Схема авр для генератора: устройство, принцип работы, схемы подключения

Содержание

схемы подключения блока с автозапуском генератора. Что это такое и из чего состоит контроллер?

Альтернативные источники энергии в наши дни получают все большее распространение, поскольку позволяют обеспечить бесперебойное электроснабжение объектов различной направленности. В первую очередь, коттеджей, дач, небольших строений, где присутствуют перебои с электричеством.

Если обычное электропитание исчезает, то возникает потребность скорее включить источник резервного питания, что не всегда возможно сделать в силу различных причин. Именно для этих целей используется автоматическое включение резерва или АВР для генератора. Это решение дает возможность за считанные секунды активировать резервное питание без особого труда.

Что это такое?

Как уже было сказано выше, АВР переводится, как автовключение (ввод) резерва. Под последним следует понимать любой генератор, производящий выработку электроэнергии, если энергоснабжение объекта прекратится.

Данное устройство – своеобразный переключатель нагрузки, осуществляющий это в момент необходимости. Ряд моделей АВР требует ручной настройки, но большая часть управляются в авторежиме по сигналу о потере напряжения.

Следует сказать, что данный блок состоит из ряда узлов и бывает либо однофазным, либо трехфазным. Для смены нагрузки нужно будет лишь установить после электрического счетчика специальный контроллер. Положение силовых контактов будет управляться главным источником электрической энергии.

Почти все типы устройств с запуском от электрической станции можно оснастить автономными механизмами АВР. Для установки блоков резервного введения следует использовать особый шкаф АВР. В то же время щит АВР обычно размещается либо после газогенераторов, или устанавливается на общем электрощите.

Виды и их устройство

Следует сказать, что типы АВР-устройств могут различаться по следующим критериям:

  • по категории напряжения;
  • по количеству запасных секций;
  • времени задержки переключения;
  • мощности сети;
  • по типу запасной сети, то есть применяться в однофазной либо трехфазной сети.

Но чаще всего данные устройства делят на категории по методу подключения. В данном случае они бывают:

  • с автоматическими рубильниками;
  • тиристорные;
  • с контакторами.

Если говорить о моделях с автоматическими рубильниками, то главным рабочим элементом такой модели будет рубильник, имеющий среднее нулевое положение. Чтобы его переключить применяется электропривод моторного типа под управлением контроллера. Такой щит очень легко разобрать и ремонтировать по частям. Он очень надежен, но у него нет защиты от короткого замыкания и скачков напряжения. Да стоимость его довольно велика.

Тиристорные модели отличаются тем, что здесь элементом коммутации являются тиристоры высокой мощности, способствующие тому, чтобы подключение второго ввода вместо первого, что вышел из строя, осуществлялось почти мгновенно.

Данный аспект будет много значить при выборе АВР для тех, кому важно, чтобы электричество было всегда, а любой, даже самый маленький сбой, может стать причиной каких-то серьезных проблем.

Стоимость такого типа АВР велика, но иногда другой вариант просто использовать нельзя.

Еще один тип – с контакторами. Он является наиболее распространенным на сегодняшний день. Это объясняется ценовой доступностью. Его основными частями являются 2 контактора, обладающие взаимной блокировкой, электромеханической или электрической, а также реле, которое предназначается для контроля над фазами.

Самые доступные модели осуществляют контроль лишь над одной фазой, не принимая при этом в расчет качество напряжения. Когда подача напряжения на одну фазу прекращается, нагрузка автоматически идет на другой источник питания.

Модели дороже дают возможность контролировать частоту, напряжение, задержки времени и осуществлять их программирование. Кроме того, можно произвести механическое блокирование всех вводов одномоментно.

Но при неисправности устройств его нельзя заблокировать вручную. И если потребуется ремонт одного элемента, придется производить ремонт всего агрегата сразу.

Говоря о конструкции АВР, следует сказать, что оно состоит из 3-х узлов, которые взаимосвязаны между собой:

  • контакторов, которые осуществляют коммутирование вводных и цепей нагрузки;
  • логических и индикационных блоков;
  • релейного блока переключения.

Иногда они могут снабжаться дополнительными узлами для исключения просадок напряжения, задержек по времени, повышения качества тока на выходе.

Включение запасной линии позволяет обеспечить группа контактов. За наличием входящего напряжения следит фазное контролирующее реле.

Если говорить о принципе работы, то в стандартном режиме, когда все запитывается от главной сети, блок контакторов направляет электричество на потребительские линии, благодаря наличию инвертора.

Сигнал о наличии напряжения вводного типа подается на устройства логического и индикационного типа. При нормальной работе все будет работать устойчиво. Если произойдет авария в главной сети, то реле фазного контроля перестает удерживать контакты замкнутыми и происходит их размыкание, с последующей деактивацией нагрузки.

Если имеется инвертор, то он включается на генерирование тока переменного типа с напряжением в 220 вольт. То есть пользователи будут иметь стабильное напряжение, если в обычной сети напряжение будет отсутствовать.

Если работа основной сети не восстанавливается когда следует, то контроллер подает сигнал об этом с запуском генератора. Если от альтернатора есть стабильное напряжение, то осуществляется переключение контакторов на запасную линию.

Автовключение сети потребителя начинается с поступлением напряжения на фазно-контрольное реле, переключающего контакторы на главную линию. Цепь запасного питания размыкается. Сигнал от контроллера идет на механизм топливоподачи, закрывающую заслонку бензомотора, либо перекрывает топливо в соответствующем блоке двигателя. После этого электростанция выключается.

Если имеется система с автозапуском, то участие человека вообще не требуется. Весь механизм будет надежно защищен от взаимодействия токов встречного типа и короткого замыкания. Для этого обычно используют механизм блокировок и различные дополнительные реле.

Если требуется, то оператор может использовать ручной механизм переключения линий при помощи контролера. Он также может менять настройки блока управления, активировать автоматический либо ручной рабочий режим.

Секреты выбора

Начнем с того, что существуют кое-какие «фишки», которые позволяют выбрать действительно качественный АВР, причем не важно для какого механизма – для трехфазного или однофазного. Первый момент состоит в том, что контакторы имеют крайне важное значение, их роль в данной системе переоценить сложно. Они должны быть очень чувствительны и отслеживать буквально самое незначительное изменение параметров входной стационарной сети.

Второй важный момент, на который нельзя не обратить внимание – это контролер. По сути, это мозг АВР-блока.

Лучше всего покупать модели в исполнении Basic или DeepSea.

Еще одна тонкость – правильно выполненный щит на панели должен иметь определенные обязательные атрибуты. Сюда можно отнести:

  • клавишу аварийного выключения;
  • измерительные приборы – вольтметр, позволяющий контролировать уровень напряжения и амперметр;
  • световая индикация, что дает возможность понять, идет питание от сети либо от генератора;
  • переключатель для управления вручную.

Не менее важным аспектом будет и то, что если отслеживающая часть блока АВР будет монтироваться на улице, то ящик обязательно должен иметь степень защиты от влаги и пыли не менее IP44 и IP65.

Кроме того, все клеммы, кабели и зажимы внутри ящика должны быть промаркированы, как указано в схеме. Она вместе с инструкцией по эксплуатации должна быть понятной.

Схемы подключения

Теперь попытаемся разобраться в том, как правильно подключить АВР. Обычно встречается схема на 2 ввода.

Предварительно следует произвести правильное размещение элементов в электрощите. Они должны монтироваться так, чтобы никаких пересечений проводов не наблюдалось. У пользователя должен быть полный доступ ко всему.

И лишь потом может выполняться подключение силовых блоков АВР с контроллерами по принципиальной электросхеме. Ее коммутирование с контроллерами делается с использованием контакторов. После этого осуществляется соединение с генератором АВР. Качество всех соединений, их правильность, можно проверить, применяя обыкновенный мультиметр.

Если используется режим получения напряжения от стандартной ЛЭП, то в механизме АВР активируется генераторная автоматика, осуществляется включение первого магнитопускателя, подающего напряжение к щитку.

Если случается ЧП и напряжение пропадает, то с использованием реле магнитопускатель №1 деактивируется и генератор получает команду на осуществление автозапуска. Когда начинает работу генератор, то в АВР-щитке активируется магнитнопускатель №2, через который напряжение идет на распредкоробку домашней сети. Так все будет работать либо до того, как восстановится электропитание по основной линии, либо при окончании топлива в генераторе.

Когда основное напряжение восстановится, генератор и второй магнитопускатель отключаются, подавая сигнал первому на запуск, после чего система переходит к стандартной работе.

Следует сказать, что монтаж щита АВР должен выполняться после электросчетчика.

То есть получается так, что во время работы генератора учет электрической энергии не производится, что логично, ведь питание не осуществляется от централизованного источника электроснабжения.

Щиток АВР монтируется до главного щита домашней сети. Поэтому получается, что по схеме он должен быть смонтирован между счетчиком электрической энергии и распределительной коробкой.

Если общая мощность потребителей будет больше того, что может дать генератор или само устройство не обладает большой мощностью, на линию следует подключать исключительно те приборы и оборудование, которые точно потребуются для обеспечения нормальной жизнедеятельности объекта.

Из следующего видео вы узнате о простейших схемах построения АВР, а также схемы АВР на два ввода и генератор.

принцип работы, характеристика, автоматический ввод резерва своими руками

Среди огромного разнообразия источников энергии большую популярность получили генераторы электрического тока. Такие агрегаты всё чаще применяются в загородных домах и на дачах, а также во многих других местах, где есть проблемы со светом. Именно поэтому потребители нередко приобретают качественные блоки АВР для генераторов, созданные для автоматического включения резервного питания.

Характеристика агрегата

Устройство АВР — это средство автоматического включения резервного питания, представленное в виде высококачественного генератора, вырабатывающего ток, если внезапно пропало централизованное электроснабжение. Основная задача блока состоит в том, чтобы своевременно и как можно быстрее переключать нагрузки между двумя источниками.

Некоторые модели АВР разработаны так, что все настройки потребитель должен вносить самостоятельно, но чаще всего в продаже можно встретить оборудование, работающее в автоматическом режиме. Активация устройства происходит в тот момент, когда поступает сигнал о потере напряжения. В быту использование такого агрегата имеет множество положительных отзывов.

Блок АВР запрограммирован таким образом, что его работа зависит от уровня напряжения на определённом объекте, этот пункт контролируется первичной обмоткой. Наличие специального переключателя обеспечивает надёжную изоляцию генератора от негативного воздействия переменного тока, который проникает из общей электросети. В этот промежуток времени источник бесперебойного питания находится во включенном состоянии, что гарантирует стабильную подачу временного питания всем потребителям. Слаженная работа генератора с АВР осуществляется по следующей схеме:

  1. После прекращения подачи электроэнергии через блок к источнику бесперебойного питания поступает команда о начале работы.
  2. Когда устройство получит ответ о том, что генератор полностью готов к выполнению своей основной функции, АВР осуществляет его соединение с домашней электросетью.
  3. С возобновлением централизованной подачи тока в частный дом на автоматический ввод резерва поступает сигнал о том, что резервное устройство должно быть отключено.
  4. Проводка между домашней сетью и генератором одновременно переключается в автоматическом режиме.

Если специалист обладает необходимым опытом, то он может выполнить индивидуальную настройку переключений, чтобы обеспечить электроэнергией только самые важные участки.

В качестве приоритетных объектов назначают системы отопления помещений, охлаждающее оборудование и другие схемы.

Для мощных резервных установок можно смело применять более сложные распределения электроэнергии, которые будут формировать мягкую нагрузку, плавно переходящую из синхронизированного агрегата и обратно. Сами производители утверждают, что такие генераторы всё чаще применяются в тех ситуациях, когда нужно сократить итоговую величину пиковых нагрузок.

Принцип работы

За несколько лет на рынке появилось множество разнообразных агрегатов для автоматического резервирования, которые оснащаются мощным микропроцессорным контроллером. Несмотря на огромный ассортимент, наибольшим спросом пользуются модели с управляющим реле-контроллером. Устройство непрерывно анализирует сигналы датчиков напряжения, а также своевременно обнаруживает сбой в питании и инициирует процедуру быстрого запуска генератора.

Если начинающий мастер будет рассматривать схему подключения АВР с точки зрения электротехники, то эта задача может показаться слишком сложной. Всё дело в том, что различные технические сложности и неизбежные временные задержки затрудняют мгновенное получение резервной электроэнергии. Чтобы такое оборудование прекрасно справлялось со своими основными задачами и не подводило в самый ответственный момент, нужно заранее ознакомиться с его функциональными возможностями:

  1. Современные модели АВР могут использоваться не только с бензиновыми, электрическими, газовыми, но и с дизельными генераторами.
  2. Пользователь всегда может выбрать наиболее подходящий тип резервной сети — однофазную или трёхфазную.
  3. В системе предусмотрен постоянный контроль температуры двигателя.
  4. Обеспечение полного цикла работы резервного источника: автоматизированный запуск генератора в тот момент, когда исчезло централизованное электроснабжение или уровень напряжения превысил все допустимые показатели. Предусмотрены многочисленные полезные функции, которые непрерывно контролируют работу генератора, защищают его от перегрузки. При появлении основного электричества происходит остановка и последующее охлаждение бесперебойного источника.
  5. Наличие тестового еженедельного запуска генератора (мастер может настроить точную дату и время для проведения этой процедуры).
  6. Удобное управление приводом воздушной заслонки.
  7. Всегда можно активировать экономный режим работы оборудования.
  8. Фиксированный контроль напряжения аккумуляторных батарей. Эта функция позволяет запускать генератор только при полной разрядке АКБ генератора.
  9. Некоторые модели АВР обладают расширенной функциональностью для подключения вспомогательных модулей: GSM-модем, БИП.
  10. Качественный счётчик, который показывает оставшееся время до проведения планового технического обслуживания.

Самостоятельное изготовление блока АВР

Качественный автоматический ввод резерва для генератора отличается высокой стоимостью, поэтому многие домашние мастера решают изготовить это устройство своими руками, используя те самые детали, что и в стандартных заводских агрегатах. Основной и самой дорогой частью является многофункциональный контроллер.

Для обеспечения силовой части мастера задействуют контакторы, которые используются для гарантированного переключения с главной линии на локальную сеть. Чтобы компактно разместить все детали, нужно подготовить довольно вместительный шкаф или же щит, который больше всего будет подходить по размеру к изготавливаемому агрегату.

Традиционная схема АВР всегда оснащается автоматизированным контролирующим механизмом, который работает за счёт нормального постоянного напряжения. Качественная реализация этой идеи возложена на блок питания. Чаще всего специалисты применяют стандартный аккумулятор повышенной мощности, так как при повышенных нагрузках маломощный агрегат быстро разряжается.

Именно блок питания контролирует уровень выходящего напряжения. Стоит отметить, что все комплектующие детали нужно покупать исключительно в проверенных торговых магазинах, отдавая своё предпочтение известным производителям. Чтобы во время сборки не допустить самых распространённых ошибок, необходимо использовать профессиональную схему АВР для генератора. Своими руками можно изготовить высококачественную модель, которая будет отвечать всем эксплуатационным требованиям.

Выбирая контроллер, необходимо проверить наличие инверсной воздушной заслонки. Этот узел особенно полезен в тех ситуациях, когда потребитель использует генератор с механической заслонкой.

Покупая прочные контакторы, нужно ориентироваться на показатели пропускной способности. Когда в оборудовании отсутствует электромеханическая защита, её нужно приобрести отдельно.

Когда все элементы есть в наличии, можно смело приступать к изготовлению АВР. Начинать нужно с монтажа всех элементов и узлов во внутренний отсек электрического щита. Этот процесс должен происходить таким образом, чтобы не образовались пересечения между проводниками, а все контакты и клеммы были легкодоступны. Далее происходит подключение силовой части и контроллеров.

Параллельное включение резервного генератора с централизованной электросетью считается недопустимым. В противном случае бесперебойный источник питания может быть сильно повреждён вплоть до полной поломки всех узлов. Чтобы оградить оборудование от столь негативных последствий, нужно приобрести специальные щиты, которые обеспечивают как ручное, так и автоматическое переключение на ввод резерва. В продаже можно встретить универсальные разновидности сильноточных коммутаторов нагрузки, а также многофункциональные автоматические регуляторы напряжения используемого генератора.

В процессе подключения обязательно учитывается наличие двух мощных кабелей, которые входят в щит автоматического резерва. Один из них должен быть рассчитан на основную сеть, а второй — на резервную линию электросети. Их поочерёдное использование обусловлено различными алгоритмами работы оборудования. Но на выходе к потребителю протягивается только один силовой кабель.

Отличительные функции

Современные блоки АВР обеспечивают автоматический запуск генератора в случае пропадания напряжения на основной линии. При этом такой агрегат управляет работой стартера, топливным клапаном, предпусковым подогревом свечи установки и приводом воздушной заслонки. Когда напряжение на основной линии восстанавливается, АВР самостоятельно отключает подачу нагрузки от генератора, за счёт чего происходит постепенное охлаждение всей установки. Помимо этого, автоматический ввод резерва отличается и другими функциями:

  1. В состав блока обязательно входит зарядное устройство аккумуляторной батареи генератора.
  2. Некоторые модели позволяют контролировать температуру картера двигателя бензиновой установки с целью непрерывного управления воздушной заслонкой в зависимости от уровня нагрева двигателя. Благодаря такой функции предотвращается перегрев основного рабочего узла.
  3. Более дорогие модели оснащаются мощными аккумуляторами, которые хорошо справляются с большими нагрузками.
  4. Блок АВР можно подключить к персональному компьютеру (интерфейс RS 485). Пользователь может выполнить точную настройку констант и параметров, которые будут считывать все текущие измерения.
  5. Установка GSM-модема позволит дистанционно запускать и останавливать генератор через SMS-сообщения. Специалист может в удобное для себя время контролировать режим работы блока, а также считывать актуальные телеметрические данные.
  6. Наличие встроенного байпаса. Когда из строя выходит основной управляющий контроллер, генератор можно запустить и самостоятельно.
  7. Наличие кнопки «Аварийный стоп». Генератор может быть остановлен в принудительном порядке, если произошла непредвиденная ситуация.

Дополнительные временные задержки

Когда основное питание восстановлено, то небольшая задержка просто необходима, так как это позволит убедиться в достаточной нагрузке для отключения резервного источника. Чаще всего ее продолжительность варьируется от 1 до 30 минут. АВР должна автоматически обойти существующую временную задержку и вернуться к основной линии электросети. Помимо этого, оборудование нуждается в охлаждении двигателя. Всё это время система управления контролирует разгруженный мотор до полной его остановки.

Опытные мастера утверждают, что лучше всего переключать нагрузку на резервный генератор в тот момент, когда достигнуты соответствующие уровни частоты и напряжения. В редких случаях конечный потребитель хочет добиться последовательного переключения на резервный генератор.

Чтобы достичь такого эффекта от установки, нужно обустроить сразу несколько схем АВР для бесперебойного источника электроэнергии, которые срабатывают с индивидуальными временными задержками. Только в этом случае все нагрузки могут быть подключены к генератору в любом порядке. Главное, чтобы все детали были качественными и отлично выполняли поставленные задачи.

АВР для генератора

АВР для генератора что это такое

АВР для генератора — автоматический ввод резерва для генератора, предназначен для автоматического подключения потребителя электричества к генератору при возникновении аварии основного ввода с возможностью выдавать необходимые команды для автоматического запуска генератора.

АВР для генератора (ATS — Automatic Transfer Switch) бывает трех видов:

  1. АВР с контроллерами автозапуска генератора
  2. АВР с автозапуском на базе релейной логики
  3. Полуавтоматический авр для генератора
  4. АВР для генераторов с автозапуском

1. АВР с контроллерами автозапуска генератора

Контроллеры для автоматического запуска генератора, бывают с разными функциональными возможностями. Для того, чтобы рассмотреть все возможности и настройки, у нас не хватит времени, поэтому, рассмотрим основные возможности 3-х самых распространенных контроллеров для автоматики генератора.

1.1 Щит АВР для генератора на контроллере ANS-105

Контроллер ANS-105 производства «Абовян Технолоджи», является Российской разработкой, не уступающей зарубежным аналогам, и в некоторых случаях, превосходящей по удобству эксплуатации. ANS-105 производит контроль, как в однофазной, так и в трехфазной сети основного ввода и переключение потребителя энергии с необходимыми задержками для увеличения срока службы генератора. В настройках контроллера запрограммированы все необходимые параметры для автоматизации большинства бытовых генераторов с электростартером и Вам не понадобится приложить дополнительные усилия для подбора подходящей программы. Контроллер имеет возможность взаимодействия с GSM модулем G-control, производства «Абовян Технолоджи», для отправки всей жизненно необходимой информации, касающейся эксплуатации системы резервного электроснабжения. В паре с G-control имеет возможность дистанционного запуска генератора по sms сообщению и возможность включения/отключения системы автоматики электрогенератора. G-control, позволяет так же выставлять точное время и дату, для тестового запуска генератора. Это необходимо для периодической проверки работоспособности системы. Плюсом данной системы автоматического запуска, является его доступная цена и надежно проваренная годами система автоматики генератора.

Купить Готовый комплект для автозапуска генератора на контроллере ANS-105FG с GSM модулем

Купить Готовый комплект для автозапуска генератора на контроллере ANS-105 без GSM модуля

1.2 Щит АВР для генератора на контроллере Datakom DKG-105

Щит АВР на контроллере Datakom DKG-105, следит за частотой и напряжением основного ввода, и при выходе за указанные рамки ограничений, производит автоматическое переключение потребителя электроэнергии с основной сети к генератору. Так же, система производит контроль за частотой генератора, и при превышении нагрузки на генератор, производится переход в режим «авария», с индикацией на панели управления. Плюсом данной системы является надежность и гибкая возможность настройки параметров работы, по оптимальной цене.

Купить Готовый комплект автозапуска генератора на контроллерe Datakom DKG-105

1.3 Щит АВР для генератора на контроллере Datakom DKG-207

Щит автоматики генератора на контроллере Datakom DKG-207, в автоматическом режиме, контролирует напряжение фаз основной электросети, обеспечивает автоматический запуск и переключение нагрузки, отслеживает аварийные ситуации при работающем двигателе, при необходимости переходит в режим «авария» с остановкой двигателя, и оповещает о причинах отключения, путем включения соответствующего светодиода на панели управления.

У щитов автоматикиDatakom DKG-207 (Датаком дкг-207), есть возможность управления и оповещения о наличии основного или резервного электропитания по внешнему сигналу, с помощью нашего GSM контроллера для электростанций — G-control GCU-10

Купить готовую систему автоматического запуска генератора на контроллере Datakom dkg-207

Купить готовую систему автозапуска генератора на контроллере Datakom dkg-207 с GSM модулем

2. АВР с автозапуском на базе релейной логики

Щиты АВР без контроллеров, собранные с помощью реле, обычно представляют собой систему релейной логики, управляющей коммутирующими контакторами, с возможностью выставления необходимых задержек по переключению. В паре с щитами переключения сети потребителя с основной на генератор, используется наш контроллер САЗГ-10. Плюсом данной системы, является возможность гибкой настройки параметров запуска генератора по доступной цене. Для более подробного ознакомления с возможностями САЗГ-10 — системой автоматического запуска генератора — 10 перейдите по ссылке!

3. Полуавтоматический АВР для генератора

Полуавтоматический щит АВР для генератора, рассчитан для частичной автоматизации подключения потребителя к генератору без электростартера. Принцип работы полуавтоматического щита: если у Вас пропадает напряжение в основном вводе, Вам необходимо вручную запустить генератор, и после прогрева генератора потребитель электроэнергии будет автоматически переключен на генератор. При появлении напряжения в основном вводе происходит обратное
переключение потребителей на городскую сеть и автоматическая остановка генератора. При приобретении генератора с электростартером, добавив в систему блок автозапуска генератора САЗГ-10 и зарядное устройство для аккумулятора Вы получите полноценную систему автозапуска генератора.

АВР для генератора своими руками схема

Если Вы готовы потратить определенное количество времени на сборку щита АВР для автоматического запуска генератора своими руками, то Вам возможно потребуется купить комплектующие, необходимые для сборки щита АВР с подробной схемой сборки. Для этого Вам необходимо оставить Ваши контактные данные, и наш специалист свяжется с Вами для составления списка необходимых комплектующих для сборки.

Купить АВР для генератора

Для того чтобы купить щит автозапуска генератора, Вам необходимо определится с функционалом системы автоматики . После выбора контроллера, необходимо узнать номинал вводного автомата, так как вся нагрузка будет проходить через щит АВР. Вам остается только найти подходящий щит автоматики у нас на сайте и оформить заявку или отправить «быстрый заказ». Если у Вас возникли затруднение с выбором то Вы можете обратится к нашим специалистам, которые помогут подобрать удобный и доступный комплект автоматики по тел. +7(499)755-54-51 или написать письмо на электронную почту [email protected]

Авторские права защищены

Описание схемы подключения запуска генератора с блоком управления АВР-1/1

 Схемы подключения блока АВР-1/1 с автоматическим управлением запуском  и контролем работы  мобильной генераторной установки и ввода городской сети.

    На Рис.2  представлена одна из рабочих схем подключения блока управления АВР-1/1М. Проводники, подключенные к блоку, отображены схематично, без привязки к конкретным клеммам. Компоновка достаточно проста в реализации и под силу пользователям даже с начальным уровнем электротехники.
  На Рис.3 изображена производная схема от схемы на Рис.2, с дополнительными элементами защиты, автоматическим зарядным устройством  и с полной прорисовкой подключения проводников к клеммам контроллера АВР-1/1.

  У нас Вы можете заказать готовый к установке щит АВР с резервным вводом генератора собранный по схеме  Рис.3  любой мощности или заказать монтаж и подключение под ключ.

Начало пути.

   Как правило, вопрос по автоматизированному управлению вводом генератора и вводом сети возникает, когда пришлось столкнуться с рядом неудобств ручного управления вводами. Первоначально, для ручного управления, собирают, в большинстве случаях,  самую простую схему  на 2-х автоматических выключателях Рис.1. без элементов защиты.

 За основу  будут взяты ввод 220В/50Гц городской однофазной сети 1, однофазный счетчик электроэнергии 2, автоматические выключатели А1 на 25 ампер с характеристикой С и автоматический выключатель А2 на 25 ампер с характеристикой В, подключаемая нагрузка 3(Дом)  и однофазный бензиновый генератор с электростартером на 6,5 кВт позиция 4.
 Работает все очень просто. Когда есть напряжение в сети, оно проходит через счетчик 2, автоматический выключатель А1 к нагрузке 3. Автомат А2 выключен. При пропадании сети отключают автомат А1, запускают генератор 4 и включают автомат А2. Нагрузка подключена к генератору. Появилась сеть — выключают автомат А2, включают автомат А1 и глушат генератор.

 Собираем автоматику АВР.

  Начинаем подключать автоматику  на базе контроллера АВР-1/1М  к уже имеющейся схеме Рис.1.
 Предложенная схема на Рис.2  позволяет это сделать достаточно безопасно и полностью автоматизировать процесс ввода резервного питания, управлять работой генератора, контролировать напряжение в сети и на резервном вводе, а также, при необходимости, отключать всю автоматику АВР  и переключать нагрузку вручную к городской сети или генератору.
  Есть желание собрать более универсальное решение АВР, ориентируйтесь на схему Рис.3.

 

На Рис.2  изображены следующие элементы:

1 — ввод городской сети 230В/50Гц

2 — бытовой однофазный счетчик электроэнергии

3 — потребитель электроэнергии (нагрузка)

4 — автономная генераторная установка (бензиновый генератор с электростартером на 6,5 кВт)

5 —  модуль управления АВР-1/1 (контроллер)

А1 — автоматический выключатель 2-х полюсный (С25А)

А2 – автоматический выключатель 2-х полюсный (В25А)

В1 — выключатель нагрузки 2-х полюсный (32А)

В2 – выключатель нагрузки 2-х полюсный (32А)

КМ1 — контактор 3-х полюсной с дополнительным нормально-замкнутым контактом (25А 230В/АС3 1НЗ).

КМ2 – контактор 3-х полюсной с дополнительным нормально-замкнутым контактом (25А 230В/АС3 1НЗ).

УГ – жгут проводников управления генератором ( стартер, питание, заслонка, зажигание, топливный клапан)

Что ставим? Для чего?

Позиции 1, 2, 3, 4, А1, А2 – остаются от схемы на Рис.1, поэтому нам потребуется все остальное.

  Выключатель нагрузки В1 (БАЙПАС): Служит для разрыва цепи сеть-дом при работе в автоматическом режиме и подключения сети к дому в ручном режиме. Ставим номиналом не меньше чем  автоматический выключатель А1. Если не получится приобрести выключатель нагрузки – устанавливаем автоматический выключатель с номиналом выше чем у А1. Установлен А1 на 25 ампера с характеристикой С  — ставим на 32 ампера с характеристикой С. Ставим мощнее, чтобы при перегрузках срабатывал автомат А1.

  Выключатели нагрузки В2  (БАЙПАС)(на Рис.3 обозначен Q3): На схеме выделен синим пунктиром. Служит для подключения генератора к дому в ручном режиме, при отключенном блоке АВР-1/1. В автоматическом режиме находится в разомкнутом состоянии. Ставим номиналом не менее автомата А2, если не получится приобрести выключатель – устанавливаем автоматический выключатель с номиналом выше чем у А2. Установлен А2 на 25А с характеристикой С — ставим С32А. Ставим мощнее, чтобы при перегрузках срабатывал автомат А2. Но есть и обратная сторона такого решения. Получается очень слабый узел по безопасности. Контакторы КМ1 и КМ2 будут с блокировкой от «встречного включения напряжения», а выключатель В2 будет обходить эту защиту. Лучшем решением, будет установить кнопки СТАРТ-СТОП на «самоподхвате» от дополнительного NO контакта контактора КМ2. Кнопки стоят дороже выключателя, но сохраняют защиту. Кнопки будут управлять принудительным включением/отключением катушки контактора КМ2 при работающем в ручном режиме генераторе.

  Контактор КМ1 берем малогабаритный промышленного назначения с категорией применения АС-3 и номиналом как и автомат А1 на 25А. Можно применять и модульные контакторы, но они, как правило, выпускаются с категорией применения АС-1, а под АС-3 их номинал нужно уменьшать в 3-4 раза. Промышленные контакторы дешевле модульных и позволяют расширять возможности автоматизации АВР за счет дополнительных приставок.  
  Контактор К1 должен иметь вспомогательный нормально закрытый контакт для осуществления электрической блокировки от встречного напряжения. Установка механической блокировки, дополнительно увеличит степень защиты.

  Контактор КМ2  — выбираем с номиналом автоматического выключателя А2. Ставим на 25А. Используем рекомендации как и при выборе КМ1.

  Жгут управления генератором  <УГ>  — будет состоять из 7-ми одножильных, многопроволочных проводов типа ПУГВ сечением от 1 до 1,5мм2:

•Стартер – 1 провод (на Рис.2/3 зеленый цвет). Управляет автоматическим включение стартера. Подключается к штатному плюсовому выводу реле стартера генератора через клеммный переходник. От контакта реле стартера (на фото указан стрелкой) проводник идет на дополнительно установленное промежуточное 12 вольтовое реле с током нагрузки от 30А на нормально разомкнутый контакт. Промежуточное реле управляется через клеммы контроллера 9-10. Пусковые токи на реле стартера достаточно высокие и промежуточное реле возьмет нагрузку на себя.

•Питание – 2-а провода (на Рис.2 оранжевый цвет)  Подключаются к аккумулятору генератора, т.к. контроллер питается от постоянного напряжения 12В. Один провод подключаем  к плюсовой клемме расположенной на реле стартера (указана на фото стрелкой) а второй к массе (минус) генератора расположенной на картере левее.  Можно подключить к любому 12 вольтовому  источнику резервного питания постоянного тока.

Еще один важный момент при работе в ручном режиме переключения!
 При переходе на ручной режим переключения вводами, необходимо  обесточить клемму 19 питания  блока  АВР-1/1. Это полностью отключит автоматику. На схеме Рис.3 этот выключатель обозначен Q1. Можно отключать путем отсоединения  проводника питание от одной из клемм модуля или клеммной колодки.

•Зажигание —  1 провод (на Рис.2/3 голубой цвет). Служит для автоматического управления разрешением работы/глушения генератора. Подключается к проводу (обычно желтого цвета) датчика реле уровня масла (указан стрелкой на фото). Управляется через контакты  24-25 контроллера АВР-1/1 и промежуточное 12VCD реле на 20-30А с нормально-закрытым контактом, на схеме Рис.3 обозначено К2. Для разрешения работы контакт  размыкается. Глушится генератор замыканием контакта.

•Заслонка— 2 провода (на Рис.2/3 желтый цвет). Управляет положением воздушной заслонки карбюратора при пуске генератора через электропривод. Сам привод приобретается отдельно или заказывается у нас.  Достаточно установить автомобильный 2-х проводной привод. Его усилия и хода штока, в большинстве случаев, достаточно для перемещения заслонки в крайние положения. Устанавливается он на раму генератора или кронштейн карбюратора, зависит от модели генератора, и через тягу управляет перемещением заслонки.  На фото привод установлен на раму генератора через переходник и управляет воздушной заслонкой типа «рычаг». Обычно хватает крепежа из комплекта, идущего к электроприводу.  АВР-1/1  самостоятельно  меняет полярность на проводах управления и тем самым   управляет электромотором механизма привода.

Топливный клапан – 1 провод (на Рис.2 фиолетовый цвет). Управляет закрытием подачи топлива на ЭМ клапане  при отключенном генераторе. Сам клапан приобретается отдельно или заказывается у нас. Мощность катушки клапана выбираем минимальную 7-10 Вт. Чем мощней — тем будет сильнее греться, и придется решать задачу снижения температуры.  Плюсовой проводник от электромагнитного клапана подключаем к плюсу батареи генератора. Минусовой проводник от клапана идет через нормально открытый контакт промежуточного реле К2 (см. Рис.3) и  далее на минусовую клемму.
 При включении контроллером команды «разрешения работы» сработает промежуточное реле К2, замкнется нормально открытый контакт   и откроет топливный клапан. Топливо начнет поступать в карбюратор, подготавливая генератор к запуску. После «глушения» генератора, реле К2 отключится, контакты разомкнутся и подача топлива будет перекрыта.

 Устанавливать или нет электромагнитный клапан каждый решает самостоятельно. При автоматическом управление, топливный кран на баке будет открыт постоянно и если игла клапана поплавковой камеры карбюратора не перекроет подачу топлива, произойдет утечка топлива.

  Размещаем перечисленные элементы, кроме клапана и привода,  в электрическом щите  подходящего размера, производим подключение проводников.

  Сам алгоритм работы блока АВР-1/1М описан на странице с техническим описанием.

  Подключаем ввод сети, в точке  ( см. Рис.2)  после автоматического выключателя  А1 и перед выключателем В1, подключаем ввод генератора в точке после выключателя В1.    Устанавливаем перемычку на клеммы 11-12 контроллера АВР-1/1 (См. Рис.3), для установки режима NO_IC6000  и возврата воздушной заслонки после запуска генератора.
  Для перехода в автоматический режим управления  выключаем выключатель нагрузки В1, подаем напряжение питание постоянного тока =12В на модуль АВР-1/1. Для отключения автоматики, проделываем все в обратной последовательности.

 Все! Теперь можно наслаждаться   автоматически управляемым вводом резервного питания генератора, не беспокоится за «скачки» и «просадки» напряжения в сети и генераторе, т.к  АВР-1/1  следит за всем.

   

 Сомневаетесь в правильности выбора ?
 Сложная задача ?
 Нужна техническая консультация ?

 Оставьте запрос, нажав на кнопку КОНСУЛЬТАЦИЯ, и наш технический специалист свяжется с Вами и поможет разобраться.

   

 

 

Автоматический ввод резерва — принцип работы, назначение, схемы

Что такое АВР? Как он применяется в электрике и других сферах? Виды и принципиальные схемы, а также инструкции по подключению далее в статье!

Как расшифровывается АВР в электрике

Автоматический ввод резерва – ситуация, при которой вместо основного источника питания в ход идёт запасной. В дополнение к обычным, но непредсказуемым перебоям в электроснабжении, вызванным погодой или стихийными бедствиями, назревает кризис из-за быстро снижающейся маржи резервов коммунальных услуг. Спрос на электроэнергию растет с каждым годом, но производственные мощности не идут с ним в ногу. Это потому, что на строительство электростанций и линий электропередач уходят годы.

Обычно длительные сроки реализации крупных проектов дополнительно увеличиваются из-за задержек в регулировании и публичного противодействия. Конечным результатом является то, что резервная маржа – избыточная способность коммунальных предприятий производить электроэнергию сверх нормального спроса – значительно снижается. В периоды пикового спроса (например, в жаркие летние дни) с каждым годом все чаще возникают перебои с подачей электроэнергии, перебои в подаче электроэнергии и отключение электроэнергии. Из-за этого потребность домовладельцев и предприятий иметь аварийное резервное питание на месте будет только возрастать.

Генераторы на солнечной, ветряной или водяной энергии могут также использоваться в качестве систем возобновляемой энергии, сокращая использование генераторов. Перебои в подаче электроэнергии происходят как неприятные прерывания, отключения, кратковременные отключения и длительные отключения. Неприятные прерывания, которые обычно варьируются от кратковременных отключений до скачков напряжения, могут помешать доступу к данным в автономном режиме и даже повредить хранимую информацию.

Переходные повышенные напряжения могут повредить физические компоненты системы. Отключения – это вызванные коммунальными предприятиями снижения напряжения на линиях электропередачи для снижения нагрузки на оборудование для коммунальных генераторов. Большинство отключений происходит в летнее время и снижает производительность кондиционера, когда охлаждение наиболее необходимо. Отключение может привести к дальнейшим проблемам с оборудованием.

Что такое автоматический ввод резерва и назначение

Сбои, отключения питания, скачки напряжения и перебои в работе приводят к простоям, и во многих случаях это время простоя – дорогостоящее. Стратегии внедрения резервного питания больше не являются обязательными. Они являются необходимым способом обеспечения надежного питания. Это спокойствие требует тщательно спланированных подходов. Прежде чем выбирать систему, определите общие требования к мощности для элементов, которые будут работать на генераторе. Стартовые ватты также требуют рассмотрения, поскольку они могут колебаться в пределах от 50 до 300 процентов больше, чем требуемые обычные ватты. Элементы, которые излучают тепло, такие как тостеры и духовки, не требуют дополнительных ватт при запуске.

Что такое АВР в генераторе

Это система аварийного питания. Она запускается, если генератор не может обеспечивать энергией сеть из-за перебоя. Даже при одинаковом расходе топлива и маленький генератор, использующий 100-процентную мощность и не имеющий резервной мощности, и больший генератор с 50-процентной мощностью могут закончиться. Может быть полезно увеличить электрические нагрузки при выборе генератора для стиральной машины, кондиционера или водяного насоса, которые используют большие электрические нагрузки, чем телевизоры и радиоприемники. Редкие большие нагрузки могут быть запущены непосредственно с генератора, что устраняет необходимость в инверторе и дополнительной емкости аккумулятора. Во время большого скачка мощности зарядное устройство батареи будет отключено, а мощность генератора и инвертора будет добавлена к общей доступной выходной мощности.

Область применения АВР

В продуктовых магазинах используются сканеры и компьютерные системы управления, и они не могут работать без питания. Другие предприятия всех видов также зависят друг от друга. Системы резервного источника энергии дороги, поэтому одним из наиболее важных факторов при составлении бюджета является определение того, соответствует ли система потребностям бизнеса. Тип выбранной системы резервного копирования во многом зависит от того, какой тип сбоя может повлиять на бизнес и где находится само пространство. В сельской местности питание часто подается от базового единого сервисного участка через воздушные распределительные линии. Эти линии могут быть подвержены дорожно-транспортным происшествиям, которые способны привести к отключению электроэнергии в нескольких местах.

В сфере коммунальных услуг существует множество тенденций, поскольку к поставщикам коммунальных услуг предъявляются все более высокие требования. Технология зависит от хорошего качества и надежной мощности. Все больше отраслей обращают внимание на резервное питание, потому что сегодня просто отсутствие питания – это не единственный ответ, ключом является бесперебойное питание. Меньший генератор может быть подключен к инвертору или зарядному устройству и блоку аккумуляторов для оптимизации эффективности.

Как работает АВР, принцип работы

Кратковременные простои чаще всего возникают, когда в системе распределения коммунальных услуг существует проблема, которая не может быть быстро устранена. Эти отключения длятся менее четырех часов. Хотя большинство компаний могут пережить кратковременное отключение, они также осознают значительную потерю производительности. Долгосрочные перебои в работе превышают половину рабочего дня и приводят к длительному отключению электроэнергии с потерей данных. Дерегулирование становится растущей тенденцией в мире, вызывая неопределенность в поставках и стоимости электроэнергии, которая не была проблемой в прошлом. Наличие надежного источника энергии является сегодня еще более необходимым, поскольку компьютерные системы очень важны для бизнеса.

Как работает АВР в ВРУ

Принцип действия АВР основан на контроле тока в цепи. Это может быть реализовано с помощью любых реле напряжения либо цифровых логических блоков защиты. Но принцип работы всё равно остаётся таким же. Пример:

принципиальная схема работы АВРпринципиальная схема работы АВР

Это однолинейная схема, на которой видно, что мониторинг наличия напряжения осуществляется контактором КМ. Оба автомата QS1 и QS2 должны быть включены, при этом катушка КМ получит питание и будет втянута, а её замыкающий контакт в цепи главного ввода тоже замкнут и размыкающий контакт в цепи запасного ввода разомкнут.

Как работает АВР на подстанциях

Схема работы:

принцип работы автоматического включения резерва линиипринцип работы автоматического включения резерва линии

Виды АВР

Большинство устройств должны быть жестко подключены к сетевой среде. Это открывает больше возможностей для электрических подрядчиков. Блоки, как правило, состоят из одно- или трехфазной системы электропитания, и все они требуют какой-то жесткой проводки системы к электрической инфраструктуре здания. Это станет хорошим рынком для оптимизации работы электрических подрядчиков. Дизельные генераторы могут храниться в помещении более безопасно и в течение более длительного периода времени без ухудшения качества. Если генератор работает на 50 % или более от его мощности, эффективность увеличивается. Агрегаты без аккумуляторных батарей работают непрерывно, что приводит к увеличению затрат на эксплуатацию за киловатт-час электроэнергии. Генератор должен находиться в диапазоне от 120 до 200 процентов от максимальной скорости зарядки аккумулятора от зарядного устройства до аккумулятора.

АВР однофазный с двумя контактами

АВР однофазный с двумя контактамиАВР однофазный с двумя контактами

Светодиодные АВР

Светодиодные АВРСветодиодные АВР

Схема АВР на 3 ввода

Схема АВР на 3 вводаСхема АВР на 3 ввода

АВР одностороннего или двухстороннего действия

АВР одностороннего или двухстороннего действияАВР одностороннего или двухстороннего действия

Тиристорный АВР

Тиристорный АВРТиристорный АВР

Статический АВР

Статический АВРСтатический АВР

АВР с моторным приводом

АВР с моторным приводомАВР с моторным приводом

Стоечный авр

стоечный АВРстоечный АВР

Вакуумный АВР

Вакуумный АВРВакуумный АВР

Принципиальная электрическая схема АВР

Если агрегат имеет верхние клапаны и масляный фильтр, он может удвоить свою эффективность и работать 1500 часов (около шести месяцев по восемь часов в день). Некоторые системы превосходят структурные возможности большинства офисных зданий, и полная поддержка создает трудности при хранении, поэтому в коммерческом офисном здании может быть сложно установить дизельный генератор. Если компания ожидает значительного роста в течение следующих нескольких лет, необходимо изучить структуру здания, чтобы учесть этот рост и определить его потребности.

Скоростной, трёхфазный и дизельные агрегаты на 600 об / мин, которые потребляют меньше топлива, чем модели с более низкой скоростью вращения (1800 об / мин), работают дольше, потребляют меньше топлива и имеют четыре полюса вместо двух. Микропроцессорный центр управления контролирует постоянное напряжение в сети. Как только напряжение упадет ниже заданного значения, двигатель генератора запустится автоматически. Когда питание восстанавливается, генератор передает электроэнергию обратно в электроэнергию. Растет потребность в более надежных системах. Важно найти централизованную систему для подачи электроэнергии, когда в противном случае она становится недоступной. Все больше и больше людей находят способы оптимизировать эффективность в своих домах или офисах.

Схемы АВР

Если аварийное резервное копирование требуется в течение коротких периодов или только в выходные дни, может быть предпочтительным бензиновый или пропановый генератор. Все более популярная система – это тихоходный дизель-генератор мощностью 10 кВт промышленного класса, обеспечивающий круглосуточную работу.

При подключении к 275-галлонному резервуару для отопления дома он может работать без перерыва в течение полутора недель при полной нагрузке или трех недель при половинной нагрузке. Большинство генераторов настроены на подачу резервного источника бесперебойного питания сразу же после сбоя питания.

Наиболее распространенным источником энергии для жилых помещений является газ, пропан, природный газ или дизельный генератор. Дизельные агрегаты, которые стоят дороже, как правило, являются наиболее эффективными.

Схема АВР на контакторах

Схема АВР на контакторахСхема АВР на контакторах

Схема АВР для генератора с автозапуском

Схема АВР для генератора с автозапускомСхема АВР для генератора с автозапуском

Схема АВР на пускателях

Схема АВР на пускателяхСхема АВР на пускателях

Схема ГРЩ с АВР

Схема ГРЩ с АВРСхема ГРЩ с АВР

Схема ВРУ с АВР на 2 ввода

Схема ВРУ с АВР на 2 вводаСхема ВРУ с АВР на 2 ввода

Схема АВР с реле контроля фаз

Схема АВР с реле контроля фазСхема АВР с реле контроля фаз

Однолинейная схема АВР

Однолинейная схема АВРОднолинейная схема АВР

Схема АВР на автоматах с электроприводом

Схема АВР на автоматах с электроприводомСхема АВР на автоматах с электроприводом

Устройство АВР

Более эффективные приборы также могут быть использованы, включая флуоресцентное освещение и пропановый холодильник. Как правило, требуется не менее четырех-шести параллельных блоков 6-вольтовых батарей, чтобы поглотить мощность либо на зарядное устройство, либо на инвертор.

Это обеспечивает достаточное накопление энергии. Чтобы рассчитать емкость аккумулятора для накопления энергии, возьмите 25 процентов мощности в ваттах (вольт-ампер) в нормальных условиях и 50 процентов в аварийных условиях. Максимальная безопасная скорость зарядки для предотвращения перегрева и повреждения аккумулятора использует уровень заряда / 10. Спрос на системы резервного питания растет.

Меньше электростанций строится из-за экологических проблем или противодействия сообщества. Существует растущая потребность в аварийном резервном питании. Тенденции в области аварийного резервного питания становятся все более убедительными.

Как подключить АВР

Если вы не уверены, какой тип батареи нужен, вы можете узнать это, найдя текущую батарею. Традиционные системы домашней безопасности используют большую одиночную батарею 12 В на панели управления, которая обычно находится в металлической коробке, спрятанной в шкафу. Более новые системы и интеллектуальные системы безопасности имеют специальный аккумулятор, который расположен внутри клавиатуры. Во многих других компонентах и датчиках используются типичные бытовые батареи, такие как батарейки типа АА или плоские кроны.

После того, как вы нашли аккумулятор, который необходимо заменить, если вы не можете распознать его, извлеките его и отнесите с собой в специализированный магазин аккумуляторов. В противном случае оставьте его на месте, пока не получите новую батарею. В большинстве случаев вы можете снять пластиковое покрытие, чтобы просмотреть батареи на беспроводных устройствах. Иногда винт необходимо удалить. Если вы не знаете, как получить доступ к батареям, обратитесь за помощью в службу безопасности.

Особенно в новых системах батареи легко отсоединять и заменять. Убедитесь, что вы точно помните, как установлены батареи, чтобы вы могли подключить их таким же образом. В панелях управления могут быть провода, подключенные к батарее, которые необходимо будет подключить к новой.

Подключение АВР к генератору с автозапуском

Функция запуска генератора работает от аккумулятора. Зарядное устройство держит аккумулятор генератора заряженным, обеспечивая его точным «плавающим» напряжением. Если плавающее напряжение очень низкое, батарея останется недозаряженной. Если плавающее напряжение очень высокое, это сократит срок службы батареи. Зарядные устройства обычно изготавливаются из нержавеющей стали для предотвращения коррозии. Они также полностью автоматические и не требуют каких-либо настроек или каких-либо настроек.

Выходное напряжение постоянного тока зарядного устройства установлено на уровне 2,33 В на элемент, что является точным напряжением плавания для свинцово-кислотных аккумуляторов. Зарядное устройство аккумулятора имеет изолированный выход постоянного напряжения, которое мешает нормальной работе генератора.

Электрический запуск и выключение. Панели управления с автоматическим пуском автоматически запускают генератор при отключении электроэнергии, контролируют генератор во время работы и автоматически выключают агрегат, когда он больше не требуется.

Из чего состоит АВР

Система бесперебойного питания обычно основана на аккумуляторе батареи, связанном с инверторами для преобразования переменного напряжения в постоянное и обратно в переменный ток для питания критически важного оборудования. Эта система защищает специализированное оборудование от повреждения в результате кратковременных отключений. Резервная мощность ограничена размером генератора, батарей, инвертора или другой резервной системы питания. Многие дома и крупные компании сегодня требуют бесперебойного электропитания (ИБП), особенно для того, чтобы компьютеры оставались в рабочем состоянии.

Для генерации обычного 120-вольтового напряжения в экстренном случае у вас есть два варианта:

  • Вы можете купить двигатель-генератор с питанием. Двигатель может сжигать бензин, дизель или пропан.
  • Вы можете купить инвертор и питать его от автомобильного аккумулятора или аккумулятора двойного цикла, который вы приобрели для инвертора.

Для того чтобы выбрать правильный аварийный источник питания и размер его правильно, вы должны понять кое-что о требованиях к мощности устройств, которые вы планируете работать.

Базовая единица измерения мощности – это мощность, а при использовании аварийного источника питания важны две номинальные мощности: постоянная мощность и импульсная мощность. Обычная лампа накаливания на 60 Вт требует, как и следовало ожидать, 60 Вт, и она требует мощности как в момент, когда вы включаете ее, так и во время работы. Мотору потолочного вентилятора, с другой стороны, может потребоваться 150 ватт, чтобы работа началась, и 75 ватт в то время, как он работает. Эта дополнительная мощность для запуска двигателя называется импульсной мощностью и типична для всего, что содержит электродвигатель. Вот обычные значения мощности некоторых устройств в типичном домашнем хозяйстве:

УстройствоТипичная мощностьИмпульсная мощность
Лампочка60 ВтВсплеск 60 Вт
Вентилятор75 ВтИмпульс 150 Вт
Маленький черный / белый телевизор100 ваттИмпульс 150 Вт
Цветной телевизор300 ВтСкачок 400 Вт
Домашний компьютер и монитор400 ВтВсплеск 600 Вт
Электрическое одеяло400 ВтСкачок 400 Вт
Микроволновая печь750 Вт1000 ватт
Печь вентилятора750 Вт1500 Вт всплеск
Холодильник1200 Вт2400 Вт всплеск
Скважинный насос2400 Вт3600 Вт всплеск
Электрический водонагреватель4500 ВтСкачок 4500 Вт
Весь дом А / С или тепловым насосом15000 ВтВсплеск 30000 Вт

Из этой таблицы видно, что тепловой насос или кондиционер для всего дома имеет огромный аппетит к мощности. Если в вашем доме есть тепловой насос и вы хотите иметь возможность поддерживать тепло в доме во время сбоя в электроснабжении зимой, то вам нужно либо купить очень большой генератор (который стоит очень много), либо вам потребуется резервная копия, или источники тепла, такие как дерево или пропан.

Протокол проверки работоспособности системы АВР

Генератор с одним ископаемым топливом и автоматическим переключателем, который контролирует нормальное электропитание и передает мощность, относится к самым популярным агрегатам. Эта система используется для питания систем безопасности жизнедеятельности и других элементов здания, которые могут выдерживать освещение, кондиционирование воздуха и другие перебои.

Время срабатывания АВР

Поскольку инвертор генератора работает непрерывно, случайные скачки напряжения не вызывают конфликтов. Генератор, когда он подключен к сети, справится со всеми скачками напряжения.

При выключенном генераторе инвертор круглосуточно питает переменный ток от батарей. Во всех системах резервного копирования необходимо использовать переключатель (автоматический или ручной), чтобы предотвратить обратную подачу питания в линию. Этот коммутатор получает питание от генератора или энергокомпании, но он передает только один источник нагрузки через инвертор.

Инвертор должен быть подключен к сети и питаться от батареи, чтобы выдерживать любые нагрузки переменного тока в случае сбоя питания. Многие инверторы предлагают функции автоматического запуска и остановки генератора для обеспечения дальнейшей автоматизации системы.

ГОСТы и нормы

ГОСТ Р 51732-2001 — Устройства вводно-распределительные для жилых и общественных зданий. Общие технические условия. http://docs.cntd.ru/document/1200008445.

ГОСТ Р 53471-2009 Генераторы трехфазные синхронные мощностью свыше 100 кВт. Общие технические условия. http://docs.cntd.ru/document/1200080206.

ГОСТ 5616-89 Генераторы и генераторы-двигатели электрические гидротурбинные. Общие технические условия. https://allgosts.ru/29/160/gost_5616-89.

ГОСТ 304-82 Генераторы сварочные. Общие технические условия. https://allgosts.ru/29/160/gost_304-82.

ГОСТ 29322-2014 (IEC 60038:2009) Напряжения стандартные. http://docs.cntd.ru/document/1200115397.

ГОСТ 13109-97 Электрическая энергия. Совместимость технических средств электромагнитная. Нормы качества электрической энергии в системах электроснабжения общего назначения. http://docs.cntd.ru/document/1200006034.

Схема АВР. АВР (автоматический ввод резерва) для генератора

В нормальном режиме электроснабжения энергия предоставляется энергокомпанией и подводится к месту ее использования. Когда основной ее источник перестает работать, мощность от второго сетевого ввода или используемого резервного генератора должна вручную или автоматически подаваться к нагрузкам, для чего служит схема АВР (автоматического ввода резерва). Ее основной задачей является перераспределение мощности от энергосистемы на резервный источник питания.

III-я категория надежности электроснабжения

Как известно, энергоснабжающие компании делят всех своих потребителей, т. е. тех лиц (юридических и физических), с которыми они заключают договоры на поставку электроэнергии, на три категории по степени надежности электроснабжения. Самая низкая надежность у 3-й категории. Такому клиенту энергетики предоставляют всего один трехфазный ввод напряжения 6 или 10 кВ (иногда и 400 В) или однофазный ввод 230 В от одной питающей подстанции, но и стоимость присоединения нагрузок к сети по этой категории минимальная – достаточно установить простую однотрансформаторную КТП и соединить ее с ближайшей ВЛ электропередачи.

Нужна ли для III-й категории схема АВР?

ПУЭ допускает возможность питания по такой схеме, если энергетики гарантируют восстановление питания после аварий за время не более суток. А если это не так? Тогда нужет резервный источник электропитания, в качестве которого обычно выступает бензоэлектрический агрегат или дизель-генератор. В прежние времена потребители вручную подключали свои нагрузки к ним и запускали их в работу. Но по мере развития автоматики этих изделий возникла возможность выполнения их пуска без участия человека.

А раз можно пускать дизель-генератор автоматически, то точно так же можно и подключить к нему нагрузки потребителя. Так и возникла современная концепция двухвводного АВР, электрическая схема которого, приведенная ниже, уже становится стандартом электроснабжения частного дома.

II-я категория: нужен ли ей АВР

Если потребитель заказывает два сетевых ввода электропитания, то он переходит уже в следующую категорию — вторую. В этом случае энергетики, как правило, требуют от клиентов оплатить строительство двухтрансформаторной подстанции. В простейшем варианте она содержит две секции шин (это просто алюминиевые или в лучшем случае медные полосы) высокого напряжения со своими вводными выключателями, к каждой из которых присоединяется только один из вводов высокого напряжения (6 или 10 кВ). Между секциями расположен так называемый секционный выключатель. Если он разомкнут, то каждый высоковольтный ввод может питать только один трансформатор (как правило, в работе находится только один из двух, второй находится в резерве – и это также типовое требование энергетиков). При пропадании напряжения на одном из вводов, электрик потребителя может вручную включить секционный выключатель и подать нагрузку на постоянно работающий трансформатор с другого высоковольтного ввода.

Такие потребители, вообще-то, не нуждаются в наличии АВР. Однако в последнее десятилетие энергетики зачастую предлагают им устанавливать их в типовых двухтрансформаторных подстанциях на стороне низкого напряжения. Такой щит АВР имеет два ввода от обмоток низкого напряжения разных трансформаторов (они оба должны находиться под напряжением, но нагружен в любой момент времени только один из них) и один выход на шины низкого напряжения, к которым подключены все нагрузки.

I-я категория – АВР обязателен

А вот если потребителя в принципе не устраивает временная задержка на ручное переключение вводов, то он вынужден в обязательном порядке применять АВР и переходить в следующую категорию надежности электроснабжения – первую. В простейшем варианте принципиальная схема АВР может содержать два ввода от тех же двух секций высоковольных шин подстанции и блок включения секционного выключателя (обычно вакуумного). Если напряжение пропадает на питающем вводе, то автоматика отключает его вводной выключатель и включает секционный. После этого на объединенные шины напряжение поступает уже со второго ввода. АВР на два ввода в этом случае может быть выполнен и на стороне низкого напряжения подстанции, как было описано выше.

Но из потребителей I-й категории ПУЭ выделяет так называемую особую группу, входящим в которую недостаточно двух сетевых вводов электропитания, а обязательно нужен еще и третий резервный ввод, выполняемый обычно от дизель-генератора. В этом случае необходим АВР на 3 ввода. Схема его выполняется на низком напряжении.

Как работает устройство АВР с генераторным вводом

В последнее время на рынке появилось много устройств автоматического резервирования, имеющих управляющий микропроцессорный контроллер. Большой популярностью в этом плане пользуется управлющие реле-контроллеры серии Easy производства фирмы Moeller. Анализируя сигналы датчиков напряжения, микроконтроллер обнаруживает сбой питания и инициирует процедуру запуска двигателя генератора (обычно синхронного). Как только он достигает номинального напряжения и частоты система управления переключает на питание от него нагрузки потребителя. С точки зрения электротехники схема подключения АВР для ответственных и мощных нагрузок представляет собой довольно сложную задачу, поскольку неизбежные временные задержки и другие технические сложности затрудняют мгновенное получение резервного питания.

Контроль частоты и напряжения

Одной из основных функций устройства АВР является обнаружение падения напряжения или полного исчезновения основного источника питания. Как правило, все фазы питающей сети контролируются на стороне посредством реле минимального напряжения (реле контроля фаз). Точка сбоя определяется по падению напряжения ниже минимально допустимого уровня на любой из фаз. Информация о напряжении и частоте передается в щит АВР, где определяется возможность продолжения питания нагрузок. Допустимый минимум напряжения и частоты должен быть обязательно преодолен перед переключением нагрузок на питание от резервного генератора, мощность которого должна его обеспечивать.

Основная временная задержка

Схема АВР обычно имеет возможность широкой регулировки времени задержки ее срабатывания. Это является необходимой функцией для возможности купирования неоправданных отключений от источников основного электропитания при кратковременных его нарушениях. Наиболее превалирующая временная задержка перекрывает любые кратковременные отключения, чтобы не вызывать ненужных запусков приводных двигателей генераторов и переключений на них нагрузок. Эта задержка находится в диапазоне от 0 до 6 секунд, причем одна секунда является наиболее распространённым вариантом. Она должна быть короткой, но достаточной для подключения к резервным источникам питания нагрузок потребителей. Многие компании сегодня покупают мощные источники бесперебойного питания на аккумуляторных батареях, обеспечивающие минимальное время задержки подключения.

Дополнительные временные задержки

После восстановления основного питания, некоторая временная задержка необходима, чтобы убедиться в достаточной стабильности нагрузки для ее отключения от резервного питания. Как правило, она составляет от нуля до тридцати минут. АВР для генератора должна автоматически обойти эту временную задержку в возвращении к основному источнику, если резервный сбоит, а основной снова работает нормально.

Третья наиболее общая временная задержка включает в себя период остывания двигателя. На его протяжении система управления дизель-генератора контролирует разгруженный двигатель вплоть до его останова.

В большинстве случаев обычно желательно переключать нагрузки на резервный генератор, как только достигнуты соответствующие уровни напряжения и частоты. Однако в некоторых ситуациях конечные потребители хотят последовательности переключений различных нагрузок на резервный генератор. Когда это требуется, выполняется несколько схем АВР для генератора, срабатывающих с индивидуальными временными задержками, так что нагрузки могут быть подключены к генератору в любом желаемом порядке.

Исполнительные аппараты схем ввода резерва

Конечным результатом работы рассматриваемого класса устройств является коммутация электрических цепей, их переключение с основного ввода на резервный. Как было отмечено выше, в электроподстанциях схема АВР может быть реализована как на стороне высшего, так и низшего напряжения. В первом случае ее исполнительными элементами служат штатные высоковольтные выключатели. Во втором случае, к которому относится и переключение нагрузок на генераторный ввод, коммутация осуществляется низковольтными устройствами.

Они могут либо быть в составе оборудования щита (панели) АВР, либо могут быть внешними по отношению к нему и являться частью общей схемы электроснабжения нагрузок. В первом случае возможно использование магнитных пускателей – оно применяется в устройствах резервирования для непромышленных потребителей при мощности их нагрузок до нескольких десятков кВт. При более высоких мощностях применяют АВР на контакторах. Схема принципиальная устройства в обоих случаях одинакова.

Внешними низковольтными устройствами схем ввода резерва являются силовые автоматические выключатели с электромагнитными приводами. Функция собственно АВР-устройства сводится в этом случае к формированию и выдаче на них соответствующих сигналов включения/отключения.

Типовой блок АВР на 3 ввода. Схема и алгоритм работы

Он предназначен для реализации непрерывного питания нагрузок напряжением 0,4 кВ от трех источников электропитания: двух трехфазных сетевых вводов и трехфазного ввода дизель-генератора. Исполнительными аппаратами являются штатные автоматические выключатели Q1, Q2 и Q3 каждого из вводов, защищающие нагрузки 1-й категории надежности электроснабжения.

Алгоритм работы блока выглядит следующим образом:

1. На основном вводе есть напряжение. Тогда Q1 включен, а Q2 и Q3 отключены.

2. На основном вводе напряжение отсутствует, а на резервном оно есть. Тогда Q2 включен, а Q1 и Q3 отключены.

3. На основном и резервном вводах нет напряжения. Тогда Q3 включен, а Q1 и Q2 отключены.

основные способы и схемы подключения

Автор: Алексей Пархоменко

эксперт категории «Ручной и электроинструмент»

Генератор – это продуманное и надежное приспособление, обладающее уникальной способностью – перерабатывать бензиновое топливо (также газ или солярку) в электричество. Эта возможность приходится как нельзя кстати в современном доме, напичканном электрическими приборами.

Без их полноценного функционирования мы уже не представляем даже несколько часов своей жизни. Не менее важна она и на предприятиях, где промедление в работе электрооборудования оборачивается большими денежными тратами.

Сегодня в домах большой популярностью пользуются генераторы с автоматическим подключением. Благодаря своей практичности и высокому комфорту при использовании, они становятся все более востребованными среди владельцев частных домов.

Посудите сами: вы находитесь далеко от своего дома, электричество в сети пропадает, а ваш генератор самостоятельно включает резерв. И никаких потекших холодильников, и выключенного топления.

Тип запуска

Современные генераторы – большой класс агрегатов, отличающихся набором технических характеристик, видом топлива, на котором они работают и разными функциями. Также одним из важных элементов, определяющих удобство работы с агрегатом, является тип запуска. На сегодня существует несколько типов запуска генераторов, которые я подробно опишу ниже.

  1. Ручной тип запуска. Выполняется путем продергивания пускового троса. То есть, вы самостоятельно приводите в работу устройство при возникновении неисправностей в центральной электрической сети. Этот запуск хорош тем, что всегда готов к работе, но удобный он только для небольших генов. Чем тяжелее и мощнее аппарат, тем больше силы нужно приложить, чтобы продернуть зажигание, поскольку возникает сопротивление при запуске. Помимо того, на холоде и морозе, с первого раза вы никогда не запустите генератор, хорошо, если получится с пятого-шестого.
  2. Электростарт. Этот тип запуска на порядок выше. Запуск генератора с электростартером выполняется простым поворотом ключа в замке зажигания. Как в автомобиле – одно движение, и все зажужжало и заработало. Низкие температуры на эту функцию никак не влияют, можно легко запускать и в мороз. С таким поворотом ключа справляется и женщина, и пожилой человек.
  3. Дистанционный запуск считается довольно комфортным. Как правило, это брелок типа того, который включает и отключает сигнализацию на автомобиле. При отключении электричества в стационарной сети, вы уже не должны выходить из дома и и идти в темный подвал к генератору, а можете просто нажать кнопку на брелоке, и дом осветится. Удобно, но возможно только при наличии в гене электростартера.

Простая схема генератора постоянного тока с использованием транзистора

Многие из нас, кто работал с Аналоговые схемы , часто сталкивались с терминами источник напряжения и источник тока в схемотехнике. Хотя все, что обеспечивает постоянное напряжение, например, простой USB-выход на 5 В или адаптер на 12 В, можно рассматривать как источник напряжения, термин «источник тока» всегда остается загадкой. И многие схемы, особенно те, которые включают в себя операционные усилители или схемы переключения, потребуют от вас использования источника постоянного тока, чтобы проект работал.Итак, что подразумевается под текущим источником? Как это будет работать и зачем это нужно?

В этом руководстве мы найдем ответы на эти вопросы, а также построим и протестируем простую схему источника постоянного тока с использованием транзистора . Схема, используемая в этом руководстве, сможет подавать на вашу нагрузку постоянный ток 100 мА , но вы можете изменить его с помощью потенциометра в соответствии с вашими проектными требованиями. Интересно верно! Итак, приступим.

Что такое источник постоянного тока (CC)?

Обычно, когда блок питания управляет нагрузкой, может быть два возможных режима работы: один — , режим постоянного напряжения (CV), , другой — , постоянный ток (CC), , , режим .

В режиме CV источник питания делает выходное напряжение постоянным и изменяет выходной ток в соответствии с требованиями сопротивления нагрузки. Лучшим примером будет ваш USB-порт 5 В, где выходное напряжение зафиксировано на уровне 5 В, но в зависимости от нагрузки ток будет меняться.Если вы подключите маленький светодиод, он будет потреблять меньше тока, а если вы подключите больший, он будет потреблять больше тока, но напряжение на светодиоде всегда будет 5 В.

В режиме CC идеальный источник тока Источник питания обеспечивает постоянный выходной ток и изменяет выходное напряжение в зависимости от сопротивления нагрузки. Примером этого может служить зарядное устройство 12 В в режиме CC, где ток заряда будет фиксироваться в зависимости от напряжения. В случае, если у вас батарея 10.5 В, если вы подключите его к зарядному устройству на 1 А 12 В, выходной ток зарядного устройства всегда будет 1 А, но выходное напряжение будет изменяться для поддержания этого зарядного тока 1 А. Итак, здесь требуются Цепи постоянного тока , другим примером может быть схема драйвера светодиода постоянного тока, где ток через светодиод должен быть постоянным.

Простой источник постоянного тока 100 мА на транзисторе

В этом проекте мы построим простой генератор с транзисторным источником постоянного тока , используя всего 4 компонента.Это очень недорогая схема, которая может обеспечить источник постоянного тока 100 мА , используя источник питания 5 В. Он также будет иметь потенциометр для управления токовым выходом в диапазоне от 1 до 100 мА. Он будет обеспечивать постоянный ток даже при изменении сопротивления нагрузки. Это будет полезно использовать, когда в цепи требуется постоянный ток без колебаний. Ранее мы также построили другой тип схемы источника тока, называемой схемой токового насоса Хауленда, и схемой текущего зеркала, вы также можете взглянуть на них, если хотите.Теперь давайте посмотрим на материалы, необходимые для этого проекта.

Необходимые материалы:

  1. TL431
  2. BC547
  3. 2к резистор 1%
  4. Переменный резистор 10к
  5. 22R 1% резистор
  6. Адаптер 5 В постоянного тока или блок питания.
  7. Различное сопротивление нагрузке в соответствии с требованиями.
  8. Макетная плата и провода подключения
  9. Мультиметр для тестирования.

Как указано в вышеприведенной спецификации, схема состоит только из двух активных компонентов, TL431 и BC547.TL431 является регулятором шунта, который использует ссылку 2.5V напряжения. Он поддерживает катодный ток 1–100 мА для операций, связанных с шунтом. Корпус этого компонента такой же, как и у обычного сквозного транзистора. Остальные компоненты являются пассивными. Для точной выходной мощности резисторы должны иметь допуск 1%.

Схема источника постоянного тока:

Принципиальная схема источника постоянного тока на транзисторе проекта представлена ​​ниже.

Simple Constant Current Generator Circuit Diagram

Вышеупомянутая цепь полностью подключена к линии 5В. Выходная нагрузка должна быть подключена между выходом и заземлением. На приведенной выше схеме BC547 работает как транзистор прохода , подробнее об этом будет сказано в рабочем разделе.

Важные расчеты для цепи постоянного тока

Выходной ток вышеуказанной схемы зависит от приведенной ниже формулы, которую можно использовать для расчета выходного тока цепи источника постоянного тока.

I  out =  V  ref  / R4 + I  KA  

Для этой цепи

I  out = 100 мА  (.100A)
V  ref =  2,5 В
I  KA  = 1 мА (0,001 A) [Примечание: минимальный ток смещения] 

Итак,

I  выход  = V  ref  / R4 + I  KA 
.100 = 2,5 / R4 + .001
0,100 - 0,001 = 2,5 / R4
R4 = 2,5 / 0,099
R4 = 25 Ом (приблизительно) 

Доступное наименьшее значение приближения R4 составляет 22 Ом. Теперь переменный резистор или значение потенциометра можно найти по той же формуле.Раньше максимальный доступный ток 100 мА достигался резистором 22 Ом. На этот раз потенциометр снизит выходной ток до самого низкого уровня.

Поскольку минимальный катодный ток, необходимый для TL431, составляет 1 мА, хорошо предположить, что минимальный ток будет 2 мА. Следовательно, используя ту же формулу,

I  выход  = V  ref  / VR  1  + I  KA 
0,002 = 2,5 / VR  1  + 0,001
0,002 - 0,001 = 2,5 / VR  1 
.001 = 2,5 / VR  1 
VR  1  = 2,5 К 

Таким образом, для управления током можно использовать потенциометр 2.2k с наименьшим приближающим значением. Последний расчет для — рассчитать значение резистора смещения R1, используя приведенные ниже формулы.

R1 = V  вход  / (I  выход  / hFE + I  KA ) 

Для этой цепи

Io  ut  = 100 мА (0,100 А)
V  в  = 5 В
hFE = 100 (максимум)
IKA = 1 мА (0,001 А) [Примечание: минимальный ток смещения]
R1 = V  вход  / (I  выход  / hFE + I  KA )
R1 = 5 / (.100/100 + 0,001)
R1 = 2,5 кОм 

Таким образом, доступное наименьшее значение R1 приближающего устройства может быть 2,2 кОм.

Работа цепи постоянного тока:

Транзистор BC547 действует как транзистор прохода , который управляется резистором смещения R1 и шунтирующим стабилизатором TL431. База транзистора фактически подключена к делителю тока . Эта схема делителя тока сделана с использованием резистора смещения и шунтирующего регулятора.TL431 регулирует постоянный ток путем измерения опорного напряжения и контролируя проход транзистор BC547. Схема построена на макете, как показано ниже.

Проверка цепи источника постоянного тока

Когда плата была готова, я включил свою схему, используя источник постоянного тока 5 В, и начал ее тестирование. Я использовал разные нагрузки (разные значения резистора) на выходной стороне и следил, чтобы ток всегда оставался постоянным.Я использовал свой мультиметр для измерения выходного тока моей схемы, и он всегда был около 100 мА, как показано на рисунке ниже

.

Полное видео тестирования можно найти внизу этой страницы. Если у вас есть какие-либо вопросы, оставьте их в разделе комментариев ниже или используйте форумы для других технических вопросов.

Применение схем источника постоянного тока

В системе светодиодного освещения требуется источник постоянного тока для операций, связанных с управлением светодиодом.Как и в портативных устройствах, в схемах зарядки аккумуляторов используются источники постоянного тока. Небольшой список приложений, в которых используется источник постоянного тока, приведен ниже

.

  • Система усилителя.
  • Солнечные системы
  • Электромагниты
  • Система двигателя для постоянной скорости.
  • Датчики на эффекте Холла.
  • Цепи стабилизатора смещения стабилитронов.

.Схема подключения

— Соберите все полезные схемы для вас.

Эта удаленная сигнализация для цепи дымового извещателя является примечанием к применению с интегрированной веб-страницы Maxim. Здесь эта схема использует микросхему компаратора MAX921, она обнаруживает увеличение тока питания, вызванное активацией чувствительного устройства.

Принципиальная схема

Строительные и рабочие

Основной частью этой схемы является микросхема MAX921, которая будет определять увеличение тока питания из-за активации детектора.Многие извещатели потребляют низкий ток в режиме мониторинга и большой ток в активном состоянии, эта разница обнаруживается компаратором max921 и выдает удаленный выход.

Здесь 9-вольтовый аккумуляторный источник питает детектор дыма и схему компаратора.

Вы можете получить техническое описание микросхемы MAX921 здесь.

Отрицательный генератор опорного напряжения цепи разработаны с помощью простого инвертора заряда насоса и положительного выходного напряжения ссылки. В этой схеме мы не используем внешние резисторы или источник отрицательного напряжения.Мы можем использовать этот отрицательный генератор опорного напряжения на небольшом пространстве и дизайне низкой цепи питания.

Эта схема использует MAX6125 (Low-Выпадение, 3-Терминал Источники опорное напряжения) и MAX828 (переключаемые конденсаторы Инвертор напряжения) от максимы. Для полноценной работы этой схемы требуется всего три внешних конденсатора.

Схема подключения

Необходимые компоненты

J1 Винт_Клемма_01x02 TerminalBlock: TerminalBlock_Altech_AK300-2_P5.00 мм
J2 Винт_Клемма_01x02 TerminalBlock: TerminalBlock_Altech_AK300-2_P5.00mm
IC1 MAX6125 Пакет_TO_SOT_SMD: SOT-23
IC2 MAX828 Пакет_TO_SOT_SMD: SOT-23-5
C1 3,3 мкФ Конденсатор_SMD: C_0805_2012 Метрический
C2 3,3 мкФ Конденсатор_SMD: C_0805_2012 Метрический
C3 3.3 мкФ Конденсатор_SMD: C_0805_2012 Метрический

Строительство и работа

Использование Negative файлов опорного напряжения генератора Gerber для печатной платы, сборки компонентов SMD, как указано на схеме. Здесь нет индуктора и переменных резисторов, поэтому эти элементы схемы занимают очень мало места. Первый ИК дает опорное напряжение к коммутируемому конденсатору инвертора IC2 от Vin. В зависимости от входного сигнала Источник питания IC2 обеспечивает до -5 В качестве отрицательного опорного напряжения.

Печатная плата

Отрицательных опорное напряжение генератор PCB Gerber.

В наши дни розничные потребители очень беспокоятся о качестве воздуха в своем доме. Некоторые кондиционеры разработаны, чтобы оправдать их ожидания за счет использования датчиков качества воздуха. Некоторые датчики качества воздуха не предназначены для использования в помещениях, здесь Renesas поставляется с уникальным продуктом, который называется Датчик качества воздуха в помещении Renesas ZMOD4410.

Модуль газового датчика ZMOD4410 разработан для определения общего содержания летучих органических соединений (TVOC), оценки CO2 и мониторинга качества воздуха в помещении (IAQ) в различных случаях использования на основе запаха.

ZMOD4410

Контакт ZMOD4410 Детали

ZMOD4410 поставляется в корпусе из 12 модулей LGA (3,0 × 3,0 × 0,7 мм) и занимает очень мало места. Предоставленная прошивка обеспечивает различные функции ZMOD4410, основанные на традиционных алгоритмах и алгоритмах машинного обучения со встроенным искусственным интеллектом (AI).

ZMOD4410 Архитектура

Имеет нагревательные и передающие элементы со схемой управления системой. Он имеет встроенный АЦП, память и драйвер I2C.Этот датчик определяет следующие параметры газа. Диапазон измерения сопротивления — этанол в воздухе в частях на миллион, диапазон измерений, указанный в IAQ — этанол в воздухе для IAQ 1-го и 2-го поколений в частях на миллиард. Диапазон влажности без конденсации в% относительной влажности. См. Техническое описание Renesas ZMOD4410 для получения более подробной информации.

Renesas ZMOD4410: функции и приложения

  • Выход датчика на основе алгоритма машинного обучения AI.
  • Интерфейс I2C: до 400 кГц.
  • Встроенная энергонезависимая память (NVM) для данных модуля.
  • Напряжение питания: 1,7–3,6 В, стойкость к силоксану.
  • Корпус: 12-LGA и сборочный размер: 3,0 × 3,0 × 0,7 мм.
  • Лучше всего подходит для мониторинга воздуха в помещении.
  • Следите за здоровыми условиями и комфортом дома, офиса, личного пространства и ванной комнаты.
  • Обнаружение опасных материалов и вредных для здоровья условий (например, испарения строительных материалов).
  • Автоматизация на основе качества окружающего воздуха в помещении (HVAC, воздухоочистители, термостаты, кухонные вытяжки и т. Д.)).
  • См. Техническое описание Renesas ZMOD4410 для получения дополнительных сведений о конструкции для конкретного приложения.

Схема драйвера белого светодиода

с использованием CAT3200-5, предназначенная для работы с литий-ионной батареей и компактными источниками питания. CAT3200-5 — это повышающие преобразователи с переключаемыми конденсаторами, которые обеспечивают регулируемое выходное напряжение с низким уровнем шума. CAT3200-5 выдает фиксированное регулируемое выходное напряжение 5 В.

CAT3200-5 от on semiconductor выпускается в 6-выводном корпусе SOT23 толщиной не более 1 мм. Максимальные выходные нагрузки до 100 мА могут поддерживаться в широком диапазоне входных напряжений питания (2.От 7 В до 4,5 В), что делает устройство идеальным для приложений с батарейным питанием. Эта ИС лучше всего подходит для применения в драйверах белых светодиодов и повышающих преобразователях 3–5 В.

Принципиальная схема

Строительство и работа

Все компоненты, используемые в этой схеме, являются SMD-компонентами, CAT3200-5 требует для своей работы только три внешних конденсатора (1 мкФ). Пять белых светодиодов подключены к выходному терминалу с отдельными резисторами 100 Ом.

Когда мы подаем смещение от литий-ионной батареи 3 В, CAT3200-5 использует переключаемый насос заряда конденсатора для повышения напряжения на IN до регулируемого выходного напряжения.Регулирование достигается путем измерения выходного напряжения через внутренний резистивный делитель (CAT3200-5) и модуляции выходного тока накачки заряда на основе сигнала ошибки. Зарядка и разряд летающего конденсатора продолжается с частотой холостого хода обычно 2 МГц. Обратитесь к таблице данных для получения более подробной информации о конструкции.

Печатная плата

Драйвер белого светодиода

с использованием файлов Gerber CAT32 PCB.

.

Ток короткого замыкания генератора | GoHz.com

Допущение: Генератор Xd » = 0,20, Xs = 1,5 о.е.
Итак, вообще говоря, если мы говорим о неисправности шины на клеммах генератора, мы говорим, что ток повреждения = 1 (напряжение pu) /0.20= 5 pu. Аналогично ток короткого замыкания примерно через 5 секунд = 1 / (1,5) = 0,66 о.е.

1) Проблема заключается в том, что предполагаемое напряжение 1 о.е. является напряжением на клеммах холостого хода генератора. Таким образом, внутреннее напряжение, генерируемое машиной, равно 1+ (ток якоря (вектор) * реактивное сопротивление (вектор)).Это значение в 1,5–2 раза превышает напряжение на клеммах. Все реактивные сопротивления, такие как субпереходные, переходные и синхронные, соответствуют внутреннему напряжению машины. Таким образом, это неправильное предположение о вычислении тока короткого замыкания, предполагающее, что напряжение 1 о.е. является допустимым (определенно не точным), поскольку внутреннее напряжение заметно выше, чем напряжение на клеммах. Например, 1,5 / 0,20 = 7,5 о.е. на 30% выше, чем ток повреждения, рассчитанный выше.

2) В популярном программном пакете, таком как Aspen, в диалоговом окне параметров генератора есть поле, называемое внутренним напряжением.Но если у меня есть только шины и линии и нет смоделированных нагрузок и, следовательно, решение потока нагрузки, я вынужден использовать напряжение 1 о.е., поскольку я не могу найти внутреннее напряжение машины?

Анализ игнорирует тот факт, что короткое замыкание на клеммах машины приводит к нулевому напряжению на клеммах, а не к внутреннему напряжению плюс падение напряжения на внутреннем импедансе, что ближе к анализу машины, работающей на полной мощности. нагрузка, питающая короткое замыкание через импедансы, такие как трансформаторы и линии передачи.

Еще одна вещь, которую следует учитывать: если машина находится в режиме ручного управления напряжением (обычное предположение для эквивалентной модели Thevenin используемой машины), как может внутреннее напряжение машины повышаться при фиксированном напряжении / токе возбуждения? и не меняется на протяжении всего времени неисправности.

Даже если АРН находился в эксплуатации, постоянная времени ротора (тау) достаточно велика (порядка 1-10 секунд для больших машин), так что изменение тока возбуждения (если таковое имеется) будет незначительным в течение всего времени. времени до того, как защитное реле устранит неисправность и / или отключит агрегат.

При использовании внутреннего напряжения 1 о.е. предполагается, что генератор не нагружается непосредственно перед коротким замыканием. Поскольку не будет протекания тока и падения напряжения на внутреннем импедансе генератора, внутреннее напряжение будет равно напряжению на клеммах. Максимальное падение напряжения по импедансу генератора произойдет при полной нагрузке, это напряжение, добавленное к напряжению на клеммах, дает вам внутреннее напряжение и короткое замыкание при максимальном номинальном возбуждении.

Однако имейте в виду, что максимальное начальное короткое замыкание является функцией субпереходного импеданса, который зависит от конструкции демпферных обмоток генератора.Когда субпереходный процесс спал, управление возбуждением уже возвращается в исходное положение. Короткое замыкание рядом с генератором имеет небольшую реальную мощность и имеет высокую реактивность, что является причиной снижения системой возбуждения напряжения на клеммах.

.

Коэффициент короткого замыкания синхронной машины — его значение

Коэффициент короткого замыкания (SCR) синхронной машины определяется как отношение тока возбуждения, необходимого для создания номинального напряжения в разомкнутой цепи, к току возбуждения, необходимому для направить номинальный ток якоря при коротком замыкании. Коэффициент короткого замыкания можно рассчитать из характеристики разомкнутой цепи (O.C.C) при номинальной скорости и характеристики короткого замыкания (S.C.C) трехфазной синхронной машины, как показано на рисунке ниже.

short-circuit-ratio-of-synchronous-motor

На приведенном выше рисунке коэффициент короткого замыкания определяется уравнением, показанным ниже.

short-circuit-ratio-of-synchronous-machine-eq-1

Так как треугольники Оаб и Ода подобны. Следовательно, Short-Circuit-Ratio-of-Synchronous-Machine-eq-2-compressor

Синхронное реактивное сопротивление прямой оси X d определяется как отношение напряжения холостого хода для данного тока возбуждения к току короткого замыкания якоря для того же тока возбуждения.

Для тока возбуждения, равного Oa, синхронное реактивное сопротивление прямой оси в Ом определяется уравнением, показанным ниже.

Short-Circuit-Ratio-of-Synchronous-Machine-eq-3

Стоимость единицы X d дается как

Short-Circuit-Ratio-of-Synchronous-Machine-eq-4

Но базовое сопротивление —

Short-Circuit-Ratio-of-Synchronous-Machine-eq-5 Следовательно,

Short-Circuit-Ratio-of-Synchronous-Machine-eq-6

Из уравнения (1) и уравнения (6) получаем

Short-Circuit-Ratio-of-Synchronous-Machine-eq-7

Из уравнения (7) ясно, что коэффициент короткого замыкания равен величине, обратной величине на единицу синхронного реактивного сопротивления прямой оси.

В насыщенной магнитной цепи значение X d зависит от степени насыщения.

Значение коэффициента короткого замыкания (SCR)

Коэффициент короткого замыкания — важный фактор синхронной машины. Это влияет на рабочие характеристики, физические размеры и стоимость машины. Большое изменение напряжения на клеммах при изменении нагрузки имеет место для более низкого значения коэффициента короткого замыкания синхронного генератора.Чтобы поддерживать постоянное напряжение на клеммах, ток возбуждения (I f ) должен варьироваться в широком диапазоне.

При малом значении коэффициента короткого замыкания (SCR) мощность синхронизации мала. Поскольку мощность синхронизации поддерживает синхронизацию машины, меньшее значение SCR имеет низкий предел устойчивости. Другими словами, машина с низким SCR менее стабильна при работе параллельно с другими генераторами.

Синхронная машина с высоким значением SCR имеет лучшее регулирование напряжения и улучшенный предел устойчивости в установившемся режиме, но ток короткого замыкания в якоре велик.Это также влияет на размер и стоимость машины.

Напряжение возбуждения синхронной машины определяется уравнением.

Short-Circuit-Ratio-of-Synchronous-Machine-eq-8

Для того же значения Tph Напряжение возбуждения прямо пропорционально потоку поля на полюс.

Short-Circuit-Ratio-of-Synchronous-Machine-eq-9

Синхронная индуктивность определяется как

Short-Circuit-Ratio-of-Synchronous-Machine-eq-10

Следовательно,

Short-Circuit-Ratio-of-Synchronous-Machine-eq-11

Следовательно, коэффициент короткого замыкания прямо пропорционален реактивному сопротивлению воздушного зазора или его длине.

Если длина воздушного зазора увеличена, SCR может быть увеличен. С увеличением длины воздушного зазора поле MMF должно увеличиваться при том же значении напряжения возбуждения (E f ). Следовательно, для увеличения значения MMF поля необходимо увеличить либо ток возбуждения, либо количество витков возбуждения. Все это требует большей высоты полевых столбов и, как следствие, увеличивает общий диаметр машины.

Таким образом, можно сделать вывод, что большое значение SCR увеличит размер, вес и стоимость станка.

Типичные значения SCR для различных типов машин следующие: —

  • Для машины с цилиндрическим ротором значение SCR находится в пределах от 0,5 до 0,9.
  • В случае машины с явнополюсными полюсами , она находится в пределах от 1 до 1,5 и
  • Для синхронных компенсаторов это 0,4.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *