Вольтметр кто изобрел: Кто изобрел первый вольтметр?

Содержание

Вольтметр — Википедия

Материал из Википедии — свободной энциклопедии

Два цифровых вольтметра. Верхний — коммерческая модель. Нижний сконструировали студенты Берлинского технического университета

Вольтметр (вольт + греч. μετρεω «измеряю») — измерительный прибор непосредственного отсчёта для определения напряжения или ЭДС в электрических цепях. Подключается параллельно нагрузке или источнику электрической энергии.

Идеальный вольтметр должен обладать бесконечно большим внутренним сопротивлением. Поэтому чем выше внутреннее сопротивление в реальном вольтметре, тем меньше влияния оказывает прибор на измеряемый объект и, следовательно, тем выше точность и разнообразнее области применения.

Классификация и принцип действия

Классификация

  • По принципу действия вольтметры разделяются на:
    • электромеханические — магнитоэлектрические, электромагнитные, электродинамические, электростатические, выпрямительные, термоэлектрические;
    • электронные — аналоговые и цифровые
  • По назначению:
    • постоянного тока;
    • переменного тока;
    • импульсные;
    • фазочувствительные;
    • селективные;
    • универсальные
  • По конструкции и способу применения:
    • щитовые;
    • переносные;
    • стационарные

Аналоговые электромеханические вольтметры

  • Магнитоэлектрические, электромагнитные, электродинамические и электростатические вольтметры представляют собой измерительные механизмы соответствующих типов с показывающими устройствами. Для увеличения предела измерений используются последовательно включённые добавочные сопротивления. Технические характеристики аналогового вольтметра во многом определяются чувствительностью магнитоэлектрического измерительного прибора. Чем меньше его ток полного отклонения, тем более высокоомные добавочные резисторы можно применить. А значит, входное сопротивление вольтметра будет более высоким. Тем не менее, даже при использовании микроамперметра с током полного отклонения 50 мкА (типичные значения 50..200 мкА), входное сопротивление вольтметра составляет всего 20 кОм/В (20 кОм на пределе измерения 1 В, 200 кОм на пределе 10 В). Это приводит к большим погрешностям измерения в высокоомных цепях (результаты получаются заниженными), например при измерении напряжений на выводах транзисторов и микросхем, и маломощных источников высокого напряжения.
    • ПРИМЕРЫ: М4265, М42305, Э4204, Э4205, Д151, Д5055, С502, С700М
  • Выпрямительный вольтметр представляет собой сочетание измерительного прибора, чувствительного к постоянному току (обычно магнитоэлектрического), и выпрямительного устройства.
    • ПРИМЕРЫ: Ц215, Ц1611, Ц4204, Ц4281
  • Термоэлектрический вольтметр — прибор, использующий ЭДС одной или более термопар, нагреваемых током входного сигнала.
    • ПРИМЕРЫ: Т16, Т218

Микровольтметр В3-57

Аналоговые электронные вольтметры общего назначения

Аналоговые электронные вольтметры содержат, помимо магнитоэлектрического измерительного прибора и добавочных сопротивлений, измерительный усилитель (постоянного или переменного тока), который позволяет иметь более низкие пределы измерения (до десятков — единиц милливольт и ниже), существенно повысить входное сопротивление прибора, получить линейную шкалу на малых пределах измерения переменного напряжения.

Цифровые электронные вольтметры общего назначения

Принцип работы вольтметров дискретного действия состоит в преобразовании измеряемого постоянного или медленно меняющегося напряжения в электрический код с помощью аналого-цифрового преобразователя, который отображается на табло в цифровой форме.

Диодно-компенсационные вольтметры переменного тока

Принцип действия диодно-компенсационных вольтметров состоит в сравнении с помощью вакуумного диода пикового значения измеряемого напряжения с эталонным напряжением постоянного тока с внутреннего регулируемого источника вольтметра. Преимущество такого метода состоит в очень широком рабочем диапазоне частот (от единиц герц до сотен мегагерц), с весьма хорошей точностью измерения, недостатком является высокая критичность к отклонению формы сигнала от синусоиды.

  • ПРИМЕРЫ: В3-49, В3-63 (используется пробник 20 мм)

В настоящее время разработаны новые типы вольтметров, такие как В7-83 (пробник 20 мм) и ВК3-78 (пробник 12 мм), с характеристиками аналогичными диодно-компенсационным. Последние в скором времени могут быть допущены к применению в качестве рабочих эталонов. Из иностранных аналогов можно выделить вольтметры серии URV фирмы Rohde&Schwarz с пробниками диаметром 9 мм.

Импульсные вольтметры

Импульсные вольтметры предназначены для измерения амплитуд периодических импульсных сигналов с большой скважностью и амплитуд одиночных импульсов.

Фазочувствительные вольтметры

Фазочувствительные вольтметры (векторметры) служат для измерения квадратурных составляющих комплексных напряжений первой гармоники. Их снабжают двумя индикаторами для отсчета действительной и мнимой составляющих комплексного напряжения. Таким образом, фазочувствительный вольтметр дает возможность определить комплексное напряжение, а также его составляющие, принимая за нуль начальную фазу некоторого опорного напряжения. Фазочувствительные вольтметры очень удобны для исследования амплитудно-фазовых характеристик четырехполюсников, например усилителей.

Селективные вольтметры

Селективный вольтметр способен выделять отдельные гармонические составляющие сигнала сложной формы и определять среднеквадратичное значение их напряжения. По устройству и принципу действия этот вольтметр аналогичен супергетеродинному радиоприёмнику без системы АРУ, в качестве низкочастотных цепей которого используется электронный вольтметр постоянного тока. В комплекте с измерительными антеннами селективный вольтметр можно применять как измерительный приёмник.

  • ПРИМЕРЫ: В6-4, В6-6, В6-9, В6-10, SMV 8.5, SMV 11, UNIPAN 233 (237), Селективный нановольтметр «СМАРТ»

Наименования и обозначения

Видовые наименования

  • Нановольтметр — вольтметр с возможностью измерения очень малых напряжений (менее 1мкВ)
  • Микровольтметр — вольтметр с возможностью измерения очень малых напряжений (менее 1мВ)
  • Милливольтметр — вольтметр для измерения малых напряжений (единицы — сотни милливольт)
  • Киловольтметр — вольтметр для измерения больших напряжений (более 1 кВ)
  • Векторметр — фазочувствительный вольтметр

Обозначения

  • Электроизмерительные вольтметры обозначаются в зависимости от их принципа действия
    • Дxx — электродинамические вольтметры
    • Мxx — магнитоэлектрические вольтметры
    • Сxx — электростатические вольтметры
    • Тxx — термоэлектрические вольтметры
    • Фxx, Щxx — электронные вольтметры
    • Цxx — вольтметры выпрямительного типа
    • Эxx — электромагнитные вольтметры
  • Радиоизмерительные вольтметры обозначаются в зависимости от их функционального назначения по ГОСТ 15094
    • В2-xx — вольтметры постоянного тока
    • В3-xx — вольтметры переменного тока
    • В4-xx — вольтметры импульсного тока
    • В5-xx — вольтметры фазочувствительные
    • В6-xx — вольтметры селективные
    • В7-xx — вольтметры универсальные

Основные нормируемые характеристики

История

Первым в мире вольтметром был «указатель электрической силы» русского физика Г. В. Рихмана (1745). Принцип действия «указателя» используется в современном электростатическом вольтметре.

См. также

Другие средства измерения напряжений и ЭДС

  • Для измерения абсолютного значения:
    • Потенциометр — точные измерения компенсационным методом
    • Мультиметр (тестер) — комбинированный прибор для измерения напряжения, силы тока и сопротивления
    • Осциллограф — измерение мгновенных значений напряжения сигнала, изменяющегося во времени; в режиме измерения «с открытым входом» можно измерять и постоянное напряжение.
    • Электрометр — прибор, служащий для измерения электрического потенциала
  • Для измерения относительного значения:
    • Измерители отношений напряжений
    • Измерители нестабильности напряжений
  • Преобразователи:
  • Меры:

Прочие ссылки

Литература и документация

Литература

  • Справочник по электроизмерительным приборам; Под ред. К. К. Илюнина — Л.:Энергоатомиздат, 1983
  • Справочник по радиоизмерительным приборам: В 3-х т.; Под ред. В. С. Насонова — М.:Сов. радио, 1979

Нормативно-техническая документация

  • ГОСТ 8711-93 (МЭК 51-2-84) Приборы аналоговые показывающие электроизмерительные прямого действия и вспомогательные части к ним. Часть 2. Особые требования к амперметрам и вольтметрам
  • ГОСТ 8.006-72, ГОСТ 8.012-72, ГОСТ 8.117-82, ГОСТ 8.118-85, ГОСТ 8.119-85, ГОСТ 8.402-80, ГОСТ 8.429-81, ГОСТ 8.497-83 — методики поверки вольтметров разных видов
  • ТУ Тч2.710.010 Вольтметры универсальные цифровые

Ссылки

Вольтметр — Википедия

Материал из Википедии — свободной энциклопедии

Два цифровых вольтметра. Верхний — коммерческая модель. Нижний сконструировали студенты Берлинского технического университета

Вольтметр (вольт + греч. μετρεω «измеряю») — измерительный прибор непосредственного отсчёта для определения напряжения или ЭДС в электрических цепях. Подключается параллельно нагрузке или источнику электрической энергии.

Идеальный вольтметр должен обладать бесконечно большим внутренним сопротивлением. Поэтому чем выше внутреннее сопротивление в реальном вольтметре, тем меньше влияния оказывает прибор на измеряемый объект и, следовательно, тем выше точность и разнообразнее области применения.

Классификация и принцип действия

Классификация

  • По принципу действия вольтметры разделяются на:
    • электромеханические — магнитоэлектрические, электромагнитные, электродинамические, электростатические, выпрямительные, термоэлектрические;
    • электронные — аналоговые и цифровые
  • По назначению:
    • постоянного тока;
    • переменного тока;
    • импульсные;
    • фазочувствительные;
    • селективные;
    • универсальные
  • По конструкции и способу применения:
    • щитовые;
    • переносные;
    • стационарные

Аналоговые электромеханические вольтметры

  • Магнитоэлектрические, электромагнитные, электродинамические и электростатические вольтметры представляют собой измерительные механизмы соответствующих типов с показывающими устройствами. Для увеличения предела измерений используются последовательно включённые добавочные сопротивления. Технические характеристики аналогового вольтметра во многом определяются чувствительностью магнитоэлектрического измерительного прибора. Чем меньше его ток полного отклонения, тем более высокоомные добавочные резисторы можно применить. А значит, входное сопротивление вольтметра будет более высоким. Тем не менее, даже при использовании микроамперметра с током полного отклонения 50 мкА (типичные значения 50..200 мкА), входное сопротивление вольтметра составляет всего 20 кОм/В (20 кОм на пределе измерения 1 В, 200 кОм на пределе 10 В). Это приводит к большим погрешностям измерения в высокоомных цепях (результаты получаются заниженными), например при измерении напряжений на выводах транзисторов и микросхем, и маломощных источников высокого напряжения.
    • ПРИМЕРЫ: М4265, М42305, Э4204, Э4205, Д151, Д5055, С502, С700М
  • Выпрямительный вольтметр представляет собой сочетание измерительного прибора, чувствительного к постоянному току (обычно магнитоэлектрического), и выпрямительного устройства.
    • ПРИМЕРЫ: Ц215, Ц1611, Ц4204, Ц4281
  • Термоэлектрический вольтметр — прибор, использующий ЭДС одной или более термопар, нагреваемых током входного сигнала.
    • ПРИМЕРЫ: Т16, Т218

Микровольтметр В3-57

Аналоговые электронные вольтметры общего назначения

Аналоговые электронные вольтметры содержат, помимо магнитоэлектрического измерительного прибора и добавочных сопротивлений, измерительный усилитель (постоянного или переменного тока), который позволяет иметь более низкие пределы измерения (до десятков — единиц милливольт и ниже), существенно повысить входное сопротивление прибора, получить линейную шкалу на малых пределах измерения переменного напряжения.

Цифровые электронные вольтметры общего назначения

Принцип работы вольтметров дискретного действия состоит в преобразовании измеряемого постоянного или медленно меняющегося напряжения в электрический код с помощью аналого-цифрового преобразователя, который отображается на табло в цифровой форме.

Диодно-компенсационные вольтметры переменного тока

Принцип действия диодно-компенсационных вольтметров состоит в сравнении с помощью вакуумного диода пикового значения измеряемого напряжения с эталонным напряжением постоянного тока с внутреннего регулируемого источника вольтметра. Преимущество такого метода состоит в очень широком рабочем диапазоне частот (от единиц герц до сотен мегагерц), с весьма хорошей точностью измерения, недостатком является высокая критичность к отклонению формы сигнала от синусоиды.

  • ПРИМЕРЫ: В3-49, В3-63 (используется пробник 20 мм)

В настоящее время разработаны новые типы вольтметров, такие как В7-83 (пробник 20 мм) и ВК3-78 (пробник 12 мм), с характеристиками аналогичными диодно-компенсационным. Последние в скором времени могут быть допущены к применению в качестве рабочих эталонов. Из иностранных аналогов можно выделить вольтметры серии URV фирмы Rohde&Schwarz с пробниками диаметром 9 мм.

Импульсные вольтметры

Импульсные вольтметры предназначены для измерения амплитуд периодических импульсных сигналов с большой скважностью и амплитуд одиночных импульсов.

Фазочувствительные вольтметры

Фазочувствительные вольтметры (векторметры) служат для измерения квадратурных составляющих комплексных напряжений первой гармоники. Их снабжают двумя индикаторами для отсчета действительной и мнимой составляющих комплексного напряжения. Таким образом, фазочувствительный вольтметр дает возможность определить комплексное напряжение, а также его составляющие, принимая за нуль начальную фазу некоторого опорного напряжения. Фазочувствительные вольтметры очень удобны для исследования амплитудно-фазовых характеристик четырехполюсников, например усилителей.

Селективные вольтметры

Селективный вольтметр способен выделять отдельные гармонические составляющие сигнала сложной формы и определять среднеквадратичное значение их напряжения. По устройству и принципу действия этот вольтметр аналогичен супергетеродинному радиоприёмнику без системы АРУ, в качестве низкочастотных цепей которого используется электронный вольтметр постоянного тока. В комплекте с измерительными антеннами селективный вольтметр можно применять как измерительный приёмник.

  • ПРИМЕРЫ: В6-4, В6-6, В6-9, В6-10, SMV 8.5, SMV 11, UNIPAN 233 (237), Селективный нановольтметр «СМАРТ»

Наименования и обозначения

Видовые наименования

  • Нановольтметр — вольтметр с возможностью измерения очень малых напряжений (менее 1мкВ)
  • Микровольтметр — вольтметр с возможностью измерения очень малых напряжений (менее 1мВ)
  • Милливольтметр — вольтметр для измерения малых напряжений (единицы — сотни милливольт)
  • Киловольтметр — вольтметр для измерения больших напряжений (более 1 кВ)
  • Векторметр — фазочувствительный вольтметр

Обозначения

  • Электроизмерительные вольтметры обозначаются в зависимости от их принципа действия
    • Дxx — электродинамические вольтметры
    • Мxx — магнитоэлектрические вольтметры
    • Сxx — электростатические вольтметры
    • Тxx — термоэлектрические вольтметры
    • Фxx, Щxx — электронные вольтметры
    • Цxx — вольтметры выпрямительного типа
    • Эxx — электромагнитные вольтметры
  • Радиоизмерительные вольтметры обозначаются в зависимости от их функционального назначения по ГОСТ 15094
    • В2-xx — вольтметры постоянного тока
    • В3-xx — вольтметры переменного тока
    • В4-xx — вольтметры импульсного тока
    • В5-xx — вольтметры фазочувствительные
    • В6-xx — вольтметры селективные
    • В7-xx — вольтметры универсальные

Основные нормируемые характеристики

История

Первым в мире вольтметром был «указатель электрической силы» русского физика Г. В. Рихмана (1745). Принцип действия «указателя» используется в современном электростатическом вольтметре.

См. также

Другие средства измерения напряжений и ЭДС

  • Для измерения абсолютного значения:
    • Потенциометр — точные измерения компенсационным методом
    • Мультиметр (тестер) — комбинированный прибор для измерения напряжения, силы тока и сопротивления
    • Осциллограф — измерение мгновенных значений напряжения сигнала, изменяющегося во времени; в режиме измерения «с открытым входом» можно измерять и постоянное напряжение.
    • Электрометр — прибор, служащий для измерения электрического потенциала
  • Для измерения относительного значения:
    • Измерители отношений напряжений
    • Измерители нестабильности напряжений
  • Преобразователи:
  • Меры:

Прочие ссылки

Литература и документация

Литература

  • Справочник по электроизмерительным приборам; Под ред. К. К. Илюнина — Л.:Энергоатомиздат, 1983
  • Справочник по радиоизмерительным приборам: В 3-х т.; Под ред. В. С. Насонова — М.:Сов. радио, 1979

Нормативно-техническая документация

  • ГОСТ 8711-93 (МЭК 51-2-84) Приборы аналоговые показывающие электроизмерительные прямого действия и вспомогательные части к ним. Часть 2. Особые требования к амперметрам и вольтметрам
  • ГОСТ 8.006-72, ГОСТ 8.012-72, ГОСТ 8.117-82, ГОСТ 8.118-85, ГОСТ 8.119-85, ГОСТ 8.402-80, ГОСТ 8.429-81, ГОСТ 8.497-83 — методики поверки вольтметров разных видов
  • ТУ Тч2.710.010 Вольтметры универсальные цифровые

Ссылки

Вольтметр — Википедия. Что такое Вольтметр

Два цифровых вольтметра. Верхний — коммерческая модель. Нижний сконструировали студенты Берлинского технического университета

Вольтметр (вольт + греч. μετρεω «измеряю») — измерительный прибор непосредственного отсчёта для определения напряжения или ЭДС в электрических цепях. Подключается параллельно нагрузке или источнику электрической энергии.

Идеальный вольтметр должен обладать бесконечно большим внутренним сопротивлением. Поэтому чем выше внутреннее сопротивление в реальном вольтметре, тем меньше влияния оказывает прибор на измеряемый объект и, следовательно, тем выше точность и разнообразнее области применения.

Классификация и принцип действия

Классификация

  • По принципу действия вольтметры разделяются на:
    • электромеханические — магнитоэлектрические, электромагнитные, электродинамические, электростатические, выпрямительные, термоэлектрические;
    • электронные — аналоговые и цифровые
  • По назначению:
    • постоянного тока;
    • переменного тока;
    • импульсные;
    • фазочувствительные;
    • селективные;
    • универсальные
  • По конструкции и способу применения:
    • щитовые;
    • переносные;
    • стационарные

Аналоговые электромеханические вольтметры

  • Магнитоэлектрические, электромагнитные, электродинамические и электростатические вольтметры представляют собой измерительные механизмы соответствующих типов с показывающими устройствами. Для увеличения предела измерений используются последовательно включённые добавочные сопротивления. Технические характеристики аналогового вольтметра во многом определяются чувствительностью магнитоэлектрического измерительного прибора. Чем меньше его ток полного отклонения, тем более высокоомные добавочные резисторы можно применить. А значит, входное сопротивление вольтметра будет более высоким. Тем не менее, даже при использовании микроамперметра с током полного отклонения 50 мкА (типичные значения 50..200 мкА), входное сопротивление вольтметра составляет всего 20 кОм/В (20 кОм на пределе измерения 1 В, 200 кОм на пределе 10 В). Это приводит к большим погрешностям измерения в высокоомных цепях (результаты получаются заниженными), например при измерении напряжений на выводах транзисторов и микросхем, и маломощных источников высокого напряжения.
    • ПРИМЕРЫ: М4265, М42305, Э4204, Э4205, Д151, Д5055, С502, С700М
  • Выпрямительный вольтметр представляет собой сочетание измерительного прибора, чувствительного к постоянному току (обычно магнитоэлектрического), и выпрямительного устройства.
    • ПРИМЕРЫ: Ц215, Ц1611, Ц4204, Ц4281
  • Термоэлектрический вольтметр — прибор, использующий ЭДС одной или более термопар, нагреваемых током входного сигнала.
    • ПРИМЕРЫ: Т16, Т218

Микровольтметр В3-57

Аналоговые электронные вольтметры общего назначения

Аналоговые электронные вольтметры содержат, помимо магнитоэлектрического измерительного прибора и добавочных сопротивлений, измерительный усилитель (постоянного или переменного тока), который позволяет иметь более низкие пределы измерения (до десятков — единиц милливольт и ниже), существенно повысить входное сопротивление прибора, получить линейную шкалу на малых пределах измерения переменного напряжения.

Цифровые электронные вольтметры общего назначения

Принцип работы вольтметров дискретного действия состоит в преобразовании измеряемого постоянного или медленно меняющегося напряжения в электрический код с помощью аналого-цифрового преобразователя, который отображается на табло в цифровой форме.

Диодно-компенсационные вольтметры переменного тока

Принцип действия диодно-компенсационных вольтметров состоит в сравнении с помощью вакуумного диода пикового значения измеряемого напряжения с эталонным напряжением постоянного тока с внутреннего регулируемого источника вольтметра. Преимущество такого метода состоит в очень широком рабочем диапазоне частот (от единиц герц до сотен мегагерц), с весьма хорошей точностью измерения, недостатком является высокая критичность к отклонению формы сигнала от синусоиды.

  • ПРИМЕРЫ: В3-49, В3-63 (используется пробник 20 мм)

В настоящее время разработаны новые типы вольтметров, такие как В7-83 (пробник 20 мм) и ВК3-78 (пробник 12 мм), с характеристиками аналогичными диодно-компенсационным. Последние в скором времени могут быть допущены к применению в качестве рабочих эталонов. Из иностранных аналогов можно выделить вольтметры серии URV фирмы Rohde&Schwarz с пробниками диаметром 9 мм.

Импульсные вольтметры

Импульсные вольтметры предназначены для измерения амплитуд периодических импульсных сигналов с большой скважностью и амплитуд одиночных импульсов.

Фазочувствительные вольтметры

Фазочувствительные вольтметры (векторметры) служат для измерения квадратурных составляющих комплексных напряжений первой гармоники. Их снабжают двумя индикаторами для отсчета действительной и мнимой составляющих комплексного напряжения. Таким образом, фазочувствительный вольтметр дает возможность определить комплексное напряжение, а также его составляющие, принимая за нуль начальную фазу некоторого опорного напряжения. Фазочувствительные вольтметры очень удобны для исследования амплитудно-фазовых характеристик четырехполюсников, например усилителей.

Селективные вольтметры

Селективный вольтметр способен выделять отдельные гармонические составляющие сигнала сложной формы и определять среднеквадратичное значение их напряжения. По устройству и принципу действия этот вольтметр аналогичен супергетеродинному радиоприёмнику без системы АРУ, в качестве низкочастотных цепей которого используется электронный вольтметр постоянного тока. В комплекте с измерительными антеннами селективный вольтметр можно применять как измерительный приёмник.

  • ПРИМЕРЫ: В6-4, В6-6, В6-9, В6-10, SMV 8.5, SMV 11, UNIPAN 233 (237), Селективный нановольтметр «СМАРТ»

Наименования и обозначения

Видовые наименования

  • Нановольтметр — вольтметр с возможностью измерения очень малых напряжений (менее 1мкВ)
  • Микровольтметр — вольтметр с возможностью измерения очень малых напряжений (менее 1мВ)
  • Милливольтметр — вольтметр для измерения малых напряжений (единицы — сотни милливольт)
  • Киловольтметр — вольтметр для измерения больших напряжений (более 1 кВ)
  • Векторметр — фазочувствительный вольтметр

Обозначения

  • Электроизмерительные вольтметры обозначаются в зависимости от их принципа действия
    • Дxx — электродинамические вольтметры
    • Мxx — магнитоэлектрические вольтметры
    • Сxx — электростатические вольтметры
    • Тxx — термоэлектрические вольтметры
    • Фxx, Щxx — электронные вольтметры
    • Цxx — вольтметры выпрямительного типа
    • Эxx — электромагнитные вольтметры
  • Радиоизмерительные вольтметры обозначаются в зависимости от их функционального назначения по ГОСТ 15094
    • В2-xx — вольтметры постоянного тока
    • В3-xx — вольтметры переменного тока
    • В4-xx — вольтметры импульсного тока
    • В5-xx — вольтметры фазочувствительные
    • В6-xx — вольтметры селективные
    • В7-xx — вольтметры универсальные

Основные нормируемые характеристики

История

Первым в мире вольтметром был «указатель электрической силы» русского физика Г. В. Рихмана (1745). Принцип действия «указателя» используется в современном электростатическом вольтметре.

См. также

Другие средства измерения напряжений и ЭДС

  • Для измерения абсолютного значения:
    • Потенциометр — точные измерения компенсационным методом
    • Мультиметр (тестер) — комбинированный прибор для измерения напряжения, силы тока и сопротивления
    • Осциллограф — измерение мгновенных значений напряжения сигнала, изменяющегося во времени; в режиме измерения «с открытым входом» можно измерять и постоянное напряжение.
    • Электрометр — прибор, служащий для измерения электрического потенциала
  • Для измерения относительного значения:
    • Измерители отношений напряжений
    • Измерители нестабильности напряжений
  • Преобразователи:
  • Меры:

Прочие ссылки

Литература и документация

Литература

  • Справочник по электроизмерительным приборам; Под ред. К. К. Илюнина — Л.:Энергоатомиздат, 1983
  • Справочник по радиоизмерительным приборам: В 3-х т.; Под ред. В. С. Насонова — М.:Сов. радио, 1979

Нормативно-техническая документация

  • ГОСТ 8711-93 (МЭК 51-2-84) Приборы аналоговые показывающие электроизмерительные прямого действия и вспомогательные части к ним. Часть 2. Особые требования к амперметрам и вольтметрам
  • ГОСТ 8.006-72, ГОСТ 8.012-72, ГОСТ 8.117-82, ГОСТ 8.118-85, ГОСТ 8.119-85, ГОСТ 8.402-80, ГОСТ 8.429-81, ГОСТ 8.497-83 — методики поверки вольтметров разных видов
  • ТУ Тч2.710.010 Вольтметры универсальные цифровые

Ссылки

Вольтметр — это… Что такое Вольтметр?

Два цифровых вольтметра. Верхний — коммерческая модель. Нижний сконструировали студенты Берлинского технического университета

Вольтметр (вольт + гр. μετρεω измеряю) — измерительный прибор непосредственного отсчёта для определения напряжения или ЭДС в электрических цепях. Подключается параллельно нагрузке или источнику электрической энергии.

Классификация и принцип действия

Классификация

  • По принципу действия вольтметры разделяются на:
    • электромеханические — магнитоэлектрические, электромагнитные, электродинамические, электростатические, выпрямительные, термоэлектрические;
    • электронные — аналоговые и цифровые
  • По назначению:
    • постоянного тока;
    • переменного тока;
    • импульсные;
    • фазочувствительные;
    • селективные;
    • универсальные
  • По конструкции и способу применения:
    • щитовые;
    • переносные;
    • стационарные

Аналоговые электромеханические вольтметры

  • Магнитоэлектрические, электромагнитные, электродинамические и электростатические вольтметры представляют собой измерительные механизмы соответствующих типов с показывающими устройствами. Для увеличения предела измерений используются добавочные сопротивления.
    • ПРИМЕРЫ: М4265, М42305, Э4204, Э4205, Д151, Д5055, С502, С700М
  • Выпрямительный вольтметр представляет собой сочетание измерительного прибора, чувствительного к постоянному току (обычно магнитоэлектрического), и выпрямительного устройства.
    • ПРИМЕРЫ: Ц215, Ц1611, Ц4204, Ц4281
  • Термоэлектрический вольтметр — прибор, использующий ЭДС одной или более термопар, нагреваемых током входного сигнала.
    • ПРИМЕРЫ: Т16, Т218

Микровольтметр В3-57

Аналоговые электронные вольтметры общего назначения

Цифровые электронные вольтметры общего назначения

Диодно-компенсационные вольтметры переменного тока

Принцип действия диодно-компенсационных вольтметров состоит в сравнении с помощью вакуумного диода пикового значения измеряемого напряжения с эталонным напряжением постоянного тока с внутреннего регулируемого источника вольтметра. Преимущество такого метода состоит в очень широком рабочем диапазоне частот (от единиц герц до сотен мегагерц), с весьма хорошей точностью измерения, недостатком является высокая критичность к отклонению формы сигнала от синусоиды.

  • ПРИМЕРЫ: В3-49, В3-63 (используется пробник 20 мм)

В настоящее время разработаны новые типы вольтметров, такие как В7-83 (пробник 20 мм) и ВК3-78 (пробник 12 мм), с характеристиками аналогичными диодно-компенсационным. Последние в скором времени могут быть допущены к примирению в качестве рабочих эталонов. Из иностранных аналогов можно выделить вольтметры серии URV фирмы Rohde&Schwarz с пробниками диаметром 9 мм.

Импульсные вольтметры

Фазочувствительные вольтметры

Селективные вольтметры

Селективный вольтметр способен выделять отдельные гармонические составляющие сигнала сложной формы и определять среднеквадратичное значение их напряжения. По устройству и принципу действия этот вольтметр аналогичен супергетеродинному радиоприёмнику без системы АРУ, в качестве низкочастотных цепей которого используется электронный вольтметр постоянного тока. В комплекте с измерительными антеннами селективный вольтметр можно применять как измерительный приёмник.

  • ПРИМЕРЫ: В6-4, В6-6, В6-9, В6-10, SMV 8.5, SMV 11, UNIPAN 233 (237), Селективный нановольтметр «СМАРТ»

Наименования и обозначения

Видовые наименования

  • Нановольтметр — вольтметр с возможностью измерения очень малых напряжений (менее 1мкВ)
  • Микровольтметр — вольтметр с возможностью измерения очень малых напряжений (менее 1мВ)
  • Милливольтметр — вольтметр для измерения малых напряжений (единицы — сотни милливольт)
  • Киловольтметр — вольтметр для измерения больших напряжений (более 1 кВ)
  • Векторметр — фазочувствительный вольтметр

Обозначения

  • Электроизмерительные вольтметры обозначаются в зависимости от их принципа действия
    • Дxx — электродинамические вольтметры
    • Мxx — магнитоэлектрические вольтметры
    • Сxx — электростатические вольтметры
    • Тxx — термоэлектрические вольтметры
    • Фxx, Щxx — электронные вольтметры
    • Цxx — вольтметры выпрямительного типа
    • Эxx — электромагнитные вольтметры
  • Радиоизмерительные вольтметры обозначаются в зависимости от их функционального назначения по ГОСТ 15094
    • В2-xx — вольтметры постоянного тока
    • В3-xx — вольтметры переменного тока
    • В4-xx — вольтметры импульсного тока
    • В5-xx — вольтметры фазочувствительные
    • В6-xx — вольтметры селективные
    • В7-xx — вольтметры универсальные

Основные нормируемые характеристики

История

Первым в мире вольтметром был «указатель электрической силы» русского физика Г. В. Рихмана (1745). Принцип действия «указателя» используется в современном электростатическом вольтметре.

См. также

Другие средства измерения напряжений и ЭДС

  • Для измерения абсолютного значения:
    • Потенциометр — точные измерения компенсационным методом
    • Мультиметр (тестер) — комбинированный прибор для измерения напряжения, силы тока и сопротивления
    • Осциллограф — измерение мгновенных значений напряжения сигнала, изменяющегося во времени
    • Электрометр — прибор, служащий для измерения электрического потенциала
  • Для измерения относительного значения:
    • Измерители отношений напряжений
    • Измерители нестабильности напряжений
  • Преобразователи:
  • Меры:

Прочие ссылки

Литература и документация

Литература

  • Справочник по электроизмерительным приборам; Под ред. К. К. Илюнина — Л.:Энергоатомиздат, 1983
  • Справочник по радиоизмерительным приборам: В 3-х т.; Под ред. В. С. Насонова — М.:Сов. радио, 1979

Нормативно-техническая документация

  • ГОСТ 8711-93 (МЭК 51-2-84) Приборы аналоговые показывающие электроизмерительные прямого действия и вспомогательные части к ним. Часть 2. Особые требования к амперметрам и вольтметрам
  • ГОСТ 8.006-72, ГОСТ 8.012-72, ГОСТ 8.117-82, ГОСТ 8.118-85, ГОСТ 8.119-85, ГОСТ 8.402-80, ГОСТ 8.429-81, ГОСТ 8.497-83 — методики поверки вольтметров разных видов
  • ТУ Тч2.710.010 Вольтметры универсальные цифровые

Ссылки

что измеряет, виды, характеристики, устройство вольтметра, строение и принцип работы

Для проверки работоспособности и исправности электроприборов, прокладки сетей и простого измерения параметров сети используются электронные приборы. В их число входит и вольтметр, который знаком каждому человеку еще со школьной скамьи. Электронные вольтметры составляют крупнейшую группу электроизмерительных приборов. Главное их назначение — получение параметра напряжения в сетях постоянного и переменного тока в широких диапазонов радиоволн. В этом материале будет рассказано: что именно и как измеряет вольтметр, его устройство и принципы действия, краткую историю создания, какие виды вольтметров существуют.

История создания

Прародителем всех современных вольтметров стал своеобразный указатель «электрической силы», о которой еще никто ничего толком не знал. Его изобретателем стал русский физик Георг Рихман. Датой этого открытия считается 1745 год. Показатели измерялись с помощью небольших весов рычажного типа, которые колебались в зависимости от воздействий электричества. Этот основной принцип используется во всех современных вольтметрах.

Процесс измерения вольтажа прибора

Модернизированная версия прибора появилась в 1830-х годах благодаря Фарадею, но не осталось никаких доказательств этому. Следующий по счету прибор был придуман Морицом Якоби в 39 году 19 века, когда тот смог превратить гальванометр в прибор для измерения характеристик электрического тока.

Серьезным этапом модернизации стало изобретение француза д’Арсонваля, придумавшего гальванометр для измерения магнитных и электрических полей. При их изменении прибор показывал разные значения.

Георг Рихман — один из первых изобретателей вольтметра

Важно! Русские ученые П. Яблочков и М. Добровольский также внесли огромный вклад в развитие прибора. Добровольский, в частности, создал амперметр и электромагнитный вольтметр. Кроме них, над этим работал и Н. Славянов. Рабочий металлург на пушечных заводах придумал амперметр на 1000 Ампер в 1880-х.

После утверждения Ампера и Вольта в качестве электротехнических величин в международных стандартах. Немец Фридрих Циппенбон изобрел первое устройство, которое официально было названо «вольтметр».

Старинный вольтметр

Что измеряют вольтметром

Вольтметр — прибор, предназначенный для измерения напряжения электрического тока в цепи. Его название происходит от единицы измерения напряжения — Вольта и традиционного для всех измерительных приборов окончания «метр». Для начала его использования нужно всего лишь включить его в сеть. Сразу после этого он начнет показывать параметр напряжения.

Погрешности возможны в любых даже современных инструментах. Без них никуда, но они незначительны. Чтобы погрешность стремилась к нулю нужно, чтобы внутреннее сопротивление прибора стремилось к бесконечности. Если этого не будет, то влияние на прибор цепи, к которой он подключен, неизбежно. Конечно, такого сопротивления быть не может, как и идеальных вольтметров.

Формулы напряжения в 1 Вольт

Стоит разобраться с понятием «напряжения» подробнее. Это необходимо для того, чтобы понять принцип работы приборы. Все знают еще со школы, что напряжение равно силе тока умноженной на сопротивление участка цепи.

Формула проста, но не дает точного понимания понятия. Ток остается невидимым, а напряжение — простыми цифрами. Для простоты понимания можно привести пример с простыми вещами, которые могут наблюдаться каждый день. Например, при движении воды по речке и водопаду, напряжение будет соответствовать высоте, то есть разности уровней воды. В сети все то же самое и напряжение определяет воображаемый напор воды. Если не будет напряжения, то не будет и тока. Аналогично и воде: если разность уровней будет нулевой, то вода не будет двигаться.

Современный стрелочный вольтметр

Важно! Шкала прибора отмечена латинской буквой «V». Это внешне отличает его от амперметра и других приборов. Других отличий между ними мало. Они вполне могут выглядеть практически одинаково.

Диапазон измерения прибора может быть разным. Устройства для слабой сети показывают максимум 5 Вольт, а промышленные аппараты — до 1000 Вольт. Все зависит от его предназначения.

Прибор времен СССР

Технические характеристики

Согласно документации, на схемах сети вольтметры принято обозначение окружностью с вписанной латинской буквой «V». На русских смехах он может заменяться на русскую букву «В». Более того, первая цифра после буквы в маркировке отображает тип устройства и специфику его использования. Например, В2 — вольтметр для постоянного тока, В3 — для переменного, В4 — для импульсного и т.д.

 

Аппарат В3-38 для использования в сетях переменного тока

Оценка характеристик прибора включает в себя следующие компоненты:

  • Диапазон измерений. Он ограничивается наименьшим и наибольшим показателем, который способен изменить аппарат. Современные устройства обладают диапазоном от милливольт до киловольт. Промышленные аналоги же способны измерять как меньшие, так и большие напряжения;
  • Точность измерений. Далеко не каждый домашний тестер отличается повышенной точностью измерений. Как уже было сказано, это зависит от его внутреннего сопротивления. Новые вольтметры при сравнительно небольших размерах обладают маленькими погрешностями измерений;
  • Диапазон частот. Показывает чувствительность прибора к тем или иным сигналам с разными частотами, регистрируемых в сети;
  • Температура и другие факторы. Эти параметры определяют показатели, при которых аппарат обладает минимальной погрешностью измерений, доступной для него;
  • Собственно само внутреннее сопротивление (импеданс). Чем выше этот параметр, тем вольтметр более точен.

 

Цифровые устройства практически полностью вытеснили аналоговые

Важно! Технические характеристики аналоговых приборов сильно зависят от чувствительности магнитоэлектрического прибора. Чем меньше его ток полного отклонения, тем более высокосопротивительные резисторы можно использовать.

Конструкция

Простейший амперметр или вольтметр состоит из нескольких блоков:

  • ЭЛМП — электромеханического преобразователя;
  • ИМ — измерительный механизм;
  • СМ — стрелочный механизм.

Процесс преобразования аналогового сигнала в цифровой для отображения

Первый предназначен для того, чтобы преобразовывать энергии. Магнитного поля в механическую энергию. Второй механизм включает в себя подвижные и неподвижные части для проведения изменений. Происходит это так: под действием силы тока, который протекает через обмотку ИМ, создается вращающий момент, воздействующий на подвижную часть. Силы механики пропорциональны электрическим силам и ИМ отклоняется на угол, равный этим силам. Данные передаются стрелочному механизму, который и показывает в цифрах количество Вольт.

Если прибор содержит усилители, то он называется электронным. Его отличие заключается в том, что входное устройство помогает поддерживать высокое сопротивление вольтметра и увеличить предел измерений в большую сторону. Далее следует усилитель постоянного тока, который увеличивает значение сигнала до тех величин, которые необходимы для эффективных измерений. Следующие его компоненты идентичны аналоговому инструменту.

Встраиваемое портативное устройство

Преимуществами электромагнитных вольтметров стают:

  • высокая точность измерений;
  • высокая чувствительность;
  • практически полное отсутствие влияние внешних полей;
  • практически полное отсутствие влияние атмосферных факторов.

Недостатки тоже имеются: непригодность использовать при переменном токе и чувствительность к перегрузкам в сети.

USB-вольтметр

Разновидности

Помимо технических параметров, которые определяют назначение прибора и его характеристики, вольтметры обладают и физическими, а именно — разновидностями. Видов современных вольтметров большое количество. Так по принципу действия они разделяются на электромеханические и электронные. По назначению на вольтметров для постоянного, переменного, импульсного тока, универсальные и фазовые.

Наиболее часто людей интересует классификация по виду исполнения, который может быть мобильным и стационарным.

Карманный ЖК цифровой мультиметр

Стационарные

Стационарные вольтметры представляют собой устройства, которые питаются от сетей переменного напряжения. Возможно это благодаря встроенному в их корпус блоку питания. Как правило, с виду они похожи на коробку или ящик, а используются для узкоспециализированных работ, требующих повышенной точности измерений. Чаще всего это профессиональная сфера деятельности и контролирование напряжения на важных и нестабильных участках сети. Само слово «стационарный» говорит о том, что они применяются там, где нужна постоянная слежка и изменение данных.

Стационарный стрелочный вольтметр

Мобильные

Их еще называют переносными, хотя стационарный прибор иногда перенести также не составляет труда. Мобильный же вольтметр компактный и способен поместиться практически везде. Их относят к классу полупрофессиональных и любительских, потому что работают они от батареек или аккумуляторов и обладают сравнительно меньшими точностями и большими погрешностями. Выглядят они как плоские коробочки, «обитые» пластиком или резиной и имеющие эргономические формы. Чтобы они были еще удобнее, их оснащают съемными щупами для определения амплитудных колебаний сигналов.

Важно! Как правило, мобильные вольтметры включаются в состав тестеров и мультиметров. Мобильные цифровые вольтметры способны очень точно определить показания, в то время как портативные аналоговые приборы — показать хорошую чувствительность, способную определить даже самые маленькие отклонения напряжения, которые не могут определить цифровые приборы.

Цифровой мобильный вольтметр

Принцип работы

Принцип действия приборов легче показать на какой-нибудь модели. В основу работы аппарата положено аналогово-цифровое преобразование. Принципы можно рассмотреть на примере универсального В7-35.

Преобразователи, которые установлены в приборе, измеряют силу тока, напряжение постоянного и переменного электрического тока, сопротивление и конвертируют все это в нормализованное напряжение или цифровой код, если в устройстве имеется аналого-цифровой преобразователь.

Схема прибора основана на нескольких преобразователях:

  • Преобразователь масштабирования;
  • Низкочастотный аппарат, преобразующий напряжение переменного тока в постоянный;
  • Аналогичный преобразователь постоянного и переменного электрического тока в напряжение;
  • Конвертер сопротивления в напряжение.

Схема вольтметра В7-35

Получая эти параметры, устройство конвертирует их в напряжение, отображаемое по специальной шкале или в электроном виде, если в нем предусмотрено наличие АЦП.

Принцип работы электромагнитного аналогового вольтметра следующий. Создание вращающего момента происходит с помощью силового действия магнитного поля катушки на подвижном постоянном магните, который выполняется в форме плоской лопасти.

Под действием магнитного поля, которое создается током, магнит втягивается в цель катушки и поворачивается на ось, содержащую указательную стрелку.

Схематическое изображение работы стрелочного устройства

Инструкция и меры безопасности

Вольтметр — простейший и узкоспециализированный инструмент для определения параметров электрической цепи. Его основная и единственная задача — определение напряжения на определенном участке цепи. К сожалению, не все знают, как пользоваться таким простым прибором.

Важно! Стоит помнить, что прибор должен подключаться параллельно к сети. В противном случае показания будут неточными. Это не зависит от его типа и размеров.

Цифровой стационарный прибор

Порядок измерения следующий:

  • Проверить стрелку, если аппарат аналоговый. Делается это путем вставки плоской отвертки в задний шлиц прибора. Поворот в разные стороны будет поворачивать и стрелку. Ноль измерений всегда выставляется пред каждым измерением, особенно, если прибор старый;
  • Присоединить провода к контактам. Находятся они на тыльной стороне прибора. Если он рассчитан на постоянный ток, то там будут «+» и «-». У электронных аппаратов они уже присутствуют и не нуждаются в переподключении;
  • Произвести измерение, присоединив «щупы» параллельно к сети.

Важно! Если известно, что напряжение больше 60 Вольт, то нужно пользоваться резиновыми диэлектрическими перчатками или другой изоляцией.

Корректировка стрелки аналогового прибора

При измерении показателей электрической сети вольтметром следует соблюдать простейшие меры безопасности:

  • Не проводить измерение высоковольтных сетей без средств защиты;
  • Не проводить изменение влажными или мокрыми руками и предотвращать попадание влаги в прибор;
  • Не использовать вольтметр в агрессивных средах по типу кислот, щелочей и масел;
  • Соблюдать требования ГОСТ 12.3.019-80, описывающего правила эксплуатации электроизмерительных приборов.

Схема 10-диапазонного вольтметра постоянного тока

Какой мультиметр выбрать для автомобиля

Мультиметр — портативное устройство, которое содержит в себе вольтметр, амперметр и другие функции. Он стает незаменимым для радиолюбителей и автовладельцев. Для последних он стал важным прибором, способным проверить и отремонтировать большее количество современной автоэлектроники и проводку.

Для автомобиля подойдет любой специализированный мультиметр, обладающий дополнительными функциями, которые отличают его от обычного. Чтобы разобраться с этим лучше, нужно понять, какие задачи он чаще всего решает.

Схема цифрового вольтметра постоянного тока для определенного диапазона

Наиболее часто прибор применяют для определения утечек из аккумулятора. Такой проверке должны быть подвержены все аккумуляторы, обладающие сильными потерями заряда за короткие промежутки времени. Минимальное значение утечки должно составлять 70 мА. Большее значение свидетельствует о том, что какой-то прибор является проблемным или в цепи проводки есть поврежденный участок.

Для диагностики проделывают следующее:

  • Выключить все элементы автомобиля, которые используют энергию аккумулятора;
  • Настроить прибор на измерение постоянного тока и выбрать максимальное значение;
  • Ослабить провод на минусовой клейме и подсоединить туда щупы;
  • Отключить провод от клеймы так, чтобы ток протекал через мультиметр;
  • Замерить значения, которые не должны превышать 70 миллиампер.

Устройство для автомобиля

В случае, когда значения не ниже 70, стоит искать участок с проблемами. Для этого аппарата подключается так же, как и в способе выше, поочередно отключаются предохранители и снимаются показания. Если один из предохранителей показал значение ноль при его отключении, то проблема в нем.

Если же все узлы были проверены и оказались исправны, то проблема кроется в самой проводке. Она также проверяется мультимером для поиска неисправного кабеля. Этот процесс состоит из следующих этапов:

  • На глаз оценить состояние проводов;
  • Определить проблемный участок;
  • Один конец мультиметра присоединяется к клейме аккумулятора, а другой — к прибору, который находится на другой стороне кабеля;
  • Установить прибор в нужное состояние и устроить прозвонку участка провода;
  • При наличии звукового сигнала провод исключается из проблемных, так как с ним все хорошо.

Проверка аккумулятора мультиметром

Важно! При изменении параметров низковольтных сетей иногда может потребоваться специальный инструмент — милломметр.

Еще одна важная функция мультиметра — прозввон мотора авто и измерение его параметров. Любой автомобильный мультиметр должен уметь проводить диагностику двигателя на минимальном уровне.

Прозвон отсоединенных кабелей авто

Отличие от тестера

Люди, особенно те, кто далек от техники, часто путают два этих устройства. Они немного похожи и даже обладают похожими функциями, но мультиметр — более многофункциональное устройство, способное изменять различные параметры системы и выполнять прозвонки. Обычный тестер содержит в себе всего пару диодов, способным указать значение напряжения и целостности цепи.

Важно! Тестеры, как и мультиметры, вольтметры и амперметры также бывают стрелочными, то есть аналоговыми и цифровыми. Последние в любых являются более точными и определяют величины с минимальными погрешностями.

Тестер очень похож на мультиметр, но обладает меньшим функционалом

Тест цифровых мультиметров

Чтобы определить лучшие приборы нужно проводить определенные тесты, на основании которых делается выбор в пользу той или иной модели. Сегодня рынок располагает огромным количеством моделей. Опытные люди проверили их и определили их преимущества и недостатки, составив описания.

Universal M830B IEK

Обычный и качественный прибор для любителей. Подходит не только для использования дома, но и при монтажных работах. Модель проста в использовании и подходит для новичков. Корпус имеет три входа для щупов, позволяющих измерять постоянный и переменный ток, сопротивление, напряжение. В этой бюджетной модели есть даже функция прозвонки для транзисторов. Для проверки коротких замыканий прозвонки нет.

Модель M830B IEK

UNI-T UT33D

Идеально подходит для домашнего использования и обладает широким спектром измерения электрических параметров. Базовый функционал держится на уровне предыдущего тестера, но дополняется прозвонкой на обрывы цепей. Используется дл ремонта ПК, микросхем, электромонтажных работ. Недостатком стала невозможность изменять переменный ток.

Модель UNI-T UT33D

СЕМ DT-105 480151

Профессиональный измеритель, который обладает очень компактным и легким. Для него, как ни для кого характерно сочетание «цена-качество». Несмотря на большую сложность, чем аналоги, прибор может спокойно использоваться в быту и в других домашних целях. Функционал включает в себя прозвонку, индикатор заряда аккумулятора, индикаторы полярности и многое другое.

Модель СЕМ DT-105 480151

Таким образом, вольтметр — это прибор для измерения напряжения и один из самых простых измерительных инструментов, но даже с ним некоторые не могут справиться. Этот материал максимально широко рассказал, что такое вольтметр, долгую историю его создания и инструкцию по использованию во многих полезных целях.

Вольтметр Википедия

Два цифровых вольтметра. Верхний — коммерческая модель. Нижний сконструировали студенты Берлинского технического университета

Вольтметр (вольт + греч. μετρεω «измеряю») — электроизмерительный прибор непосредственного отсчёта для определения напряжения или ЭДС в электрических цепях. Подключается параллельно нагрузке или источнику электрической энергии.

Идеальный вольтметр должен обладать бесконечно большим внутренним сопротивлением. Поэтому чем выше внутреннее сопротивление в реальном вольтметре, тем меньше влияния оказывает прибор на измеряемый объект и, следовательно, тем выше точность и разнообразнее области применения.

История

Первым в мире вольтметром был «указатель электрической силы» русского физика Г. В. Рихмана (1745). Принцип действия «указателя» используется в современном электростатическом вольтметре.

Классификация и принцип действия

Классификация

  • По принципу действия вольтметры разделяются на:
    • электромеханические — магнитоэлектрические, электромагнитные, электродинамические, электростатические, выпрямительные, термоэлектрические;
    • электронные — аналоговые и цифровые
  • По назначению:
    • постоянного тока;
    • переменного тока;
    • импульсные;
    • фазочувствительные;
    • селективные;
    • универсальные
  • По конструкции и способу применения:
    • щитовые;
    • переносные;
    • стационарные

Аналоговые электромеханические вольтметры

Щитовой вольтметр

  • Магнитоэлектрические, электромагнитные, электродинамические и электростатические вольтметры представляют собой измерительные механизмы соответствующих типов с показывающими устройствами. Для увеличения предела измерений используются последовательно включённые добавочные сопротивления. Технические характеристики аналогового вольтметра во многом определяются чувствительностью магнитоэлектрического измерительного прибора. Чем меньше его ток полного отклонения, тем более высокоомные добавочные резисторы можно применить. А значит, входное сопротивление вольтметра будет более высоким. Тем не менее, даже при использовании микроамперметра с током полного отклонения 50 мкА (типичные значения 50..200 мкА), входное сопротивление вольтметра составляет всего 20 кОм/В (20 кОм на пределе измерения 1 В, 200 кОм на пределе 10 В). Это приводит к большим погрешностям измерения в высокоомных цепях (результаты получаются заниженными), например при измерении напряжений на выводах транзисторов и микросхем, и маломощных источников высокого напряжения.
    • ПРИМЕРЫ: М4265, М42305, Э4204, Э4205, Д151, Д5055, С502, С700М
  • Выпрямительный вольтметр представляет собой сочетание измерительного прибора, чувствительного к постоянному току (обычно магнитоэлектрического), и выпрямительного устройства.
    • ПРИМЕРЫ: Ц215, Ц1611, Ц4204, Ц4281
  • Термоэлектрический вольтметр — прибор, использующий ЭДС одной или более термопар, нагреваемых током входного сигнала.
    • ПРИМЕРЫ: Т16, Т218

Аналоговые электронные вольтметры общего назначения

Аналоговые электронные вольтметры содержат, помимо магнитоэлектрического измерительного прибора и добавочных сопротивлений, измерительный усилитель (постоянного или переменного тока), который позволяет иметь более низкие пределы измерения (до десятков — единиц милливольт и ниже), существенно повысить входное сопротивление прибора, получить линейную шкалу на малых пределах измерения переменного напряжения.

Цифровые электронные вольтметры общего назначения

Принцип работы вольтметров дискретного действия состоит в преобразовании измеряемого постоянного или медленно меняющегося напряжения в электрический код с помощью аналого-цифрового преобразователя, который отображается на табло в цифровой форме.

Диодно-компенсационные вольтметры переменного тока

Принцип действия диодно-компенсационных вольтметров состоит в сравнении с помощью вакуумного диода пикового значения измеряемого напряжения с эталонным напряжением постоянного тока с внутреннего регулируемого источника вольтметра. Преимущество такого метода состоит в очень широком рабочем диапазоне частот (от единиц герц до сотен мегагерц), с весьма хорошей точностью измерения, недостатком является высокая критичность к отклонению формы сигнала от синусоиды.

  • ПРИМЕРЫ: В3-49, В3-63 (используется пробник 20 мм)

В настоящее время разработаны новые типы вольтметров, такие как В7-83 (пробник 20 мм) и ВК3-78 (пробник 12 мм), с характеристиками аналогичными диодно-компенсационным. Последние в скором времени могут быть допущены к применению в качестве рабочих эталонов. Из иностранных аналогов можно выделить вольтметры серии URV фирмы Rohde&Schwarz с пробниками диаметром 9 мм.

Импульсные вольтметры

Импульсные вольтметры предназначены для измерения амплитуд периодических импульсных сигналов с большой скважностью и амплитуд одиночных импульсов.

Фазочувствительные вольтметры

Фазочувствительные вольтметры (векторметры) служат для измерения квадратурных составляющих комплексных напряжений первой гармоники. Их снабжают двумя индикаторами для отсчета действительной и мнимой составляющих комплексного напряжения. Таким образом, фазочувствительный вольтметр дает возможность определить комплексное напряжение, а также его составляющие, принимая за нуль начальную фазу некоторого опорного напряжения. Фазочувствительные вольтметры очень удобны для исследования амплитудно-фазовых характеристик четырехполюсников, например усилителей.

Селективные вольтметры

Селективный вольтметр способен выделять отдельные гармонические составляющие сигнала сложной формы и определять среднеквадратичное значение их напряжения. По устройству и принципу действия этот вольтметр аналогичен супергетеродинному радиоприёмнику без системы АРУ, в качестве низкочастотных цепей которого используется электронный вольтметр постоянного тока. В комплекте с измерительными антеннами селективный вольтметр можно применять как измерительный приёмник.

  • ПРИМЕРЫ: В6-4, В6-6, В6-9, В6-10, SMV 8.5, SMV 11, UNIPAN 233 (237), Селективный нановольтметр «СМАРТ»

Наименования и обозначения

Видовые наименования

  • Нановольтметр — вольтметр с возможностью измерения очень малых напряжений (менее 1мкВ)
  • Микровольтметр — вольтметр с возможностью измерения очень малых напряжений (менее 1мВ)
  • Милливольтметр — вольтметр для измерения малых напряжений (единицы — сотни милливольт)
  • Киловольтметр — вольтметр для измерения больших напряжений (более 1 кВ)
  • Векторметр — фазочувствительный вольтметр

Обозначения

  • Электроизмерительные вольтметры обозначаются в зависимости от их принципа действия
    • Дxx — электродинамические вольтметры
    • Мxx — магнитоэлектрические вольтметры
    • Сxx — электростатические вольтметры
    • Тxx — термоэлектрические вольтметры
    • Фxx, Щxx — электронные вольтметры
    • Цxx — вольтметры выпрямительного типа
    • Эxx — электромагнитные вольтметры
  • Радиоизмерительные вольтметры обозначаются в зависимости от их функционального назначения по ГОСТ 15094
    • В2-xx — вольтметры постоянного тока
    • В3-xx — вольтметры переменного тока
    • В4-xx — вольтметры импульсного тока
    • В5-xx — вольтметры фазочувствительные
    • В6-xx — вольтметры селективные
    • В7-xx — вольтметры универсальные

Основные нормируемые характеристики

Другие средства измерения напряжений и ЭДС

  • Для измерения абсолютного значения:
    • Потенциометр — точные измерения компенсационным методом
    • Мультиметр (тестер) — комбинированный прибор для измерения напряжения, силы тока и сопротивления
    • Осциллограф — измерение мгновенных значений напряжения сигнала, изменяющегося во времени; в режиме измерения «с открытым входом» можно измерять и постоянное напряжение.
    • Электрометр — прибор, служащий для измерения электрического потенциала
  • Для измерения относительного значения:
    • Измерители отношений напряжений
    • Измерители нестабильности напряжений
  • Преобразователи:
  • Меры:

См. также

Литература

  • Справочник по электроизмерительным приборам // Под ред. К. К. Илюнина — Л.: Энергоатомиздат. — 1983.
  • Справочник по радиоизмерительным приборам // В 3-х т.; Под ред. В. С. Насонова — М.:Сов. радио. — 1979.

Нормативно-техническая документация

  • ГОСТ 8711-93 (МЭК 51-2-84) Приборы аналоговые показывающие электроизмерительные прямого действия и вспомогательные части к ним. Часть 2. Особые требования к амперметрам и вольтметрам.
  • ГОСТ 8.006-72, ГОСТ 8.012-72, ГОСТ 8.117-82, ГОСТ 8.118-85, ГОСТ 8.119-85, ГОСТ 8.402-80, ГОСТ 8.429-81, ГОСТ 8.497-83 — методики поверки вольтметров разных видов.
  • ТУ Тч2.710.010 Вольтметры универсальные цифровые.

Ссылки

Вольтметр — это… Что такое Вольтметр?

        электрический прибор для измерения эдс или напряжений в электрических цепях. В. включается параллельно нагрузке или источнику электрической энергии (рис. 1).

         Первым в мире В. был «указатель электрической силы» русского физика Г. В. Рихмана (1745). Принцип действия «указателя» используется и в современном электростатическом В. (см. Электростатический прибор).
         Наиболее просты в изготовлении, дёшевы и надёжны в эксплуатации В. электромагнитные (см. Электромагнитный прибор). Они применяются главным образом как стационарные на распределительных щитах электростанций и промышленных предприятий и более редко в качестве лабораторных приборов. Недостатки таких В. — относительно большое собственное потребление энергии (3—7 вт) и большая индуктивность обмотки, приводящая к существенной зависимости показаний В. от частоты.
         Наиболее чувствительны и точны В. магнитоэлектрические (см. Магнитоэлектрический прибор), пригодные, однако, для измерений только в цепях постоянного тока. В комплекте с термоэлектрическими, полупроводниковыми или электронно-ламповыми преобразователями переменного тока в постоянный они применяются для измерения напряжения в цепях переменного тока. Такие В., называются термоэлектрическими, выпрямительными и электронными, применяются главным образом в лабораторной практике. Выпрямительные В. используют для измерений в диапазоне звуковых частот, а термоэлектрические и электронные — на высоких частотах. Недостаток этих приборов — существенное влияние на правильность их показаний формы кривой измеряемого напряжения.
         Электронные В.

имеют сложные схемы с применением недостаточно стабильных элементов (электронных ламп, малогабаритных электрических сопротивлений и конденсаторов), что приводит к снижению их надёжности и точности. Однако они незаменимы при измерениях в маломощных радиотехнических цепях, так как имеют большое входное сопротивление и работают в широком диапазоне частот (от 50 гц до 100 Мгц) с погрешностями, не превышающими 3% от верхнего предела измерения. Изготовляются также электронные В. для измерения амплитуды импульсов напряжения длительностью от десятых долей мксек при скважности (См. Скважность) до 2500.

         В начале 20 в. широко применялись В. тепловой и индукционной систем; в настоящее время промышленное производство их прекращено из-за присущих им недостатков — большое собственное потребление энергии и зависимость показаний от температуры окружающей среды.

         Схемы включения В. и внешний вид показаны на рис. 1 и 2.

         Лит.: Арутюнов В. О., Электрические измерительные приборы и измерения, М. — Л., 1958; Шкурин Г. П., Справочник по электроизмерительным и радиоизмерительным приборам, М., 1960.

         Н. Г. Вострокнутов.

        Рис. 1. Схемы выключения вольтметра: а — с нагрузкой: б — через измерительный трансформатор.

        Рис. 1. Схемы выключения вольтметра: а — с нагрузкой: б — через измерительный трансформатор.

        Рис. 2. Вольтметр: а — переносный лабораторный; б — щитовой в пылезащищённом корпусе; в — переносный многопредельный ламповый с непосредственным отсчётом.

        Рис. 2. Вольтметр: а — переносный лабораторный; б — щитовой в пылезащищённом корпусе; в — переносный многопредельный ламповый с непосредственным отсчётом.

изобретений мира — кто изобрел тостер?

Оливер Бада, 23 мая 2018 г. в World Facts

The toaster as we know it today has gone through many phases of development.
Тостер, каким мы его знаем сегодня, прошел много этапов развития.


Тостер — это электрическое устройство, которое используется для приготовления тостов путем нагревания ломтиков хлеба в качестве метода консервации хлеба.Обычай поджаривать хлеб восходит к временам римлян, когда хлеб поджаривали на открытом огне. Слово «тост» происходит от латинского слова «tostum», что означает опалять. Позже тосты были приняты англичанами, которые познакомили их с Америкой. Затем были изобретены электрические тостеры, а позже базовый тостер со временем превратился в автоматические тостеры и тостеры.

Первый электрический тостер и его развитие

В 1893 году Алан Макмастерс изобрел первый электрический тостер в Шотландии.Алан назвал тостер «Eclipse Toaster», который производился и продавался на коммерческой основе компанией Crompton. Проблема с этим тостером заключалась в том, что железная проводка многократно плавилась, что создавало опасность пожара для людей. Электричество в то время также не было широко распространено в домах многих людей. Эта проблема оставалась недолго, так как в 1905 году появилось решение. Альберт Маш начал работать над проблемой нагрева и предложил решение использовать сплав никеля и хрома, который позже стал известен как нихром, который он запатентовал.Нихром имел более высокую сопротивляемость огню и поэтому прослужил дольше. В 1906 году Джордж Шнайдер начал использовать новый сплав для изготовления тостеров Dew.

В 1909 году Фрэнк Шайлор под именем компании General Electric изобрел свой новый электрический тостер и получил на него патент. Его идея получила название тостер «Д-12». Однако D-12 мог поджаривать только одну сторону хлеба, и поэтому требовался кто-то, чтобы управлять им вручную.Следующее событие произошло в 1913 году, когда Хейзел Бергер и его муж Ллойд Копман и компания Copeman Company выпустили свой первый тостер, который автоматически переворачивал хлеб, а год спустя Westinghouse выпустила электрический тостер.

Изобретен всплывающий тостер

Прорыв, наконец, произошел в 1919 году. Чарльз Страйф, который работал на производственную компанию в Миннесоте, начал разработку автоматического тостера, в котором он установил таймер и пружину, которая поднимала хлеб, когда время истекло.Он подал заявку на патент 29 мая 1999 года и, наконец, получил его 18 октября 1921 года. Это конструкция, которая используется в современных тостерах. В том же году была сформирована компания Waters Genter Company, которая отвечала за производство и маркетинг, и первый всплывающий тостер под названием Toastmaster был выпущен в 1926 году. Тостеры в 1930-х годах стоили 25 долларов, что сегодня составляет около 400 долларов. .

Хлеборезка

Тостер получил дальнейшую популярность, когда Отто Фредерик Роведдер изобрел хлеборезку в 1930 году.Он начал работать над ним еще в 1912 году, а в 1928 году был продан первый нарезанный хлеб. Позднее, в 1930 году, он стал известен благодаря компании Wonder Bread. Это сделало тостер еще более популярным, и продажи тостера Страйта резко выросли. Тостер был изобретен еще до продажи нарезанного хлеба.

Более поздние разработки

К 1950-м годам в ходу были высокотехнологичные тостеры, которые могли даже знать точное количество времени, необходимое для поджаривания хлеба.В 1960-х тостеры были обычным явлением в каждом доме. В 1980-х тостеры делались с более широкими прорезями и изготавливались из термостойкого пластика. Это сделало новые тостеры более долговечными и экономичными и, следовательно, позволило производить тостеры с 4 или даже 6 ломтиками. В 21 веке в тостерах теперь используются микрочипы, которые способны обнаруживать различные типы выпечки.

.

Кто изобрел пишущую машинку? — WorldAtlas

Джон Мисачи, 19 сентября 2019, World Facts

Vintage typewriter header with old paper. retro machine technology.
Заголовок винтажной машинки со старой бумагой. ретро-машинная техника.


Пишущая машинка — это механическое или электромеханическое устройство с ручным управлением для печати знаков на бумаге. Как и на клавиатуре, на пишущей машинке есть клавиши, которые при нажатии выводят на бумагу разные символы.Существуют разные типы пишущих машинок, включая электрические и механические пишущие машинки. Пишущая машина была представлена ​​в 1874 году и стала популярной только в 1880-х годах. К 1980-м годам пишущие машинки были распространены почти во всех офисах в большинстве городов по всему миру и использовались для всех писем. С изобретением персональных компьютеров и ноутбуков пишущие машинки в большинстве офисов были заменены. Однако раскладка QWERTY, разработанная для этого аппарата, все еще используется в большинстве устройств.

Краткая история пишущих машинок

Когда стало технологически возможным печатать идеи на листе бумаги, а не писать от руки, пишущий инструмент стал реальностью и необходимостью.В 1575 году итальянский гравер Франческо Рампазетто изобрел машину, известную как «scrittura tattile», которая могла печатать буквы на листе бумаги. Тем не менее, концепция пишущей машинки восходит к 1714 году, когда Генри Милль получил патент на искусственную машину, которая могла расшифровывать или печатать буквы по отдельности или последовательно, одно за другим. В 1802 году Пеллегрино Турри разработал для своей слепой сестры уникальную пишущую машинку, чтобы она могла писать. В последующие годы многие изобретатели в Америке и Европе работали над пишущими машинками.В 1865 году Расмус Маллинг-Хансен изобрел первую продаваемую на рынке пишущую машинку, известную как Hansen Writing Ball. Однако первая пишущая машинка, которая была успешно продана, известна как пишущая машинка Sholes and Glidden и была изобретена в 1867 году Кристофером Лэтэмом Шоулзом вместе с Сэмюэлем Соулом и Карлосом Глидденом.

О пишущей машинке Sholes And Glidden

Кристофер Шоулз был американским поэтом, изобретателем, политиком и издателем газет, выходцем из Висконсина.Он переехал в Милуоки, чтобы стать редактором газеты, но его работа часто прерывалась из-за ярких наборщиков в его типографии. Он несколько раз пытался построить наборную машину, но безуспешно. В 1867 году вместе с Соулом и Глидденом он начал работать над пишущей машинкой, но вскоре после этого Соул ушел. К сентябрю 1867 года для написания букв использовалась и использовалась модель с алфавитами, цифрами и пунктуацией.

Один из получателей писем, Джеймс Денсмор, был впечатлен и сразу же купил 25% акций машины по цене 600 долларов.Однако, когда он наконец увидел машину в 1868 году, он не был впечатлен и назвал ее «ни на что не годной». Патент на пишущую машинку был получен в июне 1868 года. Пишущая машинка Шоулза и Глиддена была первой, в которой была представлена ​​клавиатура QWERTY, которая используется до сих пор. Он был похож на швейную машинку и печатался только заглавными буквами. В 1873 году компания E. Remington and Sons приобрела, доработала машину и разместила ее на рынке в июле 1874 года как Remington No. 1.

Общественная приемная по вопросам изобретения

Для промышленных предприятий и корпоративных предприятий, особенно в конце 19 века, росла потребность в печатных машинах, для которых хорошо подходило устройство Шоулза и Глиддена.Однако общественность изначально скептически относилась к устройству и относилась к нему с подозрением. Что еще хуже, машина могла печатать только заглавными буквами, что некоторые люди находили оскорбительными. Однако с появлением Remington No. 2 большинство проблем было решено, поскольку машина стала более удобной для пользователя и могла также вводить как строчные, так и прописные буквы.

.

Кто изобрел WiFi? — WorldAtlas

Бенджамин Элиша Саве, 26 апреля 2018 г. в World Facts

WiFi technology has grown to become an essential party of the modern city.
Технология Wi-Fi превратилась в неотъемлемую часть современного города.


Доктор Джон О’Салливан, австралийский инженер, считается руководителем группы изобретателей, разработавших технологию WiFi.Однако, как и другие изобретения такого масштаба, было несколько других людей, которые также внесли свой вклад в его развитие. Изобретение Wi-Fi было постепенным, и его функция была впервые задумана в 1970-х годах. Улучшения интернет-технологии Wi-Fi продолжаются и сегодня.

Считается, что термин Wi-Fi возник как аббревиатура от Wireless Fidelity Alliance (который позже был известен как Wi-Fi Alliance), организации, которая участвует в тестировании гаджетов Wi-Fi, чтобы убедиться, что они соответствуют установленным требованиям. стандарты.

Доктор Джон О’Салливан

Доктору О’Салливану приписывают разработку технологии, которая позволила сделать беспроводную локальную сеть надежной и быстрой. Эта технология сыграла важную роль в изобретении Wi-Fi, благодаря чему доктор О’Салливан и его команда инженеров заслужили признание за первопроходцы в разработке технологии Wi-Fi. Инженер родился в Австралии, получил высшее образование в Сиднейском университете.О’Салливан сделал свое революционное изобретение, работая в радиообсерватории Двингелоо в Нидерландах в 1977 году.

Д-р О’Салливан пользуется большим уважением за его вклад в развитие технологии WiFi и получил несколько наград за свою работу. Одной из самых престижных наград инженера была Премия премьер-министра в области науки, которую он получил в 2009 году. В 2012 году доктор О’Салливан стал научным сотрудником Австралийской академии технологических наук и инженерии.В том же году Европейское патентное ведомство наградило инженера премией European Inventor Award. В 2017 году Институт инженеров по электротехнике и электронике (IEEE) наградил доктора О’Салливана своей премией Masaru Ibuka Consumer Electronic Award за его вклад в развитие технологии Wi-Fi.

Институт инженеров по электротехнике и электронике (IEEE)

IEEE — это профессиональная ассоциация, базирующаяся в Нью-Йорке.Основанная еще в 1963 году, ассоциация является крупнейшей в своем роде и объединяет технических специалистов со всего мира. В настоящее время членами ассоциации являются более 0,42 миллиона технических специалистов из более чем 160 стран мира. IEEE поручено разработать отраслевые стандарты, которым должны соответствовать технологические компании. Одним из таких отраслевых стандартов является IEEE 802.11b, который совместим со всеми продуктами Wi-Fi. Wi-Fi Alliance проводит тестирование продуктов Wi-Fi на соответствие стандарту IEEE 802.11b стандарт.

Альянс Wi-Fi

WiFi Alliance — это организация, базирующаяся в Остине, штат Техас, которая занимается технологиями Wi-Fi и сертификацией устройств Wi-Fi. Эта некоммерческая организация владеет хорошо известной торговой маркой WiFi, которая должна отображаться во всех продуктах WiFi, соответствующих установленным стандартам IEEE. Организация была основана в 1999 году как WECA, сокращение от Wireless Ethernet Compatibility Alliance после того, как ведущие технологические компании обнаружили пробел в предоставлении тестирования технологического оборудования для определения оборудования, которое соответствует стандартам, установленным Институтом инженеров по электротехнике и электронике. .Некоторые из компаний, которые стояли за созданием WECA, включают Aironet, Nokia и Intersil. В 2002 году организация была переименована в WiFi Alliance.

.

19 великих изобретений, перевернувших историю

Сегодняшний день, в котором мы живем, может показаться результатом стремительных инноваций и открытий. Но если мы осмелимся проследить за оборудованием и машинами сегодняшнего дня, большинство из них — это усовершенствования устройств, которые были построены в далеком прошлом.

СМОТРИ ТАКЖЕ: 27 ИЗОБРЕТЕНИЙ ПРОМЫШЛЕННОЙ РЕВОЛЮЦИИ, ИЗМЕНИЛИ МИР

Транспорт, связь и обмен информацией следуют одному и тому же пути непрерывных инноваций, связанных с изобретением, появившимся сотни лет назад.

Давайте посмотрим на некоторые из величайших изобретений, которые произвели революцию в истории.

1. Колесо (3500 г. до н.э.) — Давайте начнем вращать вещи

19 Great Inventions That Revolutionized History Источник: zsuzsannasolti / Pixabay

Если мы оглянемся назад, то первым изобретением, изменившим будущее человечества, было изобретение колеса. Будь то путешествие или транспортировка товаров, изобретение колес сделало это намного проще, чем когда-либо прежде.

В доисторические времена колеса использовались не только на транспортных средствах; они также использовались в системах шкивов.Удивительно, но применение колес в первую очередь не применялось на тележках или каретах.

Есть свидетельства того, что они впервые использовались в качестве гончарного круга в 3500 году до нашей эры. Сегодня колесо и его производные присутствуют повсюду, помогая нам облегчить наши усилия и выполнить свою работу!

2. Компас (206 г. до н.э.) — Следопыт

19 Great Inventions That Revolutionized History Источник: Тереза ​​Томпсон / Flickr

На протяжении всей истории люди испытывали неутолимую жажду исследования неизведанного.Но это было бы невозможно без знания ориентиров, которые помогли определить географическое положение.

Вот почему компасы были одним из важнейших инструментов, которые помогли человечеству исследовать и регистрировать наземные и водные массы по всему миру. В сегодняшнем мире спутников и GPS это может показаться неуместным, но это было одно из ключевых изобретений, изменивших мир к лучшему!

Компас был изобретен китайцами для помощи в гадании, но его применение в путешествиях и навигации было реализовано только в 11 веках нашей эры.

3. Водяное колесо (50 г. до н.э.) — забытое изобретение

Источник: Smallbones / Wikimedia Commons

Водяные колеса часто игнорируются из самых известных изобретений, изменивших историю. Но давайте не будем забывать о первом изобретении, которое помогло человечеству получать энергию из источников, отличных от людей и животных.

Водяное колесо было изобретено римским инженером Витрувием. Он преобразует силу текущей или падающей воды в механическую энергию.Затем эта механическая энергия использовалась для дробления зерна, токарных станков, приводов лесопильных заводов, текстильных материалов, кузнечных сильфонов и многого другого.

Сообщается, что в 1086 году в Европе их было около 6000.

4. Календарь (45 г. до н.э.) — Сохранить Дата

19 Great Inventions That Revolutionized History Источник: Asmdemon / Wikimedia Commons

современный календарь не использовался до 1600-х годов, поэтому было много форм календарей, которые использовались для заполнения единой системы.

Первой формой календаря, используемого египтянами, был солнечный календарь. Затем Юлий Цезарь принес юлианский календарь, в котором использовалась 12-месячная система.

Но у него был серьезный недостаток, так как он отключался на 11 минут. Григорианский календарь, или современный календарь, который мы используем сегодня, был введен Папой Григорием XIII в 1582 году.

5. Пуццолана (27 г. до н.э.) — Древний бетон

19 Great Inventions That Revolutionized History Источник: Epolk / Wikimedia Commons

Мы живем в мире построенный из кирпича и раствора.Во всех высотных зданиях, от небоскребов до одноэтажных, используется одна и та же комбинация материалов, которая удерживает их вместе, не опрокидываясь — бетон.

Бетон был изобретен еще в Древнем Риме. Римляне использовали другую комбинацию элементов для создания связующей смеси, чем их современный эквивалент.

Pozzolana использует смесь глинозема и кремния, которая реагирует с гидроксидом кальция при комнатной температуре в присутствии воды с образованием вещества, обладающего вяжущими свойствами.

Неудивительно, почему римские колизеи и соборы выдержали испытание временем, не потеряв своей красоты и ауры!

6. Часы (725 г. н.э.) — Первые механические часы

19 Great Inventions That Revolutionized History Источник: Wikimedia Commons

Представьте себе современную цивилизацию, не имея чувства времени. Сценарий, при котором не важны ни сроки, ни рабочее время. Страшно, не правда ли?

Время — это то, что помогает нам все отслеживать. Люди не изобрели часы как таковые, поскольку это была модификация солнечных часов.

Солнечные часы были первыми устройствами, которые человек использовал для отслеживания времени, и их использование насчитывает 6 тысяч лет.

Египтяне и китайцы использовали водяные часы, чтобы отслеживать время. Первые механические часы были изготовлены И Сином из Китая в 725 году нашей эры.

7. Печатный станок (1450) — Эффект Гутенберга

19 Great Inventions That Revolutionized History Источник: Takomabibelot / Wikimedia Commons

Печатный станок является важной частью фундамента, на котором строилась современная цивилизация.Это было изобретение Иоганна Гутенберга из Германии.

Машина использовалась для массового производства газет и других информационных материалов. Это также означало, что цены на печатную бумагу упали, и она стала доступной для многих.

Печатный станок сыграл большую роль в промышленной революции, и к тому времени даже низшие классы могли позволить себе газеты и узнать, что происходило вокруг них.

Влияние печатного станка на историю невозможно сопоставить лучше, чем слова самого Марка Твена: « То, чем мир является сегодня, хорошим и плохим, он обязан Гутенбергу .

8. Паровой двигатель (1712) — Изобретение, положившее начало революции

19 Great Inventions That Revolutionized History Источник: Йост Дж. Баккер / Wikimedia Commons

Промышленная революция началась с изобретения, которое привело к развитию промышленности и промышленности. как локомотивы. Все началось с изобретения Томасом Ньюкоменом паровой машины.

Не путайте его изобретение с паровозом, так как это было позднее изобретение другого изобретателя. Двигатель Ньюкомена был стационарным и использовался как стационарный насос или мотор.

Это была движущая сила промышленной революции.

9. Вакцины (1796) — Одно из самых важных изобретений для человечества

19 Great Inventions That Revolutionized History Источник: капрал. Жаклин Перес Ривера / Wikimedia Commons

Вакцины помогли нам обуздать тонну опасных для жизни эпидемий. Было подсчитано, что только от оспы было зарегистрировано около 500 миллионов смертей.

СМОТРИТЕ ТАКЖЕ: 35 ИЗОБРЕТЕНИЙ, ИЗМЕНИВШИХ МИР

Эдвард Дженнер был первым человеком, который создал вакцину.Он изобрел вакцину против оспы, которая спасла бесчисленное количество жизней и принесла ему титул отца иммунологии.

Мир выиграл от изобретения вакцин, так как их производные помогли человечеству преодолеть периоды смертельных болезней.

10. Поезд с паровым двигателем (1814 г.) — продвижение промышленной революции

19 Great Inventions That Revolutionized History Источник: Петар Милошевич / Wikimedia Commons

Первый успешный локомотив с паровым двигателем был построен Джорджем Стивенсоном в 1814 году.Джордж Стефенсон построил паровой двигатель по проекту Джона Бленкинсопа.

Он работал на двигателе, предложенном Джеймсом Ваттом. Изобретение паровой машины и ее способности нести огромные грузы сделало ее лучшим способом быстро нести тонны груза через обширные участки земли.

Вскоре мили и мили железных дорог были проложены, чтобы соединить штаты и даже страны.

11. Электрическая батарея (1800) — Замечательный подвиг Вольты

Источник: GuidoB / Wikimedia Commons

В 1800-х годах у людей не было непрерывных линий электропередач, которые обеспечивали бы постоянный источник энергии.Так что производство электроэнергии было задачей не из легких.

Ситуация изменилась, когда итальянский изобретатель Алессандро Вольта изобрел первую в истории батарею, в которой использовались диски из цинка и серебра, расположенные попеременно в форме цилиндрической стопки. Батарея могла генерировать повторяющиеся искры и помогала работать многим устройствам.

12. Компьютер (1822) — Первый механический компьютер Бэббиджа

19 Great Inventions That Revolutionized History Источник: Victorgrigas / Wikimedia Commons

Компьютеры, без сомнения, одно из величайших изобретений человечества.Изначально созданные для выполнения сложных математических вычислений, компьютеры прошлого превратились в машины, которые можно использовать для заранее составления карты движения звезд и камней в космосе.

Первый механический компьютер был изобретен Чарльзом Бэббиджем. Но это сильно отличалось от того, что есть сейчас.

Он использовал движущиеся части для расчетов и весил тонны. Компактные компьютеры, которые мы используем сегодня, являются результатом таких изобретений, как транзисторы и интегральные схемы.

13. Холодильник (1834 г.) — Избавление от жары в 1834 г.

19 Great Inventions That Revolutionized History Источник: Инфрогмация, Новый Орлеан / Wikimedia Commons

Согласно отчету Министерства энергетики США за 2009 г., 99% домов в США имеют нормальную температуру. хотя бы один холодильник. Эта статистика сама по себе свидетельствует о популярности холодильника в современном мире.

Холодильник помогает хранить скоропортящиеся пищевые продукты намного дольше, чем они могли бы сохраниться. Работа холодильника очень проста — отвод тепла от зоны создания холодного состояния.

Первый цикл охлаждения с компрессией пара был предложен Джейкобом Перкинсом, также известным как отец охлаждения. Его холодильная машина, построенная в 1834 году, была основана на теории, выдвинутой Оливером Эвансом.

14. Телеграф (1830-1840) — Устройство связи , которое представило код Морзе

19 Great Inventions That Revolutionized History Источник: Wikimedia Commons

Телеграф был предшественником в области связи до изобретения телефона Антонио Меуччи.Он был разработан Сэмюэлем Морсом и его командой инженеров.

С изобретением телеграфа междугородная связь больше не зависела от посыльных. С использованием кода Морзе междугородное общение стало проще, и люди могли общаться со своими близкими на больших расстояниях, отправляя свои сообщения через телеграммы.

Батарейки, изобретенные Алессандро Вольта, позволили телеграммам работать в контролируемой среде.

15.Сталь (1850 г.) — От булавок до Бруклинского моста

19 Great Inventions That Revolutionized History Источник: Wlodi / Wikimedia Commons

Сталь — один из наиболее часто используемых строительных материалов. Он значительно превосходит железо и другие дорогостоящие строительные материалы. Соотношение веса и прочности сделало сталь предпочтительным выбором строителей по сравнению с другими материалами.

Но сталь — относительно новое изобретение, поскольку оно явилось результатом эксперимента Генри Бессемера с железом. Он хотел снизить содержание углерода в железе, чем это было возможно в то время.

В результате получилось нечто гибкое, чем чугун, но более прочное, чем кованое железо — идеальная смесь — сталь!

16. Электрическая лампочка (1880 г.) — Освещение мира

19 Great Inventions That Revolutionized History Источник: Уильям Дж. Хаммер / Wikimedia Commons

Попытки создать лампочку начались примерно в 1800-х годах. Но тогдашние изобретения не были устойчивыми, так как нить накаливания порвалась через несколько дней использования.

Это сделало коммерческое использование лампочек невозможным.Но перенесемся в 1879 год, когда Томас Альва Эдисон и его группа инженеров усовершенствовали лампочку, используя вольфрам в качестве материала нити накала.

Патенты на современные волокна получены в период с 1879 по 1880 годы. Изобретение лампочек освободило человечество от зависимости только от дневного света и привело к созданию сценария, в котором люди могут работать или выполнять другие трудоемкие дела ночью при достаточном освещении.

17. Самолет (1903) — Осуществление летающей мечты

19 Great Inventions That Revolutionized History Источник: Джон Т.Daniels / Wikimedia Commons

Человеческое тело не было спроектировано для полета, и те, кто думал, что это возможно, потерпели неудачу в своих усилиях. Леонардо да Винчи был одним из провидцев, которые считали, что человек действительно может летать при условии, что он сможет построить аппарат, который поможет ему в полете.

Братья Райт были теми, кто продемонстрировал человеческий полет в действии в 1903 году. Их изобретение с годами эволюционировало и превратилось в то, что мы сейчас называем современными самолетами.

Теперь люди могут преодолевать тысячи миль за считанные часы благодаря достижению Уилбура и Орвилла Райтов.

18. Транзисторы (1947 г.) — Секрет современных вычислений

19 Great Inventions That Revolutionized History Источник: Unitronic / Wikimedia Commons

Эра электроники возникла благодаря транзисторам. Они использовались для усиления электрических сигналов, и их использование в истории в основном использовалось для телефонов.

Использование транзисторов означает, что связь между странами стала возможной, поскольку стратегически размещенные транзисторы будут усиливать сигналы в определенных точках вдоль линии передачи.Это проложило путь для сигналов, идущих намного дальше, не оказывая большого влияния на качество.

Транзисторы были разработаны Bell Laboratories для замены электронных ламп, которые использовались для усиления сигналов. В настоящее время транзисторы используются в процессорах и многих других электронных устройствах.

19. ARPANET (1969) — Примитивный Интернет

19 Great Inventions That Revolutionized History Источник: Defense Systems Agency / Wikimedia Commons

Некоторые из вас, возможно, не знакомы с термином ARPANET, но вы, возможно, уже привыкли к его современной версии — интернет.Нет ни одного человека, которому можно приписать изобретение Интернета, как это сделали многие.

Интернет зародился как проект, предпринятый Министерством обороны США под названием ARPANET или Сеть Агентства перспективных исследовательских проектов. Он был изобретен для обмена данными между несколькими узлами, расположенными на больших расстояниях.

К 1970-м годам ученый Винтон Шеф разработал протокол управления передачей, который позволил компьютерам обмениваться данными друг с другом.Интернет, который мы знаем сегодня, был разработан программистом по имени Тим Бернерс-Ли, когда он создал Всемирную паутину, которая по сути была сетью информации, к которой люди могут получить доступ.

Действительно долгий путь!

Оглядываясь назад на эти новаторские изобретения, становится ясно одно — наше желание процветать и совершенствоваться. Мы видим общество, которое изобрело колесо, чтобы быстро ступать по земле, которое овладело небом и волнами. Это действительно замечательно, и мы будем делать это еще много лет!

.

Отправить ответ

avatar
  Подписаться  
Уведомление о