Схема бегущие огни на транзисторах: «Бегущие огни» на мощных МОП-транзисторах

Содержание

Схема бегущих огней — солнышко

Для анимации каких-либо игрушек, для подарка или просто для творчества можно собрать схему «бегущего огня».

Эффект создания огней бегущих из центра к краям. Очень похоже на лучи солнышко.

Характеристики: 

  • Кол-во каналов — 3;
  • Кол-во светодиодов — 18 шт;
  • Uпит.= 3…12В.

Схема «бегущий огонь» на К561ЛА7 (CD4011)

Конечно, светодиоды можно взять любых цветов и в разных количествах. Но возможно придётся подобрать сопротивление R7, R8, R9 (51Ом) Если светодиоды используются разных типов в одном плече, то придётся сопротивление ставить не одно общее, а на каждый светодиод своё и разного сопротивления (подбирайте по яркости свечения).

Можно собрать такую же схему на транзисторах.

Схема «бегущий огонь» на транзисторах

Транзисторы можно взять любые низкочастотные маломощные с обратной проводимостью (n-p-n) отечественные или импортные аналоги.

Можно расположить светодиоды в любом порядке, а также использовать не разноцветные светодиоды, а  например, только красные.

Можно расположить светодиоды в виде сердца!

Если у Вас нет необходимых деталей — Вы можете их купить в магазине «МастерОк»

 

ПОДЕЛИТЕСЬ С ДРУЗЬЯМИ

П О П У Л Я Р Н О Е:

  • Схемы самодельных охранных сигнализаций
  • В статье, ниже мы рассмотрим несколько вариантов простых схем охранных сигнализаций, сделанных своими руками.

    Например: многоканальная система охранной сигнализации, которую можно применить, например, в гаражном или дачном кооперативе, на различных участках домовладения и т.д…

    Подробнее…

  • Самодельная солнечная батарея на крыше
  • Солнце — это бесплатная энергия. Чтоб ее научиться вырабатывать необходимы установленные на крыше солнечные коллекторы. Накопленную ими энергию можно использовать, например, для нагрева воды, необходимой для хозяйственных нужд.

    Монтаж коллекторов на крыше обычно проводят специалисты, но эту работу можно выполнить и своими силами, купив комплект необходимого оборудования.

    Подробнее…

  • Простой усилитель НЧ на LM386
  • В этой статье представлена схема простого усилителя НЧ на не дорогой микросхеме LM386. Его может сделать даже начинающий радиолюбитель.

    Усилитель можно использовать для усиления сигналов звуковой частоты с компьютера, плеера, карманного радиоприемника, для дверного звонка или наушников… Есть множество применений для этого маломощного усилителя.

    Подробнее…

Популярность: 9 206 просм.

Простая светодиодная мигалка на транзисторах с эффектом бегущего огня

Простая светодиодная мигалка на транзисторах с эффектом бегущего огня
Очень простая светодиодная мигалка полностью выполненная на транзисторах бех применения микросхем. Реализует световой эффект «бегущего огня» на 5 светодиодах. Выполнена без изготовления плат, простым навесным монтажем.

Схема

Простая светодиодная мигалка на транзисторах с эффектом бегущего огня
Как видно это почти классический мультивибратор, затем исключением, что у него не два плеча, а целых пять. Фактически эту схему можно визуально поделить на 5 абсолютно равных блоков.

Изготовление светодиодной мигалки на транзисторах

Берем толстую медную проволоку и делаем из нее кольцо. Спаиваем на стыке. Контакты светодиод укорачиваем, загибаем и припаиваем анодами к этому кольку. Это будет плюсовой вывод, хотя на схеме к нему подключаются резисторы, но я поменяю их местами для удобства монтажа.
Простая светодиодная мигалка на транзисторах с эффектом бегущего огня
К каждому светодиоду теперь припаиваем по резистору на 220 Ом.
Простая светодиодная мигалка на транзисторах с эффектом бегущего огня
К резисторам припаивает коллектором транзисторы.
Простая светодиодная мигалка на транзисторах с эффектом бегущего огня
Простая светодиодная мигалка на транзисторах с эффектом бегущего огня
Между плюсом и базами транзисторов припаиваем резисторы на 10 кОм.
Простая светодиодная мигалка на транзисторах с эффектом бегущего огня
Далее делаем большой круг из медной проволоки и припаиваем его к эмиттерам транзисторов — это будет общий, минусовой.
Простая светодиодная мигалка на транзисторах с эффектом бегущего огня
Остается припаять конденсаторы.
Простая светодиодная мигалка на транзисторах с эффектом бегущего огня
И колодку питания для кроны.
Простая светодиодная мигалка на транзисторах с эффектом бегущего огня
Все, на этом мигалка готова.
Простая светодиодная мигалка на транзисторах с эффектом бегущего огня
Если все детали исправные, то начинает работать сразу и в настройках или подборах элементов не нуждается.

Смотрите видео

Визуальный эффект наглядно можно увидеть в видеоролике.

Бегущие огни на реле / Хабр

Если вы ранее собирали бегущие огни на транзисторах, тиристорах или микросхемах, вам, возможно, будет интересно реализовать тот же эффект на реле.

Каждое из трёх реле в этой схеме дополнено RC-цепочкой, обеспечивающей задержку, а также диодным «ИЛИ» для управления с двух мест. Один из входов каждого диодного «ИЛИ» подключён к нагрузке предыдущего реле, другой — к нагрузке своего же. Таким образом, получив от предыдущего реле сигнал на срабатывание с задержкой и сработав, реле самоблокируется, что эквивалентно входу S RS-триггера.

Есть у каждого из таких «триггеров» и вход /R — верхний вывод обмотки. Отпускание реле происходит при соединении этого вывода с общим проводом. Короткого замыкания не случается, поскольку ток ограничивают резисторы RC-цепочек. В мире релейной логики тоже встречаются подтягивающие резисторы. Если сигнал S на каждый «триггер» поступает с предыдущего реле, то сигнал /R — с последующего.

Сразу после включения схема не работает, так как логической единицы нет на входах S всех трёх «триггеров». Для запуска бегущих огней служит кнопка S2, для остановки — кнопка S1.

Резисторы RC-цепочек выбираются по формуле:

Uреле/Uпит = Rобм/(Rобм + Rогр), где:

Uреле — номинальное напряжение обмотки реле, В

Uпит — напряжение питания, В

Rобм — сопротивление обмотки, Ом

Rогр — сопротивление резистора RC-цепочки (искомое), Ом

Мощность резистора выбирается с некоторым запасом исходя из того, что он подтягивающий, и при подачи сигнала /R к нему прикладывается полное напряжение питания минус падение напряжения на диоде. Для задания скорости переключения можно подобрать конденсаторы RC-цепочек. Устройство в действии:

«Бегущие огни» без транзисторов

Ступенчатые Бегущие огни без транзисторов
Сделать мигалку с эффектом «Бегущих огней» можно очень просто без транзисторов, микросхем и платы за пару десятков минут. Очень простая и незамысловатая схема. Не требует настройки и работает сразу после включения. Как вариант, можно использовать для подсвечивания сигналов поворотников, как у дорогих автомобилей.

Понадобится

  • Светодиоды 3 В — 9 штук. Лучше использовать разноцветные.
  • Резисторы 330 ОМ — 9 штук.
  • Диоды 1N4007 — 8 штук.
  • Конденсаторы 2200 мкФ — 2 штуки.
  • Реле 6 В — 1 штука.

К деталям нет строгих требований, они с легкостью меняются на аналоги.

Изготовление бегущих огней без транзисторов

Из куска толстой проволоки делаем основание, закрепляем в «третьей руке». Это будет плюсовая шина.
Ступенчатые Бегущие огни без транзисторов
Припаиваем все 9 светодиодов «плюсом» к проводнику через небольшое расстояние.
Ступенчатые Бегущие огни без транзисторов
Далее припаиваем к выводам светодиодов все резисторы 330 Ом.
Ступенчатые Бегущие огни без транзисторов
Ступенчатые Бегущие огни без транзисторов
Далее начинаем последовательно припаивать цепочку диодов: катод к аноду и тд.
Ступенчатые Бегущие огни без транзисторов
Ступенчатые Бегущие огни без транзисторов
Получилось почти законченное устройство, которое отображает уровень поданного на него напряжения. То есть каждый шаг светодиода сигнализирует о увеличении напряжение на 0,5-0,7 В (зависит от марки диода). Подробнее читайте тут — https://sdelaysam-svoimirukami.ru/6043-indikator-urovnja-bez-tranzistorov-bez-mikroshem-i-bez-platy.html
Теперь из реле соберем генератор периодически повторяющихся импульсов. Берем реле и припаиваем к выводу катушки конденсатор.
Ступенчатые Бегущие огни без транзисторов
Далее берем второй конденсатор и припаиваем его между замкнутыми выводами реле и замыкаем один контакт с минусом катушки.
Ступенчатые Бегущие огни без транзисторов
Припаиваем к сборке светодиодов.
Ступенчатые Бегущие огни без транзисторов
Припаиваем питание. Синий провод — минус, красный — плюс.
Ступенчатые Бегущие огни без транзисторов
Подаем питание 9-12 В и наблюдаем интересный световой эффект.
Ступенчатые Бегущие огни без транзисторов
Ступенчатые Бегущие огни без транзисторов

Работа:

Как только подается питание на схему — контакты реле размыкаются и светодиоды загораются разом, так как далее ток идет через конденсатор припаянный в разрыв контактам реле. Он постепенно начинает разряжаться, поэтому линейка светодиодов тухнет по очереди одна за одной. Как только напряжение упадет до нуля, реле отпустит якорь и замкнет контакты, в результате конденсатор зарядится и цикл повторится. Конденсатор который припять паралельно реле, нужен для того, чтобы дать реле возможность работать, пока напряжение достигнет полного нуля.

Смотрите видео

Чтобы увидеть работу мигалки отчетливо, посмотрите видео:

Схема автомата световых эффектов на МС 155-й серии

Бегущие огни на 10 светодиодах

Один из самых популярных световых эффектов это эффект бегущие огни. Визуально он выражается в том, что в цепочке каких-либо источников света, например электрических лампочек, в самом простом варианте поочередно загорается один или группа источников, расположенных один возле другого. При этом, благодаря инерции нашего зрения, создается видимость того, что источник света перемещается, «бежит» по цепочке с определенной скоростью. В качестве источников света в таких конструкциях могут использоваться не только электрические лампочки, но и, например, светодиоды.

Простое и в то же время надежное устройство, реализующее световой эффект бегущих огней, можно собрать с использованием обыкновенных светодиодов. Предлагаемая конструкция представляет собой обычный переключатель, в котором напряжение питания поочередно подается на один из десяти светодиодов.

Принципиальная схема бегущих огней

Данное устройство, основу которого составляют две микросхемы и десять транзисторов, условно можно разделить на три функциональных блока: задающий генератор, блок управления и схему индикации. Как и большинство подобных конструкций, предлагаемый модуль изготовлен с использованием счетчиков импульсов. Задающий генератор, формирующий импульсы управления, выполнен на микросхеме IC2, которая включена по схеме нестабильного мультивибратора. При этом рабочая частота задающего генератора определяется величиной сопротивления резистора R1 и значением емкости конденсатора С1. При использовании данных элементов с указанными на принципиальной схеме параметрами частота следования управляющих импульсов будет около 15 ГЦ. С выхода задающего генератора (вывод IC2/3) управляющие импульсы подаются на блок управления, основу которого составляет микросхема IC1, являющаяся счетчиком импульсов. На десяти выходах этой микросхемы обеспечивается последовательное формирование напряжения логической единицы. Первоначально на всех выходах счетчика импульсов присутствуют напряжения логического нуля. Другими словами, уровень напряжения на каждом из выходов микросхемы IC1 (выводы IC1/1-7.9-11) буд

Простейшие бегущие огни всего на одной микросхеме без программирования : Labuda.blog

Данная статья поможет сделать полезную в быту вещь, порадовать себя и своих близких, разобраться в основах радиотехники. Для изготовления бегущих огней вам понадобится совсем немного времени. Необходимые радиодетали можно купить в специализированных магазинах, и стоят они недорого.

Простейшие бегущие огни всего на одной микросхеме без программирования

Необходимые материалы и приспособления:

Простейшие бегущие огни всего на одной микросхеме без программирования

Схема и принцип действия

Мигающий светодиод выдает один импульс в 0,5 секунды. Этот импульс поступает на вход микросхемы. Микросхема считывает этот импульс и отправляет его поочередно на выходы. Каждый импульс идет на новый выход, последовательно от первого до десятого. После десятого выхода, счетчик сбрасывается, и процесс начинается заново. Таким образом получается эффект бегущих огней.

Простейшие бегущие огни всего на одной микросхеме без программирования

Изготавливаем простые бегущие огни

Простейшие бегущие огни всего на одной микросхеме без программирования

Светодиоды могут быть расположены свободно и держаться за счет проводов. Но для удобства, лучше изготовить корпус для наших огней. Возьмем кусок пластика, просверлим в нем десять отверстий. Отрежем излишки, оставив тонкую полоску.

Простейшие бегущие огни всего на одной микросхеме без программирования

Разгибаем усики светодиодов, и вставляем их в отверстия пластика.

Простейшие бегущие огни всего на одной микросхеме без программирования

Контакты светодиодов находящиеся с одной из сторон припаиваем к перемычке.

Простейшие бегущие огни всего на одной микросхеме без программирования

Простейшие бегущие огни всего на одной микросхеме без программирования

Выступающие за перемычку контакты отрезаем.

Простейшие бегущие огни всего на одной микросхеме без программирования

Простейшие бегущие огни всего на одной микросхеме без программирования

Далее производим сборку схемы по рисунку.

Простейшие бегущие огни всего на одной микросхеме без программирования

Простейшие бегущие огни всего на одной микросхеме без программирования

Простейшие бегущие огни всего на одной микросхеме без программирования

Простейшие бегущие огни всего на одной микросхеме без программирования

Подаем напряжение от 5 до 12 Вольт на выводы схемы. Для этого можно использовать блок питания или обычные батарейки и аккумуляторы. Наслаждаемся результатом.

Простейшие бегущие огни всего на одной микросхеме без программирования

Рекомендации

Если у вас под рукой только обычные пальчиковые батарейки – по 1,5 Вольта, для достижения необходимого напряжения их можно объединить. К плюсу одной батарейки подключаем минус второй, к плюсу второй – минус третьей и так далее. Это называется – последовательное соединение. Для достижения напряжения 6 Вольт, нам необходимо соединить последовательно 4 батарейки по 1,5 Вольта.

При подключении бегущих огней от блока питания, необходимо убедится в полярности и уровне напряжения. Обычно вся информация нанесена на корпус блока. Если таких сведений нет, необходимо воспользоваться вольтметром. В вольтметре контакты подписаны, обычно плюс красного цвета, минус черного. При правильном подключении к блоку питания прибор покажет положительное значение, например 12 Вольт. Если плюс и минус перепутаны, то показания вольтметра будут отрицательными, то есть со знаком минус, – 12 Вольт.

В качестве микросхемы IC 4017, можно использовать отечественный аналог – микросхему К561ИЕ8. Мигающий светодиод лучше использовать красного цвета – у него выше напряжение импульса. Двухцветные мигающие светодиоды использовать нельзя, с ними схема работать не будет.

Смотрите видео

Техника безопасности:

  1. Обязательно соблюдайте полярность подключения устройства.
  2. Если на блоке питания нет маркировки и вам нечем проверить напряжение, которое он выдает, использовать его нельзя.
  3. Перед использованием всю схему бегущих огней необходимо спрятать в какой-либо корпус или заизолировать во избежание коротких замыканий.

Бегущие огни на четырехфазном мультивибраторе

 материалы в категории

Бегущие огни на транзисторах

В основу автомата «бегущий огонь» положен так называемый четырехфазный мультивибратор: он так-же работает в режиме автогенерации но в отличие от простого мультивибратора он имеет несколько транзисторов (в данном случае их четыре но возможно и больше) которые включаются по очереди в циклическом режиме.

Вообще-то, сказать откровенно, такие мультивибраторы не очень устойчивы в работе и это потребовало существенно усложнить схему введением дополнительных элементов.

Давайте рассмотрим схему устройства:

Этот автомат позволяет управлять четырьмя гирляндами ламп, рассчитанных на напряжение 220 В и ток до 0,2 А. Частота переключения гирлянд составляет примерно 0,5 Гц, но ее нетрудно изменить подбором конденсаторов времязадающих цепей для получения обычного режима поочередного переключения гирлянд.

Устройство выполнено на маломощных транзисторах VT1-VT4, которые управляют тринисторами VS1- VS4, а те, в свою очередь,- гирляндами ламп EL1-EL4.

Для повышения устойчивости введены диоды VD5-VD16.

Предположим, что после включения автомата в сеть раньше других открылся транзистор VT2. Тогда окажутся закрытыми VT3, VT4, VT1, поскольку их базы через разряженный конденсатор С2, диоды VD16, VD10 и открытый транзистор VT2 будут подключены к общему проводу — плюсу источника питания мультивибратора, а значит, к эмиттерам. Со временем конденсатор С2 зарядится, и ток, протекающий через резистор R9, эмиттерный переход транзистора VT3, откроет этот транзистор. Тогда закроется транзистор VT2 — его база через диод VD11 и открытый транзистор VT3 окажется соединенной с эмиттером. Будут также закрыты транзисторы VT4 и VT1. Вскоре зарядится конденсатор С3 и откроется транзистор VT4. Остальные транзисторы закроются. Так будут поочередно переключаться каскады мультивибратора.

Диоды VD5-VD8 используются как нелинейные элементы со стабильным прямым напряжением (до 0,6 В) на них, обеспечивающим надежное закрывание транзисторов мультивибратора. 
Часть коллекторного тока открытого транзистора протекает через управляющий электрод соответствующего тринистора и открывает его. А тот включает «свою» гирлянду ламп. 
Гирлянды питаются от сети через двухполупериодный выпрямитель на диодах VD1-VD4. Для питания же мультивибратора применен простейший параметрический стабилизатор на стабилитроне VD17 и последовательно соединенных балластных резисторах R17, R18. Конденсатор С5 фильтрует стабилизированное напряжение.

 В автомате использованы резисторы МЛТ-2 (R17, R18) и МЛТ-0,125 (остальные). Все конденсаторы — К50-6. Диоды VD5-VD8 могут быть любые из серии Д9; VD1-VD4 — любые другие, выдерживающие обратное напряжение не менее 300 В и выпрямленный ток более 0,2 А. Вместо стабилитрона Д814В подойдет Д810 или любой из серии Д818, а вместо тринисторов КУ101Е-КУ103В. Транзисторы могут быть любые из серий КТ361, КТ203, а также МП40-МП42 (в этом варианте базовые резисторы R3, R7, R11, R15 должны быть сопротивлением 2 кОм). Под эти детали и рассчитана печатная плата из одностороннего фольгированного стеклотекстолита. 
Автомат не требует налаживания, но в случае ненадежного включения той или иной гирлянды может понадобиться подбор соответствующего тринистора.

Обсудить на форуме

Простая схема поиска светодиодов / светодиодов на 3 транзисторах — Deeptronic

Running LED Circuit

Рис. 1. Собранная схема светодиодного индикатора Hamuro

Запуск / поиск цепей светодиодов в Интернете

Схема

Running LED, или иногда называемая схемой LED Chaser, очень популярна в реализации с использованием интегральной схемы (IC) 4017. Практически все электронные сайты имеют схему в своем списке схематических диаграмм, вы можете проверить эту схему танцующего света, например.Схема, основанная на этой ИС, очень гибкая, поскольку ее скорость можно легко регулировать, изменяя тактовую частоту, а количество светодиодов может быть установлено от 2 до 10, подключив последний использованный выход к контакту сброса. Если говорить о работе / поиске светодиодной схемы, то у нас возникает вопрос: есть ли более простая альтернатива для запуска светодиодной схемы без 4017 IC? К счастью, ответ — да!

Триггерная схема и ее расширение

Идея этого возникла у меня в голове много лет назад, когда я учился в старшей школе, когда я много узнал об электронике с очень ограниченным учебником, когда мне хотелось изучать магию, где я должен теоретизировать, как работают схемы, представляя, как текут электроны. в схеме, и основная схема триггера натолкнула меня на идею сделать работающий светодиод.Базовая схема триггера имеет две подсистемы (устройства), которые попеременно включаются сами и выключают другую сторону. Как насчет того, чтобы расширить эту схему до трех блоков, каждый из которых подключен, чтобы выключить следующий блок по кругу? Посмотрите на принципиальную схему схемы ниже (Рисунок 2).

Hamuro Running LED CIrcuit Diagram

Рис. 2. Принципиальная схема светодиода Hamuro Running

Схема состоит из трех подсистем, называемых блоком, состоящим из одного светодиода, одного транзистора, одного конденсатора, одного стабилитрона и двух резисторов.Когда мы отсоединяем соединения каждого блока от конденсатора к следующему блоку, каждый блок будет питаться самостоятельно, и все светодиоды будут включены. Теперь, если мы затем подключим эти конденсаторы, активный блок попытается выключить другой блок, замкнув базовый ток на землю через конденсатор на активный транзистор.

Запуск цепи для пониженного напряжения

Стабилитрон добавлен к каждой базе транзистора, чтобы повысить уровень его включения. Без этих диодов светодиод не будет полностью выключен, если мы запустим эту схему при напряжении питания 6 В или выше.Конечно, вы можете не использовать эти диоды, если хотите работать с этой схемой от батарей 3 В, уменьшите резисторы R1, R3 и R5, если вы это сделаете. Если вы используете источник питания с более низким напряжением (VS) и светодиоды с прямым падением напряжения (VLED), значение сопротивления (VR) можно вычислить, выбрав величину тока для светодиода (IL), а затем найдите сопротивление по (ВС-VLED) / IL. Здесь не учитывается насыщенный коллектор-эмиттер транзистора, так как он будет достаточно низким по сравнению с VS и VLED.

Асимметрия смещения транзисторов

Если вы посмотрите на резистор смещения R7, он дает другой ток смещения для транзистора по сравнению с другими транзисторами, и это дает более короткий период выключения LED3. На самом деле это не очень хорошо, но эта асимметрия необходима, чтобы гарантировать, что цепь не застрянет в сбалансированном состоянии, не вызывающем колебаний. Когда все смещения уравновешены, это состояние залипания обычно возникает при включении питания, тогда мы должны выполнить «сброс», закоротив один из конденсаторов, чтобы разрядить заряд и заставить схему колебаться.Использование асимметричного смещения решает эту проблему, и мы сохраняем разницу достаточно малой, чтобы давать достаточно быстрые стартовые колебания при включении, но не слишком заметные по временным изменениям мигающих светодиодов. Посмотрите, как работает схема в собранном и запитанном виде, на нашем видеоканале Youtube ниже и попробуйте сами, удачи!

Статьи по теме

,

Автоматическая система управления уличным освещением с использованием LDR и транзистора BC 547

Базовый электронный проект — Автоматическая система управления уличным освещением

Вот наш новый простой электрический / электронный проект об автоматической системе управления уличным освещением для студентов и любителей.

Характеристики:

  • Это простая и мощная концепция, в которой транзистор (BC 547 NPN) используется в качестве переключателя для автоматического включения и выключения системы уличного освещения.
  • Он автоматически включает свет, когда солнечный свет опускается ниже видимой области наших глаз. (например, вечером после заката).
  • Он автоматически выключает свет, когда на него падает солнечный свет (например, на LDR), например, утром, с помощью датчика под названием LDR (Light Dependent Resistor), который воспринимает свет так же, как наши глаза.
  • A

Также проверьте:

Преимущества:

  • Используя эту автоматическую систему управления уличным освещением, мы можем снизить потребление энергии, поскольку ручные уличные фонари не выключаются должным образом даже при попадании солнечного света и также не включались раньше до заката.
  • В солнечные и дождливые дни время включения и выключения заметно различается, что является одним из основных недостатков использования схем таймера или ручного управления для переключения системы уличного освещения.

Достаточно… .Теперь приступим (шаг за шагом)

Требования:

  • Светозависимый резистор LDR
  • Возьмите 2 транзистора. (NPN транзистор — BC547 или BC147 или BC548)
  • Резистор — 1 кОм, 330 Ом, 470 Ом
  • Светоизлучающий диод (LED) — любой цвет
  • Соединительные провода — Используйте одножильный провод с пластиковым покрытием 0.Диаметр 6 мм (стандартный размер). Можно использовать провод, который используется для компьютерных сетей.
  • Источник питания — 6 В или 9 В

Магнитная левитация, простая электрическая схема

Процедура

  • Вставьте первый транзистор Q1-BC547 (NPN) на макетную плату (или общую печатную плату), как показано на принципиальной схеме 1.
  • Подключите другой транзистор Q2- BC547 (NPN) на макетной плате, как в шаге 1.
  • Подключите провода через вывод эмиттера обоих транзисторов и клемму –ve батареи (нижний / нижний ряд макетной платы.)
  • Подключите провод между выводом коллектора транзистора Q1 и выводом базы транзистора Q2.
  • Подключите резистор 1K к положительной клемме аккумулятора (самый верхний ряд макета) и коллекторному контакту транзистора Q1.
  • Подключите светозависимый резистор (LDR) к положительной клемме батареи (самый верхний ряд макета) и базовой клемме транзистора Q1.
  • вставьте резистор 330 Ом между базовым выводом транзистора Q1 и отрицательной клеммой аккумулятора (нижний нижний ряд макета).
  • Подключите резистор 330R к положительной клемме батареи (самый верхний ряд макета) и анодной клемме светодиода (светоизлучающий диод) и подключите катодную клемму светодиода к контакту коллектора транзистора Q2.

Мини-система воздушного охлаждения от вентилятора 12 В (самодельный из мусора)

Простая схема готова к тестированию. Подключите клеммы аккумулятора 6 В к цепи, как показано на рисунке, и посмотрите на выход. Когда вы блокируете свет, падающий на резистор, зависимый от света (LDR), светодиод светится.

СВЕТОДИОД Горит даже в меньшей темноте. Используйте фонарик или зажигалку, если светодиод светится в меньшей темноте. Кроме того, вы можете попробовать отрегулировать чувствительность этой схемы с помощью переменного резистора вместо R1-300Ом. Попробуйте эту схему с другими сопротивлениями (например, 1 кОм, 10 кОм и 100 кОм и т. Д.)

Мини-вентилятор USB (самодельный, очень простой с использованием двигателя вентилятора на 12 В на ПК)

Иллюстрированный рассказ: (Щелкните изображения, чтобы увеличить)

Компоненты и принципиальные электрические схемы для автоматической системы управления уличным освещением

Принципиальная схема 1.Автоматическая система управления уличным освещением (датчик с использованием LDR и транзистора BC 547.) Очень просто. Мы пробовали это в этом уроке, но вы также можете попробовать второй, упомянутый ниже.

Automatic Street Light Control System using LDR & Transistor BC 547 Schematic Diagram Automatic Street Light Control System using LDR & Transistor BC 547 Schematic Diagram

Принципиальная схема 2. Автоматическая система управления уличным освещением (датчик с использованием LDR и транзистора BC 547.) Очень просто.

Circuit Diagram of .Automatic Street Light Control System.(Sensor using LDR & Transistor BC 547. Circuit Diagram of .Automatic Street Light Control System.(Sensor using LDR & Transistor BC 547. Automatic-Street-Light-Control-System.-2528Sensor-using-LDR-2526-Transistor-BC-547.-2529-Very-Simple Automatic-Street-Light-Control-System.-2528Sensor-using-LDR-2526-Transistor-BC-547.-2529-Very-Simple Automatic Street Light Control System.(Sensor using LDR & Transistor BC 547.) Very Simple. Automatic Street Light Control System.(Sensor using LDR & Transistor BC 547.) Very Simple.

Automatic Street Light Control System.(Sensor using LDR & Transistor BC 547.) Very Simple. Automatic Street Light Control System.(Sensor using LDR & Transistor BC 547.) Very Simple.

Когда свет падает на LDR (светозависимый резистор), светодиод не светится.(Светодиод = выключен).

Automatic Street Light Control System.(Sensor using LDR & Transistor BC 547.) Very Simple. Automatic Street Light Control System.(Sensor using LDR & Transistor BC 547.) Very Simple.

Теперь вы можете видеть, что мы заблокировали свет, падающий на резистор, зависимый от света (LDR), поэтому светодиод светится (светодиод = ON).

Снимок взят из видео.

Automatic Street Light Control System.(Sensor using LDR & Transistor BC 547.) Very Simple. Automatic Street Light Control System.(Sensor using LDR & Transistor BC 547.) Very Simple.

Для получения дополнительных руководств по проектам в области базовой электротехники и электроники посетите: Простая библиотека проектов по электротехнике и электронике

.Схема автоматического контроллера уличного освещения

с использованием реле и LDR

Вы видели уличный фонарь, который автоматически включается ночью и выключается утром или днем, есть датчики, которые определяют свет и соответственно управляют освещением. Эти уличные фонари — важный проект в умных городах.

Итак, в этом проекте мы собираемся создать простой автоматический контроллер уличного освещения с использованием реле и LDR. Эта схема очень проста и может быть построена на транзисторах и LDR, вам не нужен операционный усилитель или микросхема 555 для запуска нагрузки переменного тока.Здесь мы использовали лампочку переменного тока в качестве уличного фонаря. Некоторые применения этой схемы — управление уличным освещением, управление освещением дома / офиса, указатели дня и ночи и т. Д.

Требуется компонентов:

  1. Транзистор BC547-2
  2. LDR (светозависимый резистор)
  3. Реле
  4. Резистор 1к
  5. Потенциометр 100k
  6. Блок питания 12В -1
  7. Соединительные провода
  8. Перемычки
  9. Клеммная колодка с винтовыми зажимами, 2 или 3 контакта
  10. Доска для хлеба или перфорированная плита
  11. 1n4007 Диод
  12. Электропитание переменного тока
  13. Нагрузка переменного тока или лампа

Что такое LDR?

LDR

изготавливаются из полупроводниковых материалов, что обеспечивает им светочувствительные свойства.Существует много типов, но один из самых популярных материалов — это сульфид кадмия (CdS). Эти LDR или ФОТОРЕИСТОРЫ работают по принципу «фотопроводимости». Этот принцип говорит о том, что всякий раз, когда свет падает на поверхность LDR (в данном случае), проводимость элемента увеличивается или, другими словами, сопротивление LDR падает, когда свет падает на поверхность LDR. Это свойство уменьшения сопротивления для LDR достигается благодаря тому, что это свойство полупроводникового материала, используемого на поверхности.

LDR (Light Dependent Resistor)

Ранее мы построили много полезных схем с использованием LDR:

Принципиальная схема и пояснения

:

Ниже приведена принципиальная схема этого светочувствительного уличного фонаря :

Automatic Street Light using LDR and relay circuit diagram

В этом проекте мы использовали LDR (светозависимый резистор) , который отвечает за обнаружение света и темноты. Сопротивление LDR увеличивается в темноте и уменьшается в присутствии света.Эта схема такая же, как схема детектора темноты или детектора света, только здесь мы заменили простой светодиод на нагрузку переменного тока, используя реле. Два транзистора BC547 NPN используются для управления реле.

Automatic Street Light circuit using LDR and relay

Automatic Street Light circuit on perfboard backside

Всякий раз, когда свет падает на LDR , его сопротивление уменьшается, и транзистор Q1 включается, а коллектор этого транзистора становится НИЗКИМ, и это заставляет второй транзистор ВЫКЛЮЧАТЬСЯ из-за получения НИЗКОГО сигнала на его базе, поэтому реле также остается выключенным из-за ко второму транзистору.

Теперь , когда LDR обнаруживает темноту, означает отсутствие света, затем транзистор Q1 включается из-за увеличения сопротивления LDR, которое отвечает за падение напряжения на базе Q1. Из-за НИЗКОГО сигнала на базе Q1 транзистор Q2 получает ВЫСОКИЙ сигнал от коллектора Q1 и включает реле. Реле включило нагрузку переменного тока, подключенную к реле. Поток 10K также используется для настройки чувствительности схемы.

Итак, вот как автоматические уличные фонари включаются ночью и выключаются днем, посмотрите демонстрационное видео ниже.

,Принципиальная схема простой защелки

с транзисторами

Защелка в основном означает «зафиксировать в определенном состоянии». В электронике Latch Circuit — это схема, которая блокирует свой выход, когда применяется мгновенный входной сигнал запуска, и сохраняет это состояние даже после удаления входного сигнала. Это состояние будет оставаться неопределенным, пока не будет сброшено питание или не будет подан внешний сигнал. Схема защелки аналогична SCR (выпрямитель с кремниевым управлением) и может быть очень полезна в цепях аварийной сигнализации, где небольшой триггерный сигнал включает аварийный сигнал на неопределенное время, пока не будет сброшен вручную.Ранее мы построили несколько цепей сигнализации:

Сегодня мы собираемся построить очень простую и дешевую схему защелки с использованием транзисторов, эту схему можно использовать для запуска нагрузки сети переменного тока и сигнализации .

Компоненты:

  • Резисторы — 10к (2), 100к (2), 220 Ом (1)
  • Транзисторы- BC547, BC557
  • Конденсатор — 1 мкФ
  • реле- 6в
  • Диод- 1N4148
  • светодиод
  • Источник питания — 5-12 В

Схема

:

Принципиальная схема цепи фиксации проста и может быть легко построена.Резисторы R1 и R4 работают как токоограничивающие резисторы для транзистора Q1, а резисторы R2 и R3 работают как токоограничивающие резисторы для транзистора Q2. В основании BJT-транзисторов необходимо использовать ограничивающие ток резисторы, иначе они могут сгореть. Назначение других компонентов объяснено в «Рабочем разделе» ниже.

Рабочее пояснение:

Перед тем, как перейти к объяснению, мы должны отметить, что транзистор Q1 BC547 является NPN-транзистором , который проводит или включается, когда к его базе приложено небольшое положительное напряжение.А транзистор BC557 — это PNP-транзистор , который проводит или включается, когда на его базу подается отрицательное напряжение (или земля).

Изначально оба транзистора находятся в выключенном состоянии, а реле деактивировано. База PNP-транзистора BC557 подключена к положительному напряжению с помощью токоограничивающего резистора R3, чтобы он не проводил случайно. Конденсатор C1 был использован в качестве меры предосторожности, чтобы предотвратить случайное и ложное срабатывание цепи.

Теперь, когда небольшое положительное напряжение подается на базу транзистора BC547, он включает транзистор, и база транзистора Q2 BC557 подключается к земле.Резисторы R2 и R3 предотвращают короткое замыкание в этом состоянии. Теперь, когда база транзистора BC557 заземляется, он начинает проводить и питает катушку реле, которая активирует реле и включает устройство, подключенное к реле. В нашем случае светодиод будет светиться.

Это нормальное поведение до сих пор, но что делает его цепью «защелкивания». Если вы заметили, коллектор транзистора BC557 подключен к базе транзистора BC547 через токоограничивающий резистор R4. И когда транзистор BC557 включается, ток течет в двух направлениях, сначала на реле, а затем на базу транзистора Q1.Таким образом, это напряжение обратной связи, подаваемое на базу транзистора BC547, удерживает транзистор BC547 включенным в течение неопределенного периода времени, даже после снятия входного напряжения запуска. Это, в свою очередь, удерживает второй транзистор включенным на неопределенное время, и мгновенно формируется защелка или замок .

Теперь сигнализация или устройство, подключенное к реле, будет оставаться включенным до тех пор, пока не будет сброшено питание. Или к этой схеме можно добавить кнопку сброса, чтобы вывести из строя защелку. Эта кнопка соединяет базу транзистора BC547 с землей, которая отключает Q1 и Q2 и разрывает защелку.

Если вы не хотите фиксировать какие-либо устройства переменного тока , а просто хотите включить светодиод или зуммер, вы можете просто удалить реле и подключить светодиод непосредственно вместо реле с помощью резистора.

Диод 1N4148 используется для предотвращения обратного тока, когда транзистор выключен. Каждая катушка индуктивности (в реле) производит равную и противоположную ЭДС при внезапном выключении, это может привести к необратимому повреждению компонентов, поэтому для предотвращения обратного тока необходимо использовать диод.Узнайте здесь о работе реле.

,

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *