Вч генераторы на транзисторах: Генераторы ВЧ

Содержание

ВЧ-генератор на транзисторе MRF284L — Gnativ.ru

Предисловие

Уважаемые друзья!
После публикации на сайте статьи о создании ВЧ-генератора на мощных полевых транзисторах (MOSFET), ко мне стали поступать вопросы радиолюбителей по поводу различных аспектов работы данного устройства, а также возможности его приобретения. Некоторые радиолюбители не смогли запустить генератор, несмотря на простоту схемы и относительно невысокие требования к её монтажу.

На основании собственного опыта, хочу обратить ваше внимание на несколько ключевых моментов при создании данного генератора:

Первое и основное условие для создания работающего генератора — наличие ИСПРАВНОГО транзистора. Многие радиолюбители (впрочем как и я) пользуются демонтированными полупроводниковыми приборами. В большей части — это демонтаж с оборудования базовых станций сотовой связи. Помимо того, что транзистор может быть поврежден в процессе эксплуатации оборудования, так как является высоконагруженным элементом, так он еще может пострадать при «варварском» демонтаже. Поверьте, 20-30% демонтированных транзисторов — имеют значительные отклонения от заявленных характеристик или являются нерабочими. Поэтому, перед тем как монтировать транзистор — не поленитесь его проверить. Методика проверки подобных приборов при помощи тестера — есть в Интернете. Хорошо — когда у вас есть несколько одинаковых транзисторов. В этом случае, вы можете сравнить измеряемые параметры.

Внутренняя структура транзистора MRF284L

Второе условие — не допускать замыкания резонаторов в процессе тестирования устройства. Это приводит к моментальному выходу транзистора из строя. Если это происходит в тишине — можно услышать негромкий щелчок испаряющихся контактов и ячеек… При этом, горящая ВЧ-дуга между резонаторами никак не влияет на работоспособность транзистора. Во время одного эксперимента я держал дугу 3 часа и при этом транзистор был даже не горячим…

Третий момент связан с возбуждением генератора на множестве частот/гармоник. В этом случае генератор не выдает положенную мощность на одной частоте, она «размазывается» по некоторому диапазону. Определить это просто — генератор потребляет значительный ток, а ВЧ-энергии на резонаторах нет (например, не зажигается энергосберегающая лампа поднесенная к резонаторам). В этом случае, необходимо проверить исправность транзистора, попробовать изменить конструкцию резонаторов, их взаимное расположение, проверить источник питания, устранить возможные «паразитные» связи и т.п.. Наиболее часто, такое явление встречается у больших «согласованных» транзисторов, возбуждение происходит на уровне микроструктур. У транзисторов типа MRF284 — такое явление практически не наблюдается.

Ниже представлено видео работы высокочастотного генератора на более мощном транзисторе MRF6522-70. Этот транзистор рассчитан на диапазон 900 МГц., но хорошо работает в подобных генераторах на более низких частотах, не переходя в режим самовозбуждения.

Вот как выглядит плата генератора:

ВЧ-генератор на транзисторе MRF6522-70

Вот еще один генератор на транзисторе MRF9085 (90 Вт. 880 МГц). Очень «злая» штука))). При её работе, гаснет даже фотоаппарат с расстояния почти 1 м. Пришлось поставить светодиод для индикации работы устройства, так как после очередного эксперимента, забыл отключить генератор и вернувшись через 10 минут обнаружил оплавленные резонаторы и дымящуюся плату генератора…

ВЧ-генератор на транзисторе MRF9085, топология элементов.

Плата крупно:

ВЧ-генератор на транзисторе MRF9085

Семейство генераторов ВЧ;

Работа генератора на транзисторе MRF9085:

Ориентировочная оценка выходной мощности генератора:

В любом случае, создание подобного генератора требует наличия необходимых компонентов, аккуратности и некоторого везения. Поэтому, для энтузиастов и тех людей кто хочет провести эксперименты с подобным генератором, но у которых нет технической или другой возможности создать такое устройство у меня есть деловое предложение (см. ниже).

Коммерческое предложение

Для проведения одного из экспериментов, мною были изготовлены 15 одинаковых генераторов на транзисторе MRF284L. В качестве резонаторов для этих генераторов использовалась медная проволока d 0.8-1.0 mm. В этом генераторе отсутствует модулятор, он получился простым и технологичным. Изменяя параметры резонаторов (длину, расстояние) , можно легко получить частоты до 1,8 ГГц., а при некотором опыте и выше…

Ниже представлена монтажная схема ВЧ-генератора:

Вот как выглядят собранные платы. Устройства собраны на двухстороннем фольгированном стеклотекстолите, толщиной 1,6 мм. и адаптированы под монтаж на радиатор.

Вы можете приобрести эти платы у меня по цене 650 р. Все генераторы проверены и гарантированно работоспособны. Для их запуска вам потребуется источник питания 6-12 вольт (1-3 А), два кусочка медной проволоки длинной 10-15 см. и радиатор для охлаждения транзистора. Транзистор монтируется на радиатор с использованием теплоотводящей пасты. Необходимо обеспечить надежный электрический контакт «земли» и истока транзистора. Особых сложностей возникнуть не должно…
В общем обращайтесь на почту: [email protected] если есть такая заинтересованность.

P.S. Уважаемые друзья, осталось 4 генератора из двух последних партий (v.4) по 750 р.

Экспериментальный качер Бровина >>>

Мощный ВЧ-генератор | Катушки Тесла и все-все-все

 Довольно давно я уже писал о простейшем «СВЧ-генераторе», состоящем из 3.5 деталей и выдающем несколько ватт мощности на частоте в 400-500 мегагерц, достаточных для того, чтобы засвечивать газоразрядные приборы типа неонок, слегка обжигать пальцы и сообщать о себе частотомерам.

При наличии правильных транзисторов, понимания методик составления ВЧ плат и некотором везении можно значительно усилить эту конструкцию, подняв мощность до 40-50 ватт на той же частоте.

 Транзисторы, которые работают на таких частотах и мощностях, уже значительно отличаются от привычных многим читателям моего скромного блога трёхногих TO-247, TO-220, и других корпусов, равно как и от «кирпичей». Форма их корпусирования в значительной степени диктуется поведением сигналов на высоких частотах. Обычно это квадрат или прямоугольник, характерного белого оттенка, с расположенными с двух или четырёх сторон позолоченными выводами довольно внушительной толщины. Стоят эти транзисторы также значительно дороже силовых инверторных, причём цена растёт пропорционально как мощности, так и частоте, и может доходить до сотен долларов за штуку и выше.

 Для данной конструкции ВЧ транзистор с маркировкой MRF 6522- 70 был аккуратно выпаян из демонтированной платы GSM базовой станции. Как нетрудно заметить по даташиту, он может выдавать до 70 ватт на частоте в 900 мегагерц. Однако, для ввода его в такой режим необходимо довольно тщательно спроектировать плату — все эти характерные для высоких частот изгибы дорожек, гальванически никуда не подключенные куски фольги и прочие странные выверты, кажущиеся не особо осмысленными, но на деле влияющие на поведение сигнала, здесь уже совершенно необходимы. А на меньших мощностях и частотах на них можно забить и сделать плату банальным методом гравировки прорезей.

 Принципиальных отличий конструкции от упоминавшегося выше элементарного СВЧ-генератора нет. Разве что, в качестве резонатора взяты две медные полосы, определённой длины и размеров (расстояние между ними, их ширина и длина определяют L и С резонансного автогенераторного контура — они сами себе и индуктивность, и ёмкость).

 Генератор потребляет по входу 18 вольт с током до 4 ампер, и довольно ощутимо разогревает радиатор. Принудительное охлаждение является совершенно необходимым для его работы, учитывая КПД в 50-60%. Кроме радиатора, довольно неплохо нагреваются пальцы, если поднести их поближе к медному резонатору. Принцип нагрева здесь тот же, что у продуктов в микроволновке (что убедительно опровергает бредни про резонансные явления в молекулах воды, которые якобы происходят на её рабочей частоте). Если поджечь факел на конце резонатора, то он успешно удерживается там продолжительное время — маленький светящийся шарик плазмы с размытыми краями, диаметром в 3-5 миллиметров.

Схема генератора прилагается:

 Но самое интересное, ради чего я вообще начал всё это рассказывать, это явления, происходящие с разреженными газами на таких частотах. Поведение плазменного жгута начинает резко отличаться от стандартных изгибов, характерных для частот в десятки и сотни килогерц, использовавшиеся мною ранее (при работе с качером и т. д.). Довольно долго описывать при помощи текста все различия, достаточно просто посмотреть галерею изображений и приложенные видео. Наиболее интересным образом себя ведут, конечно, ксенон, криптон и их смеси с добавками. Поразительные сочетания оттенков, форм и движений создают ощущение, что в бутылке или колбе живое существо, приехавшее к нам прямиком из мифологии Лавкрафта или из чего-то подобного. Щупальца, присоски, резкие и в то же время плавные движения, зеленовато-призрачные оттенки как будто бы живая иллюстрация к рассказам о Ктулху и других жителях глубин.

Все четыре видео крайне заслуживают просмотра. Очень рекомендую.

А ещё теперь вы знаете, из чего на самом деле были крылья у архангела Тираэля 😉

Метки отсутствуют.

Шпионские штучки, или Секреты тайной радиосвязи / Арсенал-Инфо.рф

LC-генераторы на полевых транзисторах

В рассмотренных ранее схемотехнических решениях LC-генераторов в качестве активного элемента использовался биполярный транзистор. Однако при разработке миниатюрных радиопередатчиков и радиомикрофонов широко применяются схемы активных элементов, выполненных на полевых транзисторах. Главное достоинство полевых транзисторов, часто называемых канальными или униполярными, заключается в высоком входном сопротивлении, соизмеримом с входным сопротивлением электронных ламп. Особую группу составляют полевые транзисторы с изолированным затвором.

По переменному току полевой транзистор активного элемента высокочастотного генератора может быть включен с общим истоком, с общим затвором или с общим стоком. При разработке микропередатчиков чаще используются схемотехнические решения, в которых полевой транзистор по переменному току включен по схеме с общим стоком. Такая схема включения полевого транзистора аналогична схеме включения с общим коллектором для биполярного транзистора. В активном элементе, выполненном на полевом транзисторе, включенном по схеме с общим стоком, нагрузка подключена в цепь истока транзистора, а выходное напряжение снимается с истока по отношению к шине корпуса.

Коэффициент усиления по напряжению такого каскада, часто называемого истоковым повторителем, близок к единице, то есть выходное напряжение практически равно входному. При этом фазовый сдвиг между входным и выходным сигналами отсутствует. Истоковые повторители отличает сравнительно небольшое входное сопротивление при повышенном входном сопротивлении. Помимо этого для таких каскадов характерна малая входная емкость, что приводит к увеличению входного сопротивления на высоких частотах.

Одним из критериев классификации LC-генераторов на полевых транзисторах, как и генераторов на биполярных транзисторах, является схемотехническое решение цепи положительной обратной связи. В зависимости от примененной схемы цепи ПОС такие генераторы делятся на генераторы с индуктивной связью, с емкостной связью и трехточечные генераторы (так называемые трехточки). В генераторах с индуктивной связью цепь положительной обратной связи между входным и выходным электродами транзистора образована индуктивной связью, а в генераторах с емкостной связью – емкостной. В трехточечных ВЧ-генераторах, которые в свою очередь делятся на индуктивные и емкостные трехточки, резонансный контур подключен к активному элементу в трех точках.

Следует признать, что при разработке высокочастотных генераторов для миниатюрных радиопередающих устройств особой популярностью пользуются схемотехнические решения с полевыми транзисторами, основанные на применении индуктивной трехточки (схема Хартли). Дело в том, что на высоких частотах комплексное входное сопротивление полевого транзистора велико. Поэтому транзистор практически не шунтирует резонансный контур, то есть не оказывает никакого влияния на его параметры. Принципиальная схема одного из вариантов высокочастотного LC-генератора, выполненного по схеме Хартли на полевом транзисторе, включенном по переменному току по схеме с общим стоком, приведена на рис. 3.10.

Рис. 3.10. Принципиальная схема LC-генератора на полевом транзисторе по схеме Хартли

В рассматриваемой схеме активный элемент LC-генератора выполнен на полевом транзисторе VT1, который по переменному току включен по схеме истокового повторителя, то есть с общим стоком. Электрод стока транзистора замкнут на шину корпуса через конденсатор С2. Резонансный контур образован включенными параллельно подстроечным конденсатором С1 и катушкой индуктивности L1, от параметров которых зависит частота генерируемых колебаний. Этот контур подключен в цепь затвора полевого транзистора VT1.

Возникшие в резонансном контуре колебания подаются на затвор транзистора VT1. При положительной полуволне входного сигнала на затвор поступает соответственно положительное напряжение, в результате чего возрастает проводимость канала, а ток стока растет. При отрицательной полуволне колебания на затвор поступает соответственно отрицательное напряжение, в результате чего проводимость канала снижается, а ток стока уменьшается. Снимаемое с электрода истока транзистора VT1 напряжение подается в резонансный контур, а именно на вывод катушки L1, которая по отношению к истоку транзистора включена по схеме повышающего автотрансформатора. Такое включение позволяет увеличить коэффициент передачи цепи положительной обратной связи до необходимого уровня, то есть обеспечивает соблюдение условия баланса амплитуд. Выполнение условия баланса фаз обеспечивается включением транзистора VT1 по схеме с общим стоком.

Соблюдение условий баланса амплитуд и баланса фаз приводит к возникновению устойчивых колебаний на частоте резонанса колебательного контура. При этом частота генерируемого сигнала может изменяться с помощью подстроечного конденсатора С1 колебательного контура. Выходной сигнал, формируемый генератором, снимается с электрода истока полевого транзистора VT1.

При конструировании высокочастотных генераторов для микропередатчиков нередко используются схемотехнические решения с полевыми транзисторами, основанные на применении емкостной трехточки (схема Колпитца). Принципиальная схема одного из вариантов высокочастотного LC-генератора, выполненного по схеме Колпитца на полевом транзисторе, включенном по переменному току по схеме с общим стоком, приведена на рис. 3.11.

Рис. 3.11. Принципиальная схема LC-генератора на полевом транзисторе по схеме Колпитца

Активный элемент данного LC-генератора выполнен на полевом транзисторе VT1, который по переменному току включен по схеме с общим стоком. При этом электрод стока транзистора замкнут на шину корпуса через конденсатор С5. Параллельный резонансный контур образован катушкой индуктивности L1 и конденсаторами С1 – С4, от параметров которых зависит частота генерируемых колебаний. Этот контур включен в цепь затвора полевого транзистора.

Возникшие в резонансном контуре колебания подаются на затвор транзистора VT1. Снимаемое с электрода истока транзистора VT1 напряжение через цепь обратной связи подается в резонансный контур, а именно в точку соединения конденсаторов С3 и С4, образующих емкостной делитель. Выбор соответствующих величин емкостей конденсаторов С3 и С4, а также необходимого соотношения этих величин позволяет подобрать такой уровень коэффициента передачи цепи положительной обратной связи, при котором обеспечивается соблюдение условия баланса амплитуд. Выполнение условия баланса фаз обеспечивается включением транзистора VT1 по схеме с общим стоком.

Соблюдение условий баланса амплитуд и баланса фаз обеспечивает возникновение устойчивых колебаний на частоте резонанса колебательного контура. При этом частота генерируемого сигнала может изменяться с помощью конденсатора С2 (грубая настройка) и конденсатора С1 (точная настройка). Выходной сигнал частотой около 5 МГц, формируемый генератором, снимается с электрода истока полевого транзистора VT1.

ГЕНЕРАТОРЫ НА ПОЛЕВЫХ ТРАНЗИСТОРАХ

ПРОСТЕЙШИЕ RC-ГЕНЕРАТОРЫ

Применение генераторов с колебательными контурами для генерирования колебаний низких частот (ниже 10 кГц) затруднено из-за значительно увеличивающихся номиналов катушек индуктивности и конденсаторов, что влечет за собой увеличение размеров и стоимости генератора.

Поэтому в настоящее время для генерирования низких и инфранизких частот широко используются RC-генераторы, в которых вместо колебательного контура используются RC-фильтры.

RC-генераторы, работая в сравнительно широком диапазоне частот от долей герца до нескольких мегагерц, обеспечивают достаточную стабильность колебаний и имеют малые габариты и массу.

Применение полевых транзисторов в схемах RC-генераторов выгодно отличает их от биполярных транзисторов возможностью использования в цепи положительной обратной связи высокоомных резисторов, что в свою очередь позволяет использовать конденсаторы с меньшими номиналами, обладающие большей стабильностью.

Простейшие RC-генераторы на ПТ изображены на рис. 1. Как известно, условия возбуждения генератора требуют, чтобы цепь обратной связи изменяла на 180° (для однокаскадного генератора) фазу сигнала, поступающего со стоковой нагрузки в цепь затвора.

В схеме генератора, приведенной на рис. 1, а, это достигается выполнением цепи обратной связи из нескольких последовательно включенных простых RC-звеньев. Кроме того, ослабление сигнала при прохождении цепи обратной связи должно компенсироваться усилением каскада.

Для цепей с одинаковыми по значению элементами R и С условие баланса фаз на генерируемой частоте f0 выполняется при следующих соотношениях [2]:

для трёхзвенных f0=0,065/RC;

для четырёхзвенных f0=0,133/RC

Рис. 1. Схемы простейших RC-генераторов.

а — с фазирующей RC-цепочкой; б — с истоковым повторителем; в — с Т-образным RC-мостом.

Для трёхзвенной RC-цепи обратной связи требуемый коэффициент усиления каскада должен быть больше 29 [2, 3], а в четырёхзвенной RC-цепи не менее 18,4.

Для повышения устойчивости работы генератора (из-за шунтирующего действия цепью обратной связи резистора нагрузки Rc) часто вводят дополнительный каскад — истоковый повторитель (рис. 1, б), имеющий высокое входное сопротивление.

Схема генератора с двойным Т-образным RC-фильтром (рис. 1, в), элементы которого выбраны следующим образом: С1=С2=С; С3=С/0,207; R1=R2=R; R3=0,207R — функционирует при условии, если коэффициент усиления каскада не менее 11. При этом частота колебаний

f0=1/2RСπ.

Рассмотренные простейшие RC-генераторы на ПТ не нашли широкого применения из-за присущих им недостатков.

Первый недостаток — это необходимость получения большого коэффициента усиления каскада, который у генератора с трёхзвенной цепью обратной связи должен быть не менее 29, Практическая реализация такого коэффициента усиления затруднительна из-за малого значения крутизны ПТ. Если учесть, что для улучшения формы генерируемых колебаний вводится отрицательная обратная связь, то коэффициент усиления каскада должен быть еще больше.

Второй недостаток — невозможность перестройки в широком диапазоне частот генераторов, выполненных по схеме с RC-цепочка-ми и Т-образным мостом в цепи обратной связи.

ГЕНЕРАТОРЫ, ПЕРЕСТРАИВАЕМЫЕ В ШИРОКОМ ДИАПАЗОНЕ ЧАСТОТ

Наиболее широкое применение среди RC-генераторов нашла схема с фазовым RC-мостом (генератор на мосте Вина), принципиальная схема которого изображена на рис. 2. К достоинствам подобной схемы следует отнести малое затухание и нулевой сдвиг фаз в цепи обратной связи на частоте генерации.

Таким образом, при включении фазового RC-моста для выполнения условия баланса фаз необходимо, чтобы усилитель генератора обеспечивал сдвиг фаз 360°.

Частота генерации при равенстве R1=R2=R и С1=С2=С определяется выражением

f0=1/2RCπ     (1)

На этой частоте затухание фазового RС-моста минимально и равно 3. (Затухание β — величина ослабления, которое вносит фазовый RC-мост в проходящий сигнал в зависимости от расстройки Δf — определяется по выражению β=(9+(2Δf)2/f0)1/2 ) Отсюда следует, что минимальный коэффициент усиления, при котором удовлетворяется условие баланса амплитуд, должно быть не менее 3. Благодаря малому значению требуемого усиления появляется возможность введения глубокой отрицательной обратной связи, что ведет к уменьшению уровня нелинейных искажений при работе в широком диапазоне частот.

В схеме рис. 2, а отрицательная обратная связь осуществляется за счет резистора в цепи истока транзистора T1 и введения цепочки R5C3. В качестве резистора R5 использовался малоинерционный термистор ТВД-4, резисторы R1, R2 — типа ПТМН, а конденсаторы С1 и С2 — типа КСО-Г. При указанных на схеме номиналах частота генерации f0=1500 Гц. При изменении температуры в диапазоне от 10 до 50° С была получена относительная нестабильность частоты

Δf/f=0,05% на 10° С.

Фазовый RC-мост имеет в своем составе всего по два одноименных элемента; следовательно, его можно перестраивать в широком диапазоне частот, изменяя значение только двух элементов R1, R2 или С1, С2), что делает перестройку генераторов с такими мостами конструктивно удобной.

На рис. 2, б приведена схема перестраиваемого генератора низкой частоты с фазовым RC-мостом. Частота генерируемых колебаний плавно перестраивается с помощью сдвоенного потенциометра R2, R3. Усилитель генератора двухкаскадный с непосредственной связью. Для стабилизации амплитуды колебаний генератора и его режима работы введена глубокая отрицательная обратная связь как по постоянному, так и переменному току (цепочка R8, R6, R5) Для перекрытия всего звукового диапазона следует ввести переключатель, который одновременно изменял бы емкости конденсаторов RC и С2 в обоих плечах моста.

Рис. 2. Принципиальные схемы генераторов с фазовым RС-мостом.

а — с двухкаскадным усилителем и ёмкостной связью; б — с двухкаскадным усилителем и непосредственной связью.

Рис. 3. Генератор, перестраиваемый в широком диапазоне

а — принципиальная схема; б — структурная схема.

Более сложная схема RС-генератора с использованием полевых транзисторов, позволяющая перестраивать частоту в декадном диапазоне, изображена на рис. 3. Для параметров, указанных на схеме, частота генератора лежит в диапазоне 500 кГц — 5 мГц; однако, изменив ёмкости конденсаторов, можно получить частоты в других диапазонах [4].

Два фазовращателя, фазоинвертор, усилитель и аттенюатор соединяются таким образом, что образуют петлю обратной связи. Схема будет генерировать колебания с частотой, при которой полный фазовый сдвиг составляет 360°. На этой частоте каждый из двух идентичных фазовращателей обеспечивает фазовый сдвиг на 90°.

Управляемый напряжением фазовращатель состоит из конденсатора C1 и транзистора Т2.

Транзисторы Т3, Т4 и конденсатор С3 образуют второй фазовращатель, который работает аналогично первому. Благодаря высокому сопротивлению фазовращателей отпадает необходимость в буферных каскадах. Затворы транзисторов Т2 и Т4 заземлены по переменному току и, следовательно, могут быть соединены. Транзистор Т5 предназначен для усиления сигнала.

Транзистор Т7 и резистор R6 образуют управляемый напряжением аттенюатор, при этом транзистор Т7 используется в качестве управляемого резистора.

Амплитудный детектор состоит из усилителя на транзисторе Т6, диодного детектора Д1 и фильтра R5C5. Когда амплитуда входного сигнала увеличивается, напряжение на затворе транзистора Т7 становится более отрицательным, при этом возрастает динамическое сопротивление транзистора и уменьшается коэффициент усиления в петле обратной связи.

СТАБИЛИЗАЦИЯ АМПЛИТУДЫ КОЛЕБАНИЙ

Свойство полевого транзистора изменять сопротивление канала в зависимости от приложенного к затвору управляющего напряжения нашло достаточно широкое применение в генераторах для автоматической стабилизации уровня выходного сигнала.

На рис. 4, а приведена схема RC-генератора синусоидальных колебаний с регулируемой отрицательной обратной связью [5]. Двухкаскадный усилитель на полевых транзисторах Т1 и Т3 охвачен положительной обратной связью через элементы R1-R4, С1, С3. Отрицательная обратная связь осуществляется через делитель, состоящий из резистора R6 и управляемого сопротивления канала полевого транзистора Т2 Установление стационарной амплитуды происходит за счет воздействия UВых (через детектор Д1 и его элементов R7, С5) на глубину отрицательной обратной связи и на режим питания транзистора Т1. Инерционность АРУ определяется в основном ёмкостью конденсатора С5 и сопротивлением резистора R7 [5]. Такая автоматически регулируемая отрицательная обратная связь позволяет повысить стабильность характеристик генератора по сравнению с обычной схемой при изменении напряжений питания и температуры окружающей среды. При изменении питания от 18 до 10 В амплитуда выходного сигнала снижалась на 8%.

Рис. 4. Генераторы со стабилизацией амплитуды генерируемых колебаний.

а — RС-генератор с регулируемой ООС; б — LC-генератор с аттенюатором на ПТ.

Несколько иначе осуществляется автоматическая стабилизация уровня выходного сигнала генератора, принципиальная схема которого изображена на рис. 4, б [6]. Напряжение сток — исток полевого транзистора Т1 регулируется переменным резистором R3, установленным в цепи затвора второго транзистора Т2. Часть выходного напряжения через трансформатор L1, L2 поступает на выпрямитель Д1 и фильтр R3C7. В зависимости от положения потенциометра R3 изменяется рабочая точка полевого транзистора, изменяется сопротивление его канала и соответственно амплитуда сигнала на выходе генератора. Потенциометром R3 устанавливают необходимую амплитуду выходного напряжения, которая в дальнейшем автоматически поддерживается на заданном уровне.

Как видно из приведённых выше примеров, использование полевых транзисторов в схемах автоматической стабилизации выходного напряжения генераторов позволяет значительно упростить подобные схемы и уменьшить необходимую мощность управления регулируемого элемента.

ЧМ ГЕНЕРАТОРЫ

В автоматике и телемеханике, измерительной технике возникает необходимость в широкополосной частотной модуляции при низкой несущей частоте. Так, например, в радиотелеметрии с частотным разделением каналов каждому- каналу отводится своя поднесущая частота. Генераторы поднесущих частот — это низкочастотные генераторы, частоты которых промодулированы сигналами от датчиков. Применение LC-генераторов в таких системах нежелательно из-за громоздкости выполнения в низкочастотном диапазоне. Поэтому в качестве задающего частотно-модулированного генератора поднесущей частоты используется RС-генератор.

Частота RС-генератора, как уже говорилось выше, определяется параметрами фазирующей RС-цепочки, изменяя которые определенным образом, осуществляют частотную модуляцию колебаний генератора. Для получения линейной модуляционной характеристики необходимо, чтобы одновременно по линейному закону изменялись отношения 1/R или 1/С фазирующей цепочки.

Рис. 5. ЧМ генератор на ПТ, а — принципиальная схема; б — модуляционная характеристика.

В качестве перестраиваемых напряжением ёмкостей применяются полупроводниковые диоды и транзисторы, используя зависимость ёмкости p-n перехода от обратного напряжения. Существенным недостатком подобного способа является большая нелинейность модуляционной характеристики ЧМ генератора из-за нелинейного изменения ёмкости от приложенного напряжения.

Полупроводниковые диоды и биполярные транзисторы можно использовать и в качестве переменных сопротивлений. Однако такому способу получения ЧМ свойственны следующие недостатки [11]: нелинейность модуляционной характеристики при больших девиациях частоты; большая амплитудная модуляция; плохая развязка источника модулирующего сигнала и автогенератора; значительная мощность, потребляемая управляющей цепью.

Перечисленных недостатков лишен способ осуществления ЧМ с помощью полевых транзисторов. Применение ПТ в качестве переменных сопротивлений в фазирующей цепи RС-генератора позволяет реализовать их важное достоинство — линейную зависимость проводимости канала от управляющего напряжения и высокое входное сопротивление частотного модулятора.

На рис. 5 изображена принципиальная схема ЧМ генератора с фазовым RС-мостом и его модуляционная характеристика для ПТ (Т{Г2) типа КП103Ж и КП103М, используемых в качестве переменных резисторов.

Резисторы R1 и R2 включены для уменьшения глубины девиации до необходимой; кроме того, используя резисторы с отрицательным ТКС, можно уменьшить влияние температурных изменений сопротивления канала ПТ на стабильность частоты генератора. С помощью источника смещения Eсм устанавливают необходимое значение сопротивления каналов ПТ при управляющем (модулирующем) сигнале UBX=0.

МУЛЬТИВИБРАТОРЫ

Релаксационные генераторы низких частот имеют большую постоянную времени. В мультивибраторах, выполненных на биполярных транзисторах, для получения большой постоянной времени используются электролитические конденсаторы с большой ёмкостью, обладающие невысокой стабильностью. Высокое же входное сопротивление полевых транзисторов позволяет получать необходимую постоянную времени в релаксационных схемах без использования конденсаторов с большой ёмкостью. Поэтому в тех случаях, когда требуется реализовать постоянные времени примерно несколько секунд или минут, целесообразно использовать полевые транзисторы.

В схеме, изображенной на рис. 6, а, два полевых транзистора включены по схеме истоковых повторителей, а два биполярных транзистора являются переключателями. Принцип работы схемы аналогичен принципу работы обычного мультивибратора, причём комбинацию биполярного и полевого транзистора следует рассматривать как некоторый активный элемент. Таким образом, в схему вносится высокое входное сопротивление полевых транзисторов и одновременно обеспечивается большое полное усиление. Биполярные транзисторы не входят в состояние насыщения, так как напряжение их коллекторов питает стоки полевых транзисторов. В результате такого соединения мультивибратор устойчиво самовозбуждается; поскольку рабочие точки транзисторов смещены в линейную область, любое изменение входного тока вызывает изменение коллекторного напряжения. Эта схема хорошо работает и на высоких частотах.

Рис. 6. Схемы мультивибраторов на ПТ.

а — с ненасыщенными биполярными транзисторами; б — с насыщенными биполярными транзисторами.

Длительность пребывания мультивибратора в каждом из состояний определяется разрядом конденсатора С1 или С2 через резистор цепи затвора. Когда напряжение достигает значения, равного напряжению отсечки полевого транзистора, изменение тока истока заставляет схему перейти в другое состояние. Если ёмкость каждого конденсатора С1 и С2 равна 4 мкФ, то, изменяя R1 и R2 в сторону увеличения, можно повысить длительность периода мультивибратора от 8 мс до 6 мин. Если ёмкость каждого из конденсаторов выбрать равной 100 пФ, то частоту можно изменить от 100 Гц до 3 мГц [7]

Несколько иначе выполнен мультивибратор, схема которого изображена на рис. 6, б [1]. Рассмотрим принцип действия этой схемы. Допустим, что транзистор Т1 переходит в состояние насыщения, тогда на затворе Т4 появляется положительный потенциал и транзисторы Т4 и Т2 закрываются. Скачок напряжения на коллекторе Т2 приводит к надежному открыванию транзисторов Т1 и Т3. Ток смещения, текущий к затвору Т3 через резистор R2, поддерживает его в этом состоянии. Конденсатор С1 разряжаясь через резистор уменьшает напряжение смещения на затворе Т4. Когда напряжение Uзи транзистора Т4 уменьшается до напряжения отсечки, транзисторы Т4 и Т2 начинают проводить и быстро открываются, в то время как Т1 и Т3 закрываются. Длительность импульса мультивибратора определяется по формуле [1]

    (2)

где Ес — напряжение источника питания.

При номиналах деталей, указанных на схеме рис. 8, б, получена длительность импульса примерно 25 с.

ГЕНЕРАТОРЫ ПИЛООБРАЗНОГО НАПРЯЖЕНИЯ

Используя источник неизменного тока на полевом транзисторе в генераторе пилообразного напряжения, можно получить пилу, линейность и наклон которой почти не зависят от случайных изменений управляющего напряжения. Кроме того, полевые транзисторы позволяют реализовать схемы генераторов развертки с такими значениями линейности и длительности, которых трудно достигнуть при использовании биполярных транзисторов.

Генератор пилообразного напряжения, изображенный на рис. 7, состоит из источника постоянного тока на полевом транзисторе T1, конденсатора переменной ёмкости С1 и однопереходного транзистора Т2. С помощью потенциометра R2 устанавливается значение постоянного тока стока полевого транзистора Т1, соответствующее термостабильной точке ПТ. Отрицательная обратная связь, создаваемая включенными в цепь истока резисторами R1 и R2 с большим сопротивлением, обеспечивает стабильный ток стока несмотря на наличие изменений напряжения питания. Этот ток линейно заряжает конденсатор переменной емкости С1 до напряжения запуска однопереходного транзистора Т2. Время заряда является функцией ёмкости конденсатора С1 [8].

Рис. 7. Схема генератора пилообразного напряжения.

Изменяя ёмкость конденсатора С1, можно регулировать частоту повторения выходного сигнала генератора в диапазоне от 500 Гц до 50 кГц. Накопительный конденсатор быстро разряжается через проводящий переключатель на транзисторе Т2. Пилообразное напряжение с конденсатора С1 подается на выход через эмиттерный повторитель на транзисторе Т3. Амплитуда выходного сигнала определяется положением движка потенциометра R4 и может регулироваться в пределах от 0 до 8 В [8]. Во всём диапазоне частот нелинейность пилообразного напряжения в данной схеме не превышает 1%.

КВАРЦЕВЫЕ ГЕНЕРАТОРЫ

Одним из самых важных параметров генераторов является стабильность частоты генерируемых колебаний. Жёсткие требования к стабильности и воспроизводимости частоты в современных радиотехнических устройствах удается удовлетворить при использовании кварцевых генераторов.

Рис. 8. Схема кварцевого генератора.

Ламповые кварцевые генераторы в большинстве практических случаев являются неприемлемыми ввиду таких недостатков, как большая потребляемая мощность, большие габариты и масса. Кроме того, сама лампа является источником тепла, что затрудняет термостатирование генератора.

Ввиду малого входного сопротивления биполярных транзисторов кварцевый резонатор в автогенераторах включают только между базой и коллектором.

Полевые транзисторы, в которых отсутствуют перечисленные выше недостатки электронных ламп и биполярных транзисторов, в настоящее время достаточно часто используются в схемах кварцевых генераторов.

Наиболее широкое применение нашли кварцевые генераторы на ПТ, выполненные по схеме ёмкостной трёхточки (рис. 8). Достоинствами такой схемы являются простота выполнения, отсутствие паразитных колебаний, малая рассеиваемая мощность, простота регулировки режима и наладки. Высокая стабильность генерируемой частоты при изменении питающего напряжения в схеме достигнута применением автоматического смещения (резистора в цепи истока) и использованием больших ёмкостей постоянных конденсаторов в цепях затвора и стока генераторного каскада (чем больше эти ёмкости, тем меньшее влияние на частоту колебаний будут оказывать нестабильные межэлектродные ёмкости транзистора). При вариации питающего напряжения от 3 до 9 В частота генератора изменяется не более чем на 1 Гц при номинальном значении 1МГц [10].

А.Г. Милехин

Литература:

  1. Гозлинг В. Применение полевых транзисторов. М., «Энергия», 1970.
  2. Барсуков Ф. И. Генераторы и селективные усилители низкой частоты. М., «Энергия», 1964.
  3. Гоноровский И. С Радиотехнические цепи и сигналы. М., «Советское радио», 1971.
  4. Ван дер Гиир. Перестройка RC-генератора в декадном диапазоне с помощью полевых транзисторов. — «Электроника», № 4, 1969.
  5. Крисилов Ю. Д. Автоматическая регулировка и стабилизация усиления транзисторных схем. М., «Советское радио», 1972.
  6. Проссер Л. Стабильные генераторы на полевых транзисторах. — «Электроника», 1966, № 20.
  7. Ханус, Мартинес. Стабильный НЧ мультивибратор с двумя ПТ. — «Электроника», 1967, №1.
  8. Илэд Л. Использование полевого транзистора для получения стабильного пилообразного напряжения. — «Электроника», 1966, № 16.
  9. Экспресс-информация «ПЭА и ВТ», 1973, № 47.
  10. Кинг Л. Стабильный кварцевый генератор на полевом транзисторе. — «Электроника», 1973, №13.
  11. Игнатов А.Н. Применение полевых транзисторов типа КП103 в аппаратуре связи. — В книге: Тенденции развития активных радиокомпонентов малой мощности. Новосибирск, «Наука», 1971.
BACK MAIN PAGE

Задающий генератор на полевых транзисторах. Мощный вч-генератор

Генератор
— это усилитель с такой положительной обратной связью, ко­торая обеспечивает поддержание сигнала на выходе усилителя без пода­чи внешнего входного сигнала. Генератор преобразует постоянный ток (получаемый от источника питания) в переменный сигнал. Для возник­новения устойчивых колебаний должны выполняться два основных тре­бования:

а) обратная связь должна быть положительной;

б) полный петлевой коэффициент усиления должен быть больше 1.

Существует два типа генераторов: генераторы синусоидальных сиг­налов, вырабатывающие гармонические сигналы, и генераторы несинусо­идальных сигналов, называемые также релаксационными генераторами или мультивибраторами, обычно вырабатывающие прямоугольные сиг­налы.

Генераторы с резонансным контуром в цепи коллектора

В схеме генератора на рис. 33.1 элементы L
2 и C
2 образуют резонансный контур, с которого снимается выходной сигнал.

Рис. 33.1.
Генератор с резонансным Рис. 33.2.

Контуром в цепи базы. цепи коллектора.

Часть этого выходного сигнала подается обратно на вход через трансформаторную связь
L
1
L
2
таким образом, чтобы сигнал обратной связи совпадал по фазе с сигналом на входе. Транзистор включен по схеме с ОЭ и работает в режиме класса А, который задается цепью смещения
R
1
R
2 .
Конденсатор
C
1 обеспе­чивает развязку для резистора
R
2 цепи смещения, а конденсатор
C
3
развязку для обычного стабилизирующего резистора
R
3 в цепи эмиттера.

Генераторы с резонансным контуром в цепи базы

В схеме генератора на рис. 33.2 разделительный конденсатор C
2 обеспечи­вает работу транзистораT 1 в режиме класса С. Элементы L
2 и C
1 образу­ют резонансный контур. Положительная обратная связь осуществляется через конденсатор C
3 и трансформатор Тр 1 .

Трехточечная схема генератора с индуктивной обратной связью (схема Хартли)

В этом генераторе (рис. 33.3) катушка индуктивности с отводом L
1 обеспе­чивает необходимую обратную связь на эмиттер транзистора. Элементы C
2 и L
1 образуют резонансный контур.

Трехточечная схема генератора с емкостной обратной связью (схема Колпитца)

В этом случае используется расщепленный конденсатор C
1
C
2
(рис. 33.4). Элементы C
1
C
2 и L
1 образуют резонансный контур, кон­денсатор C
3 обеспечивает работу транзистора в режиме класса С.

Генераторы с фазосдвигающей цепью обратной связи, или RC
-генераторы

Синусоидальные колебания можно также получить с помощью специаль­но подобранных RC
-цепочек обратной связи, как показано на рис. 33.5. RC
-секции R
1 – C
1 ,
R
2 – C
2 ,
R
3 – C
3 образуют фазосдвигающую цепь, которая на заданной частоте обеспечивает сдвиг фазы сигнала на 180°. Поскольку транзистор сдвигает фазу сигнала на 180°, то в петле обратной связи получается полный фазовый сдвиг 360°. Таким образом, обратная связь оказывается положительной. Обычно номиналы всех резисторов и всех конденсаторов в фазосдвигающей цепи выбираются одинаковыми, и каждая RC
-секция вносит фазовый сдвиг 60°.


Рис. 33.3.
Схема Хартли. Рис. 33.4.
Схема Колпитца.

Рис. 33.5.
RC

-генератор с фазосдвигающей цепью обратной связи на элементах
R
1 – C
1 ,


R
2 – C
2 , R
3 – C
3 , обеспечивающей сдвиг фазы сигнала на 180°.

Еще раз отметим, что вся фазосдвигающая цепь обеспечивает фазовый сдвиг 180° только на одной частоте, определяемой номиналами используемых компонентов.

Кварцевые генераторы

Одним из самых важных требований, предъявляемых к генератору, явля­ется стабильность частоты генерируемых им колебаний. Изменения частоты могут быть вызваны, например, изменением емкости или индук­тивности элементов резонансного контура или изменением параметров транзистора при колебаниях температуры. Стабильность частоты можно улучшить путем точного подбора элементов схемы, в том числе транзистора. Для обеспечения очень высокой стабильности частоты приме­няется кристалл кварца, точно задающий и стабилизирующий частоту колебаний. В небольших пределах частоту генератора с кварцевой стаби­лизацией можно изменять с помощью конденсатора переменной емкости, подключаемого параллельно кристаллу кварца. Кварцевые генераторы используются в цветных телевизорах для генерации поднесущей частоты 4,43 МГц с точностью до нескольких герц.

УВЧ-генераторы

Генераторы очень высоких и ультравысоких частот (УВЧ) по принципу работы аналогичны другим генераторам. Однако из-за очень высокой частоты емкости и индуктивности элементов настройки С
и L
очень ма­лы. Катушку индуктивности может заменить одна полоска проводника или простая петля из меди. В качестве конденсатора может служить варактор. Для построения резонансной схемы иногда используются от­резки длинных линий, имеющих распределенную емкость и индуктив­ность.

Генераторы несинусоидальных сигналов

Эти генераторы, называемые еще релаксационными генераторами, выра­батывают прямоугольные импульсные сигналы путем переключения од­ного или двух транзисторов из открытого состояния в закрытое и обратно. Несинхронизированный мультивибратор, описанный в предыдущей главе, является примером такого генератора. Другой разновидностью генерато­ра несинусоидальных сигналов является блокинг-генератор.

В генераторе этого типа применяется трансформаторная обратная связь с коллектора на базу транзистора (рис. 33.6). Работа этой схемы осно­вана на том, что в силу трансформаторной связи напряжение на базе будет наводиться только при изменении тока коллектора, то есть при его увеличении или уменьшении. В первом случае действует положитель­ная обратная связь, во втором — отрицательная. При первом включении схемы транзистор открывается, его коллекторный ток увеличивается, со­здавая напряжение обратной связи на базе, в результате чего транзистор открывается еще больше. Когда достигается насыщение, увеличение кол­лекторного тока прекращается, что вызывает появление на базе напря­жения противоположной полярности. Это напряжение закрывает тран­зистор. Транзистор удерживается в закрытом состоянии отрицательным зарядом на конденсаторе С
до тех пор, пока этот конденсатор в доста­точной степени не разрядится через резистор R.
После этого транзистор снова отпирается и описанный процесс повторяется.

Выходное напряжение блокинг-генератора представляет собой после­довательность узких импульсов (рис. 33.7). Ширина (длительность) импульса определяется параметрами трансформатора, а временной интер­вал между импульсами — постоянной времени RC
.
Поэтому частоту ко­лебаний блокинг-генератора можно изменять путем изменения номинала резистора R.


Рис. 33.6.

Рис. 33.7.
Выходной сигнал бло­кинг-генератора.

Рис. 33.8.

Вторичная обмотка трансформатора является коллекторной нагруз­кой транзистора. Быстрое изменение тока через эту обмотку при закры­вании транзистора приводит к появлению большой противоЭДС и большо­го выброса коллекторного напряжения. Этот выброс напряжения может превысить максимально допустимое коллекторное напряжение и вызвать разрушение транзистора. Для защиты транзистора параллельно первич­ной обмотке трансформатора включается диод D 1 .
В нормальном режиме этот диод смещен в обратном направлении и закрыт. Открывается он только в том случае, когда напряжение на коллекторе транзистора превышает напряжение источника питания V CC
.

Генераторы на однопереходных транзисторах

Полупроводниковые приборы, имеющие на характеристике участок с от­рицательным сопротивлением, например одиопереходные транзисторы, могут быть использованы в генераторах. На рис. 33.8 приведена схе­ма генератора на однопереходном транзисторе. Транзистор смещен в ту область своей выходной характеристики, где выходной ток увеличивается при уменьшении входного напряжения, то есть в область отрицательного сопротивления. Он попеременно открывается и закрывается без какой-либо обратной связи. Выходное напряжение на базе 2 (b
2) представля­ет собой последовательность импульсов. Еще один выходной сигнал — последовательность импульсов противоположной полярности — можно снять с базы 1 (b
1). С эмиттера транзистора можно снять пилообраз­ный сигнал. Частота генерируемых импульсов определяется постоянной времени R
1 C
1 .

Генераторы пилообразного напряжения

На рис. 33.9 показана схема генератора, вырабатывающего пилообразный сигнал при подаче на его вход прямоугольных импульсов. На участке периода входной последовательности импульсов между точками А и В (рис. 33.10) на базе транзистора действует нулевое напряжение, и тран­зистор находится в состоянии отсечки, т. е. закрыт. Конденсатор C
1
постепенно заряжается через резистор R
1 .
Прежде чем конденсатор пол­ностью зарядится, на вход поступает положительный фронт ВС импуль­са, переключающий транзистор в проводящее состояние. В результате конденсатор C
1 очень быстро разряжается через открытый транзистор. Конденсатор находится в разряженном состоянии во время действия им­пульса (вершина CD). Отрицательный фронт DE импульса переключает транзистор в состояние отсечки, конденсатор C
1 снова начинает заря­жаться и т. д.


Рис. 33.9.
Генератор пилообразно­го напряжения,

управляемый последовательностью

прямоугольных им­пульсов.

Рис. 33.10.
Форма сигналов на вхо­де и

выходе генератора пилообразно­го напряжения.

Тот же принцип заряда и разряда конденсатора используется и в дру­гих генераторах пилообразного напряжения. На рис. 33.11 приведены схемы двух таких генераторов на основе несинхронизированного мульти­вибратора и блокинг-генератора соответственно, применяемых в блоках: развертки телевизоров. Потенциометр R
1 управляет частотой развертки (кадровой синхронизацией), а потенциометр R
2 — амплитудой сигнала развертки (размером изображения по вертикали).

Рис. 33.11.
Генераторы пилообразного напряжения на основе (а) несинхронизированного мультивибратора и (б) блокинг-генератора, применяемые в блоках кадровой развертки телевизоров.

В этом видео рассказывается о генераторах для исследования, настройки и испытаний систем и приборов:

Генераторы импульсов являются важной составляющей многих радиоэлектронных устройств. Простейший генератор импульсов (мультивибратор) может быть получен из двух-каскадного УНЧ (рис. 6.1). Для этого достаточно соединить вход усилителя с его выходом. Рабочая частота такого генератора определяется значениями R1C1, R3C2 и напряжением питания. На рис. 6.2, 6.3 показаны схемы мультивибраторов, полученные простой перестановкой элементов (деталей) схемы, изображенной на рис. 6.1. Отсюда следует, что одну и ту же простейшую схему можно изобразить различными способами.

Практические примеры использования мультивибратора приведены на рис. 6.4, 6.5.

На рис. 6.4 показана схема генератора, позволяющего плавно перераспределять длительность или яркость свечения светодиодов, включенных в качестве нагрузки в цепи коллекторов. Вращением ручки потенциометра R3 можно управлять соотношением длительностей свечения светодиодов левой и правой ветвей. Если увеличить емкость конденсаторов С1 и С2, частота генерации понизится, светодиоды начнут мигать. При уменьшении емкости этих конденсаторов частота генерации возрастает, мелькание светодиодов сольется в сплошное свечение, яркость которого будет зависеть от положения ручки потенциометра R3. На основе подобного схемного решения могут быть собраны разнообразные полезные конструкции, например, регулятор яркости светодиодного фонарика; игрушка с мигающими глазами; устройство плавного изменения спектрального состава источника излучения (разноцветные светодиоды или миниатюрные лампочки и светосуммирую-щий экран).

Генератор переменной частоты (рис. 6.5) конструкции В. Цибульского позволяет получать плавно изменяющееся со временем по частоте звучание [Р 5/85-54]. При включении генератора его частота возрастает с 300 до 3000 Гц за 6 сек (при емкости конденсатора СЗ 500 мкФ). Изменение емкости этого конденсатора в ту или иную сторону ускоряет или, напротив, замедляет скорость изменения частоты. Плавно изменять эту скорость можно и переменным сопротивлением R6. Для того чтобы этот генератор мог выполнять роль сирены, или быть использованным в качестве генератора качающейся частоты, можно предусмотреть схему принудительного периодического разряда конденсатора СЗ. Такие эксперименты можно рекомендовать для самостоятельного расширения познаний в области импульсной техники.

Управляемый генератор прямоугольных импульсов показан на рис. 6.6 [Р 10/76-60]. Генератор также представляет собой двухкаскадный усилитель, охваченный положительной обратной связью. Для упрощения схемы генератора достаточно соединить эмиттеры транзисторов конденсатором. Емкость этого конденсатора определяет рабочую частоту генерации. В данной схеме для управления частотой генерации в качестве управляемой напряжением емкости использован варикап. Увеличение запирающего напряжения на варикапе приводит к уменьшению его емкости. Соответственно, как показано на рис. 6.7, возрастает рабочая частота генерации.

Варикап, в порядке эксперимента и изучения принципа работы этого полупроводникового прибора, можно заменить простым диодом. При этом следует учитывать, что германиевые точечные диоды (например, Д9) имеют очень малую начальную емкость (порядка нескольких пФ), и, соответственно, обеспечивают небольшое изменение этой емкости от величины приложенного напряжения. Кремниевые диоды, особенно силовые, рассчитанные на большой ток, а также стабилитроны, имеют начальную емкость 100… 1000 пФ, поэтому зачастую могут быть использованы вместо варикапов. В качестве варикапов можно применить и р-n переходы транзисторов, см. также главу 2.

Для контроля работы сигнал с генератора (рис. 6.6) можно подать на вход частотометра и проверить границы перестройки генератора при изменении величины управляющего напряжения, а также при смене варикапа или его аналога. Рекомендуется полученные результаты (значения управляющего напряжения и частоту генерации) при использовании разного вида варикапов занести в таблицу и отобразить на графике (см., например, рис. 6.7). Отметим, что стабильность генераторов на RC-элементах невысока.

На рис. 6.8, 6.9 показаны типовые схемы генераторов световых и звуковых импульсов, выполненные на транзисторах различного типа проводимости. Генераторы работоспособны в широком диапазоне питающих напряжений. Первый из них вырабатывает короткие вспышки света частотой единицы Гц, второй — импульсы звуковой частоты. Соответственно, первый генератор может быть использован в качестве маячка, светового метронома, второй — в качестве звукового генератора, частота колебаний которого зависит от положения ручки потенциометра R1. Эти генераторы можно объединить в единое целое. Для этого достаточно один из генераторов включить в качестве нагрузки другого, либо параллельно ей. Например, вместо цепочки из светодиода HL1, R2 или параллельно ей (рис. 6.8) можно включить генератор по схеме на рис. 6.9. В итоге получится устройство периодической звуковой или светозвуковой сигнализации.

Генератор импульсов (рис. 6.10), выполненный на составном транзисторе (п-р-п и р-п-р), не содержит конденсаторов (в качестве частотозадающего конденсатора использован пьезокерамиче-ский излучатель BF1). Генератор работает при напряжении от 1 до 10 Б и потребляет ток от 0,4 до 5 мА. Для повышения громкости звучания пьезокерамического излучателя его настраивают на резонансную частоту подбором резистора R1.

На рис. 6.11 показан достаточно оригинальный генератор релаксационных колебаний, выполненный на биполярном лавинном транзисторе.

Генератор содержит в качестве активного элемента транзистор микросхемы К101КТ1А с инверсным включением в режиме с «оборванной» базой. Лавинный транзистор может быть заменен его аналогом (см. рис. 2.1).

Устройства (рис. 6.11) часто используют для преобразования измеряемого параметра (интенсивности светового потока, температуры, давления, влажности и т.д.) в частоту при помощи резистивных или емкостных датчиков.

При работе генератора конденсатор, подключенный параллельно активному элементу, заряжается от источника питания через резистор. Когда напряжение на конденсаторе достигает напряжения пробоя активного элемента (лавинного транзистора, динистора или т.п. элемента), происходит разряд конденсатора на сопротивление нагрузки, после чего процесс повторяется с частотой, определяемой постоянной RC-цепи. Резистор R1 ограничивает максимальный ток через транзистор, препятствуя его тепловому пробою. Времязадающая цепь генератора (R1C1) определяет рабочую область частот генерации. В качестве индикатора звуковых колебаний при качественном контроле работы генератора используют головные телефоны. Для количественной оценки частоты к выходу генератора может быть подключен частотомер или счетчик импульсов.

Устройство работоспособно в широком интервале изменения параметров: R1 от 10 до 100 кОм (и даже до 10 МОм), С1 — от 100 пФ до 1000 мкФ, напряжения питания от 8 до 300 В. Потребляемый устройством ток обычно не превышает одного мА. Возможна работа генератора в ждущем режиме: при замыкании базы транзистора на землю (общую шину) генерация срывается. Преобразователь-генератор (рис. 6.11) может быть использован и в режиме сенсорного ключа, простейшего Rx-и Сх-метра, перестраиваемого широкодиапазонного генератора импульсов и т.д.

Генераторы импульсов (рис. 6.12, 6.13) также выполнены на лавинных транзисторах микросхемы К101КТ1 типа п-р-п или К162КТ1 типа р-п-р, динисторах, или их аналогах (см. рис. 2.1). Генераторы работают при напряжении питания выше 9 Б и вырабатывают напряжение треугольной формы. Выходной сигнал снимается с одного из выводов конденсатора. Входное сопротивление следующего за генератором каскада (сопротивление нагрузки) должно в десятки раз превышать величину сопротивления R1 (или R2). Низкоомную нагрузку (до 1 кОм) можно включать в коллекторную цепь одного из транзисторов генератора.

Довольно простые и часто встречающиеся на практике генераторы импульсов (блокинг-генераторы) с использованием индуктивной обратной связи показаны на рис. 6.14 [А. с. СССР 728214], 6.15 и 6.16. Такие генераторы обычно работоспособны в широком диапазоне изменения напряжения питания. При сборке блокинг-генераторов необходимо соблюдать фазировку выводов: при неправильном подключении «полярности» обмотки генератор не заработает.

Подобные генераторы можно использовать при проверке трансформаторов на наличие межвитковых замыканий (см. главу 32): никаким иным методом такие дефекты не могут быть выявлены.

Литература: Шустов М.А. Практическая схемотехника (Книга 1), 2003 год

Всем известно, что в оригинале резонансный трансформатор Тесла делался на лампе, но с развитием электроники стало возможным значительно уменьшить и упростить размеры данного устройства, если вместо лампы задействовать обычный биполярный транзистор типа КТ819 или другой аналогичный по току и мощности. Конечно с полевым транзистором результаты будут ещё лучше, но данная схема расчитана на тех, кто делает первые шаги в сборке генераторов высокого напряжения. Принципиальная схема устройства показана на рисунке:

Катушки связи и коллектора мотаются проводом 0,5-0,8 мм. На высоковольтную катушку берём любой провод, с толщиной 0,15-0,3мм и примерно 1000 витков. На «горячем» конце высоковольтной обмотки ставим вот такую спираль — всё как в натоящей Тесле. В своём варианте брал питание с трансформатора 10В 1А.

Конечно при питании 24В и выше — длина коронного разряда значительно увеличится. После вторичной обмотки стоит выпрямитель и конденсатор 1000мкФ 25В. Транзистор для генератора использовал КТ805ИМ. для схемы в архиве.

А теперь фотография готовой конструкции и самого разряда:

После настройки всех режимов, удалось получить около 1 см разряд. Согласитесь — неплохо, как для такой простой схемы! Автор конструкции: [)еНиС, под руководством bvz.

Обсудить статью ГЕНЕРАТОР ВЫСОКОГО НАПРЯЖЕНИЯ НА ТРАНЗИСТОРЕ

Недавно мне принесли в ремонт генератор ГУК-1
. Что бы потом не думалось, сразу заменил все электролиты. О чудо! Все заработало. Генератор еще советских времен, а отношение у коммунистов к радиолюбителям было такое Х… , что вспоминать не охота.

Вот отсюда и генератор желал бы быть получше. Конечно самое главное неудобство, это установка частоты высокочастотного генератора. Хоть бы, какой ни будь простенький верньер поставили, поэтому пришлось добавить дополнительный подстроечный конденсатор с воздушным диэлектриком (Фото1). По правде сказать я очень не удачно выбрал для его место, надо было бы чуть-чуть сместить. Я думаю вы это учтете.

Что бы поставить ручку, пришлось удлинить ось триммера, кусок медной проволоки диаметром 3мм. Конденсатор подключается параллельно основному КПЕ или непосредственно, или через «растягивающий» конденсатор, что еще больше увеличивает плавность настройки генератора ВЧ. Для кучи заменил и выходные разъемы – родные уже все раздрыгались. На этом ремонт закончился. От куда схема генератора я не узнал, но похоже, что все соответствует. Возможно она пригодится и вам.
Схема генератора универсального комбинированного – ГУК-1 приведена на рисунке 1. В состав прибора входят два генератора, низкочастотный генератор и генератор ВЧ.

ТЕХНИЧЕСКИЕ ДАННЫЕ

1. Диапазон частот ВЧ генератора от 150 кГц до 28 мГц перекрывается пятью поддиапазонами со следующими частотами:
1 поддиапазон 150 — 340 кГц
II 340 — 800 кГц
III 800 — 1800 кГц
IV 4,0 — 10,2 мГц
V 10,2 — 28,0 мГц

2. Погрешность установки ВЧ не более ±5%.
3. Генератор ВЧ обеспечивает плавную регулировку выходного напряжения от 0,05 мВ до 0,1 В.
4. Генератор обеспечивает следующие виды работ:
а) непрерывная генерация;
б) внутренняя амплитудная модуляция синусоидальным напряжением с частотой 1кГц.
5. Глубина модуляции не менее 30%.
6. Выходное сопротивление ВЧ генератора не более 200 Ом.
7. НЧ генератор генерирует 5 фиксированных частот: 100 Гц, 500 Гц, 1кГц, 5кГц, 15кГц.
8. Допустимое отклонение частоты НЧ генератора не более ±10%.
9. Выходное сопротивление НЧ генератора не более 600 Ом.
10. Выходное напряжение НЧ плавно регулируется от 0 до 0.5 В.
11. Время самопрогрева прибора — 10 минут.
12. Питание прибора осуществляется от батареи «Крона» напряжением 9 В.

ГЕНЕРАТОР НИЗКОЙ ЧАСТОТЫ

Генератор НЧ собран на транзисторах VT1 и VT3. Положительная обратная связь, необходимая для возникновения генерации снимается с резистора R10 и подается в цепь базы транзистора VT1 через конденсатор С1 и соответствующую фазосдвигающую цепочку, выбранную переключателем В1 (например С2,С3,С12.). Один их резисторов в цепочке – подстроечный (R13), с помощью которого можно подстраивать частоту генерации низкочастотного сигнала. Резистором R6 устанавливается начальное смещение на базе транзистора VT1. На транзисторе VT2 собрана схема стабилизации амплитуды генерируемых колебаний. Выходное напряжение синусоидальной формы через С1 и R1 подается на переменный резистор R8, который является регуляторов выходного сигнала НЧ генератора и регулятором глубины амплитудной модуляции ВЧ генератора.

ГЕНЕРАТОР ВЫСОКОЙ ЧАСТОТЫ

ВЧ генератор реализован на транзисторах VT5 и VT6. С выхода генератора через С26 сигнал подается на усилитель собранный на транзисторах VT7 и VT8. На транзисторах VT4 и VT9 собран модулятор ВЧ сигнала. Эти же транзисторы используются в схеме стабилизации амплитуды выходного сигнала. Не плохо бы для этого генератора изготовить аттенюатор, или Т, или П типа. Рассчитать такие аттенюаторы можно с помощью соответствующих калькуляторов для расчета и . Вот вроде и все. До свидания. К.В.Ю.

Скачать схему.

Рисунок печатной платы генератора ВЧ

Рисунок в формате LAY любезно предоставил Игорь Рожков, за что я ему выражаю благодарность за себя и за тех, кому этот рисунок пригодится.

В приведенном архиве размещен файл Игоря Рожкова к промышленному радиолюбительском генератору, имеющему пять диапазонов ВЧ — ГУК-1. Плата приведена в формате *.lay и содержит доработку схемы (шестой переключатель на диапазон 1,8 — 4 МГц), ранее опубликованную в журнале Радио 1982, № 5, с.55
Скачать рисунок печатной платы.

Доработка генератора ГУК-1

FM модуляция в генераторе ГУК-1.

Еще одна идея модернизации генератора ГУК-1
, я ее не пробовал, потому, как у меня собственного генератора нет, но по идее все должно работать. Эта доработка позволяет настраивать узлы, как приемной, так и передающей аппаратуры, работающей с применением частотной модуляции, например радиостанций СВ диапазона. И, что не маловажно, с помощью резистора Rп можно подстраивать несущую частоту. Напряжение, которое используется для смещения варикапов должно быть обязательно стабилизированным. Для этих целей можно использовать однокристальные трехвыводные стабилизаторы
на напряжение 5В и небольшим падением напряжения на самом стабилизаторе. В крайнем случае можно собрать параметрический стабилизатор, состоящий из резистора и стабилитрона КС156А. Прикинем величину резистора в цепи стабилитрона. Ток стабилизации КС156А лежит в пределах от 3ма до 55ма. Выберем начальный ток стабилитрона 20ма. Значит при напряжении питания 9В и напряжении стабилизации стабилитрона 5.6В, на резисторе при токе в 20ма должно упасть 9 — 5,6 = 3,4В. R = U/I = 3,4/0,02 = 170 Ом. При необходимости величину резистора можно изменить. Глубина модуляции регулируется все тем же переменным резистором R8 — регулятор выходного напряжения НЧ. При необходимости изменить пределы регулировки глубины модуляции, можно подобрать номинал резистора R*.

Генераторы на транзисторах.

Работа генератора на транзисторе.
Упрощенная схема генератора на транзисторе показана на рисунке 4.24. Колебательный контур соединен последовательно с источником напряжения и транзистором таким образом, что на эмиттер подается положительный потенциал, а на коллектор —отрицательный. При этом переход эмиттер — база (эмиттерный переход) является прямым, а переход база — коллектор (коллекторный переход) оказывается обратным, и ток в цепи не идет. Это соответствует разомкнутому ключу на рисунках 4.21, 4.22.

Чтобы в цепи контура возникал ток и подзаряжал конденсатор контура в ходе колебаний, нужно сообщать базе отрицательный относительно эмиттера потенциал, причем в те интервалы времени, когда верхняя (см. рис. 4.24) пластина конденсатора заряжена положительно, а нижняя — отрицательно. Это соответствует замкнутому ключу на рисунке 4.21.

В интервалы времени, когда верхняя пластина конденсатора заряжена отрицательно, а нижняя — положительно, ток в цепи контура должен отсутствовать. Для этого база должна иметь положительный потенциал относительно эмиттера.

Таким образом, для компенсации потерь энергии колебаний в контуре напряжение на эмиттерном переходе должно периодически менять знак в строгом соответствии с колебаниями напряжения на контуре. Необходима, как говорят, обратная связь.

Обратная связь в рассматриваемом генераторе — индуктивная. К эмиттерному переходу подключена катушка индуктивностью Lсв, индуктивно связанная с катушкой индуктивностью L контура. Колебания в контуре вследствие электромагнитной индукции возбуждают колебания напряжения на концах катушки, а тем самым и на эмиттерном переходе. Если фаза колебаний напряжения на эмиттерном переходе подобрана правильно, то «толчки» тока в цепи контура действуют на контур в нужные интервалы времени, и колебания не затухают. Напротив, амплитуда колебаний в контуре возрастает до тех пор, пока потери энергии в контуре не станут точно компенсироваться поступлением энергии от источника. Эта амплитуда тем больше, чем больше напряжение источника. Увеличение напряжения приводит к усилению «толчков» тока, подзаряжающего конденсатор.

Генераторы на транзисторах широко применяются не только во многих радиотехнических устройствах: радиоприемниках, передающих радиостанциях, усилителях и т. д., но и в современных электронно-вычислительных машинах.

Однокаскадный генератор.
Генератор (рис 0 !) собран на одном транзисторе, в цег ОС которого включен дпойной Т-образный мост Режим транзистора по постоянному току устанавливается с помощью тех же резисторов, что и
RC-
фильтр моста. В зависимости от параметров моста схема генерирует колебания с частотами от 20 Гц до 20 кГц. При указанных на, схеме номиналах элементов частота генерации равна 1 кГц. В небольших пределах (меньше 20%) частоту колебаний можно регулировать с помощью резистора
R4.
Для подавления колебаний более высокой частоты, которые возникают совместно с колебаниями основной, следует включить резистор
R5.
Вспомогательные колебания возникают в основном в кремниевых транзисторах с большим коэффициентом передачи по току. Частота выходного сигнала определяется выражением fo=16*104/RC, где f — в герцах,
R —
в омах, С — в микрофарадах. Двухкаскадный генератор. Параметры схемы (рис. 9.2) можно рассчитать по формулам. Определяется минимально возможное сопротивление резистора
R4
из выражения
R4>Uu/I,
где
Ua
— напряжение питания, I — максимально допустимый ток транзистора
VT2.
Для выполнения условий возбуждения необходимо положить коэффициент Y=0,05 (входит в выражение для определения R3
4/(l — Y)). При определении сопротивления резистора
R2
необходимо руководствоваться неравенством
R2>R4,
а для определения емкостей конденсаторов
С1
и
С2
— формулами
C2 =1/w0R2
и C1>2C2/h31ЭY. где h31э — коэффициент передачи тока транзистора
VT1.
Сопротивление резистора
R1
определяется формулой R1>2h313R2. Для тех номиналов элементов, которые указаны на схеме, частота генерации равна 2 кГц. Для уменьшения нелинейных искажений необходимо подобрать сопротивление резистора
R4
или
R3.

Рис. 9.1 Рис. 9.2 Рис. 9.3

Генератор на полевом транзисторе.
Генератор инфранизкой частоты (рис. 9.3) имеет амплитуду выходного сигнала 12 В. Частота колебания равна 1 Гц. В генераторе применена ООС (резисторы
R2
и
R3),
которая стабилизирует параметры выходного сигнала. Применение в мосте Вина резисторов больших сопротивлений значительно сократило габариты конденсаторов и тем самым уменьшило отклонение частоты от расчетного значения.

Рис. 9.4

Генератор с отрицательным сопротивлением.
Низкочастотный LC-генератор (рис. 9.4, а) собран на двух полевых транзисторах, которые образуют устройство с отрицательным дифференциальным сопротивлением (рис. 94,6). Для установки рабочей точки яа базе транзистора
VT1
меняется напряжение. Низкочастотный RC-генератор.
Генератор (рис. 9.5) собран на четырехзвенной фазосдвигающей цепочке. Частоту выходного сигнала можно рассчитать по формуле

где
R
— в кило-омах,
С
— в микрофарадах. Коэффициент нелинейных искажений менее 1%. Для надежного возбуждения генератора необходимо применять транзисторы с коэффициентом передачи тока более 50.

Рис. 9.5 Рис. 9.6

Генератор с автоматической регулировкой амплитуды сигнала. Генератор (рис. 9 6) собран на полевом транзисторе
VT1
с двойным Т-образным мостом в цепи ОС. Для стабилизации амплитуды выходного сигнала в коллекторах транзисторов
VT2
и
VT3
колебания выпрямляются детектором, собранным на элементах
С6, С7, VD1, VD2.
На выходе детектора формируется постоянное напряжение положительной полярности. Когда колебания в генераторе отсутствуют, через резистор
R11
протекает ток, открывающий транзистор
VT4.
В цепь истока полевого транзистора включен резистор
R8.
Сопротивление этого резистора устанавливает такой ток через транзистор
VT1,
при котором крутизна его максимальна. При генерации напряжение с детектора подзапирает
VT4,
уменьшая крутизну
VT1
и тем самым стабилизируя амплитуду генератора. Частота генерируемых колебаний 1 кГц. Для увеличения или уменьшения частоты выходного сигнала необходимо пропорционально изменить номиналы элементов
R1
—
R3, С2
—
С4.
Меняя соотношение резисторов
R10
и
R11,
можно менять амплитуду выходного сигнала.

Схемы вч генераторов на полевых транзисторах. Генераторы вч

ВЧ генератор



Предлагаемый ВЧ-генератор является попыткой заменить громоздкий промышленный Г4-18А более малогабаритным и надёжным прибором. Обычно при ремонте и налаживании КВ-аппаратуры необходимо «уложить»
КВ-диапазоны с помощью LC-контуров, проверить прохождение сигнала по ВЧ- и ПЧ-тракту, настроить отдельные контура в резонанс и т.д. Чувствительность, избирательность, динамический диапазон и
другие важные параметры КВ-устройств определяются схемотехническими решениями, так что для домашней лаборатории не обязательно иметь многофункциональный и дорогой ВЧ-генератор. Если генератор
имеет достаточно стабильную частоту с «чистой синусоидой», значит, он подходит радиолюбителю. Конечно, считаем, что в арсенал лаборатории также входят частотомер, ВЧ-вольтметр и тестер. К
сожалению, большинство испробованных схем ВЧ-генераторов КВ-диапазона выдавало очень искажённую синусоиду, улучшить которую без неоправданного усложнения схемы не удавалось. ВЧ-генератор,
собранный по приведённой на рис.1 схеме, зарекомендовал себя очень хорошо (получалась практически чистая синусоида во всём КВ-диапазоне)

В данной конструкции использован конденсатор переменной ёмкости типа КПВ-150 и малогабаритный переключатель диапазонов ПМ (11П1Н). С данным КПЕ (10…150 пФ) и катушками индуктивности L2…L5
перекрывается участок КВ-диапазона 1,7…30 МГц. По ходу работы над конструкцией были добавлены ещё три контура (L1, L6 и L7) на верхний и нижний участки диапазона. В экспериментах с КПЕ ёмкостью
до 250 пФ весь КВ-диапазон перекрывался тремя контурами.

ВЧ-генератор собран на печатной плате из фольгированного стеклотекстолита толщиной 2 мм и размерами 50×80 мм. Дорожки и монтажные «пятачки» вырезаны ножом и резаком. Фольга вокруг деталей не
удаляется, а используется вместо «земли». На рисунке печатной платы для наглядности эти участки фольги условно не показаны.

Вся конструкция генератора вместе с блоком питания (отдельная плата со стабилизатором напряжения на 9 В по любой схеме) размещена на дюралевом шасси и помещена в металлический корпус
подходящих размеров. На переднюю панель выводятся ручка переключателя диапазонов, ручка настройки КПЕ, малогабаритный ВЧ-разъём (50-Омный) и светодиодный индикатор включения в сеть. При
необходимости можно установить регулятор выходного уровня (переменный резистор сопротивлением 430…510 Ом) и аттенюатор с дополнительным разъёмом, а также проградуированную шкалу. В качестве
каркасов катушек контуров использованы унифицированные секционные каркасы СВ и ДВ диапазонов от устаревших радиоприёмников. Количество витков каждой катушки зависит от ёмкости используемого КПЕ и
первоначально берется «с запасом». При налаживании («укладке» диапазонов) генератора часть витков отматывается. Контроль ведётся по частотомеру. Катушка индуктивности L7 имеет ферритовый
сердечник М600-3 (НН) Ш2,8х14. Экраны на катушки контуров не устанавливаются. Намоточные данные катушек, границы поддиапазонов и выходные уровни ВЧ-генератора приведены в таблице.

В схеме генератора, кроме указанных транзисторов, можно применить полевые КП303Е(Г), КП307 и биполярные ВЧ-транзисторы BF324, 25С9015, ВС557 и т.д. Конденсатор связи С5 ёмкостью 4,7…6,8 пФ —
типа КМ, КТ, КА с малыми потерями по ВЧ. В качестве КПЕ желательно использовать высококачественные (на шарикоподшипниках). При жёстком монтаже, качественных деталях и прогреве генератора в
течение 10…15 минут можно добиться «ухода» частоты не более 500 Гц в час на частотах 20…30 МГц. Форма сигнала и выходной уровень изготовленного ВЧ генератора проверялись по осциллографу
С1-64А. На заключительном этапе наладки все катушки индуктивности (кроме L1, которая припаяна одним концом к корпусу) закрепляются клеем вблизи переключателя диапазонов и КПЕ.

Широкополосный генератор



Диапазон генерируемых частот-10 гц-100 мгц

Выходное напряжение-50 мв

Напряжение питания-1,5 в

Потребляемый ток-1,6 ма

Печатная плата и лицевая панель

Внешний вид

Простой генератор ВЧ



Для качественного налаживания приемной аппаратуры необходим генератор ВЧ сигналов. На рисунке показана схема такого
генератора, работающего в двух диапазонах 1,6-7 Мгц и 7-30 Мгц. Плавная настройка — трех-секционным переменным конденсатором С1 с воздушным диэлектриком.

Диод Шоттки VD1 служит для стабилизации выходного ВЧ-напряжения в широком диапазоне перестройки частоты.

Максимальное выходное напряжение 4 V, регулируется перемен
ым резистором R4.

Катушки L1 и L2 намотаны на ферритовых стержнях 2,8мм и длиной 12 мм из феррита 100НН. L1 — 12 витков ПЭВ 0,12, L2 -48
витков ПЭВ 0,12. Намотка рядовая. Катушка L3 намотана на ферритвом кольце 7 мм, всего 200 витков ПЭВ 0,12 внавал.

КВ
генератор



Простой гетеродинный индикатор резонанса.

С замкнутой накоротко катушкой L2 ГИР позволяет определять резонансную частоту от 6 МГц

до 30 МГц. С подключенной катушкой L2 диапазон измерения частоты — от 2,5 МГц до 10 МГц.

Резонансную частоту определяют, вращая ротор С1 и, наблюдая на экране осциллографа

изменение сигнала.

Генератор сигналов высокой частоты.

Генератор сигналов высокой частоты предназначен для проверки и налаживания различных высокочастотныхустройств. Диапазон
генерируемых частот 2 ..80 МГц разбит на пять поддиапазонов:

I — 2-5 МГц

II — 5-15 МГц

III — 15 — 30 МГц

IV — 30 — 45 МГц

V — 45 — 80 МГц

Максимальная амплитуда выходного сигнала на агрузке 100 Ом составляет около 0,6 В. В генераторе предусмотрена плавная регулировка
амплитуды выходного сигнала, а также возможность

амплитудной и частотной модуляции выходного сигнала от внешнего источника. Питание генератора осуществляется от внешнего источника
постоянного напряжения 9… 10 В.

Принципиальная схема генератора приведена на рисунке. Он состоит из задающего генератора ВЧ, выполненного на транзисторе V3, и
выходного усилителя на транзисторе V4. Генератор выполнен по схеме индуктивной трехточки. Нужный поддиапазон выбирают переключателем S1, а перестраивают генератор конденсатором переменной емкости
С7. Со стока транзистора V3 напряжение ВЧ поступает на первый затвор

полевого транзистора V4. В режиме ЧМ низкочастотное напряжение поступает на второй затвор этого транзистора.

Частотная модуляция осуществляется с помощью варикапа VI, на который подается напряжение НЧ в режиме FM. На выходе генератора
напряжение ВЧ регулируется плавно резистором R7.

Генератор собран в корпусе, изготовленном из одностороннего фольгироваиного стеклотекстолита толщиной 1,5 мм., размерами 130X90X48
мм. На передней панели генератора установлены

переключатели S1 и S2 типа П2К, резистор R7 типа ПТПЗ-12, конденсатор переменной емкости С7 типа КПЕ-2В от радиоприемника
«Альпинист-405», в котором используются обе секции.

Катушка L1 намотана на ферритовом магнитопроводе М1000НМ (К10Х6Х Х4,б) и содержит (7+20) витков провода ПЭЛШО 0,35. Катушки L2 и
L3 намотаны на каркасах диаметром 8 и длиной 25 мм с карбонильными подстроенными сердечниками диаметром 6 и длиной 10 мм. Катушка L2 состоит из 5+15 витков провода ПЭЛШО 0,35, L3 — из 3 + 8
витков. Катушки L4 и L5 бескаркасные

диаметром 9 мм намотаны проводом ПЭВ-2, 1,0. Катушка L4 содержит 2+4 витка, a L5- 1 + 3 витка.

Налаживание генератора начинают с проверки монтажа Затем подают напряжение питания и с помощью ВЧ вольтметра проверяют наличие
генерации на всех поддиапазонах. Границы

диапазонов уточняют с помощью частотомера, и при необходимости подбирают конденсаторы С1-С4(С6), подстраивают сердечниками катушек
L2, L3 и изменяют расстояние между витками катушек L4 и L5.

Мультиметр-ВЧ милливольтметр.

Сейчас самым доступным и самым распространенным прибором радиолюбителя стал цифровой мультиметр серии М83х.

Прибор предназначен для общих измерений и потому у него нет специализированных функций. Между тем, если вы занимаетесь радиоприемной или передающей техникой вам нужно измерять

небольшие ВЧ напряжения (гетеродин, выход каскада УПЧ, и т. д.), настраивать контура. Для этого мультиметр нужно дополнить несложной выносной измерительной головкой, содержащей

высокочастотный детектор на германиевых диодах. Входная емкость ВЧ-головки менее 3 пФ., что позволяет её подключать прямо к контуру гетеродина или каскада. Можно использовать диоды Д9, ГД507 или
Д18, диоды Д18 дали наибольшую чувствительность (12 мВ). ВЧ-головка собрана в экранированном корпусе, на котором расположены клеммы для подключения щупа или проводников к измеряемой схеме. Связь
с мультиметром при помощи экранированного телевизионного кабеля РК-75.

Измерение малых емкостей мультиметром

Многие радиолюбители используют в своих лабораториях мультиметры, некоторые из них позволяют измерять и емкости конденсаторов. Но как показывает практика, этими приборами нельзя замерить емкость
до 50 пф, а до 100 пф – большая погрешность. Для того, чтобы можно было измерять небольшие емкости, предназначена эта приставка. Подключив приставку к мультиметру, нужно выставить на индикаторе
значение 100пф, подстраивая С2. Теперь при подключении конденсатора 5 пф прибор покажет 105.
Остается только вычесть цифру 100

Искатель скрытой проводки

Определить место прохождения скрытой электрической проводки в стенах помещения поможет сравнительно простой искатель, выполненный на трех транзисторах (рис. 1). На двух биполярных транзисторах
(VT1, VT3) собран мультивибратор, а на полевом (VT2) — электронный ключ.

Принцип действия искателя основан на том, что вокруг электрического провода образуется электрическое поле его и улавливает искатель. Если нажата кнопка выключателя SB1, но электрического поля в
зоне антенного щупа WA1 нет либо искатель находится далеко от сетевых проводов, транзистор VT2 открыт, мультивибратор не работает, светодиод HL1 погашен. Достаточно приблизить антенный щуп,
соединенный с цепью затвора полевого

транзистора, к проводнику с током либо просто к сетевому роводу, транзистор VT2 закроется, шунтирование базовой цепи транзистора VT3 прекратится и мультивибратор вступит в действие. Начнет
вспыхивать светодиод. Перемещая антенный щуп вблизи стены, нетрудно проследить за пролеганием в ней сетевых проводов.

Прибор позволяет отыскать и место обрыва фазного провода. Для этого нужно включить в розетку нагрузку, например настольную лампу, и перемещать антенный щуп прибора вдоль проводки. В месте, где
светодиод перестает мигать, нужно искать неисправность.

Полевой транзистор может быть любой другой из указанной на схеме серии, а биполярные — любые из серии КТ312, КТ315. Все

резисторы — МЛТ-0,125, оксидные конденсаторы — К50-16 или другие малогабаритные, светодиод — любой из серии АЛ307, источник питания батарея «Крона» либо аккумуляторная батарея напряжением 6…9
В, кнопочный выключатель SB1 — КМ-1 либо аналогичный. Часть деталей прибора смонтирована на плате (рис. 2) из одностороннего фольгированного стеклотекстолита. Корпусом искателя может стать
пластмассовый пенал (рис. 3)

для хранения школьных счетных палочек. В его верхнем отсеке крепят плату, в нижнем располагают батарею. К боковой стенке верхнего отсека прикрепляют выключатель и светодиод, а к верхней стенке —
антенный щуп. Он представляет собой кониче-

ский пластмассовый колпачок, внутри которого находится металлический стержень с резьбой. Стержень крепят к корпусу гайками, изнутри корпуса надевают на стержень металлический лепесток, который
соединяют гибким монтажным проводником с резистором R1 на плате. Антенный щуп может быть иной конструкции, например, в виде петли из отрезка толстого (5 мм) высоковольтного провода, используемого
в телевизоре. Длина

отрезка 80…100 мм, его концы пропускают через отверстия в верхнем отсеке корпуса и припаивают к соответствующей точке платы. Желаемую частоту колебаний мультивибратора, а значит, частоту
вспышек светодиода можно установить подбором резисторов RЗ, R5 либо конденсаторов С1, С2. Для этого нужно временно отключить от резисторов RЗ и R4 вывод истока по-

левого транзистора и замкнуть контакты выключателя. Если при поиске места обрыва фазного провода чувствительность прибора окажется чрезмерной, ее нетрудно снизить уменьшением длины антенного щупа
или отключением проводника, соединяющего щуп с печатной платой. Искатель может быть собран и по несколько иной схеме (рис. 4) с использованием биполярных транзисторов разной структуры — на них
выполнен генератор. Полевой же транзистор (VT2) по-прежнему управляет работой генератора при попадании антенного щупа WA1 в электрическое поле сетевого провода.

Транзистор VT1 может быть серии

КТ209 (с индексами А-Е) или КТ361,

VT2 — любой из серии КП103, VT3 — любой из серий КТ315, КТ503, КТ3102. Резистор R1 может быть сопротивлением 150…560 Ом, R2 — 50 кОм…1,2 МОм, R3 и R4 с отклонением от указанных на схеме
номиналов на ±15%, конденсатор С1 — емкостью 5…20 мкФ. Печатная плата для этого варианта искателя меньше по габаритам (рис. 5), но конструктивное оформление практически такое же, что и
предыдущего варианта.

Любой из описанных искателей можно применять для контроля работы системы зажигания автомобилей. Поднося антенный щуп искателя к высоковольтным проводам, по миганию светодиода определяют цепи, на
которые не поступает высокое напряжение, или отыскивают неисправную свечу зажигания.

Журнал«Радио»,1991,№8,с.76

Не совсем обычная схема ГИРа изображена на рисунке. Отличие-в выносном витке связи. Петля L1 выполнена из медного провода диаметром 1,8 мм, диаметр петли около 18 мм, длина ее выводов 50 мм.
Петля вставляется в гнезда, расположеные на торце корпуса. L2 намотана на стандартном ребристом корпусе и содержит 37 витков провода диаметром 0,6 мм с отводами от 15, 23, 29 и 32-го витка
Диапазон- от 5,5 до 60 мгц

Простой измеритель емкости



Измеритель емкости позволяет измерять емкость конденсаторов от 0,5 до 10000пФ.

На логических элементах ТТЛ D1. 1 D1.2 собран мультивибратор, частота которого зависит от сопротивления резистора включенного между входом D1.1 и выходом D1.2. Для каждого предела измерения
устанавливается определенная частота при помощи S1, одна секция которого переключает резисторы R1-R4 , а другая конденсаторы С1-С4.

Импульсы с выхода мультивибратора поступают на усилитель мощности D1.3 D1.4 и далее через реактивное сопротивление измеряемого конденсатора Сх на простой вольтметр переменного тока на
микроамперметре Р1.

Показания прибора зависят от соотношения активного сопротивления рамки прибора и R6, и реактивного сопротивления Сх. При этом Сх зависит от емкости (чем больше, тем меньше сопротивление).

Калибровку прибора производят на каждом пределе при помощи подстроечных резисторов R1-R4 измеряя конденсаторы с известными емкостями. Чувствительность индикатора прибора можно установить подбором
сопротивления резистора R6.

Литература РК2000-05

Простой функциональный генератор



В радиолюбительской лаборатории обязательным атрибутом должен быть функциональный генератор. Предлагаем вашему вниманию функциональный генератор, способный вырабатывать синусоидальный,
прямоугольный, треугольный сигналы при высокой стабильности и точности. При желании, выходной сигнал может быть модулированным.

Диапазон частот разделен на четыре поддиапазона:

1. 1 Гц-100 Гц,

2. 100Гц-20кГц,

3. 20 кГц-1 МГц,

4. 150KHz-2 МГц.

Точно частоту можно выставить, используя потенциометры P2 (грубо) и P3(точно)

регуляторы и переключатели функционального генератора:

P2 — грубая настройка частоты

P3 — точная настройка частоты

P1 — Амплитуда сигнала (0 — 3В при питании 9В)

SW1 — переключатель диапазонов

SW2 — Синусоидальный/треугольный сигнал

SW3 — Синусоидальный(треугольный)/меандр

Для контроля частоты генератора сигнал можно снять непосредственно с вывода 11.

Параметры:

Синусоидальный сигнал:

Искажения: менее 1% (1 кГц)

Неравномерность: +0,05 дБ 1 Гц — 100 кГц

Прямоугольный сигнал:

Амплитуда: 8В (без нагрузки) при питании 9В

Время нарастания: менее 50 нс (при 1 кГц)

Время спада: менее 30ns (на 1 кГц)

Рассимметрия: менее 5%(1 кГц)

Треугольный сигнал:

Амплитуда: 0 — 3В при питании 9В

Нелинейность: менее 1% (до 100 кГц)

Защита сети от перенапряжения



Отношение емкостей C1 и составной С2 и С3 влияет на выходное напряжение. Мощности выпрямителя хватает для паралельного включения 2-3х реле типа РП21 (24в)

Генератор на 174ха11


На рисунке представлен генератор на микросхеме К174ХА11, частота которого управляется напряжением. При изменении емкости С1 от 560 до 4700пФ можно получить широкий диапазон частот, при этом
настройка частоты производится изменением сопротивления R4. Так например автор выяснил что, при С1=560пФ частоту генератора можно изменять при помощи R4 от 600Гц до 200кГц, а при емкости С1
4700пФ от 200Гц до 60кГц.

Выходной сигнал снимается с вывода 3 микросхемы с выходным напряжением 12В, автор рекомендует сигнал с выхода микросхемы подавать через токоограничивающий резистор с сопротивлением 300 Ом.

Измеритель индуктивности

Предлагаемый прибор позволяет измерять индуктивности катушек на трех пределах измерения — 30, 300 и 3000 мкГн с точностью не хуже 2% от значения шкалы. На показания не влияют собственная ёмкость
катушки и ее омическое сопротивление.

На элементах 2И-НЕ микросхемы DDI собран генератор прямоугольных импульсов, частота повторений которых определяется ёмкостью конденсатора C1, С2 или СЗ в зависимости от включенного предела
измерений переключателем SA1. Эти импульсы через один из конденсаторов С4, С5 или С6 и диод VD2 поступают на измеряемую катушку Lx, которая подключена к клеммам XS1 и XS2.

После прекращения очередного импульса во время паузы за счет накопленной энергии магнитного поля ток через катушку продолжает протекать в том же направлении через диод VD3, его
измерение осуществляется отдельным усилителем тока собранного на транзисторах Т1, Т2 и стрелочным прибором РА1. Конденсатор С7 сглаживает пульсации тока. Диод VD1 служит для привязки уровня
импульсов, поступающих на катушку.

При налаживании прибора необходимо использовать три эталонные катушки с индуктивностями 30, 300 и 3000 мкГн, которые поочередно подключаются вместо L1, и соответствующим переменным
резистором R1, R2 или R3 стрелка прибора устанавливается на максимальное деление шкалы. Во время эксплуатации измерителя достаточно выполнять калибровку переменным резистором R4 на пределе
измерения 300 мкГн, используя катушку L1 и включив выключатель SB1. Питание микросхемы производится от любого источника напряжением 4,5 — 5 В.

Расход тока каждого элемента питания составляет по 6 мА. Усилитель тока для миллиамперметра можно не собирать, а параллельно конденсатору С7 подключить микроамперметр со шкалой
50мкА и внутренним сопротивлением 2000 Ом. Индуктивность L1 может быть составной, но тогда следует расположить отдельные катушки взаимно перпендикулярно или как можно дальше друг от друга.
Для удобства монтажа все соединительные провода оснащены штекерами, а на платах установлены соответствующие им гнёзда.

Простой индикатор радиоактивности



Гетеродинный индикатор резонанса






Г.Гвоздицкий


Принципиальная схема предлагаемого ГИРа приведена на рис. 1. Его гетеродин выполнен на полевом транзисторе VT1, включенном по схеме
с общим истоком. Резистор R5 ограничевает ток стока полевого транзистора. Дроссель L2 — элемент развязки гетеродина от источника питания по высокой частоте.

Диод VD1, подсоединенный к выводам затвора и истока транзистора, улучшает форму генерируемого напряжения, приближая ее к синусоидальной. Без диода положительная полуволна тока стока станет
искажаться из-за увеличения коэффициента усиления транзистора с повышением напряжения на затворе, что неизбежно приводит к появлению четных гармоник в спектре сигнала гетеродина

Через конденсатор С5 напряжение радиочастоты поступает на вход высоко¬частотного вольтметра-индикатора, состоящего из детектора, диоды VD2 и VD4 которого включены по схеме удвоения напряжения,
что повышает чувствительность детектора и стабильность работы усилителя постоянного токи на транзисторе VT2 с микроамперметром РА1 в коллекторной цели. Диод VD3 стабилизирует образцовое
напряжение на диодах VD2,VD4. Переменным резистором R3 объединенным с выключателем питания SА1, устанавливают стрелку микроамперметра РА1 в исходное положение на крайнюю правую отметку
шкалы

Если а каких-то участках диапазона необходимо повысить точность шкалы, то параллельно катушке подключайте слюдяной конденсатор постоянной емкости.

Вариант катушек, выполненных на каркасах из лабораторных пробирок для забора крови, показаны на фото (рис.2) и подбираются радиолюбителем на желаемый диапазон

Индуктивность контурной катушки и емкость контура с учетом дополнительного конденсатора можно рассчитать по формуле

LC=25330/f²

где С- в пикофарадах, L — в микрогенри, f — в мегагерцах.

Определяя резонансную частоту иследуемого контура, к нему возможно ближе подносят катушку ГИРа и медленно вращая ручку блока КПЕ, следят за показаниями индикатора. Как только его стрелка
качнется влево, отмечают соответствующее положение ручки КПЕ. При дальнейшем вращении ручки настройки стрелка прибора возвращается в исходное положение. Та отметка на шкале, где наблюдается
максимальный *провал* стрелки, как раз и будет соответстовать резонансной частоте исследуемого контура

В описываемом ГИРе нет дополнительного стабилизатора питающего напряжения, поэтому при работе с ним рекомендовано пользоваться источником с одним и тем же значением напряжения постоянного тока —
оптимально сетевым блоком питания со стабилизированным выходным напряжением.

Делать одну общую шкалу для всех диапазонов нецелесообразно из-за сложности такой работы. Тем более, что точность полученной шкалы при различной плотности перестройки применяемых контуров
затруднит пользование прибором.

Катушки L1 пропитаны эпоксидным клеем или НН88. На ВЧ диапазоны их желательно намотать медным посеребренным проводом диаметром 1,0 мм.

Конструктивно каждая контурная катушка размещена на основании распространенного разъема СГ-3. Он вклеен в каркас катушки.

Упрощенный вариант ГИРа



От ГИРа Г. Гвоздицкого отличается тем, о чем уже писалось в статье — наличие среднего вывода сменной катушки L1, применен переменный конденсатор фирмы «Тесла» с твердым диэлектриком, нет диода,
формирующего форму синусоидальную сигнала. Отсутствует выпрямитель-удвоитель напряжения ВЧ и УПТ, что снижает чувствительность прибора.

Из положительных сторон следует отметить наличие «растягивающих» отключаемых конденсаторов С1, С2 и простейший верньер, совмещенный с двумя переключающимися шкалами, которые
можно градуировать карандашом, питание включается кнопкой только в момент проведения измерений, что экономит батарею.

Для питания счетчика Гейгера В1 требуется напряжение 400В, это напряжение вырабатывает источник на блокинг-генераторе на транзисторе VT1. Импульсы с повышающей обмотки Т1 выпрямляются
выпрямителем на VD3C2. Напряжение на С2 поступает на В1, нагрузкой которого является резистор R3. При прохождении через В1 ионизирующей частицы в нем возникает короткий импульс тока. Этот импульс
усиливается усилителем-формирователем импульсов на VT2VT3. В результате через F1-VD1 протекает более длительный и более сильный импульс тока — светодиод вспыхивает, а в капсюле F1 раздается
щелчок.

Счетчик Гейгера можно заменить любым аналогичным, F1 любой электромагнитный или динамический сопротивлением 50 Ом.

Т1 наматывается на ферритовом кольце с внешним диаметром 20 мм, первичная обмотка содержит 6+6 витков провода ПЭВ 0,2, вторичная 2500 витков провода ПЭВ 0,06. Между обмотками нужно проложить
изоляционный материал из лакоткани. Первой наматывают вторичную обмотку, на нее поверхность, равномерно, вторичную.

Прибор для измерения емкости

Прибор имеет шесть поддиапазонов,верхние пределы для которых равны соответственно 10пф, 100пф, 1000пф, 0,01мкф, 0,1мкф и 1мкф.
Отсчёт ёмкости производится по линейной шкале микроамперметра.

Принцип действия прибора основан на измерении переменного тока, протекающего через
исследуемый конденсатор. На операционном усилителе DA1 собран генератор прямоугольных импульсов. Частота повторения этих импульсов зависит от ёмкости одного из конденсаторов С1-С6 и положения
движка подстроечного резистора R5. В зависимости от поддиапазона, она меняется от 100Гц до 200кГц. Подстроечным резистором R1 устанавливаем симметричную форму колебаний (меандр) на выходе
генератора.

Диоды D3-D6, подстроечные резисторы R7-R11 и микроамперметр PA1 образуют измеритель переменного тока. Для
того,чтобы погрешность измерений не превышала 10% на первом поддиапазоне (ёмкость до10пФ),внутреннее сопротивление микроамперметра должно быть не более 3кОм.На остальных поддиапазонах паралельно
PA1 подключают подстроечные резисторы R7-R11.

Требуемый поддиапазон измерений устанавливают переключателем SA1. Одной группой контактов он переключает
частотозадающие конденсаторы С1-С6 в генераторе,другой — подстроечные резисторы в индикаторе. Для питания прибора необходим стабилизированный двуполярный источник на напряжение от 8 до 15В.
Номиналы частотозадающих конденсаторов С1-С6 могут отличаться на 20%, но сами конденсаторы должны иметь достаточно высокую температурную и временную стабильность.

Налаживание прибора производят в следующей последовательности. Сначала на первом поддиапазоне добиваются
симметричных колебаний резистором R1. Движок резистора R5 при этом должен быть в среднем положении. Затем, подключив к клеммам «Сх» эталонный конденсатор 10пф, подстроечным резистором R5
устанавливают стрелку микроамперметра на деление соответствующее ёмкости эталонного конденсатора (при использовании прибора на 100мка, на конечное деление шкалы).

Схема приставки

Приставка к частотомеру для определения частоты настройки контура и его предварительной настройки. Приставка работоспособна в диапазоне 400 кгц-30
мгц.
Т1 и Т2 могут быть КП307, BF
245

LY2BOK

Итак, самый главный блок любого передатчика – это генератор. От того, насколько стабильно и точно работает генератор, зависит, сможет ли кто-то поймать переданный сигнал и нормально его принимать. В интернете валяется просто уйма различных схем жучков, в которых используются различные генераторы. Сейчас мы немного классифицируем все это.

Номиналы деталей всех приведенных схем рассчитаны с учетом того, что рабочая частота схемы составляет 60…110 МГц (то есть, перекрывает наш любимый УКВ-диапазон).

Классика жанра — генератор ВЧ

Транзистор включен по схеме с общей базой. Резисторный делитель напряжения R1- R2 создает на базе смещение рабочей точки. Конденсатор C3 шунтирует R2 по высокой частоте.

R3 включен в эмиттерную цепь для ограничения тока протекающего через транзистор.

Конденсатор C1 и катушка L1 образуют частотозадающий колебательный контур.

Кондер C2 обеспечивает положительную обратную связь (ПОС), необходимую для генерации.

Механизм генерации

Упрощенно схему можно представить так:

Вместо транзистора мы ставим некий «элемент с отрицательным сопротивлением». По сути – усилительный элемент. То есть, ток на его выходе больше, чем ток на входе (так вот хитро).

К входу этого элемента подключен колебательный контур. С выхода элемента на этот же колебательный контур подана обратная связь (через кондер C2). Таким образом, когда на входе элемента ток увеличивается (происходит перезарядка контурного конденсатора), увеличивается ток и на выходе. Через обратную связь, он подается обратно на колебательный контур – происходит «подпитка». В результате, в контуре устаканиваются незатухающие колебания.

Все оказалось проще пареной репы (как всегда).

Разновидности

В безбрежном инете можно еще встретить такую реализацию этого же генератора:

Схема называется «емкостная трехточка». Принцип работы – тот же.

Во всех этих схемах сгенерированный сигнал можно снимать либо непосредственно с коллектора VT 1, либо использовать для этого катушку связи, связанную с контурной катушкой.

Индуктивная трехточка

Эту схему выбираю я, и советую вам.

R1 – ограничивает ток генератора
R2 – задает смещение базы
C1, L1 – колебательный контур
C2 – конденсатор ПОС

Катушка L1 имеет отвод, к которому подключен эмиттер транзистора. Этот отвод должен быть расположен не ровно посередине, а ближе к «холодному» концу катушки (то есть тому, который соединен с проводом питания). Кроме того, можно вообще не делать отвод, а намотать дополнительную катушку, то есть – сделать трансформатор:

Эти схемы идентичны.

Механизм генерации:

Для понимания того, как работает такой генератор, давайте рассмотрим именно вторую схему. При этом, левая (по схеме) обмотка будет вторичной, правая – первичной.

Когда на верхней обкладке C1 увеличивается напряжение (то есть, ток во вторичной обмотке течет «вверх»), то на базу транзистора через конденсатор обратной связи C2 подается открывающий импульс. Это приводит к тому, что транзистор подает на первичную обмотку ток, этот ток вызывает увеличение тока во вторичной обмотке. Происходит подпитка энергией. В-общем – то, все тоже довольно просто.

Разновидности

Мое небольшое ноу-хау: можно поставить между общим и базой диод:

Сигнал во всех этих схемах снимаем с эмиттера транзистора либо через дополнительную катушку связи непосредственно с контура.

Двухтактный генератор для ленивых

Самая простая схема генератора, какую только мне приходилось когда-либо видеть:

В этой схеме легко улавливается схожесть с мультивибратором. Я вам скажу больше – это и есть мультивибратор. Только вместо цепочек задержки на конденсаторе и резисторе (RC-цепи), здесь используются катушки индуктивности. Резистор R1 устанавливает ток через транзисторы. Кроме того, без него генерация просто-напросто, не пойдет.

Механизм генерации:

Допустим, VT1 открывается, через L1 течет коллекторный ток VT1. Соответственно, VT2 закрыт, через L2 течет открывающий базовый ток VT1. Но поскольку сопротивление катушек раз в 100…1000 меньше сопротивления резистора R1, то к моменту полного открытия транзистора, напряжение на них падает до очень маленького значения, и транзистор закрывается. Но! Поскольку до закрытия транзистора, через L1 тек большой коллекторный ток, то в момент закрытия происходит выброс напряжения (ЭДС самоиндукции), который подается на базу VT2 открывает его. Все начинается по новой, только с другим плечом генератора. И так далее…

Этот генератор имеет только один плюс – простота изготовления. Остальные – минусы.

Поскольку в нем отсутствует четкое времязадающее звено (колебательный контур или RC-цепь), то частоту такого генератора рассчитать весьма сложно. Она будет зависеть от свойств применяемых транзисторов, от напряжения питания, от температуры и т.д. Во-общем, в серьезных вещах этот генератор лучше не использовать. Однако, в диапазоне СВЧ его применяют довольно часто.

Двухтактный генератор для трудолюбивых

Другой генератор, который мы рассмотрим – тоже двухтактный. Однако, он содержит колебательный контур, что делает его параметры более стабильными и прогнозируемыми. Хотя, по сути, он тоже довольно прост.

Что мы здесь видим?

Опытный глаз (да и не сильно опытный), обнаружит и в этой схеме схожесть с мультивибратором. Ну что же – оно так и есть!

Чем примечательна данная схема? Да тем, что ввиду использования двухтактного включения, она позволяет развивать двойную мощность, по сравнению со схемами 1-тактных генераторов, при том же напряжении питания и при условии применения тех же транзисторов. Во как! Ну, в общем, у нее почти нет недостатков 🙂

Механизм генерации

При перезаряде конденсатора в одну или другую сторону, через один из конденсаторов обратной связи поступает ток на соответствующий транзистор. Транзистор открывается, и добавляет энергию в «нужном» направлении. Вот и вся премудрость.

Особо изощренных вариантов исполнения этой схемы я не встречал…

Теперь немного креатива.

Генератор на логических элементах

Если использование транзисторов в генераторе кажется вам несовременным или громоздким или недопустимым по религиозным соображениям – выход есть! Можно использовать вместо транзисторов микросхемы. Обычно используется логика: элементы НЕ, И-НЕ, ИЛИ-НЕ, реже – Исключающее ИЛИ. Вообще говоря, нужны только элементы НЕ, остальное – излишества, только лишь ухудшающие скоростные параметры генератора.

Видим страшную схему.

Квадратики с дырочкой в правом боку – это инвертеры. Ну или – «элементы НЕ». Дырочка как раз указывает на то, что сигнал инвертируется.

Что такое элемент НЕ с точки зрения банальной эрудиции? Ну, то есть, с точки зрения аналоговой техники? Правильно, это усилитель с обратным выходом. То есть, при увеличении
напряжения на входе усилителя, напряжение на выходе пропорционально уменьшается
. Схему инвертера можно изобразить примерно так (упрощенно):

Это конечно, слишком просто. Но доля правды в этом есть.
Впрочем, нам пока что это не столь важно.

Итак, смотрим схему генератора. Имеем:

Два инвертера (DD1.1, DD1.2)

Резистор R1

Колебательный контур L1 C1

Заметьте, что колебательный контур в этой схеме – последовательный. То есть, конденсатор и катушка стоят друг за другом. Но это – все равно колебательный контур, он рассчитывается по тем же формулам, и ничуть ни хуже (и не лучше) своего параллельного собрата.

Начнем сначала. Зачем нам нужен резистор?

Резистор создает отрицательную обратную связь (ООС) между выходом и входом элемента DD1. 1. Это надо для того, чтобы держать под контролем коэффициент усиления – это раз, а также – чтоб создать на входе элемента начальное смещение – это два. Как это работает, подробно мы рассмотрим где-нибудь в обучалке по аналоговой технике. Пока что уясним, что благодаря этому резистору, на выходе и входе элемента, в отсутствие входного сигнала, устаканивается напряжение, равное половине напряжения питания. Точнее – среднему арифметическому напряжений логических «нуля» и «единицы». Не будем пока на этом заморачиваться, у нас еще много дел…

Итак, на одном элементе мы получили инвертирующий усилитель. То есть, усилитель, который «переворачивает» сигнал вверх ногами: если на входе много – на выходе мало, и наоборот. Второй элемент служит для того, чтобы сделать этот усилитель неинвертирующим. То есть, он переворачивает сигнал еще раз. И в таком виде, усиленный сигнал подается на выход, на колебательный контур.

А ну-ка, смотрим внимательно на колебательный контур? Как он включен? Правильно! Он включен между выходом и входом усилителя. То есть, он создает положительную обратную связь (ПОС). Как мы уже знаем из рассмотрения предыдущих генераторов, ПОС нужна для генератора, как валерьянка для кота. Без ПОС ни один генератор не сможет что? Правильно – возбудиться. И начать генерацию…

Все наверно знают такую вещь: если к входу усилителя подключить микрофон, к выходу – динамик, то при поднесении микрофона к динамику, начинается противный «свист». Это – ни что иное как генерация. Мы же подаем сигнал с выхода усилителя на вход. Возникает ПОС. Как следствие, усилитель начинает генерить.

Ну, короче, посредством LC -цепочки в нашем генераторе создается ПОС, приводящая к возбуждению генератора на резонансной частоте колебательного контура.

Ну что, сложно?
Если
(сложно)
{
чешем (репу) ;
читаем еще раз;
}

Теперь поговорим о разновидностях подобных генераторов.

Во-первых, вместо колебательного контура, можно включить кварц. Получится стабилизированный генератор, работающий на частоте кварца:

Если в цепь ОС элемента DD1. 1 включить вместо резистора колебательный контур – можно завести генератор на гармониках кварца. Для получения какой-либо гармоники, нужно, чтобы резонансная частота контура была близка к частоте этой гармоники:

Если генератор делается из элементов И-НЕ или ИЛИ-НЕ, то входы этих элементов нужно запараллелить, и включать как обычный инвертор. Если используем Исключающее ИЛИ, то один из входов каждого элемента сажается на + питания.

Пара слов о микросхемах.
Предпочтительнее использовать логику ТТЛШ или быстродействующий КМОП.

Серии ТТЛШ: К555, К531, КР1533

Например, микросхема К1533ЛН1
– 6 инверторов.
Серии КМОП: КР1554, КР1564
(74 AC , 74 HC), например – КР1554ЛН1
На крайний случай – старая добрая серия К155
(ТТЛ). Но ее частотные параметры оставляют желать лучшего, так что – я бы не стал использовать эту логику.

Рассмотренные здесь генераторы – далеко не все, что могут повстречаться вам в этой нелегкой жизни. Но зная основные принципы работы этих генераторов, будет уже намного проще понять работу других, укротить их и заставить работать на себя 🙂

Идея сделать
недорогой генератор УКВ диапазонов для
работы в полевых условиях родилась, когда возникло желание измерить параметры
собранных своими руками антенн
самодельным КСВ-метром
. Быстро и удобно сделать такой генератор удалось,
используя сменные блоки-модули. Уже собрал несколько генераторов на: радиовещательный
87,5 – 108 МГц, радиолюбительские 144 – 146 МГц и 430 — 440 МГц, включая PRM
(446 МГц) диапазоны, диапазон эфирного цифрового телевидения 480 — 590 МГц. Такой мобильный и простой
измерительный прибор помещается в кармане, а по некоторым параметрам не уступает
профессиональным измерительным приборам. Линейку шкалы легко дополнить, поменяв
несколько номиналов в схеме или модульную плату.

Структурная схема
для всех используемых
диапазонов одинаковая.

Это задающий генератор
(на транзисторе Т1)
с параметрической стабилизацией частоты, который определяет необходимый
диапазон перекрытия. Для упрощения конструкции, перестройка по диапазону
осуществляется подстроечным конденсатором. На практике такая схема включения,
при соответствующих номиналах, на стандартизированных чип-индуктивностях и
чип-конденсаторах, проверялась вплоть до частоты
1300 МГц.

Фото 2. Генератор с ФНЧ на диапазоны 415 — 500 МГц и 480 — 590 МГц.

Фильтр нижних частот (ФНЧ)
подавляет высшие
гармоники более чем на 55 дБ, выполнен на контурах с катушками индуктивностями L
1, L
2, L
3. Конденсаторы параллельные индуктивностям образуют режекторные
фильтры-пробки настроенные на вторую гармонику гетеродина, что и обеспечивает
дополнительное подавление высших гармоник гетеродина.

Линейный усилитель
на микросхеме имеет нормированное выходное
сопротивление 50 Ом и для данной схемы включения развивает мощность от 15 до 25 мВт, достаточную для
настройки и проверки параметров антенн, не требующую регистрации. Именно такую
мощность на выходе имеет высокочастотный генератор Г4 – 176. Для простоты схемы
ФНЧ на выходе микросхемы отсутствует, поэтому подавления высших гармоник
генератора на выходе ухудшилось на 10
дБ.

Микросхема ADL
5324 предназначена для работы на частотах от 400 МГц до 4-х ГГц, но практика показала, что она
вполне работоспособна и на более низких частотах УКВ диапазона.

Питание генераторов
осуществляется от литиевого аккумулятора с
напряжением до 4,2 вольта. Устройство имеет разъём для внешнего питания и
подзарядки аккумулятора и высокочастотный разъём для подключения внешнего
счётчика, а самодельный КСВ-метр может служить индикатором уровня.

Генератор диапазона 87.5 – 108
МГц.

Параметры.
Реальная
перестройка частоты составила 75 – 120 МГц. Напряжение питания V
п = 3,3 – 4,2 В. Выходная мощность до 25 мВт (V
п = 4 В). Выходное сопротивление
R
вых = 50 Ом. Подавление высших гармоник более 40 дБ.
Неравномерность в частотном диапазоне 87,5 – 108 МГц менее 2 дБ. Ток
потребления не более 100 мА (V
п
= 4 В).

Рис. 1. Генератор диапазона 87,5 — 108 МГц.
Рис. 2.

На рис. 2.
представлен эскиз монтажа задающего генератора на частоту
115,6 – 136 МГц. Этот генератор используется в роли гетеродина в
преобразователе а и в Перестройка генератора осуществляется с помощью
переменного резистора, изменяющего напряжение на варикапе.

Генератор радиолюбительского диапазона 144 — 146 МГц.

Параметры.
Реальная перестройка частоты при этом составила 120 –
170 МГц. Напряжение питания V
п = 3,3 – 4,2 В. Выходная мощность до 20 мВт (V
п = 4 В). Выходное
сопротивление R
вых = 50
Ом. Подавление высших гармоник более 45
дБ. Неравномерность в частотном диапазоне менее 1 дБ. Ток потребления не более
100 мА (V
п = 4 В).

В генераторе катушка
индуктивности уменьшается до 10 витков (диаметр оправки 4 мм, диаметр провода
0,5 мм). Номиналы конденсаторов ФНЧ уменьшились.

Генератор
радиолюбительского диапазона 430 – 440 МГц.

Параметры.
Реальный
диапазон перестройки при указанных номиналах составил 415 – 500 МГц. Напряжение питания V
п =
3,3 – 4,2 В. Выходная мощность до 15 мВт (V
п = 4 В). Выходное сопротивление R
вых = 50 Ом. Подавление высших гармоник более 45 дБ.
Неравномерность в частотном диапазоне 430 – 440 МГц менее 1 дБ. Ток потребления не более 95 мА (V
п = 4 В).

Фото 6. Конструкция генератора на диапазон 415 — 500 МГц и 480 — 590 МГц.

Генератор диапазона
эфирного цифрового телевидения 480 – 590 МГц.

Параметры.
Реальный диапазон перестройки
при указанных номиналах составил 480 – 590 МГц. Напряжение питания V
п = 3,3 – 4,2 В. Выходная мощность до 15 мВт (V
п = 4 В). Выходное
сопротивление R
вых = 50
Ом. Подавление высших гармоник более 45
дБ. Неравномерность в частотном диапазоне менее 1 дБ. Ток потребления не более
95 мА (V
п = 4 В).

Рис.3 Генератор диапазона 480 — 490 МГц.
Генератор диапазона 415 -500 МГц. Lг = 47 нГн. С3, С4 -5,6 пФ.

Предлагаемый высокочастотный генератор сигналов привлекает простотой конструкции и обеспечивает стабилизацию выходного напряжения в широкой полосе частот.

Общеизвестны требования, предъявляемые к широкополосному генератору сигналов. В первую очередь, это достаточно малая величина выходного сопротивления, позволяющая согласовать его выход с волновым сопротивлением коаксиального кабеля (обычно 50 Ом), и наличие автоматической регулировки амплитуды выходного напряжения, поддерживающей его уровень практически постоянным независимо от изменения частоты выходного сигнала. Для диапазона СВЧ (выше 30 МГц) большое значение имеют простая и надежная коммутация диапазонов, а также рациональная конструкция генератора.

Высокочастотный сигнал с генератора через конденсатор С4 поступает на затвор полевого транзистора VT3. Этим обеспечивается почти идеальная развязка нагрузки и генератора. Для установки напряжения смещения транзисторов VT3 и VT4 служат резисторы R7, R8, а токовый режим каскада определяют резисторы R12 — R 14. Для увеличения степени развязки выходное высокочастотное напряжение снимается с коллекторной цепи VT4.

Для стабилизации уровня сигнал ВЧ через конденсатор С9 подводится к выпрямителю с удвоением напряжения, выполненного на элементах VD1, VD2, С10, С11, R15. Пропорциональное амплитуде выходного сигнала выпрямленное напряжение дополнительно усиливается в цепи управления на VT5 и VT6. При отсутствии сигнала ВЧ транзистор VT6 полностью открыт; при этом к задающему генератору поступает максимальное напряжение питания. В результате облегчаются условия самовозбуждения генератора и в начальный момент устанавливается большая амплитуда его колебаний. Но это напряжение ВЧ через выпрямитель открывает VT5, при этом напряжение на базе VT6 увеличивается, что приводит к уменьшению напряжения питания генератора и в конечном счете к стабилизации амплитуды его колебаний. Равновесное состояние устанавливается при амплитуде сигнала ВЧ на коллекторе VT4 несколько выше 400 мВ.

Переменный резистор R17 (показан как потенциометр) в действительности представляет собой ВЧ аттенюатор и при отсутствии нагрузки на его выходе максимальное напряжение достигает четверти входного, т.е. 100 мВ. При нагрузке коаксиального кабеля на сопротивление 50 Ом (что является необходимым для его согласования в частотном диапазоне от 50 до 160 МГц и выше) на выходе генератора устанавливается напряжение ВЧ около 50 мВ, которое регулировкой аттенюатора может быть уменьшено до необходимого уровня.

В качестве регулятора R17 в схеме генератора был использован 50-омный аттенюатор фирмы Prech. Если для некоторых конкретных применений не требуется регулировки уровня выходного напряжения, аттенюатор R17 может быть заменен фиксированным резистором с сопротивлением 50 Ом.

Однако и в этом случае сохраняется возможность регулировки уровня напряжения ВЧ в некоторых пределах: с этой целью конденсатор С9 присоединяют не к коллектору VT4, а к его эмиттеру, при этом приходится учитывать небольшое изменение (уменьшение) уровня сигнала на высших частотах рабочего диапазона. Тогда нагрузку для VT4 образуют аттенюатор R17 и резисторы R11, R12. Увеличение амплитуды выходного высокочастотного напряжения может быть достигнуто замыканием резистора R11 проволочной перемычкой, если же требуется уменьшить амплитуду выходного напряжения, то резистор R11 оставляют в устройстве, а конденсаторы С7, С8 выпаивают. Еще большее уменьшение уровня выходного сигнала может быть получено снижением величины сопротивления R17, но в этом случае уже не будет согласования с кабелем, а на частотах выше 50 МГц это недопустимо!

Все детали генератора расположены на печатной плате небольших размеров. Катушки индуктивности генератора L1 — L3 намотаны на каркасах диаметром 7,5 мм. Их индуктивности подстраивают ферритовыми сердечниками с малыми потерями, предназначенными для работы в диапазоне УКВ. Катушка L3 имеет 62 витка, L2 — 15 и L1 — 5 витков провода ПЭЛ 0,2 (намотка всех катушек в один слой). Индуктивность WL1 выполнена в виде шлейфа, который одной своей стороной прикреплен к переключателю диапазонов, а другой — к конденсатору С1 переменной емкости. Размеры шлейфа приведены на рис. 2. Он выполнен из медного посеребренного провода диаметром 1,5 мм; для фиксации расстояний между его проводниками применяются три пластины из изоляционного материала с малыми потерями (например фторопласта), в которых просверлены по два отверстия диаметром 1,5 мм, находящиеся соответственно на расстоянии 10 и 2,5 мм (рис. 2).

Весь прибор размещают в металлическом корпусе размерами 45х120х75 мм. Если аттенюатор и ВЧ разъем установлены в корпусе на стороне, противоположной той, на которой находится печатная плата, то внутри корпуса прибора еще остается достаточно места для узлов блока питания: трансформатора питания мощностью 1 Вт с понижением напряжения сети до 15 В, выпрямительного моста и микросхемы 7812 (отечественный аналог- КР142ЕН8Б). В корпусе может быть размещен также миниатюрный частотомер с предварительным делителем частоты. При этом вход делителя следует подключить к коллектору VT4, а не к выходному разъему, что позволит производить отсчет частоты при любом напряжении ВЧ, снимаемом с аттенюатора R17.

Возможно изменение частотного диапазона прибора путем изменения индуктивности катушки контура или емкости конденсатора С1. При расширении частотного диапазона в сторону более высоких частот следует уменьшать потери контура настройки (применение в качестве С1 конденсатора с воздушным диэлектриком и керамической изоляцией, катушек индуктивности с малыми потерями). Кроме того, диоды VD1 и VD2 должны соответствовать этому расширенному диапазону частот, в противном случае с увеличением частоты выходное напряжение генератора будет увеличиваться, что объясняется уменьшением эффективности цепи стабилизации.

Для облегчения настройки параллельно С 1 подключают дополнительный переменный конденсатор малой емкости (электрический верньер) или же применяют механический верньер к конденсатору настройки с передаточным отношением 1:3 — 1:10.

От редакции.
В этой конструкции транзисторы BF199 могут быть заменены отечественными — КТ339 с любым буквенным индексом, а при расширении диапазона генератора в сторону более высоких частот — КТ640, КТ642, КТ643. Вместо полевого транзистора BFW11 допустимо установить КП307Г или КП312, а вместо транзистора ВС252С подойдет КТ3107 с индексами Ж, И, К или Л. В качестве диодов можно применить детекторные диоды СВЧ, например, 2А201, 2А202А. Если же генератор работает на частотах, не превышающих 100 МГц, то могут быть использованы и диоды типа ГД507А (с коррекцией сопротивления резистора R11). Переключатель SA1 — ПГК. Мощность резисторов — 0,125 или 0,25 Вт.

Конденсатор С1 должен быть с воздушным диэлектриком и иметь керамическую или кварцевую изоляцию как статорных пластин от корпуса, так и роторных от оси; его максимальную емкость лучше ограничить 50 пф. Аттенюаторы типа, который применен в генераторе, нашей промышленностью не выпускаются. Вместо него допускается использовать плавный регулятор в цепи авторегулирования и обычный ступенчатый аттенюатор с П или Т-образными звеньями на выходе.

ВЧ-генератор сигналов с частотомером — RadioRadar

В журнале «Радио», 1997, № 6 на с. 48 и 49 было опубликовано в рубрике «За рубежом» описание «Простого широкополосного генератора сигналов ВЧ», которое меня заинтересовало. Собранный по схеме из этой статьи генератор работал без замечаний, поддерживая определённый уровень сигнала на выходе почти независимо от частоты. Чтобы превратить изготовленную плату в полноценный сигнал-генератор, нужно было поместить её в корпус и проградуировать шкалу переменного конденсатора, но руки до этого не дошли. Кроме того, очень трудно оказалось точно устанавливать необходимую частоту без частотомера.

Когда в продаже появились недорогие цифровые частотомеры, предназначенные для встраивания в различную аппаратуру, я решил объединить такой частотомер с уже готовым генератором. Кроме того, расширил возможности этого генератора, предусмотрев в нём амплитудную и частотную модуляцию выходного сигнала.

Схема прибора изображена на рис. 1. В качестве основного органа установки частоты в нём применён переменный конденсатор C1 с твёрдым диэлектриком от переносного приёмника. Дополнение его варикапом VD1 позволило осуществить плавную подстройку частоты и частотную модуляцию. Для повышения предельной генерируемой частоты предусмотрено отключение переменного конденсатора C1 выключателем SA1. При этом остаётся возможной перестройка генератора варикапом VD1.

Рис. 1. Схема прибора

 

Генератор модулирующего НЧ-сигнала собран на транзисторах VT5 и VT7. Его сигнал частотой 1 кГц через делитель напряжения из резисторов R3, R4 и конденсатор C3 поступает на переключатель SA3. В положении переключателя «ЧМ» модулирующий сигнал подан на варикап VD1, а в положении «АМ» — на затвор полевого транзистора VT4 через резисторы R11 и R17. Девиацию частоты в режиме ЧМ или глубину АМ регулируют переменным резистором R4.

Если вставить в гнездо XS1 штекер внешнего источника модулирующего сигнала, контакты этого гнезда разорвут цепь подачи сигнала внутреннего генератора НЧ и генератор ВЧ будет модулирован внешним сигналом. Если этот сигнал имеет пилообразную форму, то в режиме ЧМ генерируется ВЧ-сигнал качающейся частоты, который можно использовать для проверки и настройки полосовых фильтров.

Частотомер P1 — PLJ-8LED-RS (рис. 2). Он был приобретён в интернет-магазине. Его описание можно найти по адресу http://www.zL2pd. com/files/PLJ-8LED_Manual_ Translation_EN.pdf (30.10.17). Переключатель SA4 позволяет подключить вход частотомера к выходу генератора для измерения частоты его сигнала или к разъёму XW1, чтобы измерять частоту любого внешнего сигнала, поданного на этот разъём.

Рис. 2. Частотомер P1 — PLJ-8LED-RS

 

Переменным резистором R24 регулируют амплитуду ВЧ-сигнала на выходе генератора, но поскольку этот резистор находится под потенциалом плюсовой линии питания, сигнал подан с него на разъём XW2 через конденсаторы C13 и C18.

Генератор, частотомер и блок сетевого питания удалось уместить в общий корпус размерами 200х100х х40 мм. Расположение в нём плат и других деталей показано на рис. 3. В качестве источника постоянного напряжения 12 В можно использовать любой сетевой блок питания на это напряжение и ток не менее 0,3 А. Я применил готовую плату от ИБП. Различные готовые блоки питания можно использовать и отдельно, не помещая их в корпус генератора, и этим уменьшить размеры прибора.

Рис. 3. Расположение плат и других деталей в корпусе прибора

 

В генераторе ВЧ желательно использовать керамические конденсаторы с малым ТКЕ. Переключатели SA1, SA3, SA4 — движковые ПД9-1, подойдут и другие малогабаритные переключатели на два положения. Переключатель SA1 желательно установить поблизости от конденсатора C1. Переключатель поддиапазонов SA2 — SK 1P3T либо другой движковый или галетный на три положения.

Катушка L1 — 62 витка, L2 — 15 витков, L3 — 5 витков провода ПЭВ-2 диаметром 0,2…0,3 мм. Катушки L1 и L2 намотаны на каркасах, демонтированных с платы старой автомагнитолы. Каркас катушки L3 — пластмассовый диаметром 7 мм. Все они имеют ферромагнитные подстроечники. Варикап VD1 и конденсатор C2 постарайтесь разместить рядом с катушкой L3.

Переменный резистор R8 должен быть многооборотным, а R24 не должен быть проволочным. Гнездо XS1 — под аудиоштекер диаметром 3,5 мм, оснащённое внутренним выключателем. Разъёмы XW1 и XW2 — байонетные BNC или СР50-73Ф.

Все детали прибора размещены на листе фольгированного стеклотекстолита размерами 200×100 мм, который служит и лицевой панелью прибора (рис. 4).

Рис. 4. Лицевая панель прибора

 

Правильно собранный генератор начинает работать сразу. Однако его частотные поддиапазоны требуют «укладки». При этом возможно потребуется подбирать число витков катушек.

При переключателе SA2 в положении «1», максимальной ёмкости переменного конденсатора C1 и движке переменного резистора R8 в верхнем по схеме положении генерируемая частота должна быть около 400 кГц. Этого следует добиться, вращая под-строечник катушки L1. Если установить нужную частоту с помощью подстроеч-ника не удаётся, придётся менять число витков этой катушки. Увеличение их числа понизит частоту, а при его уменьшении она возрастёт. Получив нужную минимальную частоту, переведите ротор переменного конденсатора C1 в положение минимальной ёмкости, а напряжение управления варикапом VD1 сделайте максимальным, переведя движок переменного резистора R8 в нижнее положение. Прочитайте на табло частотомера значение верхней частоты первого поддиапазона.

Далее переведите переключатель SA2 в положение «2» и вновь установите максимальную ёмкость переменного конденсатора C1 и минимальное напряжение на варикапе VD1. Подстро-ечником катушки L2 и подбором числа её витков добейтесь, чтобы генерируемая частота стала равной уже известной верхней частоте первого поддиапазона. При минимальной ёмкости пере-менного конденсатора и максимальном напряжении на варикапе измерьте максимальную частоту второго поддиапазона. Аналогичным образом, переведя переключатель SA2 в третье положение, «уложите», изменяя индуктивность катушки L3, и третий, самый высокочастотный поддиапазон. Ещё боль-шую частоту генерации в этом поддиапазоне можно получить, отключив выключателем SA1 переменный конденсатор C1 и пользуясь для перестройки генератора только переменным резистором R8. В своём генераторе я добился перекрытия диапазона 400 кГц…150 МГц без разрывов.

Автор: А. Чех, г. Москва

Генератор радиочастотных сигналов 150 МГц для испытательного стенда


Когда наш интерес к электронике пробуждается, наш инвентарь начинает расти — сначала знания, полученные с помощью книг и избранных статей, затем небольшой инвентарь деталей и несколько единиц базового испытательного оборудования. Обычно мы начинаем с простого цифрового мультиметра и какого-то источника питания. Со временем мы накапливаем изрядное количество базового оборудования. Однако ни один испытательный стенд не будет полным, пока на нем не будет источника радиочастотного сигнала какого-либо типа.То, что я представлю здесь, — это милый маленький универсальный генератор ВЧ-сигналов, который не займет много места на стенде, заполнит этот недостающий пробел и может быть построен довольно дешево.

Позвольте мне начать с краткого обзора того, что там есть. Генераторы сигналов бывают самых разных сортов. Начиная с самого верха, будет генератор, который колеблется только на одной очень точной частоте, например, такой, который может использоваться NIST (Национальным институтом стандартов). Это основные стандарты частоты и временные базы, на которые ссылаются все остальные частоты.Они обладают невероятной точностью и могут стоить более 100 000 долларов. Следующими на очереди будут генераторы очень высокого класса с супер-характеристиками точности и стабильности, а также с любым доступным типом модуляции. Сегодня эти моды могут быть довольно сложными. Затем мы переходим к генераторам среднего уровня, которые, хотя и имеют отличные характеристики, будут в большей степени ориентированы на конкретное приложение (ограниченные полосы частот и т. Д.), А не на «универсальные». Многие из них работают медленно из-за программирования и множества кнопок.Как только вы выберете выбранную частоту, они работают отлично, но могут стоить от 1000 до 10 000 долларов.

Одна корпорация, в которой я работал, использовала очень сложный микроволновый генератор с отличными характеристиками и множеством функций, и — хотя с ним можно было выполнить практически любой тест, связанный с частотой — также было медленно добраться до каждой конкретной точки интереса. Руководство пользователя было толщиной 3 дюйма, и, вероятно, потребуется год, чтобы полностью освоить этот генератор.Еще одна вещь заключалась в том, что, как сообщается, он продавался по цене 38000 долларов.

В самом низу кучи находится генератор общего назначения, который может работать от 200 долларов и выше. Они в основном предназначены для обслуживания потребительских товаров и некритических проектных работ. Хотя им не хватает функций и качества генераторов более высокого класса, у них есть несколько очевидных преимуществ: простота использования, скорость работы во всем диапазоне выходных сигналов, плюс (самое большое достоинство) очень низкая стоимость. Здесь нет набора кнопок или программирования. Просто нажмите выключатель, поверните ручку и быстро доберитесь туда, куда хотите. Их предполагаемый рынок ориентирован на операторов радиолюбителей, любителей или людей, которые любят возиться с электроникой, то есть таких же людей, как мы. Попробовав несколько коммерческих генераторов общего назначения на протяжении многих лет, я почувствовал, что можно добиться лучшей производительности, что подготовило почву для разработки одного с нуля. Эти генераторы оценивались в диапазоне от 180 до 250 долларов.

Тот, который я представляю в этой статье, будет иметь превосходную производительность во всех спецификациях и (при условии, что у сборщика есть умеренный набор компонентов) может быть построен примерно за 50 долларов.Сюда не входит коммерческое жилье, которое будет стоить как минимум 75 долларов и выше. Как я объясню позже в этой статье, существует процедура создания вашего собственного.

Теория работы

Сердце этого устройства — радиочастотная дека. Если вы прочитали мою статью в выпуске за декабрь 2013 года ( 180 МГц Sweep Generator ), вы увидите здесь очень похожий дизайн. Я достаточно подробно рассмотрел теорию этого раздела в этой статье, поэтому сейчас не буду на этом останавливаться. Я использовал этот стиль в семи или восьми различных конструкциях на протяжении многих лет, которые управляли диапазоном от простых генераторов одной частоты до сложных синтезаторов с фазовой синхронизацией, и он всегда был надежным исполнителем.

Начнем с , рис. 1 , радиочастотная дека основана на изумительном чипе, разработанном Motorola в начале 70-х. (На самом деле настолько популярны, что производятся до сих пор — почти 40 лет спустя!) ИС представляет собой микропроцессор MC1648. Однако текущие версии имеют форму SMD и называются MC100EL 1648, но по-прежнему доступны в версии DIP. Эта микросхема является членом семейства ECL (эмиттерно-связанной логики) и в основном представляет собой схему высокоскоростного LC-генератора. Он может охватывать широкий диапазон частот от СЧ, ВЧ и до ОВЧ-диапазонов радиочастотного спектра.Он прост в использовании и имеет встроенную АРУ (автоматическая регулировка усиления), которая может быть адаптирована к вашим конкретным потребностям.

РИСУНОК 1.


В этой конструкции различные резисторы (R13-R16) включаются при переключении полос частот. Импеданс цепи резервуара будет изменяться в огромном диапазоне, когда значение настройки фиксированной емкости используется для всех диапазонов, но за счет подстройки смещения АРУ для каждого диапазона он отлично справится с поддержанием выровненного выходного сигнала амплитуды из цепи резервуара.Он также имеет выходной буферный усилитель, который я использую нетрадиционным способом для внешнего счетчика.

Цепь LC-резервуара состоит из переключаемых катушек индуктивности L1-L8 и емкости варакторных диодов VD1 и VD2 (которые фактически представляют собой два диода в одном корпусе). Варакторные диоды демонстрируют изменяющуюся емкость PN-перехода с изменяющимся постоянным отрицательным напряжением смещения на этом переходе. Серия SMV 1404 относится к типу Hyper-Abrubt и имеет наивысший коэффициент Tr (коэффициент настройки) по отношению к напряжению смещения и линейность среди всех различных стилей варакторов. У них есть Tr 16: 1 или выше и диапазон настройки в одну октаву, что дает превосходную линейность.

На мой взгляд, серия варакторов 1404 — лучший варактор, когда-либо созданный для подобных проектов, поскольку они охватывают диапазоны частот от СЧ до ОВЧ. Как назло, их также труднее всего достать.

Вместо того, чтобы брать выходной сигнал из обычного порта усилителя, который может быть несколько искажен, я решил взять его прямо из подключенной цепи резервуара LC, которая имеет очень чистую форму волны, таким образом сохранив порт усилителя для операции внешнего счета.Создавая его таким образом, он требует большой буферизации от высокоомной цепи резервуара до 50-омного входа конечного усилителя MMIC (монолитная микроволновая интегральная схема). Это работа Q1, Q2 и Q3. Все это каскадные эмиттерные повторители, начинающиеся с Q1, который имеет очень низкую входную емкость.

Поскольку высокочастотные повторители с индуктивным элементом в их базовой цепи иногда могут быть непредсказуемыми и вызывать колебания, к основному входу был последовательно добавлен «стопорный резистор» R2. Это приводит к снижению «Q» паразитных элементов этой области и гарантирует отсутствие каких-либо паразитных колебаний. Q2 добавляет еще больше буферизации, а Q3 настроен для управления конечным усилителем (MMIC 1). С добавлением R9 это дает хорошее согласование импеданса 50 Ом, которое здесь требуется.

Усилитель MMIC относится к семейству микросхем, известных как блоки усиления. Их входное и выходное сопротивление всегда составляет 50 Ом, и они имеют фиксированное усиление без возможности управления этой функцией, кроме добавления аттенюаторов для регулировки входного или выходного уровня.Этот конкретный имеет коэффициент усиления 20 дБ (напряжение X10) и очень плоский от постоянного тока до диапазона ГГц. Недостаток отсутствия внутреннего регулятора усиления полностью затмевается их исключительной простотой: просто припаяйте и вперед!

FB1 и FB2 представляют собой ферритовые шарики, которые «поглощают» любые высокочастотные компоненты на этих выводах, поскольку мы хотим, чтобы эти провода были очень тихими. Усилитель GALI-55 хочет, чтобы к нему подавался постоянный ток 50 мА, а не постоянное напряжение (примерно 4,5 В постоянного тока). Вам может быть интересно, почему я спроектировал его источник питания так, как он показан, что совершенно неэффективно для подачи 50 мА на устройство с низким напряжением.Все это связано с соотношением пропускной способности, а не только с пропускной способностью.

Если бы я проектировал генератор, скажем, для выходной частоты от 1 ГГц до 1,15 ГГц, для этого все равно потребовалась бы полоса пропускания 150 МГц. Однако тогда я мог бы использовать один ВЧ-дроссель для нагрузки, и он оставался бы относительно постоянным при этом соотношении изменений. Для питания MMIC при токе 50 мА потребуется всего пять вольт из-за очень низкого падения постоянного тока в этом дросселе. Несмотря на то, что я покрываю ту же полосу пропускания с помощью представленного генератора сигналов, этот метод не сработает.Причина: коэффициент пропускной способности.

Передаточное число более высокоскоростного генератора составляет 1,15: 1, и один дроссель будет представлять постоянную нагрузку в этом диапазоне. Мой генератор имеет соотношение 500: 1 (0,3-150 МГц). Ни один дроссель не мог даже приблизиться к постоянной нагрузке в таком диапазоне. Итак, я придерживаюсь резистивной нагрузки для единообразия во всем диапазоне.

Произведя некоторые вычисления, я определил, что оптимальное значение приблизительно 392 Ом является минимальным, насколько мне хотелось бы.Если продолжить, 392 Ом / 50 мА = 19,6 В и добавление еще 4,4 В на MMIC приводит к необходимости источника питания 24 В постоянного тока. Да, расточительно, но это одна из цен, которую вы платите за усилитель с широкой полосой пропускания. Производитель настоятельно рекомендует, чтобы не использовала для источник постоянного тока в этой цепи.

Рисунок 2 — это схема управления и элементы управления на передней панели, которые довольно просты и понятны. IC1a управляет выводом 5 АРУ MC1648 непосредственно для модуляции AM.Поскольку это конфигурация ведомого типа, его амплитуда будет оставаться постоянной, несмотря на изменение нагрузок, так как секция АРУ переключателя диапазонов представляет разные нагрузки в зависимости от своего местоположения. Диоды D1 и D2 ограничивают цепь входного сигнала для максимального уровня сигнала 1,4 вольта P-P. Это сделано для защиты от перегрузки P5 MC1648.

РИСУНОК 2.


R1 ограничивает ток в периоды сильного зажима. Внешний AM-сигнал подается на входной разъем модуляции для регулятора уровня P1 и через переключатель модуляции S2 в положении AM.Для модуляции FM сигнал проходит по тому же пути, кроме положения переключателя S2. Оттуда он переходит в точку суммирования IC1b. Когда модуляция не требуется, S2 устанавливается в положение CW (непрерывная волна), а входные конденсаторы модуляции C2 и C7 заземляются, чтобы эти линии оставались бесшумными.

IC1b имеет несколько функций: он суммирует все входы напряжения для управления грубой настройкой, управления точной настройкой и входа модуляции FM (если используется). Сумматоры операционного усилителя хороши для такого типа добавления, поскольку нет абсолютно никакого взаимодействия между входами, питающими его. Как видно, элементы управления настройкой хорошо отфильтрованы, чтобы эта линия оставалась максимально тихой. Для выхода IC1b требуется последовательно подключенный к нему резистор R8 на 100 Ом из-за необходимости управлять большой емкостью фильтра при вводе соединения Vt на ВЧ плате. Операционные усилители могут работать нестабильно, вызывая большие нагрузки; R8 — лекарство от этого. Поскольку диапазон настройки Vt должен охватывать диапазон от -6,1 до +0,6 вольт, для его начальной точки необходимо смещение на выходе операционного усилителя на +0,6 В. Это достигается с помощью R9, R10, R11 и D3 на его положительном входе.

D3 обеспечивает удобный источник 0,6 В, но также выполняет еще одну функцию. Он имеет падение на PN-переходе 2 мВ / градус Цельсия, что является полной противоположностью варакторного диода Vd1, Vd2 в баковой цепи. Это помогает стабилизировать частоту генератора в этом отношении (температура окружающей среды) за счет небольшого сдвига Vt в зависимости от температуры. Это не идеально, но помогает.

Блок питания, показанный на Рис. 3 , довольно прост и не требует подробного объяснения. Это может показаться излишним, но это лучшее, что я мог придумать, учитывая разнообразие требуемых источников напряжения.Когда дело доходит до конструкции операционных усилителей, я большой поклонник сплит-систем. Источник питания 5 В может обеспечивать гораздо больший ток, чем требуется для ВЧ-деки, но я усилил его, чтобы покрыть параметры счетчика и предварительного делителя частоты. Его также можно использовать для питания разъема на задней панели для питания дополнительных внешних цепей. Кроме того, я разделил 5 В на два разных регулятора, чтобы минимизировать помехи в линиях питания, питающих аналоговую часть (ВЧ-дека) и цифровую часть (счетчик и т. Д.).

РИСУНОК 3.


Строительство

Прежде чем я углублюсь в этот раздел, я не буду вдаваться в подробности всех аспектов строительства, поскольку для обсуждения всего, что связано с ним, потребуется слишком много места в журнале. Не бойтесь, тем не менее, для тех, кто желает построить этот генератор, у меня есть огромный пакет информации, который я могу отправить вам по электронной почте. Это будет включать полноэкранные изображения, шаблоны сверления в натуральную величину, подробные схемы, советы по строительству, некоторые иллюстрации и множество технических данных.Большая часть этого включена в файлы для загрузки в конце этой статьи.

В это шасси будут установлены только два основных узла: блок RF и блок источника питания. Схема управления настолько минимальна, что я построил ее на небольшой печатной плате (PCB) и прикрутил к плате источника питания. Это упрощает сборку и тестирование перед окончательной установкой каждого блока.

Радиочастотная дека, показанная на , рис. 4 была построена на односторонней печатной плате размером 2 x 2-1 / 2 дюйма с использованием типичной конструкции прототипа радиочастот.MC1648 и R1, Q1, Q2 и Q3 — единственные компоненты, монтируемые на ламинированной стороне платы. Обязательно используйте гнездо для IC. Поскольку в этом 14-контактном чипе используется только восемь контактов, перед установкой можно удалить семь контактов.

РИСУНОК 4.


Они удобно расположены, как и любой другой контакт, и значительно упрощают пайку компонентов на нижней стороне. После просверливания всех сквозных отверстий все отверстия, кроме заземляющих, расширяются более крупным сверлом примерно 5/32 дюйма для обеспечения зазора между проводом и медной фольгой.GALI-55 потребует двух небольших островков для входных и выходных подключений. Варактор SMV1404 довольно маленький и, несмотря на пайку SMD, я нашел простой способ их установить.

Сначала я отрезаю кусок пластикового ламината (формика и т. Д.) До размеров 3/8 ”x 1/4”, а затем прикрепляю варактор к ламинату пятном суперклея. Убедитесь, что варактор лежит на спине так, чтобы его «ножки» были направлены вверх, так как это облегчает окончательную пайку. Эта сборка — один из последних компонентов, которые я установил, и снова нанесение клея помогает прикрепить ее к печатной плате. Когда все выводы, которые идут к этому устройству, будут припаяны к их правильным узлам, отрежьте свободный конец до точной длины; Затем установка завершается быстрым припоем к выводам микросхемы. Я использую здесь проволоку № 24 или № 26.

Вставляются остальные активные компоненты, а их выводы используются в качестве точек пайки. Все остальные узлы схемы над землей припаиваются к изолированным стойкам. Две стойки (A и B) рядом с контактами 10 и 12 MC1648 будут использоваться для первичного тестирования и окончательного подключения переключателя диапазона S1.При построении ВЧ-цепи всегда помните о двух вещах: заземление ВЧ-сигнала необходимо, а длина проводов должна быть небольшой. Насколько коротко? Что ж, у инженеров-разработчиков RF есть старая поговорка: «Если вы видите провода, они слишком длинные». Невозможно в реальном мире, но вы поняли. Печатная плата монтируется на шасси с тремя металлическими стойками 1/2 дюйма. Это шасси будет иметь отверстие 3/8 дюйма в вертикальной части для установки переключателя диапазона. Отложите пока этот узел в сторону; дальнейшее тестирование будет сделано позже.

Переключатель радиочастотного диапазона (S1), показанный на , рис. 5 — двухполюсный восьмипозиционный межфланцевый переключатель. Я использовал старый керамический переключатель Centra-Lab 4, который был у меня под рукой. Все деки удерживаются на месте длинными винтами № 4-40 и распорками. Эти переключатели легко разбирать и переделывать. На всех пластинах есть полные 12 позиций, и один металлический кронштейн с изгибающимися язычками используется для фиксации упора для фактического количества желаемых позиций.

РИСУНОК 5.


Количество колод на коммутаторе значения не имеет, но вам нужно как минимум две деки. Ненужные колоды выбрасываются, а вал вафли обрезается, так что он управляет только двумя пластинами. Поскольку катушки цепи резервуара на ВЧ-панели имеют напряжение смещения +1,6 В постоянного тока, нам необходимо ВЧ-заземление на их стороне низкого напряжения, которое должно быть изолировано от постоянного тока. Это достигается путем вырезания части односторонней печатной платы примерно по форме пластины переключателя. Затем он совмещается с пластиной, а позиционные выступы и положения монтажных болтов переносятся на пластину заземления.

Поскольку здесь нет движущихся частей, пластина не требует соединения приводного вала. Монтажные отверстия будут просверлены для зазора № 4-40, а отверстия для ввода катушки будут примерно 0,050 дюйма. Пластина заземления будет установлена ​​стороной с фольгой к задней части. Когда катушки готовы к установке, один конец продвигают через язычок положения переключателя до упора, затем другой конец обрезают, чтобы он прошел через пластину заземления. Отцентрируйте катушку и припой и подрежьте выступающие концы.

При покупке коммутатора следует учитывать несколько моментов. Обратите внимание на конструкцию монтажных болтов и полные 12-позиционные выступы на каждой платформе. Также ищите наименьшее количество металлических скоб, которые кажутся ненужными. Количество дек не имеет значения, если у него не менее двух, как упоминалось, потому что коммутатор в конечном итоге будет переработан, чтобы иметь две переключаемые пластины (S1A и S1B) и одну пластину заземления. Затем в коммутаторе должны быть две пластины, настроенные на восемь положений, путем регулировки пластины с выступами; вал обрезан до длины, достаточной для работы с этими пластинами при необходимости; и два болта № 4-40 и распорки, чтобы скрепить все вместе.

Поскольку трудно найти болты № 4-40 длиной более 2 дюймов, при необходимости можно использовать стержень с резьбой. Мне потребовалось два отрезка 1/8 дюйма на переключателе, и, зайдя в местный хозяйственный магазин, я нашел стержень с резьбой. Опять же, отложите пока готовый переключатель в сторону.

Конструкция платы источника питания / управления довольно проста и — с , рис. 3, , и , — рис. 7, , не требует дополнительных пояснений. Я использовал кусок толстого ламината (Formica), просверленный для отверстий для вывода компонентов после того, как я сделал узор макета. Основные компоненты были помещены на плату с помощью точки суперклея, а затем проводились двухточечные соединения. Уродливо, да, но его никогда не увидят, а с блоками питания у меня редко возникали проблемы. Было бы неплохо, если бы я мог найти один трансформатор с вторичными обмотками высокого и низкого напряжения, чтобы упростить задачу, но когда я поискал, ничего не обнаружилось.

Однако в последнее время я использую трансформаторы Tamura во многих своих проектах. Они бывают практически любого уровня напряжения / мощности и по очень разумной цене.Плата управления частотой / модулем содержит почти все компоненты, показанные на рис. 2 , рис. . На передней панели находятся только потенциометры и переключатели, а также несколько компонентов, которые напрямую соединяют эти части. Регулятор уровня модуляции (P1), показанный в списке деталей , является немного меньшей версией P2 и P3, и был выбран только потому, что его размер лучше вписывается в доступное пространство панели.

Корпус был сформирован из четырех кусков алюминиевого листа и примерно одной ножки из алюминиевого угла 1/2 дюйма.Размеры примерно 9 дюймов в ширину, 4 дюйма в высоту и 6 дюймов в глубину. Первым сформированным элементом была крышка. Затем были вырезаны все остальные детали, а именно: передняя панель, задняя панель и нижняя часть. Я обычно делаю нижнюю часть и заднюю часть из цельного куска, вырезанного по размеру, а затем в моем местном магазине по производству листового металла я делаю необходимый изгиб на 90 градусов, но я был в середине снежной бури и действительно хотел закончить это. Итак, я вырезал две части и соединил их под углом 1/2 дюйма, используя заклепки и винты №6-32, как показано на Рис. 7 .

РИСУНОК 7.


Крышка, передняя и задняя панель изготовлены из алюминия 1/16 дюйма, а нижняя часть — из алюминия 1/8 дюйма; все материалы класса # 5052. Этот сплав легко сгибается и при этом обладает хорошей обрабатываемостью. Его очень легко можно разрезать настольной пилой с твердосплавным полотном, и, фактически, большинство деревообрабатывающих инструментов с твердосплавными фрезами могут обрабатывать этот сплав. Я сгибаю детали в тисках с деревянными брусками, поддерживающими область линии сгиба, но я могу сгибать только ложу толщиной до 1/16 дюйма.Кроме того, я иду к своему парню, работающему с листовым металлом. Крышка и передняя панель прикрепляются к нижней пластине с помощью шести угловых скоб 3/4 дюйма (как показано на , рис. 7, ) почти так же, как и задняя панель. Затем обработайте переднюю панель и произведите художественные работы, покрасьте спреем крышку в цвет по вашему выбору и прикрепите ножки. Теперь все готово.

Я просверлил отверстие 3/8 дюйма в задней панели для установки разъема BNC для внешнего подсчета частоты. Как видно из , рис. 7 , выключатель питания на 120 В переменного тока установлен прямо над входным шнуром питания.Я полюбил этот метод за последние несколько лет, поскольку он экономит место на передней панели и сохраняет 120 В переменного тока и его поля сосредоточенными в одном месте, поэтому мне не нужно изгибать его повсюду, чтобы поместить его на переднюю панель. (Как упоминалось ранее, у меня есть дополнительная информация по этому поводу.)

Заключительная проверка и эксплуатация

На этом этапе мы готовы провести заключительное тестирование узлов и проверить их перед установкой на постоянной основе в шасси. Начиная с блока источника питания, подключите к нему 120 В переменного тока и проверьте правильность полярности и напряжения на выходах.Если здесь все в порядке, вы можете использовать это для питания ВЧ-деки для тестирования. Когда радиочастотная дека установлена ​​в ее подшасси, как показано на рис. 6 , временно прикрепите резистор 15 кОм от входа AGC (нижний конец R12) к земле только для этих тестов.

РИСУНОК 6.


Для управления настройкой вы можете временно подключить потенциометр и резистор ко входу Vt на этой деке. Не устанавливайте переключатель диапазона в это время. Также не подключайте питание 24 В постоянного тока в это время.Подключите +5 В постоянного тока к деке. На данный момент вам понадобятся все ваши катушки, а также 100 мкГн, 10 мкГн и 1 мкГн для этих тестов. Для каждого из них прикрепляйте по одной катушке к стойкам A и B. С осциллографом и частотомером, прикрепленным к эмиттеру Q3, вы должны увидеть приблизительно 360 мВ чистой синусоидальной волны с каждой используемой катушкой. Не беспокойтесь о точной амплитуде, поскольку она будет скорректирована на более позднем этапе тестирования.

С любой установленной катушкой измените диапазон настройки, и вы должны увидеть чуть больше одной октавы диапазона частот для каждой катушки.Точная частота здесь не важна, но каждая катушка должна давать сдвиг частоты примерно 3: 1 при увеличении индуктивности катушки. Отключите питание деки и временно подключите резистор 51 Ом 1/4 Вт от выходного ВЧ разъема к земле. Включите и осмотрите эту точку. Здесь должно быть около 2000 мВ P-P чистой синусоидальной волны. Если все в порядке, выключите питание и снимите катушку.

Подготовьте переключатель, припаяв кусок провода диаметром 1 дюйм к контакту дворника S2B. Также стоит добавить тонкую квадратную шайбу размером 1 дюйм из луженой меди с отверстием 3/8 дюйма в центре, вставленную в болт крепления переключателя.Это значительно упрощает установку резисторов AGC, обеспечивая удобную точку заземления. Теперь установите переключатель так, чтобы контакт стеклоочистителя S2B располагался прямо над изолированной стойкой A. Он должен быть примерно на 1/2 дюйма выше стойки.

Затяните гайку крепления переключателя. Припаяйте провод стеклоочистителя и установите проводку от пластины заземления RF на переключателе к выводу B. Добавьте провод с FB1 от контакта стеклоочистителя S1a к нижнему концу R12. Теперь будут установлены индивидуальные ленточные катушки.

Начиная с самого нижнего диапазона и по мере установки каждой катушки, будет производиться проверка частоты на предмет диапазона и правильности обозначенной полосы пропускания.Индуктор ленты 8 (см. Перечень деталей ) представляет собой всего лишь кусок оголенного провода №22 размером 1-1 / 2 дюйма. Начните с отрезка чуть длиннее 2 дюймов, затем при необходимости подрежьте его, выполняя тесты ленты. После того, как вы отрежете его до нужной длины, просто намотайте одну или две свободные петли, если это необходимо, чтобы уместиться в оставленном пространстве. Это практически не изменит индуктивность, в отличие от прямого провода.

Катушки, которые вы используете, могут отличаться от моих из-за допусков деталей, и здесь необходимо учитывать множество допусков.SMV-1404 — это очень повторяемый компонент, в то время как катушки могут отличаться на 5% и более. Резисторы, потенциометры и этот список можно продолжить. Законы вероятности гласят, что половина допусков будет положительной, другая половина — отрицательной, и они будут компенсировать друг друга. Закон Мерфи гласит, что все допуски добавляются в одном направлении и делают конструкцию бесполезной. В реальном мире никогда не бывает так плохо, но все же есть о чем знать.

При покупке катушек было бы неплохо получить разнообразие, близкое к значениям Список деталей , а некоторые — около 5% от указанных значений. Я заказал 50 штук для этого проекта, поскольку это был новый дизайн. Детали очень дешевы, и было бы обидно, если бы не хватило денег и пришлось бы заказывать катушки на 80 центов за 6 долларов почтовых расходов. Кроме того, вы всегда можете использовать доп в других проектах.

Давайте вернемся к установке змеевиков резервуара и к тому, чего вы здесь хотите достичь. Постарайтесь получить диапазон, необходимый для маркировки панели (показан с некоторым отклонением) на каждом конце этого диапазона. В итоге я получил в среднем 5% на концах, но некоторые были близки к 1%.Установка резистора AGC и прогрев сместят этот диапазон на очень небольшую величину. Фактический общий диапазон частот должен составлять от 0,3 МГц до 150 МГц без промежутков между полосами. Мой работает от 0,295 МГц до 162 МГц. Наличие большого количества перерегулирований — это нормально, но наиболее важным аспектом является то, что метки переключения диапазона гарантируют заявленную пропускную способность. Не можете уместить все в мою маркировку? Вы всегда можете настроить напряжение Vt, чтобы оно подходило. Максимальное напряжение не должно превышать +0,7 В на нижнем конце из-за R9 и R10 на плате управления, и -7.0 вольт на верхнем конце настроечных горшков, изменив R3. Все еще не можете подогнать все по размеру? Затем сделайте то, что я сделал: измените изображение на этикетках передней панели.

Когда все настроено и выполнено с этой частью тестирования и у вас есть минимальный период прогрева (10 мин), вы можете теперь отрегулировать напряжение АРУ для каждого диапазона. Сначала начните с самой нижней полосы. Надеюсь, у вас есть блок замены резистора для подключения к дворнику S1A и заземлению. Загрузите на выход резистор на 51 Ом и подключите осциллограф в этой точке.Проходя через каждую полосу, отрегулируйте сопротивление на выходе +10 дБм (2000 мВ P-P) и убедитесь, что вы настроились через полосу, чтобы выбрать лучшую общую равномерность. Обратите внимание на значение R для каждой полосы по мере продвижения.

Вы, вероятно, обнаружите, что одно и то же значение сопротивления будет работать для нескольких диапазонов, минимизируя количество необходимых резисторов. Одно предостережение: я использую осциллограф Tektronix с полосой пропускания 350 МГц -3 дБ, но она идеально ровная только до 100 МГц. Кроме того, он скатывается типичным гауссовским способом.Тем не менее, я откалибровал его для синусоидальных волн вплоть до 500 МГц в среде с сопротивлением 50 Ом. Теперь у меня есть справочная таблица, так что независимо от того, что отображает осциллограф, таблица сообщает мне, какой должен быть коэффициент коррекции. Большинство осциллографов справятся с работой на частотах до 40 МГц или 50 МГц, но если вы не доверяете своему прицелу за пределами этой точки, используйте значения AGC, показанные на распечатке для диапазона 8. На этом этапе вы можете завершить установку и закрой это.

Заключительные ноты

Выходной сигнал этого генератора имеет исключительную амплитудную характеристику ± 0.1 дБ в диапазонах с 1 по 7 и ± 0,5 дБ в диапазоне 8. Это связано со встроенными схемами АРУ MC1648. Я не проводил БПФ на выходе, но после просмотра синусоидальных сигналов осциллографа в течение более 40 лет я развил довольно хорошее чутье на искажения и оценил паразитные составляющие и гармоники как хорошие на 30 дБ ниже выходного уровня. Это чистая синусоида и очень респектабельная для такого типа генератора. LC-генераторы не обладают долговременной стабильностью, как их «старшие братья» с кварцевыми ссылками, и обычно дрейфуют на 500 ppm или более за заданное время.Хотя этот не является исключением из этого правила, он намного превосходит эти цифры.

После часовой разминки я провел множество тестов на краткосрочную стабильность 15-минутных периодов. Я проделал это для каждой полосы на нижнем, среднем и верхнем концах их диапазонов — всего 24 теста. В лучшем случае за это время дрейф составлял 2 ppm, а в худшем — 98 ppm. Остальные колеблются от 20 до 80 ppm, при этом 50 ppm является хорошим общим средним значением. Итак, я мог бы консервативно определить общую краткосрочную стабильность при 100 ppm, что неплохо для LC-генератора.Я также был приятно удивлен тем, что я мог легко ввести сигнал на вход узкополосного наземного мобильного приемника на частоте 155 МГц и удерживать этот вход довольно долгое время — хотя он действительно показал чувствительность к изменениям нагрузки на этих частотах.

Вход внешней модуляции был произвольно установлен на 800 мВ P-P для всех входов. В режиме AM можно получить модуляцию 50% до того, как произойдет мягкое ограничение, а затем жесткое ограничение. Эта функция имеет хороший показатель линейности 3% и около 15 мВ P-P для каждого процента чувствительности модуляции.Схема зажима предотвращает повреждение MC1648 из-за случайного перенапряжения на входе. Без зажима он имеет такую ​​же линейность до 90% мод. Если вам не повезет, не игнорируйте эту функцию. Стандартный тестовый сигнал для AM составляет 30%, так что это достигается и немного.

Вход FM-модуляции немного ослаблен в суммирующем усилителе и не так подвержен перенапряжению. При полном P-P 800 мВ он будет давать отклонение примерно 0,5% от несущей частоты.Калиброванное отклонение FM очень трудно достичь и потребует вдвое большей схемы, чем весь генератор со специально обработанными переключателями, поэтому он даже не рассматривался для этой конструкции. Однако, если у вас есть несколько «домашних» частот, для которых вы хотели бы получить известное отклонение, есть один способ добиться этого. Установите генератор на желаемую несущую частоту и осторожно подайте нулевое постоянное напряжение на стыке C7 и R7 на плате управления, при этом модуль управления модулем установлен для работы в режиме FM.Обратите внимание на частоту и медленно увеличивайте напряжение постоянного тока до тех пор, пока несущая частота не увеличится на требуемую величину отклонения. Напряжение AC P-P, которое совпадает с этим напряжением постоянного тока, теперь будет давать точную величину отклонения, которую вы хотите. Если вы будете делать это часто, подключенный к этой точке разъем на задней панели упростит задачу. Просто имейте в виду, что постоянный ток в конечном итоге попадает на линию Vt к варактору, потому что на этом пути нет блокирующего конденсатора.

Я внес несколько изменений, которые не показаны на изображениях.На ВЧ плате я продлил выводы R10 до 1/2 дюйма на обоих концах, чтобы установить его выше над платой, и немного отогнул от платы. Этот резистор рассеивает один ватт и рассеивает много тепла в медной фольге. Это единственное исключение из правила «коротких заявок». Добавленная индуктивность выводов повлияет только на полосу 8 за счет увеличения импеданса нагрузки MMIC. Эффект настолько минимален, что его можно игнорировать. Он по-прежнему связывает нагрев с платой и — наряду с перевернутым монтажом MC1648, добавляющим еще больше нагрева платы — они поднимают температуру платы примерно на 13 градусов по Фаренгейту выше температуры окружающей среды в рабочей зоне.

Конечно, часть этого тепла вырабатывается трансформаторами, регуляторами и т.п. Вот почему для стабилизации требуется около часа разминки. Однако уже через пару минут генератор готов к работе. Просто дайте ему прогреться в течение часа, прежде чем выполнять критическую работу, такую ​​как выравнивание ПЧ и т. Д. Другим изменением было добавление 1-дюймового квадрата тонкого алюминия к выступу регулятора 7824 в блоке питания, поскольку без этого он имел тенденцию перегреваться.

Я не проектировал радиочастотный аттенюатор в этом устройстве, чтобы уменьшить его площадь, занимаемую им, насколько это возможно.Несколько лет назад я купил на eBay очень дешевый аттенюатор HP. Он будет ослаблять 0–130 дБ с шагом 1 дБ и с качеством HP. Я обнаружил, что использую этот аттенюатор даже с оборудованием, в которое он встроен, из-за его широкой полосы пропускания и точности.

В статье о генераторе развертки, упомянутой ранее, я показываю конструкцию аттенюатора, который не повредит ваш кошелек. Он имеет приличную производительность до 200 МГц и точность около 5%. Это четыре шага 0-40 дБ с шагом 3 дБ. Его можно расширить до 0-100 дБ с шагом 1 дБ, используя 27 резисторов 5% 1 / 4Вт и девять мини-переключателей DPDT, а также некоторые двусторонние печатные платы для корпуса по цене около 30 долларов.Переключатели могут быть установлены вертикально в одну колонку на левой стороне панели.

В любом случае вам придется добавить еще 1-1 / 2 дюйма к ширине панели, чтобы уместить их. (Я мог бы включить это в пакет электронной почты.) Если вы отчаянно нуждаетесь в аттенюаторе, «дешевой и грязной» версии, показанной на рис. 2 , будет достаточно, если потребуется больше / меньше мощности. Кроме того, будут вносимые потери 3 дБ (для защиты MMIC), и они не будут откалиброваны. За пять долларов по частям он вас обойдется.

Что касается того, что я могу изменить в будущем: замена потенциометра R2 для точной настройки на трехоборотный горшок для еще более точной настройки; и добавление внутреннего тонального генератора с выходом P-P 800 мВ. Затем я подключил его к разъему на передней панели с помощью миниатюрного тумблера SPDT.

Я всегда меняю дизайн к лучшему по мере появления новых идей и компонентов. У меня есть внешний вид генератора часов для этого генератора, включенный в пакет электронной почты. Он работает ровно на половине частоты выходного радиочастотного сигнала, питающего его, и имеет идеальную прямоугольную волну с временами нарастания и спада в малые наносекунды.При выполнении этого проекта не торопитесь и дважды проверяйте соединения по мере продвижения. А главное, получайте удовольствие! NV


ПЕРЕЧЕНЬ ДЕТАЛЕЙ

ТОВАР ОПИСАНИЕ / ЧАСТЬ № ИСТОЧНИК
Все резисторы изготовлены из углеродной пленки мощностью 1/4 Вт, 5%. Все конденсаторы в микрофарадах. Специальные детали перечислены ниже.
ПАЛУБА РФ :
IC1 MC1648 DIP MC100EL1648 SMD
VD1, VD2 СМВ1404-09
S1 Двухполюсный восьмипозиционный межфланцевый переключатель
1 квартал 2N5179
2 квартал, 3 квартал 2N3904
MMIC ГАЛИ-55
ФБ-1 FB43-226-RC Дж. В. Миллер
ФБ-2 FB43-287-RC Дж. В. Миллер
R11 47K, 1/8 Вт опционально
R2 390 Ом, 1/8 Вт дополнительно
R10 392 Ом, два Вт CPF2392R00FKR36 Вишай / Дейл
КАТУШКИ: BOURNS ИЛИ FASTRON CONFORMAL COATED
* См. Текст
L1 2500 мкГн
L2 680 мкГн
L3 150 мкГн
L4 38 мкГн
L5 9 мкГн
L6 1.8 мкГн
L7 0,33 мкГн
L8 * 40 нГн
ПАНЕЛЬ УПРАВЛЕНИЯ И ПЕРЕДНЯЯ ПАНЕЛЬ:
IC1 TLO82 или TLO72
D1, D2, D3 1N916 или эквивалент
Л1 10K АЛЬФА RV24AF-10-40R1-B10K
P2, P3 10K АЛЬФА RV16AF-10-20R1-B10K
S2 АЛЬФА четырехполюсная трехпозиционная вафля SR2511F-0403-19ROB-E9-N-W
C1 1.0 МФД 200 В (или настолько низкое напряжение, с которым вы чувствуете себя в безопасности)
Потенциометры и переключатель доступны на сайте Mouser.com.
ИСТОЧНИК ПИТАНИЯ:
Т1 120 В: 24 В при 0,25 А 3FS-424 ТАМУРА
Т2 120 В: 8 В / [защита электронной почты] 0,3 A 3FS-316 ТАМУРА
РЕГУЛЯТОРЫ:
7824
78L12
79L12
78L05
7805
MC1648
MC100EL1648 Mouser, Digi-Key
VD1, VD2 Связаться с автором ( [адрес электронной почты] )
ГАЛИ-55 МИНИ-ЦЕПИ.COM
Катушки Mouser (обычно 0,2-0,4 долл. США за штуку)
Резисторы Mouser Electronics
S1
ФБ-1, ФБ-2 Mouser Electronics
Трансформаторы — Mouser или Digi-Key ( www.digikey.com )
Регуляторы — почти везде
MC1648: Таблицы данных легко получить через Google.
GALI-55: Datasheets на MINI-CIRCUITS.COM.
SMV1404-09: Я их храню.

Загрузки

Что в молнии?
Дополнительные изображения и схемы

ВЧ-генераторы / источники питания

ВЧ-генераторы / источники питания — коаксиальные системы питания

ТВЕРДЫЕ ТЕХНОЛОГИИ

производства великобритании

RFG 50-600W (50W / 100W / 150W / 300W или 600W)

Half-Rack 2U — полупроводниковый / транзисторный — высокоэффективный ВЧ-генератор.С воздушным охлаждением.

Прецизионный регулятор мощности, полностью регулируемый в диапазоне 0–100%.

Диапазон частот 2 МГц, 13,56 МГц и 27,12 МГц, другие по запросу.

производства великобритании

RFG 1K (1000 Вт)

2U Full-Rack — твердотельный / транзисторный — высокоэффективный ВЧ-генератор. С воздушным охлаждением.

Прецизионный регулятор мощности, полностью регулируемый в диапазоне 0–100%.

Диапазон частот 2 МГц, 13.56 МГц и 27,12 МГц, другие доступны по запросу.

производства великобритании

RFG2K (2000 Вт)

3U Full-Rack — твердотельный / транзисторный — высокоэффективный ВЧ-генератор. С воздушным охлаждением.

Прецизионный регулятор мощности, полностью регулируемый в диапазоне 0–100%.

Диапазон частот 2 МГц, 13,56 МГц и 27,12 МГц, другие по запросу.

производства великобритании

RFG3K (3000 Вт)

3U Full-Rack — твердотельный / транзисторный — высокоэффективный ВЧ-генератор.С воздушным охлаждением.

Прецизионный регулятор мощности, полностью регулируемый в диапазоне 0–100%.

Диапазон частот 2 МГц, 13,56 МГц и 27,12 МГц, другие по запросу.

производства великобритании

RFG 5K (5000 Вт)

7U с воздушным или водяным охлаждением — полная стойка — твердотельный / транзисторный — высокоэффективный ВЧ-генератор.

Прецизионный регулятор мощности, полностью регулируемый в диапазоне 0–100%.

Диапазон частот 13,56 МГц и 27,12 МГц, другие по запросу.

производства великобритании

RFG 10K (10000 Вт) и выше

7U с водяным охлаждением — Полная стойка — Твердотельный / транзисторный — Высокоэффективный ВЧ-генератор.

Прецизионный регулятор мощности, полностью регулируемый в диапазоне 0–100%.

Диапазон частот 13,56 МГц и 27,12 МГц, другие по запросу.

Авторское право на веб-сайт © Coaxial Power Systems

IS0 9001 Сертификат № GB2004026

Регистрационный номер компании 3084502

В ТОП

RFMW — RF Energy Resource



Радиочастотные (РЧ) энергетические приложения используют контролируемое электромагнитное излучение для нагрева предметов или для питания всех видов процессов.Сегодня эту энергию обычно вырабатывают магнетронные лампы. Твердотельные радиочастотные решения могут использоваться для замены существующих систем на основе магнетронов. Как правило, системы замены магнетронов состоят из модулей мощностью 1 кВт, некоторые системы могут достигать мощности 50-60 кВт на их конечном (волноводном) выходе.

Твердотельная радиочастотная энергия имеет ряд ключевых преимуществ по сравнению с магнетроном:

  • Точное управление мощностью, частотой, фазой, ШИМ. Это обеспечивает равномерный нагрев в промышленных системах сушки мощностью от нескольких кВт до 10 Вт при точном нагревании крови в медицинских целях.
  • Высокоскоростное обнаружение дуги и отключение
  • Устойчивость на всех уровнях мощности
  • Нет деградации мощности с возрастом
  • Повышенная надежность:> 10 лет непрерывной работы
  • Нет высокого напряжения.Можно использовать низковольтные, легкие, надежные и эффективные импульсные источники питания

Пожалуй, наиболее привлекательными его качествами являются быстрое изменение частоты, фазы и мощности в сочетании с высокой точностью. В совокупности характеристики технологии обеспечивают беспрецедентный диапазон управления процессом, равномерное распределение энергии и быструю адаптацию к изменяющимся условиям нагрузки.

Применение твердотельной высокочастотной энергии столь же обширно. Они варьируются от профессиональных, физико-химических процессов до практических потребительских, коммерческих и промышленных устройств.Фактически, он уже используется в медицинской визуализации (МРТ) и анализе (ЯМР), а также в разработке для микроволновых печей и автомобильных искровых зажиганий.

RF Энергетические решения

RFMW предлагает компоненты и решения для диапазонов радиочастотной энергии (433, 915 МГц, 2,45 ГГц и 5,8 ГГц). Мы можем поддерживать клиентов на разных уровнях:

  1. Радиочастотные компоненты , такие как генераторы сигналов, фазовращатели, разветвители, сумматоры, усилители мощности, циркуляторы / изоляторы, заделки, кабели и соединители.
  2. Полностью протестированы на радиочастотные помехи, поддоны 50 Ом. Поддоны, предназначенные для оптимизации производительности и надежности, значительно ускоряют цикл разработки. Они экономичны даже при крупносерийном производстве. Доступны одно- и двухступенчатые поддоны, в которых используется технология «медных монет» для достижения наилучших тепловых характеристик.
  3. Модули генераторов сигналов и усилителей мощности COTS. При уровнях мощности до 450 Вт модули обеспечивают простой путь к лабораторным испытаниям с использованием твердотельной высокочастотной энергии или могут использоваться в качестве хорошо контролируемой замены твердотельного магнетрона.Дополнительный радиатор, источник питания переменного тока в постоянный, интерфейс ПК и программное обеспечение для точного управления модулями также доступны для настройки оценочных комплектов. Доступны модульные «блоки кода», позволяющие реализовать множество общих функций в системе, что сокращает время разработки программного обеспечения.




Аттенюатор Тип Fmin (МГц) Fmax (МГц) Управляемая мощность (Вт)
33A702530.00F Фланец 2400 2500 400

Разветвители и комбайнеры Тип Fmin (МГц) Fmax (МГц) Управляемая мощность (Вт)
RFEM2425S3L750 Разветвитель на 3 линии 2400 2500 60
RFEM2425C3L75 3-ходовой комбайн 2400 2500 900
RFEM2425S4L1000 Разветвитель на 4 линии 2400 2500 60
RFEM2425C4L1000 Комбайнер на 4 направления 2400 2500 1200

Модули Описание
BPC2425M9X2S250-1-MOD-ISO Модуль усилителя мощности, 2.45 ГГц, 250 Вт, 2 ступени, с изолятором
ЛЕНГЕН-433М-200-М СВЧ-генератор, 423-433 МГц, 200 Вт
LEANGEN-915M-250-M СВЧ-генератор, 903-927 МГц
LEANGEN-2450M-250-M СВЧ-генератор, 2400-2500 МГц, 250 Вт
LEANGEN-2450M-450-M СВЧ-генератор, 2400-2500 МГц 450 Вт
LEANGEN-2450M-250-E СВЧ-генератор с интерфейсом сенсорного экрана, 2450 МГц, 250 Вт CW
M0401A СВЧ-генератор, 423–443 МГц, 200 Вт CW, 28 В, 194 x 72 x 41 мм
M2401A СВЧ-генератор, от 2400 до 2500 МГц, 250 Вт CW, 32 В, 122 x 72 x 41 мм

Справочная информация о конструкции

4 вещи, которые нужно знать о генераторах радиочастотных сигналов

RF относится к «Радиочастоте», которая определяется в Википедии как частота колебаний того, что мы называем переменным током, напряжением или электричеством электромагнитного поля.Это также может быть переменное электрическое напряжение магнитного или электрического поля. Иногда он определяется как ток через механическую систему в диапазоне частот от примерно 20 кГц до примерно 300 ГГц.

Когда дело доходит до электрических токов, существует множество технических
термины и понятия, которые трудно понять. Что касается радиочастотного сигнала
Генераторы, их основная цель — протестировать, а также найти источник из
конкретная схема, которая либо разрабатывается, либо проходит испытания.

Если на этом этапе вы все еще не уверены, не волнуйтесь. Мы будем
рассмотрим четыре факта, которые вы, возможно, не знали о генераторах радиочастотных сигналов:

1-

Существует два типа генераторов радиочастотных сигналов .

Чтобы сделать этот пост более связным, давайте начнем с некоторых
основные концепции, лежащие в основе этого генератора сигналов. Есть два основных типа —
генераторы синтезированных радиочастотных сигналов и свободно работающие радиочастоты
генераторы.

Свободно работающие генераторы радиочастоты считаются
начальный тип генераторов.Это имеет нижний предел качества; таким образом, это
обычно используется для базовых экспериментов с ограниченным бюджетом. С другой стороны, высокий
генераторы с концевым свободным ходом используются теми, кому нужен более четкий сигнал
и никакого фазового шума.

2-

Генератор ВЧ сигналов состоит из четырех компонентов.

Четыре компонента генератора радиочастотных сигналов необходимы для
быть понятым, если вы хотите узнать, как все работает. Эти генераторы
действительно сложные устройства, и эти компоненты могут помочь в
понимание того, как они работают.Кроме того, четыре компонента радиочастотного сигнала
Генератор включает генератор колебаний, усилитель, регулятор и аттенюатор.

Генератор является частью генератора сигналов, ответственного за
для принятия команды, например, установки желаемой частоты, от контроллера.
Усилитель, с другой стороны, является частью реального устройства. Как имя
предполагает, что усилитель отвечает за усиление сигнала до
конкретный уровень, установленный контроллером.

Аттенюатор отвечает за отключение или отключение звука.
любой ненужный фоновый шум, чтобы сигнал был четким.Наконец,
контроллер обеспечивает обработку каждой команды.

3-

Возможность обработки сигналов в реальном времени .

Годовщина принятия закона Мура в 2015 году была действительно чем-то, что нужно отметить. Гордон Э. Мур смог сделать одно простое, но очень важное наблюдение — плотность может удваиваться через каждые две слезы. В течение 50 лет предсказание Мура медленно реализовывалось наряду с надежностью более современного процессора.

За последние 50 лет наблюдался очевидный рост
рост производительности этого анализатора.Этот генератор сигналов эволюционировал
настолько много, что теперь он может обрабатывать ряд вычислительных
проблемы, как у суперкомпьютера.

В 1965 году компьютер IBM 7904 мог обрабатывать только 100 000
операций с плавающей запятой в секунду, что называется FLOPS. Сейчас же,
iPhone 6 способен обрабатывать примерно в миллион раз больше, чем
IBM 7904 мог.

С такой скоростью генераторы радиочастотных сигналов могут обрабатывать такие
огромная информация, что он делает это в реальном времени.Он может выполнять ряд
измерения в реальном времени и может выполнять алгоритмы обработки сигналов в
в реальном времени.

4-

Поддерживаемые форматы модуляции .

Обратите внимание, что когда речь идет об этих генераторах сигналов и
анализаторов, необходимо провести ряд тестов. Это
необходимо, чтобы его можно было хорошо модулировать. Кроме того, генераторы сигналов имеют
возможность модулировать сигналы несколькими способами при условии, что
определенные характеристики генератора, обладающие необходимыми возможностями.

Генератор сигналов традиционно имеет амплитудную модуляцию.
(AM) и частотная модуляция (FM). Однако в течение многих лет
технологический прогресс, генераторы сигналов теперь могут поддерживать ряд
модуляционные образования.

Сюда входит ряд фазовой манипуляции (PSK), включая
BPSK, 8PSK, QPSK и многое другое. Он также поддерживает такие форматы модуляции, как
QAM, включая 16 и 64 точки QAM.

В конце концов, важно убедиться, что радиочастотный сигнал
Рассматриваемый генератор может предлагать требуемые форматы модуляции.Общий,
эти спецификации определяют, что такое работа генератора.

Компактный генератор сигналов 6 ГГц — качественное испытательное оборудование ВЧ

Генератор сигналов SG6000L Характеристики:

  • Автономное управление и удаленное управление через USB
  • Выходная частота до 6 ГГц
  • Регулируемая выходная мощность (ступенчатая и переменная)
  • Промышленный стандарт Поддержка команд SCPI
  • Внутренний опорный сигнал TCXO, 10 МГц, ± 2,5 ppm
  • Кнопки изменения частоты на передней панели пользователя
  • Поддержка частотной развертки
  • Яркий OLED-дисплей на передней панели
  • Прочный полностью алюминиевый корпус черного цвета
  • Простой графический интерфейс управления Windows
  • Монитор низкого напряжения
  • Питание от стандартного micro-USB, как в смартфоне
  • Легко взаимодействует со всеми программными пакетами (Matlab, python, android, linux, ios…)
  • Дополнительное управление через Ethernet
  • Дополнительный внутренний литий-ионный аккумулятор

НОВЫЙ генератор ВЧ сигналов DS Instruments SG6000L продолжает устанавливать отраслевой стандарт в доступной сверхкомпактной генерации ВЧ сигналов.SG6000L позволяет пользователям легко и по очень низкой цене генерировать высококачественный радиочастотный сигнал без необходимости в главном ПК. Это полностью синтезированное современное устройство для синтеза фракционного азота покрывает 7 октав в диапазоне от 25 до 6000 МГц. Максимальная выходная мощность обычно выше +10 дБмВт и может регулироваться в сторону уменьшения с шагом 0,5 дБ или плавно с помощью внутреннего регулируемого аттенюатора. Размер шага выходного РЧ сигнала варьируется от максимум ~ 3 кГц до менее 40 Гц, в зависимости от диапазона работы. Четкий OLED-дисплей обеспечивает полезную обратную связь для пользователя, а кнопки управления на передней панели представляют собой быструю альтернативу управлению через USB.Как и большинство наших продуктов, SG6000L легко умещается на ладони, что делает его действительно портативным и компактным на рабочем месте.


Генератор ВЧ сигналов Технические характеристики:

  • Диапазон частот: 25-6000 МГц
  • Максимальный уровень выходной мощности:> +13 дБмВт (некалиброванный режим)
  • Фазовый шум на 6 ГГц: -72 дБн при смещении 10 кГц
  • Внутренний аттенюатор (цифровой): 32 дБ (с шагом 64 x 0,5 дБ)
  • Внутренний аттенюатор (переменный): ~ 15 дБ (10-битный ЦАП)
  • Диапазон уровней общей выходной мощности: от -35 до + 13 дБм (тип.)
  • Размеры: 2.75 ″ x 1,25 ″ x 2,15 ″
  • Входное напряжение: 5 В Стандартный micro-USB
  • Выходное сопротивление: 50 Ом
  • ВЧ-разъемы: Premium Gold для микроволновой печи SMA

SG6000 Общие приложения:

  • Среды автоматизированного тестирования
  • Использование в общих радиочастотных лабораториях
  • Гибкий источник LO
  • Конструкция антенны
  • Тестирование ЭМС
  • Проверка и испытания продукции
  • Использование в учебных / университетских лабораториях
  • Аэрокосмические и оборонные исследования
  • 802.11n Разработка / Тестирование
  • LTE ​​Engineering

Связанные стандартные модели:

  • Фильтрация гармоник — PureSine (SG6000F)
  • Версия 4,4 ГГц (SG4400)
  • с питанием от батареи (SG6000B)
  • Усиленный аттенюатор с низким фазовым шумом и фильтрацией гармоник (SG6000PRO)
  • Двухканальный (SG6000X)
  • Диапазон частот 12 ГГц (SG12000)
  • Диапазон частот 22 ГГц (SG6000LDQ)

Отмечено в журналах, посвященных микроволновому излучению, микроволновому излучению и радиочастотам, военной и аэрокосмической электронике!

Механические данные источника сигнала:

Программное обеспечение для управления ПК с Windows:

RF Performance (см. Техническое описание):

Информационные видео:

Поддержка:

UPC: 737212885827

Серия тренингов по электричеству и электронике ВМС (NEETS), модуль 9-2

NEETS Модуль 9 — Введение в генерацию и формирование волн

Страницы i — ix,
От 1-1 до 1-10,
С 1-11 по 1-20,
1-21 до 1-30,
1-31 до 1-40,
С 1-41 по 1-52,
От 2-1 до 2-10,
2-11 до 2-20,
2-21 до 2-30,
2-31 до 2-38,
С 3-1 по 3-10,
3-11 до 3-20,
С 3-21 до 3-30,
3-31 до 3-40,
3-41 до 3-50,
3-51 до 3-56,
С 4-1 по 4-10,
С 4-11 до 4-20,
С 4-21 по 4-30,
4-31- до 4-40,
4-41 до 4-50,
С 4-51 по 4-61, индекс

ЧАСТОТА
УМНОЖЕНИЕ

МНОЖИТЕЛИ ЧАСТОТЫ — это специальные усилители класса C, которые имеют смещение в 3-10 раз больше обычного смещения среза.Они
используются для генерации частоты, кратной (гармонической) более низкой частоте. Такие схемы называются
умножители частоты или генераторы гармоник.

На рисунке 2-26 показан умножитель частоты, известный как
УДВОИТЕЛЬ ЧАСТОТЫ или ГЕНЕРАТОР ВТОРОЙ ГАРМОНИИ. Как показано, входной сигнал составляет 1 мегагерц, а выходной — 2 мегагерца.
мегагерц, или удвоенная входная частота. Другими словами, вторая гармоника 1 мегагерца равна 2 мегагерцу. В
Третья гармоника (утроитель частоты) будет составлять 3 мегагерца, или в 3 раза больше входного сигнала.Четвертая гармоника
(квадруплет) будет 4 мегагерца, или в 4 раза больше входного сигнала 1 мегагерц. Генератор четвертой гармоники
(квадруплет частоты) обычно имеет такое же высокое умножение, как это практически возможно, потому что на гармониках выше, чем
в-четвертых, выходной сигнал уменьшается до очень слабого выходного сигнала.

Рисунок 2-26. — Удвоитель частоты.

Умножители частоты работают от импульсов коллекторного тока, создаваемого усилителем класса C.Хотя ток коллектора протекает импульсами, переменное напряжение коллектора имеет синусоидальную форму из-за
действие танкового контура. Когда выходной контур резервуара настроен на требуемую гармонику, контур резервуара действует
как фильтр, принимая желаемую частоту и отклоняя все остальные.

Рисунок 2-27 иллюстрирует
формы сигналов в типовой схеме удвоителя. Вы можете видеть, что импульсы тока коллектора имеют ту же частоту, что и
входной сигнал.Эти импульсы тока коллектора возбуждают контур резервуара и заставляют его колебаться вдвое.
частота базового сигнала. Между импульсами коллекторного тока контур резервуара продолжает колебаться.
Следовательно, контур резервуара получает импульс тока для каждого второго цикла своего выхода.

2-31


Рисунок 2-27. — Формы сигналов удвоителя частоты.

Буферный усилитель

Связь резонансной частоты с генератором
различные методы связи также влияют на частоту и амплитуду генератора.БУФЕРНЫЙ УСИЛИТЕЛЬ уменьшает
воздействие нагрузки на осциллятор за счет уменьшения взаимодействия (согласованного импеданса) между нагрузкой и
осциллятор.

Рисунок 2-28 представляет собой принципиальную схему буферного усилителя. Эта схема представляет собой усилитель с общим коллектором. А
Усилитель с общим коллектором имеет высокий входной импеданс и низкий выходной импеданс. Поскольку на выходе
Генератор подключен к высокому сопротивлению усилителя с общим коллектором, буфер мало влияет на
работа генератора.Затем выход буфера с общим коллектором подключается к внешней нагрузке;
следовательно, изменения выходной нагрузки не могут отражаться обратно в схему генератора. Таким образом, буфер
усилитель снижает взаимодействие между нагрузкой и генератором. На рис. 2-29 показан Хартли с параллельным питанием.
генератор с буферным усилителем. Это «одностороннее» соединение, поскольку сигнал генератора передается вперед, но
изменения нагрузки не связаны с генератором.

Рисунок 2-28. — Буферный усилитель.

2-32


Рисунок 2-29. — Генератор Хартли с параллельным питанием и буферным усилителем.

Q-22. Какая частота вдвое превышает основную частоту?

Q-23. Что
назначение буферного усилителя?

СВОДКА

В этой главе представлена ​​информация об осцилляторах.Следующая информация резюмирует
важные моменты этой главы.

ГЕНЕРАТОРЫ ВОЛНЫ можно классифицировать по
Синусоидальные или несинусоидальные формы волны
.

ГЕНЕРАТОРЫ СИНУЗОИДНЫХ ВОЛН
(генераторы) производят синусоидальную волну постоянной амплитуды и частоты. Есть три способа контролировать
частота генераторов синусоидальных волн: (1) RC-СЕТИ, (2) LC-СЕТИ и (3) КРИСТАЛЛЫ.


ГЕНЕРАТОРЫ НЕСИНУЗОИДНЫХ ВОЛН

(осцилляторы) генерируют сложные формы волны, такие как КВАДРАТНЫЕ ВОЛНЫ, ПРЯМОУГОЛЬНЫЕ ВОЛНЫ, ПИЛЬНЫЕ ВОЛНЫ, ТРАПЕЗОИДНЫЕ
ВОЛНЫ и ТРИГГЕРЫ. Генераторы несинусоидальных волн часто называют ОСЦИЛЛЯТОРАМИ РЕЛАКСАЦИИ.

А
BASIC OSCILLATOR
можно рассматривать как усилитель, который имеет входной сигнал.

2-33


ОСЦИЛЛЯТОР — это устройство, которое преобразует мощность постоянного тока в мощность переменного тока с заданной частотой.

К генератору предъявляются следующие требования: УСИЛЕНИЕ, РЕГЕНЕРАЦИОННАЯ ОБРАТНАЯ СВЯЗЬ и СЕТЬ ОПРЕДЕЛЕНИЯ ЧАСТОТЫ.

Осциллятор имеет два требования к стабильности: АМПЛИТУДНАЯ СТАБИЛЬНОСТЬ и ЧАСТОТНАЯ СТАБИЛЬНОСТЬ.

ОБРАТНАЯ СВЯЗЬ — это процесс передачи энергии от точки высокого уровня в системе к точке низкого уровня.
точка. Обратная связь, которая помогает входному сигналу, является РЕГЕНЕРАЦИОННОЙ или ПОЛОЖИТЕЛЬНОЙ.Обратная связь, противоположная входному сигналу,
ДЕГЕНЕРАТИВНЫЙ или ОТРИЦАТЕЛЬНЫЙ.

Три основные схемы, используемые для генераторов: ОБЩИЕ
КОЛЛЕКТОР
,
COMMON BASE и COMMON EMITTER .

В
COMMON-COLLECTOR конфигурация отсутствует ФАЗОВЫЙ СДВИГ между входом и выходом. Это не так
необходимо, чтобы сеть обратной связи обеспечивала фазовый сдвиг. Коэффициент усиления по напряжению меньше единицы (единицы), а коэффициент усиления по мощности
низкий, поэтому он очень редко используется в качестве генератора.

В конфигурации COMMON-BASE ,
между вводом и выводом нет ФАЗОВОГО СДВИГА. Нет необходимости, чтобы сеть обратной связи обеспечивала фазу
сдвиг. Напряжение и усиление мощности достаточно высоки, чтобы обеспечить удовлетворительную работу в схеме генератора.

дюйм
то
COMMON-EMITTER Конфигурация , ФАЗОВЫЙ СДВИГ на 180 градусов между входом и выходом. В
сеть обратной связи должна обеспечивать еще один сдвиг фазы на 180 градусов.Имеет высокий коэффициент усиления мощности.

2-34


Осциллятор ARMSTRONG используется для создания синусоидального сигнала постоянной амплитуды.
и довольно постоянная частота.

Генератор, в котором питание постоянного тока подается на транзистор через
контур резервуара или его часть — это СЕРИЯ FED.

Генератор, на который подается питание постоянного тока
к транзистору через отдельный путь параллельно цепи резервуара — PARALLEL или SHUNT FED.

Осциллятор ХАРТЛИ используется для получения синусоидального сигнала постоянной амплитуды и достаточного
постоянная частота.

Осциллятор COLPITTS используется для получения синусоидального выходного сигнала
постоянная амплитуда и довольно постоянная частота в радиочастотном диапазоне. Отличительные особенности Colpitts
Генератором являются разделенные конденсаторы.

ОТОПИТЕЛЬНО-ЕМКОСТНЫЙ (RC) ОСЦИЛЛЯТОР ОБРАТНОЙ СВЯЗИ
используется для получения синусоидального сигнала с относительно постоянной амплитудой и частотой.Он использует сети RC для производства
обратная связь и устраняет необходимость в индукторах в резонансном контуре.

2-35


КРИСТАЛЛИЧЕСКИЕ ОСЦИЛЛЯТОРЫ — это те генераторы, которые используют специально вырезанный кристалл для управления
Частота. Кристалл может действовать как конденсатор или индуктор, как последовательно настроенная цепь или как параллельная.
схема.

ИМПУЛЬСНЫЕ ОСЦИЛЛЯТОРЫ — это синусоидальные генераторы, которые включаются и выключаются для определенного
продолжительность времени.Частота импульсного генератора определяется как входным стробирующим импульсом, так и резонансным
частота цепи резервуара.

A HARMONIC — это синусоидальная волна, имеющая частоту, кратную
основная частота.

2-36


МНОЖИТЕЛИ ЧАСТОТЫ (ГАРМОНИЧЕСКИЕ ГЕНЕРАТОРЫ) — это специальные усилители класса C, которые
смещен в 3-10 раз выше нормального отсечки.Они используются для генерации частоты, кратной или гармонической
более низкая частота.

БУФЕРНЫЙ УСИЛИТЕЛЬ уменьшает влияние нагрузки на генератор за счет уменьшения
взаимодействие нагрузки и осциллятора.

ОТВЕТЫ НА ВОПРОСЫ Q1. ЧЕРЕЗ Q23.

А-1. Синусоидальная и несинусоидальная.

А-2. RC, LC и кристалл.

А-3. Осцилляторы релаксации.

А-4. Осциллятор.

А-5. Усиление, регенеративная обратная связь и
частотно-определяющее устройство.

А-6. Восстановительный или положительный.

2-37


А-7. Индуктивный и емкостный.

А-8. Армстронг.

А-9. Хартли.

А-10.Колпиттс.

А-11. Общий коллектор (CC), общий эмиттер (CE) и общий
база (CB).

А-12. Катушка обратной связи. Армстронг использует отдельную катушку. Хартли использует катушку с отводом.

А-13. В генераторе Хартли с последовательным питанием постоянный ток проходит через контур резервуара.

А-14. Конденсаторы разделенные.

А-15. Резисторно-конденсаторные сети.

А-16. Из-за потерь, возникающих в сетях RC.

А-17.Четырехсекционный.

А-18. Максимум.

А-19. Минимум.

А-20. Импульсные генераторы.

А-21. Отрицательный.

А-22. Вторая гармоника.

А-23. Уменьшать
взаимодействие между осциллятором и нагрузкой.

2-38


NEETS Содержание

  • Введение в материю, энергию,
    и постоянного тока
  • Введение в переменный ток и трансформаторы
  • Введение в защиту цепей,
    Контроль и измерение
  • Введение в электрические проводники, проводку
    Методики и схематическое чтение
  • Введение в генераторы и двигатели
  • Введение в электронную эмиссию, трубки,
    и блоки питания
  • Введение в твердотельные устройства и
    Блоки питания
  • Введение в усилители
  • Введение в генерацию волн и формирование волн
    Схемы
  • Введение в распространение и передачу волн
    Линии и антенны
  • Принципы СВЧ
  • Принципы модуляции
  • Введение в системы счисления и логические схемы
  • Введение в микроэлектронику
  • Принципы синхронизаторов, сервоприводов и гироскопов
  • Знакомство с испытательным оборудованием
  • Принципы радиочастотной связи
  • Принципы работы радаров
  • Справочник техника, Главный глоссарий
  • Методы и практика испытаний
  • Введение в цифровые компьютеры
  • Магнитная запись
  • Введение в волоконную оптику

Основы генерации сигналов

Загрузите эту статью в формате.Формат PDF

Генератор сигналов, универсальное испытательное оборудование, выполняет многочисленные измерения для различных приложений, требующих в качестве стимулов сигналов электромагнитных волн. Его корни восходят к истокам индустрии электронных испытаний и измерений. Первым продуктом, разработанным компанией Hewlett-Packard (ныне известной как Agilent Technologies), был аудиогенератор модели 200A. Одним из первых клиентов HP была компания Уолта Диснея. В 1940 году Уолт Дисней приобрел восемь звуковых осцилляторов, чтобы откалибровать революционную звуковую систему, разработанную для фильма «Фантазия».”

Сегодня генераторы радиочастотных сигналов широко используются в электронной промышленности, включая аэрокосмическую / оборонную электронику и беспроводную связь. Типичные приложения включают генерацию сигналов РЧ / ПЧ и замену гетеродинов, а также моделирование сигналов радаров, GPS и авионики. В современных системах беспроводной связи генераторы сигналов, поддерживающие ряд форматов цифровой модуляции, обычно используются для тестирования цифровых приемников и передатчиков. все более сложные требования.

Независимо от отрасли или области применения, получение максимальной отдачи от генератора сигналов требует хорошего понимания его основных операций и функций, а также его основных характеристик. Еще одним важным фактором становится знакомство со способностью генератора сигналов выходить за рамки приложений общего назначения и моделировать сложные сигналы с искажениями, помехами и коррекцией формы волны.

Содержание

1. Генерация сигналов

2.Архитектура генераторов сигналов

  • Генератор CW сигналов
  • Генератор аналоговых сигналов
  • Векторный генератор сигналов

3. Решения для моделирования сигналов

Генерация сигналов

Самым основным сигналом, создаваемым генератором сигналов, является сигнал непрерывной волны (CW) или синусоидальный сигнал, который не имеет модуляции и создается основным источником сигнала. Сигналы CW менее 6 ГГц обычно называются радиочастотными сигналами, а сигналы между 6 и 30 ГГц и более 30 ГГц называются микроволновыми сигналами и миллиметровыми сигналами соответственно.

Многие генераторы сигналов также предлагают различные типы модуляции, включая аналоговую и композитную (цифровую) модуляцию. Классические типы аналоговой модуляции включают сигналы с амплитудной модуляцией (AM), частотной модуляцией (FM), фазовой модуляцией (ΦM) и импульсной модуляцией. Модуляция важна, потому что это часть сигнала, несущая информацию.

Чтобы лучше понять аналоговую модуляцию, рассмотрим основное уравнение синусоидальной волны:

V (t) = A (t) × cos [2πf c t + Φ (t)]

В этом уравнении можно изменять три параметра: амплитуду, частоту и фазу.Изменение амплитуды синусоидальной волны позволяет добиться амплитудной и импульсной модуляции. Изменение частоты или фазы синусоидальной волны генерирует FM и ΦM соответственно.

Композитная модуляция, также известная как векторная или цифровая модуляция, возникает, когда два или более типа модуляции используются для создания композитного модулированного сигнала. Например, AM и ΦM можно комбинировать для создания различных значений амплитуды и фазы. Изменение фазы сигнала в сочетании с регулятором AM в цепи ALC может создавать сигнал с цифровой модуляцией.Также можно генерировать различные сигналы связи, спутниковые и радиолокационные сигналы, используя комбинацию импульсов и ФМ или ЧМ.

Все типы модуляции могут быть представлены в полярной плоскости с использованием векторной (векторной) записи, хотя значения амплитуды и фазы обычно не используются при описании векторов в цифровой модуляции (Рис. 1) . Вместо этого полярная плоскость отображается в прямоугольный формат (с горизонтальной и вертикальной осью), называемый плоскостью I-Q, где I означает синфазность, а Q означает квадратуру.

1. Изменение величины без вращения представляет собой амплитудную модуляцию (AM), а вектор, который вращается по дуге (длина которой указывает максимальное отклонение фазы), представляет фазовую модуляцию (ΦM). Одновременные AM и ΦM обозначаются вектором, длина и фаза которого изменяются со временем. FM дает вектор, который вращается по или против часовой стрелки.

Диаграммы I / Q

особенно полезны, потому что они отражают способ, которым I / Q-модулятор создает большинство цифровых сигналов связи.Независимые напряжения постоянного тока (компоненты I и Q), подаваемые на вход I / Q модулятора, коррелируют с составным сигналом с определенной амплитудой и фазой на выходе модулятора. И наоборот, амплитуда и фаза модулированного сигнала, отправленные на I / Q-демодулятор, соответствуют дискретным значениям постоянного тока на выходе демодулятора.

Быстрая передача большого количества двоичных битов с высокой скоростью в составных сигналах требует большой полосы пропускания информации. Чем выше скорость передачи данных, тем шире пропускная способность.Доступную полосу пропускания можно использовать более эффективно, группируя блоки цифровых данных (единицы, нули) в символы, хотя это увеличивает сложность сигнала. Число битов на символ будет варьироваться в зависимости от конкретного формата. Передача цифровых данных через многобитовые символы требует меньшей полосы пропускания. Например, для двух битов на символ скорость передачи символов составляет половину скорости передачи битов, а для четырех битов на символ скорость передачи символов составляет одну четверть скорости передачи битов.

IQ или векторная модуляция, обычно используемые в современных цифровых системах связи и радиолокационных системах из-за большой ширины полосы модуляции и простоты создания композитных модулированных сигналов, имеют ряд важных характеристик.К ним относятся скорость передачи символов (количество символов в секунду), полоса модуляции (максимальная эффективная полоса пропускания IQ-модулятора), частотная характеристика / неравномерность, квадратурный перекос IQ (мера того, насколько ортогональны плоскости I и Q друг другу) , и баланс усиления IQ (мера того, насколько близко I-канал и Q-канал находятся в усилении).

Когда характеристики IQ не идеальны, возникают ошибки амплитуды и фазы, которые могут вызвать передачу неверной цифровой информации. Цифровые ошибки называются битовыми ошибками, часто выражаемыми как коэффициент битовых ошибок.

Архитектура генераторов сигналов

Генераторы сигналов бывают разных видов: CW, аналоговые и векторные. У каждого есть своя функция, поэтому их можно найти в разных приложениях.

Генератор CW сигналов

Если посмотреть на базовую блок-схему генератора CW-сигнала, то источник RF CW разделен на три части: эталон, синтезатор и выход (рис. 2) . Секция привязки подает синусоидальную волну с известной частотой в контур фазовой автоподстройки частоты (PLL) в секции синтезатора.Его опорный генератор определяет точность выходной частоты источника. Секция синтезатора генерирует синусоидальную волну на желаемой частоте и подает стабильную частоту на секцию вывода. Секция вывода определяет общий диапазон амплитуды и точность источника.

2. На этой базовой блок-схеме источника радиочастотного CW показаны различные секции ссылки, синтезатора и вывода.

В источнике CW опорный генератор, фазовый детектор и генератор, управляемый напряжением (ГУН) — все вносят вклад в фазовый шум.В этом отношении также способствует минимальный уровень шума широкополосной связи. Однако, поскольку он возникает из-за теплового шума источника, он не сильно ограничивает производительность в большинстве приложений. Шумовые характеристики можно оптимизировать путем тщательного выбора полосы пропускания ФАПЧ в секции синтезатора. Это точно определяет, когда будет подавлен вклад ГУН в общий фазовый шум.

Подобно источнику RF CW, источник микроволнового CW состоит из эталонной секции, секции синтезатора и секции вывода.Однако микроволновый источник CW может иметь ряд отличий. Например, хотя справочный раздел имеет только один опорный генератор, он может подавать два или более сигналов в секции синтезатора.

Еще одним отличием может быть выбор генераторов в секции синтезатора. В то время как источники ВЧ обычно используют ГУН, генераторы микроволновых сигналов обычно используют генератор иттрий-железо-гранат (ЖИГ), настроенный на магнитное поле. ФАПЧ обеспечивает стабильность частоты. Кроме того, диапазон выходной частоты можно расширить с помощью делителей и умножителей частоты.

При выборе подходящего источника для приложения очень важно сначала понять спецификации источника. Для источников CW спецификации обычно делятся на три категории:

Частота: Основными характеристиками частоты являются диапазон, разрешение и точность. Диапазон определяет диапазон выходных частот, создаваемых источником. Разрешение указывает наименьшее приращение частоты. Точность Источник зависит от стабильности опорного генератора и количество времени с момента последней калибровки источника.

Амплитуда: Основными характеристиками амплитуды являются диапазон, точность, разрешение, скорость переключения и защита от обратной мощности. Диапазон определяется максимальной выходной мощностью источника и величиной встроенного внутреннего затухания. Разрешение указывает наименьшее приращение амплитуды. Скорость переключения измеряет, насколько быстро источник изменяется с одного уровня амплитуды на другой. Защита от обратной мощности помогает предотвратить передачу сигналов от тестируемого устройства от повреждения источника.

Характеристики амплитуды

имеют прямое влияние на возможность качания источника CW (способность перемещать тон CW по частоте). Частотная развертка включает линейную развертку, ступенчатую развертку и развертку произвольного списка. Для линейной развертки обычно указываются точность источника, время развертки и разрешение по частоте. Для шага и развертки списка указываются точность, количество точек и время переключения.

При развертке частоты выходная мощность изменяется не более чем на величину, указанную в спецификации неравномерности на протяжении развертки.Источники CW также могут изменять уровень мощности. При качании мощности диапазон развертки амплитуды определяет возможный диапазон выходных мощностей, а диапазон наклона определяет, насколько быстро источник может переключаться с одной мощности на другую.

Спектральная чистота: Спецификации, связанные со спектральной чистотой (например, фазовый шум, паразитные составляющие, гармоники и субгармоники), иногда могут быть трудными для понимания. Идеальный выход CW — это синусоидальная волна на одной частоте, однако идеального источника CW на самом деле не существует, поскольку все они сделаны с неидеальными (например,g., реальные) компоненты, которые вносят фазовый шум и нежелательные продукты искажения.

Гармоники представляют собой целые числа, кратные выходному сигналу CW. Источники содержат множество нелинейных компонентов, обеспечивающих широкий диапазон частот и выходной мощности. Нелинейные характеристики усилителя создают гармоники второго, третьего и более высокого порядка. Негармонические паразиты возникают из различных источников (например, от источника питания) и обычно довольно низкие (менее -65 дБн). Наконец, множители часто используются для увеличения выходной частоты источника, что приводит к наличию субгармоник.

Ряд приложений может использовать преимущества базовых сигналов CW, включая использование [OK?] в качестве гетеродина (LO) во время разработки передатчика, для тестирования интермодуляционных искажений (IMD) приемников, а также для внутриканальных и исходящих сигналов. тестирование приемника канала. Еще одно ключевое приложение — тестирование нелинейных усилителей. Перехват третьего порядка (TOI), обычное измерение усилителя, использует два источника CW, объединенных на входе усилителя (DUT). Нелинейности усилителя создают продукты смешения третьего порядка.

Сама тестовая система также может вносить источники ошибок. Их можно уменьшить либо за счет лучшей изоляции источников сигнала, либо за счет подавления мощности, передаваемой от одного источника к другому, с помощью циркулятора.

Генераторы

CW с разверткой чаще всего используются в тестировании «стимул-отклик» (нахождение отклика тестируемого устройства). Частотная развертка определяет частотную характеристику устройств. Развертка мощности, обычно выполняемая на усилителях, измеряет уровни линейности и насыщения.При измерении частотной характеристики устройства важными характеристиками являются точность частоты, выходная мощность (уровень), неравномерность и скорость. Измерения частотной характеристики выполняются на многих типах устройств, включая усилители, фильтры и смесители.

Генератор аналоговых сигналов

Блок-схема генератора аналогового сигнала аналогична блок-схеме генератора CW, за исключением дополнительных компонентов, которые позволяют источнику модулировать несущую (рис. 3).

3. В аналоговом генераторе сигналов входы FM и ΦM поступают в блок управления частотой синтезатора для модуляции несущей. Чтобы изменить частоту или фазу генератора сигналов, входной сигнал FM или PM подается на ГУН. Этот сигнал, вместе с сигналом опорного генератора, создает сигнал FM или Фм.

Для создания AM сигнал AM должен быть применен к блоку драйвера автоматического управления уровнем (ALC), который преобразует напряжения со входа AM в изменения амплитуды несущей через модулятор ALC.Для создания импульсной модуляции добавлен импульсный вход. Этот сигнал подается на импульсный модулятор на пути выхода сигнала. К источнику CW может быть добавлен внутренний модуляторный генератор для удобства и упрощения настройки тестирования.

Ключевым приложением для импульсных сигналов является тестирование радаров. При создании составного модулирующего сигнала, такого как чирпированный импульс, важные характеристики модуляции генератора сигналов включают в себя отклонение и частоту ЧМ, частоту импульсов, ширину импульса и время нарастания импульса.

Векторный генератор сигналов

Создание векторного генератора сигналов просто включает добавление IQ-модулятора к базовой блок-схеме CW.Для генерации сигналов IQ основной полосы частот генератор основной полосы частот принимает двоичные данные, содержащие желаемую «информацию» для передачи, сопоставляет их с цифровыми символами, а затем с цифровыми сигналами I и Q, преобразует цифровые сигналы IQ в аналоговые сигналы IQ и отправляет их в модулятор IQ, кодируемый на несущем сигнале.

После того, как данные подвергаются символьному отображению, цифровые сигналы подвергаются цифровой фильтрации с использованием двух наборов фильтров в генераторе основной полосы частот. Фильтры предназначены для ограничения полосы пропускания символов I и Q и замедления переходов между символами.Существует много типов фильтров основной полосы частот, каждый из которых имеет разные атрибуты, которые должны быть установлены в генераторе сигналов. Распространенными типами фильтров являются: Корневой приподнятый косинус, Гауссов и Прямоугольный.

Генераторы векторных сигналов

особенно полезны для моделирования широкого спектра сигналов с цифровой модуляцией, включая сотовые, беспроводные LAN, Bluetooth, GNSS и военные форматы связи. Некоторые из наиболее распространенных векторных измерений включают отношение мощностей по соседнему каналу (ACPR) и величину вектора ошибки (EVM).

ACPR — важное измерение, особенно для усилителей мощности. Он характеризует искажение сигналов с цифровой модуляцией и вероятность того, что данный сигнал может создавать помехи соседнему радио. EVM и фазовая ошибка — два основных параметра для оценки качества сигнала с цифровой модуляцией. Измерение этих значений влечет за собой исследование разницы между измеренной величиной и фазовым вектором сигнала с цифровой модуляцией и соответствующим ему идеальным опорным вектором.

Другое приложение связано с измерением чувствительности и селективности приемника. Чувствительность, одна из ключевых характеристик приемника, — это минимально возможный уровень сигнала, который может быть надежно обнаружен и демодулирован. При измерении чувствительности точность измерения уровня генератора сигналов становится чрезвычайно важным фактором. Избирательность по соседнему и альтернативному каналу измеряет способность приемника обрабатывать полезный сигнал, отклоняя сильный сигнал в соседнем или альтернативном канале.Здесь важны точность по частоте и амплитуде (уровню), а также спектральные характеристики тестового и мешающего сигнала.

Векторный генератор сигналов также можно использовать в среде разработки Connected Solutions. Connected Solutions — это концепция, объединяющая компьютерное моделирование с реальными измерениями. Рассмотрим, например, насколько желательно было бы проверить чувствительность приемника до того, как будут доступны все аппаратные блоки приемника. Обычно измерения коэффициента ошибок по битам (BER) могут выполняться только для всего приемника.Однако разработка нового аппаратного и программного обеспечения в рамках испытательного оборудования теперь позволяет проводить измерения BER, когда доступны только части приемника. Технология Connected Solutions требует, чтобы программное обеспечение для моделирования и испытательное оборудование работали вместе.

Решения для моделирования сигналов

Процесс моделирования реальных сигналов включает в себя создание формы волны, генерацию IQ-сигнала основной полосы частот и преобразование с повышением частоты IQ-сигналов до интересующей РЧ или микроволновой частоты.Хотя генератор векторных сигналов и связанный с ним генератор основной полосы частот являются основными элементами любого решения для моделирования сигналов, для имитации сложных сигналов могут потребоваться другие компоненты.

Например, для моделирования ухудшения замирания требуется дополнительное программное и аппаратное обеспечение, чтобы создать ухудшение и добавить его к исходному сигналу. К счастью, современные генераторы векторных сигналов могут выходить за рамки приложений общего назначения и создавать усовершенствованные сигналы с различными искажениями и интерференционными сигналами, обеспечивая более реалистичное моделирование реальных условий.

В то время как искаженные сигналы очень полезны для тестирования приемников в реальных условиях, другие приложения предпочитают очень чистый, неискаженный тестовый сигнал. Например, производительность ВЧ-компонента можно оценить, сравнив его выход с входным сигналом. В этом случае чистый входной сигнал гарантирует, что измеренный выходной сигнал отражает характеристики устройства, а не входной сигнал.

Генератор сигналов имеет множество потенциальных источников ошибок (например, I / Q-модулятор, RF-цепь и IQ-тракт).Каждый из них влияет на модулированный тестовый сигнал, что приводит к множеству проблем, включая наклон полосы пропускания, пульсации и спад. Коррекция формы сигнала позволяет устранить дефекты тестового сигнала (рис. 4) .

4. Коррекция формы сигнала выполняется путем измерения выходного сигнала генератора модулированных векторных сигналов с помощью анализатора векторного спектра. Затем эти результаты передаются в программное обеспечение коррекции сигнала, которое, в свою очередь, предварительно искажает данные IQ до того, как они попадут в модулятор IQ, и эффективно устраняет недостатки.

Одним из типов несовершенства генератора векторных сигналов является неравномерность амплитуды модулятора IQ или неравномерность IQ. Равномерность IQ можно увидеть, создав 32 тестовых тона одинаковой величины в полосе частот 80 МГц (рис. 5) . Обратите внимание, что до того, как будет измерена и применена коррекция формы сигнала, тона меняются на 2,4 дБ на интересующей частоте 80 МГц. Измеряя векторный генератор сигналов в этом режиме и применяя соответствующую коррекцию формы сигнала, изменение амплитуды тона уменьшается до менее 0.1 дБ.

5. Коррекция формы волны предлагает средство решения проблемы неравномерности IQ, хотя компромисс между временем вычисления и временем действительной калибровки. Обычно он используется для широкополосных, многотональных сигналов и сигналов с несколькими несущими.

Та же коррекция IQ может применяться к сигналам с очень широким диапазоном частот, таким как сигнал UWB с полосой 500 МГц, показанный на рисунке 5. Хотя достичь равномерности 0,1 дБ для этого типа сигнала может быть невозможно, тем не менее, характеристики значительно улучшаются. .

Другой недостаток тестового сигнала касается внутриполосных IMD — продуктов интермодуляции, которые попадают в полосу пропускания канала сгенерированного сигнала. Такое искажение особенно нежелательно, поскольку оно не может быть отфильтровано и напрямую влияет на интересующий сигнал. Этот метод предыскажения генерирует отменяющий тон на частоте интермодуляционных искажений, сдвинутой на 180 ° по фазе с продуктом искажения.

Анализатор спектра используется для измерения IMD исходного тестового стимула. Затем предварительно искаженная форма сигнала, созданная на основе этих измерений, удаляет внутриполосные, а также внеполосные продукты IMD (рис. 6) . Используя коррекцию формы сигнала, векторный генератор сигналов обеспечивает гораздо более точное воспроизведение сигналов со значительным сокращением дефектов.

6. Как видно из измерений до и после предыскажений, исключительное подавление искажений возможно.Этот тестовый стимул улучшился более чем на 40 дБ.

Другие типы искажений, такие как многолучевые сигналы или замирания, можно моделировать с помощью соответствующего оборудования, такого как генератор модулирующих сигналов Agilent PXB и эмулятор канала, используемые вместе с сигналом N5182B MXG, а затем добавленные к чистому модулированному сигналу в векторном сигнале. генератор. Примеры включают выполнение тестовых конфигураций с одним входом и одним выходом (SISO) и тестов приемника с несколькими входами и несколькими выходами (MIMO) в RF / baseband (рис.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *