Заземление в системах с изолированной нейтралью: Что такое изолированная нейтраль и где она применяется?

Содержание

Система заземления IT- где применяется, схема

Кроме обычных систем электропитания, в которых нейтраль источника питания соединена с контуром заземления, есть схема, в которой вторичная обмотка трансформатора и все элементы электросхемы изолированы от заземления или соединены с ним через сопротивление большого номинала. Часто вместо резистора используется разрядник, предохраняющий потребителей при попадании молнии в линию электропередач. Это система заземления IT.

Все элементы корпуса и другие металлические детали оборудования, не подключённые к электропитанию, в этой схеме заземляются. Ток утечки в таких системах электропитания практически отсутствует даже при нарушении изоляции между корпусом и токоведущими частями. Это позволяет длительную эксплуатацию электрооборудования при однофазном замыкании.

Схема заземления IT, согласно ПУЭ п.1.7.3, относится к системам с изолированной нейтралью. Именно под таким названием она известна среди большинства электромонтёров России. Питание однофазных электроустановок осуществляется по двум, а трёхфазной аппаратуры по трём проводам. Нейтральный провод N не заземлён, а заземляющий РЕ проложен только от корпуса оборудования до контура заземления.

Происхождение данной системы

Первоначально система заземления IT широко применялась в схемах электроснабжения жилых зданий. Это было связано с отсутствием надёжного заземления в деревянных зданиях и деревянных опорах линий электропередач, которые также не могли использоваться в качестве заземления.

В частности, эксплуатировавшиеся в СССР до начала 60-х годов сети 127/220В являлись схемами с изолированной нейтралью. Это было связано отсутствием надёжного заземления, устройств защиты и опасностью пожара в деревянных зданиях, составлявших значительную часть жилого фонда, при замыкании между заземлённым корпусом и токоведущими частями.

Отсутствие заземления в цепи электроснабжения здания и пониженное до 127В напряжение делает практически безопасным прикосновение к оголённым проводам. В связи с этими особенностями сложилось представление о полной безопасности работ по замене розеток и выключателей в бытовой электросети.


Справка! В однофазной сети с изолированной нейтралью отсутствует разделение на нулевой и фазный проводники.

Широкое распространение сетей 220/380В с глухозаземлённой нейтралью получило с началом строительства «хрущёвок» — железобетонных домов с заземлённым каркасом и водопроводными трубами в каждой квартире. Такая конструкция здания повышает вероятность замыкания электропроводки и заземлённых элементов здания.

Из-за отсутствия связи нейтрального провода с заземлением при этом соединении не происходит отключение автоматического выключателя или перегорание плавкой вставки предохранителя. Поэтому прикосновение ко второму проводу в железобетонном здании приведёт к поражению человека электрическим током. В результате система заземления IT потеряла свои преимущества перед другими схемами защиты.

Схема электроснабжения в системе IT

Эта система описана в ПУЭ п.1.7.3 и показана там же на рис.1.7.4. В этой схеме источник питания и другие элементы сети отделены от контура заземления. Заземляются только корпуса электроприборов, изолированные от электропроводки. Требования к такому заземлению указаны в ПУЭ пп.1.7.58 и 1.7.64.

Для повышения безопасности использования такой схемы при проектировании и монтаже системы IT дополнительно к автоматическим выключателям устанавливаются УЗО и системы сигнализации.

Есть два варианта соединения обмоток питающего трансформатора:

  1. Треугольник. В этой схеме нейтраль источника питания и нейтральный провод N отсутствуют. Такая система применяется на производстве для питания электропечей и других специальных установок, а так же на кораблях и других плавучих конструкциях. В этом случае электроприборы 220В подключаются к линейному напряжению.
  2. Звезда. Классическая четырёхпроводная схема электропитания. Нейтральная точка вторичной обмотки трансформатора соединяется с контуром через разрядник. Этот элемент предотвращает попадание высокого напряжения в сеть при грозовых разрядах, а так же при нарушении изоляции между первичной, высоковольтной, и вторичной обмотками.

Особенности конструкции системы заземления IT определяют её достоинства перед другими схемами:

  • возможность сравнительно безопасного прикосновения к токоведущим частям, находящимся под напряжением;
  • малый ток утечки при однофазном замыкании на заземленный корпус;
  • такое замыкание не является аварийным режимом и позволяет продолжать работу оборудования до устранения неисправности;
  • при падении провода на землю отсутствует шаговое напряжение.

Кроме достоинств, схема защиты IT имеет недостатки, ограничивающие её применение:

  • низкий ток утечки при однофазном замыкании на землю недостаточен для срабатывания обычных видов защиты;
  • работа в режиме короткого замыкания между одной из фаз и заземлением является опасной в случае прикосновении к другому фазному проводу.

В чем отличие системы IT от других систем

Схема трёхфазного электроснабжения IT при включении вторичных обмоток питающего трансформатора 220/380В «звездой» практически не отличается от других систем питания. Основным отличием при однофазном подключении является то, что в нулевом и фазном проводнике отсутствует потенциал по отношению к заземлению. В сетях 127/220В электроприборы ≈220В включаются на линейное напряжение между двумя фазными проводниками.

При включении обмоток «треугольником» ситуация более сложная. В сети 380В стандартное для бытовых устройств напряжение 220В отсутствует. В этом случае используется понижающий трансформатор:

  1. Для питания отдельных установок необходим однофазный электротрансформатор 380/220. Такой трансформатор может использоваться также в сетях TN и ТТ в качестве разделительного при организации схемы электропитания IT для отдельного электроприбора.
  2. Питание нескольких групп потребителей осуществляется через трёхфазный трансформатор 380/220В. Вторичные обмотки этой установки соединяются «треугольником» и выходное линейное напряжение составляет необходимые 220В.
  3. При соединении вторичных обмоток в «звезду» и использовании трансформатора 380/380В в схеме электропитания появляется нейтраль. Это позволит использовать классическую четырёхпроводную схему электроснабжения.

Важно! Нейтраль вторичной обмотки не заземляется. Это превращает систему IT в схему ТN.

Где применяется система заземления IT

В связи с особенностями этой схемы областью применения системы заземления IT являются электроустановки и здания с высокими требованиями к электро- и пожаробезопасности, а также требующие бесперебойного электроснабжения:

  • Электрооборудование шахт, особенно в сырых и взрывоопасных условиях. Обязательной является установка рудничных устройств защиты от токов утечки.
  • Медицинские учреждения, особенно хирургия и реанимация. Отключение электропитания в этих зданиях опасно для жизни пациентов.
  • Научные лаборатории. Электрооборудование этих учреждений отличается повышенной чувствительностью к перепадам напряжения и аварийному отключению.
  • Взрывоопасное производство. Это химические, деревообрабатывающие и газовые установки.
  • Помещения с повышенной влажностью, ГЭС и другие сооружения с опасностью появления шагового напряжения. В этих установках по системе IT запитываются схемы управления, сигнализации и вспомогательные механизмы.
  • Специальные установки. Эта схема защитного заземления используется для оборудования с повышенной опасностью замыкания на землю.

Систему электропитания IT имеют также переносные электростанции. Из-за отсутствия на месте установки контура заземления применить в этих аппаратах схему TN затруднительно.

Похожие материалы на сайте:

Понравилась статья — поделись с друзьями!

Защитное заземление эл.оборудования в сети с изолированной нейтралью. Защитное зануление эл.оборудования в сети с глухозаземленной нейтралью. Назначение, принцип действия

Заземление — преднамеренное электрическое соединение какой-либо точки электрической сети, электроустановки или оборудования, с заземляющим устройством.

Заземляющее устройство (ЗУ) состоит из заземлителя (проводящей части или совокупности соединённых между собой проводящих частей, находящихся в электрическом контакте с землёй непосредственно или через промежуточную проводящую среду) и заземляющего проводника, соединяющего заземляемую часть (точку) с заземлителем. Заземлитель может быть простым металлическим стержнем (чаще всего стальным, реже медным) или сложным комплексом элементов специальной формы.

Качество заземления определяется значением сопротивления заземления / сопротивления растеканию тока (чем ниже, тем лучше), которое можно снизить, увеличивая площадь заземляющих электродов и уменьшая удельное электрическое сопротивление грунта: увеличивая количество заземляющих электродов и/или их глубину; повышая концентрацию солей в грунте, нагревая его и т. д.

Электрическое сопротивление заземляющего устройства различно для разных условий и определяется/нормируется требованиями ПУЭ и соответствующих стандартов.

Защитное заземление:

а — в сети с заземленной нейтралью; б — в сети с изолированной нейтралью

Глухозаземлённая нейтраль — нейтраль трансформатора или генератора, присоединённая к заземляющему устройству непосредственно. Глухозаземлённым может быть также вывод источника однофазного переменного тока или полюс источника постоянного тока в двухпроводных сетях, а также средняя точка в трёхпроводных сетях переменного тока.



Изолированная нейтраль — нейтраль трансформатора или генератора, не присоединённая к заземляющему устройству или присоединённая к нему через большое сопротивление приборов сигнализации, измерения, защиты и других аналогичных им устройств.

В России требования к заземлению и его устройство регламентируются Правилами устройства электроустановок (ПУЭ).

Защитное действие заземления основано на двух принципах:

Уменьшение до безопасного значения разности потенциалов между заземляемым проводящим предметом и другими проводящими предметами, имеющими естественное заземление.

Отвод тока утечки при контакте заземляемого проводящего предмета с фазным проводом. В правильно спроектированной системе появление тока утечки приводит к немедленному срабатыванию защитных устройств (устройств защитного отключения — УЗО).


Таким образом, заземление наиболее эффективно только в комплексе с использованием устройств защитного отключения. В этом случае при большинстве нарушений изоляции потенциал на заземлённых предметах не превысит опасных величин. Более того, неисправный участок сети будет отключён в течение очень короткого времени (десятые ÷ сотые доли секунды — время срабатывания УЗО).

Зануление — это преднамеренное электрическое соединение открытых проводящих частей электроустановок, не находящихся в нормальном состоянии под напряжением, с глухозаземлённой нейтральной точкой генератора или трансформатора, в сетях трёхфазного тока; с глухозаземлённым выводом источника однофазного тока; с заземлённой точкой источника в сетях постоянного тока, выполняемое в целях электробезопасности.

Защитное зануление является основной мерой защиты при косвенном прикосновении в электроустановках до 1 кВ с глухозаземлённой нейтралью.

Принцип работы зануления: если напряжение (фаза) попадает на соединённый с нулем металлический корпус прибора, происходит короткое замыкание. Сила тока в цепи при этом увеличивается до очень больших величин, что вызывает быстрое срабатывание аппаратов защиты (автоматические выключатели, плавкие предохранители), которые отключают линию, питающую неисправный прибор. В любом случае, ПУЭ регламентируют время автоматического отключения поврежденной линии. Для номинального фазного напряжения сети 380/220 В оно не должно превышать 0,4 с.

Зануление осуществляется специально предназначенными для этого проводниками. При однофазной проводке — это, например, третья жила провода или кабеля.

Для того, чтобы отключение аппарата защиты произошло в предусмотренное правилами время, сопротивление петли «фаза-ноль» должно быть небольшим, что, в свою очередь, накладывает на все соединения и монтаж сети жесткие требования качества, иначе зануление может оказаться неэффективным.

Помимо быстрого отключения неисправной линии от электроснабжения, благодаря тому, что нейтраль заземлена, зануление обеспечивает низкое напряжение прикосновения на корпусе электроприбора. Это исключает вероятность поражения током человека. Поскольку нейтраль заземлена, зануление можно рассматривать как специфическую разновидность заземления.

Различают зануление систем TN-C, TN-C-S и TN-S.

Эффективно-заземлённая нейтраль | Электротехнический журнал

Эффективно-заземлённая нейтраль (трех-фазной электроустановки) — нейтраль трёхфазной электрической сети выше 1000В (1 кВ и выше), коэффициент замыкания на землю в которой не более Кзам = 1,4.

Термин «глухозаземлённая нейтраль» в сетях выше 1000В в данный момент не применяется. Электроустановки, в которых нейтраль соединяется с заземляющим устройством непосредственно, также относятся к электроустановкам с эффективно-заземлённой нейтралью.

Коэффициент замыкания на землю в трехфазной электрической сети — это отношение разности потенциалов между неповреждённой фазой и землёй в точке замыкания на землю другой или двух других фаз к разности потенциалов между фазой и землёй в этой точке до замыкания.

Иначе говоря при замыкании фазы в сети с изолированной нейтралью напряжение между землёй и неповреждёнными фазами возрастает до линейного — примерно в 1,73 раза; в сети с эффективно заземлённой нейтралью напряжение на неповреждённых фазах относительно земли возрастёт не более чем в 1,4 раза. Это особенно важно для сетей высокого напряжения, что уменьшает количество изоляции при изготовлении сетей и аппаратов, удешевляя их производство. Согласно рекомендации МЭК к сетям с эффективно-заземлённой нейтралью относят сети высокого и сверхвысокого напряжения, нейтрали которых соединены с землёй непосредственно или через небольшое активное сопротивление. В СССР и России сети с эффективно-заземлённой нейтралью — это сети напряжением 110 кВ и выше.

Недостатки

  • Возникновение больших токов короткого замыкания (ТКЗ) через заземлённые нейтрали трансформаторов при замыкании одной фазы на землю, что должно быть быстро устранено отключением от устройств релейной защиты. Большинство коротких замыканий на землю в сетях 110 кВ и выше относятся к самоустранимым и электроснабжение обычно восстанавливается АПВ.
  • Удорожание сооружения контура заземления, способного отводить большие токи к.з.
  • Значительный ток однофазного к.з., при большом количестве заземлённых нейтралей трансформаторов может превышать значение трёхфазного тока к.з. Для устранения этого вводят режим частично разземлённых нейтралей трансформаторов (часть трансформаторов 110-220 кВ работают с изолированной нейтралью: нулевые выводы трансформаторов присоединяются через разъединители, которые находятся в отключённом состоянии). Ещё одним из способов ограничения тока к.з. на землю-это заземление нейтралей трансформаторов через активные токоограничивающие сопротивления.

Особенности выполнения эффективно заземлённой нейтрали

Согласно ПТЭЭП максимально допустимая величина сопротивления заземляющего устройства для сетей с эффективно заземлённой нейтралью (для электроустановок выше 1000 В и с большим током замыкания на землю — свыше 500 А — каждого объекта) составляет 0,5 Ом с учётом естественного заземления (при сопротивлении искусственного заземляющего устройства — не более 1 Ом). Это вызвано необходимостью пропускания значительных токов при к.з. на землю, высоким и сверхвысоким напряжением сети, требованием ограничения напряжения между землёй и неповреждёнными фазами, а также возможностью появления при авариях высоких напряжений прикосновения, шаговых напряжений и опасных «выносов потенциалов» за территорию подстанции. Необходимость равномерности распределения потенциалов внутри подстанции и исключения появления шаговых напряжений на значительном удалении от подстанции исключается т.н. устройством выравнивания потенциалов, которое является составной частью заземляющего устройства для эффективно заземлённых нейтралей. Особые требования для заземляющих устройств с эффективно заземлёнными нейтралями создаёт значительные трудности для их расчёта и сооружения, делает их материалоёмкими, особенно для грунтов с высоким удельным сопротивлением (каменистые, скальные, песчаные грунты) и стеснёнными условиями сооружения.

Смотри также

Примечания

  1. ПУЭ — правила устройства электроустановок, издание 6-е и 7-е.
  2. ПТЭЭП — правила технической эксплуатации электроустановок потребителей.

Сети с изолированной нейтралью — ElectrikTop.ru

Сети с изолированной нейтралью

Электрические сети — это сложные системы. Схемы подключения генераторов и трансформаторов предполагает подключение глухозаземленной и изолированной нетрали.  В нашей энергосистеме в основном используется система с глухозаземленной нетралью. Однако, существует оборудование, которое должно работать в условиях где применяется трехпроводная сеть с изолированной нейтралью.

Это передвижные установки, оборудование торфоразработок, при добыче калийных удобрений и угольных шахтах, то есть оборудование, работающее на напряжение 380-660 В и 3-35 Кв.  Питающий кабель передвижных установок выполняется четырехпроводным кабелем. Отличие одного вида заземления от другого заключается в том, что общая точка вторичной обмотки трансформатора подключается непосредственно в трансформаторной подстанции к заземлителю.

Такая система с изолированной нейтралью получается при подключении вторичных обмоток трансформатора треугольником. В этом случае средней точки просто не существует. Это используется, когда по условия безопасности не допускают аварийное обесточивание при коротком замыкании на землю. Такие системы получили обозначение IT.

Что является определением изолированной нейтрали

В правилах эксплуатации электроустановок (ПЭУ)существует определение, что собой представляет схема с изолированной нейтралью. Рассмотрим, чем называют IT схемой. Это система, в которой нулевой провод генератора или трансформатора не подключается к заземлителю. Он может быть подключен к контуру заземления путем соединения приборов сигнализации, средств измерения, защиты или аналогичных приборов к нулю.  Все эти устройства должны обладать большим сопротивлением.

Схема с изолированной нейтралью

Систему с изолированной нейтралью можно представить трехфазной сетью, обмотка трансформатора, в которой соединена треугольником, но может быть и звездой. А от линии отходят резисторы, подключенные к заземлению и параллельно сопротивлению стоят конденсаторы. Через которые в кабельной или воздушной линии протекают токи утечки, их можно представить двумя составляющими. Одна из которых активная, а вторая реактивная.

Так как сопротивление не поврежденной изоляции имеет величину около мегаома. При таком сопротивлении ток утечки очень маленький и рассчитывается по закону Ома. I=U/R, а при величине сопротивления 0,5 Мом и напряжении 220 В, составляет 0,44 Ма.  Реактивную составляющую представляют в виде конденсатора. Одной обкладкой служит провод линии, а второй земля.

Когда имеется исправная трехфазная сети с изолированной нейтралью нагрузка между фазами распределяется равномерно. При возникновении пробоя одной фазы на землю, т. е. возникают однофазные замыкания на землю в сетях с изолированной нейтралью.

В этом случае возникает аварийный ток однофазного замыкания. Чаще всего замыкание происходит на корпус электрического потребителя. В качестве последнего могут выступать электродвигатели или металлические конструкции.

Если они не заземлены, то на корпусе прибора возникает фазное напряжение или близкое к нему. Прикосновение человека к корпусу будет равносильно прикосновению к фазе. Что смертельно опасно.
Когда возникает однофазное КЗ в сети с изолированной нейтралью, ток замыкания небольшой, его значение составляет миллиамперы. При таких токах невозможно установить защитные устройства.

Поэтому для обеспечения отключения используются приборы, которые автоматически контролируют состояние изоляции. Такие системы устанавливают, когда необходима защита от замыкания на землю в сетях с изолированной нейтралью.

Достоинства

Какие же существуют достоинства и недостатки сети с изолированной нейтралью? К основным достоинствам следует отнести то, что нет необходимости оперативного отключения питающего напряжения при возникновении короткого замыкания одной фазы на землю.

Недостатки

Это считается аварийным режимом, и он не предполагает длительной работы оборудования. Такой режим имеет следующие недостатки:

  • Обнаружить неисправный участок довольно непросто;
  • Изоляция электроприборов должна быть рассчитана на пробой от линейного напряжения;
  • При продолжительном замыкании увеличивается вероятность поражения обслуживающего персонала электричеством;
  • Вследствие постоянного воздействия дуговых перенапряжений и постоянного накопления дефектов, снижается срок службы изоляции;
  • Из-за появления дуговых перенапряжений возникают повреждения изоляции в разных местах;
  • Однофазное замыкание на землю в сетях с изолированной нейтралью затрудняет работу релейной защиты;
  • Возможное появление дуги малых токов в месте однофазного замыкания на землю.

Большое количество недостатков существенно снижает применение такой схемы в сетях до 1 000 В. Более широкое распространение такая система получила в высоковольтных сетях.

Что такое и чем отличается изолированная нейтраль в сетях с напряжением выше 1 000В

В сетях среднего напряжения (6 — 10 КВ) изолированная нейтраль трансформатора отсутствует, так как обмотки трансформатора соединены треугольником. При соединении обмоток звездой появляется возможность в организации защиты компенсации тока однофазного замыкания на землю в высоковольтной сети с изолированной нейтралью.

Для компенсации реактивных токов короткого замыкания применяют дугогасящие реакторы в случае:

  1. Линии напряжением 3-6 КВ и током свыше 30А;
  2. Напряжение сети 10 КВ и ток больше 10А;
  3. Ток, превышающий 15 А и напряжения 15-20 КВ;
  4. Воздушная линия электропередач напряжением 3 – 20 КВ и током, превышающим 10 А;
  5. Кабельные и ЛЭП напряжением 35 КВ;
  6. При напряжении на генераторе 6-20 КВ и токе на землю 5А в схеме «генератор – трансформатор».

Трехпроводная трехфазная система с изолированной нейтралью допускает производить корректировку тока КЗ, что осуществляется подключением нейтрали к заземлению при помощи высокоомного сопротивления.

В нашем случае изолированная нейтраль используется в сетях:

  • Применяется в двухфазных сетях постоянного тока;
  • Трехфазные сети переменного тока до 1 000 кВ;
  • Трехфазные сети 6 – 35 кВ при допустимом токе короткого замыкания;
  • Сети 0,4 КВ, в которых применяются устройства защиты в виде разделяющих трансформаторов.

Режимы работы нейтрали в электроустановках и электрических сетях

Электрические сети, как известно, делятся в зависимости от класса напряжения – до и выше 1000В. Нейтраль – это общая точка обмоток у трансформаторов и генераторов, соединенных в звезду. Если же схема обмоток треугольник и необходим ноль, то можно вспомнить про схему «скользящий треугольник». Будем рассматривать только сети переменного тока.

Виды заземления нейтрали в сетях до 1кВ

В электрических сетях напряжением до 1000В принято использовать три системы заземления нейтрали – это TN, IT, TT. Каждая из букв несет определенный смысл, разберемся:

  • 1-ая буква описывает способ заземления нейтрали источника питания
    • T (terra) – нейтраль глухозаземленная
    • I (isolate) – нейтраль изолирована (и – изолирована, легко запомнить)
  • 2-ая буква показывает способ заземления открытых проводящих частей (ОПЧ) с землей
    • N (neutral) – ОПЧ заземлены через глухозаземленную нейтраль источника питания
    • T – ОПЧ заземлены независимо от источника питания

В свою очередь система TN делится на три подсистемы – TN-C, TN-S и TN-C-S. В рамках данной подсистемы третьи буквы (C — combine, S — separe) обозначают совмещение или разделение в одном проводе функций нулевого защитного (PE) и нулевого рабочего (N) проводника.

Рассмотрим теперь каждую систему более подробно.

Система заземления TN

В этой системе нейтраль глухозаземлена, а открытые проводящие части заземлены через эту глухозаземленную нейтраль. Глухозаземленная – это значит что нейтраль присоединена непосредственно к заземляющему устройству (болтом, сваркой) или через малое сопротивление (трансформатор тока).

В сетях до 1кВ глузозаземленная нейтраль используется для питания однофазных и трехфазных нагрузок.

Система заземления TT

Система TT предполагает, что нейтраль источника питания глухозаземлена, а ОПЧ оборудования заземлены заземляющим устройством электрически несвязанным с нейтралью источника. То есть защитный PE-проводник создается у самого потребителя, а не идет от источника питания.

Система заземления IT

В системе IT нейтраль генератора или трансформатора изолирована или заземлена через устройства, имеющие высокое сопротивление, а ОПЧ заземлены независимо. Эта система не рекомендуется для жилых зданий, используется там, где при первом замыкании на землю не требуется перерыв питания. Это могут быть электроустановки с повышенными требованиями надежности снабжения электроэнергией.

Виды заземления нейтрали в электросетях выше 1кВ

В сетях напряжением выше 1000В используется изолированная (незаземленная) нейтраль, эффективно заземленная нейтраль и резонансно-заземленная нейтраль. Глухозаземленная нейтраль используется только в сетях до 1кВ.

Сети с незаземленной (изолированной) нейтралью

Исторически первая система заземления. Нейтральная точка источника питания не присоединена к заземляющему устройству. Обмотки соединены в треугольник и выходит, что нулевая точка отсутствует. Применяется на напряжение 3-35кВ.

Сети с эффективно-заземленной нейтралью

Этот вид заземления используется в сетях напряжением выше 110кВ. Достоинство заключается в том, что при однофазных замыканиях на неповрежденных фазах напряжение относительно земли будет равно 0,8 междуфазного в нормальном режиме работы. В этой системе сам контур заземления выполняется с учетом протекания больших токов КЗ, что делает его сложным и дорогим.

Сети с нейтралью, заземленной через резистор или реактор

Применяется в сетях 3-35кВ. Используется для уменьшения величины токов КЗ. Исторически был вторым способом заземления нейтрали. Заземление через резистор используется во всем мире, через реактор – в странах бывшего союза.

Заземление через реактор – при отсутствии замыкания ток через реактор мал. Когда происходит замыкание фазы на землю, то через место повреждения течет емкостной ток КЗ и индуктивный ток реактора. Если их величина равна, то в месте замыкания отсутствует ток (явление резонанса).

Заземление через резистор бывает низкоомным и высокоомным. Разница в величине тока, создаваемым резистором при замыкании на землю. Высокоомное применяется в сетях с малыми емкостными токами, в этом случае замыкание можно не отключать немедленно. Низкоомное заземление наоборот используется при больших емкостных токах.

Выбор виды заземления нейтрали зависит от следующих факторов:

  • величина емкостного тока сети
  • допустимая величина однофазного замыкания
  • возможности отключения однофазного замыкания
  • вида и типа релейных защит
  • безопасности персонала
  • наличия резерва

Сохраните в закладки или поделитесь с друзьями

Самое популярное


как выбрать трансформатор тока

Глухозаземленная нейтраль: принцип работы, схема, применение

Глухозаземленная нейтраль является частью системы электроснабжения потребителей, она направлена на безопасное использование сетей до 1000 Вольт, которые чаще всего применяются в быту и на производстве в качестве источника стандартного уровня низкого напряжения — 0,38кВ, 0,22кВ и ниже. Нейтраль — это общая точка соединения обмоток звездой у источников электроэнергии, которыми являются трансформаторы или же генераторы. Если эту точку соединить с землёй, то и получится сеть с глухозаземлённой нейтралью. В нулевой точке происходит выравнивание потенциалов, что очень удобно для обеспечения электроэнергией и однофазных, и трехфазных источников.

Устройство и принцип действия сетей с глухозаземлённой нейтралью

Принцип работы источников электроэнергии, в частности, понижающих трансформаторов основан на законе взаимоиндукции и передаче энергии по магнитному сердечнику. Первичная обмотка при этом может и не иметь нулевого провода, в отличие от вторичной, где соединение его с нулём через проводник с низким сопротивлением, который можно приравнять с нулевым значением, будет являться эффективным средством защиты от поражения человека опасным для его жизни и здоровья напряжением.

Главной особенностью сетей с глухозаземлённой нейтралью является появление не только линейного, но и фазного напряжения. Что это такое и чем оно отличается друг от друга, рассмотрим на примере простой принципиальной схемы.

TT

Фазное напряжение — это потенциал между одним из проводов линии и нулевой точкой, присоединенной к земле, то есть наглухо заземлённой. Линейное напряжение — разница потенциалов между двумя выводами линий, то есть L1 и L2, L1-L3, или же L2-L3, называется оно также межфазное. Такие источники электрической энергии в бытовых условиях имеют распространенное значение напряжения в виде 380 В — линейного, и 220 — фазного. Линейное напряжение больше фазного на √3, то есть на 1,72.

Но основная задача такой системы это не только транспортировка к потребителям напряжений двух значений при разном количестве фаз в одной системе электроснабжения, но и защита человека при пробое изоляции и появлении напряжения в точках, которые в нормальном состоянии не имеют опасного потенциала. В жилых зданиях это:

  • корпуса всех бытовых приборов, которые проводят электрический ток, то есть сделаны из стали или другого токопроводящего металла;
  • металлоконструкции щитовых и распределительных устройств;
  • защитная оболочка кабелей.

Также для обеспечения безопасности все перечисленные выше элементы должны быть заземлены, именно в этом случае опасность от использования напряжения и применения бытовых приборов в сетях с глухозаземлённой нейтралью будет минимальна. При этом для таких цепей обязательна равномерность распределения однофазных нагрузок.

Объяснение для чайников

Понижающая подстанция, в которой установлен трансформатор, имеет свой контур заземления. Он соединен между собой стальными шинами и прутами, в один заземляющий контур. К потребителям в электрический щиток от подстанции прокладывается кабель, который содержит четыре жилы. Если потребителю необходимо питание от трёхфазной цепи 380 Вольт, то подключаться необходимо ко всем жилам. В однофазное сети 220 В питание будет осуществляется от нулевого провода и от одной из фаз. Защита людей в однофазных и трехфазных цепях, если нет системы заземления, должна осуществляется за счёт специальных устройств защитного отключения (УЗО), которые срабатывают при небольшой утечке на ноль, при этом отключают надёжно потребителя от сети.

Классификация сетей с глухозаземлённой нейтралью

Современная система электроснабжения имеет стандартную маркировку где помимо рабочего нулевого проводника присутствует и защитный, что и даёт определение степени защищённости.

  • L — фазный проводник;
  • N — рабочий ноль;
  • РЕ — защитный нулевой проводник;
  • РЕN — рабочий и нулевой проводник выполнены одним проводом.

Существуют несколько подсистем в цепях с источником энергии, имеющим глухозаземлённую нейтраль:

  • TN-C. При данной системе нулевой и защитный проводник с подстанции организован одним проводником, возле приёмника его корпус (или другие элементы, подлежащие заземлению) соединяют с данным совмещенным проводником – это называется зануление. Это устаревшая система, применялась в старых домах при СССР, сейчас для бытовых потребителей не используется, так как небезопасная. Такая система имеет существенный недостаток, так как в случае обрыва РЕN проводника на пути от питающего трансформатора до приемника электроэнергии, на зануленных корпусах оборудования появляется опасный потенциал. Используется только для защиты промышленных потребителей (об этом говорится ниже в следующем разделе).
  • TN-S. Имеет больший процент безопасности во время аварийных ситуаций. Это достигается путём разделения защитного и рабочего проводников по всей длине питающей линии, от трансформатора до распределительного электрощита (до конечного потребителя). Однако за счёт того, что приходится применять кабельную продукцию имеющую пять жил, что сильно увеличивает стоимость прокладки и бюджет на организацию электроснабжения к потребителю, применяется данная система не всегда.
  • TN-C-S. Данная система заземления является наиболее распространенной в наше время. При данной системе нулевой и защитный проводник на всей длине линии объединены в один совмещенный проводник PEN. При входе в здание данный проводник разделяется на защитный PE и нулевой N, которые дальше распределяются по потребителям (квартирам). При данной системе в случае отгорания PEN проводника до точки разделения на заземленных корпусах электроприборов появится опасный потенциал. Для предотвращения этого на всей длине линии и при входе в здание делаются повторные заземления PEN проводника и предъявляются повышенные требования к механической защите данного проводника.
  • ТТ. Данная система заземления практикуется в том случае, если линия системы TN-C-S находится в неудовлетворительном техническом состоянии и не обеспечивается достаточной безопасности предусмотренного в ней защитного заземления. Данная система заземления предусматривает монтаж индивидуального контура заземления у потребителя, при этом PEN проводник электрической сети используется только в качестве нулевого провода N.

Системы электроснабжения

Важно знать

Для электроснабжения однофазных и трёхфазных потребителей в промышленности и в бытовых условиях используют так называемое зануление, которое «якобы» является действенным методом, обеспечивающим автоматическое отключение электроустановки или части её, в которой произошло короткое замыкание. При занулении в цепях с глухозаземлённой нейтралью к нулевому проводу подключаются все металлические части и корпуса электрооборудования. Как работает данная защита? Дело в том что при любом коротком замыкании на корпус цепь переходит в режим короткого замыкания, ток в цепи автоматического выключателя сильно увеличивается и аварийный участок отключается от сети.

Преимуществом такой системы являются экономия расходов на проводку защитного заземления, а также снижение стоимости кабельной продукции, так как к одной и той же цепи можно подключить и однофазные и трёхфазные электроприёмники.

Однако недостатком глухозаземлённой нейтрали, организованной по принципу защитного зануления, можно назвать недостаточность обеспечения защиты человека при пробое изоляции на корпус электроприбора во время обрыва нулевого провода, который является и защитным. И это очень важный момент — зануление является опасной мерой защиты, поэтому оно организовываться в домашних условиях ни в коем случае не должно!

Современное электроснабжение всё-таки направлено больше на безопасность, поэтому требует установки УЗО и отдельного защитного заземляющего контура, через который даже самые незначительные токи утечки будут уходить в землю, при этом не подвергая человека опасности.

Теперь вы знаете, что такое глухозаземленная нейтраль, какой у нее принцип работы и в каких сетях она применяется. Если остались вопросы, можете задавать их в комментариях под статьей!

Материалы по теме:

что это такое, какие плюсы и минусы у этой схемы

Для передачи электроэнергии на большие расстояния применяют сети высокого напряжения. Безопасная эксплуатация обеспечивается средствами защиты, которая для каждого напряжения своя. В зависимости питающего напряжения применяют различные виды заземления нейтрали. Согласно правилу эксплуатации электроустановок, в сетях до 0,4 КВ применяется глухозаземленная нейтраль. В сетях 0,6-35 кВ для увеличения надежности используется схема с изолированной нейтралью. Для исключения перенапряжения неповрежденных фаз при коротком замыкании одной фазы на землю в линиях 110-1150 кВ применяется эффективно заземленная нейтраль (ЭЗН). Что это такое и в чем особенность данной схемы, мы расскажем читателям сайта Сам Электрик в пределах этой статьи.

Определение эффективно заземленной нейтрали

ЭЗН применяется в высоковольтных сетях 110 кВ и более. В случае замыкания фазы на землю, представляет собой однофазное КЗ.

Оно сопровождается значительными токами в месте повреждения, в результате чего срабатывает система защиты с отключением напряжения. Дадим определение, что это такое.

Эффективно заземленная нейтраль — это заземленная нейтраль в сетях трехфазного напряжения выше 1000 В, коэффициент замыкания на землю которой ≤ 1,4.

На ниже приведенном рисунке представлена схема ЭЗН:

Схема ЭЗН

Это значит, что при однофазном замыкании на землю, напряжение других, не поврежденных фаз, увеличится на величину, не превышающую значения 1,4.

И рассчитывается по нижеприведенной формуле:

Расчет

Это имеет большое значение для высоковольтных сетей. Т.к. при такой схеме напряжение неповрежденных фаз не значительно превышает номинальное. А это значит, что нет необходимости увеличивать изоляцию сетей и оборудования.

Эксплуатация сетей с ЭЗН будет обходиться значительно дешевле. При этом следует учитывать, что экономия увеличивается по мере возрастания напряжения в линии.

Требования ПУЭ к сетям

Для сетей с эффективно изолированной нейтралью ПУЭ регламентирует максимальное сопротивление заземления, не превышающего 0,5 Ом. При этом учитывается естественное заземление. А сопротивление искусственных заземлителей не должно быть более 1 Ом.

Это справедливо для установок свыше 1000 В, режим токов КЗ на землю у которых равен или превышает значения 500 А. При этом следует учитывать, что ЭИН и глухозаземленная нейтраль имеют аналогичные схемы без существенных отличий. Такая схема показана на рисунке снизу.

Сеть с глухозаземленной нейтралью

Эффективно заземления нейтраль и глухозаземленная схема заземления позволяют предупредить дуговые перенапряжения. Однако, они относятся к системам с большими токами короткого замыкания на землю (больше или равно 500А).

Для уменьшения токов КЗ используют искусственное увеличение нулевой последовательности. Для этого на подстанции заземляется только часть нейтралей трансформаторов, или нейтрали заземляются через резистор.

В результате увеличивается напряжение на неповрежденных проводниках. К наиболее тяжелым авариям относят межфазное короткое замыкание. При этом, напряжение и токи короткого замыкания будут меньше, чем при однофазном КЗ.

Поэтому расчеты выполняются на основании больших значений, т.е. однофазного короткого замыкания.

Как выглядит однофазное КЗ на рисунке снизу:

Схема однофазного КЗ

Эффективно заземленная нейтраль предназначена для высоковольтных сетей 110 кВ и более. Но допускается использовать такую схему и для напряжения менее 1 000 В. Ее применяют там, где отсутствуют и не предвидится монтаж электроустановок, в которых может возникнуть пожар или устройства, которые могут выйти из строя или взорваться.

Другими словами, ЭЗН применяется в сетях с напряжением менее 1000 В, при условии отсутствия взрыво- и пожароопасных приборов.

Эффективно используются в городских электрических сетях. Особенность работы таких линий заключается в том, что при коэффициенте замыкания на землю менее единицы, можно применить кабель, рассчитанный на напряжение 6 кВ в сетях с напряжением 10 кВ.

Это позволяет передавать большую мощность с коэффициентом 1,73. При этом замена кабеля и коммутационной аппаратуры не требуется.

Достоинства и недостатки

Эффективно заземленная нейтраль применяется в сетях 110 кВ и выше. Она обладает рядом преимуществ.

Главным назначением таких схем являются:

  • В схемах с ЭЗН происходит стабилизация потенциала нейтрали и исключение вероятности возникновения устойчивых заземляющих дуг и последствий возникающих вследствие КЗ.
  • При КЗ на землю и переходных процессах, на изоляцию не воздействуют большие напряжения. Что дает возможность применить изоляцию с меньшим запасом прочности. А это в свою очередь дает значительный экономический эффект от применения менее дорогостоящей изоляции, что снижает эксплуатационные затраты сетей.
  • Применение быстродействующей селективной автоматики. Мгновенная работа защиты не позволяет усугубить возникшую неисправность.

Кроме очевидных достоинств, сети имеют и недостатки.

К ним относятся:

  • При любом КЗ на землю происходит обесточивание неисправного участка. При этом релейные системы защиты оборудуются средствами автоматического повторного включения. При отключении напряжения средствами автоматики, происходит нарушение бесперебойной подачи напряжения, что негативно сказывается на потребителях. А в некоторых случаях, ответственные потребители, вынуждены устанавливать устройства подачи бесперебойного напряжения.
  • В момент короткого замыкания возникает повышенный электромагнитный импульс. Он отрицательно влияет на средства связи. Их приходится дополнительно экранировать.
  • Применение сложных быстродействующих средств защиты.
  • Выход генератора из синхронизма при значительных токах короткого замыкания. Т.е. в момент КЗ происходит «притормаживание» генератора.
  • Значительные токи короткого замыкания могу вызвать повреждение кабеля с повреждением изоляции, механическое разрушение изоляторов на ЛЭП, повреждение железа статора генератора в случае пробоя изоляции на землю и т.п.
  • Возникает опасность поражения людей электрическим током вследствие повышенного и шагового напряжения при коротком замыкании на землю.
  • Изготовление заземляющих устройств. Отсутствие дублирующего заземления может оставить оборудование без защиты, если произойдет обрыв нейтрального провода.

Заключение

Принцип работы сетей с эффективно заземленной нейтралью можно кратко описать так. Основная часть замыканий на землю сопровождающаяся большими токами КЗ, самоустраняется после отключения напряжения. После автоматического повторного включения напряжения в ЛЭП, режим работы линии восстанавливается.

Заземление только части трансформаторов позволяет уменьшить токи КЗ. Так, если на подстанции смонтированы два трансформатора, то к заземляющему устройству подключают только один.

Изолированная нейтраль (незаземленная) судовых систем

Основными преимуществами судовой системы изолированной нейтрали являются:

— Непрерывность работы при замыкании на землю

— Токи замыкания на землю могут быть низкими

Основными недостатками судовой системы изолированной нейтрали являются:

— Может потребоваться высокий уровень изоляции.

— Возможны высокие переходные перенапряжения

— Обнаружение заземленной цепи может быть затруднено

В последней редакции МЭК 60092-502 ТАНКЕРЫ разрешены как изолированные, так и заземленные распределительные системы, однако системы с отводом корпуса не допускаются.Возврат через конструкцию судна возможен только в ограниченных системах, таких как системы запуска аккумуляторных батарей дизельных двигателей, искробезопасные системы и системы катодной защиты с постоянным током, за пределами любой опасной зоны.

Большинство основных систем электроснабжения на судах в диапазоне от 400 В до 690 В будут иметь изолированную нейтраль .

Однако важно, чтобы замыкание на землю обнаруживалось и устранялось как можно быстрее. Это сделано для того, чтобы избежать большого тока короткого замыкания при втором замыкании на землю, который может превышать ток трехфазного замыкания, на который рассчитано оборудование, что может привести к неисправности, не подлежащей ремонту.

Опасные зоны также будет иметь систему электропитания с изолированной нейтралью, так как перекрытие от поврежденного кабеля в заземленной системе, которое может вызвать взрыв, слишком велико.

Профессиональный инструмент для Электротехнического специалиста (ETO)

Рюкзак My Picks For The Best Ship Электрик (ETO)

.

Различий между связанными и плавающими нейтральными генераторами

Главная »Блог» Связанная нейтраль VS плавающая нейтраль

Последнее обновление 25 августа 2020 г.

Среди всех спецификаций генератора тип нейтрального соединения может быть одним из самых загадочных для человека, который только мало разбирается в электротехнике.

Возможно, вы встречали термины «плавающий» и «связанный» нейтральный. Хотя для многих они звучат непонятно, они являются важным фактором при подключении портативного генератора к передаточному переключателю.

Но, прежде чем мы углубимся в специфику связанной и плавающей нейтрали, мы должны сначала объяснить, что такое «нейтраль» и чем она отличается от «живого / горячего провода» и «земли».

Разница между активным / горячим, нейтралью и землей

Электрическая цепь состоит из двух проводов. Один передает ток от источника к нагрузке, а другой возвращает этот ток обратно к источнику. В любой электрической цепи этот контур должен быть замкнут для протекания тока.

Провод, по которому течет ток от источника к нагрузке, называется «провод под напряжением / под напряжением» — провод, проводящий ток.

Провод, который возвращает ток обратно к источнику, называется «нейтральный провод» или просто нейтральный — провод, проводящий ток.

В отличие от этих двух, «заземляющий провод» или просто заземление, не является частью электрического контура и пропускает ток только в случае неисправности. Заземляющий провод — это в основном защитный провод, предназначенный для обеспечения безопасности системы.

Генератор связанной нейтрали

В генераторе связанной нейтрали нейтраль соединена с корпусом генератора.В этом случае безобрывный переключатель должен переключать нейтраль, чтобы соответствовать стандартам безопасности в соответствии со статьей 250 NEC (Национальный электротехнический кодекс).

Стандарты безопасности статьи 250 NEC требуют, чтобы нейтраль была заземлена на первом устройстве . отключите (что означает ближайшую возможную точку), а нельзя заземлить дважды , чтобы избежать наведенных переходных напряжений или токов.

Чтобы разобраться, давайте рассмотрим пример схемы жилого дома.

Нас интересует подключение генератора к домашней цепи . Во-первых, мы должны узнать, как работает система электроснабжения жилых домов.

В жилых домах вся нагрузка питается от электросети (распределительной компании). Силовые кабели от электросети подключаются к электрическому щиту, установленному в домах (схема ниже). Электрическая панель распределяет эту мощность по каждой цепи в доме.

Electrical diagram of a load on a distribution panel and a bonded neutral generator

Нагрузка, подключенная к домашней электрической панели

Электрическая панель (также называемая распределительным щитом) — это система, которая распределяет ток по различным цепям в доме или здании.Он содержит отдельные предохранители или автоматические выключатели для каждой цепи, часто заключенные в металлический корпус. Все нейтральные точки заземлены в одной общей точке.

Для переключения нагрузки с домашней электрической панели на генератор используется передаточный переключатель. Передаточный переключатель всегда переключает (отключается от домашней электрической панели и подключается к клемме генератора) провод под напряжением / под напряжением. Итак, под вопросом остается только нейтральный провод.

Согласно стандартам NEC, мы не можем заземлить нейтраль дважды .Поскольку в генераторе уже есть нейтраль, соединенная с землей, передаточный переключатель должен переключать нейтраль с домашней электрической панели на клемму нейтрали генератора (схема ниже).

Electrical diagram of a distribution panel and a loaded bonded neutral generator

Нагрузка подключена к генератору с подключенной нейтралью

Мы можем видеть, что нагрузка полностью изолирована от домашней электрической панели и монтируется непосредственно на генераторе. Таким образом, генератор с связанной нейтралью ведет себя как изолированный или автономный блок.

Плавающая нейтраль

В генераторе с плавающей нейтралью нейтраль не связана с корпусом генератора.Следовательно, заземление должно быть обеспечено домашней панелью . В этом случае безобрывный переключатель не передает нейтраль в соответствии со стандартами NEC.

Нагрузка передается с домашней электрической панели на генератор с плавающей нейтралью в соответствии со статьей 250 NEC. Согласно стандарту, нейтраль должна быть заземлена один раз, но не более одного раза. Однако генератор не имеет заземленной нейтрали.

Electrical diagram of a load on a distribution panel and a floating neutral generator

Нагрузка подключена к домашней электрической панели

Следовательно, безобрывный переключатель не передает нейтраль.Он только подключает нагрузку к нейтрали генератора. Нейтраль генератора теперь подключена к нагрузке и заземлена через домашнюю электрическую панель (схема ниже).

Electrical diagram of a distribution panel and a load on a floating neutral generator

Нагрузка подключена к генератору с плавающей нейтралью

В генераторе с плавающей нейтралью, поскольку нейтраль не соединена с корпусом генератора, оба провода обычно являются токоведущими. Поэтому оба гнезда розеток на генераторе считаются розетками под напряжением / горячим.

В случае короткого замыкания между любым пазом розеток и корпусом генератора обратный путь, то есть нейтральный провод, не присоединяется к корпусу. Обратного пути для протекания тока не будет. Таким образом, весь ток короткого замыкания будет проходить через металлический каркас в землю и, таким образом, обеспечивать защиту от тока короткого замыкания.

Генераторы с плавающей нейтралью используются в системах, в которых уже есть заземленная нейтраль, например домашние электрические панели, транспортные средства для отдыха и т. д.Генератор подключается с помощью безобрывного переключателя, который не переключает нейтраль.

Не существует стандартов для определенного типа генератора с подключенной или плавающей нейтралью.

Сводка различий между генераторами связанной и плавающей нейтрали

Генераторы связанной нейтрали Генераторы плавающей нейтрали
Нейтраль прикреплена к раме. Нейтраль не прикреплена к раме.
Безобрывный переключатель переключает нейтраль. Безобрывный переключатель не переключает нейтраль.
Защищает от переходных напряжений. Защищает от короткого замыкания.
В основном используется в резервных генераторах и генераторах с открытой рамой. Широко распространены в портативных инверторных генераторах.
Может использоваться как изолированное устройство, так и для систем с заземленной нейтралью. Используется для систем с заземленной нейтралью.

Как проверить плавающую нейтраль или скрепленную нейтраль?

Как правило, тип нейтрали, соединенный или плавающий, обычно четко указывается рядом с выходами переносного генератора.

Nema 5-20R receptacle and slots

Слоты розетки NEMA 5-20R

Еще один простой способ проверить тип нейтрального соединения — обратиться к руководству по эксплуатации генератора или посетить веб-сайт его производителя. Вы также можете позвонить производителю и узнать его напрямую.

Тип нейтрального соединения также можно определить с помощью прибора для проверки целостности цепи .Для этого сначала выключите агрегат. Теперь вставьте один провод прибора для проверки целостности цепи в нейтральный слот любой розетки переменного тока (вы можете найти его в руководстве пользователя) и прикрепите другой провод к его металлической раме. Непрерывность означает, что нейтраль связана, а в случае разрыва она плавает.

Заключение

Электромеханика генераторов с присоединенной нейтралью резко контрастирует с генераторами с плавающей нейтралью. Следовательно, их соответствующие приложения могут отличаться.

Следовательно, мы должны сначала тщательно определить тип генератора, который нам нужен, прежде чем подключать его. Любая неверная оценка может быть очень опасной. Однако стоит отметить, что обычно можно преобразовать нейтраль.

Никогда не следует, , пытаться модифицировать генератор самостоятельно. Это не только опасно, но и аннулирует гарантию производителя.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *