Устройство осциллографа: принцип работы, устройство, назначение, особенности настройки

Содержание

Осциллограф. Устройство и принцип работы. Органы управления.

Назначение, устройство и описание осциллографа

Если спросить профессионального регулировщика электронной аппаратуры или радиоинженера: «Какой самый главный прибор на вашем рабочем месте?» Ответ будет однозначным: «Конечно, осциллограф!». И это действительно так.

Конечно, невозможно обойтись без мультиметра. Измерить напряжение в контрольных точках схемы, замерить сопротивление и ток, «прозвонить» диод или проверить транзистор все это важно и нужно.

Но когда речь заходит о регулировке и настройке любого электронного устройства от простого телевизора до многоканального передатчика орбитальной станции, то без осциллографа обойтись невозможно.

Осциллограф предназначен для визуального наблюдения и контроля периодических сигналов любой формы: синусоидальной, прямоугольной и треугольной. Благодаря широкому диапазону развёртки он позволяет так развернуть импульс, что можно контролировать даже наносекундные интервалы. Например, измерить время нарастания импульса, а в цифровой аппаратуре это очень важный параметр.

Осциллограф – это своего рода телевизор, который показывает электрические сигналы.

Как работает осциллограф?

Чтобы понять, как работает осциллограф, рассмотрим блок-схему усреднённого прибора. Практически все осциллографы устроены именно так.

Блок-схема осциллографа

На схеме не показаны только два блока питания: высоковольтный источник, который используется для вырабатывания высокого напряжения поступающего на ЭЛТ (электронно-лучевая трубка) и низковольтный, обеспечивающий работу всех узлов прибора. И отсутствует встроенный калибратор, который служит для настройки осциллографа и подготовки его к работе.

Исследуемый сигнал подаётся на вход «Y» канала вертикального отклонения и попадает на аттенюатор, который представляет собой многопозиционный переключатель, регулирующий чувствительность. Его шкала отградуирована в V/см или V/дел. Имеется в виду одно деление координатной сетки нанесённой на экран ЭЛТ. Там же нанесены сами величины: 0,1 В,10 В, 100 В. Если амплитуда исследуемого сигнала неизвестна, мы устанавливаем минимальную чувствительность, например 100 вольт на деление. Тогда даже сигнал амплитудой 300 вольт не выведет прибор из строя.

В комплект любого осциллографа входят делители 1 : 10 и 1 : 100 они представляют собой цилиндрические или прямоугольные насадки с разъёмами с двух сторон. Выполняют те же функции, что и аттенюатор. Кроме того при работе с короткими импульсами они компенсируют ёмкость коаксиального кабеля. Вот так выглядит внешний делитель от осциллографа С1-94. Как видим, коэффициент деления его составляет 1 : 10.

Внешний делитель осциллографа

Благодаря внешнему делителю удаётся расширить возможности прибора, так как при его использовании становится возможным исследование электрических сигналов с амплитудой в сотни вольт.

С выхода входного делителя сигнал поступает на предварительный усилитель. Здесь он разветвляется и поступает на линию задержки и на переключатель синхронизации. Линия задержки предназначена для компенсации времени срабатывания генератора развёртки с поступлением исследуемого сигнала на усилитель вертикального отклонения. Оконечный усилитель формирует напряжение, подаваемое на пластины «Y» и обеспечивает отклонение луча по вертикали.

Генератор развёртки формирует пилообразное напряжение, которое подаётся на усилитель горизонтального отклонения и на пластины «X» ЭЛТ и обеспечивает горизонтальное отклонение луча. Он имеет переключатель, градуированный как время на деление («Время/дел»), и шкалу времени развёртки в секундах (s), миллисекундах (ms) и микросекундах (μs).

Устройство синхронизации обеспечивает начало запуска генератора развёртки одновременно с возникновением сигнала в начальной точке экрана. В результате на экране осциллографа мы видим изображение импульса развёрнутое во времени. Переключатель синхронизации имеет следующие положения:

  • Синхронизация от исследуемого сигнала.

  • Синхронизация от сети.

  • Синхронизация от внешнего источника.

Первый вариант наиболее удобный и он используется чаще всего.

Осциллограф С1-94.

Кроме сложных и дорогих моделей осциллографов, которые используются при разработке электронной аппаратуры, нашей промышленностью был налажен выпуск малогабаритного осциллографа C1-94 специально для радиолюбителей. Несмотря на невысокую стоимость, он хорошо зарекомендовал себя в работе и обладает всеми функциями дорогого и серьёзного прибора.

В отличие от своих более «навороченных» собратьев, осциллограф С1-94 обладает достаточно небольшими размерами, а также прост в использовании. Рассмотрим его органы управления. Вот лицевая панель осциллографа С1-94.

Лицевая панель осциллографа С1-94

Справа от экрана сверху вниз.

  • Ручка: «Фокус».

    Ручка регулировки "Фокус"

  • Ручка «Яркость».

    Ручка регулировки "Яркость"

    Этими регуляторами можно настроить фокусировку луча на экране, а также его яркость. В целях продления срока службы ЭЛТ желательно выставлять яркость на минимум, но так, чтобы показания были видны достаточно чётко.

  • Кнопка «Сеть». Кнопка включения прибора.

    Кнопка включения

  • Кнопка установки времени развёртки. Грубое переключение коэффициентов развёртки. Можно установить миллисекунды (ms) и микросекунды (μs). Напомним, что 1 ms = 1000 μs. Подробнее о сокращённой записи численных величин.

    Кнопка "мс/мкс"

  • Кнопка режима «Ждущ-Авт».

    Кнопка "Ждущ-Авт"

    Это кнопка выбора ждущего и автоматического режима развёртки. При работе в ждущем режиме запуск и синхронизация развёртки производится исследуемым сигналом. При автоматическом режиме запуск развёртки происходит без сигнала. Для исследования сигнала чаще используется ждущий режим запуска развёртки.

  • Вот этой кнопкой производится выбор полярности запускающего импульса. Можно выбрать запуск от импульса положительной или отрицательной полярности.

    Выбор полярности запускающего импульса

  • Кнопка установки синхронизации «Внутр-Внешн».

    Кнопка "Внутр-Внешн"

    Обычно используется внутренняя синхронизация, так как для использования внешнего синхросигнала нужен отдельный источник этого внешнего сигнала. Понятно, что в условиях домашней мастерской это в подавляющем случае не нужно. Вход внешнего синхросигнала на лицевой панели осциллографа выглядит вот так.

    Вход внешнего синхросигнала

  • Кнопка выбора «Открытого» и «Закрытого» входа.

    Кнопка переключения "открытого" и "закрытого" входа

    Тут всё понятно. Если предполагается исследование сигнала с постоянной составляющей, то выбираем «Переменный и постоянный». Этот режим называется «Открытым», так как на канал вертикального отклонения подаётся сигнал, содержащий в своём спектре постоянную составляющую или низкие частоты.

    При этом, стоит учитывать, что при отображении сигнала на экране он уйдёт вверх, так как к амплитуде переменной составляющей добавиться и уровень постоянной составляющей. В большинстве случаев лучше выбирать «закрытый» вход (~). При этом постоянная составляющая электрического сигнала будет отсечена и не отображается на экране.

  • Клемма «корпус» служит для заземления корпуса прибора. Это делается в целях безопасности. В условиях домашней мастерской порой нет возможности заземлить корпус прибора. Поэтому приходится работать без заземления. При этом важно помнить, что во включенном состоянии на корпусе осциллографа может быть потенциал напряжения. При касании корпуса может «дёрнуть». Особенно опасно дотрагиваться одной рукой до корпуса осциллографа, а другой рукой до батарей отопления или других работающих электроприборов. В таком случае опасный потенциал с корпуса пройдёт через ваше тело («рука» — «рука») и вы получите электрический удар! Поэтому при работе осциллографа без заземления желательно не дотрагиваться до металлических частей корпуса. Это правило справедливо и для прочих электроприборов с металлическим корпусом.

  • По центру лицевой панели переключатель «развёртка» — Время/дел. Именно этот переключатель управляет работой генератора развёртки.

    Переключатель "Развёртка"

  • Чуть ниже располагается переключатель входного делителя (аттенюатора) — V/дел. Как уже говорилось, при исследовании сигнала с неизвестной амплитудой, необходимо выставить максимально возможное значение V/дел. Так для осциллографа С1-94 нужно установить переключатель в положение 5 (5V/дел.). В таком случае одна клетка на координатной сетке экрана будет равна 5-ти вольтам. Если ко входу «Y» осциллографа подключить делитель с коэффициентом деления 1 к 10 (1 : 10), то одна клетка будет равна 50-ти вольтам (5V/дел. * 10 = 50V/дел.).

    Переключатель входного делителя (аттенюатора)

Также на панели осциллографа имеются:

  • Ручка «Перемещение луча по горизонтали».

    Ручка "Регулировка луча по горизонтали"

    Она служит для корректировки положения луча в горизонтальном направлении. Если покрутить данную ручку, то изображение развёртки будет смешатся либо вправо, либо влево.

  • Также есть и ручка «Перемещение луча по вертикали».

    Ручка "Регулировка луча по вертикали"

    С помощью её можно отрегулировать положение развёртки на экране по вертикали.

    Ручки «Перемещение луча по горизонтали» и «Перемещение луча по вертикали» служат исключительно для настройки комфортного отображения осциллограммы сигнала на экране. Они никак не влияют на настройку работы самого осциллографа.

  • А вот ручка «Уровень синхронизации» необходима для того, чтобы «остановить» осциллограмму сигнала на экране.

    Ручка "Уровень"

    Поворотом этой ручки добиваются того, чтобы изображение сигнала «застыло», а не «убегало». Иногда, чтобы поймать изображение с помощью ручки «Уровень» приходится изменить время развёртки переключателем Время/дел.

  • Входной разъём «Y» , к которому подключается измерительный щуп или внешний делитель выглядит так.

    Входной разъём осциллографа

    Внизу указываются параметры входа, а именно входное сопротивление (1 MΩ) и входная ёмкость (40pF). Чем выше входное сопротивление измерительного прибора, тем лучше. Таким образом при измерении прибор не шунтирует элементы тестируемой схемы и не вносит искажений в измеряемый сигнал. Входная ёмкость прежде всего влияет на возможность исследования высокочастотных сигналов.

В настоящее время, с развитием цифровой техники, стали широко внедряться цифровые осциллографы. По сути это гибрид аналоговой и цифровой техники. Отношение к ним неоднозначное, как к мясорубке с процессором или к кофемолке с дисплеем.

Аналоговая аппаратура всегда была надежной и удобной в работе. Кроме того она легко ремонтировалась. Цифровой осциллограф стоит на порядок дороже и очень сложен в ремонте. Плюсов конечно много. Если аналоговый сигнал с помощью АЦП (аналогово-цифрового преобразователя) перевести в цифровую форму, то с ним можно делать всё что угодно. Его можно записать в память и в любой момент вывести на экран для сравнения с другим сигналом, складывать в фазе и противофазе с другими сигналами. Конечно, аналоговая техника это хорошо, но за цифровой электроникой будущее.

Главная &raquo Радиоэлектроника для начинающих &raquo Текущая страница

Также Вам будет интересно узнать:

 

назначение и принцип действия, классификация (цифровой, механический)

Осциллограф применениеРазвитие промышленности не стоит на месте. Разрабатываются новейшие приборы, призванные значительно сократить время исследований. Одним из самых популярных типов контрольно-измерительной техники, позволяющим производить научные и производственные изыскания, является осциллограф.

Понятие и история создания

Под осциллографом принято понимать специализированный прибор, созданный для точного измерения, наблюдения и последующей записи параметров и характеристик электрического сигнала: временных и амплитудных. Подобные сигналы могут как подаваться на вход, так и регистрироваться непосредственно на дисплее или фиксироваться на фотоленту. Скачок современной науки сделал возможным исследование сигнала гигагерцовых частот.

Первая фиксация электрического колебательного процесса делалась на бумаге в ручном режиме. Начальные попытки по автоматизированию записи велись Жюлем Франсуа Жубером. Учёный в 1880 году представил к использованию полуавтоматический пошаговый метод регистрирования сигнала. Следующим шагом в развитии метода стал однограф Госпиталье, который стал полностью автоматическим.

Прибор осциллограф В начале 1885 года русским физиком Робертом Колли был спроектирован и создан осциллометр. Доработав творение Колли, французский физик А. Блондель изобрёл магнитно-электрический осциллоскоп, оснащённый бифилярным подвесом. Невозможность фиксировать процессы с высокой скоростью из-за подвижности регистрирующих частей с большой инерцией была устранена в 1897 году. Дадделл Уильям предложил использовать миниатюрное зеркальце в качестве измерительного элемента.

Во второй половине XX века появились ленточные многоканальные осциллографы с горизонтальной развёрткой. Цифровые модели пришли на смену устаревшим аналогам и заняли лидирующую позицию среди быстрейших аналого-цифровых преобразователей.

Развёрнутая классификация прибора

Современные осциллографы обладают весомым набором приложений для измерения, глубокой памятью, сенсорным ёмкостным дисплеем и способностью к скоростному обновлению сигналов на дисплее. Ознакомление с классификацией — неотъемлемый шаг в работе с техникой. Аппаратура подлежит внутреннему делению по назначению и логике работы:

  1. Стробирующий.
  2. Реального времени или аналоговый.
  3. Запоминающий: сходный с ЭЛТ аналоговый и цифровой.

Сфера применения осциллографа

В отдельную группу выделяются приборы с непрерывной развёрткой. Они позволяют регистрировать кривую на особой фотоленте. По числу лучей бывают двулучевые, однолучевые, трехлучевые и так далее. Вершиной автоматизации считается 16 лучей и более. Параметр влияет на синхронизацию данных.

Для техники с периодической развёрткой характерно следующее деление: стробоскопические, скоростные, обычные и универсальные, специальные запоминающие. Цифровым моделям свойственно сочетание нескольких параметров. Реже встречаются осциллографы, назначение которых совмещено с другим измерительным прибором. Их официальное название — скопметры.

Особенности внутреннего устройства

Несмотря на сложное внутреннее оснащение на базе ЭЛТ, прибор с дисплеем может состоять из нескольких составляющих. К ним относятся:

  • Принцип работы осциллографаВходной стандартный усилитель для наблюдаемых сигналов, чей выход подключается напрямую к пластинам вертикального отклонения.
  • Электронно-лучевая осциллографическая трубка. Широко используется в ряде близких по назначению измерительных приборов.
  • Далее идёт блок горизонтальной развёртки. Однократный тип или периодический сигнал преобразуется в пилообразную форму. Он направляется к пластинам с горизонтальным типом отклонения ЭЛТ. Помимо этого, в период спадающей фазы создаётся импульс гашения электронных лучей, подаваемый на модуляторы ЭЛТ.
  • К вспомогательным или дополнительным частям устройства осциллографа относят калибратор длительности, возможной амплитуды и блок управления яркости.

Экран «А» позволяет чётко отобразить графики каждого поступающего входного сигнала. Цифровые аналоги выводят на цветной или специфический монохромный дисплей желаемое изображение как полностью готовую картинку. Остальные модели используют электронно-лучевую трубку, оснащённую показателями электростатического отклонения. Для таких экранов характерна нанесённая в виде координатной сетки разметка, миссия которой — показывать точное местоположение данных.

Важной деталью являются сигнальные выходы. Многоканальная аппаратура предназначена измерять параметры и вести одновременное наблюдение за несколькими поступающими в систему сигналами. На вход Y поступает и усиливается входной сигнал от каждого из присутствующих каналов.

Выделяют два базовых типа развёртки: ждущий и автоколебательный, или автоматический. Реже можно встретить модели с дополнительным однократным режимом. Каждый вид имеет свои специфические черты:

  1. Как использовать осциллограф Однократный запуск. Характерный механизм запуска — внешнее воздействие. Так, нажатие кнопки и дальнейшее ожидание запуска сходны со ждущим режимом. После запуска развёртывание производится однократно. Повторная развёртка требует ещё одного запуска. Подобная система работы комфортна для изучения функционирования процессов непериодического типа. Недостатком является однократный пробег светящегося пятна по дисплею. Яркость картинки недостаточна, что серьёзно затрудняет процесс наблюдения при быстрой развёртке.
  2. Ждущий режим. Недостаточный уровень или отсутствие сигнала вызывает отсутствие развёртки и дальнейшее угасание экрана. Запуск возможен только при достижении сигналами определённого заданного оператором уровня. Возможна настройка запуска как по падающему, так и по нарастающему сигнальному фронту. Важно отметить, что при изучении непериодических типов импульсных процессов такая система гарантирует зрительную неподвижность картинки на экране. Зачастую развёртывание запускается синхронным, несколько опережающим процесс наблюдения сигналом.
  3. Автоматическое развёртывание. В этом случае генератор функционирует в автоколебательном типе режима. Благодаря этому даже при отсутствии сигнала в момент окончания цикла произойдёт очередной момент её запуска. Это делает возможным наблюдение изображения на экране даже в ситуации подачи на входе вертикального типа отклонения постоянного напряжения или отсутствия сигнала. Подобный режим характеризуется особым захватом частоты генератора развёртывания наблюдаемым сигналом. Важно, что частота генераторов при этом в целое количество раз меньше частоты исследуемых сигналов.

Синхронизация с наблюдаемым сигналом

Получить заданное неподвижное изображение на дисплее позволяет особая двигательная траектория луча на экране в процессе развёртывания. Он должен перемещаться по одной и той же кривой линии. Обеспечением этого процесса занимается схема синхронизации, дающая старт развёртке на одинаковом фронте и уровне исследуемых сигналов.

В качестве примера допустимо рассмотрение ситуации исследования синусоидального сигнала при такой настройке схемы, что запуск развёртывания в нарастании синусоидов будет иметь значение ноль. В момент запускания узкий луч обрисует несколько схожих или одну единую волну, на что будет влиять настроенная заранее скорость. Отсутствие повторного запуска заставит дождаться очередного прохождения волны с нулевым значением при нарастающем фронте.

Без синхронизации с изучаемым сигналом картинка на дисплее будет выглядеть нечёткой, размазанной. Это вызвано одновременным отображением различных участков исследуемого сигнала на экране. Базовые настройки, доступные каждому оператору: тип запуска и его уровень.

Специфика выбора товара

Приобретая такую узкоспециализированную технику, следует учитывать ряд важных параметров. В первую очередь следует обратить внимание на следующие:

  • Разновидности моделей осциллограф Полосу пропускания. В среднем полоса должна быть на 5 пунктов выше значения частоты исследуемого сигнала. Для использования простого усилителя звуковых частот и цифровой схемы достаточным параметром будет 25 МГц. Научные изыскания и профессиональные исследования потребуют использование устройства с минимальной полосой пропускания около 150 МГц.
  • Тип питания. В случае проведения работ вдали от сети или на выезде рекомендуется приобрести модель с аккумулятором. В любой другой ситуации целесообразно использовать аппаратуру, работающую от сети.
  • Частота дискретизации. Пункт влияет на качество разрешения изображений на экранах, количество выборок сигнала за секунду. Для более точного изображения потребуется увеличение числа точек сигнала. Частота важна и для измерения однократных и переходных процессов.
  • Число каналов. Каналы влияют на количество отображаемых на дисплее независимых сигналов. Обеспечивают возможность анализировать и сравнивать несколько графиков одновременно. Работа с простыми техническими приборами не требует более 3 каналов. Более продвинутая аппаратура должна быть оснащена логическим анализатором и 16 каналами.

Применение и интересные факты

Являясь одним из важнейших аппаратов в радиоэлектронике и радиотехнике, он широко используется в лабораторных, прикладных и научно-исследовательских целях. Позволяет изучать, контролировать и измерять параметры электрических сигналов и радиоволн при воздействии разнообразных датчиков. Прибор позволяет:

  1. Принцип работы осциллографаОпределять частоту сигнала по измерению его временных характеристик.
  2. Измерять временные параметры для получения значения амплитуды напряжения.
  3. Выяснить постоянную и переменную классического сигнала.
  4. Изучать сдвиги фаз, происходящие при прохождении различных участков цепи.
  5. Исследовать внутренние механизмы, происходящие в электрической цепи.
  6. Наблюдать частоту колебания и особенности искажения сигнала.
  7. Вычислить соотношение шума и сигнала, стационарность шума и возможные изменения по временным параметрам.
  8. Наладить оперативный и периодический контроль качественных характеристик телевизионного тракта в системе телевещания.

Широко применение осциллографа в диагностике и ремонте автотранспорта. Благодаря своим характеристикам он способен выявить неисправные катализаторы, проверить функционирование исполнительных механизмов, кратко указать основные идентификационные сведения системы, считать код неисправностей, который сохраняет система, отследить изменения сигналов датчиков системы.

Универсальный осциллограф

Учёными выделено несколько занимательных фактов работы и создания фиксирующего прибора, популярного в электромеханической сфере любого производства. К ним относят:

  • Применение прибора осциллографаИменно экран одного из осциллографов был использован как дисплей первой видеоигры, визуализирующей игру в теннис. Игра Tennis For Two создавалась на работе аналоговых вычислительных машин. Управление основано на специальном игровом контроллере — Paddle.
  • Радиолюбителями используется тракт записи звука, установленный на звуковой карте компьютера в качестве прибора ввода измерения низких частот.
  • Часто встречается ошибочное написание прибора «осцелограф».
  • Квалифицированные любители радиоэлектроники, не являющиеся чайниками в мире электроники, занялись самостоятельным изготовлением приборов для процесса осциллографирования в качестве приставки к ПК или телевизору. Сейчас эта потребность не так актуальна. Освоенные технологии массового производства подобных товаров имеют низкую себестоимость.

Основа любой действующей научной лаборатории — качественная измерительная аппаратура и источники сигналов, токов, напряжений. Сегодня важнейшим контрольно-измерительным прибором для научных и производственных исследований является осциллограф.

Осциллограф. Виды и устройство. Работа и применение. Особенности

Осциллограф представляет прибор, используемый для исследования временных и амплитудных параметров электрического сигнала, который подается на его вход, или непосредственно на экране, или записываемого на фотоленте. На сегодняшний день это один из самых распространенных типов контрольно-измерительных приборов, который наряду с мультиметрами позволяет производить производственные и научные исследования.

На сегодняшний день промышленность не стоит на месте. Создаются современные приборы, которые позволяют значительно сокращать время исследований и разработок. Они обладают значительным набором измерительных приложений, емкостным сенсорным дисплеем, глубокой памятью и высочайшей скоростью обновления сигналов на экране.

Виды
Всего имеется несколько типов приборов, которые различаются по характеристикам:

  • Аналогово-цифровые.
  • Цифровые запоминающие.
  • Устройства смешанных сигналов.
  • Виртуальные устройства.
По количеству лучей осциллограф может быть:
  • Однолучевой.
  • Двулучевой и так далее.

Число лучей может быть 16 и более (n-лучевой прибор имеет n сигнальных входов, в том числе может отображать на экране одновременно n графиков входных сигналов).

Приборы также классифицируются по принципу действия:
  • Электронный: аналоговый и цифровой.
  • Электромеханический: электродинамический, выпрямительный, электростатический, термоэлектрический, электромагнитный, магнитоэлектрический.
По развертке их можно поделить:
  • Специальный.
  • Запоминающий.
  • Стробоскопический.
  • Скоростной.
  • Универсальный.

Имеются также приборы, которые совместимы с иными измерительными устройствами. Это может быть не только автономное устройство, но и приставка, к примеру, компьютер, карта расширения или вовсе подключение к внешнему порту.

Устройство

Конструкция аналоговых устройств базируется на применении систем аналоговой горизонтальной развертки и электронно-лучевых трубок. Одним из главных блоков данных приборов являются генераторы линейно меняющегося напряжения пилообразной формы.

Аналоговый осциллограф имеет:

  • Отклонение луча на экране определяется напряжение пластин. Трубки выделяются большим диапазоном частоты. Горизонтальная развертка функционирует от напряжения горизонтальных пластин по линейной зависимости. Верхняя граница частоты определяется усилителем и емкостью пластин. Нижний предел соответствует 10 герцам.
  • Для визуализации характеристик и формы в аналогово-цифровых приборах исследуемого сигнала используются системы аналоговой горизонтальной развертки, электронно-лучевые трубки, в том числе генераторы линейно изменяющегося напряжения. К тому же в конструкции приборов имеются встроенные запоминающие модули, которые используются для хранения изображения.
  • Запоминающие цифровые приборы применяют высокоскоростную оцифровку аналоговых сигналов, обеспечивают их хранение и выводят на жидкокристаллический индикатор, который применяется вместо электронно-лучевой трубки. Цифровой осциллограф имеет преобразователь аналогового сигнала, усилитель, делитель, блок управления, память и блок выведения на ЖК панель.
  • Устройства смешанных сигналов быстро оцифровывают аналоговые сигналы, в том числе имеют функцию ввода цифровых последовательностей. Вся необходимая информация сохраняется в запоминающий модуль и выводится на жидкокристаллический монитор при необходимости.
Принцип действия

Аналоговые устройства для создания изображения на экране применяют электронно-лучевую трубку. В ней напряжение, которое подается на оси X и Y, заставляет точку передвигаться по экрану. На горизонтали можно наблюдать зависимость от времени, тогда как по вертикали идет отображение пропорциональное входному сигналу. В целом же сигнал усиливается и направляется на электроды, которые отклоняют по оси Y электронно-лучевой трубки с применением аналоговой технологии.

Цифровой осциллограф работает несколько по-другому:
  • Выполняется модификация входящего аналогового сигнала в цифровую форму.
  • Затем происходит его сохранение. Скорость сохранения зависит от управляющего устройства. Верхняя граница определяется скоростью преобразователя, при этом у нижней границы нет ограничений.
  • Преобразование сигнала в цифровой код позволяет повысить устойчивость отображения, сделать масштаб и растяжку проще, сохранить данные в память.
  • Использование дисплея вместо электронной трубки дает возможность отображать любые данные, в том числе выполнять управление прибором. У дорогостоящих приборов установлены цветные экраны, благодаря чему они дают возможность выделять цветом различные места, различать курсоры и сигналы иных каналов.
  • Синхронизацию можно наблюдать прямо перед включением развертки. Используемые процессоры обработки сигнала позволяют обрабатывать сигнал при помощи анализа преобразованием Фурье.
  • Информация в цифровом виде дает возможность записать экран с итогами измерения в память, в том числе распечатать на принтере. Большинство приборов имеют накопители, чтобы можно было записать изображения в архив и в дальнейшем произвести их обработку.
Применение
Осциллограф представляет измерительный прибор, при помощи него можно:
  • Определить значения напряжения сигнала (амплитуду) и временные параметры.
  • Измерив временные характеристики сигнала, удастся определить его частоту.
  • Наблюдать сдвиг фаз, происходящий при прохождении разных участков цепи.
  • Выяснить переменную (AC) и постоянную (DC), которые составляют сигнал.
  • Наблюдать искажение сигнала, который вносит определенный участок цепи.
  • Выяснить соотношение сигнал/шум, определить стационарность шума или его изменение по времени.
  • Понять процессы, которые происходят в электрической цепи.
  • Выяснить частоту колебаний и так далее.

Эти устройства преимущественно применяются в электронике и радиотехнике. Особенно важным элементом прибор используется в электромеханических сферах производства. Данное устройство выступает в качестве фиксирующего прибора, который наглядно отображает все колебания электрического тока, происходящие в определенном электрическом механизме. С помощью прибора можно найти помехи, а также искажения прохождения электрического импульса в самых разных узлах схемы.

Применение в диагностике и ремонте автомобилей

Применяются эти приборы и в других областях. Так они часто используются для определения неисправностей в системе исполнительных механизмов и иной диагностике. При помощи них даже можно диагностировать механические неисправности двигателя.

К примеру, осциллограф способен:
  • Выявить неисправный катализатор.
  • Определить соответствие установки задающего шкива коленвала по отношению к датчику положения коленчатого вала.
  • Выявить сильный подсос воздуха.
  • Наблюдать сигналы с датчиков системы, отслеживать их изменение.
  • Считывать коды неисправностей, сохраненные системой.
  • Указать идентификационные данные системы, ЭБУ.
  • Выполнить проверку работу исполнительных механизмов и так далее.

Естественно, что такой прибор должен иметь логический анализатор, специальное программное обеспечение и уметь выполнять дешифровку протоколов.

Как выбрать осциллограф
На рынке представлено множество самых разных моделей. Поэтому перед покупкой следует определиться:
  • Следует узнать, где будет применяться прибор?
  • Какова амплитуда измеряемых сигналов?
  • Сигналы в скольких точках схемы будет нужно измерять одновременно?
  • Необходимость измерения одиночных и периодических сигналов?
  • Необходимость сигналов в частотной области, функции быстрого преобразования Фурье и так далее?
При выборе следует обратить внимание на следующие параметры:
  • Количество каналов. Они будут влиять на число отображаемых независимых сигналов на дисплее. Их одновременное наличие позволит наблюдать за несколькими графиками, проводить их сравнение и анализировать. Для работы с простой техникой хватит 2-4 каналов. Наиболее продвинутыми являются приборы с функцией логического анализатора и 16 каналами.
  • Частота дискретизации будет влиять на число выборок сигнала в секунду, то есть на качество разрешения изображения на экране. Большее количество точек сигнала позволит построить более точное изображение. Данный параметр важен при измерении переходных и однократных процессов.
  • Тип питания. При работе с прибором на выезде или вдали от сети лучше покупать модель с аккумулятором. В остальных случаях лучше покупать измерительные приборы, работающие от сети.
  • Полоса пропускания. Следует учесть, что полоса пропускания должна в 3-5 раз быть выше значения частот исследуемых сигналов. Для простых усилителей звуковой частоты и цифровых схем достаточно параметра в 25 МГц. Для профессиональных исследований и радиочастотных схем будет нужно устройство с полосой пропускания порядка 100-200 МГц.
Почему не стоит использовать советские приборы
Сегодня вполне можно купить устройства, выпущенные 30-40 лет назад. Однако такой осциллограф лучше не использовать, ведь:
  • Для калибровки необходимо использовать подстроечники, которых полно и сверху и сбоку. Обеспечить точную настройку будет затруднительно.
  • Высохшие электролиты.
  • Вес.
  • Габариты и так далее.
Похожие темы:

Осциллографы.Виды и особенности.Устройство и работа.Применение

Для любого профессионального настройщика электронных устройств или для инженера по радиоэлектронным устройствам основным рабочим устройством является осциллограф. Без него нельзя обойтись при настройке телевизора, передатчика. Осциллографы служат для контроля и наблюдения за периодическими сигналами различных форм, в том числе синусоидальной. Благодаря широкому интервалу развертки он дает возможность развернуть импульс даже для контроля наносекундных промежутков времени. Осциллограф подобен работе телевизора, который изображает электрические сигналы.

Устройство и принцип действия

Для лучшего понимания действия прибора, разберем блок-схему типового осциллографа, так как все их основные виды имеют аналогичное устройство.

На этой схеме не изображены блоки питания: низковольтный блок, подающий питание для работы узлов, и источник повышенного напряжения, применяющийся для генерирования высокого напряжения, приходящего на электронно-лучевую трубку. Также на схеме нет калибратора для настройки и подготовки прибора к работе.

Тестируемый сигнал поступает на канал вертикального отклонения «Y», далее на аттенюатор, выполненный в виде многопозиционного переключателя, настраивающего чувствительность осциллографа. Его шкала размечена в вольтах на сантиметр или в вольтах на одно деление. Это обозначает одно деление сетки координат на экране лучевой трубки. Там же изображены сами величины. Если амплитуда сигнала неизвестна, то устанавливается наименьшая чувствительность. В этом случае даже большой сигнал на 300 В не повредит прибору.

Обычно в комплекте с осциллографом есть делители, в виде специальных насадок с разъемами. Они работают так же, как аттенюатор. Эти насадки компенсируют емкость кабеля при работе с малыми импульсами. На фото показан делитель. Коэффициент деления равен 1:10.

С помощью делителя возможности прибора расширяются, можно исследовать сигналы в несколько сотен вольт. После делителя сигнал проходит на предварительный усилитель, раздваивается и приходит на переключатель синхронизации и линию задержки, которая служит для компенсации времени сработки генератора развертки. Оконечный усилитель создает напряжение, поступающее на «Y» -пластины, и отклоняет луч в вертикальной плоскости.

Генератор развертки создает пилообразное напряжение, поступающее на пластины «Х» и горизонтальный усилитель, при этом луч отклоняется в горизонтальной плоскости.

Устройство синхронизации создает условия для работы генератора развертки в одно время с появлением сигнала. В итоге на дисплей осциллографа выводится изображение импульса.

Переключатель синхронизации работает в положениях синхронизации от:
  • Исследуемого сигнала.
  • Сети.
  • Внешнего источника.

Первое положение применяется чаще, так как оно более удобно.

Классификация

Осциллографы являются распространенным видом измерительных приборов. Существует несколько видов осциллографов, имеющих разные характеристики, устройство и работу.

Аналоговые осциллографы

Такие осциллографы являются классическими моделями этого типа измерительных приборов. Любые аналоговые осциллографы имеют делитель, вертикальный усилитель, синхронизацию и отклонение, блок питания и лучевую трубку.

Такие трубки имеют больший диапазон частоты. Отклонение луча на экране прямо зависит от напряжения пластин. Горизонтальная развертка работает по линейной зависимости от напряжения горизонтальных пластин.

Нижний предел частоты равен 10 герцам. Верхняя граница определяется емкостью пластин и усилителем. Сегодня аналоговые устройства вытесняются цифровыми приборами со своими достоинствами. Но аналоговые приборы пока не исчезают ввиду их малой стоимости.

Цифровые запоминающие

Если цифровые приборы сравнивать с аналоговыми, у них больше возможностей. Стоимость их постепенно снижается. Цифровой осциллограф включает в себя делитель, усилитель, преобразователь аналогового сигнала, памяти, блока управления и выведения на ЖК панель.

Принцип действия такого вида осциллографов придает им большие возможности. Входящий аналоговый сигнал модифицируется в цифровую форму, и сохраняется. Скорость сохранения определяется управляющим устройством. Ее верхняя граница задается скоростью преобразователя, а нижняя граница не имеет ограничений.

Преобразование сигнала в цифровой код дает возможность увеличить устойчивость отображения, сохранять данные в память, сделать растяжку и масштаб проще. Применение дисплея вместо электронной трубки позволяет отображать любые данные и осуществлять управление прибором. Дорогостоящие приборы оснащаются цветным экраном, что позволяет различать сигналы других каналов, курсоры, выделять цветом разные места.

Параметры цифровых осциллографов намного выше аналоговых моделей, в больших пределах находится растяжка сигнала. Кроме простых схем включения синхронизации, может использоваться синхронизация при некоторых событиях или параметрах сигнала. Синхронизацию можно увидеть непосредственно перед включением развертки.

Применяемые процессоры обработки сигнала дают возможность обработки спектра сигнала с помощью анализа преобразованием Фурье. Информация в цифровом виде позволяет записать в память экран с итогами измерения, а также распечатать на принтере. Многие приборы оснащены накопителями для записи изображения в архив и последующей обработки.

Цифровые люминофорные

Такой тип осциллографов работает на новой структуре построения, основанной на цифровом люминофоре. Он имитирует по подобию с аналоговыми приборами изменение изображения на экране. Люминофорные цифровые типы осциллографов дают возможность наблюдать на дисплее все подробности модулированных сигналов, как и аналоговые типы. При этом обеспечивается их анализ и хранение в памяти.

Люминофорные приборы, как и предыдущая рассмотренная модель, имеет свою память для хранения различной информации, в том числе хранится разница задержки времени между разными пробниками. Возможность люминофорных осциллографов выводить данные с изменяемой интенсивностью значительным образом упрощает поиск повреждений в импульсных блоках. Это выражено при вычислении глубины модуляции сигнала при регулировке напряжения на выходе, приводящее к нестабильному функционированию блоков.

В люминофорных цифровых осциллографах объединены достоинства цифровых и аналоговых устройств, а во многом превосходят их. Люминофорные приборы обладают всеми преимуществами запоминающих осциллографов, обеспечивая возможности аналоговых приборов: быструю реакцию на смену сигнала и его отображение с разной яркостью.

Цифровые стробоскопические

В этом виде осциллографов применяется эффект последовательного стробирования сигнала. При повторении сигнала выбирается мгновенное значение в определенной точке. При поступлении нового сигнала точка выбора смещается по сигналу. Так продолжается до полного стробирования сигнала. Модифицированный таким образом сигнал в виде огибающей линии мгновенных величин сигнала входа, повторяет форму сигнала.

Продолжительность модифицированного сигнала на много больше продолжительности тестируемого сигнала, а значит, имеется сжатие спектра. Это соответствует увеличению полосы пропускания. Стробоскопические виды осциллографов имеют большие полосы пропускания, и дают возможность производить исследования периодических сигналов с наименьшей продолжительностью. Стоимость стробоскопических осциллографов очень высока, поэтому их применяют чаще всего для сложных задач.

Виртуальные осциллографы

Новый вид приборов может быть отдельным устройством с параллельным портом для вывода или ввода информации, а также с портом USB, а также встроенным вспомогательным прибором на базе карт ISA. Программная оболочка виртуальных осциллографов позволяет полностью управлять устройством, и имеет несколько возможностей сервиса: импорт и экспорт информации, цифровая фильтрация, разнообразные измерения, обработка информации математическим способом и т.д.

Осциллографы с применением персонального компьютера могут применяться для широких возможностей измерения. Например, для обслуживания и разработки радиотехнической и электронной аппаратуры, в телекоммуникационной связи, при изготовлении компьютеризированного оборудования, при выполнении диагностических мероприятий средств автотранспорта на станциях технического обслуживания и для многих других случаев, где требуется оценка и тестирование неустойчивых переходных процессов.

Виртуальные модели осциллографов являются хорошим альтернативным вариантом для стандартных запоминающих цифровых осциллографов, так как они обладают достоинствами в виде малой стоимости, простоте применения, компактных размеров и высокого быстродействия. К недостаткам виртуальных осциллографов относится невозможность измерения и отображения постоянной величины сигналов.

Портативные осциллографы

Цифровые технологии быстро развиваются, в результате чего цифровые стационарные приборы модифицируют в портативные устройства с хорошими параметрами габаритных размеров и массы, а также низким расходом электрической энергии.

При этом портативные осциллографы с питанием от гальванических элементов не уступают по характеристикам стационарным приборам по количеству функций, имеют большие возможности использования в разных областях научных исследований, промышленном производстве.

Похожие темы:

Устройство осциллографа, его настройка, подключение и сферы применения

Принципиальная схема осциллографаДля ремонта электроники необходимы измерительные приборы. В основном используют мультиметр или старый добрый тестер, но для сложной диагностики неисправностей радиоэлектронной аппаратуры требуется более точный и чувствительный прибор — осциллограф. Им пользуются в основном профессиональные мастера электроники. Обывателю достаточно сложно разобраться в тонкостях его работы. Статья поможет понять принцип работы и полезные качества этого аппарата для диагностики электронной техники.

Что такое осциллограф и зачем он нужен

Осциллограф позволяет визуализировать электрические сигналы, импульсы и колебания. При диагностике неисправностей электронной аппаратуры очень важно видеть процессы, происходящие в электронной схеме, даже если они кратковременны и происходят в случайный момент. По осциллограмме можно видеть амплитуду электронного колебания и время любого его участка. С помощью осциллографа измеряют: фазы, частоты, коэффициенты модуляции электронных колебаний и многие иные необходимые измерения. Большой диапазон измеряемых частот, возможность отделения необходимого сигнала от помех делает его незаменимым прибором при ремонте сложной электронной техники. В общих чертах и понятным новичку языком принцип работы можно описать следующим образом.

Устройство осциллографа

Как работает осциллографОсновной элемент прибора — экран, разделённый на клетки. На него выводится визуализация электрического колебания. Масштаб клеток задаётся регулировками на корпусе осциллографа. Вертикальные клетки показывают напряжение подаваемого сигнала, а горизонтальные замеряют время. Градация клеток как по напряжению, так и по времени выставляется регуляторами на корпусе. Зная время одного импульса сигнала несложно рассчитать его частоту.

Усилитель сигнала

Прибор оснащён регулятором усиления электрического сигнала. По сути, функция изменяет масштабирование синусоиды на экране. Например, по вертикали экран размечен на 10 клеток, и предел усиления установлен на 1 вольт на клетку. В этом случае импульс напряжением в двадцать вольт будет не виден на экране. Нужно установить параметр усиления на большее количество вольт, отображаемое в одной клетке. Точно так же при низком напряжении увеличением усиления добиваются отчётливой визуализации осциллограммы.

Развёртка и её регулировка

Принцип настройки осциллографа по параметру развёртки идентичен настройке усиления, только производится она по горизонтальной оси. Клетки соответствуют миллисекундам. Изменяя их количество, соответствующее одной клетке, получаем нужное отображение синусоиды в необходимом масштабе. При необходимости изучить малый отрезок сигнала, значение развёртки уменьшают. Для изучения частотности и типа электронного импульса, оценки цикличности и других характеристик значение увеличивают.

Блок синхронизации

Синусоида графика прорисовывается на экране слева направо, до его окончания. Далее, прорисовка повторяется. Скорость построения графика высока и приводит к «бегущей» прорисовке или вообще к непонятной кривой. Это происходит по причине наслоения нового изображения на старый график с однозначным смещением. Регулировкой синхронизации осуществляется включение развёртки при достижении входным сигналом установленных значений.

Например, установив значение синхронизации в ноль вольт, при обработке синусоиды сигнала отображение начнётся после достижения напряжения на входе заданного показателя, а завершится в конце экрана. Потом визуализация начнётся с очередного нулевого показателя, и цикл будет повторяться. В результате становится видна стабильная картина, и все скачки сигнала становятся наглядно видны. Простейший блок синхронизации оснащён двумя настройками:

  • Регулятор «Фронт» — позволяет установить напряжение старта. Если, допустим, установить ноль, то прорисовка начнётся, когда синусоида будет падать до значения ноль.
  • Регулятор «Спад» — При установленном на ноль регуляторе прорисовка стартует, когда синусоида будет подниматься до значения ноль снизу.

В сложных моделях осциллографов существуют ещё ряд настроек синхронизации для более специфических измерений.

Блок питания

Блок питанияСлужит для подачи необходимого напряжения на электронные схемы самого осциллографа от сети 220 вольт.

Прибор может быть оснащён одним или несколькими сигнальными входами. Это зависит от модели. Несколько выходов необходимы для замера анализа и сравнения сразу нескольких электрических сигналов. Простейший осциллограф оснащён лишь одним сигнальным выходом и щупом заземления. Если к входу прибора ничего не подключено, то на экране посередине моделируется горизонтальная линия, называемая нулевой прямой. Если, к примеру, подключить сигнальный щуп к плюсу батарейки, а заземление к минусу, прямая линия подскочит вверх на количество клеток, соответствующее напряжению по шкале градации, выставленной на корпусе прибора. Поменяв щупы местами, линия опустится на то же количество клеток.

Зачем необходим осциллограф

Областей использования осциллографа очень много. Визуализация поведения электронного сигнала значительно упрощает определение неисправности, следовательно, ускоряет время, затрачиваемое на ремонт любого, даже очень сложного прибора. Осциллограф позволяет:

  1. Измерить напряжение и временной параметр электронного сигнала, определить частоту.
  2. Видеть амплитуду сигнала, понять его природу.
  3. Измерить сдвиг фаз.
  4. Выяснить соотношение полезного сигнала и помех, наводок, а также понять характеристики шумов.

При помощи осциллографа легче определить неисправность в приборе, а некоторые поломки диагностировать без него невозможно. Он делает огромное количество замеров в секунду, способен выявлять очень кратковременные сбои сигнала и фиксировать их, что невозможно сделать мультиметром.

Виды осциллографов

Разновидности приборов осциллографовПриборы разделяются на два больших вида: аналоговые, собранные по схемам с использованием электронно-лучевых трубок, и цифровые собранные с использованием жидкокристаллических дисплеев. А также существует разделение по количеству сигнальных входов. Это нужно для замера сразу нескольких показаний и их сравнения.

Аналоговые осциллографы

Это собранные по классической схеме осциллографы с применением лучевой трубки. Такие модели оснащены делителем, вертикальным усилителем, имеют синхронизацию и отклонение, и блок питания. Нижний порог измеряемой частоты 10 герц, верхний зависит установленного усилителя. В наше время аналоговые приборы вытесняются цифровыми моделями этого нужного агрегата.

Цифровые осциллографы

Эти приборы, собранные на основе микропроцессорных компонентов. Такие схемы осциллографов обладают значительно большим спектром технических возможностей. Состоят из делителя, усилителя, дешифратора аналогового сигнала в цифровой код, блока управления, памяти, а также из блока питания и ж. к. дисплея для визуализации измерений. Цифровые приборы компактны и могут быть нескольких типов:

  • Принцип работыЦифровые запоминающие приборы. Принцип действия несколько отличается от аналогового варианта. Входящий сигнал преобразовывается в цифровой вид и при необходимости запоминается. Скорость запоминания задаётся управляющим блоком. Оцифровка сигнала позволяет повысить стабильность отображения и запомнить информацию, сделать проще растяжение и масштабирование синусоиды. Ж. к. дисплей даёт возможность отображать дополнительные данные и управлять прибором. Существуют модели с цветным дисплеем, дающим возможность отличать сигналы от помех, шумов и других каналов, обозначать цветом интересующие места осциллограммы. Запомненные результаты измерений можно перенести в файле на компьютер или распечатать для дальнейшей обработки.
  • Цифровые люминофорные устройства. Приборы совмещают в себе все достоинства аналоговых и цифровых осциллографов, благодаря новейшей технологии построения графика сигнала на цифровом люминофоре. Это позволяет видеть на экране все нюансы модуляции сигнала, как на аналоговых типах прибора. При этом даёт возможность сохранения измерений в памяти и их анализа. А также возможно выводить графики с изменяемой интенсивностью, что очень облегчает определение неисправностей в импульсных электронных схемах и модулях. Например, становиться возможным расчёт глубины модуляции электрического сигнала при настройке напряжения на выходе импульсного блока питания, что приводит к нестабильной работе схемы или модуля. Люминофорные приборы мгновенно реагируют на изменения входного сигнала, отображают его с разной яркостью, имеют возможность сохранения и анализа измерений. Отлично совмещает в себе все преимущества цифровых и аналоговых устройств, а во многом и превосходят их.
  • Цифровые стробоскопические устройства. В таких типах приборов используется эффект последовательного стробирования сигнала. Приборы точены и чувствительны, позволяют исследовать периодические сигналы минимальной интенсивности, имеют широкую полосу пропускания. Позволяют выявлять дефекты очень сложных схем. Цена приборов очень высока, поэтому используется только профессионалами.

Портативные осциллографы

Как используется осциллографТехнологии идут вперёд, стационарные цифровые приборы приобретают меньшие габариты и размеры, осциллографы не исключение. Портативные модели этих приборов имеют небольшие размеры и массу, питаются от батареек или встроенного аккумулятора. При этом не уступают стационарным устройствам по функциональности и точности, имеют большое количество функций и возможностей применения в различных областях.

Виртуальные осциллографы

Виртуальные варианты прибора являются неплохой заменой обычных цифровых осциллографов. Их преимущества в низкой стоимости, лёгкости применения, небольших размерах, хорошем быстродействии. Недостатки: невозможность замера и постоянной визуализации величины сигнала. Могут применяться в любой радиотехнической сфере. Например, для обслуживания телекоммуникационных сетей, ремонта электронной техники и компьютеризированного оборудования, при диагностике любых схем и блоков, где необходимо тестирование и анализ неустойчивых, переходных электронных процессов.

Виртуальные приборы могут быть двух типов: ·

  • Собранный в отдельном блоке аппаратный модуль, подключаемый к компьютеру через USB порт.
  • Программное приложение для компьютера, работающее при помощи звуковой карты, к линейному входу которой подключается сигнальный щуп. Визуализация сигнала происходит на мониторе П. К. или ноутбука.

При выборе модели прибора нужно обязательно представлять, какие измерения будут им производиться.

Проверка осциллографа

Что за прибор осциллографВ инструкции по эксплуатации обязательно описан процесс калибровки (проверки) устройства. Практически любой осциллограф имеет сзади или сбоку корпуса специальный выход генератора прямоугольных импульсов. Его используют для калибровки прибора. При подключении сигнального щупа к калибровочному выходу на экране должна появиться пилообразная линия. Поставив воспроизведение луча в режим «Авто», нужно проверить работу всех функций, покрутив ручки. Яркость должна регулироваться, фокусировка — фокусировать, луч должен двигаться вверх, вниз при масштабировании. При настройке синхронизации осциллограмма должна останавливаться.

Самый же простой способ убедиться в работоспособности прибора — это коснуться пальцами щупа. Луч должен реагировать на прикосновение.

Основные функции работы и возможности осциллографа, описанные выше? наверняка помогут начинающим. Многие вопросы, возникающие в процессе использования агрегата, можно понять лишь с опытом. Прибор достаточно сложен, но изучив его, легко решаются задачи диагностики и ремонта фактически любых электронных схем.

Осциллограф | Описание, функции, предназначение

Осциллограф – это прибор, который показывает изменение напряжение во времени на каком-либо участке электрической цепи.Ось X на экране осциллографа – это время, ось Y – напряжение.

оси осциллографа

 

В этой статье мы рассмотрим три типа осциллографов, а также принципы их работы.

Аналоговый осциллограф

Его еще также называют электронно-лучевой осциллограф, так как он состоит из электронно-лучевой трубки. По сути электронно-лучевая трубка представляет из себя маленький кинескоп, на котором мы можем наблюдать какое-либо изменение электрического сигнала.

аналоговый осциллограф

Любой осциллограф имеет экран. Он может быть встроенный, либо это может быть монитор вашего настольного компьютера или дисплей ноутбука. В нашем случае на фото мы видим, что наш осциллограф имеет круглый экранчик. Сигнал, который вырисовывается на таком экране называется осциллограммой.

Для измерения электрических сигналов нам потребуются специальный щуп для осциллографа. Такой щуп представляет из себя кабель из двух проводов, один из которых является сигнальным, а другой нулевым. Нулевой провод также часто называют “землей”.

щуп осциллографа

 

Более современные щупы уже выглядят вот так.

щупы для осциллографа

А вот и сам разъем щупа

разъем щупа осциллографа

Этот конец щупа соединяется с осциллографом и фиксируется небольшим поворотом по часовой стрелке.

разъемы осциллографа

Что делать, если вы не помните, какой провод из щупа является сигнальным, а какой нулевым? Это определяется очень просто. Так как человек находится всегда в электромагнитном поле, он является своего рода принимающей антенной и может наводить помехи. Касаясь сигнального щупа осциллографа, на экране мы увидим, что сигнал очень сильно исказился.

сигнальный щуп

При касании нулевого провода, сигнал на осциллографе остался бы таким, какой был. То есть чистый ноль.

нулевой сигнал осциллографа

 

Как измерить постоянное напряжение аналоговым осциллографом

Для того, чтобы измерить постоянное напряжение, мы должны переключить осциллограф в режим DC, что означает “постоянный ток”. В разных моделях это делается по разному, но этот переключатель обязательно должен быть в каждом осциллографе.

Давайте рассмотрим на реальном примере, как можно измерить постоянное напряжение. Для этого нам потребуется источник постоянного тока. В данном случае я возьму лабораторный блок питания. Выставляю на нем значение напряжения в 1 Вольт.

1 вольт на блоке питания

 

Теперь необходимо выбрать масштаб измерений. Если мы хотим, чтобы одна сторона квадратика была равна 1 Вольту, то ставим коэффициент масштабирования 1:1. В данном случае я выставляю переключатель вертикальный развертки на единичку.

вертикальная развертка осциллографа

 

Далее сигнальный провод осциллографа цепляем на “плюс” питания, а нулевой  – на “минус” питания. Далее наблюдаем вот такую картину.

осциллограмма постоянного тока

Как вы могли заметить, осциллограммой постоянного тока является прямая линия, параллельная горизонтальной оси (оси Х). По вертикальной оси (оси Y) мы видим, что сигнал поднялся ровно на одну клеточку.  Мы выставили коэффициент масштабирования по Y, что 1 клеточка – это 1 Вольт. Следовательно в нашем случае сигнал поднялся ровно на 1 клеточку, что говорит нам о том, что это и есть осциллограмма постоянного тока в 1 Вольт.

Я также могу изменить коэффициент. Например, ставлю на 2. Это означает, что 1 квадратик будет уже равен 2 Вольтам.

вертикальная развертка на осциллографе

Смотрим, что произойдет с сигналом с напряжением в 1 Вольт

постоянное напряжение на осциллографе

Здесь мы видим, что его значение просело в 2 раза, так как мы взяли коэффициент 1:2, что означает 1 квадратик равен 2 Вольтам. Благодаря масштабированию вертикальный развертки, мы можем измерять сигналы напряжением хоть в 1000 вольт!

Что случится, если мы соединим сигнальный провод осциллографа с “минусом” питания, а нулевой с “плюсом” питания? В этом случае осциллограмма “пробьет пол” и просто покажет минусовые значения. Ничего страшного в этом нет. Здесь мы видим значение  “-2” Вольта.

отрицательное напряжение на осциллографе

 

Как измерить переменное напряжение аналоговым осциллографом

Для измерения переменного напряжения нам потребуется переключить осциллограф в режим измерения AC – “переменный ток”. Если вы хотите просто наблюдать форму сигнала, то вам необязательно знать, какой провод осциллографа куда тыкать. Давайте измеряем переменное напряжение с понижающего трансформатора, который включен в сеть 220 Вольт.

понижающий трансформатор

Снимаем напряжение со вторичной обмотки трансформатора и видим вот такую осциллограмму.

переменное напряжение

По идее здесь должен быть чистый синус. То ли трансформатор вносит искажения в сигнал, то ли на электростанции что-то не так.  Непонятно. Ну да ладно, главное то, что мы сняли осциллограмму переменного напряжения со вторичной обмотки трансформатора.

В этом случае мы можем без проблем определить период сигнала и его частоту. В этом нам поможет переключатель горизонтальной развертки по оси времени.

горизонтальная развертка осциллографа

Мы видим, что его значение стоит на 5. Это означает, что один квадратик по оси “Х” , то есть по оси времени, будет равен 5 миллисекунд или 0,005 секунд.

Период – это время, через которое сигнал повторяется. Обозначается буквой Т. В нашем случае период равен 4 квадратикам.

период сигнала

Так как один квадратик в нашем случае равен 0,005 секунд, то получается, что T=0,005 x 4 = 0,02 секунды. Отсюда можно узнать частоту сигнала.

формула частоты через период

где

V – это частота, Гц

T – период сигнала, с

 

Для данного случая

V=1/T=1/0,02=50 Гц.  Трансформатор меняет только амплитуду сигнала, но не изменяет его частоту. Поэтому, частота в нашей сети 50 Герц, что и подтвердил осциллограф.

Цифровой осциллограф

Цифровой осциллограф – это осциллограф, построенный на основе цифровой схемотехники. Его главное отличие от аналогового в том, что внутри него идет цифровая обработка сигналов. Цифровой осциллограф может записывать, останавливать, автоматически подгонять и измерять исследуемый сигнал. И это только часть функций!

Как подготовить цифровой осциллограф к работе

Включаем осциллограф и цепляем щуп на любой из каналов. Я соединил щуп с первым каналом (Ch2)

На щупе есть делитель. Ставим его ползунок на 10Х.  В осциллографе по умолчанию также должен стоять делитель на 10Х. Если это не так, ищем в его настройках и ставим в характеристиках канала “10Х”.

Каждый нормальный цифровой осциллограф имеет встроенный генератор прямоугольных импульсов с частотой 1000 Герц (1кГц) и амплитудой напряжения в 5 Вольт. Чаще всего этот генератор находится в нижнем правом углу. В нашем случае он называется Probe Comp. Цепляемся за него щупом.

Все должно выглядеть приблизительно вот так:

На дисплее в это время происходит какой-то

В этом осциллографе есть волшебная кнопка, от которой я без ума. Это кнопка автоматического позиционирования сигнала Autoscale. Нажал на эту кнопку

Согласился с условиями автоматического позиционирования сигнала

и готово!

автомасштабирование на осциллографе

Но что такое? У нас должен быть ровный прямоугольный периодический сигнал! Вся проблема в том, что щуп осциллографа вносит искажения в сам сигнал, поэтому, его  желательно корректировать каждый раз перед работой.

В современных щупах есть маленький винтик, заточенный под тонкую отвертку. С помощью этого винтика мы будем корректировать щуп.

Крутим и смотрим, что у нас получается на дисплее.

настройка щупа осциллографаОго, слишком сильно крутанул винт.

Крутим чуточку в обратную сторону и выравниваем горизонтально вершины сигнала.

сигнал меандр

Вот! Совсем другое дело! На дисплее у нас ровные прямоугольные сигналы, следовательно на этом этапе цифровой осциллограф полностью готов к работе.

Как измерить постоянное напряжение цифровым осциллографом

Итак, первым делом выбираем, какое напряжение собираемся измерять. Это делается с помощью кнопочки Coupling (нажимаем клавишу Н1). DC – direct current, что с английского означает “постоянный ток”.

 Справа экрана сплывают окошки, и мы выбираем DC (нажимаем клавишу F1)

Все, после этого наш осциллограф полностью готов к измерению постоянного тока.

Откуда будем брать постоянный ток? У меня для этого есть блок питания. Выставим на нем для примера 5 Вольт.

Соединяем щупы блока питания и осциллографа. Сигнальный щуп осциллографа желательно соединять с красным плюсовым крокодилом щупа блока питания, а черный щуп (земля) соединить с минусовым черным крокодилом.

Смотрим на дисплей осциллографа

осциллограмма постоянного напряжения на цифровом осциллографе

Что мы тут видим? А видим мы тут осциллограмму постоянного напряжения.  Постоянное напряжение – это такое напряжение, которое не изменяется во времени.

На что стоит обратить внимание? Разумеется, на цену деления. Один квадратик по вертикали у нас равен 2 Вольта. Если считать от центра пересечения жирных штриховых линий, то осциллограмма находится на высоте 2,5 стороны квадратика. Значит, напряжение будет 2,5х2=5 Вольт. Так как мне лень считать, я вывожу эти показания осциллографа прямо на экране (нижняя левая зеленая рамка).

Как измерить переменное напряжение цифровым осциллографом

Для опытов я возьму ЛАТР (Лабораторный автотрансформатор). Как вы помните, ЛАТР понижает или повышает переменное сетевое напряжение.

Выставляем напряжение на ЛАТРе 100 Вольт.

На осциллографе переключаем на АС, что означает alternating current  – переменный ток.

 

Цепляемся к выходным разъемам ЛАТРа и наблюдаем такую картину.

осциллограмма перменного напряжения

С помощью кнопки “Measure” я вывел некоторые интересующие нас параметры:

Vk – среднеквадратичное значение напряжения. В данном случае он  нам показывает напряжение, которое мы подавали с ЛАТРа – это 100 Вольт.

F – частота. В данном случае это частота сети 50 Герц. ЛАТР не меняет частоту сети.

T – период. T=1/F. Как мы с вами видим частота напряжения в сети 50 Герц. Период равен 20 миллисекунд. Если единицу разделить на 20 миллисекунд, то мы как раз получим частоту сигнала.

Как вывести все параметры сигнала

Мы будем рассматривать все наши измеряемые параметры на конкретном примере. Для этого будем использовать генератор частоты  с заранее выставленной частотой в 1 Мегагерц (ну или 1000 КГц) с прямоугольной формой сигнала:

Сигнал с генератора частоты на экране осциллографа выглядит вот так.

А где же правильный прямоугольный сигнал? Вот тебе и раз… Ничего с этим не поделаешь. Это есть, было и будет у всех прямоугольных сигналов. Это возникает вследствие несовершенства цепей и радиоэлементов. Особенно хорошо такая осциллограмма прорисовывается на высоких частотах, как в нашем примере.

Осциллограф

 

Ладно, давайте выведем все параметры сигнала, которые может вывести наш осциллограф. Для этого нажимаем кнопочку “Measure” , что с англ. означает “измерять”

Далее нажимаем кнопочку “Add” ( с англ. – добавлять), с помощью вспомогательной клавиши h2

И потом нажимаем кнопку “Show All” (с англ. – показать всё) с помощью вспомогательной клавиши F3

В результате всех этих операций у нас выскочит табличка с измеряемыми параметрами сигнала:

Описание характеристик сигналов

Как вы знаете, осциллограф нам показывает изменение напряжения сигнала во времени. Поэтому, параметры сигналов в основном делятся на два типа:

Амплитудные

Временные

Давайте рассмотрим основные из них. Начнем слева-направо.

Period – с англ. период. Период сигнала – это время, за которое сигнал повторяется. В нашем случае период обозначается буквой “Т”.

Чтобы самостоятельно посчитать период, нам надо знать значение одной клетки по горизонтали. Внизу осциллограммы можно найти подсказку. Я ее пометил в желтый прямоугольник

Следовательно, одна клеточка по горизонтали равна 500 наносекунд. А так как у нас период длится ровно две клеточки, значит 500 х 2 = 1000 наносекунда или 1 микросекунда.

Сходятся ли наши расчетные показания с показаниями автоматических измерений? Смотрим и проверяем.

Стопроцентное попадание! Кстати, чтобы не было дальнейших вопросов, привожу небольшую табличку.

“Пико” – буквой “p”

“Нано” – буквой “n”

“Микро” обозначается буквой “u”, как и в маркировке современных конденсаторов.

“Милли”  – буквой “m”.

Осциллограф

Freq. Полное название frequency – с англ. частота. Обозначается буквой “F”. Частоту очень легко можно вычислить по формуле, зная период Т.

F=1/T

В нашем случае получаем 1/1х10-6=106=1 Мегагерц (MHz).  Смотрим на наши автоматические измерения:

Ну разве не чудо? 😉

Следующий показатель Mean. В нашем случае обозначается просто буковкой “V”. Он означает среднюю величину сигнала и используется для измерения постоянного напряжения. В данный момент этот параметр не представляет интереса, потому как измеряется переменный ток и в значении этого сигнала показывается какая-то вата. Постоянный ток меряет нормально, можно вывести этот параметр на дисплей, что мы и делали в прошлой статье:

Еще один интересный параметр: PK-PK. Называется он Peak-to-Peak и показывает напряжение от пика до пика. Обозначается как Vp. Что это за напряжение от пика до пика, показано на осциллограмме ниже:

Так как мы видим, что значение нашего квадратика  равно 1 Вольту (внизу слева)

То можно высчитать и напряжение от пика до пика. Оно будет где-то эдак 5 Вольт. Сверяемся с автоматическим измерением

Почти в тютельку!

Остальные параметры сигнала не столь важны для начинающих электронщиков.

Плюсы и минусы цифрового осциллографа

Начнем с плюсов

  • Запись, остановка, автоматические измерения и другие фишки – это еще не весь список, что умеет делать цифровой осциллограф
  • Габариты цифрового осциллографа намного меньше, чем аналогового
  • Потребление энергии меньше, чем у аналогового осциллографа
  • Жидкокристаллический дисплей, в отличие от кинескопного дисплея аналогового осциллографа

Минусы

  • Дороговизна
  • Дискретная прорисовка сигнала. Хотя дорогие модели ничуть не уступают аналоговым по прорисовке сигнала.

 

Где купить цифровой осциллограф

Естественно, на Алиэкспрессе, так как в наших интернет-магазинах их цена бывает завышена в два, а то и в три раза. Также очень хорошие отзывы об осциллографе Hantek, характеристики которого даже лучше, чем у моего OWON:

купить осциллограф

Посмотреть его можете на Алиэкпрессе по этой ссылке.

USB осциллограф

USB-осциллограф представляет из себя прибор, который не имеет собственного экрана.

У нас на обзоре USB осциллограф INTRUSTAR.

USB осциллограф INTRUSTAR

 

В придачу с ним шли 2 щупа, шнур USB, расходники, диск с ПО, а также отвертка для регулировки щупов

щупы и кабель для USB осциллографа

С одной стороны осциллографа мы видим два разъема для подключения щупов. Первый разъем Ch2, что означает первый канал, а второй разъем Ch3, то есть второй канал. Следовательно, осциллограф двухканальный.  Справа видим два штыря. Эти штыри – генератор тестового сигнала для калибровки щупов осциллографа. Один из них земля, а другой – сигнальный. Калибруем точно также, как и простой цифровой осциллограф. Как это делать, я писал выше в статье.

разъемы USB осциллографа

 

В рабочем состоянии USB осциллограф выглядит вот так.

рабочее состояние USB осциллографа

После установки программного обеспечения на компьютер или ноутбук, открываем программу и запускаем осциллограф. Здесь я уже сразу подцепил тестовый сигнал, чтобы подготовить осциллограф к работе.

MultiVirAnalyzer

Также можно вывести значение сигналов, которые осциллограф сразу бы показывал на экране монитора.

параметры сигналов USB осциллографа

 

Плюсы и минусы USB осциллографа

Плюсы:

  1. Умеренная цена и функционал. Стоит в разы дешевле, чем крутые цифровые осциллографы
  2. Настройка и установка ПО занимает около 10-15 минут
  3. Удобный интерфейс
  4. Малогабаритный размер
  5. Может производить операции как с постоянным, так и с переменным током
  6. Два канала, то есть можно измерять сразу два сигнала и выводить их на дисплей

Минусы:

  1. Малая частота дискретизации
  2. Обязательно нужен ПК
  3. Малая полоса пропускания
  4. Глубина памяти тоже никакая

 

Более подробно про характеристики цифровых осциллографов вы можете прочитать, скачав учебное пособие по цифровым осциллографам.

Похожие статьи по теме “осциллограф”

Фигуры Лиссажу

Электрический сигнал

Осциллограф — это… Что такое Осциллограф?

Осциллограф

Осцилло́граф (лат. oscillo — качаюсь + греч. γραφω — пишу) — прибор, предназначенный для исследования (наблюдения, записи; измерения) амплитудных и временны́х параметров электрического сигнала, подаваемого на его вход, либо непосредственно на экране, либо записываемого на фотоленте.

Современные осциллографы позволяют исследовать сигнал гигагерцовых частот. Для исследования более высокочастотных сигналов можно использовать электронно-оптические камеры.

Применение

Используются в прикладных, лабораторных и научно-исследовательских целях, для контроля/изучения электрических сигналов — как непосредственно, так и получаемых при воздействии различных устройств/сред на датчики, преобразующие эти воздействия в электрический сигнал.

Курсорные измерения

Захват строки телевизионного сигнала

Для периодического и оперативного контроля качественных показателей телевизионного тракта и отдельных его звеньев в системах телевещания применяются специальные осциллографы с блоком выделения строк.

Классификация

По назначению и способу вывода измерительной информации:

  • Осциллографы с периодической развёрткой для непосредственного наблюдения формы сигнала на экране (электронно-лучевом, жидкокристаллическом и т. д.) — в зап.-европ. языках oscilloscop(e)
  • Осциллографы с непрерывной развёрткой для регистрации кривой на фотоленте (шлейфовый осциллограф) — в зап.-европ. языках oscillograph

По способу обработки входного сигнала

  • Аналоговый
  • Цифровой

По количеству лучей: однолучевые, двулучевые и т. д. Количество лучей может достигать 16-ти и более (n-лучевой осциллограф имеет nное количество сигнальных входов и может одновременно отображать на экране n графиков входных сигналов).

Осциллографы с периодической развёрткой делятся на: универсальные (обычные), скоростные, стробоскопические, запоминающие и специальные; цифровые осциллографы могут сочетать возможность использования разных функций.

Также существуют осциллографы, совмещенные с другими измерительными приборами (напр. мультиметром).

Осциллограф также может существовать не только в качестве автономного прибора, но и в виде приставки к компьютеру (подключаемой через какой-либо порт: LPT, COM, USB, вход звуковой карты).

Устройство

Осциллограф с дисплеем на базе ЭЛТ состоит из электронно-лучевой трубки, блока горизонтальной развертки и входного усилителя (для усиления слабых входных сигналов). Также содержатся вспомогательные блоки: блок управления яркости, блок вертикальной развертки, калибратор длительности, калибратор амплитуды.

Современные осциллографы всё в большей степени переходят (как и вся техника визуализации — телевизоры, мониторы и тп.) на отображение информации на экране ЖК-дисплеев.
Передняя панель типичного двухлучевого осциллографа

Экран

Передняя панель типичного двухлучевого осциллографа

Схема электронно-лучевой трубки осциллографа: 1 — отклоняющие пластины, 2 — электронная пушка, 3 — пучок электронов, 4 — фокусирующие катушки, 5 — экран

Осциллограф имеет экран A, на котором отображаются графики входных сигналов (у цифровых осциллографов изображение выводится на дисплей (монохромный или цветной) в виде готовой картинки, у аналоговых осциллографов в качестве экрана используется электронно-лучевая трубка с электростатическим отклонением). На экран обычно нанесена разметка в виде координатной сетки.

Сигнальные входы

Осциллографы разделяются на одноканальные и многоканальные (2, 4, 6, и т. д. каналов на входе). Многоканальные осциллографы позволяют одновременно сравнивать сигналы между собой (формы, амплитуды, частоты и пр.)

Управление разверткой

Имеются значительные отличия в аналоговых и цифровых осциллографах. В цифровых осциллографах, строго говоря, не требуется синхронизация, так как при частоте обновления 1 сек и менее изображение на экране вполне читаемо визуально.

Режимы развертки:

  • автоматический;
  • ждущий;
  • автоколебательный;
  • однократный;

Триггер

Если запуск развёртки никак не связан с наблюдаемым сигналом, то изображение на экране будет выглядеть «бегущим» или даже совершенно размазанным. Это происходит потому, что в этом случае осциллограф отображает различные участки наблюдаемого сигнала на одном и том же месте. Для получения стабильного изображения все осциллографы содержат систему, называемую триггер.

Триггер в осциллографе — это устройство, которое задерживает запуск развёртки до тех пор, пока не будут выполнены некоторые условия. Триггер имеет как минимум две настройки:

  • Уровень сигнала: задаёт входное напряжение (в вольтах), при достижении которого запускается развёртка
  • Тип запуска: по фронту или по спаду

Таким образом, триггер запускает развёртку всегда с одного и того же места сигнала, поэтому изображение сигнала на осциллограмме выглядит стабильным и неподвижным (конечно, только при правильных настройках триггера).

Настройка

Для работы с осциллографом предварительно необходимо произвести калибровку его канала (каналов). Калибровка производится после прогрева прибора (примерно минут 5). Калибратор встроен в большинство осциллографов. Для калибровки высокочастотных моделей желательно иметь шнур с двумя разъемами (на выход калибратора и на вход осциллографа) иначе возможны искажения сигнала. Для низкочастотных моделей возможно просто коснуться щупом выхода калибратора. Далее ручку вольт/дел. ставится так, чтобы сигнал калибратора занимал 2—4 деления на экране (то есть, если калибратор 1 вольт,- то на 250 милливольт). После этого канал включается на переменное напряжение и на экране появится сигнал. Далее, в зависимости от частоты калибратора, ручка развертки ставится в положение при котором видно не менее 5—7 периодов сигнала. Для частоты 1 килогерц частота развертки при которой каждый период занимает одно деление экрана равен 1 мс (одна миллисекунда). Далее необходимо убедиться, чтобы сигнал на протяжении этих 5-7 периодов попадал точно по делениям экрана. Для аналоговых осциллографов нормируется как правило ±4 деления от центра экрана, то есть на протяжении восьми делений должен совпадать точно. Если не совпадает, следует поворачивать ручку плавного изменения развертки добиваясь совпадения. Заодно проверяется амплитуда (размах) сигнала — она должна совпадать с тем, что написано на калибраторе. Если не совпадает, то необходимо добиться совпадения, поворачивая ручку плавного изменения чувствительности вольт/дел. Необходимо помнить, что если установлена чувствительность канала в 250 милливольт, то сигнал в 1 вольт занимает при правильной настройке 4 деления. После калибровки прибор будет показывать сигнал точно. Теперь можно не только смотреть, но и измерять сигналы.

История

Первый осциллограф был изобретён французским физиком Андре Блонделем в 1893 году.

Интересные факты

См. также

Примечания

Ссылки

Литература

  • Р. Г. Карпов, Н. Р. Карпов Электрорадио измерения М.: «Высшая школа», 1978

Осциллограф

Программный осциллограф, созданный для просмотра музыки. Перетащите аудиофайл в приложение
и наблюдайте за формами волны.

Загрузки

  • Windows 1.0.8 (23 января 2017 г.)
  • Mac OS X 1.0.8 (23 января 2017 г.)
  • Linux 1.0.3-предварительная версия; выбор устройства не работает (5 марта 2016 г.)
  • Источник

Новая версия особо не тестируется.Если возникнут проблемы, попробуйте предыдущий выпуск:
Осциллограф Webring

Как использовать

После запуска осциллографа приветственное сообщение уже загружено, нажмите ▶ ︎ play, чтобы убедиться, что ваша настройка звука работает.
Если это не так, откройте настройки disable и отключите параметр «Использовать системные значения по умолчанию». Затем выберите аудиовыход, который хотите использовать.

Чтобы открыть файлы, вы можете щелкнуть значок папки или перетащить файл из Explorer / Finder / Nautilus / … в приложение.

Клавиша Действие
Пробел Воспроизведение / пауза
f Полноэкранный режим
Вкладка Скрыть интерфейс
e Экспорт в последовательность изображений (по умолчанию до 1920×1080 @ 60 кадров в секунду, отредактируйте настройки.txt для настройки)

Функции

  • с 1.0.8 3D (бок о бок и анаглиф) при воспроизведении 4-канальных файлов
  • , начиная с 1.0.7 Аудиофайлы Time Stretch
  • , начиная с версии 1.0.6 Стерео микрофонный вход
  • , начиная с 1.0.5 Поддерживаемые платформы: Windows и Mac OS X (32-разрядная версия)
  • с 1.0.5 Экспорт последовательности изображений
  • начиная с 1.0.1 Поддерживаются Wav, Flac, Mp3 и несколько других файлов (через ffmpeg / libavcodec)
  • с 1.0.0 Внешний вид очень близок к аналоговому осциллографу

Известные проблемы

Спасибо. Спасибо!

Лицензия / Исходный код

  • Вы можете найти домашнюю страницу проекта и исходный код в свободном доступе на github.
    Сам код выпущен под лицензией MIT.
  • На основе Openframeworks, библиотеки творческого кодирования для C ++. Большая его часть лицензирована как MIT / BSD.
  • Использует FFmpeg для декодирования аудиофайлов.FFmpeg под лицензией gpl / lgpl 2.1.
    Включенные здесь совместно используемые библиотеки были скомпилированы в соответствии с lgpl.
    Копию LGPL вместе с инструкциями по компиляции библиотеки для каждой платформы можно найти в папке docs / ffmpeg .
    это часть файлов выпуска.
    В качестве альтернативы (или если файлы были включены не случайно) вы можете найти онлайн-версии инструкций по компиляции
    и LGPL как часть проекта ofxAvCodec.

Форум / Вопросы

Пожалуйста, включите JavaScript, чтобы просматривать комментарии от Disqus.

Это программное обеспечение использует код FFmpeg под лицензией LGPLv2.1, и его исходный код можно скачать здесь / здесь.

.Виртуальный осциллограф

| Academo.org — Бесплатное интерактивное обучение.


Осциллограф — полезный инструмент для всех, кто работает с электрическими сигналами, поскольку он обеспечивает визуальное представление формы сигнала или формы волны. Это позволяет вам измерять свойства волны, такие как амплитуда или частота.

Первоначальный сигнал выше представляет собой синусоидальную волну 200 Гц с амплитудой 5 вольт. Частоту этой волны можно настроить с помощью ползунка «Входная частота волны».(Вы также можете выбрать отображение прямоугольной волны.)

Если вы просматриваете страницы с помощью последней версии Google Chrome, в раскрывающемся списке ввода можно выбрать «живой ввод». Это будет принимать данные с любого микрофона, подключенного к вашему компьютеру, и отображать аудиоданные в реальном времени. (Разные микрофоны посылают на компьютер разное напряжение, поэтому для единообразия мы нормализовали входной сигнал, поэтому исходный входной сигнал всегда будет ограничен где-то между -5 и +5 вольт.)

Поскольку осциллографы бывают самых разных форм, амплитуд и частот, осциллографы должны иметь ряд элементов управления для настройки отображения формы сигнала, чтобы она могла удобно поместиться в окне просмотра.

Freeze live input
Этот флажок фиксирует входной сигнал, позволяя эффективно делать снимок того, что отображается на осциллографе в данный момент времени. Это особенно полезно
потому что вы все еще можете регулировать развертку времени и настройку вольт на деление. Попробуйте свистеть и заморозить ввод. Настройка временной развертки по удобной шкале позволяет рассчитать частоту свистка путем подсчета периода одной полной формы волны.

Усиление осциллографа
Это число, на которое умножается входящий сигнал.Коэффициент усиления 1 не будет иметь никакого эффекта, коэффициент усиления меньше 1 сделает сигнал меньше, а коэффициент усиления больше 1 сделает его больше.

секунд / дел.
Этот элемент управления позволяет регулировать продолжительность времени, которое представляет каждый квадрат сетки. При первой загрузке осциллографа этот параметр устанавливается на 1 мс и отображает одну полную форму сигнала на 4 квадратах. Это означает, что период волны составляет 4 мс, или 0,004 с, что дает частоту (1 / 0,004) = 250 Гц. Если вы измените развертку на 500 мкс (половину от того, с чего она началась), вы должны увидеть, что форма волны теперь занимает 8 квадратов для завершения одного полного колебания.Период (и, следовательно, частота) остается постоянным, потому что 8 умноженных на 500 мкс все еще равняются 0,004 с.

вольт / дел.
Эта настройка очень похожа на настройку временной развертки, описанную выше, но вместо того, чтобы растягивать волну по оси x, она включает в себя растяжение по оси y. Синусоидальная волна имеет амплитуду 5 В, что означает, что когда вольт / дел установлено на 5, форма волны достигает вершины первого квадрата. Если бы вы изменили настройку на 10 вольт / дел, форма волны теперь достигает только половины квадрата.

Смещение по горизонтали и вертикали
Эти два ползунка позволяют регулировать положение кривой осциллографа на сетке. Они особенно полезны для выравнивания частей
формы волны с линиями сетки (это может упростить подсчет квадратов, например, при определении длины волны).

Если вы хотите встроить осциллограф на свой веб-сайт, скопируйте и вставьте следующий HTML-код на свою веб-страницу.

Пожалуйста, включите JavaScript, чтобы просматривать комментарии от Disqus..

Micsig Digital Oscilloscope TO1104 100MHz 4CH 28Mpts Универсальные осциллографы Автомобильный диагностический осциллограф с сенсорным экраном | |

Цифровой планшетный осциллограф , 100 МГц, 4 канала, 28 мегапикселей, портативные осциллографы, автомобильный диагностический осциллограф, сенсорный экран, TO1104,

Если вы не можете приобрести подходящий осциллограф из-за небольшого бюджета, планшетный осциллограф серии tBook mini TO1000 — действительно хороший выбор.

Серия tBook mini TO1000 использует 8-дюймовый промышленный TFT-дисплей и разрешение экрана 800 * 600 пикселей, 2 или 4 канала, полосу пропускания 70 и 100 МГц, частоту дискретизации 1 Гвыб / с и глубину памяти до 28 Мбит / с, а также поддерживает сенсорный емкостный экран, Дисплей с градацией яркости 256, а также поддерживает LAN, WiFi, HDMI, USB-хост, USB-устройство, порт триггера и тому подобное. Поэтому эта серия — ваш лучший выбор для тестовых работ.

Серия tBook mini TO1000 объединяет все преимущества в одном приборе: сверхмалый бюджет, быстрый отклик, простое управление, технологический интерфейс и множество функций.

Что в упаковке (Необязательно1)

1, Scope + battery
2, Probes
3, Power Adapter and Power Plug
4, Carry starp + Screen mask
5, Расшифровка последовательной шины (программное обеспечение, только для TO1104)
6, Бесплатные приложения и программное обеспечение для ПК (загрузка с веб-сайта)

Что в упаковке (Необязательно2)

1, Scope + battery
2, Probes
3, Power Adapter and Power Plug
4, Carry starp + Screen mask
5, Расшифровка последовательной шины (программное обеспечение, только для TO1104)
6, Бесплатные приложения и программное обеспечение для ПК (загрузка с веб-сайта)

7.Сумочка

Что в упаковке (Необязательно3)

1, Scope
2, Probes
3, Carry starp + Screen mask
4, декодирование последовательной шины (программное обеспечение, только для TO1104)
5, бесплатные приложения и программное обеспечение для ПК (загрузка с веб-сайта)

.Серия

LOTO OSC482, Осциллограф / Генератор сигналов / Логический анализатор / …, 5 в 1, 50 Мбит / с, разрешение 8 ~ 13 бит, дополнительные модули | |

Продукты LOTO помогут вам решить следующие проблемы:

1: Какой осциллограф выбрать для младшего инженера по аппаратному обеспечению?

2: Придется поделиться осциллографом с коллегами, как сломать?

3: Для отладки на месте требуется тяжелый осциллограф, что мне делать?

4: Разработка электронных проектов дома, осциллограф неудобен, что мне делать?

5: Традиционные осциллографы дороги, и многие функции не используются.Нужен мощный и недорогой осциллограф?

6. Традиционные осциллографы слишком неповоротливы
быть настроенным и сложным для интеграции в ваш проект. Как это решить?

Официальное видео-введение, ответы на все ваши вопросы.


Серия

OSC482 предоставляет вам отличный выбор 5 в 1:

С осциллографом ПК на базе OSC482 вы можете комбинировать его с модулем генератора сигналов как OSC482S, комбинировать модуль логического анализатора как OSC482L или комбинировать оба модуля как OSC482X.OSC482M — это OSC482 с поддержкой приложений для Android без модуля. Если вам нужен OSC482X с поддержкой приложений для Android, доступен OSC482F.

Мы продолжаем обновлять программное обеспечение осциллографа для улучшения функций / операций программного обеспечения по ссылке:

http://bbs.lotoins.com/support.html.

Пожалуйста, проверьте, чтобы загрузить последнюю версию.

Давайте посмотрим на программное приложение в Windows

Сценарии приложений и применимое население

На приведенном выше рисунке мы увидим декодирование последовательного порта, рисование X_Y, усиление несущей, многоточечное автоматическое измерение, аналоговый ввод и логический анализ, печать и БПФ из программного приложения Windows, а также рабочие сцена регистратора данных.Этот продукт рекомендуется для разработки и измерения схем аппаратного обеспечения, обучающего оборудования, ввода в эксплуатацию на месте, проверки кодировщика, технического обслуживания транспортных средств, автоматизированного контрольного оборудования, тестирования пульсации мощности, проверки солнечной системы.

Он разработан для
инженер по аппаратному обеспечению
Автоэлектроника
Электронный Компьютерщик
Полевой инженер
Колледж

Характеристики и характеристики оборудования

8 ~ 13 бит Разрешение по вертикали

Module Extensions

давайте посмотрим на аппаратный интерфейс продукта для расширений:

Открытый аппаратный интерфейс DE-15 может обеспечивать цифровое питание, а также аналоговое питание, порты GPIO и аналоговые входные каналы, как показано ниже.Этот интерфейс может использоваться как стандартный доступ для модулей генератора сигналов или модулей логического анализатора.

Хотя эти два модуля могут быть подключены к сети при частом использовании, рекомендуется подключать модуль после выключения устройства.

Это также может быть самодельный функциональный модуль, как показано на рисунке ниже, а также доступ к устройству через интерфейс DE-15.

Список пакетов

Давайте посмотрим на список пакетов:

На рисунке выше показан единый внешний вид упаковки и внутренние аксессуары, которые различаются в зависимости от модели, выбранной клиентом.Конечно, вы также можете выбрать футляр для переноски, чтобы упаковать и хранить осциллограф, его модули и аксессуары, как показано ниже, этот футляр необходимо приобретать отдельно. Ссылку на него можно найти в этом магазине.

Осциллограф USB и необходимые аксессуары (включая модули расширения и стандартные аксессуары) могут отличаться в зависимости от вашей покупки:

О поддержке смартфонов / планшетов

OSC482M / OSC482F не поддерживает все типы устройств Android.Клиентам может потребоваться проверить свои телефоны / планшеты Android на соответствие этим требованиям или связаться с нами, чтобы проверить список поддержки.

Q: какой диапазон измерения

A: Прицел может измерять 5 В (с датчиком на X1)
и 50 В (с датчиком на X10). Если вам нужно
Измерьте более высокое напряжение до 500 В, пожалуйста
Зонд X100 приобретается отдельно.

Q: как связаться с техподдержкой?

A: отправьте электронное письмо на [email protected]
Технический отдел ответит как можно скорее.

A: 3 года гарантии на всю продукцию.

Загрузка программного обеспечения

Пожалуйста, скачайте бесплатно, мы будем продолжать обновлять.

bbs.lotoins.com/support.html

Техническая поддержка

Если возникнут проблемы, отправьте электронное письмо по адресу [email protected], мы ответим как можно скорее.

Служба поддержки клиентов

Отправьте электронное письмо или электронное письмо по адресу [email protected]
Мы обещаем ответить в течение 24 часов.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *