В каких устройствах используется тепловое действие тока магнитное: В каких устройствах используют магнитное действие тока?

Содержание

Действие электрического тока




Наличие тока в электроцепи всегда проявляется каким-либо действием. Например, работа при конкретной нагрузке или какое-то сопутствующее явление. Следовательно, именно действие электротока говорит о его присутствии как таковом в той или иной электроцепи. То есть, если работает нагрузка, то ток имеет место быть. 


Известно, что электрический ток вызывает различного рода действия. Например, к таковым относятся тепловые, химические, магнитные, механические или световые. При этом различные действия электрического тока способны проявлять себя одновременно. Более подробно о всех проявлениях мы расскажем Вам в данном материале.


Тепловое явление

Известно, что температура проводника повышается при прохождении через него тока. В качестве таких проводников выступают различные металлы или их расплавы, полуметаллы или полупроводники, а также электролиты и плазма. Например, при пропускании через проволоку из нихрома электрического тока происходит ее сильное нагревание. Данное явление используют в приборах нагрева, а именно: в электрических чайниках, кипятильниках, обогревателях и т.п. Электродуговая сварка отличается самой большой температурой, а именно нагрев электродуги может достигать до 7 000 градусов по Цельсию. При такой температуре достигается легкое расплавление металла. 


Количество выделяемой теплоты напрямую зависит от того, какое напряжение было приложено к данному участку, а также от электротока и времени его прохождения по цепи. 


Для расчета объемов выделяемой теплоты используется или напряжение, или сила тока. При этом необходимо знание показателя сопротивления в электроцепи, поскольку именно оно провоцирует нагрев из-за ограничения тока. Также количество тепла можно определить при помощи тока и напряжения.


Химическое явление

Химическое действие электротока заключается в электролизе ионов в электролите. Анод при электролизе присоединяет к себе анионы, катод – катионы.  


Иными словами, во время электролиза на электродах источника тока происходит выделение определенных веществ.


Приведем пример: в кислотный, щелочной или же солевой раствор опускаются два электрода. После пропускается по электроцепи ток, что провоцирует создание положительного заряда на одном из электродов, на другом – отрицательного. Ионы, которые находятся в растворе, откладываются на электроде с иным зарядом. 


Химическое действие электротока применяется в промышленности. Так, используя данное явление, осуществляют разложение воды на кислород и водород. Кроме того, при помощи электролиза получают металлы в их чистом виде, а также осуществляют гальваническое покрытие поверхности. 


Магнитное явление


Электрический ток в проводнике любого агрегатного состояния создает магнитное поле. Иными словами, проводник при электрическом токе наделяется магнитными свойствами.


Таким образом, если к проводнику, в котором протекает электроток, приблизить магнитную стрелку компаса, то та начнет поворачиваться и займет к проводнику перпендикулярное положение. Если же на сердечник из железа намотать данный проводник и пропустить сквозь него постоянный ток, то данный сердечник примет свойства электромагнита. 


Природа магнитного поля всегда заключается в наличии электрического тока. Объясним: движущиеся заряды (заряженные частицы) образуют магнитное поле. При этом токи противоположного направления отталкиваются, а одинакового направления – притягиваются. Данное взаимодействие обосновано магнитным и механическим взаимодействием магнитных полей электротоков. Выходит, что магнитное взаимодействие токов первостепенно. 


Магнитное действие применяется в трансформаторах и электромагнитах. 


Световое явление


Самый простой пример светового действия – лампа накаливания. В данном источнике света спираль достигает нужной температурной величины посредством проходящего сквозь нее тока до состояния белого каления. Тем самым и излучается свет. В традиционной лампочке накаливания всего лишь пять процентов всей электроэнергии расходуется на свет, остальная же львиная доля преобразуется в тепло.  


Более современные аналоги, например, люминесцентные лампы наиболее эффективно преобразуют электроэнергию в свет. То есть, около двадцати процентов всей энергии лежит в основе света. Люминофор принимает УФ-излучение, идущее от разряда, что возникает в ртутных парах или в инертных газах. 


Самая эффективная реализация светового действия тока происходит в светодиодных источниках света. Электрический ток, проходя через pn-переход, провоцирует рекомбинацию носителей заряда с излучением фотонов. Лучшими led излучателями света являются прямозонные полупроводники. Изменяя состав данных полупроводников, возможно создание светодиодов для различных световых волн (разной длины и диапазона). Коэффициент полезного действия светодиода достигает 50 процентов. 


Механическое явление


Напомним, что вокруг проводника с электрическим током возникает магнитное поле. Все магнитные действия преобразуются в движение. Примером служат электрические двигатели, магнитные подъемные установки, реле и др.


В 1820 году Андре Мари Ампер вывел известный всем «Закон Ампера», который как раз описывает механическое действие одного электротока на другой. 


Данный закон гласит, что параллельные проводники с электрическим током одинакового направления испытывают притяжение друг другу, а противоположного направления, наоборот, отталкивание. 


Также закон ампера определяет величину силы, с которой магнитное поле воздействует на небольшой отрезок проводника с электротоком. Именно данная сила лежит в основе функционирования электрического двигателя.


Статьи по теме: 

Действия электрического тока — Электрический ток — ЭЛЕКТРОМАГНИТНЫЕ ЯВЛЕНИЯ — ВСЕ УРОКИ ФИЗИКИ 9 класс — конспекты уроков — План урока — Конспект урока — Планы уроков — разработки уроков по физике


1-й семестр

 

ЭЛЕКТРОМАГНИТНЫЕ ЯВЛЕНИЯ

 

2. Электрический ток

Урок 2/8

Тема. Действия электрического тока

 

Цель урока: ознакомить учащихся с действиями электрического тока.

Тип урока: урок изучения нового материала.

План урока





Контроль знаний

5 мин.

1. Имеющийся заряженный электроскоп и металлический стержень. Что нужно сделать, чтобы по стержню поток ток?

2. Капли дождя в процессе падения на землю электризуются. Можно ли говорить о наличии электрического тока между облаком и землей в данном случае?

3. Что такое электрический ток? Условия существования электрического тока

Демонстрации

6 мин.

1. Нагрева провода электрическим током.

2. Выделение меди из раствора медного купороса.

3. Действие катушки с током на магнитную стрелку

Изучение нового материала

28 мин.

1. Тепловое действие тока.

2. Химическое действие тока.

3. Магнитное действие тока.

4. Наблюдаем физиологическую (биологическую) действие электрического тока на организм

Закрепление изученного материала

6 мин.

Решение качественных задач

 

ИЗУЧЕНИЕ НОВОГО МАТЕРИАЛА

1. Тепловое действие тока

Действиями электрического тока называют те явления, которые наблюдаются при наличии электрического тока в цепи. За этими действиями судят о электрический ток в коле, потому что нельзя непосредственно наблюдать за движением заряженных частиц в проводнике.

С некоторыми действиями электрического тока учащиеся знакомы из повседневной жизни. Поэтому прежде всего нужно выяснить, что им известно, а потом уже обратиться к опытам.

Тепловое действие тока можно наблюдать, например, присоединив к полюсам источника тока нікеліновий или нихромовая проволока.

О тепловое действие тока учеником известно из повседневной жизни: так работают электрический паяльник, электроплитка, утюг, лампа накаливания и много других предметов.

2. Химическое действие тока

Химическое действие тока можно наблюдать при пропускании электрического тока через раствор медного купороса CuSO4. Ученикам может быть объяснено, что при взаимодействии вещества с растворителем молекулы вещества распадаются на положительные и отрицательные ионы. Эти ионы в электрическом поле будут двигаться направленно. Положительные ионы движутся к отрицательно заряженному электроду (катоду), а отрицательные ионы — к положительно заряженному электроду (аноду). Водород и металлы всегда выделяются на катоде.

Можно сделать вывод:

Ø Электрический ток в электролите — это направленное движение ионов в электрическом поле.

Химическое действие электрического тока используют в промышленности (добыча алюминия, меди и других металлов, никелирование, хромирование и др.).

Чтобы продемонстрировать ученикам химическое действие тока, в сосуд с раствором медного купороса опускаем два угольных электрода и пропускаем через раствор электрический ток. Через некоторое время на одном из электродов обнаруживаем тонкий слой чистой меди.

 

 

3. Магнитное действие тока

Магнитное действие тока можно показать с помощью катушки с железным сердечником. Когда круг замкнутый, к сердечники притягиваются небольшие железные предметы: гвозди, железные опилки и т. д. Поскольку в международной системе единиц (СИ) единица силы тока ампер вводят за взаимодействием проводников с током, целесообразно показать взаимодействие двух параллельно расположенных проводников с током.

4. Наблюдаем физиологическое действие электрического тока на организм

Если человек неізольована от земли, то, прикоснувшись к проводнику, находящемуся под напряжением, она включает в себя в электрическую цепь. В этом случае через тело человека проходит электрический ток.

Действие электрического тока на живую ткань имеет разносторонний характер. Проходя через организм человека, ток оказывает термическое, электролитическую, механическую, биологическую и световое воздействие.

Во время термического воздействия происходит перегрев и функциональное расстройство органов на пути прохождения тока.

Электролитическая действие тока выражается в электролизе жидкости в тканях организма, в том числе крови, и нарушении ее физико-химического состава.

Механическое действие приводит к разрыву тканей, расслоению, ударному действию испарения жидкости из тканей организма. Механическое действие связано с сильным сокращением мышц вплоть до их разрыва.

Биологическое действие тока выражается в раздражении и перевозбуждении нервной системы.

Световая действие приводит к поражению глаз.

Характер и глубина воздействия электрического тока на организм человека зависит от силы и рода тока, времени его действия, пути прохождения через тело человека, физического и психологического состояния.

Электрический ток, действуя на организм человека, может привести к различным поражениям: электрическому удару, ожогу, металлизации кожи, электрическому знаку, механическому повреждению, електрофтальмії.

Электрический удар ведет к возбуждению живых тканей.

Электрический ожог различных степеней — следствие коротких замыканий — при соприкосновении человека (непосредственно или через электрическую дугу) с токоведущими частями электрических приборов.

Электрический знак (оценка тока) — специфические поражения, обусловленные механическим, химическим или их совместным воздействием тока. Пораженный участок кожи практически безболезненна, вокруг знака отсутствуют воспалительные процессы. Со временем он твердеет, и поверхностные ткани отмирают. Електрознаки обычно быстро излечиваются.

Металлизация кожи — так называемое пропитывание кожи мельчайшими парообразными или расплавленными частицами металла под влиянием механического или химического воздействия тока. Пораженный участок кожи приобретает твердой поверхности и своеобразного окраса. В большинстве случаев металлизация излечивается, не оставляя на коже следов.

Електрофтальмія — поражение глаз ультрафиолетовыми лучами, источником которых является вольтовая дуга. В результате електрофтальмії через несколько часов наступает воспалительный процесс, который проходит, если принять необходимых средств лечения.

 

Вопрос к учащимся в ходе изложения нового материала

· Как узнать, проходит ли ток по проводнику?

· Где используют тепловое и химическое действия тока?

· Приведите примеры механического действия тока?

· Где используют магнитное действие тока?

· Приведите примеры, подтверждающие влияние электрического тока на организм человека.

 

ЗАКРЕПЛЕНИЕ ИЗУЧЕННОГО МАТЕРИАЛА

1. Качественные вопросы

1) В каких устройствах используется тепловое действие тока?

2) В каких устройствах используется магнитное действие тока?

3) Какие действия тока можно наблюдать, пропуская ток через морскую воду?

4) Как вы считаете, будет двигаться стрелка компаса во время удара молнии?

5) Почему вспышка молнии сопровождается громом?

Указание. Воздух в канале молнии нагревается и вследствие этого резко расширяется.

 

Что мы узнали на уроке

· Действиями электрического тока называют те явления, которые наблюдаются при наличии электрического тока в цепи.

· Электрический ток в электролите — это направленное движение ионов в электрическом поле.

· Действие электрического тока на живую ткань имеет разносторонний характер. Проходя через организм человека, ток оказывает термическое, электролитическую, механическую, биологическую и световое воздействие.

 

Домашнее задание

1. Подр.: § 6.

2. Сб.:

рів1 — № 4.2; 4.7; 4.8; 4.9; 4.10.

рів2 — № 4.22; 4.24; 4.27; 4.28, 4.29.

рів3 — № 4.46, 4.49; 4.50; 4.51.



Нагревание проводников электрическим током. Закон Джоуля-Ленца


Цели урока:


Образовательная:

  • Способствовать формированию у учащихся представления о тепловом действии электрического тока и его причинах.
  • Вывести закона Джоуля-Ленца.
  • Содействовать в понимании практической значимости данной темы.


Развивающая:

  • Развитие интеллектуальных умений учащихся (наблюдать, сравнивать, применять ранее усвоенные знания в новой ситуации, размышлять, анализировать, делать выводы)


Воспитательная:

  • формирование коммуникативных умений учащихся.
  • содействовать формированию мировоззренческой идеи познаваемости явлений и свойств окружающего мира;


Оборудование: компьютер, проектор, экран, презентация к уроку, источник тока, амперметр, вольтметр, низковольтная лампа на подставке, ключ, соединительные провода, три провода из разного металла, настольная лампа.


Тип урока: Изучение нового материала.

Ход урока

І. Организационный момент


 Здравствуйте, ребята! Я рада вас сегодня видеть на нашем уроке! Посмотрите друг на друга. Улыбнитесь, пошлите друг другу положительные эмоции и начнём урок!

Слайд 2


Эпиграф: 


Науки все глубже постигнуть стремись, 

Познанием вечного жаждой томись. 

Лишь первых познаний блеснет тебе свет, 

Узнаешь: предела для знания нет.  

Фирдоуси 


Учитель: Эти слова по праву можно отнести к разделу «Электрические явления». Было сделано немало открытий, осветивших нашу жизнь в прямом и переносном смысле. А сколько еще вокруг нас осталось не исследованным! Хочется надеяться, что сегодняшний урок разбудит у вас, восьмиклассников, жажду новых познаний и стремление использовать открытые эффекты и закономерности на практике. 


У вас на столе лежат оценочные листки (приложение 1)куда вы будете вносить оценки за все ваши действия, а в конце выставите итоговую оценку за урок. Подпишите их пожалуйста.

II. Мотивация


Мы с вами на прошлом уроке познакомились с двумя новыми величинами электричества: это работа и мощность. Сегодня придём к новому названию одной из величин.


На данном этапе учитель предлагает учащимся самостоятельно сформулировать цель урока.


На столе стоит электрическая лампа, учитель включает её.  


Учитель: Ребята попробуйте это объяснить с точки зрения физики. Почему лампочка горит? Почему это происходит?


Учащиеся: Основная часть лампы – спираль из тонкой вольфрамовой проволоки, она нагревается до 3000 °С, при такой температуре достигает белого накала и светится ярким светом и даёт тепло.


Какое действие тока мы здесь с вами наблюдаем?


Разомкнув ключ потрогать лампочку.


Что произошло с лампочкой? (Нагрелась)


Какое действие электрического тока вы наблюдаете? 


Если лампочка долго горит, можно ли её выкрутить голыми руками? Почему?


(Световое и Тепловое)


Здесь мы наблюдаем тепловое действие электрического тока.


Учитель: Тепловое действие тока находит очень широкое применение в быту и промышленности. Как вы думаете, как в быту используется тепловое действие тока?


Учащиеся: Электронагревательные приборы: утюги, кипятильники, электрические чайники, нагреватели, электроплиты, фены и т. д.


Учитель: В промышленности также широко используют тепловое действие электрического тока в паяльниках, сварочных аппаратах.


На столе у меня стоят разные электрические приборы, которыми вы пользуетесь в повседневной жизни,


Что это за приборы? Для чего они нужны? Что ими делают?


Посмотрим характеристики.


Паяльник и утюг нельзя трогать рукой, можно обжечься, а феном мы сушим голову и не испытываем ожога. Почему?


Учитель: А теперь попытаемся сформулировать тему нашего урока. (Ребята рассуждают)

Слайд 2


Итак, мы имеем дело с тепловым действием тока, следовательно, тема сегодняшнего урока «Нагревание проводников электрическим током. Закон Джоуля–Ленца». Записываем тему урока в тетрадь.


Каких целей мы должны сегодня достичь?

Слайд 3


Цели урока:

  • объяснить явление нагревания проводников электрическим током;
  • установить зависимость выделяющейся при этом тепловой энергии от параметров электрической цепи;
  • сформулировать закон Джоуля – Ленца; 
  • формировать умение применять этот закон для решения физических задач.

ІІІ. Актуализация опорных знаний


Фронтальный опрос.

Слайд 4


Вспомним изученный ранее материал:

  • Что называют электрическим током? (Упорядоченное движение заряженных частиц)
  • Что представляет собой электрический ток в металлах? (Электрический ток в металлах представляет собой упорядоченное движение свободных электронов)
  • Какие действия тока вам известны? (Тепловое, электрическое, магнитное, химическое)
  • Какие три величины связывают закон Ома? (I, U, R; сила тока, напряжение, сопротивление.).
  • Как формулируется закон Ома? (Сила тока в участке цепи прямо пропорциональна напряжению на концах этого участка и обратно пропорциональна его сопротивлению.)
  • Чему равна работа электрического тока на участке цепи? (равна произведению напряжения на концах этого участка на силу тока и на время, в течение которого протекал ток А = U*I*t )
  • Что такое мощность электрического тока? (физическая величина характеризующая быстроту совершения работы электрическим током)
  • Что такое электрическое сопротивление? (физическая величина, характеризующая способность проводника препятствовать протеканию электрического тока в этом проводнике)
  •  От каких величин зависит сопротивление? (длины проводника, площади поперечного сечения, рода вещества) Рассмотреть как зависит сопротивление от длины проводника, площади поперечного сечения.
  • При каком соединении все потребители находятся при одной и той же силе тока? (При последовательном соединении)
  •  Закон сохранения и превращения энергии. (Во всех явления, происходящих в природе, энергия не возникает ни откуда и не исчезает бесследно. Она только превращается из одного вида в другой, при этом ее значение сохраняется.)


Все, что стоит на столе – это потребители электрического тока.

Слайд 5


Потребители электрического тока


Какой прибор не вписывается в общий ряд? Уберите лишний.


Чем ты руководствовался, делая выбор?


Какое действие электрического тока проявляется в выбранных приборах? (Тепловое)


Во всех приборах есть нагревательный элемент. А у дрели щётки, они ни чего не нагревают.

IV. Изучение нового материала


Давайте потрем ладошки. Что мы совершаем, когда трём ладошками? (работу). Что мы чувствуем? (тепло). Почему они нагреваются?


(Ребята рассуждают.)


Остановимся на тепловом действии электрического тока. Электрический ток нагревает проводник. Объясняется нагревание тем, что свободные электроны в металлах или ионы в растворах солей, щелочей, кислот, перемещаясь под действием электрического поля, взаимодействуют с ионами или атомами вещества проводника и передают им свою энергию. В неподвижных металлических проводниках вся работа тока идет на увеличение их внутренней энергии. Нагретый проводник отдает полученную энергию окружающим телам, но уже путем теплопередачи.


Можно сказать, что количество теплоты, выделяемое проводником, по которому течет ток, равно работе тока.

Слайд 6


Почему же проводники нагреваются?


Рассмотрим на примере движении одного электрона по проводнику.


Электрический ток в металлическом проводнике – это упорядоченное движение электронов.


Провод – это кристалл из ионов, поэтому электронам приходится «течь» между ионами, постоянно наталкиваясь на них. При этом часть кинетической энергии электроны передают ионам, заставляя их колебаться сильнее. Кинетическая энергия ионов увеличивается, следовательно увеличивается внутренняя энергия проводника, и следовательно его температура.


А это и значит что, проводник нагревается.


В неподвижных металлических проводниках вся работа электрического тока идёт на увеличение внутренней энергии.

Слайд 7


Переход работы тока в теплоту

  • Электроны направленно движутся
  • Сталкиваются с ионами
  • Передают им часть энергии
  • Ионы колеблются быстрее
  • Увеличивается внутренняя энергия проводника
  • Выделяется теплота
  • По закону сохранения и превращения энергии A = Q

Слайд 8

Вывод закона Джоуля – Ленца


А = IUt


A = Q


Q = IUt , U = IR – закон Ома, Q = I*I*R*t, Q = I²Rt


Q = IUt , I = U/R – закон Ома, Q = U*t*U/R


где Q – выделившееся количество теплоты в Джоулях, R – сопротивление в Омах, I – сила тока в Амперах, t – время в секундах.


Единица измерения работы в СИ: Джоуль.

Слайд 9

Исследование зависимости количества выделяемой теплоты от параметров цепи


От чего может зависеть выделяемая теплота в электрической цепи?


Гипотеза 1. Количество теплоты зависит от силы тока в цепи


Гипотеза 2. Количество теплоты зависит от сопротивления проводника


Соблюдайте технику безопасности!


Для дальнейшей работы нам нужно поделиться на три группы: две группы экспериментаторов и группа теоретиков.


Деление на группы.


Обращаемся к теме урока и формулируем проблему: Что же нам интересно узнать по теме урока?

Слайд 10

Задания для теоретиков


Группа теоретиков будет на примере решения задач получать зависимость выделяемой теплоты от силы тока в цепи и сопротивления.


При прохождении по спирали электрического чайника ток совершает работу. Вся работа идет на нагревание проводника.

  • Какое количество теплоты выделяется электрическим чайником за 5 мин., если сопротивление спирали 200 Ом, а сила тока в цепи 3А?
  • Какое количество теплоты выделяется электрическим чайником за 5 минут, если сопротивление спирали 100 Ом, а сила тока в цепи 3А?
  • Какое количество теплоты выделяется электрическим чайником за 10 минут, если сопротивление спирали 200 Ом, а сила тока в цепи 3 А?
Задания для экспериментаторов


По каким признакам можем судить, где теплоты выделяется больше, а где меньше? На ощупь(?!), термометром(?), по накалу лампы.


Наша задача: исследовать зависимость количества выделяемой теплоты от параметров цепи.


От чего может зависеть выделяемая теплота в электрической цепи? Я готова выслушать ваши предположения, ребята.


А видна ли эта зависимость теоретически? Да, Q=A, A=IUt, Q =RI2t


Группы экспериментаторов могут приступать к выполнению своих исследований.


Не забывайте о соблюдении техники безопасности!


Карточки с заданием: электрическая цепь, состоящая из нескольких последовательно соединенных проводников различным сопротивлением (медная, стальная, никелиновая).


По формуле Q = I2Rt, если R = pL/S, сделать вывод как нагреваются проводники, если длина проводника L и площадь поперечного сечения S одинаковы.


1 группа: От силы тока в цепи.


Карточки с заданием: электрическая цепь состоящая из источника тока, лампы, ключа, реостата, амперметра, (соединительные провода).


Замкнули цепь и изменяли сопротивление, что наблюдаем?


Что произошло с силой тока?


Как накал лампы зависит от силы тока?


(Чем больше сила тока, тем ярче горит лампочка, а значит больше тепла она выделяет.)


Вывод: количество теплоты зависит от силы тока.


2 группа: От сопротивления цепи.


Карточки с заданием: электрическая цепь, состоящая из 3 последовательно соединенных проводников, одинаковой длины и площади поперечного сечения и различным сопротивлением (медная, стальная, никелиновая), источника тока, ключа, (соединительные провода).


(Были взяты 3 проводника одинаковой длины и площади поперечного сечения, но из разного вещества (медная, стальная, никелиновая). Все проводники соединены между собой последовательно. Следовательно, сила тока на всех участках цепи одинаковая. Но при включении в цепь все 3 проводника выделили разное количество теплоты.(При отключении цепи с помощью электронного термометра убедились, что температура проводников разная, Больше нагрелся проводник (никелиновый) с большим удельным сопротивлением, меньше всего нагрелся медный проводник, с меньшим удельным сопротивлением ). Медные провода поэтому используют для проводки, ещё алюминиевые, они дешевле.


Вывод: чем больше удельное сопротивление проводника, тем сильнее он нагревается.

Слайд 11


Вывод: количество теплоты зависит от того, из какого вещества изготовлен проводник, т. е. от удельного сопротивления проводника. Точнее – от электрического сопротивления проводника (R).






Вещество


Удельное сопротивление
Ом мм2


Нагрев проводника


Медь


0,017


слабый


Сталь


0,1


средний


Никелин


0,42


сильный


Чтобы проводник нагревался сильнее, он должен обладать большим удельным сопротивлением.

Слайд 12


Сделаем вывод.


От чего зависит количество теплоты в проводнике с током?


Вывод: Количество теплоты, которое выделяется при протекании электрического тока по проводнику, зависит от силы тока в этом проводнике и от его электрического сопротивления.


Закон определяющий тепловое действие тока. Закон Джоуля-Ленца.


Джеймс Прескотт Джоуль (1818-1889 гг.) – английский физик.


Обосновал на опытах закон сохранения энергии.


Установил закон определяющий тепловое действие электрического тока. Вычислил скорость движения молекул газа и установил её зависимость от температуры.


Ленц Эмилий Христианович (1804 – 1865) – русский физик.


Один из основоположников электротехники. С его именем связано открытие закона определяющего тепловые действия тока, и закона, определяющего направление индукционного тока.

Слайд 13


Решим задачу.


Определить количество теплоты, выделяемое проводником, сопротивление которого 35 Ом, в течении 5 минут. Сила тока в проводнике 5 А.



Дано:


R = 35 Ом


t = 5 мин


I = 5 А


_________


Q= ?


Си


-


300с



Решение:


Q=I2Rt


Q= (5A)2 · 35 Ом · 300 с = 262500Дж = 262,5 кДж


Ответ: Q=262,5 кДж

Слайд 14


Формулой Q = I2Rt удобно пользоваться при расчете количества теплоты, которое выделяется в проводниках при последовательном соединении, так как в этом случае ток во всех проводниках один и тот же (I = I1 = I2).


Поэтому при последовательном соединении нескольких проводников в каждом из них выделяется количество теплоты, пропорциональное сопротивлению. 


Т.е. чем больше R, тем больше Q и наоборот.


Припараллельном соединениипроводников ток в них различен, но напряжение на концах цепи одно и то же. И поэтому расчет количества теплоты при таком соединении удобнее вести по формуле Q = U2t/R. Эта формула показывает, что при параллельном соединении в каждом проводнике выделяется количество теплоты, обратно пропорциональное сопротивлению, то есть чем больше R, тем меньше Q.


Спираль электрической плитки укоротили. Изменится ли от этого накал плитки и как, если ее включить в сеть электрического тока? 


(Накал будет больше.)

Слайд 15

Систематизация знаний
  • В чем проявляется тепловое действие тока? (В нагревании проводника)
  • Как можно объяснить нагревание проводника с током? (Движущиеся электроны взаимодействуют с ионами кристаллической решетки и передают им свою энергию)
  • Какие превращения энергии происходят при протекании тока через проводник? (Электрическая энергия превращается во внутреннюю)
  • Как по закону Джоуля – Ленца рассчитать количество теплоты, выделяемое в проводнике? (Q = I²Rt)


В рабочих картах урока поставьте оценку за урок.


Выяснить, какое количество учащихся поставили себе за урок «5», «4», «3» и ничего не поставили. (Приложение 1).

Сообщение оценки учащимся за работу на уроке

Слайд 16

V. Рефлексия


А сейчас оцени свою деятельность на уроке, и нарисуй свое настроение:


Нарисуй настроение: В левом верхнем углу оценочного листа.

 Своей работой на уроке доволен, чувствовал себя комфортно, настроение после урока хорошее.


 Своей работой на уроке не доволен, чувствовал себя не совсем комфортно, настроение после урока плохое.


 Состояние на уроке безразличное, урок никак не изменил моего эмоционального состояния и настроения.

Слайд 17


Домашнее задание у вас на каточках.


§ 53, Упр. 27 (1-3).


Всё известно вокруг.

Тем не менее, на земле ещё много того,

Что достойно порой удивления

И вашего, и моего.

Удивляйтесь цветам,

Удивляйтесь росе,

Удивляйтесь упругости стали,

Удивляйтесь тому,

Чему люди уже

Удивляться давно перестали!


До свидания! Спасибо за урок!

Определение по Электродинамике | Объединение учителей Санкт-Петербурга

АКТИВНАЯ МОЩНОСТЬ – физическая величина, равная среднему за период значению мгновенной мощности переменного тока. Позволяет оценить среднюю скорость преобразования электромагнитной энергии в др. виды энергии. В цепи переменного однофазного тока А.м. рассчитывается по формуле: P=IUcosφ. Единица А.м. в СИ – Ватт (Вт).

АКТИВНОЕ СОПРОТИВЛЕНИЕ — физическая величина, равная отношению активной мощности, поглощаемой на участке цепи, к квадрату действующего значения силы переменного тока на этом участке. Позволяет оценить сопротивление электрической цепи или ее участка электрическому току, обусловленное необратимыми превращениями электрической энергии в др. формы (преимущественно во внутреннюю). Единица А.с. в СИ — Ом.

АМПЕРА ЗАКОН — закон взаимодействия двух проводников с токами; параллельные проводники с токами одного направления притягиваются, а с токами противоположного направления — отталкиваются. А.з. называют также закон, определяющий силу, действующую в магнитном поле на малый отрезок проводника с током. Открыт в 1820г. А.М. Ампером.

АНИОНЫ — отрицательно заряженные ионы, движущиеся в электрическом поле к аноду.

АНОД — положительный полюс источника электрической энергии или электрод какого-либо прибора, присоединяемый к положительному полюсу источника тока. Потенциал А. при работе источника всегда выше потенциала катода.

БУРАВЧИКА ПРАВИЛО — правило для определения направления вектора магнитной индукции магнитного поля прямолинейного проводника с током: если Б. (правый винт) ввинчивать по направлению тока, то направление вращения рукоятки буравчика показывает направление вектора магнитной индукции. (Ср.правой руки правило)

ГАЛЬВАНИЧЕСКИЙ ЭЛЕМЕНТ — источник электрического тока, в котором энергия электрохимической реакции преобразуется в электрическую энергию (элемент Вольта, батарейки, аккумуляторы).

ДЕЙСТВУЮЩЕЕ ЗНАЧЕНИЕ — среднее квадратичное за период значение силы переменного тока и напряжения. Д.з. силы синусоидального тока и напряжения в  раз меньше их амплитудных значений. Физический смысл: Д.З. силы переменного тока равно силе такого постоянного тока, при прохождении которого через проводник выделяется то же количество теплоты за то же самое время.

ДЖОУЛЯ-ЛЕНЦА ЗАКОН — закон, описывающий тепловое действие электрического тока. Согласно Д. — Л.з.  количество теплоты, выделяющееся в проводнике при прохождении по нему постоянного тока, прямо пропорционально квадрату силы тока, сопротивлению проводника и времени прохождения тока по проводнику: .

ДИАМАГНЕТИЗМ – явление возникновения в веществе (диамагнетике) намагниченности, направленной навстречу внешнему магнитному полю. Обусловлен индуцированием дополнительного магнитного момента  в атомных электронных оболочках под действием внешнего поля и проявляется в том случае, когда атомы, молекулы или ионы не имеют результирующего собственного магнитного момента. Присущ всем веществам, но часто перекрывается более сильными эффектами (см. парамагнетизм и ферромагнетизм).

ДИНАМИК – распространенное краткое название электродинамического громкоговорителя.

ДИПОЛЬ ЭЛЕКТИРИЧЕСКИЙ – система двух одинаковых по модулю и противоположных по знаку электрических зарядов, расстояние между которыми (плечо Д.) во много раз меньше, чем расстояние от центра Д. до рассматриваемых точек электрического поля. Во внешнем электрическом поле ориентируется вдоль силовых линий поля. Например, диполем можно считать молекулу воды.

ДИПОЛЬ МАГНИТНЫЙ – электрический ток, протекающий по замкнутому контуру (витку), размеры которого малы по сравнению с расстоянием до рассматриваемых точек магнитного поля. Внешнее магнитное поле оказывает на Д.М. ориентирующее действие.

ДИОД — двух электродный прибор с односторонней электрической проводимостью. Применяется для выпрямления переменного тока, в качестве детектора, для преобразования частоты, ограничения тока и напряжения, переключения электрических цепей. Различают электровакуумные и полупроводниковые Д.

ДИЭЛЕКТРИКИ — вещества, практически не проводящие электрического тока. Обладают большим удельным сопротивлением по сравнению с проводниками. Могут быть твердыми, жидкими и газообразными. Во внешнем электрическом поле Д. поляризуется, что приводит к ослаблению электрического поля в Д. (см.поляризация диэлектриков и диэлектрическая проницаемость.)

ДИЭЛЕКТРИЧЕСКАЯ ПРОНИЦАЕМОСТЬ – безразмерная физическаявеличина, равная отношению модуля напряженности электрического поля в вакууме Е0 к модулю напряженности электрического поля в однородном диэлектрике: .

ДОМЕНЫ — области в ферромагнитном (сегнетоэлектрическом) кристалле, в которых ниже определенной температуры (точки Кюри) существует самопроизвольная намагниченность (поляризованность).

ДУГА ЭЛЕКТРИЧЕКАЯ, дуговой разряд – один из видов самостоятельного разряда в газе, в котором разрядные явления сосредоточены в ярко светящемся плазменном шнуре. Возможна в любом газе при давлениях, близких к атмосферному и выше. Применяется в электрометаллургии, светотехнике и в электросварке.

ДЫРКА – в полупроводнике – не занятая электроном вакансия в валентной зоне, которая ведет себя как избыточный положительный заряд.

ЕМКОСТНОЕ СОПРОТИВЛЕНИЕ — физическая величина ХС, которой оценивают сопротивление, оказываемое переменному току проводником вследствие наличия у него электрической емкости. При синусоидальном токе с циклической частотой ω Е. с. равно . Единица в СИ – Ом.

ЕМКОСТЬ ЭЛЕКТРИЧЕСКАЯ — см. электрическая емкость.

ЗАРЯД ЭЛЕКТРИЧЕСКИЙ — см.электрический заряд.

ЗАРЯДА СОХРАНЕНИЯ ЗАКОН — один из фундаментальных законов природы: алгебраическая сумма электрических зарядов любой электрически изолированной системы остается неизменной. В электрически изолированной системе З.с.з. допускает появление новых заряженных частиц (напр., при электролитической диссоциации, ионизации газов, рождении пар частица — античастица и др.), но суммарный электрический заряд появившихся частиц всегда должен быть равен нулю.

ИЗОЛЯТОР ЭЛЕКТРИЧЕСКИЙ – элемент конструкции, выполненный из вещества с очень большим электрическим удельным сопротивлением (диэлектрика). В быту может быть синонимом термина диэлектрик.

ИНДУКТИВНОЕ СОПРОТИВЛЕНИЕ — физическая величина ХL, которой оценивают сопротивление, оказываемое переменному току проводником вследствие наличия у него индуктивности. При синусоидальном токе с угловой частотой ω: XL=ωL.  Единица И.с. в СИ — Ом. Ср.емкостное сопротивление, активное сопротивление.

ИНДУКТИВНОСТЬ — физическая величина, которая характеризует магнитные свойства электрической цепи (проводника) и равна отношению потока магнитной индукции, пересекающего поверхность, ограниченную проводником, к силе тока в этом проводнике. Единица И. в СИ — генри. Ср.электрическая емкость.

ИОНИЗАЦИЯ — отрыв от атома или молекулы газа одного или нескольких электронов. Происходит под действием электромагнитного излучения; ударов электронов, ионов или других атомов. Приводит к возникновению ионов.

ИОНЫ — электрически заряженные атомы или группы атомов, образующиеся при потере или присоединении электронов (или других заряженных частиц). Ионы с положительным электрическим зарядом называются катионами, с отрицательным — анионами.

ИСКРОВОЙ РАЗРЯД – вид самостоятельного нестационарного электрического разряд в газе, возникающий в электрическом поле при давлении, близком к атмосферному. Температура в И.р. достигает 10000К. В природе наблюдается в виде молнии.

ИСТОЧНИКИ ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ – устройства, преобразующие различные виды энергии в электрическую. Различают химические (напр., гальванический элемент) и физические (термоэлемент, фотоэлемент, индукционный генератор и т.д.) И.т.

КАТИОНЫ — положительно заряженные ионы, в электрическом поле движутся к катоду.

КАТОД — 1) отрицательный полюс источника электрической энергии или электрод прибора, присоединяемый к отрицательному полюсу источника. Потенциал К. работающего источника всегда ниже потенциала анода. 2) Источник электронов в электровакуумных приборах.

КАТУШКА ИНДУКТИВНОСТИ – элемент электрической цепи, конструктивно представляющий катушку из электропроводящего материала с изолированными витками. Обладает значительной индуктивностью при относительно малой емкости и малом активном сопротивлении. Один из основных элементов колебательного контура. Ср. конденсатор электрический.

КИНЕСКОП — приемная телевизионная электронно-лучевая трубка, преобразующая электрические сигналы в видимое изображение.

КОЛЕБАТЕЛЬНЫЙ КОНТУР — электрическая цепь из катушки индуктивности и конденсатора, в которой возникает возможность периодического обмена электрической и магнитной энергией при зарядке конденсатора или возбуждении электрического тока в катушке, т.е. возникают электромагнитные колебания. Период равен , где Lиндуктивность контура, Cэлектрическая емкость. Применяется как резонансная система во многих радиотехнических устройствах.

КОНДЕНСАТОР ЭЛЕКТРИЧЕСКИЙ – элемент электрической цепи из двух или более электродов (обкладок), разделенных диэлектриком, толщина которого мала по сравнению с размерами обкладок. Обладает значительной электрической емкостью. Хорошо проводит переменный ток высокой частоты. См. емкостное сопротивление, электрическая емкость.

КОРОТКОЕ ЗАМЫКАНИЕ — не предусмотренное нормальными условиями работы соединение двух точек электрической цепи, имеющих различные потенциалы, через очень малое сопротивление.

КРУТИЛЬНЫЕ ВЕСЫ — чувствительный физический прибор, для измерения малых сил. Изобретен Ш.Кулоном в 1784г. и применялся при установлении Кулона закона.

КУЛОНА ЗАКОН — основной закон электростатики, выражающий зависимость силы взаимодействия двух неподвижных точечных зарядов от расстояния между ними: два неподвижных точечных заряда взаимодействуют с силой прямо пропорциональной произведению значений этих зарядов и обратно пропорциональной квадрату расстояния между ними и диэлектрической проницаемости среды, в которой находятся заряды. В СИ имеет вид: . Величина  числено равна силе, действующей между двумя точечными неподвижными зарядами по 1 Кл каждый, находящимися в вакууме на расстоянии 1 м друг от друга. К.з. является одним из экспериментальных обоснований электродинамики.

ЛЕВОЙ РУКИ ПРАВИЛО — правило, определяющее направление силы, которая действует на находящийся в магнитном поле проводник с током (или движущуюся заряженную частицу). Оно гласит: если левую руку расположить так, чтобы вытянутые пальцы показывали направление тока (скорости частицы), а силовые линии магнитного поля (линии магнитной индукции) входили в ладонь, то отставленный большой палец укажет направление силы, действующей на проводник (положительную частицу; в случае отрицательной частицы направление  силы противоположно).

ЛЕНЦА ПРАВИЛО (ЗАКОН) — правило, определяющее направление индукционных токов, возникающих при электромагнитной индукции. Л.п. — следствие закона сохранения энергии Согласно Л.п. индукционный ток всегда имеет такое направление, что его собственное магнитное поле всегда препятствует тому изменению внешнего магнитного поля, которое является причиной индукционного тока

ЛИНИИ МАГНИТНОЙ ИНДУКЦИИ, силовые линии магнитного поля – воображаемые линии, с помощью которых можно графически изобразить распределение магнитного поля в пространстве. Проводятся так, что вектор магнитной индукции в данной точке пространства направлен по касательной к Л.м.и. в этой точке.

ЛИНИИ НАПРЯЖЕННОСТИ ЭЛЕКТРИЧЕСКОГО ПОЛЯ, силовые линии электрического поля – воображаемые линии, с помощью которых можно графически изобразить распределение электрического поля в пространстве. Проводятся так, что вектор напряженности электрического поля в данной точке пространства направлен по касательной к Л.н. в этой точке.

ЛОРЕНЦА СИЛАсила, действующая на заряженную частицу с зарядом q, движущуюся в магнитном поле индукции B со скоростью v. Модуль равен F=qvBsinα, где αугол между векторами индукции магнитного поля и скорости частицы. Направление определяется левой руки правилом.

МАГНЕТИЗМ – совокупность явлений, связанных со взаимодействием между электрическими токами, между электрическими токами и магнитами, между магнитами. Магнитное взаимодействие осуществляется посредством магнитного поля. Проявляется во всех физико-химических процессах, происходящих в веществе. Определяет основные астрофизические и геомагнитные явления (солнечные вспышки, магнитные бури, нарушения радиосвязи и т.д.).

МАГНЕТИКИ — вещества, способные намагничиваться в магнитном поле, т.е. создавать собственное магнитное поле. См. диамагнетизм, парамагнетизм, ферромагнетизм, ферримагнетизм.

МАГНИТ — тело, обладающее намагниченностью, т.е. создающее магнитное поле. Свойства М. присущи некоторым минералам (напр., магнитный железняк), намагниченным магнитным материалам (постоянный магнит) и электромагнитам.

МАГНИТНАЯ ИНДУКЦИЯ (вектор магнитной индукции) — векторная величина, применяющаяся для количественного оценивания действия магнитного поля. Равна отношению максимальной силы, действующей в магнитном поле на элемент проводника с током, к величине силы тока и длине этого элемента проводника . Направление определяется правой руки правилом или  буравчика правилом. Единица в СИ — тесла. Ср. напряженность электрического поля.

МАГНИТНАЯ ПОСТОЯННАЯ — величина , входящая в выражения некоторых законов электромагнетизма при записи их в форме, соответствующей Международной системе единиц (СИ). Ср. электрическая постоянная.

МАГНИТНАЯ ПРОНИЦАЕМОСТЬфизическая величина, характеризующая связь между магнитной индукцией внешнего магнитного поля и магнитным полем в веществе. Обозначается m. У диамагнетиков m<1, у парамагнетиков m>1, у ферромагнетиков m>>1.

МАГНИТНОЕ ПОЛЕ — одна из форм проявления электромагнитного поля. Действует только на движущиеся электрические заряды (заряженные тела), проводники с током и частицы или тела, обладающие магнитным моментом, и создается этими же объектами. Для количественного описания М. п. используются величины магнитная индукция, магнитный поток и др. Ср.электрическое поле.

МАГНИТНЫЙ МОМЕНТ — векторная величина, характеризующая магнитные свойства тел и частиц вещества. М.м. тока — вектор, равный произведению силы тока на площадь, ограниченную контуром: p=IS. Направление определяется буравчика правилом. Единица в СИ — ампер-квадратный метр (А.м2). Ср. электрический момент.

МАГНИТНЫЙ ПОЛЮС — участок поверхности намагниченного образца (магнита), на котором нормальная к поверхности составляющая намагниченности отлична от нуля. Договорились считать, что снаружи магнита линии магнитной индукции выходят из северного полюса, а в южный входят. Внутри магнита — наоборот.

МАГНИТНЫЙ ПОТОК — поток вектора магнитной индукции B через какую-либо поверхность. Магнитный поток F через поверхность S выражается формулой F=BScosα, где α— угол между вектором магнитной индукции и нормалью к площадке S. Единица м.п. в СИ — вебер (Вб).

МАКСВЕЛЛА УРАВНЕНИЯ — основные уравнения электродинамики, устанавливающие связь между напряженностями электрического и магнитного полей и распределением в пространстве электрических зарядов и токов. Описывают электромагнитные явления в различных средах и вакууме.

МОЛНИЯ — гигантский искровой разряд атмосферного электричества между облаками или между облаками и землей. Сила тока может достигать 100 кА, длительность — 10-4 c . См. электрический разряд.

НАМАГНИЧЕННОСТЬ — векторная величина, числено равная отношению магнитного момента к объему вещества (магнетика). Единица в СИ — ампер на метр (А/м). Ср. поляризованность.

НАПРЯЖЕНИЕ ЭЛЕКТРИЧЕСКОЕ (падение напряжения) — скалярная величина, равная отношению работы, совершаемой суммарным полем сторонних и кулоновских сил при перемещении заряда на участке электрической цепи, к величине этого заряда: . Единица в СИ — вольт. Ср. электродвижущая сила, разность потенциалов.

НАПРЯЖЕННОСТЬ ЭЛЕКТРИЧЕСКОГО ПОЛЯ — векторная величина E, применяемая для описания силового действие электрического поля на электрически заряженные частицы и тела, равная отношению силы, действующей со стороны поля на точечный электрический заряд, помещенный в данную точку поля: , Единица в СИ — вольт на метр (В/м). Ср. магнитная индукция.

НОСИТЕЛИ ТОКА — электрически заряженные частицы в веществе, обусловливающие его электрическую проводимость. В металлах — это свободные электроны, в электролитах — ионы, в полупроводниках — электроны и дырки.

ОДНОРОДНОЕ ПОЛЕ – физическое поле, напряженность (магнитная индукция) которого одинакова во всех точках.

ОМА ЗАКОН – обобщенное название закона, устанавливающего пропорциональность между силой тока в участке электрической цепи и разностью потенциалов на его концах. Установлен Г.Омом для металлических проводников. В простейшем случае формулируется следующим образом: сила постоянного тока в участке цепи прямо пропорциональна напряжению на концах этого участка и обратно пропорциональна его сопротивлению (). В этой формулировке справедлив также для электролитов, температура которых поддерживается постоянной. Для переменного тока О.з. может быть сформулирован для действующих или для амплитудных значений силы тока и напряжений. В этом случае под сопротивлением понимается полное сопротивление цепи переменному току . При наличии ЭДС для замкнутой цепи звучит так: сила тока в замкнутой цепи прямо пропорциональна ЭДС источника тока и обратно пропорциональна полному сопротивлению цепи (сумме внешнего сопротивления и сопротивления источника тока).

ПАРАМАГНЕТИЗМ – явление возникновение в веществе (парамагнетике) намагниченности сонаправленной с внешним магнитным полем. Обусловлено ориентацией под действием внешнего магнитного поля собственных магнитных моментов атомов или молекул парамагнетика. Магнитная проницаемость µ>1. Ср. диамагнетизм, ферромагнетизм.

ПЕРЕМЕННЫЙ ТОК — электрический ток, изменяющий периодически свое направление в цепи так, что среднее за период значение силы тока равно нулю. Простейший переменный ток — синусоидальный.

ПЛОТНОСТЬ ТОКА – векторная величина, равная по модулю отношению силы тока к площади поперечного сечения проводника: . Направлена в сторону движения положительных зарядов (сонаправлен с вектором напряженности электрического поля). Единица в СИ: А/м2.

ПОЛУПРОВОДНИКИ — вещества, сопротивление (электропроводность) которых при комнатной температуре имеет промежуточное значение между сопротивлением (электропроводностью) металлов и диэлектриков. Сопротивление чистых П. уменьшается с ростом температуры и зависит, кроме того, от облучения, бомбардировки заряженными частицами, наличия примесей и т.д.).

ПОЛЯРИЗАЦИЯ ДИЭЛЕКТРИКОВ — смещение электрических зарядов в диэлектрике под действием внешнего электрического поля. Возникает при сдвиге ионов относительно друг друга, деформации электронных оболочек или ориентации электрических диполей. Происходит, напр., при зарядке конденсатора.

ПОЛЯРИЗОВАННОСТЬ – векторная физическая величина, равная отношению электрического момента малого объема диэлектрика к этому объему. Ср. намагниченность.

ПОСТОЯННЫЙ ТОК — электрический ток, сила и направление которого не меняются с течением времени. Ср.переменный ток.

ПОТЕНЦИАЛ ЭЛЕКТРИЧЕСКИЙ — скалярная физическая величина, равная отношению потенциальной энергии заряда, помещенного в данную точку поля, к величине этого заряда. Применяется для энергетического описания электростатического поля. Единица в СИ — вольт (В).

ПРАВОЙ РУКИ ПРАВИЛО — правило, определяющее 1) направление индукционного тока в проводнике, движущемся в магнитном поле: если ладонь правой руки расположить так, чтобы в нее входили линии магнитной индукции, а отогнутый большой палец направить по движению проводника, то четыре вытянутых пальца покажут направление индукционного тока; 2) направление линий магнитной индукции прямолинейного проводника с током: если большой палец правой руки расположить по направлению тока, то направление обхвата проводника четырьмя пальцами покажет направление линий магнитной индукции. Ср. 1) левой руки правило, 2) буравчика правило.

ПРОВОДНИКИ ЭЛЕКТРИЧЕСКИЕ — тела (вещества), способные хорошо проводить электрический ток благодаря наличию в них большого числа свободных подвижных заряженных частиц. Делятся на электронные (металлы и полупроводники), ионные (электролиты) и смешанные (плазма).

ПЬЕЗОЭЛЕКТРИЧЕСТВО – явление возникновения электрических зарядов при деформировании кристаллов и деформирование кристаллов под действием электрического поля (прямой и обратный эффекты). Применяется для воспроизведения звука, для получения ультразвука и т.д.

РАБОТА ВЫХОДА электрона — работа, необходимая для выхода электрона из проводника в вакуум. Зависит от рода вещества и состояния поверхности проводника.

РАДИОВОЛНЫэлектромагнитные волны, длина которых более 0,1 мм. Используются в радиосвязи, радиолокации, радиоастрономии и т.д.

РАДИОЛОКАЦИЯ — процесс обнаружения, распознавания, определения местонахождения и скорости движения различных объектов радиотехническими методами.

РАЗНОСТЬ ПОТЕНЦИАЛОВ — скалярная физическая величина, равная отношению работы электрического поля по перемещению положительного заряда из одной точки поля в другую к этому заряду. Единица в СИ — вольт.

РЕЗИСТОР – элемент электрической цепи, основное назначение которого — оказывать активное сопротивление электрическому току. Р. изготовляются сопротивлением 1 Ом — 10 ТОм с указанием рассеиваемой мощности.

РЕКОМБИНАЦИЯ — явление, обратное ионизации, т.е. исчезновение свободных носителей заряда противоположных знаков при их столкновениях. Приводит к образованию нейтральных атомов и молекул.

РЕНТГЕНОВСКИЕ ЛУЧИ — невидимое глазом коротковолновое электромагнитное излучение, возникающее при взаимодействии заряженных частиц с атомами вещества. Длина волны Р.л. 10-7 — 10-12 м. Р.л. обладают большой проникающей способностью. Открыты в 1895 г. немецким физиком В. К.Рентгеном (1845 — 1923).

РЕОСТАТ — устройство для регулирования и ограничения тока или напряжения в электрической цепи, основная часть которого — проводящий элемент с переменным электрическим сопротивлением.

САМОИНДУКЦИЯ – явление возникновения электродвижущей силы  в электрической цепи при изменении протекающего в ней электрического тока. Частный случай электромагнитной индукции. Эдс С.  пропорциональна скорости изменения силы тока:, где L индуктивность электрической цепи.

СВЕРХПРОВОДИМОСТЬ — физическое явление, наблюдаемое у некоторых веществ (сверхпроводников) при охлаждении их ниже критической температуры и состоящее в исчезновении сопротивления электрическому току и выталкивании магнитного поля из объема образца.

СВОБОДНЫЕ ЗАРЯДЫ — 1. Избыточные электрические заряды, сообщенные проводящему телу и вызывающие нарушение его электронейтральности. 2. Заряженные частицы, которые под влиянием электрического поля способны перемещаться на макроскопические расстояния (см.носителя тока). Сравните связанные заряды.

СИЛА ТОКА — скалярная физическая величина, применяемая для описания электрического тока и равная отношению абсолютного значения заряда, который проходит через поперечное сечение проводника за малый промежуток времени, к этому промежутку времени. Единица в СИ — ампер.

СИЛОВЫЕ ЛИНИИ — воображаемые линии, проведенные в каком-либо физическом поле (гравитационном, магнитном, электрическом) так, что в каждой точке пространства направление касательной к этим силовым  линиям совпадает с направлением напряженности поля.

СКОРОСТЬ СВЕТА в вакууме (c) — одна из основных физических постоянных, равная скорости распространения электромагнитных волн в вакууме. с=(299 792 458 ±  1,2)м/с. С.с. — предельная скорость распространения любых физических взаимодействий.

СОЛЕНОИД – элемент электрической цепи, предназначенный для создания магнитного поля, обычно в виде намотанного на цилиндрическую поверхность изолированного проводника, по которому течет эл. ток. Если длина С. значительно больше диаметра, то маг. поле направлено параллельно его оси и однородно (внутри С.), а магнитная индукция  поля пропорциональна силе тока и числу витков.

СУПЕРПОЗИЦИИ ПРИНЦИП — утверждение, согласно которому эффект от нескольких независимых эффектов представляет собой сумму эффектов, вызываемых каждым воздействием в отдельности (напр., принцип суперпозиции эл. полей: напряженность поля системы зарядов равна геометрической сумме напряженностей полей, созданных каждым зарядом системы). Применим к т.н. линейным моделям.

ТЕПЛОВОЕ ИЗЛУЧЕНИЕ — электромагнитное излучение, испускаемое  за счет  внутренней энергии веществом, имеющим температуру выше абсолютного нуля. С ростом температуры энергия теплового излучения возрастает.

ТЕРМОЭЛЕКТРОННАЯ ЭМИССИЯ  — явление испускания электронов нагретыми твердыми (иногда жидкими) телами (эмиттерами). Интенсивность т.э. зависит от температуры и работы выхода электронов. Используется в электровакуумных приборах.

ТЕРМОЭЛЕМЕНТ (термопара) — устройство, содержащее спай  двух разнородных металлов или полупроводников, на свободных неспаянных концах которых возникает термоэдс, зависящая от разности температур спая и свободных концов.

ТОК ПРОВОДИМОСТИ — см. электрический ток.

ТОМСОНА ФОРМУЛА — формула, выражающая зависимость периода незатухающих электромагнитных колебаний в контуре от его параметров — индуктивности катушки L и емкости конденсатораC: . Названа в честь У.Томсона (Кельвина).

ТРАНЗИСТОР — полупроводниковый прибор с тремя или более  выводами. Используется для усиления, генерирования и преобразования электрических колебаний.

ФАРАДЕЯ ЗАКОНЫ — основные законы электролиза. Первый Фарадея закон: масса вещества, выделившегося на электроде при прохождении электрического тока, прямо пропорциональна заряду, прошедшему через электролит. Второй Ф.з.: отношение масс различных веществ, претерпевающих химические превращения на электродах при прохождении одинаковых электрических зарядов через электролит равно отношению химических эквивалентов. Установлены  в  1833-34 г. М.Фарадеем.

ФАРАДЕЯ ПОСТОЯННАЯ, Фарадея число – физическая постоянная, равна произведению элементарного электрического заряда на постоянную Авогадро. F=e.NA. Равна заряду, прохождение которого через электролит приводит к выделению на электроде 1 моля одновалентного вещества. F=(96484,56±0,27) Кл/моль. Названа в честь М.Фарадея.

ФЕРРОМАГНЕТИЗМ – явление наличия самопроизвольной намагниченности в магнитных кристаллических веществах (ферромагнетиках). Обусловлено наличием  у электронов устойчивой параллельной ориентацией спиновых магнитных моментов, что и создает самопроизвольную намагниченность. Тепловое движение атомов кристалла разрушает параллельную ориентацию спинов, поэтому при температуре выше некоторой определенной (точка Кюри) Ф. переходит в парамагнетизм.

ФЕРРОМАГНЕТИКИ — вещества, которым присущ ферромагнетизм. Типичные представители Ф. — железо, кобальт, никель и их сплавы. Широко применяются в электротехнике, радиотехнике, электронике и приборостроении.

ЭКВИПОТЕНЦИАЛЬНАЯ ПОВЕРХНОСТЬ — поверхность, все точки которой имеют одинаковый потенциал. Силовые линии поля перпендикулярны к  э. п.

ЭЛЕКТРИЧЕСКАЯ ДУГА, вольтова дуга – электрический самостоятельный разряд в газе в виде ярко светящегося плазменного шнура. Впервые наблюдалась в 1802 г. В.В.Петровым.

ЭЛЕКТРИЧЕСКАЯ ЕМКОСТЬ — скалярная физическая величина, применяемая для описания способности проводника удерживать эл. заряд. Для конденсатора равна отношению его заряда к разности потенциалов между обкладками. Единица в СИ — фарад (Ф).

ЭЛЕКТРИЧЕСКАЯ ПОСТОЯННАЯ (e0)- скалярная величина  входящая в выражение некоторых законов электрического поля при записи их  в СИ. Ср.магнитная постоянная.

ЭЛЕКТРИЧЕСКАЯ ПРОВОДИМОСТЬ — См. электропроводность.

ЭЛЕКТРИЧЕСКИЕ КОЛЕБАНИЯ – точно или приблизительно повторяющиеся изменения напряжения и тока в эл. цепи. Простейшая система, в которой возникают эл. к. — колебательный контур.

ЭЛЕКТРИЧЕСКИЙ ГЕНЕРАТОР — устройство для преобразования различных видов энергии (механической, химической, тепловой и др.) в электрическую. Ср. электрический двигатель.

ЭЛЕКТРИЧЕСКИЙ ДВИГАТЕЛЬ —  эл. машина, совершающая механическую работу за счет эл. энергии. Ср. электрический генератор.

ЭЛЕКТРИЧЕСКИЙ ЗАРЯД — скалярная физическая величина, служащая для оценивания интенсивности электромагнитного взаимодействия заряженных частиц; источник электромагнитного поля. Различают положительные и отрицательные заряды. Для макроскопического тела э. з. равен алгебраической сумме зарядов всех частиц тела. В эл. изолированной системе выполняется заряда сохранения закон. См. элементарный электрический заряд.

ЭЛЕКТРИЧЕСКИЙ РАЗРЯД в газе – явление прохождения эл. тока в газе под действием эл. поля. Для возникновения эл. р. в газе необходимо появление носителей тока — свободных ионов и электронов. Различают несамостоятельный эл. р., когда проводимость обусловлена действием внешнего ионизатора, и самостоятельный эл. р., который продолжается после прекращения действия внешнего ионизатора. Переход несамостоятельного разряда в самостоятельный наз. эл. пробоем газа.

ЭЛЕКТРИЧЕСКИЙ ТОК — направленное упорядоченное движение заряженных частиц (электронов, ионов и др.). Условно за направление эл. тока принимается направление движения положительных зарядов.

ЭЛЕКТРИЧЕСКИЙ ТРАНСФОРМАТОР — электромагнитное устройство, преобразующее переменный эл. ток одного напряжения в переменный эл. ток другого напряжения без изменения частоты и практически без потери мощности. Простейший эл. т. состоит из железного сердечника (магнитопровода) и двух обмоток — первичной и вторичной. Отношение напряжения в обмотках равно отношению числа витков в них. Действие основано на электромагнитной индукции явлении.

ЭЛЕКТРИЧЕСКОЕ ПОЛЕ — одна из форм проявления электромагнитного поля. В отличие от магнитного поля действует как на неподвижные, так и на движущиеся эл. заряды. Создается эл. зарядами или  меняющимся во времени магнитным полем.  Описывается  напряженностью  и потенциалом электрического поля. Ср. магнитное поле.

ЭЛЕКТРИЧЕСКОЕ СОПРОТИВЛЕНИЕ  — см. сопротивление электрическое.

ЭЛЕКТРИЧЕСТВО — совокупность явлений, связанных с существованием, движением и взаимодействием эл. зарядов и полей.

ЭЛЕКТРОВАКУУМНЫЕ ПРИБОРЫ — приборы и устройства, в которых используются закономерности протекания тока в вакууме. Применяются для генерации и усиления эл. колебаний, выпрямления переменного тока и т.д. Состоят из стеклянного или металлического баллона, в котором создан вакуум, и электродов различной формы, расположенных в баллоне. Примеры: электронные лампы, электронно-лучевые трубки, рентгеновские трубки, газоразрядные приборы и т.д.

ЭЛЕКТРОД – конструктивный элемент электрической цепи, соединяющий ее с электролитом, газом или вакуумом. Применяется при электролизе, в гальванических элементах и т.п.

ЭЛЕКТРОДВИЖУЩАЯ СИЛА  (ЭДС) – физическая величина, применяемая для источника энергии в электрической цепи, необходимого для поддержания в ней эл. тока. Равна отношению работы сил, разделяющих заряды в источнике, к величине заряда. Единица в СИ — вольт.

ЭЛЕКТРОДИНАМИКА — физическая теория электромагнитных явлений, в которой основную роль играют взаимодействия между заряженными частицами, осуществляемые посредством эл.-маг. поля. Основа э.Максвелла уравнения.

ЭЛЕКТРОЛИЗ —  совокупность электрохимических процессов, происходящих в электролите при прохождении через него постоянного эл. тока. При этом положительно заряженные  ионы (катионы) движутся к катоду, а отрицательно заряженные (анионы) — к аноду. Количественно описывается Фарадея законами.

ЭЛЕКТРОЛИТИЧЕСКАЯ ДИССОЦИАЦИЯ – явление распада молекул на ионы в результате взаимодействия с молекулами растворителя.

ЭЛЕКТРОЛИТЫ — жидкие или твердые растворы или расплавы,  эл. ток в которых проходит за счет движения  ионов. См. электролиз.

ЭЛЕКТРОМАГНИТ — искусственныймагнит, магнитное поле которого возникает и концентрируется в ферромагнитном сердечнике в результате прохождения эл. тока по охватывающей его обмотке.

ЭЛЕКТРОМАГНИТНАЯ ИНДУКЦИЯ – явление возникновения электрического поля при изменении магнитного. При этом в замкнутом проводящем контуре возникает индукционный ток. См. самоиндукция, Ленца закон.

ЭЛЕКТРОМАГНИТНОЕ ВЗАИМОДЕЙСТВИЕ — один из видов взаимодействия элементарных частиц, осуществляемое посредством эл.-маг. поля. Играет фундаментальную роль в явлениях макромира: строении в-ва, его агрегатное состояние, эл., оптические и др. свойства определяющиеся электромагнитными силами, действующими между атомными ядрами, электронами атомов или молекул. Ср. гравитационное взаимодействие, сильное взаимодействие, слабое взаимодействие.

ЭЛЕКТРОМАГНИТНОЕ ИЗЛУЧЕНИЕ – то же, что и электромагнитные волны.

ЭЛЕКТРОМАГНИТНОЕ ПОЛЕ — одно из физических полей посредством которого осуществляется электромагнитное взаимодействие. Описывается с помощью напряженности электрического поля  и магнитной индукции. См. Максвелла уравнения.

ЭЛЕКТРОМАГНИТНЫЕ ВОЛНЫ — колебания эл.-маг. поля, распространяющиеся в пространстве с конечной скоростью (см. скорость света). В зависимости от длины волны в вакууме, источника излучения и способа возбуждения различают: низкочастотные колебания, радиоволны, инфракрасное излучение, видимое излучение, ультрафиолетовое излучение, рентгеновское излучение, гамма-лучи.

ЭЛЕКТРОН — стабильная элементарная частица, которой приписывают отрицательный элементарный электрический заряд, обладающая массой покоя me=(9,109558±0,000054).10-31кг и спином, равным 1/2. Входит в состав всех атомов и молекул.

ЭЛЕКТРОННАЯ ЭМИССИЯ  — явление испускания электронов твердым телом или жидкостью. См.автоэлектронная эмиссия, термоэлектронная эмиссия, фотоэффект.

ЭЛЕКТРОННОЛУЧЕВАЯ ТРУБКА – электронно-вакуумный прибор, в котором электронный луч (пучек электронов) используется для преобразования электрических сигналов в световые. Применяется в осциллографах, телевизорах, радиолокации и т. п.

ЭЛЕКТРОННЫЙ ГАЗ —  совокупность электронов проводимости в кристалле или плазме, т.е. электронов, способных участвовать в образовании электрического тока.

ЭЛЕКТРОПРОВОДНОСТЬ — способность вещества проводить электрический ток под действием электрического поля. Обусловлена носителями тока, в зависимости от вида которых различают электронную проводимость (металлы, полупроводники). ионную проводимость (электролиты) и смешанную электронно-ионную проводимость (плазма).

ЭЛЕКТРОСКОП — прибор для обнаружения и приближенной оценки степени электризации тел.

ЭЛЕКТРОСТАТИКА — раздел  электродинамики, изучающий взаимодействие и условия равновесия неподвижных относительно выбранной инерциальной системы отсчета электрических зарядов. Основной закон э. — Кулона закон.

ЭЛЕКТРОСТАТИЧЕСКОЕ ПОЛЕ — эл. поле зарядов, покоящихся относительно выбранной инерциальной системы отсчета. В э.п. действуют электростатические силы, которые являются потенциальными силами. Основные применяемые для описания э.п. — напряженность электрического поля и потенциал электрический.

ЭЛЕКТРОХИМИЧЕСКИЙ ЭКВИВАЛЕНТ – физическая величина, равная отношению массы вещества, выделившейся на электроде при электролизе, к электрическому заряду, прошедшему через электролит. Единица Э=1/273,15 К-1.э. в СИ — кг/Кл.

ЭЛЕМЕНТАРНЫЙ ЭЛЕКТРИЧЕСКИЙ ЗАРЯД (e) — одна из основных физических постоянных, равная наименьшему по модулю из всех возможных положительных и отрицательных эл. зарядов. е=(1,6021917±0,0000070).10-19Кл. Большинство элементарных частиц имеет эл. заряд +е и е или 0. У некоторых резонансов заряд кратен е. Частицы с дробным зарядом в свободном состоянии не наблюдаются.

тепловое, химическое, магнитное, световое и механическое

Простейшие
электрические и магнитные явления известны людям с очень давних времен.

По-видимому,
уже за 600 лет до н. э. греки знали, что магнит притягивает к себе железо, а
натертый янтарь – легкие предметы, вроде соломинок и т. п. Однако различие
между электрическими и магнитными притяжениями было еще не ясно; те и другие
считались явлениями одной природы.

Четкое
разграничение этих явлений – заслуга английского врача и естествоиспытателя
Уильяма Гильберта (1544-1603), который в 1600 г. выпустил в свет книгу под
названием «О магните, магнитных телах и большом магните – Земле». С этой книги,
собственно, и начинается подлинно научное изучение электрических и магнитных
явлений. Гильберт описал в своей книге все свойства магнитов, которые в его
эпоху были известны, а также изложил результаты собственных очень важных
опытов. Он указал на ряд существенных различий между электрическими и
магнитными притяжениями и ввел слово «электричество».

Хотя
после Гильберта различие между электрическими и магнитными явлениями было уже
для всех неоспоримо ясно, тем не менее ряд фактов указывал на то, что при всем
своем различии эти явления каким-то образом тесно и неразрывно связаны друг с
другом. Наиболее бросающимися в глаза были факты намагничивания железных
предметов и перемагничивания магнитных стрелок под влиянием молний. В своей
работе «Гром и молния» французский физик Доминик Франсуа Араго (1786-1853)
описывает, например, такой случай. «В июле 1681 г. корабль «Королева»,
находившийся в сотне миль от берега, в открытом море, был поражен молнией,
которая причинила значительные повреждения в мачтах, парусах и пр. Когда же
наступила ночь, то по положению звезд выяснилось, что из трех компасов, имевшихся
на корабле, два, вместо того чтобы указывать на север, стали указывать на юг, а
третий стал указывать на запад». Араго описывает также случай, когда молния,
ударившая в дом, сильно намагнитила в нем стальные ножи, вилки и другие
предметы.

В
начале XVIII века было уже установлено, что молния, по сути дела, представляет
собой сильный электрический ток, идущий через воздух; поэтому факты вроде
описанных выше могли подсказать мысль, что всякий электрический ток обладает
какими-то магнитными свойствами. Однако обнаружить на опыте эти свойства тока,
и изучить их удалось только в 1820 г. датскому физику Гансу Христиану Эрстеду
(1777-1851).

Основной
опыт Эрстеда изображен на рис. 199. Над неподвижным проводом 1, расположенным
вдоль меридиана, т. е. в направлении север-юг, подвешена на тонкой нити
магнитная стрелка 2 (рис. 199,а). Стрелка, как известно, устанавливается также
приблизительно по линии север-юг, и поэтому она располагается примерно
параллельно проводу. Но как только мы замкнем ключ и пустим ток по проводу 1,
мы увидим, что магнитная стрелка поворачивается, стремясь установиться под
прямым углом к нему, т. е. в плоскости, перпендикулярной к проводу (рис.
199,б). Этот фундаментальный опыт показывает, что в пространстве, окружающем
проводник с током, действуют силы, вызывающие движение магнитной стрелки, т. е.
силы, подобные тем, которые действуют вблизи естественных и искусственных
магнитов. Такие силы мы будем называть магнитными силами, так же как мы
называем силы, действующие на электрические заряды, электрическими.

Рис. 199. Опыт Эрстеда с
магнитной стрелкой, обнаруживающий существование магнитного поля тока: 1 –
провод, 2 – магнитная стрелка, подвешенная параллельно проводу, 3 – батарея
гальванических элементов, 4 – реостат, 5 – ключ

В
гл. II мы ввели понятие электрического поля для обозначения того особого
состояния пространства, которое проявляется в действиях, электрических сил.
Точно так же мы будем называть магнитным полем то состояние пространства,
которое дает о себе знать действием магнитных сил. Таким образом, опыт Эрстеда
доказывает, что в пространстве, окружающем электрический ток, возникают
магнитные силы, т. е. создается магнитное поле.

Первый
вопрос, который поставил перед собой Эрстед после того, как он сделал свое
замечательное открытие, был таков: влияет ли вещество провода на создаваемое
током магнитное поле? «Соединительный провод, – пишет Эрстед, – может состоять
из нескольких проволок или металлических полос. Природа металла не меняет
результата, разве только, пожалуй, в отношении величины.

С
одинаковым результатом мы пользовались проволоками из платины, золота, серебра,
латуни и железа, а также оловянными и свинцовыми полисами и ртутью».

Все
свои опыты Эрстед проводил с металлами, т. е. с проводниками, в которых проводимость,
как мы теперь знаем, имеет электронный характер. Нетрудно, однако, осуществить
опыт Эрстеда, заменив металлический провод трубкой с электролитом или трубкой,
в которой происходит разряд в газе. Такие опыты мы уже описали в § 40 (рис. 73)
и видели, что хотя в этих случаях электрический ток обусловлен движением
положительных и отрицательных ионов, но действие его на магнитную стрелку то
же, что и в случае тока в металлическом проводнике. Какова бы ни была природа
проводника, по которому течет ток, вокруг проводника всегда создается магнитное
поле, под влиянием которого стрелка поворачивается, стремясь стать
перпендикулярно к направлению тока.

Таким
образом, мы можем утверждать: вокруг всякого тока возникает магнитное поле. Об
этом важнейшем свойстве электрического тока мы уже упоминали (§ 40), когда
говорили подробнее о других его действиях – тепловом и химическом.

Из
трех свойств или проявлений электрического тока наиболее характерным является
именно создание магнитного поля. Химические действия тока в одних проводниках –
электролитах – имеют место, в других – металлах – отсутствуют. Выделяемое током
тепло может быть при одном и том же токе больше или меньше в зависимости от
сопротивления проводника. В сверхпроводниках возможно даже прохождение тока без
выделения тепла (§ 49). Но магнитное поле – неотделимый спутник всякого
электрического тока. Оно не зависит ни от каких специальных свойств того или
иного проводника и определяется лишь силой и направлением тока. Большинство
технических применений электричества также связано с наличием магнитного поля
тока.

В разделе на вопрос физика. 8 класс. магнитное поле. помогитеее… заданный автором Проситель
лучший ответ это 1-а Магнитное действие электрического тока — способность электрического тока, проходящего по проводникам второго рода, порождать вокруг этих проводов магнитное поле.
1-б Положительный притягиваетя к отрицательному 🙂
2-a Стрелка начинает отклоняться от нориального положения
2-б Одноименные отталкиваются, разноименные притягиваются
3-а В магнитном поле стрелка компаса поворачивается строго определённым образом, всегда параллельно силовым линиям поля. (правило буравчика или левой руки)
3-б В обоих случаях на концах
4-а Отверткой можно или замыканием (не лучший способ)
4-б Северный магнитный находится на южном географическом, и наоборот. Точного определения нет — подвергаются смещению
5-а Нагревание проводника
5-б Однозначно нет
6-а Янтарь с магнитом – братья?
Оказалось, что это близко к истине, и «побратала» их молния. Ведь при электризации янтаря возникают искры, а искры – это маленькие молнии.
Но молния молнией, а при чем же здесь магнит? Как раз молния и оказалась тем, что соединило воедино янтарь и магнит, ранее «разлученные» Гильбертом. Вот три выдержки из описания удара молнии, в которых видна близкая связь между электричеством янтаря и притяжением магнита.
«…В июле 1681 г. корабль „Квик“ был поражен молнией. Когда же наступила ночь, то оказалось по положению звезд, что из трех компасов… два, вместо того, чтобы, как и прежде, указывать на север, указывали на юг, прежний северный конец третьего компаса направлен был к западу» .
«…В июне 1731 г. один купец из Уэксфилда поместил в углу своей комнаты большой ящик, наполненный ножами, вилками и другими предметами, сделанными из железа и стали… Молния проникла в дом именно через этот угол, в котором стоял ящик, разбила его и разбросала все вещи, которые в нем находились. Все эти вилки и ножи… оказались сильно намагниченными… »
«…В деревне Медведково прошла сильная гроза; крестьяне видели, как молния ударила в нож, после грозы нож стал притягивать железные гвозди… »
Удары молний, намагничивающие топоры, вилы, ножи, прочие стальные предметы, размагничивающие или перемагничивающие стрелки компасов, наблюдались столь часто, что ученые стали искать связь между электрическими искрами и магнетизмом. Но ни пропускание тока через железные стержни, ни воздействие на них искр от лейденских банок ощутимых результатов не дало – железо не намагничивалось, хотя точные современные приборы, пожалуй, почувствовали бы это.
Чуть-чуть отклонялась стрелка компаса в опытах физика Романьози из города Трента, когда он приближал компас к вольтову столбу – электрической батарее. И то лишь тогда, когда по вольтову столбу шел ток. Но Романьози тогда не понял причины такого поведения стрелки компаса.
Честь открытия связи между электричеством и магнетизмом выпала на долю датского физика Ханса Кристиана Эрстеда (1777-1851), да и то случайно. Произошло это 15 февраля 1820 г. вот как. Эрстед в этот день читал лекцию по физике студентам Копенгагенского университета. Лекция была посвящена тепловому действию тока, иначе говоря, нагреванию проводников, по которым протекает электрический ток. Сейчас это явление используется сплошь и рядом – в электроплитках, утюгах, кипятильниках, даже в электролампах, спираль которых добела раскалена током. А во времена Эрстеда такое нагревание проводника током считалось новым и интересным явлением.
6-б Встаить сердечник

1. В чем проявляется магнитное действие электрического тока? Объясните свой ответ.

Способность электрического тока, проходящего по проводникам второго рода, порождать вокруг этих проводов магнитное поле

2. Как с помощью компаса можно определить полюсы магнита? Объясните свой ответ.

Северный полюс стрелки притягивается к южному полюсу магнита, южный полюс — к северному.

3. Каким образом можно обнаружить наличие в пространстве магнитного поля? Объясните свой ответ.

Например с помощью железных опилок. Под действием магнитного поля тока железные опилки располагаются вокруг проводника не беспорядочно, а по концентрической окружности.

4. Как при помощи компаса определить, течет ли ток в проводнике? Объясните свой ответ.

Если стрелка компаса располагается перпендикулярно проводу, значит в проводе течет постоянный ток.

5. Можно ли разрезать магнит так, чтобы один из полученных магнитов имел только северный полюс, а другой — только южный? Объясните свой ответ.

Невозможно отделить полюса друг от друга разрезанием. Магнитные полюсы существуют только парами.

6. Каким способом можно узнать, есть ли ток в проводе, не пользуясь амперметром?

  • Используя магнитную стрелку, которая реагирует на ток в проводе.
  • Используя чувствительный вольтметр, подключив его к концам провода.

Электрический ток в цепи всегда проявляется каким-нибудь своим действием. Это может быть как работа в определенной нагрузке, так и сопутствующее действие тока. Таким образом, по действию тока можно судить о его наличии или отсутствии в данной цепи: если нагрузка работает — ток есть. Если типичное сопутствующее току явление наблюдается — ток в цепи есть, и т. д.

Вообще, электрический ток способен вызывать различные действия: тепловое, химическое, магнитное (электромагнитное), световое или механическое, причем разного рода действия тока зачастую проявляются одновременно. Об этих явлениях и действиях тока и пойдет речь в данной статье.

Тепловое действие электрического тока

При прохождении постоянного или переменного электрического тока по проводнику, проводник нагревается. Такими нагревающимися проводниками в разных условиях и приложениях могут выступать: металлы, электролиты, плазма, расплавы металлов, полупроводники, полуметаллы.

В простейшем случае, если, скажем, через нихромовую проволоку пропустить электрический ток, то она нагреется. Данное явление используется в нагревательных приборах: в электрочайниках, в кипятильниках, в обогревателях, электроплитках и т. д. В электродуговой сварке температура электрической дуги вообще доходит до 7000°С, и металл легко плавится, — это тоже тепловое действие тока.

Выделяемое на участке цепи количество теплоты зависит от приложенного к этому участку напряжения, значения протекающего тока и от времени его протекания ().

Преобразовав закон Ома для участка цепи, можно для вычисления количества теплоты использовать либо напряжение, либо силу тока, но тогда обязательно необходимо знать и сопротивление цепи, ведь именно оно ограничивает ток, и вызывает, по сути, нагрев. Или, зная ток и напряжение в цепи, можно так же легко найти количество выделяемой теплоты.

Химическое действие электрического тока

Электролиты, содержащие ионы, под действием постоянного электрического тока — это и есть химическое действие тока. К положительному электроду (аноду) в процессе электролиза притягиваются отрицательные ионы (анионы), а к отрицательному электроду (катоду) — положительные ионы (катионы). То есть вещества, содержащиеся в электролите, в процессе электролиза выделяются на электродах источника тока.

Например, в раствор определенной кислоты, щелочи или соли погружают пару электродов, и при пропускании электрического тока по цепи на одном электроде создается положительный заряд, на другом — отрицательный. Ионы содержащиеся в растворе начинают откладываться на электроде с противоположным зарядом.

Скажем, при электролизе медного купороса (CuSO4), катионы меди Cu2+ с положительным зарядом движутся к отрицательно заряженному катоду, где они получают недостающий заряд, и становятся нейтральными атомами меди, оседая на поверхности электрода. Гидроксильная группа -OH отдаст электроны на аноде, и в результате выделится кислород. Положительно заряженные катионы водорода H+ и отрицательно заряженные анионы SO42- останутся в растворе.

Химическое действие электрического тока используется в промышленности, например, для разложения воды на составляющие ее части (водород и кислород). Также электролиз позволяет получать некоторые металлы в чистом виде. С помощью электролиза покрывают тонким слоем определенного металла (никеля, хрома) поверхности — это и т.д.

В 1832 году Майкл Фарадей установил, что масса m вещества, выделившегося на электроде, прямо пропорциональна электрическому заряду q, прошедшему через электролит. Если через электролит пропускается в течение времени t постоянный ток I, то справедлив первый закон электролиза Фарадея:

Здесь коэффициент пропорциональности k называется электрохимическим эквивалентом вещества. Он численно равен массе вещества, выделившегося при прохождении через электролит единичного электрического заряда, и зависит от химической природы вещества.

При наличии электрического тока в любом проводнике (в твердом, жидком или газообразном) наблюдается магнитное поле вокруг проводника, то есть проводник с током приобретает магнитные свойства.

Так, если к проводнику, по которому течет ток, поднести магнит, например в виде магнитной стрелки компаса, то стрелка повернется перпендикулярно проводнику, а если намотать проводник на железный сердечник, и пропустить по проводнику постоянный ток, то сердечник станет электромагнитом.

В 1820 году Эрстед открыл магнитное действие тока на магнитную стрелку, а Ампер установил количественные закономерности магнитного взаимодействия проводников с током.

Магнитное поле всегда порождается током, то есть движущимися электрическими зарядами, в частности — заряженными частицами (электронами, ионами). Противоположно направленные токи взаимно отталкиваются, однонаправленные токи взаимно притягиваются.

Такое механическое взаимодействие происходит благодаря взаимодействию магнитных полей токов, то есть это, в первую очередь, — магнитное взаимодействие, а уж потом — механическое. Таким образом, магнитное взаимодействие токов первично.

В 1831 году, Фарадей установил, что изменяющееся магнитное поле от одного контура порождает ток в другом контуре: генерируемая ЭДС пропорциональна скорости изменения магнитного потока. Логично, что именно магнитное действие токов используется по сей день и во всех трансформаторах, а не только в электромагнитах (например, в промышленных).

В простейшем виде световое действие электрического тока можно наблюдать в лампе накаливания, спираль которой разогревается проходящим через нее током до белого каления и излучает свет.

Для лампы накаливания на световую энергию приходится около 5% от подведенной электроэнергии, остальные 95% которой преобразуется в тепло.

Люминесцентные лампы более эффективно преобразуют энергию тока в свет — до 20% электроэнергии преобразуется в видимый свет благодаря люминофору, принимающему от электрического разряда в парах ртути или в инертном газе типа неона.

Более эффективно световое действие электрического тока реализуется в светодиодах. При пропускании электрического тока через p-n переход в прямом направлении, носители заряда — электроны и дырки — рекомбинируют с излучением фотонов (из-за перехода электронов с одного энергетического уровня на другой).

Лучшие излучатели света относятся к прямозонным полупроводникам (то есть к таким, в которых разрешены прямые оптические переходы зона-зона), например GaAs, InP, ZnSe или CdTe. Варьируя состав полупроводников, можно создавать светодиоды для всевозможных длин волн от ультрафиолета (GaN) до среднего инфракрасного диапазона (PbS). КПД светодиода как источника света доходит в среднем до 50%.

Как было отмечено выше, каждый проводник, по которому течет электрический ток, образует вокруг себя . Магнитные действия превращаются в движение, например, в электродвигателях, в магнитных подъемных устройствах, в магнитных вентилях, в реле и т. д.

Механическое действие одного тока на другой описывает закон Ампера. Впервые этот закон был установлен Андре Мари Ампером в 1820 для постоянного тока. Из следует, что параллельные проводники с электрическими токами, текущими в одном направлении, притягиваются, а в противоположных — отталкиваются.

Законом Ампера называется также закон, определяющий силу, с которой магнитное поле действует на малый отрезок проводника с током. Сила, с которой магнитное поле действует на элемент проводника с током, находящегося в магнитном поле, прямо пропорциональна току в проводнике и векторному произведению элемента длины проводника на магнитную индукцию.

На этом принципе основана , где ротор играет роль рамки с током, ориентирующейся во внешнем магнитном поле статора вращающим моментом M.

Наличие тока в электроцепи всегда проявляется каким-либо действием. Например, работа при конкретной нагрузке или какое-то сопутствующее явление. Следовательно, именно действие электротока говорит о его присутствии как таковом в той или иной электроцепи. То есть, если работает нагрузка, то ток имеет место быть.

Известно, что электрический ток вызывает различного рода действия. Например, к таковым относятся тепловые, химические, магнитные, механические или световые. При этом различные действия электрического тока способны проявлять себя одновременно. Более подробно о всех проявлениях мы расскажем Вам в данном материале.


Тепловое явление

Известно, что температура проводника повышается при прохождении через него тока. В качестве таких проводников выступают различные металлы или их расплавы, полуметаллы или полупроводники, а также электролиты и плазма. Например, при пропускании через проволоку из нихрома электрического тока происходит ее сильное нагревание. Данное явление используют в приборах нагрева, а именно: в электрических чайниках, кипятильниках, обогревателях и т.п. Электродуговая сварка отличается самой большой температурой, а именно нагрев электродуги может достигать до 7 000 градусов по Цельсию. При такой температуре достигается легкое расплавление металла.

Количество выделяемой теплоты напрямую зависит от того, какое напряжение было приложено к данному участку, а также от электротока и времени его прохождения по цепи.

Для расчета объемов выделяемой теплоты используется или напряжение, или сила тока. При этом необходимо знание показателя сопротивления в электроцепи, поскольку именно оно провоцирует нагрев из-за ограничения тока. Также количество тепла можно определить при помощи тока и напряжения.


Химическое явление

Химическое действие электротока заключается в электролизе ионов в электролите. Анод при электролизе присоединяет к себе анионы, катод – катионы.

Иными словами, во время электролиза на электродах источника тока происходит выделение определенных веществ.

Приведем пример: в кислотный, щелочной или же солевой раствор опускаются два электрода. После пропускается по электроцепи ток, что провоцирует создание положительного заряда на одном из электродов, на другом – отрицательного. Ионы, которые находятся в растворе, откладываются на электроде с иным зарядом.

Химическое действие электротока применяется в промышленности. Так, используя данное явление, осуществляют разложение воды на кислород и водород. Кроме того, при помощи электролиза получают металлы в их чистом виде, а также осуществляют гальваническое покрытие поверхности.

Магнитное явление

Электрический ток в проводнике любого агрегатного состояния создает магнитное поле. Иными словами, проводник при электрическом токе наделяется магнитными свойствами.

Таким образом, если к проводнику, в котором протекает электроток, приблизить магнитную стрелку компаса, то та начнет поворачиваться и займет к проводнику перпендикулярное положение. Если же на сердечник из железа намотать данный проводник и пропустить сквозь него постоянный ток, то данный сердечник примет свойства электромагнита.

Природа магнитного поля всегда заключается в наличии электрического тока. Объясним: движущиеся заряды (заряженные частицы) образуют магнитное поле. При этом токи противоположного направления отталкиваются, а одинакового направления – притягиваются. Данное взаимодействие обосновано магнитным и механическим взаимодействием магнитных полей электротоков. Выходит, что магнитное взаимодействие токов первостепенно.

Магнитное действие применяется в трансформаторах и электромагнитах.

Световое явление

Самый простой пример светового действия – лампа накаливания . В данном источнике света спираль достигает нужной температурной величины посредством проходящего сквозь нее тока до состояния белого каления. Тем самым и излучается свет. В традиционной лампочке накаливания всего лишь пять процентов всей электроэнергии расходуется на свет, остальная же львиная доля преобразуется в тепло.

Более современные аналоги, например, люминесцентные лампы наиболее эффективно преобразуют электроэнергию в свет. То есть, около двадцати процентов всей энергии лежит в основе света. Люминофор принимает УФ-излучение, идущее от разряда, что возникает в ртутных парах или в инертных газах.

Самая эффективная реализация светового действия тока происходит в . Электрический ток, проходя через pn-переход, провоцирует рекомбинацию носителей заряда с излучением фотонов. Лучшими led излучателями света являются прямозонные полупроводники. Изменяя состав данных полупроводников, возможно создание светодиодов для различных световых волн (разной длины и диапазона). Коэффициент полезного действия светодиода достигает 50 процентов.

Механическое явление

Напомним, что вокруг проводника с электрическим током возникает магнитное поле. Все магнитные действия преобразуются в движение. Примером служат электрические двигатели , магнитные подъемные установки, реле и др.

В 1820 году Андре Мари Ампер вывел известный всем «Закон Ампера», который как раз описывает механическое действие одного электротока на другой.

Данный закон гласит, что параллельные проводники с электрическим током одинакового направления испытывают притяжение друг другу, а противоположного направления, наоборот, отталкивание.

Также закон ампера определяет величину силы, с которой магнитное поле воздействует на небольшой отрезок проводника с электротоком. Именно данная сила лежит в основе функционирования электрического двигателя.

§ 14. Тепловое действие тока

Выделение тепла при прохождении электрического тока.

При прохождении электрического тока по проводнику в результате столкновений свободных электронов с его атомами и ионами проводник нагревается.

Количество тепла, выделяемого в проводнике при прохождении электрического тока, определяется законом Ленца — Джоуля. Его формулируют следующим образом. Количество выделенного тепла Q равно произведению квадрата силы тока I2, сопротивления проводника R и времени t прохождения тока через проводник:

Q = I2Rt (34)

Если в этой формуле силу тока брать в амперах, сопротивление в омах, а время в секундах, то получим количество выделенного тепла в джоулях. Из сравнения формул (29) и (34) следует, что количество выделенного тепла равно количеству электрической энергии, полученной данным проводником при прохождении по нему тока.

Допустимая сила и плотность тока.

Превращение электрической энергии в тепловую нашло широкое применение в технике. Оно происходит, например, в различных производственных и бытовых электронагревательных приборах (электрических печах, электроплитах, электрических паяльниках и пр.), в электрических лампах накаливания, аппаратах для электрической сварки и пр.

Однако во многих электрических устройствах, например в электрических машинах и аппаратах, электрических проводах и т. д., превращение электрической энергии в тепло вредно, так как это тепло не только не используется, а наоборот, ухудшает работу этих машин и аппаратов, а в некоторых случаях может вызвать повреждения и аварии.

Каждый проводник в зависимости от условий, в которых он находится, может пропускать, не перегреваясь, ток силой, не превышающей некоторое допустимое значение. Для определения токовой нагрузки проводов часто пользуются понятием допустимой плотности тока J (сила тока I, приходящаяся на 1 мм2 площади s поперечного сечения проводника):

J = I/s (35)

Допустимая плотность тока зависит от материала провода (медь
или алюминий), вида применяемой изоляции, условий охлаждения, площади поперечного сечения и пр. Например, допустимая плотность тока в проводах обмоток электрических машин не должна превышать 3—6 А/мм2, в нити осветительной электрической лампы — 15 А/мм2.

В проводах силовых и осветительных сетей плотность тока может быть различной в зависимости от площади поперечного сечения провода и его изоляции. Например, для медных проводов с резиновой изоляцией и площадью поперечного сечения 4 мм2 допускается плотность тока 10,2 А/мм2, а 50 мм2 — только 4,3 А/мм2; для неизолированных проводов тех же площадей сечения — 12,5 и 5,6 А/мм2.

Уменьшение допустимой плотности тока при увеличении площади поперечного сечения провода объясняется тем, что в проводах с большей площадью сечения отвод тепла от внутренних слоев затруднен, так как сами они окружены нагретыми слоями. Для неизолированных проводов допускается большая температура нагрева, чем для изолированных.

Превышение допустимого значения силы тока в проводнике может вызвать чрезмерное повышение температуры, в результате этого изоляция проводов электродвигателей, генераторов и электрических сетей обугливается и даже горит, что может привести к короткому замыканию и пожару. Неизолированные же провода могут при высокой температуре расплавиться и оборваться.

Для того чтобы предотвратить недопустимое увеличение силы тока, во всех электрических установках должны приниматься меры для автоматического отключения от источников электрической энергии тех приемников или участков цепи, в которых имеет место перегрузка или короткое замыкание.

Для этой цели в технике широко используют плавкие предохранители, автоматические выключатели и другие устройства.

Нагрев в переходном сопротивлении.

Повышенный нагрев проводника, как следует из закона Ленца — Джоуля, может происходить г не только вследствие прохождения по нему тока большой силы, но и вследствие повышения сопротивления проводника. Поэтому для надежной работы электрических установок большое значение имеет значение сопротивления в месте соединения отдельных проводников.

При неплотном электрическом контакте и плохом соединении проводников (рис. 32) электрическое сопротивление в этих местах (так называемое переходное сопротивление электрического контакта) сильно возрастает, и здесь происходит усиленное выделение тепла.

В результате место неплотного соединения проводников будет представлять собой опасность в пожарном отношении, а значительный нагрев может привести к полному выгоранию плохо соединенных проводников. Во избежание этого при соединении проводов на э. п. с. и тепловозах концы их тщательно зачищают, облуживают и впаивают в кабельные наконечники, ко-

Рис. 32. Схемы выделения тепла и возникновения искрения при неплотном электрическом контакте

торые надежно прикрепляют болтами к зажимам электрических машин и аппаратов. Специальные меры принимают и для уменьшения переходного сопротивления между контактами электрических аппаратов, осуществляющих включение и выключение тока.