Источник тока схема: 2.06. Транзисторный источник тока

Содержание

2.06. Транзисторный источник тока

ГЛАВА 2. ТРАНЗИСТОРЫ

НЕКОТОРЫЕ ОСНОВНЫЕ ТРАНЗИСТОРНЫЕ СХЕМЫ

Хотя источники тока не столь известны, они не менее полезны и важны, чем источники напряжения. Источники тока представляют собой прекрасное средство для обеспечения смещения транзисторов, и кроме того, незаменимы в качестве активной нагрузки для усилительных каскадов с большим коэффициентом усиления и в качестве источников питания эмиттеров для дифференциальных усилителей. Источники тока необходимы для работы таких устройств, как интеграторы, генераторы пилообразного напряжения. В схемах усилителей и стабилизаторов они обеспечивают широкий диапазон напряжений. И наконец, источники постоянного тока требуются в некоторых областях, не имеющих прямого отношения к электронике, например в электрохимии, электрофорезе.

Рис. 2.20.

Подключение резистора к источнику напряжения. Схема простейшего источника тока показана на рис. 2.20. При условии что Rн » R (иными словами, Uн » U), ток сохраняет почти постоянное значение и равен приблизительно I = U/R. Если нагрузкой является конденсатор, то, при условии что Uконд » U, он заряжается с почти постоянной скоростью, определяемой начальным участком экспоненты, характерной для данной RC-цепи.

Простейшему резистивному источнику тока присущи существенные недостатки. Для того чтобы получить хорошее приближение к источнику тока, следует использовать большие напряжения, а при этом на резисторе рассеивается большая мощность. Кроме того, током этого источника трудно управлять в широком диапазоне с помощью напряжения, формируемого где-либо в другом узле схемы.

Упражнение 2.6. Допустим, нам нужен источник тока который бы обеспечивал точность 1% в диапазоне изменения напряжения на нагрузке от 0 до +10 В. Какой источник напряжения нужно подключить последовательно к резистору?

Упражнение 2.7. Допустим, что в предыдущем упражнении требуется получить от источника ток 10 мА. Какая мощность будет рассеиваться на резисторе? Какая мощность передается нагрузке?

Рис. 2.21. Транзисторный источник тока: основная идея.

Какая мощность передается нагрузке? Транзисторный источник тока. Очень хороший источник тока можно построить на основе транзистора (рис. 2.21). Работает он следующим образом: напряжение на базе Uб > 0,6 В поддерживает эмиттерный переход в открытом состоянии: Uэ = Uб — 0,6 В. В связи с этим Iэ = Uэ/Rэ = (Uэ — 0,6/Rэ. Так как для больших значений коэффициента h21эIэ ≈ Iк, то Iк ≅ (Uб — 0,6 В)/Rэ независимо от напряжения Uк до тех пор, пока транзистор не перейдет в режим насыщения (Uк > Uэ + 0.2 В).

Смешение в источнике тока. Напряжение на базе можно сформировать несколькими способами. Хороший результат дает использование делителя напряжения, если он обеспечивает достаточно стабильное напряжение. Как и в предыдущих случаях, сопротивление делителя должно быть значительно меньше сопротивления схемы со стороны базы по постоянному току h21эRэ. Можно воспользоваться также зенеровским диодом и использовать для смещения источник питания Uкк, а можно взять несколько диодов, смещенных в прямом направлении и соединенных последовательно, и подключить их между базой и соответствующим источником питания эмиттера. На рис. 2.22 показаны примеры схем смещения. В последнем примере (рис. 2.22,6) транзистор p-n-p — типа питает током заземленную нагрузку (он — источник тока). Остальные примеры (в которых используются транзисторы n-р-n — типа.) правильнее было бы называть «поглотителями» тока, но принято называть все схемы такого типа источниками тока. [Название «поглотитель» и «источник» связано с направлением тока; если ток поступает в какую-либо точку схемы, то это источник, и наоборот]. В первой схеме сопротивление делителя напряжения составляет приблизительно 1,3 кОм и очень мало по сравнению с сопротивлением со стороны базы, составляющим ≅100кОм (для h21э = 100). Любое изменение коэффициента β, связанное с изменением напряжения на коллекторе, не повлияет существенным образом на выходной ток, так как соответствующее изменение напряжения на базе совсем мало. В двух других схемах резисторы в цепи смещения выбраны так, чтобы протекающий ток составлял несколько миллиампер, — этого достаточно, чтобы диоды были открыты.

Рабочий диапазон. Источник тока передает в нагрузку постоянный ток только до определенного конечного напряжения на нагрузке. В противном случае источник тока был бы способен генерировать бесконечную мощность. Диапазон выходного напряжения, в котором источник тока ведет себя как следует, называется рабочим диапазоном. Для рассмотренных только что транзисторных источников тока рабочий диапазон определяется из того, что транзистор должен находиться в активном режиме работы. Так, в первой схеме напряжение на коллекторе можно понижать до тех пор, пока не будет достигнут режим насыщения, т. е. до +12 В. Вторая схема, с более высоким напряжением на эмиттере, сохраняет свойства источника лишь до значения напряжения на коллекторе, равного приблизительно + 5,2 В.

Во всех случаях напряжение на коллекторе может изменяться от значения напряжения насыщения до значения напряжения питания. Например, последняя схема работает как источник тока в диапазоне напряжения на нагрузке, ограниченном значениями 0 и +8,6 В. Если в нагрузке используются батареи или собственные источники питания, то напряжение на коллекторе может быть больше, чем напряжение источника питания. При использовании такой схемы рекомендуется следить за тем. чтобы не возник пробой транзистора (напряжение Uкэ не должно превышать значение Uкэпроб — напряжение пробоя перехода коллектор-эмиттер) и не рассеивалась излишняя мощность (определяемая величиной произведения IкUкэ). В разд. 6.07 вы увидите, что для мощных транзисторов область безопасной работы определяется специально.

Упражнение 2.8. В схеме имеются два стабилизированных источника напряжения: +5 и 15 В. Разработайте схему источника тока на основе транзистора n-р-n — типа, которая бы обеспечивала ток +5 мА. В качестве источника напряжения для базы используйте источник +5 В. Чему равен рабочий диапазон в такой схеме?

В источнике тока напряжение на базе не обязательно должно быть фиксированным. Если предусмотреть возможность изменения напряжения Uб, то получим программируемый источник тока. Если выходной ток должен плавно отслеживать изменения входного напряжения, то размах входного сигнала uвх (напоминаем, что строчными буквами мы договорились обозначать изменения) должен быть небольшим, таким, чтобы напряжение на эмиттере никогда не уменьшалось до нуля. В таком источнике тока изменение выходного тока будет пропорционально изменениям входного напряжения.

Недостатки источников тока. Как сильно отличается транзисторный источник тока от идеального? Иными словами, изменяется ли ток в нагрузке при изменении, скажем напряжения, т.е. имеет ли источник тока эквивалентное сопротивление конечной величины (Rэкв

1. При заданном токе коллектора и напряжение Uбэ, и коэффициент h21э (эффект Эрли) несколько изменяются при изменении напряжения коллектор-эмиттер. Изменение напряжения Uбэ, связанное с изменением напряжения на нагрузке, вызывает изменение выходного тока, так как напряжение на эмиттере (а следовательно, и эмиттерный ток) изменяется, даже если напряжение на базе фиксировано. Изменение значения коэффициента h21э приводит к небольшим изменениям выходного (коллекторного) тока при фиксированном токе эмиттера, так как Iк = Iэ — Iб; кроме того, немного изменяется напряжение на базе в связи с возможным изменением сопротивления источника смешения, обусловленного изменениями коэффициента h21э (а следовательно, и тока базы). Эти изменения незначительны. Например, изменение выходного тока для схемы, представленной на рис. 2.22, a, составляет приблизительно 0,5% для транзистора типа 2N3565. В частности, при изменении напряжения на нагрузке от 0 до 8 В эффект Эрли обусловливает изменение тока на 0,5%, а нагрев транзистора — на 0,2%. Изменение коэффициента вносит дополнительный вклад в изменение выходного тока — 0,05% (для жесткого делителя напряжения). Все эти изменения приводят к тому, что источник тока работает хуже, чем идеальный: выходной ток немного зависит от напряжения и, следовательно, его сопротивление не бесконечно. В дальнейшем вы узнаете, что есть методы, которые позволяют преодолеть этот недостаток.

2. Напряжение Uбэ и коэффициент h21э зависят от температуры. В связи с этим при изменении температуры окружающей среды возникает дрейф выходного тока. Кроме того, температура перехода изменяется при изменении напряжения на нагрузке (в связи с изменением мощности, рассеиваемой транзистором) и приводит к тому, что источник работает не как идеальный. Изменение напряжения и Uбэ в зависимости от температуры окружающей среды можно скомпенсировать с помощью схемы, показанной на рис. 2.23. В этой схеме падение напряжения между базой и эмиттером транзистора Т2 компенсируется падением напряжения на эмиттерном переходе Т1 который имеет такие же температурные характеристики. Резистор R3 играет роль нагрузки для Т1, необходимой для задания втекающего тока базы транзистора Т2.

Рис. 2.23. Один из методов температурной компенсации источника тока.

Улучшение характеристик источника тока. Вообще говоря, изменение напряжения Uбэ, вызванное как влиянием температуры (относительное изменение составляет приблизительно -2 мВ/°С), так и зависимостью от напряжения Uбэ (эффект Эрли оценивается величиной ΔUбэ ≈ -0,001 ΔUкэ), можно свести к минимуму, если установить напряжение на эмиттере достаточно большим (по крайней мере 1 В), тогда изменение напряжения Uбэ на десятые доли милливольта не приведет к значительному изменению напряжения на эмиттерном резисторе (напомним, что схема поддерживает постоянное напряжение на базе). Например, если Uэ = 0,1В (т. е. к базе приложено напряжение 0,7 В), то изменение напряжения Uбэ на 10 мВ вызывает изменение выходного тока на 10%, если же Uэ = 1,0 В, то такое же изменение Uбэ вызывает изменение тока на 1%. Однако, не стоит заходить слишком далеко. Напомним, что нижняя граница рабочего диапазона определяется напряжением на эмиттере. Если в источнике тока, работающем от источника питания +10 В, напряжение на эмиттере сделать равным +5 В, то диапазон выхода будет равен немного менее 5 В (напряжение на коллекторе может изменяться от Uэ + 0,2 В до Uкк, т. е. от 5,2 до 10 В).

Рис. 2.24. Каскодный источник тока, обладающий повышенной устойчивостью к изменениям напряжения на нагрузке.

На рис. 2.24 показана схема, которая существенно улучшает характеристики источника тока. Источник тока Т1 работает, как и прежде, но напряжение на коллекторе фиксируется с помощью эмиттера Т2. Ток, текущий в нагрузку, такой же, как и прежде, так как коллекторный (для Т2) и эмиттерный токи приблизительно равны между собой (из-за большого значения h21э). В этой схеме напряжение Uкэ (дая Т1) не зависит от напряжения на нагрузке, а это значит, что устранены изменения напряжения Uбэ, обусловленные эффектом Эрли и температурой. Для транзисторов типа 2N3565 эта схема дает изменение тока на 0,1% при изменении напряжения на нагрузке от 0 до 8 В; для того чтобы схема обеспечивала указанную точность, следует использовать стабильные резисторы с допуском 1%. (Кстати, эту схему используют в высокочастотных усилителях, где она известна под названием «каскод»). В дальнейшем вы познакомитесь со схемами источников тока, в которых используются операционные усилители и обратная связь, и в которых также решена задача устранения влияния изменений Uбэ на выходной ток.

Влияние коэффициента h21э можно ослабить, если выбрать транзистор с большим значением h21э, тогда ток базы будет вносить незначительный вклад в ток эмиттера.

Рис. 2.25. Транзисторный источник тока с использованием напряжения Uбэ в качестве опорного.

На рис 2.25 показан еще один источник тока, в котором выходной ток не зависит от напряжения питания. В этой схеме напряжение Uбэ транзистора Т1, падая на резисторе R1, определяет выходной ток независимо от напряжения Uкк

Uвых = Uбэ/R2U2.

С помощью резистора R1 устанавливается смещение транзистора Т2 и потенциал коллектора Т1, причем этот потенциал меньше, чем напряжение Uкк, на удвоенную величину падения напряжения на переходе; тем самым уменьшается влияние эффекта Эрли. В этой схеме нет температурной компенсации; напряжение на R2 уменьшается приблизительно на 2,1 мВ/°С и вызывает соответствующее изменение выходного тока 0,3%/°С).

Модель Эберса-Молла для основных транзисторных схем

Регулируемый источник тока схема

Схемы генераторов тока, разновидности токовых зеркал, Онлайн калькулятор
расчёта элементов источников тока.

На сегодняшнем мероприятии, посвящённом открытию «Культурно-досугового центра Лоховского муниципального образования», поговорим о разновидностях источников постоянного и, желательно, стабильного выходного тока.
– Если напряжение можно понять умом, то ток только чувством! – начал свой доклад руководитель кружка по художественному рукоделию Семён Самсонович Елдыкин.
– Целью нашего сегодняшнего радиолюбительского заседания является освоение упорядоченного движения свободных электрически заряженных частиц – как суммы знаний, физических умений и врождённых навыков.
«Как заземлить незаземлённое заземление? Сколько нужно выпить водки в граммах для снижения сопротивление тела на 1 кОм? И как не вступить с электричеством в интимные отношения?» – станет темой нашего научного коллоквиума.

Спасибо Семёну Самсоновичу за вводные слова, а нам пора переместиться поближе к обозначенной в заголовке теме. Напустим энциклопедического глубокомыслия:

«Источник тока – элемент, двухполюсник, сила тока через который не зависит от напряжения на его зажимах (полюсах). Используются также термины генератор тока и идеальный источник тока. » – учит нас Википедия.

Дополним редакцию. Источник тока должен иметь большое внутреннее дифференциальное сопротивление, такое чтобы при изменении сопротивления нагрузки сила тока в нагрузке практически не изменялась. Такую возможность нам предоставляет биполярный транзистор со стороны коллектора, полевик со стороны стока, либо операционник между инвертирующим входом и выходом.

Есть несколько основных характеристик, которые характеризуют источник тока.
Первой и основной из них является величина выходного тока.
Во-вторых, его выходное сопротивление, которое определяет, насколько ток источника меняется в зависимости от сопротивления нагрузки.
Третья спецификация – это минимальное и максимальное напряжения на выходе источника, при котором узел работает должным образом, т.е. выходной транзистор находится в активном режиме.
В-четвёртых, температурная стабильность и способность противостоять колебаниям напряжения источника питания.

Для разминки рассмотрим схемы простейших генераторов (источников) тока на транзисторах и операционных усилителях.

Рис.1

Схема источника тока на биполярном транзисторе – самая плохая. В ней присутствует полный букет недостатков – и температурная нестабильность, и зависимость тока от колебаний напряжения источника питания и наличие пресловутого эффекта Эрли (эффект влияния напряжения между коллектором и базой на ток коллектора).
Здесь входной делитель на резисторах R1, R2 задаёт ток базы транзистора Iб, выходной ток в первом приближении можно считать равным Iн = Iк≈β×Iб.

Схема на полевом транзисторе не столь чувствительна к нестабильности источника питания, однако имеет другой существенный недостаток – практическую невозможность заранее рассчитать выходной ток генератора из-за значительности разброса параметров данных типов полупроводников.
Максимальный ток данного типа источника равен начальному току стока при R1=0 (паспортная характеристика), минимальный ограничен падением напряжения на токозадающем резисторе R1.

Генераторы тока на операционных усилителях (инвертирующий слева, неинвертирующий справа) – вполне себе работоспособные устройства, которые являются близкими аналогами идеальных источников тока, и практически лишены недостатков, присущих транзисторным схемам.
Единственное, но существенное в отдельных случаях «но» состоит в том, что нагрузка является «плавающей», т.е. не подключённой никаким боком к земле.
Ток через нагрузку практически с 100% точностью описывается формулой Iн= Uвх/R1.

Размялись? Пришло время избавляться от недостатков простейших источников тока, обкашлянных нами выше.

Рис.2

Схемы стабилизаторов тока, представленные на Рис.2, будут полезны в устройствах, работающих с конечными потребителями, которые чувствительны не столько к стабильности напряжения, сколько к постоянству протекающего через них тока.
За примерами далеко ходить не надо – источники питания светодиодов, газоразрядных ламп, зарядные устройства для аккумуляторов и т.д. Все они требуют наличия на выходе постоянного, либо изменяющегося по определённому алгоритму тока.
Принцип работы приведённых схем предельно прост. При увеличении тока нагрузки пропорционально увеличивается и падение напряжения на токозадающем резисторе R1. При достижении уровня падения этого напряжения ≈0,6В, начинает открываться транзистор T1, снижая величину Uбэ (или Uзи) второго транзистора T2. Он начинает закрываться, соответственно, уменьшается и количество тока, протекающего через нагрузку.
Для схемы на биполярном транзисторе номинал резистора Rб следует выбирать из соображений Rб .
Для полевика, в силу его высокого входного сопротивления, величина резистора Rз1 может выбрана достаточно высокой (десятки килоом). Единственное, за чем надо зорко послеживать – максимально допустимое значение напряжения затвор-исток транзистора. Если оно меньше Еп, следует добавить дополнительный резистор Rз2 такого номинала, чтобы образованный делитель вогнал напряжение на затворе в допустимые пределы.
Выходной ток рассчитывается по простой формуле Iн≈0,6/ R1 .
В этих схемах нет температурной компенсации, изменение выходного тока составляет величину ≈ 0,3% на один °С.

Рис.3

Про схему токового зеркала, изображённую на Рис.3, смело можно сказать, что это базовая схема источника тока.
Резисторы в эмиттерных цепях транзисторов создают отрицательную обратную связь по току, что с одной стороны, приводит к улучшению термостабилизирующих свойств узла, а с другой, позволяет в широких пределах регулировать соотношения токов транзисторов Т1 и Т2.

Здесь ток Ik1 , задаваемый резистором R1:
Iк1≈(Eп-0,7)/(R1+ Rэ1) ,
а ток, протекающий в нагрузке:
Iн≈ Rэ1×(Eп-0,7)/(R1× Rэ2+ Rэ1× Rэ2) .

Рис.4

Для снижения зависимости выходного тока от колебаний напряжения питания широкое применение нашли источники тока (Рис.4), называемые двойным зеркалом тока.
Механизм работает следующим образом: Предположим, увеличилось напряжение питания. Тогда увеличивается и падение напряжения на резисторе R1. Это приводит к уменьшению потенциала базы транзистора VТ3, транзистор VТ3 призакроется, его ток Iэ3 уменьшится, соответственно уменьшится ток базы Iб2 и Iн тоже уменьшится и вернётся в исходное состояние.

Iк1≈(Eп-1,4)/(R1+ Rэ1) ,
Iн≈ Rэ1×(Eп-0,7)/(R1× Rэ2+ Rэ1× Rэ2) .

Рис.5

Источник тока, представленный на Рис. 5, называется схемой токового зеркала Уилсона и обеспечивает высокую степень постоянства выходного тока за счёт подавления проявлений эффекта Эрли (эффект влияния напряжения между коллектором и базой на ток коллектора).
Транзисторы T1 и T2 в этой схеме включены так же, как в обычном токовом зеркале, но благодаря транзистору T3 потенциал коллектора токозадающего Т2 фиксирован и не влияет на выходной ток.

Все формулы аналогичны предыдущему описанию:
Iк1≈(Eп-1,4)/(R1+ Rэ1) ,
Iн≈ Rэ1×(Eп-0,7)/(R1× Rэ2+ Rэ1× Rэ2) .

Рис.6

Каскодный генератор тока, изображённый на Рис. 6, обладает достоинствами, связанными с очень высоким внутренним сопротивлением и значительным ослаблением эффекта Эрли. Динамическое внутреннее сопротивление такого отражателя тока превышает величину в несколько МОм.

Легко заметить, что для всех типов приведённых токовых зеркал формула для расчёта выходного тока – одна и та же. Формула приблизительная, не учитывающая влияние на расчётные показатели незначительных величин базовых токов транзисторов, однако дающая возможность с погрешностью, не превышающей 5-7%, рассчитать величины токозадающих элементов.
При необходимости сгенерить ток обратного направления, следует перевернуть схему вверх ногами и заменить n-p-n транзисторы на полупроводники обратной проводимости.

И по традиции приведу таблицу, позволяющую не сильно утруждаться, при желании воплотить описанные узлы в реальную жизнь.

РАСЧЁТ ТОКОЗАДАЮЩИХ ЭЛЕМЕНТОВ ИСТОЧНИКОВ ТОКА НА БИПОЛЯРНЫХ ТРАНЗИСТОРАХ.

Выбор схемы источника тока &nbsp Сопротивление резистора R1 (кОм) Сопротивление резистора Rэ1 (кОм) Сопротивление резистора Rэ2 (кОм) Напряжение питания (В) Выходной ток Iн Задающий ток Ik1

Источники тока на полевых транзисторах, в связи со значительностью разброса параметров данного типа полупроводников, практическое применение получили в основном при производстве аналоговых интегральных микросхем. При этом при использовании МОП-структур полевых транзисторов, схемотехника токовых зеркал практически не отличается от приведённых выше источников тока на биполярных собратьях.

Рис.6

Проектировать источники тока на дискретных полевых транзисторах – занятие, на мой взгляд, довольно нецелесообразное.
Другое дело – специально разработанные полупроводники, называемые токостабилизирующими диодами (CRD), в основе которых лежит полевой транзистор с каналом n-типа.

Рис.7

Полевые диоды имеют только два вывода и оптимизированы с точки зрения вольт-амперных характеристик. При их изготовлении можно достичь нулевого температурного коэффициента, объединяя CRD с резистором, имеющим тот же самый, но противоположного знака температурный коэффициент.
Токостабилизирующие диоды не очень известны в широких массах радиолюбительского сообщества, но тем временем активно выпускаются буржуйскими промышленниками, имеют приличную номенклатуру токов и достаточно широкий диапазон рабочих напряжений.

А на следующей странице продолжим тему – посвятим её источникам тока на операционных усилителях, а также преобразователям напряжение-ток на ОУ и транзисторах.

Для всех, кто ищет действительно качественную и серьёзную схему лабораторного БП, могу предложить недавно собранную мной схемку на полевых транзисторах и операционнике LM358 из журнала РАДИО №7, 2008г. Выдаёт максимально 30V, 5A – работает нормально. Далее описание от автора конструкции: лабораторный БП имеет интервал регулировки выходного напряжения 2.5-30 В при токе до 5 А. Он снабжен узлом защиты от перегрузки по току, который может работать в двух режимах: ограничителя тока и отключения выходного напряжения. Ток срабатывания можно установить в пределах 0.15. 5 А. В состав БП входят также узлы управления вентилятором и защиты от перегрева.

Схема принципиальная ЛБП

Выпрямитель собран на диодном мосте VDI и сглаживающем конденсаторе С1, на микросхеме DA1 собран вспомогательный стабилизатор напряжения 12 В, от которого питаются некоторые узлы. В качестве регулирующего транзистора VT5 применен мощный полевой переключательный п-канальный транзистор, включенный в минусовую линию выходного напряжения, благодаря чему обеспечивается минимальная разность входного и выходного напряжения. Этот транзистор общий для узлов стабилизации напряжения и тока, его сток через переключатель SA3 может быть подключен к минусовой клемме розетки XS1. которая является выходом стабилизированного напряжения, или через диод VD5 к плюсовой клемме розетки XS2. которая является входом узла стабилизации тока (входом эквивалента нагрузки). Выключателем SA4 можно подключить стабилизатор напряжения (тока) к выходу (входу) ИП, при этом будет светить светодиод HL5.

Узел стабилизации выходного напряжения содержит микросхему параллельного стабилизатора САЗ, согласующий каскад на транзисторе VT3 и управляющий транзистор VT4. Переменный резистор R18 совместно с резистором R19 образует делитель напряжения, поступающего на управляющий вход стабилизатора DA3. В состав этой микросхемы входит источник эталонно! о напряжения 2,5 В, что и определяет минимальное выходное напряжение ИП. После включения питания выключателем SAI «Сеть» выпрямленное напряжение (32. 35 В) с выпрямителя поступает на регулирующий транзистор VT5. Одновременно с выхода стабилизатора DAI напряжение питания поступит на ОУ DA2.2. и на его выходе установится напряжение около 11 В, которое через резистор R8 поступит на затвор транзистора VT5, открывая его, в результате выходное напряжение увеличивается. Станет увеличиваться и напряжение на управляющем входе стабилизатора DA3. и когда оно превысит 2.5 В, ток через стабилизатор DA3 возрастет, транзисторы VT3, VT4 откроются, а транзистор VT5 станет закрываться, уменьшая выходное напряжение. Его установку осуществляют переменным резистором R18, микроамперметр РА1 совместно с резисторами R15 и R16 используется как вольтметр.

Узел защиты от перегрузки по току состоит из резистивного датчика тока R4, ОУ DA2.2 и тиристорной оптопары U1. Переменным резистором R3. входящим в состав делителя R2R3. устанавливают ток срабатывания защиты, а режим ее работы устанавливают выключателем SA2 «Защита по току». В показанном на схеме положении этого выключателя происходит ограничение (стабилизация) выходного тока, при замкнутых контактах выходное напряжение отключается. Выходной ток протекает через резистор R4 и создает на нем падение напряжения; пока оно меньше напряжения на резисторе R3, на выходе ОУ DA2.2 будет напряжение, которое через резистор R8 поступает на коллектор транзистора VT4 и затвор транзистора VT5. поэтому стабилизатор выходною напряжения работает в нормальном режиме.

При увеличении выходного тока увеличится напряжение на резисторе R4, и когда оно превысит напряжение на резисторе R3. на выходе ОУ DA2.2 оно уменьшится, транзистор VT5 закроется и ИП перейдет в режим ограничения выходного тока, при этом выходное напряжение станет меньше установленного и не регулируется. Светодиод HL3 будет включен, сигнализируя, что происходит ограничение тока в нагрузке. При уменьшении выходного тока ИП автоматически перейдет в режим стабилизации напряжения.

При замкнутых контактах выключателя SA2 при превышении выходным током заранее установленного значения начнет протекать ток через излучающий диод оптопары U1 и фототринистор откроется. Напряжение на затворе транзистора VT5 станет меньше напряжения открывания, и выходное напряжение источника питания уменьшится практически до нуля. Светодиод HL4 загорится, сигнализируя о том. что произошло отключение выходного напряжения по причине превышения тока в нагрузке. Вывести устройство из этого состояния можно отключением его от сети и последующим включением, а также разомкнув контакты выключателя SA2.

В положении переключателя SA3 «Экв. нагр.» устройство может работать как эквивалент нагрузки (I). При этом отключается узел стабилизации напряжения и ОУ DA2.2 совместно с транзистором VT5 образуют стабилизатор тока. К гнезду XS2 подключают проверяемый блок питания или аккумулятор, а ток устанавливают резистором R3. Диод VD5 служит для защиты от неправильного подключения внешних источников напряжения.

Поскольку у ИП большой интервал регулирования выходною напряжения при токе до 5 А, при определенных условиях, например, при малом выходном напряжении и большом токе, на регулирующем транзисторе VT5 рассеивается значительная мощность (100 Вт и более). Это требует как его защиты от перeгрева, так и эффективного охлаждения теплоотвода за счет принудительного обдува вентилятором. Узел защиты от nepef рева собран на терморезисторе RK1 и ОУ DA2.1. который работает как компаратор. Датчик температуры на терморезисторе RKI с отрицательным температурным коэффициентом сопротивления установлен на теплоотводе в непосредственной близости от транзистора VT5.

Когда температура теплоотвода меньше аварийной, напряжение на входе (вывод 3) ОУ DA2.1 больше, чем на инвертирующем (вывод 2). и на ею выходе (вывод1) напряжение — около 11 В. Диод VD4 закрыт, светодиод HL2 не включен, и узел защиты от перегрева не влияет на работу стабилизатора напряжения. По мере разогрева теплоотвода, приблизительно до 80С сопротивление терморезистора RK1 уменьшается и напряжение на неинвертирующем входе ОУ DA2.1 станет меньше, чем на инвертирующем — на его выходе будет напряжение, близкое к нулю. Транзистор VT5 закроется, а напряжение на выходе источника питания станет также близко к нулю. Светодиод HL2 включится, указывая на перегрев транзистора VT5. Поскольку нагрев (охлаждение) теплоотвода процесс инерционный, включение ИП произойдет через некоторое время после остывания теплоотвода, этим обеспечивается гистерезис в работе узла защиты от nepeгрева.

Для эффективного охлаждения теплоотвода в устройстве применен вентилятор. В узел управления вентилятором входит регулируемый источник напряжения с ограничением его максимального значения (13. 14 В), собранный на составном транзисторе VT1. стабилитроне VD2 и резисторе R5, а также управляющий полевой транзистор VT2. Ограничение напряжения необходимо, поскольку номинальное напряжение питания вентилятора — 12 В. Входное сопротивление транзистора VT2, подключенного к терморезистору RK1 велико и поэтому не влияет на работу узла защиты. Когда теплоотвод холодный, сопротивление терморезистора RK1 велико и напряжения на нем достаточно для открывания транзистора VT2. В результате транзистор V11 закрыт и напряжение питания на вентилятор не поступает. При нагреве теплоотвода до 40С сопротивление терморезистора RK1 уменьшается, транзистор VT2 закрывается, a VT1 открывается и напряжение поступает на вентилятор — он начинает вращаться. Чем выше температура теплоотвода, тем быстрее вращается вентилятор. При остывании теплоотвода происходит обратный процесс.

Настройка блока питания

Налаживание ИП начинают с калибровки вольтметра подстроечным резистором R16 по образцовому цифровому вольтметру. Если применен терморезистор с другим номиналом (не менее 4,7 кОм). подбором резистора R7 устанавливают температуру включения вентилятора, а подбором резистора R9 — температуру включения защиты от перегрева. В положениях «Ист. пит.» переключателя SA3 и «Ограничение» выключателя SA2 подключают к выходу ИП последовательно соединенные образцовый амперметр и резистор сопротивлением 2 Ом мощностью рассеивания 50 Вт и градуируют шкалу переменного резистора R3.

С помощью ИП можно заряжать различные типы аккумуляторных батарей. Для этого батарею с соблюдением полярности подключают к выходу ИП, переключатель SA2 при этом должен быть в положении «Ограничение», a SA4 — в положении «Выкл». Устанавливают выходное напряжение блока питания соответствующее напряжению полностью заряженной батареи, а резистором R3 устанавливают ток зарядки. Выключателем SA4 включают процесс зарядки, при этом включится индикатор «Ограничение», а напряжение на выходе, то есть на батарее, уменьшится в зависимости от ее состояния. В процессе зарядки напряжение на ней возрастает, что контролируют вольтметром ИП, и когда оно достигнет заранее установленного значения, индикатор «Ограничение» выключится и ИП перейдет в режим стабилизации напряжения. В таком состоянии ток зарядки плавно уменьшается и перезарядка батареи исключена.

Для проверки блоков питания и разрядки аккумуляторных батарей их подключают к гнезду XS2 в положении переключателя SA3 «Экв. нагр.». резистором R3 устанавливают ток разрядки, а напряжение контролируют внешним вольтметром. Не следует допускать глубокой разрядки батареи. Возможно, что при зарядке или разрядке батареи станет срабатывать защита от перегрева, тогда эти процессы будут временно прерываться, но после охлаждения теплоотвода возобновятся.

Выше смотрите фото готового устройства и если есть желание посмотреть более подробно – скачайте этот архив. Автор схемы А. КУЗНЕЦОВ, г. Кадников Вологодской обл., сборка – sterc.

Обсудить статью РЕГУЛИРУЕМЫЙ ИСТОЧНИК НАПРЯЖЕНИЯ И ТОКА

Жучки GSM из мобильников – модернизация и несколько советов о переделках.

УСИЛИТЕЛЬ ДЛЯ FM МОДУЛЯТОРА

Принципиальная схема усилителя мощности ВЧ сигнала для ФМ модуляторов.

СВЕТОДИОД 5 ВТ

Эксперименты с мощным светодиодом на 5 ватт, заказанным в одной китайской фирме.

КАК СДЕЛАТЬ СВЕТОДИОДНУЮ ЛАМПУ

Три примера изготовления самодельных ламп с применением светодиодов, на различную мощность. Для ночника, настольного светильника и в прихожую.

Предлагаю схему регулируемого источника тока и напряжения на базе ИМС LM317.

Особенность данного варианта схемы заключается в повышенной точности регулировки стабилизации по току (практически от 1mA до 1А).

При необходимости пределы регулировок можно изменить.

Дальше будет приведена электрическая принципиальная схема устройства, рекомендации по настройке и пояснения. В качестве первоисточников использовались данные на радиоэлементы согласно спецификации производителей и базовые схемотехнические решения.
Существует и ряд решений получения аналогичных параметров от других авторов, но их схемы не отвечают в полной мере требованиям, предъявляемым мной к данному устройству:

  • Малый коэффициент пульсаций
  • Широкий диапазон регулировки напряжения и тока с малой (задаваемой) дискретностью
  • Использование легкодоступных и недорогих компонентов, имеющих много аналогов
  • Работа на импульсную нагрузку
  • Возможность работы как с цифровыми так и стрелочными (электромеханическими) приборами измерения напряжения и тока
  • Минимализация количества радиоэлементов электронной схемы
  • Автоматический переход в режим стабилизации тока при аварийном снижении сопротивления нагрузки и обратно в режим стабилизации напряжения при нормализации
  • Возможность использования только одной обмотки понижающего трансформатора для одного источника
  • Гальваническая развязка между несколькими источниками (в случае применения нескольких стабилизаторов в одном устройстве без необходимости объединения питания отдельных модулей) .
  • Высокий коэффициент стабилизации как напряжения так и тока
  • Легкая повторяемость
  • Недопустимость импульсов напряжения на нагрузке выше установленных, при регулировке и коммутации напряжения и тока из-за переходных процессов в радиоэлементах регулировки и коммутации
  • Исключение сбоев стабилизации тока и напряжения из-за импульсного характера нагрузки
  • Снижение тепловых потерь в регулирующем элементе свойственных схемам с непрерывной стабилизацией (коммутированием диапазона регулировки по напряжению с целью снижения падения напряжения на регулирующем элементе)
  • Зависимость линейности регулировок напряжения и тока только от характеристики регулирующего элемента (переменных резисторов регулировки (группы А или Б))

С целью заполнения этого пробела, мной было разработано и изготовлено данное устройство.

Сокращения:
БП – блок питания
ОУ – операционный усилитель
ИМС – интегральная микросхема

Т1 – трансформатор
S1 – переключатель диапазона регулировки напряжения (0. .7V и 6. 12V граничные значения подстраиваются R4, R14. R15)»
S2 – кнопка с самовозвратом* (контроль ограничения по току)
D1-D4 – диодный мост (тип диодов или сборки определяется желаемым выходным током устройства)**
С6-С7 – 0.1 мкф на напряжение выше чем между выводами 1 и 3 трансформатора T1 без нагрузки
DA1 – LM317 или аналогичная ИМС регулируемого стабилизатора напряжения
С1 – 4700 . 10000мкф на 35V (возможно использование нескольких конденсаторов в параллельном включении 🙂
С2, С4, С11, С12, С14, С16, С17 – 0,1мкф
D5-D7 – любые выпрямительные диоды средней мощности (например 1N4007)
С5 -1,0 мкф (на любое напряжение)
СЗ, С9 – 100мкф на 16V и 35V соответственно
R1 – 0.05. 0.08R (медная проволока в эмалевой иззоляции 0.6mm длинной около 60 сантиметров, сопротивление подбирается исходя из падения напряжения выше напряжения смещения DA3 при токе 1-2 mА (для DA3- К140УД17 это около 80. 100 микровольт)
R2 – 470R, R3 – 10кОм (переменное)
С8 – 1000 мкф на 35V, С10 – 10мкф на 10V
R5 – 1кОм (нагрузочный, необходим для получения тока нагрузки стабилизатора в 6mA. согласно спецификации DA2)
R6 -100R. R7- 26kOm». R8 – 68kOm*. R9-51kOm, R10-2kOm. R11 – 1МОм. R12 – 12кОм». R13 – 10кОм (переменное)
С12, С15 – 68. 100 пикофарад. С13 – 1мкф на 50 и более вольт
R16 – 1 . 5R 5W (используется для удобства выбора установки граничного значения тока при нажатии на кнопку S2)
D8 – АЛ107 (или любой другой светодиод но желательно с малым падением напряжения в открытом состоянии
(около 1.6V при токе 2mA))
DA2 – LM7906 (или аналогичная ИМС стабилизатора напряжения на минус 6 вольт)
DA3 – К140УД17 (любой маломощный прецезионный усилитель с напряжением смещения меньше милливольта и питанием 30 и более вольт)
DA4 – К140УД7 (любой усилитель средней мощности (с током нагрузки до 2mA при выбранном диапазоне напряжений)
Цифровые вольтметры использованы для получения большей точности установки напряжения и тока.
но их применение необязательно, и могут быть заменены стрелочными индикаторами с ухудшением
точности измерения в последнем случае.
*должны быть рассчитаны на коммутацию максимального тока
**желательно использовать диоды или диодный мост с 50. 100% запасом по граничному значению тока

Типичные осциллограммы пульсаций на нагрузке при максимальном токе:
Нагрузка резистивная 10 mV / 5mS на деление:

Нагрузка импульсная (электродвигатель) 20mV / 5mS на деление:

Для удобства восприятия схема разделена на функциональные блоки.
Краткое описание назначения блоков:

  • Выпрямитель – преобразование переменного напряжения снимаемого с двухсекционной обмотки трансформатора Т1 в постоянное не стабилизированное напряжение
  • Стабилизатор, регулятор напряжения – стабилизация и регулировка выходного напряжения со встроенным датчиком тока на сопротивлении R1
  • Источник -6V – стабилизированный источник отрицательного напряжения 6 вольт для питания ОУ DA3 , DA4 и обеспечения необходимого смещения для регулировки выходного напряжения от 0 V
  • Усилитель напряжения – инвертирующий усилитель напряжения выделяемого на измерительном сопротивлении R1 при наличии тока нагрузки, которое пропорционально значению этого тока, для измерения электронным вольтметром и для работы регулятора тока
  • Регулятор тока – сравнение напряжений снимаемых с усилителя напряжения и резистора R13 – регулятора ограничения выходного тока устройства для управления ОУ DA1 в режиме стабилизации тока
  • Цифровые вольтметры – отдельные устройства и их параметры на работу схемы влияния не оказывают, предъявляемые к ним требования зависят от желаемой точности контроля выходного тока и напряжения

Описание работы устройства и назначения элементов:

С вторичной обмотки понижающего трансформатора Т1 через первую группу контактов переключателя S1 переменное напряжение выбранной величины (9 и 16 вольт соответственно без нагрузки) подается на диодный мост D1 – D4 где преобразуется в не стабилизированное постоянное напряжение. Конденсаторы С6 и С7 снижают уровень импульсных помех проникающих из электросети.
Далее это напряжение сглаживается конденсатором С1 и фильтруется С2 после чего подается на вход основного регулирующего элемента – DA1 .
Для управления выходным напряжением DA1 используется источник отрицательного напряжения -6 V а так-же сопротивления R2 – R4 , R14 , R15 и вторая группа контактов переключателя S1 для коммутации выбранного диапазона напряжений.
Назначение этих сопротивлений такое:
R2 – обратная связь по напряжению ОУ DA1 , его значение выбирается из отношения к сумме сопротивлений R3,R4,R14,R5 и определяет значение выходного напряжения.
Его значение выбрано вдвое больше обычного (240 Ом) с целью снижения выходного тока ОУ DA4 (в режиме стабилизации тока через светодиод индикации включения режима ограничения тока D8 ток составляет около 2 mA при минимальном выходном токе источника питания).
R15 – отвечает за нулевое значение выходного напряжения БП при выбранном диапазоне регулировки выходного напряжения от 0 до 6 . 7 вольт и выкрученном в минимум (в 0 Ом) сопротивлении R3 регулировки выходного напряжения.
R4 – определяет максимальное выходное напряжение обоих диапазонов.
R14 – устанавливает минимальное напряжение для диапазона 6 . 12 V.
Изменение этих сопротивление вызывает некоторое взаимное влияние на выходные значения напряжений и для полной калибровки процедуру подбора этих сопротивлений следует повторить несколько раз, используя подстроечные резисторы на момент калибровки.
Накопительный конденсатор С3 и фильтрующий С4 используются для снижения уровня выходных пульсаций БП.
Если заменить R1 и С5 перемычкой и исключить блоки усилителя напряжения и регулятора тока получится обычный стабилизатор напряжения без регулировки и контроля выходного тока, для его регулировки и ограничения и введены данные элементы. *
Сопротивление R1 является токоизмерительным, выделяемое на нем напряжение пропорционально выходному току устройства. Конденсатор С5 служит для шунтирования переменной составляющей выделяемой на сопротивлении R1 в процессе регулирования напряжения при большом токе нагрузки и ее импульсном характере, поскольку источник опорного напряжения привязан к входу этого резистора а не выходу, как предлагается делать в ряде решений других авторов. Такое включение выбрано из соображений получения минимума пульсаций выделяемых на R1 при работе стабилизатора DA1 .
В противном случае напряжения пульсаций на входе ОУ DA3 составит около 10 милливольт, что после усиления с выбранным коэффициентом усиления около 200 – 250 раз (подбирается R7 в зависимости от реального значения сопротивления R1 с целью получить 10 вольт напряжения на выходе DA3 при выходном токе БП в 1 A с последующим выводом на цифровой вольтметр) на выходе DA3 мы получим 2 . 2,5 вольта пульсаций, что сказывается на точности измерений и позволяет осуществлять только грубую регулировку стабилизации тока. Даже шунтирование обратной связи через R7 конденсатором C13 и тем самым снижение коэффициента усиления DA3 по переменной составляющей до 1 раза оставляет эти пульсации на выходе DA3 и делает невозможным поддерживать точность измерения и регулировки выходного тока лучше чем с точностью определяемой уровнем этих пульсаций. **
Итак соотношение сопротивлений R6 и R7 определяет коэффициент усиления инвертирующего ОУ DA2 по постоянному напряжению. Поскольку неизбежен разброс параметров сопротивления R1 , то следует подобрать значение R7 согласно вышеуказанным соображениям. При этом чем ниже будет сопротивление R1 , тем меньшее влияние оно будет оказывать на стабильность выходного напряжения, на стабильность выходного напряжения в режиме стабилизации тока оно влияет еще в меньшей степени. Минимальное значение этого сопротивления определяется исходя из того, с какой точностью необходимо поддерживать и измерять минимальный выходной ток и в этом плане зависит от возможностей применяемого ОУ DA3 , а именно параметром минимального напряжения смещения нуля . Для выбранной ИМС оно составляет 75 микровольт.
Далее усиленное напряжение подается на цифровой вольтметр и на делитель R8 , R9 опорой которого служит источник – 6 V. Сопротивление R8 подбирается из цели получить нулевое напряжение на фильтрующем конденсаторе C16 при необходимом ограничении максимального тока (в данном схеме это +10 вольт на выходе DA3).***
На DA4 собран регулятор тока, напряжение снимаемое с делителя R8 , R9 сравнивается с опорным регулируемым посредством R13 напряжением и усиленная разность этих напряжений через светодиод D8 прикладывается к входу управления ОУ DA1 таким образом, что при увеличении выходного тока БП выше выбранного значения, напряжение на управляющем входе DA1 начинает снижаться, при этом начинает светиться светодиод D8 , сигнализируя о переходе БП в режим стабилизации тока. Яркость его свечения обратнопропорциональна выходному току БП.
R10 и R11 определяют коэффициент усиления ОУ DA4 , при этом R11 подключен не к выходу DA4 а к управляющему входу DA1 что бы уменьшить влияние падения напряжения на D8 на работу устройства, коэффициент усиления по переменной составляющей близок к единице благодаря наличию конденсатора C14 . Светодиод D8 целесообразно подобрать с минимальным падением напряжения в открытом состоянии, в противном случае может потребоваться изменение напряжения источника – 6V до – 7 и более вольт или заменить его обычным выпрямительным диодом отказавшись от индикации режима стабилизации тока.
R12 служит для установки минимального тока нагрузки.
С12 и С15 устраняют самовозбуждение ОУ.
Источник – 6V работает следующим образом.
Переменное напряжение с контакта 3 (противоположного от не коммутируемого 1 ) выпрямляется цепочкой С8 , D6 , D7 включенной по схеме умножителя напряжения и заряжает конденсатор C9 , на котором образуется около -32 вольт не стабилизированного напряжения.
Далее это не стабилизированное напряжение подается на вход ИМС стабилизатора отрицательного фиксированного напряжения -6V DA2 LM7906 , на выходе которого формируется стабилизированное напряжение – 6V . Для правильной работы DA2 требуется наличие нагрузки с током не менее 5mA согласно спецификации производителя, для этой цели установлен R5 , кроме того необходимо наличие конденсаторов C11 , C12 согласно все тех же рекомендаций производителя во избежание входа ИМС в режим самовозбуждения. Важно разместить эти конденсаторы как можно ближе к выводам DA2 , иначе их применение окажется неэффективным.

Разумеется необходимо установить DA1 и диодный мост на теплоотвод, выделяемая на них тепловая мощность зависит от выбранного напряжения нагрузке и в худшем случае составляет около 8. 10 ватт для данной схемы.
Как лучше всего соединять блоки и отдельные элементы показано на схеме, при несоблюдении этих рекомендаций возможно повышение уровня пульсаций.
Усилитель напряжения целесообразно экранировать в случае применения пластикового корпуса устройства, корпуса переменных резисторов нужно заземлить на вход R1 (общую точку всех токов устройства).

Примечания:
* Ток в этом случае будет определяться значением сопротивления нагрузки и максимально возможным значением тока для ОУ DA1 , что составляет около 2 ампер при падении напряжения на DA1 не более 15 вольт согласно рекомендациям производителя.
Таким образом данная схема потенциально способна выдерживать и регулировать токи до 2 ампер, но значение в 1 ампер выбрано мной их соображений тепловыделения на регулирующем элементе, точностью поддержания выходного тока с разницей в 1 – 2 mA и отсутствия необходимости в токах более 1 А.
По моему убеждению на бОльшие токи целесообразней применять импульсные стабилизаторы напряжения, а данное устройство призвано заменить гальванические элементы питания переносимых устройств на время их наладки.
** В случае применения цифрового вольтметра о наличии значительного уровня этих пульсаций будет говорить хаотичное ‘скакание’ цифр в последних разрядах. Поэтому применение цифровых вольтметров целесообразно и для контроля за уровнем пульсаций как самого БП так вызванных работой питаемых устройств.
*** Применение этого делителя вызвано целью упростить схему, но имеет побочный эффект в виде снижения выходного напряжения при выкрученном регуляторе тока на минимальное его значение даже в отсутствие нагрузки. Но это не влияет на возможность регулировки тока начиная с единиц миллиампер и на точность поддержания этих значений. В противном случае необходимо заменить этот делитель еще одним инвертирующим усилителем, что представляется нецелесообразным. А для тех, кому не требуется повышенная точность поддержания выходного тока на нагрузке БП, вообще можно исключить блок усилителя напряжения оставив только регулятор тока на DA4 подключив его вход к R1 и увеличив сопротивление последнего, но данная статья направлена на противоположные цели.

Генератор стабильного тока Видлара

Источник тока Видлара является разновидностью основной схемы двухтранзисторного токового зеркала, которая содержит токоограничивающий резистор в цепи эмиттера выходного транзистора, что позволяет использовать эту схему для генерации слабых токов, применяя токоограничивающий резистор только средних номиналов.

В схеме Видлара могут использоваться как биполярные, так и полевые транзисторы с изолированным затвором (МОП — транзисторы), и даже вакуумные лампы. Примером использования этого источника тока может служить операционный усилитель модели 741, Видлар применял свой источник тока во многих конструкциях.

Эта схема была названа в честь её изобретателя, Боба Видлара, и была запатентована в 1967 году.

Анализ схемы

Рис. 1. Источник тока Видлара

На рисунке 1 изображена схема источника тока Видлара на биполярных транзисторах, здесь резистор R2 установлен в цепи эмиттера выходного транзистора VT2, что позволяет сделать ток, протекающий через транзистор VT2, относительно небольшим по сравнению с током транзистора VT1. Главной особенностью этой схемы является то, что падение напряжения на резисторе R2 вычитается из напряжения база-эмиттер транзистора VT2, что приводит к уменьшению проводимости этого транзистора по сравнению с транзистором VT1. Это наблюдение выражается равенством базовых напряжений с обеих сторон схемы из рисунка 1:

VB = VBE1 = VBE2+(β2+1) * IB2 * R2 ,

где β2 — это β (коэффициент передачи по току) выходного транзистора, этот параметр отличается от β первого транзистора из-за технологического разброса параметров, а так же отчасти из-за того, что силы токов, протекающих через оба транзистора сильно отличаются. IB2 — это базовый ток выходного транзистора, VBE — это напряжение база — эмиттер. Из этого уравнения следует (используя формулу Шокли для идеальных диодов):

(β2+1) * I B2 = (1 + 1 / β2) * IC2 = (VBE1 — VBE2) / R2 = VT / R2 * ln(IC1 * IS2 / (IC2 * IS1)) ,

где VT — тепловое напряжение.

Из этого уравнения примерно следует, что величины обеих токов гораздо больше, чем масштабные токи IS1, IS2, это приближение верно для токов любой силы, за исключением тех, значения которых находятся вблизи зоны отсечки. В дальнейшем различие между двумя масштабными токами уменьшается, хотя эта разница может быть важна в случае использования транзисторов с различными рабочими областями.

Рис. 2. Токовое зеркало Видлара
на транзисторах КТ503А.

Рассмотрим практический пример генератора тока Видлара (рис. 2). Здесь опорная цепь питается от источника +Vcc напряжением 10,75 Вольт, что обеспечивает опорный ток, равный 10 мА (при сопротивлении резистора R1 = 1 кОм), а цепь нагрузки — коллектор транзистора VT2 запитан от источника VA напряжением = 25 В.

При опорном токе, равном 20 мА (R1 = 0,5 кОм) изменим сопротивление эмиттерного резистора R2:

R2, Ом Ток эмиттера VT2, мА
0 25,56
1 16,07
10 5,06
100 0,95

Теперь то же самое проделаем для опорного тока 10 мА (R1 = 1 кОм):

R2, Ом Ток эмиттера VT2, мА
0 12,8
1 9,4
10 3,6
100 0,8

Как видно из результатов, незначительное изменение сопротивления резистора R2 существенно уменьшает ток коллектора токового зеркала. Кроме того, при сопротивлении эмиттерного резистора R2 равном нулю отношение полученных эмиттерных токов будет равно 25,56/12,8 = 1,99 ≈ 2, а в случае когда сопротивление R2 равно 100 Ом отношение полученных эмиттерных токов станет равно 0,95/0,8 = 1,18, то есть чем больше сопротивление эмиттерного резистора, тем меньше зависимость выходного тока от опорного.

BACK MAIN PAGE

Базовые схемы источников тока

Однако
в ИС, рассмотренный способ использовать
сложно, так как нельзя выполнить точное
равенство
,
поэтому базовая схема интегрального
источника тока выглядит следующим
образом:

Рис.
29. Базовая схема интегрального источника
тока

Если
считать, VТ1
и VТ2
взаимосогласованными, то

Из
этого следует, что Iд
= Iн
и схема тоже является зеркалом тока.

,

(51)

Поэтому
переход база-коллектор транзистора VТ1
закрыт, и VТ1
всегда в активном режиме, поэтому для
точки А и справедливы вышеуказанные
уравнения.

В
ИС часто используется аналогичная схема
на многоколлекторных транзисторах.

Рис.
30. Схема модификации

с
многоколлекторным транзистором.

Основные модификации источников тока

Несмотря
на простоту и высокую технологичность
рассмотренные схемы не лишены недостатков:

  1. Невысокие
    токостабилизирующие свойства за счет
    отсутствия отрицательной обратной
    связи по току.

  2. Сложность
    регулировки соотношения Iн
    и Iд.
    Здесь это можно сделать только изменением
    геометрических размеров переходов,
    что не технологично.

Поэтому
для исключения этих недостатков в цепь
эмиттера транзисторов вводят резистор.

Рис.
31. Схема источника тока с резистором в
цепи эмиттеров

Для
того чтобы найти взаимосвязь токов,
запишем напряжения на базах транзисторов
1
и VТ2
(напряжение должно быть одинаковым)

,

(52)

Так
как
,
поэтому решим это уравнение относительноIэ2:

Если
транзисторы взаимосогласованные и
изготовлены по групповой технологии,
то
,
и если схема является зеркалом тока, тои

(54)

Как
видно, в этой схеме появляется повышение
температурной стабильности и появляется
возможность регулировки соотношения
токов за счет резисторов в цепи эмиттера.
Схема очень широко применяется, но
недостаток в том, что в ИС невозможно
увеличить номиналы Rэ2
и Rэ1
больше 20 кОм.

Самым
простым решением является вместо этих
резисторов включить в цепь эмиттеров
еще один источник тока (Рис.32).

Рис.
32. Источник тока с динамической нагрузкой

Здесь
основной ГСТ – транзисторы VТ1
и VТ2,
а VТ3
и VТ4
выполняют роль высокоомных динамических
нагрузок.

Кроме
того, широкое применение нашли источники
тока, называемые двойным зеркалом тока.

Рис.
33. Двойное зеркало тока

Предположим,
что в силу каких-то причин увеличился
Iк(VТ1),
это могло быть вызвано увеличением Iн
или изменением питания. Тогда увеличивается
падение напряжения на резисторе R1.
Это приводит к уменьшению потенциала
базы транзистора VТ3,
транзистор VТ3
призакроется, его ток
уменьшится, соответственно
уменьшится
итоже уменьшится и вернется в исходное
состояние.

Эту
схему называют двойным зеркалом тока,
так как Iн
отслеживается Iк(VТ1)
и Iэ(VТ1).

Контрольные
вопросы

1.
Принципы построения источников тока в
схемотехнике ОУ.

2.
Базовая схема интегрального источника
тока.

3.
Схема источника тока с резисторами в
цепи эмиттеров.

4.
Схема двойного зеркала тока.

Источник тока, управляемый током. OrCAD PSpice. Анализ электрических цепей

Читайте также








Глава 25 Управляемый сигналом ввод-вывод



Глава 25
Управляемый сигналом ввод-вывод

25. 1. Введение
Ввод-вывод, управляемый сигналом, подразумевает, что мы указываем ядру проинформировать нас сигналом, если что-либо произойдет с дескриптором. Исторически такой ввод-вывод назвали асинхронным вводом-выводом, но в






25.2. Управляемый сигналом ввод-вывод для сокетов



25.2. Управляемый сигналом ввод-вывод для сокетов
Для использования управляемого сигналом ввода-вывода с сокетом (SIGIO) необходимо, чтобы процесс выполнил три следующих действия:1. Установил обработчик сигнала SIGIO.2. Задал владельца сокета. Обычно это выполняется с помощью






Направление тока



Направление тока
Отметим, что порядок следования узлов в записиR1 1 2 10означает, что положительным считается ток, протекающий от узла 1 к узлу 2. Если в результате анализа ток будет протекать в обратном направлении, то в выходном файле он будет иметь отрицательное значение.






Источник напряжения, управляемый напряжением



Источник напряжения, управляемый напряжением
Схема на рис. 1.21 содержит независимый источник напряжения V и зависимый источник напряжения Е c меткой 2Va. От чего же зависит этот зависимый источник? Его выходное напряжение является функцией напряжения на резисторе R1,






Источник напряжения, управляемый током



Источник напряжения, управляемый током
Данный источник напряжения управляется током в какой либо ветви схемы, как показано на рис. 1.24. Зависимый источник имеет значение 0,5I, где I — ток через резистор R1. Ток протекает от узла 1 к узлу 2. Положительный полюс зависимого






Источник тока, управляемый током



Источник тока, управляемый током
Другим типом зависимых источников, который часто применяется в электронике, является источник тока, управляемый током (ИТУT) (Current-Controlled Current Source (CCCS) или Current-Dependent Current Source (CDCS)).На рис. 1.25 показана базовая схема. Значение источника тока равно






Другие источники тока, управляемые током



Другие источники тока, управляемые током
Несколько иная ситуация для более сложной схемы с ИТУТ часто возникает при анализе электронных цепей, когда управляющий ток проходит в ветви, не содержащей независимых источников напряжения V. На рис. 1.26, а представлена типовая






Источник тока, управляемый напряжением



Источник тока, управляемый напряжением
Строка описания источника тока, управляемого напряжением в Spice, начинается буквой G. На рис. 1.27 показан пример такой схемы. Эта цепь легко анализируется с помощью ручного расчета. Напряжение n2 получается на выходе делителя






Другие источники напряжения, управляемые током



Другие источники напряжения, управляемые током
Вспомним, что источники напряжения, управляемые токами в какой-либо ветви, называются управляемыми током (ИНУТ) или зависимыми от тока (CCVS или CDVS). На рис. 1.28 приведена типовая схема такого источника, отличная от






Мостовые схемы с ненулевым начальным током



Мостовые схемы с ненулевым начальным током
В схеме на рис. 6.29 ключ размыкается при t=0. Схема замещения до размыкания показана на рис. 6.30. В ней катушка индуктивности заменена коротким замыканием, при этом напряжения на R1 и R3 равны 6 В, что приводит к прохождению тока в 2 А






Использование ключа, управляемого током, для моделирования нелинейного резистора



Использование ключа, управляемого током, для моделирования нелинейного резистора
Как вариант, дуальный ключу, управляемому напряжением, может использоваться ключ, управляемый током. В этом случае включение ключа происходит при определенном значении тока в какой-либо






Источник напряжения, управляемый напряжением



Источник напряжения, управляемый напряжением
Источник напряжения, управляемый напряжением (ИНУН — VDVS) был представлен в главе 1 (рис. 1.21). Вспомним, что для источников этого типа используется символ Е. В этом примере строка, описывающая Е, выглядит какЕ 3 0 2 0 2Первые два






3. Группы ключевых процессов для уровня 4: управляемый уровень Количественное управление процессом



3. Группы ключевых процессов для уровня 4: управляемый уровень

Количественное управление процессом
Цель 1. Планирование работ по количественному управлению процессом.Цель 2. Установление количественного контроля над выполнением производственного процесса проекта. Цель






7.2. Источник постоянного тока в качестве изменяемой переменной



7.2. Источник постоянного тока в качестве изменяемой переменной
Согласно теории о построении электрических цепей, любой источник напряжения с заданным напряжением истока Uq и заданным внутренним сопротивлением R можно заменить на соответствующий источник тока Iq с






13-Я КОМНАТА: Источник



13-Я КОМНАТА: Источник
Автор: Леонид Левкович-Маслюк»Источник заразы — муха//Сказал мне один чувак» — двадцать лет назад спел Петр Мамонов. Двадцать лет — а как актуально до сих пор! Недавно один умный чувак по телевизору снова сказал замечательную вещь: современный мир нельзя






Ручной фрезерный станок, управляемый из мобильного приложения Николай Маслухин



Ручной фрезерный станок, управляемый из мобильного приложения

Николай Маслухин

Опубликовано 02 июля 2013
Популярная площадка для стартапов Kickstarter до конца июля собирает деньги на проект Handibot – портативный фрезерный станок с программным














Источник тока управляемый напряжением


Управляемый источник постоянного стабилизированного тока с хорошими динамическими характеристиками,
позволяет изменять величину и полярность выходного тока под действием входного управляющего напряжения.
Источник может входить в состав различных приборов и систем. Точность соответствия выходного тока входному
управляющему напряжению позволяет использовать источник для ответственных применений.
Работу источника тока можно пояснить на примере управления светодиодным индикатором.

Применение источника тока для управления светодиодами


Яркость свечения светодиодов удобнее изменять, регулируя ток, протекающий через светодиод,
а не напряжение, приложенное к светодиоду. С помощью управляемого источника стабилизированного
тока можно осуществить изменение и регулировку яркости свечения обычных или лазерных светодиодов.
Сменой полярности можно выбирать группу работающих светодиодов. При одной полярности тока будут
светиться светодиоды Н1-Н6, при противоположной полярности светодиоды Н7-Н12.
Если светодиоды имеют различный цвет, например Н1-Н6 красные, а Н7-Н12 зеленые,
можно осуществить индикацию нормального и критического значения контролируемой величины.


Источник постоянного стабилизированного тока необходим для регулирования величины постоянного магнитного поля.
Управляющее напряжение может поступать от цифроаналогового преобразователя специализированного контроллера или другого прибора.

Применение источника тока для управления электродвигателями


С помощью источника постоянного тока, обладающего возможностью менять направление тока,
достаточно просто осуществить регулирование скорости вращения и смену направления вращения
ротора электродвигателя. Для передачи команды, устанавливающей параметры вращения достаточно
одной двухпроводной линии. Вращение в прямом направлении происходит при положительной полярности
тока на контакте 1 и отрицательной полярности на контакте 2 выходного разъема источника тока U1.


Реверс двигателя происходит при смене полярности управляющего напряжения и вызванного этим
изменением полярности выходного тока. С помощью одного источника меняющего направление тока
можно управлять двумя электродвигателями. При положительной полярности выходного тока на контакте
1 протекает ток через диод VD2 и работает электродвигатель М2, при отрицательной полярности тока на
контакте 1 протекает ток через диод VD1 и работает электродвигатель М1.
Реверс двигателей при такой схеме подключения отсутствует.


Источник тока управляемый напряжением находит применение при передаче аналоговых сигналов.
При таком способе организации связи величина тока пропорциональна аналоговой величине.
Искажение электромагнитными помехами сигнала, передаваемого током значительно меньше по
сравнению с обычным способом передачи сигнала напряжением.


Использование токового сигнала требует установки в передающей и приемной аппаратуре
специальных модулей передачи и приема тока. При этом можно исключить цифровое кодирование
передаваемых данных. Источник тока управляемый напряжением применяется для плавного управления
электромагнитными регуляторами на основе соленоидов в гидравлических системах. На базе управляемого
источника тока легко построить универсальный прибор зарядки аккумуляторов разных типов.

Работа источника тока


Ток, генерируемый идеальным источником, стабилен при изменении сопротивления подключенной нагрузки.
Для поддержания величины тока постоянной изменяется значение ЭДС источника. Изменение сопротивления
нагрузки вызывает изменение ЭДС источника тока таким образом, что значение тока остается неизменным.


Реальные источники тока поддерживают ток на требуемом уровне в ограниченном диапазоне напряжения,
создаваемого на изменяющемся сопротивлении нагрузки. Этот диапазон ограничен мощностью электропитания
источника тока. Если необходимо поддерживать ток величиной 1 ампер на нагрузке 20 ом, это означает,
что на нагрузке будет напряжение 20 вольт. При снижении сопротивления нагрузки или коротком замыкании
выходное напряжение будет снижаться, а при увеличении сопротивления нагрузки электропитание должно
обеспечить возможность работы при напряжениях выше 20 вольт.


Работа источника тока требует источника электропитания. Последовательно с источником электропитания
включается стабилизатор тока. Выход такого прибора рассматривается как источник тока. Параметры
электропитания источника тока конечны, это ограничивает максимальное сопротивление нагрузки,
которую можно подключить к источнику тока. Для обеспечения надежной работы электропитание должно
иметь запас по перегрузке. Ограниченная мощность электропитания ограничивает максимальный ток,
который может отдать в нагрузку источник тока.


Источник тока может работать при сопротивлении нагрузки близком к нулю. Замыкание выхода источника
тока не приводит к аварии устройства или срабатывании защиты. Если произошло замыкание выхода источника
тока вызванное повышенной влажностью, неаккуратным обращением с оборудованием обслуживающего персонала
после ликвидации причин замыкания прибор мгновенно возвращается к нормальному режиму работы.

Схема управляемого источника тока

  • Напряжение питания………….100…260 В, 47…440 Гц
  • Входное напряжение………….±10 В
  • Выходной ток………………….± 100 мА
  • Сопротивление нагрузки……..0,1…120 Ом
  • Температурный диапазон……-50…+75 ±С
  • Точность преобразования……0,5 %

Упрощенная схема источника тока


В основе работы схемы находится свойство операционного усилителя изменять выходное напряжение
операционного усилителя так чтобы сравнять напряжение на входах благодаря цепям обратной связи.
Управляющее напряжение через резистор R1 поступает на инвертирующий вход операционного усилителя
и вызывает изменение напряжение на его выходе.


Изменение напряжения на выходе усилителя вызывает протекание тока через резистор R5 и нагрузку.
Выходное напряжение через цепи обратной связи поступает на входы операционного усилителя.
Сопротивления резисторов имеют величины, обеспечивающие нужную пропорциональность
между влиянием на управляющее напряжение и током через нагрузку.


При положительном управляющем напряжении, поступающем на инвертирующий вход операционного
усилителя, на его выходе формируется отрицательное напряжение. Через резистор и нагрузку
течет ток создающий напряжение на резисторе R5. Потенциал в точке соединения резисторов
R3 и R5 ниже, чем в точке соединения резисторов R4, R5 и нагрузки.


Благодаря тому, что суммарное сопротивление резисторов R4 и R5 равняется сопротивлению R3,
на выходе усилителя присутствует потенциал, компенсирующий управляющее напряжение на входах
операционного усилителя через резисторы обратной связи. Потенциал на выходе усилителя снизится
настолько, насколько это необходимо для компенсации действия положительного управляющего
напряжения на инвертирующий вход операционного усилителя.


Компенсация действия управляющего напряжения на входы операционного усилителя происходит
в зависимости от напряжения на резисторе R5, вызванного протекающим током. Если управляющее
напряжение фиксировано, то влияние обратной связи на входы операционного усилителя происходит
в зависимости от напряжения на резисторе R5.


Изменение сопротивления нагрузки приводит к изменению потенциала на неинвертирующем входе
операционного усилителя через резистор R4. При снижении сопротивления нагрузки снижается
потенциал на неинвертирующем входе операционного усилителя и увеличивается напряжение между
входами операционного усилителя, что вызывает снижение потенциала на выходе усилителя.
При этом на уменьшившемся сопротивлении нагрузки уменьшается приложенное напряжение, не позволяя возрасти току.


Пропорциональность между управляющим напряжением и выходным током устанавливается
сопротивлениями резисторов. Сопротивление резистора R5 должно быть малым, через него
течет выходной ток, вызывающий нагрев. Уменьшение сопротивления R5, расширяет диапазон
сопротивления подключаемых нагрузок. Сопротивления резисторов R1 и R2 равны, значения
их выбраны таковыми, что исключают перегрузку источника управляющего напряжения.
Сопротивления резисторов вычисляются по следующим формулам:


R1 = R2


R3 = R4 + R5


I = (U*R3)/(R1*R5)


Где:

  • U — управляющее напряжение
  • I — выходной ток


Одним из важных параметров любого источника тока, а в нашем случае преобразователя напряжение-ток,
является диапазон сопротивления подключаемых нагрузок. Идеализированная модель устройства
обеспечивает требуемый ток в диапазоне изменения сопротивления нагрузки от 0 до бесконечности.


В реальных устройствах это невозможно и ненужно, так как к сопротивлению нагрузки прибавляется
сопротивление проводов, контактов разъемов, и элементов других цепей. Свойство источника
тока обеспечить работу системы независимо от сопротивления нагрузки является очень полезным.
Благодаря этому свойству повышает надежность системы, в которой участвует источник тока.


Недостатком источника тока является мощность, выделяемая на выходном усилителе.
В каждом случае потребуется выбрать компромисс между запасом по сопротивлению нагрузки
и выделяемым теплом на выходном усилителе. Для обеспечения широкого диапазона сопротивлений
нагрузки приходится использовать электропитание устройства с достаточным запасом по величине напряжения.

Электрическая принципиальная схема источника тока управляемого напряжением
с изменением направления тока


Практическая реализация источника изображена на электрической принципиальной схеме.
Для точного соответствия схемы расчетам сопротивления собраны из резисторов, включенных
последовательно или параллельно. Выходной усилитель состоит из транзисторов VT1 и VT2.
При выходном токе сто миллиампер на нагрузке двадцать ом напряжение составит два вольта,
на регулирующем транзисторе падение напряжение примерно 0,6 вольт, на резисторе R5 падение
напряжения 0,1 вольт. При питании 15 вольт напряжение на одном из двух транзисторов усилителя
составит 15В-2,7В=12,3В, а мощность около 12,3В*100мА=1,23 Вт выделится в виде тепла.


Конденсатор С4 необходим для подавления наводок наведенных на линию, подключенную к
управляющему входу устройства, конденсатор С5 предотвращает возбуждение схемы.
Конденсатор С1 уменьшает помехи устройства в сеть питания. Питание осуществляется от сети 220 вольт, 50 гц.


Благодаря импульсному преобразователю напряжения DA1 к питанию не предъявляется требований
по стабильности напряжения. Автоматический выключатель Q1 выполняет функции тумблера
питания и защищает от перегрузки сеть 220 вольт при аварии устройства. Н1 – индикатор
наличия питания. Трансил-диод VD1 защищает источник питания от превышения сетевого
напряжения выше критического значения. Преобразователь напряжения обеспечивает схему
устройства двухполярным питанием, необходимым для работы операционного усилителя и формирования выходного тока двух полярностей.


























Позиционное
обозначение
Наименование

Конденсаторы
C1 K73-16 0,01 мкФ ± 20%, 630 В
C2, C3 0,47 мкФ-К-1Н-Н5 50 Вольт, ф. Hitano
C4 100 пФ-J-1H-H5 50 Вольт, ф. Hitano
C5 0,47 мкФ-К-1Н-Н5 50 Вольт, ф. Hitano
   

Резисторы
R1, R2 C2-29B-0,125-101 Ом ± 0. 05 %
R3 C2-23-0,25-33 Ом ± 5 %
R4 C2-29B-0,125-101 Ом ± 0.05 %
R5 1 Ом ± 0.01 % Astro 2000 axial ф. Megatron Electronic
R6, R7 C2-29B-0,125-200 Ом ± 0.05 %
R8, R9 C2-29B-0,125-10 кОм ± 0.05 %
   

Транзисторы и диоды
VT1 TIP3055 ф. Motorola
VT2 TIP2955 ф. Motorola
VD1 Трансил-диод двунаправленный 1.5KE350CA ф. STMicroelectronics
   

Схемы и модули
h2 Светодиодная коммутаторная лампа СКЛ-14БЛ-220П “Протон”
DA1 Преобразователь напряжения TML40215 ф. TRACO POWER
DA2 Микросхема операционного усилителя OP2177AR
Q1 Автоматический выключатель УкрЕМ ВА-2010-S 2p 4А “Аско”


Конденсатор C1 может быть любого типа. Важное требование, предъявляемое к этому компоненту
это уровень рабочего напряжения не ниже 630 вольт. Конденсаторы С2…С5 можно использовать
керамические или многослойные. Все резисторы кроме R3 должны иметь максимально возможную
точность. Резистор R5 лучше сделать составным из четырех резисторов сопротивлением 1 ом.


Две цепи, состоящие из двух последовательно включенных резисторов по 1 ом,
соединяются параллельно. В результате общее сопротивление составляет 1 ом,
а рассеиваемая мощность увеличивается в четыре раза. Резистор R5 проволочного
типа применять нельзя. Импульсный преобразователь напряжения DA1 можно заменить
двухполярным блоком питания, обеспечивающим выходной ток в каждом плече 500 миллиампер и уровень пульсаций не более 50 милливольт.


Для достижения высокой точности преобразования управляющего напряжения в выходной ток операционный усилитель,
должен иметь малое напряжение смещение нуля. Особенно это важно для снижения выходного тока до нуля
под действием управляющего напряжения. При некотором снижении точности в качестве замены
DA1 подойдут микросхемы OP213 или OP177. Применение на выходе схемы мощных транзисторов
увеличивает надежность устройства. Транзисторы обязательно устанавливаются на радиаторы.


Схему можно использовать для других выходных токов и управляющих напряжений. Для этого
потребуется произвести расчеты по приведенным формулам ранее в статье. При выполнении
расчетов следует учитывать возможность применения резисторов из стандартного ряда сопротивлений.


При проверке работы схемы необходимо во всем диапазоне напряжений, токов и сопротивления
нагрузки проверить осциллографом отсутствие колебаний на выходе схемы. В случае наличия колебаний увеличить емкость C4 или С5.


Справочные данные:
Преобразователь напряжения TML40215
Операционный усилитель OP2177AR

Платон Константинович Денисов, г. Симферополь
[email protected]

Простая и эффективная схема отключения выхода источника питания с функцией мягкого старта и отсутствием бросков тока при включении.

С целью удовлетворения строгих требований к потреблению энергии в режиме ожидания, многоканальные источники питания отключают выход при подаче сигнала ожидания. Обычно это осуществляют путем коммутации транзисторов биполярных или МОП-транзисторов. При расчете трансформатора учитывается падение напряжение на транзисторе. При низких выходных токах применяют более дешевые BJT-транзисторы вместо МОП-транзисторов.

Рисунок 1 – простая схема плавного пуска для отключения питания в режиме ожидания при устранении всплеска пускового тока, демонстрирующая возможность использования небольшого транзистора Q1 для снижения общей стоимости.

На рисунке 1 схематически изображен простой байпасный переключатель серии BJT с высоким значением емкости Cload для выхода с параметрами тока 12 В, 100 мА. Транзистор Q1 – последовательный регулирующий элемент, а Q2 производит его включение/отключение в зависимости от типа генерируемого сигнала ожидания. Резистор R1 рассчитан таким образом, чтобы генерируемый Q1 ток оказался достаточным для достижения оптимальных параметров работы при минимальном Beta (коэффициенте усиления) и максимальном значении выходного тока. Чтобы смягчить переходный ток при включении рекомендуется подключение дополнительного конденсатора Cnew. При отсутствии последнего Q1 быстро переключается в режим нагрузки с преобладающей емкостной составляющей, что приводит к броску тока. Для смягчения этого всплеска требуется более габаритный Q1, что приводит к увеличению финансовых затрат.

Cnew устраняет этот всплеск, увеличивая емкость Q1. Дополнительная емкость ограничивает соотношение dv/dt коллектора Q1. Чем ниже значение dv/dt, тем ниже значение тока заряда в Cload. При определении емкости Cnew учитывают значение произведения соотношения di/dt в Q1 и Cnewn, результат которого должен равняться силе тока в R1.

Статья Power Integrations. Перевод Макро Групп.

Основной источник постоянного тока на полевых МОП-транзисторах

Узнайте о простой версии схемы, которая необходима при разработке аналоговых интегральных схем.

Дополнительная информация

Что такое неуловимый источник тока?

Источники постоянного тока занимают видное место в упражнениях по анализу цепей и сетевых теоремах, затем они, кажется, более или менее исчезают. . . если вы не дизайнер интегральных схем. Хотя они редко встречаются в типовой конструкции печатных плат, источники тока повсеместны в мире аналоговых ИС.Это потому, что они используются 1) для смещения и 2) как активные нагрузки.

  1. Смещение: Транзисторы, работающие как линейные усилители, должны быть смещены таким образом, чтобы они работали в желаемой части своей передаточной характеристики. Наилучший способ сделать это в контексте конструкции ИС — заставить заранее определенный ток течь через сток транзистора (для полевых МОП-транзисторов) или коллектор (для биполярных транзисторов). Этот заданный ток должен быть стабильным и независимым от напряжения на компоненте источника тока.Конечно, ни одна реальная схема никогда не будет идеально стабильной или совершенно невосприимчивой к изменениям напряжения, но, как это обычно бывает в инженерии, совершенство не совсем необходимо.
  2. Активные нагрузки: В схемах усилителя источники тока могут использоваться вместо резисторов коллектор / сток. Эти «активные нагрузки» обеспечивают более высокий коэффициент усиления по напряжению и позволяют схеме правильно работать при более низком напряжении питания. Кроме того, технология производства ИС отдает предпочтение транзисторам, а не резисторам.

В этой статье я буду называть выходной сигнал источника тока «током смещения» или I BIAS , потому что я считаю, что приложение смещения является более простым средством для размышлений об основных функциях этой схемы.

Схема источника постоянного тока MOSFET

Вот основной источник постоянного тока MOSFET:

На мой взгляд, он на удивление прост — два NMOS-транзистора и резистор. Давайте посмотрим, как работает эта схема.

Как видите, сток Q 1 замкнут на его затвор. Это означает, что V G = V D , и, следовательно, V GD = 0 В. Итак, находится ли Q 1 в отсечке, в области триода или в области насыщения? Он не может быть отключен, потому что, если бы через канал не протекал ток, напряжение затвора было бы на уровне V DD , и, следовательно, V GS было бы больше порогового напряжения V TH (мы можем безопасно предположим, что V DD выше, чем V TH ).Это означает, что Q 1 всегда будет в режиме насыщения (также называемом «активным» режимом), потому что V GD = 0 В, и один из способов выразить условие насыщения MOSFET состоит в том, что V GD должно быть меньше чем V TH .

Если мы вспомним, что в затвор полевого МОП-транзистора не течет установившийся ток, мы увидим, что опорный ток I REF будет таким же, как ток стока Q 1 . Мы можем настроить этот эталонный ток, выбрав соответствующее значение для R SET .2 \]

На этом этапе мы игнорируем модуляцию длины канала; следовательно, как показано уравнением, на ток стока не влияет напряжение сток-исток. Теперь обратите внимание, что оба полевых транзистора имеют свои источники, связанные с землей, а их затворы закорочены вместе — другими словами, оба имеют одинаковое напряжение затвор-исток. Таким образом, если предположить, что оба устройства имеют одинаковые размеры каналов, их токи стока будут равны независимо от напряжения на стоке Q 2 .Это напряжение обозначено как V CS , что означает напряжение на компоненте c urrent- s usce; это помогает напомнить нам, что Q 2 , как и любой другой источник тока с хорошим поведением, генерирует ток смещения, на который не влияет напряжение на его выводах. Другими словами, Q 2 имеет бесконечное выходное сопротивление:

.

В этих условиях ток никогда не проходит через выходное сопротивление R O , даже если V CS очень высокое.Это означает, что ток смещения всегда в точности равно опорный ток.

Распространенное название этой схемы — «текущее зеркало». Вероятно, можно понять, почему-ток, генерируемый транзисторные зеркала правых (т.е. аналогично) опорный ток, протекающий через левосторонний транзистор. И это имя особенно уместно, если учесть визуальную симметрию, демонстрируемую типичным схематическим изображением.

Кстати, более старые ИС часто требовали внешнего резистора для R SET .Однако в настоящее время производители используют резисторы на кристалле, которые были подрезаны для достижения необходимой точности.

Важность того, чтобы транзистор оставался в насыщении

Первым серьезным вызовом идеализированному анализу этой схемы является тот факт, что все разваливается, когда транзистор не находится в состоянии насыщения. Если Q 2 находится в области триода (AKA linear), ток стока будет сильно зависеть от V DS . Другими словами, у нас больше нет источника тока, потому что на ток смещения влияет V CS .Мы знаем, что напряжение затвор-сток Q 2 должно быть меньше порогового напряжения для поддержания насыщения.

Другими словами, Q 2 выйдет из области насыщения, когда напряжение стока станет ниже V TH вольт, чем напряжение затвора. Мы не можем указать это точное число, потому что и напряжение затвора, и пороговое напряжение будут варьироваться от одной реализации к другой.

Разумным примером является следующий: напряжение затвора, необходимое для создания желаемого тока смещения, составляет около 0.9 В, а пороговое напряжение — 0,6 В; это означает, что мы можем поддерживать насыщение, пока V CS остается выше ~ 0,3 В.

Длина канала модуляции

К сожалению, даже когда наша общая схема гарантирует, что Q 2 всегда будет в насыщении, наш источник тока MOSFET не совсем идеален. Виной всему является модуляция длины канала.

Суть области насыщения — это «отсеченный» канал, который существует, когда напряжение затвор-сток не превышает пороговое напряжение.

Идея состоит в том, что ток стока становится независимым от V DS после перекрытия канала, поскольку дальнейшее увеличение напряжения стока не влияет на форму канала. В действительности, однако, увеличение V DS заставляет «точку отсечки» перемещаться к истоку, и это позволяет напряжению стока оказывать небольшое влияние на ток стока, даже когда полевой транзистор находится в состоянии насыщения. Результат можно представить так:

I BIAS теперь является суммой I REF (определяется R SET ) и I ERROR (ток, протекающий через выходное сопротивление).I ERROR подчиняется простой зависимости закона Ома: более высокое значение V CS означает больше I ERROR и, следовательно, больше I BIAS , и, таким образом, источник тока больше не зависит от напряжения на его выводах.

Регулировка и рулевое управление

Эта удобная схема источника тока становится еще лучше, если вы понимаете, насколько она гибкая. Сначала давайте посмотрим на регулировку тока, генерируемого Q 2 . До сих пор мы предполагали, что генерируемый ток такой же, как эталонный, но это верно только в том случае, когда транзисторы имеют одинаковое отношение ширины канала к длине канала.2 \]

Ток утечки прямо пропорционален отношению ширины к длине, и поэтому мы можем увеличить или уменьшить I BIAS , просто сделав отношение W / L Q 2 выше или ниже, чем у Q 1 . Например, если мы хотим, чтобы ток смещения был в два раза больше, чем эталонный ток, все, что нам нужно сделать, это сохранить длину канала одинаковой и увеличить ширину канала Q 2 в два раза. (Это может показаться не таким простым, если вы привыкли работать с дискретными полевыми транзисторами, но указание размеров канала является стандартной практикой при проектировании ИС. )

Также довольно просто использовать эту схему для «текущего рулевого управления». Следующая диаграмма иллюстрирует концепцию управления током:

Эта продуманная конструкция позволяет нам генерировать несколько токов смещения из одного эталонного тока. Более того, каждый из этих токов может быть разным — их можно индивидуально изменять, просто регулируя отношение ширины к длине.

Заключение

Мы рассмотрели работу и возможности основного источника постоянного тока MOSFET, а также обсудили ограничения.Как следует из прилагательного «базовый», существуют схемы получше. Но базовая схема — хорошее место для начала, потому что двухтранзисторное токовое зеркало остается концептуальным ядром топологий с более высокими характеристиками.

LM334 Цепи постоянного тока Учебное пособие

Рис. 1

Льюис Лофлин

YouTube видео для этого проекта:

Источник постоянного тока (CCS) в электронике — это устройство / цепь, которая производит постоянное значение тока независимо от напряжения источника или сопротивления нагрузки. На рис. 1 показана общая схема CCS с использованием биполярного транзистора PNP. Значения Ic = Ib * hfe (бета) транзистора. Цепь постоянного тока также может использоваться в качестве ограничителя тока.

Maxim Semiconductor отмечает следующее, почему нам нужно использовать источник постоянного тока. «При использовании белых светодиодов для подсветки дисплеев или других приложений освещения есть две причины использовать их с постоянным током:»

Во избежание нарушения абсолютного максимального номинального тока и снижения надежности.

Для получения предсказуемой и согласованной силы света и цветности каждого светодиода.

Они отмечают: «Прямой ток по сравнению с прямым напряжением шести случайных белых светодиодов (по три от каждого из двух производителей) … например, питание этих шести светодиодов напряжением 3,4 В приведет к изменению их прямого тока от 10 мА до 44 мА. в зависимости от светодиода «.

Помимо светодиодов, источники постоянного тока используются с резистивными датчиками, такими как фотоэлементы и термисторы, для большей стабильности и для источников питания с ограничением тока.

См. Источник постоянного тока LM317 для освещения светодиодов

См. Источник постоянного тока LM334 с резистивными датчиками.

На рис. 1 Ib управляется резистором 1 кОм и потенциометром 5 кОм. При Vcc, равном 12 вольт, мы падаем 0,6 вольт на переход база-эмиттер Q1. Мы настраиваем потенциометр на базовый ток 3 мА (0,003 А). Если Q1 имеет hfe 50: Ic = 0,003 * 50 = 150 мА или 0,15 А.

Эти схемы необходимы для работы с матрицами мощных светодиодов (LED).Схема выше проста, может быть немного нестабильной из-за дрейфа температуры с Q1, вызывающего дрейф тока. Эта проблема незначительна по сравнению с дрейфом источника питания, который может вызвать гораздо большую нестабильность.

Рис. 2

На Рис. 2 показан более стабильный источник постоянного тока, использующий LM741 OP-AMP. Ток коллектора Ic = (Vcc — Vref) / RE. В приведенном выше примере с Vref = 1,5 В и RE = 10 Ом; (12 В — 10,5 В) / 10 = 150 мА. Эта конструкция более стабильна благодаря обратной связи с контактом 2 на LM741, когда изменения температуры вызывают изменения тока с Q1. Потолок на 20 кОм можно заменить постоянными резисторами.

Большой плюс — Ic не зависит от Q2 hfe — hfe — усиление постоянного тока.

Это было протестировано и хорошо работало даже при напряжении до 5 вольт, управляя белым светодиодом питания на 150 мА при 3,2 В. Единственная слабость — это колебания тока из-за смены источника питания.

Рис. 3

Рис. 3 использует LM334 как трехконтактный источник тока, предназначенный для работы при уровнях тока от 1 мкА до 10 мА, которые устанавливаются внешним резистором Rset. Устройство работает как «настоящий двухконтактный источник тока», не требующий дополнительных подключений питания.«Он также может работать как датчик температуры.

В этом примере я использую LM334 для управления Ib в Q3. Rset — это комбинация R1 и R2, настроенная на 100 Ом. Iset = Ib = 67,7 мВ / Rset = 677 мкА. Ic = Ib * hfe; Ic = 677 мкА * 180 = 120 мА. Q3 был 2N2907. См. Лист технических характеристик LM334.

Это намного превосходит две более ранние схемы, потому что колебания источника питания вызывают небольшое измеримое изменение Ic. Но для LM334 максимальный ток привода составляет всего 10 мА, и существует множество приложений, где требуются гораздо более высокие токи.

В следующем разделе мы рассмотрим использование регулятора переменного напряжения LM317 в режиме источника постоянного тока.

См. Цепи постоянного тока LM317

Выше мы увеличиваем ток из LM317. См. Источник питания

с регулируемым напряжением и током LM317.

Новый апрель 2018 г .:

Домашняя страница Hobby Electronics и домашняя страница для веб-мастеров (Off site.)

Что такое текущий источник?

Прочитав ваши комментарии, я дам несколько иной ответ на этот вопрос.

Что такое текущий источник? Ничего страшного, или, проще говоря, это просто математическая модель. Тот, который вы описываете, не существует, так же как не существует источника напряжения.

Я думаю, что основная проблема здесь связана с этим утверждением: , например, батарея, которая имеет постоянную разность потенциалов на концах, независимо от изменений в цепи, в которой она подключена к , что неверно. Это поведение идеальной батареи, которая реальна как идеальный источник тока и как идеальный источник тока не существует.На выход (и внутреннее состояние) каждой реальной батареи влияет схема, к которой она подключена.

Так зачем нам источники напряжения и тока? Идея состоит в том, что работа инженера состоит в том, чтобы сконструировать устройство, которое делает что-то довольно хорошо и, как выясняется, для полного понимания того, как каждый компонент, используемый в устройстве, не нужен. Вот почему у нас есть такие вещи, как идеальные источники тока и напряжения.

Вернемся еще раз к примеру с батареей.Вот простой эксперимент, который я проделал с литий-полимерным аккумулятором, который у меня есть: сначала я полностью зарядил аккумулятор. Поскольку это двухэлементная батарея, ее напряжение при полной зарядке составляло 8,4 В, хотя ее номинальное напряжение составляет 7,4 В. Затем я подключил к батарее резистор \ $ 100 \ mbox {} k \ Omega \ $. Его напряжение осталось 8,4 В, и из этого я мог бы сделать вывод, что аккумулятор действительно является идеальным источником напряжения, так как я подключил к нему нагрузку, но ее напряжение не изменилось. Затем я взял электродвигатель, который у меня есть, подключил его к батарее и снова измерил напряжение батареи.На этот раз оно составило 8,2 В. Очевидно, что двигатель повлиял на батарею, и это уже не идеальный источник напряжения, хотя это та же батарея, что и раньше. Я отключил двигатель и снова подключил резистор, и снова напряжение на аккумуляторе было 8,4 В.

Так что здесь происходит? Аккумулятор — идеальный источник напряжения или нет? Мы знаем, что это не потому, что я сказал об этом в начале ответа, но здесь я объясню, почему иногда кажется, что это так, а иногда кажется, что это не так.Как я уже сказал, источник напряжения — это математическая модель. Когда внешняя цепь не оказывает большого влияния на работу батареи, я могу ее использовать, а когда внешняя цепь действительно оказывает большое влияние на батарею, я не могу ее использовать. Итак, мы используем простую модель для представления поведения реальной схемы. Другая модель — использовать идеальный источник напряжения с последовательно включенным резистором на выходе. Когда я подключаю внешнюю нагрузку к этой цепи, на внутреннем резисторе будет падать некоторое напряжение, а на выходе внешнего резистора будет более низкое напряжение.Это позволяет мне снова использовать идеальный источник напряжения для представления батареи, и, поскольку я использую внутренний резистор вместе с идеальным источником напряжения, выходной сигнал будет более точно отображать поведение реальной батареи. Если мне нужно больше точности, я могу решить использовать более сложную модель и получить более точные результаты.

Важным моментом в электротехнике является изучение того, когда использовать правильную модель для представления чрезвычайно сложного компонента реальной цепи (и даже скромный резистор при детальном анализе является шедевром современной науки).Но для этого мы начинаем с простых схем, чтобы понять, как на самом деле работают простейшие математические модели.

Когда мы начинаем анализ более сложных компонентов схемы, таких как, например, транзистор или диод, мы разбиваем их на простую схему, состоящую из таких элементов, как резисторы и идеальные источники тока и напряжения. Это позволит нам упростить поведение более сложного компонента и избежать подробного анализа того, как он работает, если для наших нужд достаточно простой модели.

Полностью та же история работает с источниками тока, но я решил не рассказывать ее здесь, поскольку, как вы можете видеть из других ответов, схемы, которые можно смоделировать как идеальные источники тока, слишком сложны для понимания на данном этапе.

Итак, подведем итог: не существует реальных объектов, которые можно было бы использовать для представления идеальных источников напряжения и тока, но есть некоторые объекты, которые можно (в некоторых случаях довольно близко) представить с помощью идеальных источников напряжения и тока.Лучшее, что вы можете сделать сейчас, — это правильно запомнить определения идеальных источников напряжения и тока и не путать их с реальными объектами. Таким образом, вы не будете удивлены, если батарея не обеспечивает свое номинальное напряжение или если цепь, обозначенная как идеальный источник тока, в какой-то момент начнет дымиться, хотя она должна быть полностью защищена от внешних изменений в цепи.

В качестве примечания рассмотрим, что происходит с идеальным источником напряжения, когда его выходы закорочены, и что происходит с идеальным источником тока, когда его выходы разомкнуты? И что происходит, когда вы закорачиваете батарею, и почему все батареи имеют предупреждение, чтобы не закорачивали выходные контакты?

Как сделать схему источника постоянного тока | Custom

Как работает цепь питания?

Напряжение вызывает ток, а не наоборот! Итак, чтобы создать устройство, обеспечивающее постоянный ток независимо от нагрузки, мы должны использовать отрицательную обратную связь и преобразовать ток, протекающий через нашу нагрузку, в напряжение.К счастью, есть очень простой способ преобразовать ток в напряжение, который включает использование резистора небольшого сопротивления (в нашем случае резистора 0,1 Ом). Напряжение на этом резисторе будет пропорционально току (благодаря V = IR), и используя это, мы можем зафиксировать ток в цепи. Напряжение на резисторе подается на отрицательный вход операционного усилителя, а фиксированное известное напряжение подается на положительный вывод. Выход операционного усилителя подключен к базе силового транзистора (игнорируя пару Дарлингтона), который контролирует, сколько тока может протекать через цепь.Операционный усилитель в этой схеме (U1A) находится в замкнутом контуре, потому что отрицательный вход и выход соединены вместе (через Q3), и поэтому операционный усилитель будет «пытаться» поддерживать контакты + и — при одинаковом потенциале напряжения. .

Лучший способ увидеть, как работает эта схема, — это пример:

Мы хотим установить наш источник постоянного тока на 1 ампер, и мы подключили нагрузку 1 Ом на выходе. Если через цепь протекает 1 ампер, то мы должны ожидать увидеть напряжение 0,1 В на цепи 0.Резистор сопротивлением 1 Ом, поэтому мы настраиваем потенциометр таким образом, чтобы на положительный вывод U1A подавалось напряжение 0,1 В.

Если ток, протекающий через нагрузку, ниже 1 А, тогда напряжение на резисторе 0,1 Ом будет меньше 0,1 В, и это видно на отрицательной клемме U1A. Поскольку положительный вывод больше отрицательного, операционный усилитель станет более положительным и, следовательно, увеличит проводимость Q3. Это увеличение проводимости Q3 позволяет большему току проходить через нагрузку и 0.Резистор сопротивлением 1 Ом. Если ток, протекающий через резистор, превышает 1 ампер, то напряжение на резисторе 0,1 Ом становится больше 0,1 В. Это означает, что отрицательный вход операционного усилителя U1A становится больше, чем положительный вход, и, следовательно, операционный усилитель становится более отрицательным. Это снижение выходного напряжения приводит к уменьшению проводимости Q3 и, следовательно, меньшей проводимости. Это уменьшает ток, протекающий через нагрузку и, следовательно, через резистор 0,1 Ом.

Чтобы увидеть, какой ток протекает через нагрузку, измеритель напряжения подключен к усилителю (U1B).Задача усилителя — усилить напряжение на резисторе 0,1 Ом до читаемого уровня для дешевого светодиодного цифрового дисплея. D1 используется для предотвращения скачков ЭДС, которые могут быть созданы нагрузкой из-за повреждения транзистора Q3. Транзистор Q3 должен быть в корпусе TO-3 с некоторой формой рассеивания тепла для токов более 100 мА и должен иметь как радиатор, так и дополнительный вентилятор для тока более 1 А.

Познакомьтесь с идеями схем источника постоянного тока для вас

Вам нужен источник постоянного тока для светодиодов? Построить источник питания для схемы зарядного устройства.

Почему мы должны использовать эти схемы?

Представьте, что вашей нагрузке нужен фиксированный ток, например светодиод. Мы не можем запитать его более 20 мА. Это может повредить светодиод.

Светодиод должен иметь постоянный ток и напряжение. К нему, как обычно, прилагается токоограничивающий резистор.

Но в некоторых случаях мы не можем его использовать. Потому что входное напряжение все время меняется. Мы должны сделать постоянный ток через светодиод.

Другие события при зарядке аккумулятора. Обычно требуется только фиксированный ток.Эти схемы вам тоже нужны.

Если не понимаете.

Давайте начнем учиться в 7 схемах ниже.

1 # FET Драйверы постоянного тока для светодиодных дисплеев с использованием BF256

Это схема драйверов постоянного тока на полевых транзисторах для управления светодиодным дисплеем, которая может использовать FET-BF256 вместо резистора.

Обычно при использовании светодиодного дисплея в любых цепях часто используют резистор для ограничения тока светодиода. Потому что легко и дешево.

Но это не лучший вариант, он идеален только для стабильного источника напряжения.Когда мы меняем источник напряжения, ток, протекающий через светодиод, также изменяется, что приводит к нестабильной яркости светодиода. Он может быть поврежден, по нему должен протекать постоянный ток.

Например, в схеме цифрового логического пробника, которую нам нужно проверить на тип TTL, использующий только 5 вольт, и на тип CMOS, который имеет широкое напряжение от 3 до 16 вольт. Когда нам нужен светодиод с такой стабильной яркостью, все источники напряжения.

У меня хороший способ. «Полевой транзистор» является обязательным, потому что, когда мы соединяем затвор и источник вместе, мы вставляем его вместо резистора.Они похожи на рисунок ниже.

Я использую номер: BF256 обычно используется как N-канальный РЧ усилитель (в частотах VHF / UHF), это малоразмерный полевой транзистор типа 92. Используйте при напряжении ниже 30 вольт. И посмотрите позиционный вывод (затвор, источник и сток) или вывод BF256 на рисунке.

И я тестирую это на макете, как показано на видео ниже. Я использую блок питания… Регулируемая схема стабилизатора постоянного напряжения с использованием ic-7805. которые имеют выходное напряжение от 5 В до 22 В, как нам нужно. (Напряжение TTL и CMOS)

Сначала я регулирую напряжение на 5 В (см. На счетчике выше). В то же время я измеряю ток, протекающий через светодиод, имеет 4.Только 22 мА (см. На индикаторе справа) Но светодиоды нормальной яркости. Обычно светодиоду требуется ток 15 мА.

Затем я увеличиваю напряжение, пока ток будет стабильным, всего около 5 мА, а светодиоды также будут стабильной яркостью, поскольку нам нужны… счастливые схемы.

2 # Цепь постоянного тока с использованием светодиода

Это цепь постоянного тока с использованием светодиода. Обычно падение напряжения на светодиодах при прямом смещении составляет от 1,2 до 1,4 В в зависимости от типа светодиода, поскольку температурный коэффициент равен -1.5 мВ на градус Цельсия. Что похоже на температурный коэффициент спая. между базой и эмиттером кремниевых транзисторов.

Исходя из этого отношения, можно определить цепь постоянного тока без температурного коэффициента, как показано на рисунке 1.

Схема постоянного тока с использованием светодиода

Из рисунка ток I, протекающий через значение.

(U LED — U BE) / R

А так как температурный коэффициент транзистора и светодиода полностью смещен.

Таким образом, возникает температура. Это еще не влияет на протекающий ток.

3 # 7805 Схема постоянного тока

Мы также используем регулятор 7805 для построения цепи постоянного тока. Это простая схема зарядного устройства.

Рекомендуется: 7805 техническое описание и примеры схем

Или регулятор тока с использованием IC-7805.

Базовый стабилизатор тока или регулятор тока с использованием 7805

В таблице данных, при использовании резистора-R1 пропускайте ток от вывода вывода IC к нагрузке.

Затем он также подключает токовый выход к заземлению.

Схема внутри 7805 может поддерживать постоянный выходной ток.

Даже меняем любое входное напряжение. Но не забывайте, что он работает при входном напряжении 5 В.

Подробнее: о том, как найти R1 в любом случае.

4 # Прецизионный светодиодный регулятор с использованием LM337T

В качестве альтернативы можно использовать светодиод с источником питания с большим напряжением уровня.

Посмотрите на схему.

Светодиод LED1 будет получать стабильный ток.Некоторые называют прецизионную схему светодиодного регулятора с использованием LM337T.

Плюсы этой схемы в использовании нескольких деталей.

И вы должны использовать входное напряжение от -5В до -37В. Потому что эта ИС — отрицательный стабилизатор напряжения.

Измените R2 для управления трендом (регулируемый (+/-) 15%).

Для R1: если получить от I LED1 = 1,5 В / R1, R2, например ILED1 = 15 мА, R1 = 100 Ом.

5 # Зарядное устройство со стабилизированным током, использующее LM723

Обычно в цепи зарядного устройства батареи используется способ получения стабилизированного тока или стабильного тока.Для этой схемы также интегральная схема LM723 и некоторые электронные детали с оценкой схемы R1 = 11 Ом для фиксированного тока 60 мА.

Мы можем найти значение R, полученное от R = 700 / I, и транзистор 2N3055 добавить для увеличения тока любовник на LM723, долговечный, чтобы уменьшить потери мощности, чтобы электричество работало только около 1,6 Вт. Для выходного напряжения необходимо около 7,5 В, затем выберите использовать только низкое напряжение батареи. Деталь другая, Друзья видят в схеме, пожалуйста, да.

6 # Безопасный источник постоянного тока

Посмотрите на схему ниже. Это безопасная схема источника постоянного тока, как она работает?

КМОП операционный усилитель (номер ICL 7611) управляет входным током через P-канальный силовой транзистор Hexfet (номер IRF 9520), а затем поддерживает постоянное напряжение на R1.
Поскольку они соединены последовательно, используйте общий ток I = VREF / R1, в то время как Vref, определяемый IC2, составляет 1,25 В.

Преимущества этой схемы:
1.Ток нагрузки ограничивается R1, когда нагрузка слишком велика.
2. На операционном усилителе и шестнадцатеричном транзисторе очень низкое служебное напряжение.

7 # Прецизионная схема стока тока

Это схема потребителя тока , в которой используется транзистор, Jfet и операционный усилитель LM101 IC, что обеспечивает высокую точность.

Биполярные 2N5457 Jfet и PN2222 обычно имеют высокий выходной импеданс.
R1 используется в качестве резистора, считывающего ток, для обеспечения обратной связи операционному усилителю LM101 , который обеспечивает большой коэффициент усиления контура для отрицательной обратной связи, чтобы улучшить реальную природу стока тока.
Значение Iout — Vin / R1, на Vin больше 0 В.
Для низких значений тока резистор 10K и PN2222 могут быть отключены, если источник Jfet подключен к R1.

ПОЛУЧИТЬ ОБНОВЛЕНИЕ ПО ЭЛЕКТРОННОЙ ПОЧТЕ

Я всегда стараюсь сделать Electronics Learning Easy .

Источники тока — Electronics-Lab.com

Введение

Продолжая руководство по источникам напряжения, мы представляем в этой статье источники тока , которые являются вторым типом электрических источников, которые мы рассмотрим.

Аналогично тому, что было сделано для источников напряжения, сначала мы представим концепцию идеальных источников тока , в которой обсуждаются их особенности и характеристики.

В реальных схемах, однако, идеальные источники тока не могут быть найдены, поскольку в этой модели появляются некоторые парадоксы и невозможности. Мы выделяем эти практические источники как настоящие источники тока , и мы увидим, в чем их отличия от идеальной модели. Правила соединения между двумя или несколькими источниками тока также обсуждаются далее в том же разделе.

Наконец, последний раздел детализирует зависимых источников тока , которые являются источниками тока, управляемыми напряжением или током.

Презентация

Идеальный источник тока — это устройство, которое может подавать постоянное и стабильное значение тока независимо от напряжения, которое должно подаваться на конкретную выходную нагрузку. Идеальные источники тока представлены двойным кружком или стрелкой внутри круга, например, как показано на Рис. 1 ниже:

Рис.1: Идеальный источник тока, питающий нагрузку с полным сопротивлением Z (слева) и соответствующей характеристикой напряжения / тока (справа)

Характеристика идеального источника тока иногда представлена ​​I = f (V), как это показано выше на рис. 1 . , строго математически говоря, является не функцией, а распределением.

Источники реального тока

Внутренние потери мощности, которые имеют место в источнике тока, можно моделировать с помощью резистора (R S ), подключенного параллельно. ВАХ больше не плоская, но, например, для источников напряжения, скорректирована с наклоном значения -1 / R s , как показано на Рисунок 2 :

Рис 2: Реальный источник тока, питающий нагрузку с полным сопротивлением Z (слева) и связанной с ним вольт-амперной характеристикой (справа)

Мы можем отметить, что идеальный источник тока эквивалентен реальному источнику, сопротивление которого R S стремится к + ∞ (разомкнутая цепь).

Правила подключения

В этом подразделе мы подчеркиваем тот факт, что необходимо учитывать некоторые правила подключения при объединении источников тока в цепь.

Прежде всего, клеммы источника тока не должны находиться в разомкнутой цепи:

рис. 3: Источник тока в разомкнутой цепи, запрещенное соединение

Сопротивление разомкнутой цепи равно + ∞, когда источник выдает ток, не равный нулю, величина напряжения стремится к + ∞, что невозможно.На практике напряжение будет увеличиваться до его значения пробоя , заставляя воздух / вакуум между выводами источника стать проводящим. Это явление часто приводит к разрушению источника или хотя бы одного из его компонентов.

Кроме того, запрещено последовательное соединение двух или многих источников тока, даже если оба источника выдают одинаковое значение тока.

рис 4: Источники тока в последовательной конфигурации, запрещенное соединение

Причина, по которой этот тип подключения не разрешен, заключается в том, что нельзя предсказать эквивалентную схему: будут ли добавлены источники, или только одна будет эффективно работать?

Ток в ветви цепи может принимать только одно значение, не может быть наложения множества токов.

Наконец, параллельное объединение источников тока абсолютно разрешено и рекомендуется для получения более высокого выходного тока:

рис. 5: Источники тока в параллельной конфигурации, разрешенное соединение

Как показано на второй схеме в , рис. 5 , значения также можно вычесть, если один из источников ориентирован в противоположном направлении.

В параллельной конфигурации выходной ток представляет собой алгебраическую сумму источников тока, участвующих в процессе питания.

Зависимые источники

В предыдущих разделах, был представлен независимый источник тока , и их значение фиксировано и зависит только от конструкции источника.

Текущее значение зависимых источников тока можно настроить с помощью внешнего параметра. Существует два типа зависимых источников тока: Источники тока с управляемым напряжением (VCCS), и Источники тока с регулируемым током (CCCS) . На принципиальной схеме источники, зависящие от тока, обозначены стрелкой (в направлении тока), окруженной ромбовидным узором:

рис. 6: VCCS (слева) и CCCS (справа)

Источник тока, управляемый напряжением

Для этого типа зависимого источника тока характер входа (напряжения) отличается от выхода (тока), коэффициент связи обозначен как σ = 1 / R и представляет собой проводимость в Сименсе (S) или Ω -1 .

Мы проиллюстрируем, как может выглядеть простая схема, содержащая VCCS, на рисунке , рис. 7, и покажем, как вычислить ее вход.

Рис. 7: Схема VCCS

Поскольку источник напряжения V 1 обеспечивает делитель напряжения 1 кОм / 1 кОм, вход VCCS определяется выражением V IN = V 1 /2 = 5 В. Поскольку коэффициент усиления VCCS составляет 0,2 S, выходной ток зависимого источника I S = 0,2 × V IN = 1 A . Выходное напряжение просто вычисляется путем применения закона Ома к резистору R 3 , получаем В S = I S × R 3 = 200 В .

Примером VCCS является усилитель MOSFET, который представляет собой транзистор на основе влияния напряжения:

Рис.8: Пример VCCS, MOSFET обеспечивает выходную нагрузку R L

В качестве VCCS усилитель MOSFET принимает в качестве входа напряжение, известное как напряжение затвора , и выдает выходной ток, известный как ток стока .

Мы можем утверждать, что полевой МОП-транзистор действительно является источником тока, посмотрев на его характеристику I D = f (V DS ):

рис. 9: Выходная характеристика MOSFET

В зависимости от напряжения управляющего затвора (V GS ) характеристика усилителя MOSFET становится плоской после определенного значения выходного напряжения V DS .Эта характеристика в области насыщения типична для источника тока.

Источник тока с регулируемым током

В случае CCCS вход и выход имеют одинаковую природу (токи), поэтому коэффициент усиления является безразмерной величиной, обозначенной k .

Мы снова проиллюстрируем аналогичную схему, которая объединяет CCCS, чтобы пояснить, как получить выходные величины:

Рис. 10: Схема CCCS

Входной ток, управляющий CCCS, здесь определяется непосредственно законом Ома: I IN = V 1 / (R 1 + R 2 ) = 5 мА .Выходной ток получается умножением входного тока на коэффициент усиления k, I S = k.I IN = 3 мА . Наконец, выходное напряжение снова задается путем применения закона Ома к резистору R 3 , В S = I S × R 3 = 0,6 В .

Примеры CCCS — усилители на основе биполярных переходных транзисторов (BJT), читатель может обратиться к руководствам по усилителю с общим эмиттером и усилителю с общим коллектором, чтобы получить более подробную информацию.

Рисунок 11 — график выходной характеристики в коллекторной ветви (C) для нескольких командных базовых токов (I B ):

рис. 11: BJT-вольт-амперная характеристика

Мы снова распознаем плоскую вольт-амперную функцию после определенного значения напряжения, типичного для источника тока, точно такого, как для усилителя MOSFET.

Заключение

Чтобы концептуализировать источники тока, мы сначала представили идеальные источники тока , которые не являются настоящими устройствами, а скорее идеальной конструкцией.Идеальные источники тока обеспечивают постоянное и стабильное значение выходного тока независимо от значения напряжения на выходной нагрузке. Они идентифицируются по плоской ВАХ, которая предполагает, что можно обеспечить бесконечное количество энергии.

Источники реального тока, однако, имеют небольшую крутизну кривой ВАХ , чтобы учесть внутренние потери мощности. Значение этого наклона определяется проводимостью сопротивления источника, помещенного параллельно источнику.Сопротивление источника физически отсутствует в устройстве, но это скорее способ объяснить и упростить вычисления.

Более того, мы увидели, что некоторые правила подключения должны быть приняты во внимание при проектировании цепей, включающих источники тока. Не рекомендуется размещать источник тока в разомкнутой цепи и объединять в сети два или более источника. Однако параллельное соединение приемлемо, поскольку это полезный метод, который может увеличить выходной ток.

Наконец, мы увидели, что некоторыми специальными источниками тока можно управлять с помощью внешнего элемента схемы. Они известны как зависимые источники , и для текущих источников существует два типа:

  1. Источники тока с регулируемым напряжением (VCCS)
  2. Источники тока с регулируемым током (CCCS)

Типичными примерами источников, зависящих от тока, являются полевые МОП-транзисторы (VCCS) и биполярные транзисторы (CCCS).

Источник напряжения

и источник тока — идеальный вариант vs.Практическая

Источник — это устройство, преобразующее механическую, химическую, тепловую или другую форму энергии в электрическую. Типы источников, доступных в электрической сети, — это источник напряжения и источник тока . Источник напряжения используется для подачи напряжения на нагрузку, а источник тока используется для подачи тока.

Источник напряжения

Источник напряжения — это устройство, которое обеспечивает постоянное напряжение для нагрузки в любой момент времени и не зависит от тока, потребляемого от него.Этот тип источника известен как идеальный источник напряжения. Практически невозможно сделать идеальный источник напряжения. У него нулевое внутреннее сопротивление. Обозначается этим символом.

Обозначение источника напряжения

Идеальный источник напряжения

График представляет изменение напряжения источника напряжения во времени. Он постоянен в любой момент времени.

Источники напряжения, имеющие некоторое внутреннее сопротивление, известны как практические источники напряжения.Из-за этого внутреннего сопротивления происходит падение напряжения. Если внутреннее сопротивление велико, на нагрузку будет подаваться меньшее напряжение, а если внутреннее сопротивление меньше, источник напряжения будет ближе к идеальному источнику напряжения. Таким образом, практический источник напряжения обозначается последовательным сопротивлением, которое представляет внутреннее сопротивление источника.

Практический источник напряжения

График отображает напряжение источника напряжения в зависимости от времени. Это непостоянно, но с течением времени продолжает уменьшаться.

Источник тока

Источник тока — это устройство, которое обеспечивает постоянный ток нагрузки в любое время и не зависит от напряжения, подаваемого в цепь. Этот тип тока известен как идеальный источник тока; практически идеального источника тока также нет. У него бесконечное сопротивление. Обозначается этим символом.

Символ источника тока

Идеальный источник тока

График представляет изменение силы тока источника тока во времени. Он постоянен в любой момент времени.

Почему идеальный источник тока имеет бесконечное сопротивление?

Источник тока используется для питания нагрузки, так что нагрузка включается. Мы стараемся подавать 100% мощности на нагрузку. Для этого мы подключаем некоторое сопротивление для передачи 100% мощности на нагрузку, потому что ток всегда идет по пути наименьшего сопротивления. Итак, чтобы ток пошел по пути наименьшего сопротивления, мы должны подключить сопротивление выше нагрузки. Вот почему у нас есть идеальный источник тока с бесконечным внутренним сопротивлением.Это бесконечное сопротивление не повлияет на источники напряжения в цепи.

Практический источник тока

На практике источники тока не имеют бесконечного сопротивления, но имеют конечное внутреннее сопротивление. Таким образом, ток, подаваемый практическим источником тока, непостоянен и также в некоторой степени зависит от напряжения на нем.

Практический источник тока представляет собой идеальный источник тока, подключенный параллельно с сопротивлением.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *