во время запуска колеблется в пределах от 0 до расчетного значения (при работе инструмента). Кроме того, изменяется ток, называемый пусковым.

Ток пуска превышает в 7 раз значение номинального. При этом процессе происходит нагрев обмоток статорной катушки и, в том случае, если провод, из которого состоит обмотка, является старым, то возможно межвитковое КЗ (при уменьшении величины R ток достигает максимального значения). Перегрев влечет снижение срока эксплуатации инструмента. Для предотвращения этой проблемы существуют несколько вариантов использования устройств плавного пуска.

Переключением обмоток устройство плавного пуска двигателя (УПП) состоит из следующих основных узлов: 2 вида реле (управление временем включения и нагрузкой) , трех контакторов (рисунок 1).

Рисунок 1 – Общая схема устройства плавного пуска асинхронных двигателей (мягкого пуска).

На рисунке 1 изображен асинхронный двигатель. Его обмотки соединены по типу подключения «звезда». Запуск осуществляется при замкнутых контакторах K1 и K3. Через определенный временной интервал (задается при помощи реле времени) контактор К3 размыкает свой контакт (происходит отключение) и происходит включение контактом К2. Схема на рисунке 1 применима и для УПП двигателей различного типа.

Главным недостатком считается образование токов КЗ при одновременном включении 2-х автоматов. Эта проблема исправляется внедрением в схему вместо контакторов рубильника. Однако обмотки статора продолжают греться.

При электронном регулировании частоты пуска электромотора используется принцип частотного изменения питающего напряжения. Основным элементом этих преобразователей является преобразователь частоты, включающий в себя:

  1. Выпрямитель собирается на полупроводниковых мощных диодах (возможен вариант тиристорного исполнения). Он преобразует величину сетевого напряжения в пульсирующий постоянный ток.
  2. Промежуточная цепь сглаживает помехи и пульсации.
  3. Инвертор необходим для преобразования сигнала, полученного на выходе промежуточной цепи, в сигнал переменной амплитудной и частотной характеристиками.
  4. Электронная схема управления генерирует сигналы для всех узлов преобразователя.

Принцип действия, виды и выбор

Во время увеличения вращающего момента ротора и Iп в 7 раз для продления срока службы необходимо использовать УПП, которое отвечает следующим требованиям:

  1. Равномерное и плавное увеличение всех показателей.
  2. Управление электроторможением и пуском двигателя в определенные временные интервалы.
  3. Защита от скачков напряжения, пропадании какой-либо фазы (для 3-х фазного электродвигателя) и помех различного рода.
  4. Повышение износостойкости.

Принцип действия симисторного УПП: ограничение величины напряжения благодаря изменению угла открытия симисторных полупроводников (симисторов) при подключении к статорным катушкам электродвигателя (рисунок 2).

Рисунок 2 – Схема плавного пуска электродвигателя на симисторах.

Благодаря применению симисторов появляется возможность снизить пусковые токи в 2 и более раз, а наличие контактора позволяет избежать перегрева симисторов (на рисунке 2: Bypass). Основные недостатки симисторных УПП:

  1. Применение простых схем возможно только при небольших нагрузках или холостом запуске. В противном случае схема усложняется.
  2. Происходит перегрев обмоток и полупроводниковых приборов при продолжительном запуске.
  3. Двигатель иногда не запускается (приводит к значительному перегреву обмоток).
  4. При электротормозе электромотора возможен перегрев обмоток.

Широко применяются УПП с регуляторами, в которых отсутствует обратная связь (по 1 или 3 фазам). В моделях этого типа необходимо устанавливать время пуска электромотора и напряжение непосредственно перед началом пуска. Недостаток устройств — невозможность регулировать вращающий момент подвижных механических частей по нагрузке. Для устранения этой проблемы нужно применить устройство по снижению Iп, защиты от различной разности фаз (возникает во время перекоса фаз) и механических перегрузок.

Более дорогостоящие модели УПП включают в себя возможность слежения за параметрами работы электродвигателя в непрерывном режиме.

В устройствах, содержащих электромоторы, предусмотрены УПП на симисторах. Они отличаются схемой и способом регуляции сетевого напряжения. Простейшие схемы — схемы с однофазным регулированием. Они исполняются на одном симисторе и позволяют смягчить нагрузки на механическую часть, и применяются для электромоторов с мощностью менее 12 кВ. На предприятиях применяется 3-х фазное регулирование напряжения для электромоторов мощностью до 260 кВт. При выборе вида УПП необходимо руководствоваться следующими параметрами:

  1. Мощность устройства.
  2. Режим работы.
  3. Равенство Iп двигателя и УПП.
  4. Количество запусков за определенное время.

Для защиты насосов подходят УПП, защищающие от ударов с гидравлической составляющей трубы (Advanced Control). УПП для инструментов выбираются, исходя из нагрузок и больших оборотов. В дорогих моделях этот тип защиты в виде УПП присутствует, а для бюджетных необходимо изготавливать его своими руками. Применяется в химических лабораториях для плавного запуска вентилятора, охлаждающего жидкости.

Причины применения в болгарке

Благодаря особенностям конструкции при старте угловой шлифовальной машинки происходят высокие динамические нагрузки на детали инструмента. При начальном вращении диска, ось редуктора подвержена действию сил инерции:

  1. Инерционный рывок может вырвать болгарку из рук. Происходит угроза жизни и здоровью, так как этот инструмент очень опасен и требует строгого соблюдения техники безопасности.
  2. При запуске происходит перегрузка по току (Iпуска = 7*Iном). Происходит преждевременный износ щеток, перегрев обмоток.
  3. Изнашивается редуктор.
  4. Разрушение режущего диска.

Ненастроенный инструмент становится очень опасным, ведь существует вероятность причинения вреда здоровью и жизни. Поэтому необходимо его обезопасить. Для этого и собираются УПП для электроинструмента своими руками.

Создание своими руками

Для бюджетных моделей угловой шлифовальной машинки и другого инструмента необходимо собрать свое УПП. Сделать это несложно, ведь благодаря интернету, можно найти огромное количество схем. Наиболее простая и, в то же время, эффективная — универсальная схема УПП на симисторе и микросхеме.

При включении болгарки или другого инструмента происходит повреждение обмоток и редуктора инструмента, связанного с резким запуском. Радиолюбители нашли выход из этой ситуации и предложили простой плавный пуск для электроинструмента своими руками (схема 1), собранную в отдельном блоке (в корпусе очень мало места).

Схема 1 – Схема плавного пуска электроинструмента.

УПП своими руками реализуется на основе КР118ПМ1 (фазовое регулирование) и силовой части на симисторах. Основной изюминкой устройства является его универсальность, ведь его можно подключить к любому электроинструменту. Оно не только легко монтируется, но и не требует предварительной настройки. В основном подключение системы к инструменту не является сложным и устанавливается в разрыв кабеля питания.

Особенности работы модуля УПП

При включении болгарки на КР118ПМ1 подается напряжение и на управляющем конденсаторе (С2) происходит плавный рост напряжения по мере роста заряда. Тиристоры, находящиеся в микросхеме, открываются постепенно с определенной задержкой. Симистор открывается с паузой, равной задержке тиристоров. Для каждого последующего периода напряжения происходит постепенное уменьшение задержки и инструмент плавно запускается.

Зависит время набора оборотов от емкости С2 (при 47 мк время запуска равно 2 секунды). Эта задержка является оптимальной, хотя ее можно менять путем увеличения емкости С2. После выключения углошлифовальной машинки (УШМ) происходит разряд конденсатора С2 благодаря резистору R1 (время разрядки примерно равно 3 секунды при 68к).

Эту схему для регулировки оборотов электродвигателя можно модернизировать путем замены R1 на переменный резистор. При изменении величины сопротивления переменного резистора меняется мощность электромотора. Резистор R2 выполняет функцию контроля величины силы тока, который протекает через вход симистора VS1 (желательно предусмотреть охлаждение вентилятором), являющийся управляющим. Конденсаторы С1 и С3 служат для защиты и управлением микросхемы.

Симистор подбирается со следующими характеристиками: напряжение прямое максимальное до 400–500 В и минимальный ток пропускания через переходы должен быть не менее 25 А. При изготовлении УПП по этой схеме запас по мощности может колебаться от 2 кВт до 5 кВт.

Таким образом, для увеличения срока службы инструментов и двигателей, необходимо производить их плавный запуск. Это связано с конструктивной особенностью электромоторов асинхронного и коллекторного типов. При запуске происходит стремительное потребление тока, из-за которого происходит износ электрической и механической частей. Использование УПП позволяет обезопасить электроинструмент, благодаря соблюдению правил техники безопасности. При модернизации инструмента возможна покупка уже готовых моделей, а также сборка простого и надежного универсального устройства, которое не только отличается, но и даже превосходит некоторые заводские УПП.

чем отличается устройство плавного пуска?

Что такое устройство плавного пуска?

Устройство плавного пуска снижает начальный скачок тока, который проходит через обмотки двигателя при его запуске, также известный как пусковой ток. Устройства плавного пуска снижают нагрузку на электрические цепи двигателя.


Цепь плавного пуска

Схема плавного пуска может быть подключена в линию или внутри треугольником.

Линейная цепь плавного пуска

Прямое соединение — это наиболее распространенный тип схемы плавного пуска.В этой схеме все три фазы соединены последовательно с такими устройствами, как реле перегрузки и главный контактор. Устройства, подключенные последовательно к линейному соединению, должны выдерживать номинальный ток двигателя.

Например, двигатель на 100 А должен иметь устройство плавного пуска на 100 А и главный контактор на 100 А.

Цепь плавного пуска внутри треугольника

Схема плавного пуска внутри треугольника означает, что подключенные устройства находятся внутри треугольной схемы двигателя, но не обязательно должны быть на одной линии с пускателем.При соединении внутри треугольника ток снижается до 58% от линейного.

Например, для двигателя на 100 ампер потребуется устройство плавного пуска на 58 ампер, которое меньше и дешевле.

Этот тип подключения позволяет приобретать устройства, у которых есть пускатель звезда / треугольник.

Для правильного подключения внутри треугольника двигатель должен быть треугольным и все выводы катушки должны быть открыты. Двигатели типа звезда и треугольник с внутренними обмотками не могут использоваться в конфигурации внутри треугольника


Главный контактор

Хотя для схемы плавного пуска не требуется главный контактор, она обеспечивает средства отключения питания системы в случае неисправности, перегрузки или внешнего аварийного останова.

При подключении по схеме плавного пуска внутри треугольника главный контактор может быть либо в схеме треугольника, либо вне цепи. В любом случае он остановит двигатель, но включение его в цепь приведет к напряжению главного контактора. чего ждать? напряжение?

Если главный контактор размещен за пределами цепи плавного пуска, его следует выбирать в соответствии с номинальным током полной нагрузки двигателя, но если он находится внутри цепи, его размер может быть рассчитан в соответствии с 58% номинального тока полной нагрузки.

Вариант A: Главный контактор, подключенный по схеме треугольника.

Альтернатива B: Главный контактор, расположенный за пределами схемы треугольника.


Байпасный контактор

Пускатели

могут также поставляться с внешним байпасным контактором, устройством, которое снижает тепловые и энергетические потери в мягком пускателе. Когда пускатель достигает полного тока, байпасный контактор замыкается; тогда стартер становится поперек линии.

Типы байпасных контакторов

Существуют различные типы байпасных контакторов, включая AC1 и AC3, которые соответствуют стандартам Международной электротехнической комиссии (IEC), которые зависят от рабочего цикла устройства.

AC1 используется для неиндуктивных или слабоиндуктивных нагрузок, таких как резистивные печи. AC3 используется для запуска двигателей с короткозамкнутым ротором, отключается, когда двигатель набирает скорость.

Байпасные контакторы обычно находятся внутри пускателя, но их можно использовать и снаружи.

WEG Soft Start — Руководство по продажам и выбору продукции

Что мне следует знать перед покупкой плавного пуска WEG?

Ток и фаза

Двигатели переменного и постоянного тока, а также однофазные и трехфазные двигатели могут использовать плавный пуск. Плавный пуск WEG будет трехфазным.

Калибровка

Двигатель измеряется в силе тока, киловаттах и ​​лошадиных силах. Чем больше двигатель, тем больше потребуется плавного пуска.

Также необходимо учитывать количество пусков и условия окружающей среды. Условия могут сократить срок службы продукта и вызвать незапланированные простои технологического процесса. Например, если плавный пуск используется в жаркой окружающей среде, то параметры плавного пуска необходимо уменьшить, чтобы обеспечить правильную работу. В некоторых случаях могут присутствовать едкие газы и кислоты, которые также могут повредить двигатель.

Приложения

Общие области применения для плавного пуска, включая насосы, конвейерные ленты, вентиляторы и компрессоры.

SSW05 может использоваться в насосах, вентиляторах, воздуходувках и компрессорах.

SSW07 может использоваться в химической и нефтехимической среде, пластике и резине, целлюлозно-бумажной промышленности, сахаре и алкоголе, напитках, цементе и горнодобывающей промышленности, пищевых продуктах и ​​напитках, текстиле, металлургии, керамике, стекле, холодильном оборудовании, дереве, санитарии, транспортировке грузов. , насосы и вентиляторы.

SSW06 может использоваться в вентиляторах, насосах, нагнетателях, компрессорах, дробилках, пилах, шлифовальных машинах и миксерах.

Что такое кикстартер?

Устройства плавного пуска

могут иметь функцию кикстартера, которая при необходимости дает двигателю дополнительный импульс крутящего момента.

Устройства Kickstarters

обычно используются в приложениях, где нагрузки с высоким коэффициентом трения сталкиваются с трением. Например, заклинило конвейерную ленту или насос. Дополнительный прирост крутящего момента позволит приложению работать плавно после того, как дополнительный прирост крутящего момента ослабит его.

Линия плавного пуска Weg SSW07 поставляется с кикстартером.

Как часто можно включать плавный пуск двигателя?

Количество пусков, ограничиваемое устройством плавного пуска в час, зависит от температуры окружающей среды, пускового тока двигателя и продолжительности этого тока.

Это также зависит от используемого плавного пуска. SSW06 и SSW07 можно запускать 10 раз в час или каждые шесть минут, а SSW05 можно запускать 4 раза в час.

Продолжительность запуска двигателя

Рампа пуска требуется для плавного пуска до достижения полного напряжения. Если время разгона слишком велико, это может привести к перегреву двигателя и увеличению риска срабатывания реле перегрузки.

Продолжительность времени запуска двигателя будет зависеть от величины нагрузки, которую несет двигатель: если двигатель разгружен, время разгона будет короче, но если двигатель сильно нагружен, время запуска станет больше. .

Также можно запрограммировать рампы останова. Они используются, когда требуется плавная остановка.

SSW05 имеет время пуска и останова до 20 секунд.

SSW07 имеет время пуска и останова до 40 секунд.

SSW06 имеет программируемое нарастание на 999 секунд и программируемое замедление на 299 секунд.

Защита двигателя

Все линейки плавных пусков Weg включают перегрузку двигателя, перегрузку по току и блокировку ротора, перегрузку SCR, обрыв фазы, защиту от чередования фаз и байпасный контактор

Защита от перегрузки может исходить от реле, которое размыкает цепь в случае перегрузки, чтобы двигатель не перегревался.

Защита от блокировки ротора предупреждает о плавном пуске Weg в случае скачков тока из-за блокировки или заклинивания ротора. Пуск остановит двигатель, чтобы обмотки не сгорели.

Обрыв фазы, также известный как однофазный, — это когда трехфазный двигатель теряет ток в одной из своих линий, в результате чего две другие линии компенсируют провисание. Это может повредить обмотки и вызвать перегрузку.

Последовательность фаз — это когда направление фазы в цепи меняется на обратное, что приводит к повреждению двигателя.

Байпасный контактор снижает потери тепла и мощности в мягком пускателе. Когда пускатель достигает полного тока, байпасный контактор замыкается; тогда стартер становится поперек линии.

Все три линии плавного пуска Weg поставляются с внутренним байпасным контактором, хотя внешний можно приобрести для любого плавного пуска, у которого его еще нет.


Линии плавного пуска WEG

Устройство плавного пуска снижает пусковой ток двигателя или его начальный выброс тока в обмотки при запуске двигателя.Это снижает потребность в пусковой мощности и снижает нагрузку на электрические цепи, питающие двигатели.

Имеется три линии плавного пуска Weg: SSW05, SSW06 и SSW07.

SSW05

SSW05 WEG Soft Start — это компактный, полностью цифровой устройство плавного пуска с контроллером DSP. Простота настройки и эксплуатации: выбор параметров и настроек осуществляется с помощью микропереключателей и потенциометров. Небольшой размер блока делает установку быстрой и легкой.Не подходит для высокоинерционных нагрузок.

Устройства плавного пуска

WEGSSW05 будут иметь напряжение 230 или 460 вольт, с мощностью от 5 до 400 лошадиных сил. Диапазон тока составляет от 17 до 412 ампер.

Применения: насосы, вентиляторы, воздуходувки и компрессоры.

Просмотр товаров »
SSW06

Линия плавного пуска SSW06 WEG включает клавиатуру, двойной дисплей и красные светодиоды, которые обеспечивают наглядность и упрощают программирование.Встроенные байпасные контакты предотвращают рассеивание тепла, когда двигатель находится на полном напряжении. Чрезвычайно компактный и допускающий простую интеграцию в невентилируемые корпуса и замену электромеханических пускателей в центрах управления двигателями.

SSW06 будет 230, 460 или 575 вольт. Сила тока колеблется от 10 до 1400, а мощность — от 3 до 1500, в зависимости от напряжения.

Применения: насосы, вентиляторы, воздуходувки, компрессоры, дробилки, пилы, измельчители, миксеры.

Просмотр товаров »
SSW07

SSW07 разработан для обеспечения отличных характеристик при пусках и остановках двигателей по отличной цене. Компактный, простой в установке и включает в себя все средства защиты электродвигателя. Можно добавить клавиатуру, интерфейс связи или вход PTC двигателя.

Линия SSW07 будет 220/230, 460/480 или 575 вольт. Эти плавные пуски имеют мощность от 5 до 400 лошадиных сил, а текущую — от 17 до 412.

Области применения: химическая и нефтехимическая промышленность, пластик и резина, целлюлоза и бумага, сахар и алкоголь, напитки, цемент и горнодобывающая промышленность, продукты питания и напитки, текстильная промышленность, металлургия, керамика, стекло, охлаждение, дерево, санитария, транспортировка грузов, насосы и вентиляторы. ..

Просмотр товаров »

Модели мягкого старта WEG и цены

SSW05 — 3 фазы, 230 В или 460 В, вход
SSW06 — 3 фазы, 230 В, 460 В или 575 В, вход

Добавление плавного пуска к двигателям водяного насоса — уменьшение проблем с перегоранием реле

В этом посте мы обсуждаем несколько инновационных и простых примеров схем плавного пуска, которые могут быть реализованы с двигателями для тяжелых условий эксплуатации, чтобы они могли запускаться с плавным пуском или медленный вялый запуск вместо внезапного, неровного пуска

Почему плавный пуск важен для тяжелых двигателей

Когда задействованы тяжелые двигательные системы или сильноточные двигатели, при первоначальном включении скачок тока часто становится проблемой.Этот всплеск имеет тенденцию вызывать сильную дугу на контактах реле насоса, вызывая коррозию и сокращение срока службы из-за напряжения и износа.

Сильноточная дуга не только вызывает проблемы с контактами реле, но также влияет на окружающие электронные схемы, вызывая их зависание или нарушение работы из-за большого количества радиочастотных помех, возникающих при включении двигателя.

Однако защита дорогостоящего реле двигателя становится основной проблемой в таких ситуациях. Хотя существует множество механических контакторов для управления нагрузкой на двигатель, эти системы неэффективны и неэффективны против радиочастотного излучения.

Мы надеемся, что простая электронная схема, представленная ниже, способна устранить все проблемы, связанные с сильным включением двигателя и защитой контактов реле.

На рисунке показана простая схема переключателя диммера, включающая в себя обычную конфигурацию симистора и диакритического усилителя, которую можно очень эффективно использовать для добавления плавного пуска к любому сильноточному и тяжелому двигателю переменного тока.

Проектирование плавного пуска с прерыванием фазы симистора

Здесь потенциометр управления был заменен блоком светодиодов / LDR.Как мы знаем, в обычных диммерных переключателях переменное сопротивление используется для управления скоростью вентилятора. Здесь переменное сопротивление заменено схемой LED / LDR. Это означает, что теперь скорость двигателя или, другими словами, ток, подаваемый на двигатель, можно контролировать, регулируя интенсивность встроенного светодиода с помощью внешнего триггера.

Именно это здесь и делается. Когда реле двигателя включается либо выключателем, либо через электронную схему управления, такую ​​как схема контроллера уровня воды, одновременно включается светодиод подключенного диммера.

Светодиод включает симистор и подключенный двигатель.

Будучи твердотельным устройством, диммерный переключатель действует немного быстрее, чем реле, поэтому сначала двигатель активируется через диммерный симистор, а через несколько миллисекунд симистор обходит соответствующие контакты реле.

Вышеупомянутый процесс полностью исключает искрение на контакте реле, так как симистор уже поглотил большую часть тока, а реле должно только мягко взять на себя уже включенную проводимость двигателя.

Здесь решающее значение имеет яркость светодиода оптопары, и ее необходимо настроить так, чтобы симистор был включен только на 75%.

Эта регулировка спасет симистор от начальных переходных процессов с большим током и поможет всей системе прослужить много лет.

Резистор R4 может быть соответствующим образом настроен для достижения оптимального свечения светодиода.

Принципиальная схема

Список деталей

R1 = 15K
R2 = 330K,
R3 = 10K,
Diac резистор = 100 Ом,
R4 = настраивается, как описано,
C1 = 0.1 мкФ / 400 В
C2, C3 = 0,1 мкФ / 250 В,
L1 = дроссель 10 А / 220 В
Симистор (альтернатор) = 10 А, 400 В,
Diac = в соответствии с указанным выше симистором.

Модернизация плавного пуска симистора с помощью реле

Небольшой осмотр показывает, что схема на самом деле вообще не требует схемы оптопары. Схема может быть просто устроена следующим образом:

R2 следует выбрать так, чтобы симистор проводил только 75% мощности.

При включении питания симистор обеспечивает плавный начальный пуск двигателя до тех пор, пока в течение следующей доли секунды реле также не проведет ток, давая двигателю необходимую полную мощность.Это полностью защищает контакты привода от начальных скачков тока и искр,

Simplified Soft Start Design

Как справедливо предположил г-н Джим, начальный крутящий момент является обязательным для оптимального запуска двигателя, особенно когда он нагружен, если этот начальный крутящий момент является отсутствует. двигатель может заглохнуть с тяжелыми грузами за поясом и может начать дымиться в течение нескольких минут.

Следующая схема предназначена для решения обеих проблем вместе, она подавляет начальный импульсный ток к переключателю ВКЛ / ВЫКЛ и все же позволяет двигателю запускаться с «толчком», так что он запускается без проблем, даже когда он загружен.

Вышеупомянутую конструкцию можно еще больше упростить, сняв реле, как показано ниже:

Можно также попробовать технически более надежную схему плавного пуска двигателя на основе ШИМ для получения лучшего контроля, лучшего крутящего момента и надежного запуска. для подключенного двигателя, даже для трехфазных двигателей.

Плавный пуск с использованием управляемого прерывания фазы

Другой способ реализации симисторов посредством ступенчатого прерывания фазы для инициирования медленного плавного пуска и медленного завершения или медленного останова для двигателей тяжелых машин, чтобы двигатели могли выполнять действия постепенного пуска и остановки вместо резкого включения / выключения.

Идея в основном направлена ​​на уменьшение износа двигателя и дополнительную экономию электроэнергии во время работы.

Идея была предложена г-ном Бернаром Ботте.

Уважаемый господин Свагатам,
Извините за мой английский, в любом случае спасибо за любой ответ, который вы дадите перед вопросом. Я использую другое устройство для обработки дерева, используя универсальный двигатель переменного тока, изначально рассчитанный на диапазон от 230 до 240 вольт 50 Гц (но я также замечаю в определенной части моей страны 250 В), потому что мне нужно много другого типа машины, и это было хобби.

Я покупаю самые дешевые машины, которые могу найти (исправляю определенные механические проблемы) для других машин. Я также использую диммер (самодельный на основе системы, используемой пылесосом и модифицированной NINA67), и он отлично работает.

Но я также использую строгальный станок / рейсмус с двигателем, вращающимся со скоростью 18000 т / мин. Похоже, сделано для того, чтобы не платить гонорары за изъятие авторских прав. До того, как у меня возникла проблема, я подумал, что это двигатель, работающий со скоростью 3000 т / мин (2700), умноженный на 2 (как и другие) с ремнем, чтобы достичь приличной скорости 6000 т / м (5400).И диммером не пользуюсь.

Двигатель работает при +/- 18000: 3 = 6000 !!! Зная дешевую стоимость этой машины, я использую ее как «хороший отец» не интенсивно и т. Д. Но однажды появился дым.

Машина задымила, и я спешиваюсь с машины, чтобы изолировать двигатель и тушить огонь. (машина находилась на гарантии, но мне нужно проехать много километров, чтобы произвести обмен. И там мне не говорят, что это была хорошо известная и повторяющаяся проблема … но … они это знают!)

Фактически, когда все было холодно.Я смотрю на оси, которые вращаются, кажется, он также стреляет в противоположную сторону зубчатого ремня при каждом запуске. Как будто не было гровера.

Я показываю мотор в компании, продающей другие типы двигателей.

Они также проводят ремонт, но они объясняют мне, что это был «экзотический» двигатель, но они устанавливают ту же диагностику. Начните быстро Итак, мой вопрос: не могли бы вы сделать схему, чтобы иметь «плавный пуск / плавное завершение» для разных универсальных двигателей на самом деле, если я использую свою систему диммера на основе BTA 16 800 cw (лучше, чем другие упомянутые выше), это кажется нормальным, но я сделал только 3 из них.Я хочу интегрировать это в каждую большую машину.

И используйте только переключатель включения / выключения. Я хочу использовать, таким образом, кнопку для «включения» и одну для «выключения» или переключатель включения / выключения.

Но также потенциометр для выбора минимального уровня (в зависимости от мощности каждого двигателя), когда двигатель запускается, и потенциометр для выбора времени (555) между медленным пуском и полной скоростью (возможно, также можно сократить симистор с помощью реле должно иметь полную скорость и зеленый светодиод, если это актуально (но было бы хорошо) для выключения, время можно уменьшить.Почему в конце из-за лишних токов и проблем связали.

Примечание: я видел это приложение с «fpla» или выделенными процессорами, но я уверен, что это также можно сделать с дискретными компонентами. Почему я не могу этого сделать: потому что я никогда не изучаю двигатели правильно, но я знаю, например, что это неправильно запускать двигатель с системой пересечения нуля, потому что он дает максимальный ток и вызывает те же проблемы (ПОЖАР!) с парой при запуске и максимальном токе…

Я видел этот запрос на другом форуме, касающийся другой работы механическое дерево и т. д. без ответа, и люди также говорят, работает ли он с потенциометром, но когда вы переходите с одного станка на другой, вы можете делать ошибки и т.д. как и в вашей презентации техническое описание, потому что получить его без оплаты не так просто с использованием простой концепции диммерного переключателя на основе симистора, как показано на следующих схемах:

На приведенных выше схемах первая схема показывает стандартный светорегулятор или схему переключателя диммера с вентилятором с использованием сверхмощного симистора BTA41A / 600.

Раздел, обозначающий «4-симисторный модуль», обычно занят потенциометром для включения ручной регулировки скорости, при этом более низкая регулировка сопротивления генерирует более высокую скорость двигателя вентилятора и наоборот. В этой конструкции с плавным пуском и плавным остановом эта секция потенциометра заменена указанным 4-х симисторным модулем, который можно подробно визуализировать на второй схеме.

Здесь мы видим 4 параллельно расположенных симистора с 4 отдельными резисторами 220 кОм на верхнем плече MT1 и 4 отдельными конденсаторами на затворах с разными номиналами и с своего рода последовательным порядком от высокого к низкому.Когда S1 включен, сначала включается симистор, имеющий конденсатор наименьшего номинала, что позволяет запускать двигатель на относительно низкой скорости из-за переключения соответствующего резистора 220 кОм на его MT1.

В течение нескольких миллисекунд подключается следующий следующий симистор, имеющий следующее меньшее значение, и добавляет свой собственный резистор 220 кОм параллельно с предыдущим резистором 220 кОм, позволяя двигателю набрать немного больше скорости. Точно так же третий и четвертый симисторы также последовательно включаются в течение следующих нескольких миллисекунд, тем самым добавляя еще два параллельных резистора 220 кОм в диапазоне, что, наконец, позволяет двигателю достичь максимальной скорости.

Вышеупомянутое последовательное увеличение скорости двигателя позволяет двигателю достичь желаемого положения переключателя медленного пуска в положение ВКЛ по желанию пользователя.

Точно так же, когда переключатель S1 выключен, соответствующие конденсаторы выключаются в том же порядке, но в нисходящем порядке, что препятствует внезапной остановке двигателя, вместо этого он вызывает ступенчатую медленную остановку или медленное завершение его скорости. .

Отзыв от г-на Бернарда:

Уважаемый мистер Сваг, Прежде всего, спасибо за ваш быстрый ответ.Поскольку вы говорите мне, что у вас проблема с синхронизацией, я изменил свою операционную систему на linux mint 18,1 ‘Serena’, поэтому мне пришлось переустановить всю программу, которая мне нужна, и протестировать ее (настроить!) Так что, похоже, все работает нормально ! Что касается первой схемы, я заметил, что вы не придаете никакого значения схемам верхней стороны, поэтому я взял ее из «Как сделать простейшую схему переключателя диммера симистора»

Список деталей для вышеуказанной усовершенствованной схемы диммера вентилятора (C1 ) C7 = 0,1u / 400 В
(C2, C3) C8, C9 = 0.022 / 250V,
(R1) R9 = 15K,
(R2) R10 = 330K,
(R3) R11 = 33K,
(R4) R12 = 100 Ом, VR1 = 220K, или 470K linear => Заменен гениальным 4-х симисторным модулем
Diac = DB3,
Triac = BT136 => BTA41 600
L1 = 40uH

О второй схеме, настолько простом решении я и не мечтал !! ! быть протестированным как можно скорее Genial! мы говорим по-французски.

Я не знаю, можно ли использовать поляризованные конденсаторы для таких приложений переменного тока! И еще 50 вольт было достаточно! У вас есть момент, чтобы объяснить, почему —

В любом случае, может быть, я попробую это в эти выходные, если у меня будут все компоненты.Я предпочитаю использовать новые конденсаторы, которые не менялись с 1993 года!

На самом деле я пробовал разные способы, используя, например, опто-симистор (MOC), но мне также нужно выбрать частоту сети переменного тока, а также другую, основанную на вашей схеме схемы контроллера температуры печи, но с восходящим счетчиком 4516b и 555 и т. д. так сложно

Большое спасибо

С уважением

B.botte

Мой ответ:

Спасибо, дорогой Бернард,

Изображение, которое вы вставили в беседу, не было прикрепляются должным образом, и поэтому он не отображается, но я исправил его сейчас и разместил его обратно в статье.

Я оценил конденсаторы на 50 В, потому что R9 должен быть резистором 33 кОм или 68 кОм, который значительно снизит ток и не позволит конденсаторам сгореть, это мое понимание.

Я использовал поляризованные конденсаторы, потому что затвор симистора работает с приводом постоянного тока, но да, вы правы, чтобы сделать его постоянным током для конденсаторов, нам нужно добавить 1N4007 последовательно с резисторами затвора 1K.

Теперь, что касается этой конструкции, если предположить, что идея не работает очень гладко или не дает ожидаемых результатов, мы могли бы изменить существующий привод затвора для 4 симисторов в драйверы на основе оптопары и выполнить такое же последовательное переключение с задержкой, но через внешнюю цепь постоянного тока.Таким образом, эта схема в конечном итоге имеет потенциал для достижения желаемых результатов, так или иначе.С уважением Swag

О Swagatam

Я инженер-электронщик (dipIETE), любитель, изобретатель, разработчик схем / печатных плат, производитель. Я также являюсь основателем веб-сайта: https://www.homemade-circuits.com/, где я люблю делиться своими инновационными идеями и руководствами по схемам.
Если у вас есть запрос, связанный со схемой, вы можете взаимодействовать с ним через комментарии, я буду очень рад помочь!

Устройство плавного пуска серии

| Электронмаш

Назначение

Устройство плавного пуска (SSS) серии

предназначено для последовательного пуска нескольких высоковольтных двигателей с помощью одного тиристорного регулятора.

Приложения

  • SSS используется в различных отраслях промышленности и предназначена для последовательного плавного пуска нескольких двигателей.
  • Применение ССС:
  • Коммунальные услуги водоснабжения: насосы для водоподъемных / насосных станций, компрессоры / вентиляторы для станций аэрации
  • Компрессоры для металлургии и автомобильных заводов
  • Компрессоры для доменных печей
  • Заводские системы вентиляции
  • Кувалды / прессы
  • Водозаборные насосы для ТЭС
  • Компрессоры для газовых ТЭЦ
  • Насосы для систем отопления
  • Бетонные мельницы / мельницы для обогатительных фабрик
  • Шламовые насосы для обогатительных фабрик
  • Маслоотделительные насосные станции
  • Шламовые насосы
  • Вал вентиляции
  • Конвейеры шахтные
  • Компрессоры для целлюлозно-бумажных заводов
  • Дробильные машины
  • Судостроение
  • И т.п.

Структура

ССС состоит из трех основных частей:

1. Устройство плавного пуска

Устройство плавного пуска

— это тиристорный контроллер с функциями плавного пуска / останова двигателя. Тиристорный контроллер Solcon HRVS-DN используется в качестве основного блока устройства.

2. Распределительное устройство на напряжение 6 или 10 кВ

Базовым распределительным устройством является распределительное устройство ELTIMA производства ООО «Электронмаш Инжиниринг». Распределительные устройства ELTEMA предназначены для приема и распределения трехфазной электрической энергии переменного тока частотой 50 Гц, рассчитанной на изолированные или заземленные сети 6-10 кВ через дугогасящий реактор или резистор. .

3. Шкаф управления (КК)

Шкафы управления

производства ОАО «Электронмаш» предназначены для централизованного управления пуском ряда асинхронных двигателей ВН с помощью одного устройства плавного пуска.

Устройство плавного пуска серии — Технические характеристики

Параметр Значение параметра
Количество моторов По запросу
Время между стартами 30 минут в стандартной комплектации; устройство плавного пуска большей мощности сокращает время работы <30 минут
Напряжение вспомогательных цепей 220 В постоянного тока

Распределительное устройство ELTEMA — Технические характеристики

Параметр Значение параметра
Номинальное напряжение (кВ) 6; 10
Максимальное рабочее напряжение (кВ) 7.2; 12
Номинальный ток сборной шины (A) 630; 1000; 1250; 1600; 2500; 3150
Номинальный ток главных цепей (А) 630; 1000; 1250; 1600; 2500; 3150
Номинальный ток отключения автоматических выключателей, встроенных в КРУ (кА) 12,5; 16; 20; 25; 31,5; 40
Кратковременный выдерживаемый ток (амплитуда) (кА) 51; 64; 81; 102
Кратковременный тепловой ток (кА) 20; 25; 31.5; 40
Длительность кратковременного термического тока (с)
— Главные цепи — Цепи заземления

3
1
Номинальное напряжение вспомогательных цепей (В)
— Цепи управления и сигнализации — Свет и обогрев — Блокировки электромагнитные

100 AC, 110 DC, 220 AC / DC
220 В переменного тока
220 AC / DC
Размеры шкафа (мм)
— Ширина
— Глубина
— Высота

650; 750; 800; 900; 1000
1400; 1500
2100–2400
Вес (кг) Свыше 480

Схема Пример решения на базе контроллера HRVS-DN для пуска трех двигателей:

Вход
Устройство плавного пуска серии на 3 двигателя
Общий пусковой автобус

Принцип работы В качестве примера будет использоваться устройство плавного пуска с последовательным подключением.Это решение позволяет запускать до 3 двигателей в мягком режиме с заданной временной задержкой между запусками. Для остывания тиристоров устройства плавного пуска требуется выдержка времени (пауза) между пусками. По умолчанию время задержки установлено на 30 минут. Эту задержку можно уменьшить, завысив мощность устройства плавного пуска. При запуске двигателя, подключенного к секции I, устройство плавного пуска получает питание от фидера № 3. При запуске двигателя, подключенного к секции II, устройство плавного пуска получает питание от питателя № 6.При подаче питания на устройство плавного пуска включается соответствующая ячейка пусковой шины, что приводит к плавному ускорению двигателя. Когда достигается установившаяся скорость, включается соответствующая ячейка байпаса двигателя, а ячейка запуска выключается. После выключения пускового элемента питание устройства плавного пуска отключается, чтобы оно остыло в течение установленного времени задержки. По истечении времени таймера и понижении температуры тиристора устройство плавного пуска готово к запуску следующего двигателя. SSS управляется системой, заключенной в шкаф управления.Все сигналы от ячеек и от устройства плавного пуска передаются в шкаф управления. Двигатели можно запускать локально (с помощью органов управления дверьми) и дистанционно (рядом с машиной). Управление устройством плавного пуска серии осуществляется с панели оператора, установленной на дверце шкафа управления. Если устройство плавного пуска выходит из строя, можно запустить двигатель напрямую, а для критически важных объектов используются два устройства плавного пуска: одно устройство плавного пуска является основным блоком, другое — блоком с холодным резервированием.

Устройство плавного пуска — выберите надежность CD Automation

: 200A

9048

9048

9047

9047

904

4


СВЕТОДИОДНЫЙ ИНДИКАТОР СОСТОЯНИЯ СИГНАЛА

зеленый источник питания

9047

9047 (опция)

МЯГКИЙ ПУСКАТЕЛЬ ОСНОВНЫЕ ХАРАКТЕРИСТИКИ

STB

STO

54 STE

5

5

> 32: 200A

> 32: 200A

3-проводное подключение двигателя

внутриот 6 до 200A

ГЛАВНОЕ НАПРЯЖЕНИЕ ПИТАНИЯ

Напряжение питания 3x200V; 3×440 В макс. (+10: -15%) ac

Напряжение питания 3x200V; 3x575V Max (+10: -15%) (только для> 32A)

Вспомогательное напряжение 110-240V (+10: -15%) ac (просто для> 32A)

Вспомогательное напряжение 380-440 В (+10: -15%) переменного тока (только для> 32A)

Вспомогательное напряжение 24 В перем. / Пост. Тока (+20: -20%) перем. Тока (только для> 32 А)

частота от 45 до 66 Гц

ЦИФРОВЫЕ ВХОДЫ

Пуск / стоп 4 оптоизолированный вход + 24 В пост. тока, старт с Dip 475 ≤ 329 6

Пуск с включением питания с включенным Dip 4 (≤32A)

Пуск оптоизолированный вход + 24 В пост. Тока


Останов оптоизолированный вход + 24 В постоянного тока

Настраиваемый цифровой вход 1

УПРАВЛЕНИЕ

Темп роста от 0 до 15 с регулируется

9000 5

Начальный крутящий момент от 0 до 80%

Ограничение по току> 32A

9476

9047

9047

ток полной нагрузки> 32A

Реле перегрузки> 32A

Включение чередования фаз> 32A

Превышено максимальное время пуска> 32A

Зеленый светодиодный индикатор работы, медленное мигание, готовность к запуску

Зеленый светодиодный индикатор работы, быстрое мигание, линейное изменение активировано

9048 9048 конец рампы

Аварийный красный светодиод не горит нет аварийного сигнала

PW зеленый на блоке питания недоступен

KEYPAD

Col наша сенсорная панель с аварийным сообщением на другом языке

Считывание напряжения, тока, мощности и т. д.

СВЯЗЬ

Modbus RTU Std

4

Profibus DP (опция)

Devicenet (опция)

ОКРУЖАЮЩАЯ СРЕДА

Степень защиты IP20

9045 9047

9 9047 ТАБЛИЦА для 40 ° C для превышения температуры см. Снижение номинальных значений

Рабочая температура от -10 до 60 ° C макс.

000

Влажность от 5% до 95% относительной влажности

Конформное покрытие (опция)

РЕЛЕЙНЫЙ ВЫХОД T

2 Релейный выход без напряжения, контакт (500 мА, 125 В перем. Тока)

(1)

Circuit Magic v1.0,0.1 —

  • Новое
    • Портативный мягкий
    • GPS /
  • /
    • Ява
    • Symbian
    • Android
    • Windows Phone 8
    • (КПК)
  • Photoshop
  • XBox360
    • PS3

— —
CorelDRAW Graphics Suite X5 v15.0.0.486 Многоязычный x32 и x64 DVD Розничная торговля
Zona 0.0.3.8
9484

сборка 3767)

3D 2.0 +

Studio 9154

0.2.0 + RUS

AVG Anti-Virus Pro 2011 11.88 Сборка 3311
9484
Glary.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

2021 © Все права защищены.