Vcc что это такое на распиновке: Обозначение цепей питания в иностранных материалах

Содержание

Обозначение цепей питания в иностранных материалах

РадиоКот >Статьи >

Обозначение цепей питания в иностранных материалах


Каждый человек увлекающийся электроникой сталкивается с материалами иностранного происхождения. И будь то схема электронного устройства или спецификация на чип, там могут встречаться множество различных обозначений цепей питания, которые вполне могут ввести в замешательство начинающего или незнакомого с этой темой радиолюбителя. В интернете достаточно информации чтобы внести ясность в этот вопрос. Далее кратко изложено то что было найдено о происхождении обозначений и их применении.

 

VCC, VEE, VDD, VSSоткуда такие обозначения? Обозначения цепей питания проистекают из области анализа схем на транзисторах, где, обычно, рассматривается схема с транзистором и резисторами подключенными к нему. Напряжение (относительно земли) на коллекторе (collector), эмиттере (emitter) и базе (base) обозначают VC, VE и VB. Резисторы подключенные к выводам транзистора обозначим RC, RE и RB. Напряжение на дальних (от транзистора) выводах резисторов часто обозначают VCC, VEE и VBB. На практике, например для NPN транзистора включенного по схеме с общим эмиттером, VCC соответствуют плюсу, а VEE минусу источника питания. Соответственно для PNP транзисторов будет наоборот.

Аналогичные рассуждения для полевых транзисторов N-типа и схемы с общим истоком дают объяснение обозначений VDD и VSS (D — drain, сток; S — source, исток): VDD — плюс, VSS — минус.

Обозначения напряжений на выводах вакуумных ламп могут быть следующие: VP (plate, anode), VK (cathode, именно K, не C), VG (grid, сетка).

 

Как написано выше, Vcc и Vee используются для схем на биполярных транзисторах (VCC — плюс, VEE — минус), а Vdd и Vss для схем на полевых транзисторах (VDD — плюс, VSS — минус). Такое обозначение не совсем корректно, так как микросхемы состоят из комплементарных пар транзисторов. Например, у КМОП микросхем, плюс подключен к P-FET истокам, а минус к N-FET истокам. Тем не менее, это традиционное устоявшее обозначение для цепей питания независимо от типа проводимости используемых транзисторов.

Для схем с двух полярным питанием VCC и VDD могут интерпретироваться как наибольшее положительное, а VEE и VSS как самое отрицательное напряжение в схеме относительно земли.

Для микросхем питающихся от одного или нескольких источников одной полярности минус часто обозначают GND (земля). Земля может быть разной, например, сигнальная, соединение с корпусом, заземление.

 

Вот перечень некоторых обозначений (далеко не полный).











Обозначение

Описание

Заметки

GND

Земля (минус питания)

Ground

AGND

Аналоговая земля (минус питания)

Analog ground

DGND

Цифровая земля (минус питания)

Digital ground

Vcc
Vdd
V+
VS+

Плюс питания
(наибольшее положительное напряжение)

 

Vee
Vss
V-
VS−

Земля, минус питания
(самое отрицательное напряжение)

 

Vref

Опорное напряжение
(для АЦП, ЦАП, компараторов и др.)

Reference (эталон, образец)

Vpp

Напряжение программирования/стирания

(возможно pp = programming power)

VCORE
VINT

Напряжение питания ядра
(например, в ПЛИС)

Core (ядро)

Internal (внутренний)

VIO
VCCIO

Напряжение питания периферийных схем
(например, в ПЛИС)

Input/Output (ввод/вывод)

 

Как видно, часто обозначения образуются путём добавления слова, одной или нескольких букв (возможно цифр), которые соответствуют буквам в слове отражающем функцию цепи (например, как Vref).

Иногда обозначения Vcc и Vdd могут присутствовать у одной микросхемы (или устройства), тогда это может быть, например, преобразователь напряжения. Так же это может быть признаком двойного питания. В таком случае, обычно, Vcc соответствует питанию силовой или периферийной части, Vdd питанию цифровой части (обычно Vcc>=Vdd), а минус питания может быть обозначен Vss.

Совмещение в современных микросхемах различных технологий, традиции, или какие-то другие причины, привели к тому, что нет чёткого критерия для выбора того или иного обозначения. Поэтому бывает, что обозначения «смешивают», например, используют VCC вместе с VSS или VDD вместе с VEE, но смысл, обычно, сохраняется — VCC > VSS, VDD > VEE. Например, практически повсеместно, можно встретить в спецификации на микросхемы серии 74HC (HC = High speed CMOS), 74LVC и др., обозначение питания как Vcc. Т.е. в спецификации на CMOS (КМОП) микросхемы используется обозначение для схем на биполярных транзисторах.

Текстов какого либо стандарта (ANSI, IEEE) по этой теме найти не удалось. Именно поэтому в тексте встречаются слова «может быть», «иногда», «обычно» и подобные. Несмотря на это, приведённой информации вполне достаточно, чтобы чуть лучше ориентироваться в иностранных материалах по электронике.

 

Информация собрана из различных источников в сети Интернет.
Специально для сайта radiokot.ru




Все вопросы в
Форум.


Как вам эта статья?

Заработало ли это устройство у вас?

Подключение передней панель к материнской плате

В этой статье вы узнаете, как подключить переключатель питания, сброса и светодиоды, а также аудио и USB-порты к материнской плате. Прежде чем пытаться соединить их, очень важно знать место, и полярность подключения. Для этого необходимо найти схемы в руководстве по материнской плате, которые подскажут вам точно, где находится каждый набор контактов на материнской плате или воспользоваться информацией в этой статье.

Подключение индикаторов и кнопок питания

Компьютерный корпус имеет кнопки для управления питания которые подключаются к материнской плате, и светодиоды для обозначения деятельности материнской платы. Вы должны подключить эти кнопки и индикаторы к материнской плате с помощью проводов из передней части корпуса показанные на рисунке №1, в разъеме на материнской плате (рис. №2). Надпись на материнской плате возле разъема панели показывает место подключения каждого провода и полярность каждого из них однако надписи с обозначениями присутствуют не всегда на материнской плате.

Найдите в компьютерном корпусе разъемы передней панели (см. рис. 1). Далее находим разъём на материнской плате обычно он находится внизу материнской платы, и подписан надписью PANEL1 или JFP1, он может быть в разном исполнении(см. рис. 2.0, 2.1).

led-p-resРис. №1. Разъемы передней панели.razenamatРис № 2.0. Разъем передней панели на материнской плате.razenamat1Рис № 2.1. Разъем передней панели на материнской плате.

Группа системных кабелей, показанных на картинке №1 имеют два провода, которые имеют цветовую маркировку. Черный или белый провод это земля (GND), а провода других цветов(красный, синий, зелёный, оранжевый) это питание. Подключение осуществляется с лева на право, при подключении Все плюсовые контакты всегда будут находиться слева кроме кнопки reset, однако полярность кнопок неважна так как кнопки при нажатии замыкают контакты.

Просто установите эти провода к разъему с тем же именем на материнской плате соблюдая полярность светодиодов.

polarnosti-led-knopРис № 2.2. Полярность проводов передней панели.

Ниже перечислены возможные сокращенные имена для них, которые будут записаны на самих соединителях.

PWR-SW, PW SW, PW = Кнопка питания (Power Switch)(не требуется полярность).  Элемент управления кнопка питания, которая позволяет включать и выключать компьютер.

PWR-LED, P-LED, MSG = Светодиод питания (Power LED)(требуется полярность). Индикатор показывает когда компьютер включен или находится в режиме ожидания.

RES-SW, R-SW, RES = Переключатель сброса (Reset Switch) (не требуется полярность). Кнопка сброса для перезагрузки компьютера.

HDD-LED, HD = Светодиодный индикатор жесткого диска (Hard Disk Drive LED)(требуется полярность). Этот индикатор мигает при записи и чтении информации с жесткого диска.

SPK, SPKR, SPEAK = Внутренний динамик (Speaker)(требуется полярность), используемый для озвучивания звуковых сигналов, которые вы слышите от компьютера при загрузке.

knopki pitaniyРис № 3. Распиновка контактов передней панели на материнской плате

Подключение USB передней панели к материнской плате

Для начала находим разъём USB на материнской плате, обычно он находится внизу материнской платы и подписан надписью F_USB или USB. Так же на каждом проводном разъеме(Рис №4.0) можно прочитать его значение, которое может быть +5V (или VCC или Power), D+, D – и GND.

pin-usb-mpРис № 4.0. Полярность USB.

Далее необходимо просто установить каждый из проводов (+5V, D+, D – и GND) в нужное место на материнской плате, как показано на Рис.4.2.

Pin_mat_USB2.0Рис №4.1. Подключение USB 2.0 передней панель к материнской плате.Pin_mat_USB3.0Рис №4.2. Подключение USB 3.0 передней панель к материнской плате.Podkl-usb-k-mpРис №4.3. Подключение USB 2.0 к материнской плате.

Подключение аудио передней панели к материнской плате

Чтобы использовать эти разъемы, ваша материнская плата должна иметь встроенную звуковую карту (другими словами, встроенный звук). Однако установка не так проста, как кажется, и в сегодняшней колонке мы объясним, как это нужно сделать.

В конце каждого провода имеется небольшой черный разъем, и в этом разъеме мы можем прочитать функцию провода. Вы найдете следующие провода: Mic In (или Mic Data), Ret L, Ret R, L Out (или Ear L), R Out (или Ear R) и два Gnd (или Ground). Если вы внимательно посмотрите, то увидите провода Ret L и L Out подключены друг к другу, то же самое происходит между проводами Ret R и R Out.

audi-gРис №5.0. Подключение аудио к материнской плате.

Вы должны найти место установки таких проводов в вашей материнской плате. Это место обозначается как Audio, External Audio, Ext Audio, Front Audio, F Audio, HD Audio или что-то в этом роде. Это разъем состоит из 9-контактного разъема, и есть два перемычки, которые устанавливают соединение некоторых из этих контактов. Точное положение этого разъема варьируется в зависимости от модели материнской платы.

audio-1Рис №5.1. Вид штекера аудио на материнской плате.

Для установки проводов первым шагом является понимание системы нумерации штырей разъема материнской платы. В разъеме есть девять контактов, но разъем считается 10-контактным, потому что один из контактов был удален (контакт 8). Перемычки соединяют контакты 5 и 6 и 9 и 10. Поскольку имеется пространство без штифта (контакт 8), легко обнаружить нумерацию других контактов.

audio-panelРис №5.2. Распиновка аудио на материнской плате.

Удалите перемычки. Подключение проводов должно быть выполнено следующим образом: Mic In to pin 1; Gnd — контакты 2 и 3; R Вывести на вывод 5; Ret R для вывода 6; L Вывод на контакт 9, а Ret L — на контакт 10.

ЖелезоКомпьютерНастроикаРаспиновка

GND — что это такое на схеме? (или на материнской плате)

Провод GND на материнской плате/схеме означает земля (масса, минус). Стандартный цвет — черный, белый. Варианты цвета провода питания — красный, синий, зеленый, оранжевый, желтый.

Пример — обозначение черного провода маркировкой GND на разьеме подключения USB к материнской плате:

GND на материнской плате/схеме — важная информация

  1. GND (GROUND, перевод — земля) — точка нулевого потенциала микросхемы.
  2. VEE (Voltage Emitter Emitter, перевод — напряжение эмиттер) — минус питания относительно GND.
  3. VCC (Voltage Collector Collector, перевод — коллектор напряжения) — плюс питания относительно GND.

Стоит учитывать также:

  1. GND (DGND, GNDD) — обозначения цифровой земли.
  2. AGND (GNDA) — обозначения аналоговой земли.

Важный комментарий по поводу обозначений:

Простыми словами. Я подключал в компьютерном корпусе дополнительный вентилятор. Ноль вентилятора, черный провод — подключал к проводу молекс-разьема блока питания, который также имеет черный цвет (важно — это и есть GND). Питание на вентиляторе был желтым — его подключал к желтому проводу питания молекса. На молексе главное нужно понимать:

  1. Желтый + черный = 12 вольт.
  2. Красный + черный = 5 вольт.

Еще по поводу молекса. Возможно так задумано, но кажется для подключения нужно использовать провода, которые идут рядышком. Например желтый и черный (12 вольт), красный и черный (5 вольт) — они идут рядом. Два черных провода GND возможно специально предназначены для двух видов подключения.

Под молекс разьемом подразумеваю данный тип коннектора (к нему подключаются жесткие диски например):

Также на плате/коннекторах можете заметить маркировку POWER — означает питание (плюс).

Подключая устройства, например переднюю панель ПК к материнке — будьте очень аккуратны, читайте инструкцию к материнской плате, чтобы не спалить например порты USB. Также смотрите на коннекторы и гнезда — иногда их конструкция исключает неправильное подключение. На заметку — кнопки компьютера, например включение, перезагрузка — неважно как подключить, дело в том, что здесь главное — замыкание. Неважно где плюс/минус, важно — замыкание контактов на секунду, что и делает кнопка, что и приводит к включению/выключению/перезагрузки компа.

Главное — правильно соблюдайте полярность, перед подключением не ленитесь сто раз проверить, чтобы быть уверенными. Ведь короткое замыкание — почти всегда ведет к неисправности..

Надеюсь информация кому-то пригодилась. Удачи и добра!

На главную!

09.06.2019

Расшифровка проводов магнитол — обозначения и цветная маркировка

Расшифровка проводов магнитол-1Расшифровка проводов магнитол-1

Расшифровка проводов магнитол для автомобилей

Расшифровка проводов магнитол — обозначения, расшифровка контактов и проводов автомобильных магнитол.

Акустическая группа

R = Динамик правый.
L = Динамик левый.
FR+, FR- или RF+, RF— = Динамик передний — правый (Соответственно плюс или минус).
FL+, FL- или LF+, LF— = Динамик передний — левый (Соответственно плюс или минус).
RR+, RR— = Динамик задний — правый (Соответственно плюс или минус).
LR+, LR- или RL+, RL— = Динамик задний — левый (Соответственно плюс или минус).
GND SP = Общий провод динамиков.

Разъём питания магнитол

  • В+ или ВАТ или КЗО или Вир+ или B/Up или B-UP или MEM + 12 = Питание от аккумулятора (плюс)
  • GND или GROUND или К31 или просто указан минус = Общий провод (Масса), минус аккумулятора.
  • А+ или АСС или KL 15 или S-K или S-kont или SAFE или SWA = +12 с замка зажигания.
  • N/C или n/с или N/A = Нет контакта. (Физически вывод имеется но никуда не подключен).
  • ILL или LAMP или обозначение солнышка или 15Ь или Lume или iLLUM или К1.58Ь = Подсветка панели. На контакт подаётся +12 вольт при включении габаритных огней. На некоторых магнитолах есть два провода, -iLL+ и iLL- Минусовой провод гальванически отвязан от массы.
  • Ant или ANT+ или AutoAnt или P.ANT = После включения магнитолы с этого контакта подаётся питание +12 вольт на управление выдвижной антенной, если такова, естественно, присутствует.
  • MUTE или Mut или mu или изображение перечеркнутого динамика или TEL или TEL MUTE = Вход выключения или приглушения звука при приеме звонка телефона или других действиях (например движения задним ходом)

Другие возможные контакты в магнитолах

Power Control = это управление включением усилителя
P.CONT/ANT.CONT = это управление антенной, питание подается после включения радио
ILL + и ILL — = это провода регулировки яркости подсветки магнитолы
Amp = Контакт управления включением питания внешнего усилителя
DATA IN = Вход данных
DATA OUT = Выход данных
Line Out = Линейный выход
REM или REMOTE CONTROL = Управляющее напряжение (Усилитель)
АСР+, АСР— = Линии шины (Ford)
CAN-L = Линия шины CAN
CAN-H = Линия шины CAN
K-BUS = Двунаправленная последовательная шина (K-line)
SHIELD = Подключение оплётки экранированного провода.
AUDIO СОМ или R COM, L СОМ = Общий провод (земля) входа или выхода предварительных усилителей
CD-IN L+, CD-IN L-, CD-IN R+, CD-IN R— = Симметричные линейные входы аудио сигнала с ченжера
SW+B = Переключение питания +В батареи.
SEC IN = Второй вход
DIMMER = Изменение яркости дисплея
ALARM = Подключение контактов сигнализации для выполнения магнитолой функций охраны автомобиля (магнитолы PIONEER)
SDA, SCL, MRQ = Шины обмена с дисплеем автомобиля.
LINE OUT, LINE IN = Линейный выход и вход, соответственно.
D2B+, D2B— = Оптическая линия связи аудиосистемы

Маркировка и цветовое обозначение проводов

Разберем цветовое обозначение проводов авто магнитол:

  • Черный (обозначается GROUND или GND) — это минус аккумуляторной батареи;
  • Красный (маркировка АСС или А+) — это плюс замка зажигания;
  • Желтый (обозначается ВАТ или В+)- это плюс от аккумуляторной батареи;
  • Белый с полосой (маркировка FL-) — это минус переднего левого динамика;
  • Белый без полосы (обозначается FL+) — это плюс переднего левого динамика;
  • Серый с полосой (маркировка FR-) — это минус правого переднего динамика;
  • Серый без полосы (обозначается FR+) — это плюс правого переднего динамика;
  • Зеленый с полосой (маркировка RL-) — это минус левого заднего динамика;
  • Зеленый без полосы (обозначение RL+) — это плюс левого заднего динамика;
  • Фиолетовый с полосой (маркировка RR-) — это минус правого заднего динамика;
  • Фиолетовый без полосы (обозначение RR+) — это плюс правого заднего динамика.

Далее, можно посмотреть как выполняется распиновка разъема автомагнитолы

Источники звука

GND на схеме материнской платы в магнитоле или камере: что это такое

Многие люди интересуются, какая роль на схеме материнской платы или магнитолы отводится GND и что это вообще такое. Если дословно, то это «земля» (от английского слова «ground»). Некоторые также используют термин в значении «масса» или «минус». По факту – это общий провод, который обычно бывает белым или черным. Последний вариант более распространён. При этом существуют и другие варианты провода питания. Например, синий, зеленый, оранжевый, красный и желтый.

Важно учитывать следующие расшифровки при ремонте материнской платы:

  1. GND (ground или «земля»). Речь идет о точке нулевого потенциала микросхемы.
  2. VEE (Voltage Emitter Emitter обозначает «напряжение эмиттер»). В данном случае имеется ввиду минус питания по отношению к GND.
  3. VCC (Voltage Collector Collector – это «коллектор напряжения»). Это как раз-таки плюс питания по отношению к GND.


Также важно учитывать, что аббревиатура GND может иметь и несколько иной вид, например, DGND, GNDD. Так будет обозначаться цифровая земля.

Аналоговая же земля, в свою очередь, может быть обозначена аббревиатурами AGND или GNDA.

Для понимания сути, следует привести элементарный пример. В компьютерном корпусе потребовалось подключить дополнительный вентилятор, чтобы блок не перегревался. Стандартных мощностей не хватало. Ноль вентилятор, черный провод был подключен к проводу молекс-разъема на блоке питания. Кстати, он тоже выполнен в черном цвете. В данном случае это и есть «земля».

Само же питание на вентиляторе было желтым. Оно подключалось к молексу кабеля питания такого же цвета.


Важно! В данном случае следует понимать простую «арифметику»:

  1. Когда соединяются желтый и черные шнуры, на выходе получается заряд в 12 Вт.
  2. Сочетание же красного и черного дает всего 5 вольт.

Это важно учитывать для того, чтобы рассчитать необходимое напряжение. В противном случае, может возникнуть замыкание и последующая неисправность, устранить которую иногда невозможно.


Кстати на плате и коннекторах можно обнаружить еще и маркировку «POWER». Здесь это значит питание (со знаком плюс).

Обязательно следует обращать внимание и на гнезда с коннекторами. Порой, их конструкция способна исключить неверное подключение. Кстати, сами кнопки компьютера, к примеру, перезагрузка и включение, совершенно неважно, как подключать, потому что главным здесь становится замыкание. Плюсы и минусы здесь не играют никакой роли.

Распиновка всех разьемов компьютера




















































Сторона
монтажа

Сторона
пайки

Сигнал

Значение

Сигнал

Значение

A1

I/O CH CK

Контроль канала ввода-вывода

B1

GND

Земля

A2

D7

Линия данных 8

B2

RES DRV

Сигнал Reset

A3

D6

Линия данных 7

B3

+5V

+5В

A4

D5

Линия данных 6

B4

IRQ9

Каскадирование второго контроллера прерываний

A5

D4

Линия данных 5

B5

-5V

-5В

A6

D3

Линия данных 4

B6

DRQ2

Запрос DMA 2

A7

D2

Линия данных 3

B7

-12V

-12В

A8

D1

Линия данных 2

B8

RES

Коммуникация с памятью без времени ожидания

A9

D0

Линия данных 1

B9

+12V

+12В

A10

I/O CN RDY

Контроль готовности канала ввода-вывода

B10

GND

Земля

A11

AEN

Adress Enable, контроль за шиной при CPU и DMA-контроллере

B11

SMEMW

Данные записываются в память (до 1М байта)

A12

A19

Адресная линия 20

B12

SMEMR

Данные считываются из памяти (до 1 Мбайта)

A13

A18

Адресная линия 19

B13

IOW

Данные записываются в I/O порт

A14

A17

Адресная линия 18

B14

IOR

Данные читаются из I/O порта

A15

A16

Адресная линия 17

B15

DACK3

DMA-Acknowledge (подтверждение) 3

A16

A15

Адресная линия 16

B16

DR Q3

Запрос DMA 3

A17

A14

Адресная линия 15

B17

DACK1

DMA-Acknowledge (подтверждение) 1

A18

A13

Адресная линия 14

B18

IRQ1

Запрос IRQ 1

A19

A12

Адресная линия 13

B19

REFRESH

Регенерация памяти

A20

A11

Адресная линия 12

B20

CLC

Системный такт 4,77 МГц

A21

A10

Адресная линия 11

B21

IRQ7

Запрос IRQ 7

A22

A9

Адресная линия 10

B22

IRQ6

Запрос IRQ 6

A23

A8

Адресная линия 9

B23

IRQ5

Запрос IRQ 5

A24

A7

Адресная линия 8

B24

IRQ4

Запрос IRQ 4

A25

A6

Адресная линия 7

B25

IRQ3

Запрос IRQ 3

A26

A5

Адресная линия 6

B26

DACK2

DMA-Acknowledge (подтверждение) 2

A27

A4

Адресная линия 5

B27

T/C

Terminal Count, сигнализирует конец DMA-трансформации

A28

A3

Адресная линия 4

B28

ALE

Adress Latch Enabled,
расстыковка адрес/данные

A29

A2

Адресная линия 3

B29

+5V

+5В

A30

A1

Адресная линия 2

B30

OSC

Такт осциллятора 14,31818 МГц

A31

A0

Адресная линия 1

B31

GND

Земля

C1

SBHE

System Bus High Enabled, сигнал для 16-разрядных данных

D1

MEM CS 16

Memory Chip Select (выбор)

C2

LA23

Адресная линия 24

D2

I/O CS 16

I/O карта с 8 бит/16 бит переносом

C3

LA22

Адресная линия 23

D3

IRQ10

Запрос прерывания 10

C4

LA21

Адресная линия 22

D4

IRQ11

Запрос прерывания 11

C5

LA20

Адресная линия 21

D5

IRQ12

Запрос прерывания 12

C6

LA19

Адресная линия 20

D6

IRQ15

Запрос прерывания 15

C7

LA18

Адресная линия 19

D7

IRQ14

Запрос прерывания 14

C8

LA17

Адресная линия 18

D8

DACK0

DMA-Acknowledge (подтверждение) 0

C9

MEMR

Чтение данных из памяти

D9

DRQ0

Запрос DMA 0

C10

MEMW

Запись данных в память

D10

DACK5

DMA-Acknowledge (подтверждение) 5

C11

SD8

Линия данных 9

D11

DRQ5

Запрос DMA 5

C12

SD9

Линия данных 10

D12

DACK6

DMA-Acknowledge (подтверждение) 6

C13

SD10

Линия данных 11

D13

DRQ6

Запрос DMA 6

C14

SD11

Линия данных 12

D14

DACK7

DMA-Acknowledge (подтверждение) 7

C15

SD12

Линия данных 13

D15

DRQ7

Запрос DMA 7

C16

SD13

Линия данных 14

D16

+5V

+5В

C17

SD14

Линия данных 15

D17

MASTER

Сигнал Busmaster

C18

SD15

Линия данных 16

D18

GND

Земля

Уроки Arduino. Распиновка платы | AlexGyver Technologies

Распиновка платы


Распиновка (Pinout) платы показывает, какие пины за что отвечают. Микроконтроллер штука настолько универсальная, что большинство пинов имеют гораздо больше одной функции! Рассмотрим пины и интерфейсы платы на основе Arduino Nano, так как другие модели Ардуино имеют абсолютно точно такие же входы/выходы/интерфейсы, но просто в другом количестве.

GPIO


Начнем с пинов, которых больше всего, это GPIO, с англ. General Purpose Input-Output, входы-выходы общего назначения, на плате они подписаны как D0D13 и A0A5. По картинке распиновки они называются PD*, PB* и PC*, (вместо звёздочки – цифра) отмечены тёмно-бежевым цветом. Почему “официально” они называются PD/PB/PC? Потому что пины объединены в пОрты по несколько штук (не более 8), на примере Нано есть три порта: D, B и C, соответственно пины так и подписаны: PD3 – Port D 3 – третий выход порта D. Это цифровые пины, способные выдавать логический сигнал (0 или VCC) и считывать такой же логический сигнал. VCC это напряжение питания микроконтроллера, при обычном использовании обычной платы Ардуино это 5 Вольт, соответственно это 5 вольтовая логика: 0V – сигнал низкого уровня (LOW), 5V – высокого уровня (HIGH). Напряжение питания микроконтроллера играет очень большую роль, об этом мы ещё поговорим. GPIO имеют несколько режимов работы: вход (INPUT), выход (OUTPUT) и вход с подтяжкой к питанию встроенным в МК резистором на 20 кОм (INPUT_PULLUP). Подробнее о режимах поговорим в отдельном уроке.

Все GPIO пины в режиме входа могут принять сигнал с напряжением от 0 до 5 вольт (на самом деле до 5.5 вольт, согласно даташиту на микроконтроллер). Отрицательное напряжение или напряжение, превышающее 5.5 Вольт приведёт к выходу пина или даже самого МК из строя. Напряжение 0-2.5 вольта считается низким уровнем (LOW), 2.5-5.5 – высоким уровнем (HIGH). Если GPIO никуда не подключен, т.е. “висит в воздухе”, он принимает случайное напряжение, возникающее из за наводок от сети (провода 220в в стенах) и электромагнитных волн на разных частотах, которыми пронизан современный мир.

GPIO в режиме выхода (OUTPUT) являются транзисторными выходами микроконтроллера и могут выдать напряжение 0 или VCC (напряжение питания МК). Стоит отметить, что микроконтроллер – логическое, а не силовое устройство, его выходы рассчитаны на подачу сигналов другим железкам, а не на прямое их питание. Максимальный ток, который можно снять с GPIO выхода ардуино – 40 мА. Если попытаться снять больше – пин выйдет из строя (выгорит выходной транзистор и всё). Что такое 40 мА? Обычный 5мм одноцветный светодиод потребляет 20 мА, и это практически единственное, что можно питать напрямую от Ардуино. Также не стоит забывать о максимальном токе со всех пинов, он ограничен 200 мА, то есть не более 10 светодиодов можно запитать от платы на полную яркость…

Интерфейсы


Большинство GPIO имеют дополнительные возможности, так как к ним подключены выводы с других систем микроконтроллера, с ними вы уже знакомы из предыдущего урока:

  • ADC (АЦП, аналогово-цифровой преобразователь) – зелёные подписи ADC* на распиновке
  • UART (интерфейс связи) – голубые TXD и RXD на распиновке
  • Выводы таймеров, они же ШИМ пины – светло-фиолетовые OC*A и OC*B, где * номер таймера
  • SPI (интерфейс связи) – голубые SS, MOSI, MISO, SCK
  • I2C (интерфейс связи) – голубые SDA и SCL
  • INT (аппаратные прерывания) – розовые INT0 и INT1, а также PCINT* – PinChangeInterrupt

Если про интерфейсы мы уже говорили, то АЦП, прерывания и выводы таймеров ещё не затрагивали.

АЦП


ADC пины (с АЦП) помечены на плате буквой A. Да, пины A6 и A7 на плате Нано имеют только вход на АЦП и не являются GPIO пинами! АЦП – аналогово-цифровой преобразователь, позволяет измерять напряжение от 0 до VCC (напряжения питания МК) или опорного напряжения. На большинстве плат Ардуино разрядность АЦП составляет 10 бит (2^10 = 1024), что означает следующее: напряжение от 0 до опорного преобразуется в цифровую величину от 0 до 1023 (1024-1 так как отсчёт идёт с нуля). Опорное напряжение играет очень большую роль: при опорных 5V один шаг измерения АЦП составит 4.9 милливольта (0.00488 В), а при опорных 1.1В – 1.1 мВ (0.00107 В). Вся суть в точности, я думаю вы поняли. Если опорное напряжение установлено ниже напряжения питания МК, то оцифровывая напряжение выше опорного мы получим 1023. Подавая на АЦП напряжение выше 5.5 Вольт получим выгоревший порт. Подавать отрицательное напряжение также не рекомендуется. На ардуино есть несколько режимов опорного напряжения: оно может быть равно VCC (напряжению питания), 1.1V (от встроенного в МК стабилизатора) или получать значение с внешнего источника в пин Aref, таким образом можно настроить нужный диапазон и получить нужную точность. У других моделей Ардуино (например у Меги) есть и другие встроенные режимы. Опорное напряжение рекомендуется заводить на плату через резистор, например на 1 кОм. Для измерения напряжений выше 5.5 вольт необходимо использовать делитель напряжения на резисторах.

Таймеры (ШИМ)


Выводы таймеров: в микроконтроллере, помимо обычного вычислительного ядра, с которым мы работаем, находятся также “хардварные” счётчики, работающие параллельно со всем остальным железом. Эти счётчики также называют таймерами, хотя к таймерам они не имеют никакого отношения: счётчики буквально считают количество тиков, которые делает кварцевый генератор, задающий частоту работы для всей системы. Зная частоту генератора (обычно 16 МГц) можно с очень высокой точностью определять интервалы времени и делать что-то на этой основе. Какой нам прок от этих счётчиков? “Из коробки” под названием Arduino IDE мы имеем несколько готовых, основанных на таймерах инструментов (функции времени, задержек, измерения длин импульсов и другие).

В этой статье речь идёт о пинах и выходах, о них и поговорим: у каждого счётчика есть два выхода на GPIO. У нано (у МК ATmega328p) три счётчика, соответственно 6 выходов. Одной из возможностей счётчиков является генерация ШИМ сигнала, который и выводится на соответствующие GPIO. Для нано это D пины 5 и 6 (счётчик 0), 9 и 10 (таймер 1) и 3 и 11 (таймер 2). ШИМ сигналу посвящен отдельный урок, сейчас просто запомним, что с его помощью можно управлять яркостью светодиодов, скоростью вращения моторчиков, мощностью нагрева спиралей и многим другим. Но нужно помнить, что ограничение по току в 40 мА никуда не делось и питать от пинов ничего мощнее светодиодов нельзя.

Прерывания


Аппаратные прерывания позволяют процессору мгновенно переключаться на некий блок действий (функция обработчик прерывания) при изменении уровня сигнала на пине. Подробнее об этом, а также о PinChangeInterrupts поговорим в другом уроке.

Другие пины


  • Пин 3.3V может быть использован для питания маломощных датчиков и модулей: максимальный ток, который можно снять с пина 3.3V составляет 150 мА, что с головой хватает для любых датчиков и модулей, кроме пожалуй радиомодулей nrf25L01.
  • Пины GND – земля питания, все GND связаны между собой
  • Пин 5V – питание от источника с напряжением до 5.5V (подробнее о питании смотри в следующем уроке)
  • Пин Vin – питание от источника с напряжением 7-15V (подробнее о питании смотри в следующем уроке)
  • RST – перезагрузка МК. Также этот пин выведен на кнопку

Важные страницы


Схема контактов разъема кабеля мобильного телефона / смартфона Micro-USB

@ pinoutguide.com

Хотя многие доступные в настоящее время устройства и кабели по-прежнему используют штекеры Mini-USB, разъемы Micro-USB получили широкое распространение и наиболее широко используются. Более тонкие микроразъемы заменили мини-штекеры в новых устройствах, включая смартфоны, персональные цифровые помощники и камеры. Группа операторов сотовой связи Open Mobile Terminal Platform (OMTP) одобрила Micro-USB в качестве стандартного разъема для передачи данных и питания мобильных устройств, а в 2009 году он был принят почти всеми производителями сотовых телефонов в качестве стандартного порта для зарядки.В настоящее время разъем Micro-USB начинает вытесняться разъемом USB type-C.

Штырь Имя Цвет кабеля Описание
1 VCC Красный +5 В постоянного тока
2 D- Белый Данные —
3 D + зеленый Данные +
4 ID Может быть нормально замкнутым, заземленным или использоваться в качестве индикатора наличия подключенного устройства (замкнуто на заземление с помощью резистора)
5 GND Черный Земля

Распиновка сигналов USB

USB — это последовательная шина.Он использует 4 экранированных провода: два для питания (+ 5 В и GND) и два для дифференциальных сигналов данных (обозначены как D + и D- в распиновке). Схема кодирования NRZI (Non Return to Zero Invert), используемая для отправки данных с полем синхронизации для синхронизации часов хоста и приемника. В USB-кабеле для передачи данных сигналы Data + и Data- передаются по витой паре. Прекращение не требуется. Полудуплексная дифференциальная сигнализация помогает бороться с эффектами электромагнитного шума на более длинных линиях. Вопреки распространенному мнению, D + и D- действуют вместе; они не являются отдельными симплексными соединениями.

,Распиновка шины

PCMCIA (PC Card) @ pinouts.ru

16-битная шина, определенная PCMCIA.

Карты PCMCIA имеют 68 назначений контактов и взаимодействуют с 8- и 16-битными шинами. Они также поддерживают физический доступ к памяти до 64 МБ. Карты PCMCIA предоставляют универсальные возможности расширения для мобильных компьютеров и могут поддерживать множество функций, включая проводные и радиосвязи, факс и модем, запоминающее устройство большой емкости и расширение памяти для хост-компьютеров.

Существует три типа разъемов PCMCIA, которые определяются толщиной карты, которая в них помещается.Все типы обратно совместимы.

Карты типа I
имеют толщину 3,3 мм. Они в основном используются в персональных цифровых помощниках (PDAS) и портативных устройствах, таких как RAM, FLASH-память, электрически стираемая программируемая постоянная память (EEPROM) и одноразовая программируемая память (OTP).

Карты типа II
имеют толщину 5 мм и полностью совместимы с 1/0. Вы можете использовать их для расширения памяти или для функций 1/0 в модемах, подключениях к локальной сети и связи с хостом.

Карты типа III
мера толщиной 10,5 мм. Они разработаны в первую очередь для съемных жестких дисков и устройств радиосвязи, требующих большего размера. Их также можно использовать для расширения памяти.

Миниатюрные карты
имеют толщину 3,5 мм

Реализация PCMCIA (PC Card) основана на 8/16-битной шине ISA данных (24-битная адресная шина)

19

90 038 Адрес 2

Pin Память I / O + Mem Описание
1 GND GND Земля
2 D3 D3 Данные 3
3 D4 D4 Данные 4
4 D5 D5 Данные 5
5 D6 D6 Данные 6
6 D7 D7 Данные 7
7 CE1 # CE1 #
8 A10 A10 Адрес 10
9 OE # OE # Разрешение вывода
10 A11 A11 Адрес 11
11 A9 A9 Адрес 9
12 A8 A8 Адрес 8
13 A13 A13 Адрес 13
14 A14 A14 Адрес 14
15 WE # WE # Запись Разрешить ???
16 ГОТОВ IREQ #
17 Vcc Vcc Vcc
18 Vpp1 Vpp1 Vpp1
A16 Адрес 16
20 A15 A15 Адрес 15
21 A12 A12 Адрес 12
22 A7 A7 Адрес 7
23 A6 A6 Адрес 6
24 A5 A5 Адрес 5
25 A4 A4 Адрес 4
26 A3 A3 Адрес 3
27 A2 A2
28 A1 A1 Адрес 1
29 A0 A0 Адрес 0
30 D0 D0 Данные 0
31 D1 D1 Данные 1
32 D2 D2 Данные 2
33 WP IOIS16 #
34 GND GND Земля
35 GND GND Земля
36 CD1 # CD1 # Обнаружение карты 1
37 D11 D11 Данные 11
38 D12 D12 Данные 12
39 D13 D13 9 0039

Данные 13
40 D14 D14 Данные 14
41 D15 D15 Данные 15
42 CE2 # CE2 #
43 VS1 # VS1 #
44 RSRVD IORD # Зарезервировано / IORD #
45 RSRVD IOWR # Зарезервировано / IOWR #
46 A17 A17 Адрес 17
47 A18 A18 Адрес 18
48 A19 A19 Адрес 19
49 A20 A20 Адрес 20
50 A21 A21 Адрес 21
5 1 Vcc Vcc Vcc
52 Vpp2 Vpp2 Vpp2
53 A22 A22 Адрес 22
54 A23 A23 A Адрес 23
55 A24 A24 Адрес 24
56 A25 A25 Адрес 25
57 VS2 # VS2 #
58 СБРОС СБРОС Сброс
59 WAIT # WAIT #
60 RSRVD INPACK # Зарезервировано / ???
61 REG # REG #
62 BVD2 SPKR # Напряжение батареи 2 / динамик ???
63 BVD1 STSCHG # Напряжение аккумулятора 1 / ???
64 D8 D8 Данные 8
65 D9 D9 Данные 9
66 D10 D10 Данные 10
67 CD2 # CD2 #
68 GND GND Ground

Другое изображение (посмотрите на карту):

9003 8 38

9072 8 A7
Mem I / O + Mem Mem I / O + Mem
GND 1 35 GND
D3 2 36 ->! CD1
D4 3 37 D11
D5 4 D12
D6 5 39 D13
D7 6 40 D14
7 41 D15
A10 -> 8 42! CE2
! OE -> 9 43! VS1
A11 -> 10 44 RSRVD! IORD
A9 -> 11 45 RSRVD! IOWR
A8 -> 12 46 A17
A13 -> 13 47 A18
A14 -> 14 48 A19
! WE -> 15 49 A20
ГОТОВ! IREQ -> 16 50 A21
Vcc -> 17 51 V
Vpp1 -> 18 52 Vpp2
A16 -> 19 53 A22
A15 — -> 20 54 A23
A12 -> 21 55 A24
-> 22 56 A25
A6 -> 23 57! VS2
A5 — > 24 58 СБРОС
A4 -> 25 59 ->! ПОДОЖДИТЕ
A3 -> 26 60 RSRVD! INPACK
A2 -> 27 61! REG
A1 -> 28 62 -> BVD2! SPKR
A0 -> 29 63 BVD1! STSCHG
D0

9003 9

64 D8
D1 31 65 D9
D2 32 66 D10
! IOIS16 -> 33 67 ->! CD2
GND 34 68 GND

,

Какая распиновка у этого модуля?


Штифт Имя Описание
1 GND Земля
2 CAD0 Адрес / Данные 0
3 CAD1 Адрес / Данные 1
4 CAD3 Адрес / Данные 3
5 CAD5 Адрес / Данные 5
6 CAD7 Адрес / Данные 7
7 CCBE0 # Команда / Байт Разрешение 0
8 CAD9 Адрес / Данные 9
9 CAD11 Адрес / Данные 11
10 CAD12 Адрес / Данные 12
11 CAD14 Адрес / Данные 14
12 CCBE1 # Команда / Байт Разрешение 1
13 CPAR Четность
14 CPERR № Ошибка четности
15 CGNT № Грант
16 CINT # Прерывание
17 Vcc Vcc
18 Vpp1 Vpp1
19 CCLK CCLK
20 CIRDY # Инициатор готов
21 CCBE2 # Команда / Байт Разрешение 2
22 CAD18 Адрес / Данные 18
23 CAD20 Адрес / Данные 20
24 CAD21 Адрес / Данные 21
25 CAD22 Адрес / Данные 22
26 CAD23 Адрес / Данные 23
27 CAD24 Адрес / Данные 24
28 CAD25 Адрес / Данные 25
29 CAD26 Адрес / Данные 26
30 CAD27 Адрес / данные 27
31 CAD29 Адрес / Данные 29
32 RSRVD Зарезервировано
33 CCLKRUN № CCLKRUN №
34 GND Земля
35 GND Земля
36 CCD1 # Обнаружение карты 1
37 CAD2 Адрес / Данные 2
38 CAD4 Адрес / Данные 4
39 CAD6 Адрес / Данные 6
40 RSRVD Зарезервировано
41 CAD8 Адрес / Данные 8
42 CAD10 Адрес / Данные 10
43 CVS1
44 CAD13 Адрес / Данные 13
45 CAD15 Адрес / Данные 15
46 CAD16 Адрес / Данные 16
47 RSRVD Зарезервировано
48 CBLOCK # Блок ???
49 CSTOP # Остановить цикл передачи
50 CDEVSEL № Выбор устройства
51 Vcc Vcc
52 Vpp2 Vpp2
53 CTRDY # Готовность к цели
54 CFRAME № Адрес или фаза данных
55 CAD17 Адрес / Данные 17
56 CAD19 CAD19
57 CVS2
58 CRST № Сброс
59 CSERR № Системная ошибка
60 CREQ # Запрос ???
61 CCBE3 # Команда / разрешение байта 3
62 КАУДИО Аудио ???
63 CSTSCHG
64 CAD28 Адрес / Данные 28
65 CAD30 Адрес / Данные 30
66 CAD31 Адрес / Данные 31
67 CCD2 # Обнаружение карты 2
68 GND Земля

ЗЕМЛЯ 1 35 GND
CAD0 <-> 2 36 ->! ПЗС1
CAD1 <-> 3 37 <-> CAD2
CAD3 <-> 4 38 <-> CAD4
CAD5 <-> 5 39 <-> CAD6
CAD7 <-> 6 40 RSRVD
! CCBE0 -> 7 41 <-> CAD8
CAD9 <-> 8 42 <-> CAD10
CAD11 <-> 9 43 CVS1
CAD12 <-> 10 44 <-> CAD13
CAD14 <-> 11 45 <-> CAD15
! CCBE1 -> 12 46 <-> CAD16
CPAR -> 13 47 RSRVD
! CPERR -> 14 48! CBLOCK
! CGNT -> 15 49! CSTOP
! CINT -> 16 50! CDEVSEL
Vcc -> 17 51 <- Vcc
Впп1 -> 18 52 <- Vpp2
CCLK -> 19 53! CTRDY
! CIRDY 20 54! CFRAME
! CCBE2 -> 21 55 <-> CAD17
CAD18 <-> 22 56 <-> CAD19
CAD20 <-> 23 57 CVS2
CAD21 <-> 24 58 <-! CRST
CAD22 <-> 25 59! CSERR
CAD23 <-> 26 60! CREQ
CAD24 <-> 27 61 <-! CCBE3
CAD25 <-> 28 62 -> КАУДИО
CAD26 <-> 29 63 CSTSCHG
CAD27 <-> 30 64 <-> CAD28
CAD29 <-> 31 65 <-> CAD30
RSRVD 32 66 <-> CAD31
! CCLKRUN <- 33 67 ->! CCD2
ЗЕМЛЯ 34 68 GND