Ультразвук кто слышит: Ультразвуковые волны есть везде. А вы их слышите?

Содержание

Ультразвуковые волны есть везде. А вы их слышите?

Есть звуки, которые может расслышать только небольшая часть людей. Хоть кто-то даже не подозревает об их существовании, для других это серьезная проблема. Звуки настолько громкие, что вызывают раздражение и головную боль у людей, к ним чувствительным. Здесь идет речь об ультразвуковых волнах. Ученые до сих пор не могут определиться, насколько они распространены, какой вред наносят обществу.

Тимоти Лейтон

Классу «ультразвук» было посвящено более десяти лет исследований Тимоти Лейтона, профессора акустики. О результатах своей работы он рассказал сравнительно недавно — 9 мая 2018 года.

Кто слышит ультразвук?

Лейтон в интервью рассказал, что слышать ультразвук может далеко не каждый из нас. Слишком это высокая частота для человеческого уха. Но на практике ультразвуковая волна может быть ощутима для следующих категорий:

  • Новорожденные дети.
  • Подростки и молодые люди.
  • Мужчины и женщины, обладающие чрезвычайно острым слухом.

волна

Проблема чувствительных к ультраволнам

Для всех этих людей ультразвук — достаточно серьезная проблема. Она усугубляется тем, что на сегодняшний день мало изучена. Тимоти Лейтон рассказывает, что к нему приходят люди, которые плохо себя чувствуют в определенных зданиях. Им кажется, что их постоянно окружают неприятные, непрерывные давящие звуки.

С подобной проблемой людей направляют проверить слух у ЛОР-специалиста, который, конечно же, не находит никаких отклонений. Это заставляет пациента думать, будто эти звуки только в его голове, будто он сошел с ума, слыша то, чего нет в действительности.

Исследование проблемы в научном мире

Проблема еще и в том, что очень мало ученых посвящают себя исследованию ультразвука. Тимоти Лейтон говорит, что в мире найдется максимум шесть исследователей, занимающихся данным вопросом. Этим обстоятельством он объясняет и большое количество человек, желающих попасть к нему на консультацию.

Вышесказанное при этом не обозначает, что труды ученого не входят в научный мейнстрим. Лейтон был одним из двух сопредседателей, приглашенных на сессию по высокочастотному звуку, проходящую в рамках заседаний АСА. За свои исследования ученый получил награду Клиффорда Патерсона от Королевского общества (за отдельные исследования в области подводной акустики).

Важно выделить, что большинство ученых, исследовающих ультраволны, не направляют свои труды на то, чтобы определить, как эти звуки влияют на человека. Когда журналисты обратились к коллегам Лейтона для комментирования поднятой проблемы, они честно признались, что не имеют достаточных знаний, чтобы рассуждать в данном ключе.везде

Ислледования Лейтона

Да, ультраволны везде. А вы их слышите? Профессор Лейтон — нет. Однако он обеспокоен проблемами чувствительных к ультразвуку людей. Ученый отправился для исследования ультраволн в здания, где его посетители чувствовали у себя неприятные симптомы. С помощью специальных приборов он установил наличие ультразвука внутри этих помещений.

Что печально, это общественные места, которые посещают 3-4 миллиона человек в год. Поэтому высока вероятность, что среди них будет и немалое число чувствительных к звуку. При воздействии ультраволн эти люди чувствуют неприятные симптомы: головную боль, звон в ушах, тошноту, шум в голове. Стоит покинуть помещение, как проявления ослабляются. Примерно через час человек чувствует себя уже нормально.

К сожалению, сегодня болезнь, вызванная ультразвуком, считается чем-то из разряда шарлатанства и суеверий. Ведь ученые просто не представляют, как эти звуковые волны воздействуют на человеческий организм.слышать

Массовое ультразвуковое воздействие

Возможно, проблема непопулярна и из-за того, что число пострадавших от воздействия ультразвука сравнительно мало во всемирном масштабе. Но все же в истории были и громкие события, связанные с негативным его воздействием.

В качестве примера Лейтон приводит показательный случай. Прибывшие на Кубу американские дипломаты стали массово страдать от комплекса симптомов, которые испытывают чувствительные к ультразвуку люди. Они жаловались на непрекращающуюся головную боль, страдали от шума в ушах и даже потери слуха. Есть мнение, что против них было применено секретное ультразвуковое оружие.

Тимоти Лейтон считает, что негативное воздействие ультразвука на человека — это проблема мирового масштаба. И дело не в том, что она приносит страдания небольшой группе чувствительных к ультразвуковым волнам людей. Ультразвук пагубно воздействует на всех, особенно на молодежь. Только нечувствительные к нему люди его не замечают, списывают неприятные симптомы на другую причину.волна

Почему не все слышат ультразвук?

Исследования, посвященные чувствительности человеческого уха к различным звуковым волнам, были проведены еще в 1960-70-х гг. Ученым нужно было выяснить, какое воздействие звука на рабочем месте считается допустимым, приемлемым для труда. Тогда было установлено, что ультразвук не является проблемой для работника, если его частота — 20 кГц (или 20 000 вибраций в секунду).

Почему мы его не различаем? Этот звук слишком высокий для человеческого уха. Особенно для взрослого человека. Как только тоновый звук поднимается на 16 кГЦ, большинство людей перестают его слышать.

Но это касается только взрослых. Если ваши школьные годы пришлись на 2000-ые, вы помните, как была популярна мелодия «писк комаров». Она раздражала всех ваших одноклассников, но учителя ее не слышали. А ведь это и был тот самый ультразвук. Важно отметить, что мужчины становятся нечувствительными к звукам высоких диапазонов раньше, чем женщины.везде

Недостатки прошлых исследований

Тимоти Лейтон утверждает, что главный недостаток исследований 60-70-х годов о допустимом воздействии на человеческий организм ультразвука связан с тем, что в экспериментах участвовали взрослые мужчины. А из вышесказанного легко определить, что они не слышали те раздражающие звуки, что улавливают молодые женщины и дети.

Поэтому требования к уровню шума, которыми руководствуются во многих государствах мира, совсем неверные. Они не защищают людей, чувствительных к ультразвуку. Яркий тому пример: школьник стал нервным и раздражительным от того, что одноклассник включил на своем телефоне «писк комара». Но учитель не слышит этого звука, он наказывает этого ребенка за плохое поведение, не зная его причины.

Использование ультразвка

Сегодня ультразвук успешно применяется во многих общественных местах для отпугивания грызунов. Он непрерывно передается по датчикам. Это характерно для ресторанов, железнодорожных станций, стадионов и прочих общественных мест.

Источником ультразвука является и автотранспорт. Кроме того, он часто используется и для тестирования громкоговорителей. Отсюда видно, что чувствительным к ультраволнам людям практически негде спрятаться от них в городе.

Решение проблемы

Но Лейтон уверен, что проблему возможно решить. Самое главное — популяризировать ее. Ведь люди, которые не слышат ультразвук, даже не предполагают, как он негативно влияет на других.

Второе — призвать производителей устройств, транслирующих ультразвук, ориентироваться на современные, а не на устаревшие нормы. Сам ученый говорит, что уже находятся предприятия, которые интересуются его исследованием и устраняют проблему.

И третье — популяризировать проблему в научном мире. Заинтересовать ученых в проведении исследований в данной области.волна

Если мы не ощущаем проблемы, это не значит, что ее нет. В этом и убеждают исследования Тимоти Лейтона.

Нашли нарушение? Пожаловаться на содержание

Как ультразвук действует на человека: мнения опытных экспертов

Ультразвуковые волны отличаются широким практическим применением в разных сферах деятельности человека.

Приборы с ультразвуковыми генераторами используются для проведения медицинских диагностических процедур, для дефектоскопии, для выполнения ультразвуковой сварки, в различных производственных процессах и пр.

Кроме перечисленного выше УЗ-волны нашли широкое применение в быту и применяются с целью отпугивания различных вредителей: мышей, крыс, насекомых и пр.

Для этого созданы специальные приборы – ультразвуковые отпугиватели, которые устанавливают как на промышленных объектах, так и применяют в домашних условиях. В связи с этим «количество ультразвука» в жизни человека резко возросло.

Естественно, что возникает вопрос о том, опасно ли воздействие ультразвука на организм человека на производстве и в быту.

Чтобы дать утвердительный ответ на этот сложный вопрос следует разобраться, что собой представляют ультразвуковые волны и как функционирует УЗ-отпугиватель, которым человек пользуется в быту.

Что такое ультразвук?

Ультразвук представляет собой обычную звуковую волну, частота которой выше 20 кГц.

Иными словами, ультразвуковые волны – это упругие продольные колебания, которые способны распространяться в какой-либо упругой среде, в которой они могут создавать механические колебания.

В воздушной среде ультразвуковые волны распространяются благодаря колебаниям молекул воздуха.

Звуковой частотный диапазонЗвуковой частотный диапазонЗвуковой частотный диапазон

Частотный диапазон, который отводится для УЗ-волн в звуковом спектре, находится в пределах 20…70 кГц.

Также следует отметить, что кроме ультразвуковых волн существуют еще так называемые инфразвуковые волны. Это также звуковые волны, частота которых составляет менее 16 Гц.

Многие считают, что воздействие ультразвука и инфразвука на организм человека имеет негативные для него последствия. Попытаемся разобраться так ли это на самом деле.

Также читайте авторскую статью нашего подписчика – Кращі способи боротьби з гризунами: гуманні і не гуманні

Как ультразвук воздействует на организм человека

Слуховой аппарат человека устроен таким образом, что он может слышать только те звуки, которые находятся в интервале частот от 10 Гц до 16 кГц, за исключением некоторых случаев, когда человек по своей индивидуальности может слышать звуки из более широкого диапазона.

Учитывая, что ультразвуковые частоты находятся в диапазоне от 20 кГц до 70 кГц, услышать их человек не сможет.

Поэтому дискомфорта и раздражения от таких волн для человека не будет.

Бытует мнение о негативном воздействии ультразвука на мозг человека и барабанные перепонки его слухового аппарата.

Ультразвуковой отпугиватель грызунов Ястреб 200Ультразвуковой отпугиватель грызунов Ястреб 200Ультразвуковой отпугиватель грызунов Ястреб 200

(На фото изображен ультразвуковой отпугиватель грызунов Ястреб 200)

Также почитайте обзор модельного ряда отпугивателей Ястреб

Связывают это с тем, что УЗ-волна имеет сильное давление на органы человека, что может привести к физической боли.

Дело в том, что ультразвуковая, как и любая звуковая волна характеризуется определенным звуковым давлением. Современные УЗ-приборы формируют волну, величина давления которой находится в интервале 70…100 дБ.

Что касается человека, то он спокойно может переносить воздействие волн, звуковое давление которых составляет 100…120 дБ. Поэтому говорить о возникновении болезненных ощущений под воздействием УЗ-волны с максимальным давлением 100 дБ не приходится.

Вредны ли ультразвуковые отпугиватели?

Выше представлено воздействие ультразвука на человека, рассмотрим могут ли эти волны, генерируемые ультразвуковыми отпугивателями нанести вред человеку.

УЗ-отпугиватели распространяют УЗ-волны, которые имеют частоту около 20 кГц и более.

Она периодически меняется в автоматическом режиме, чтобы вредители не привыкли к работе прибора. Что касается давления этих волн, то оно составляет 70…100 дБ.

Грызуны и другие вредители, которые отличаются иным строением слухового аппарата нежели человек, способны воспринимать звуки, характерные для ультразвукового диапазона.

Вследствие этого распространение волн от УЗ-отпугивателя будет вызывать у них раздражение и дискомфорт.

Кроме этого, учитывая, что слуховая система грызунов очень чувствительна, волны со звуковым давлением более 70 дБ будут вызывать у них болезненные ощущения, порой очень сильные.

Воздействие ультразвука на грызуновВоздействие ультразвука на грызуновВоздействие ультразвука на грызунов

Учитывая эти два фактора, которые будут непрерывно воздействовать на грызунов, работа отпугивателя приведет к тому, что крысы и мыши будут стараться побыстрее покинуть занятые ими территории и больше никогда туда не возвращаться.

Что касается человека, как и большинства домашних животных, то ультразвук, излучаемый устройствами-отпугивателями на них подобного действия иметь не будет.

Исключение составляют лишь те домашние питомцы, которые чувствительны к УЗ-волнам – это морские свинки, декоративные мышки, хомяки, ручные крысы и пр. Поэтому, использовать отпугиватели на основе УЗ-генераторов следует с осторожностью в тех помещениях, где могут быть такого рода животные.

Также следует учитывать и тот факт, что некоторые приборы кроме УЗ-генеартора могут иметь еще и обычный звуковой генератор, который излучает звуковые волны в спектре слышимости человека и домашних животных.

Такого типа приборы применяться в домашних условиях не должны, их можно будет установить только на производственных объектах в тех помещениях, где люди отсутствуют.

Заключение

Если детально изучить воздействие ультразвука на организм человека, то можно сделать выводы, что современные УЗ-отпугиватели являются безвредными приборами и могут использоваться в местах пребывания человека.

При правильном использовании отпугивателя, от него будет только польза – отпугивание крыс, мышей и других вредителей, но никак не вред для человека.

Естественно, что возможно на кого-то, в виду особенностей строения организма, ультразвук и будет иметь какое-либо действие, но это исключение, а не закономерность.

Чтобы отпугиватель был действительно безопасным для человека и ультразвук не причинял ему дискомфорта, важно правильно подобрать прибор для соответствующих условий использования.

На сегодня существует много разных моделей, которые могут применяться на жилых объектах или на промышленных. Чтобы не ошибиться с выбором, лучше обратиться за помощью к квалифицированным специалистам, которые подберут действительно безопасный прибор.

И в завершение посмотрите видео обзор одного из отпугивателей – модель Торандо 400

Слышите ли вы ультразвук? — И это пройдет. — ЖЖ

Не секрет, что звуки окружающего мира действуют умиротворяюще и успокаивающе на организм и нервную систему человека.
Слушая стрёкот насекомых, шум прибоя и прочие звуки природы, насыщенные высокочастотными волнами, мы налаживаем действие вегетативной нервной системы, благодаря чему вялый мозг активизируется и наполняется энергией.

Вследствие этого уменьшаются симптомы деменции, склероза, отступает забывчивость, улучшается иммунитет. Активизация вегетативной нервной системы влечёт за собой излечение от депрессий, уменьшаются апатия и страхи.

Когда налаживается действие вегетативной нервной системы, парасимпатические её отделы получают приоритет и исцеляюще действуют на мозг. Когнитивные способности, концентрация внимания, память, мыслительные способности мозга резко повышаются.

Доктор Дэнда Фумио — создатель системы звукотерапии — изучал воздействие разных звуков на мозг более 30 лет,
  Главная идея Дэнда сана — бывшего музыканта-кларнетиста — в том, что японцы, по причине отсутствия в японском языке сочетания шипящих и даже просто сочетания согласных, не приучены слышать звуки в том же диапазоне, что и европейцы и американцы. По этой же причине они не великие певцы и музыканты — они слышат не все звуки. Вот такое неожиданное противопоставление японцев всем остальным национальностям…
Именно это стало главной причиной того, что Дэнда сан взялся изготавливать диски с добавленными высокочастотными звуками — он желал обучать соотечественников полному «расслышиванию» звуков.
А обладая умением слышать все звуки, доступные «неяпонским» музыкантам мира, любой японец мог бы добиться большего в исполнительской сфере. Кроме того, простое прослушивание музыки станет приносить гораздо больше наслаждения.

А хорошо ли вы слышите?
Считается, что человек способен слышать звуки из диапазона 20 — 20 000 Гц (приблизительно), но с возрастом верхняя граница постепенно опускается, т.е. звуки высоких частот перестают улавливаться.

Несколько ссылок, где можно пройти тест:

http://www.infoniac.ru/news/Naskol-k…vash-sluh.html
http://www.yaplakal.com/forum7/topic746089.html
http://journal.plasticmind.com/ears/mosquito-tone-or-how-to-tell-youre-a-youngun/ (ENG)
http://www.teenbuzz.org/ (ENG)
От наушников\колонок многое зависит — у них ведь свой рабочий диапазон, т.е. могут тупо обрезаться частоты, которые вы пытаетесь прослушать. Я скачала себе не сжатые файлы, чтобы эксперимент был точным.
По тестам, если вы слышите:
19 000 Гц — то вам меньше 20-ти лет
17 000 Гц — 18 000 — меньше 24-х
16 000 Гц — меньше 30-ти
15 000 Гц — меньше 40-ка
12 000 Гц — меньше 50-ти

Оказалось, что я слышу 20000 Гц, дальше не скачивала.
Но мне кажется, что россияне слышат очень хорошо, потому что в русском языке есть много шипящих и их сочетаний, которые мы без проблем используем и слышим.
А наши музыканты — вообще прекрасные слухачи.

Я однажды показывала Нару (столицу Японии 8 века) двум тридцатилетним девушкам-музыканткам. Уже лет 7-8 назад, наверное.
В парке Нары помимо храма Великого Будды, есть ещё одна достопримечательность — дикие олени, которые свободно разгуливают, где хотят. Одна особенность у них. Попрошайки они отменные, за кормёжку могут принять и съесть хоть карту Нары, хоть купюру, которая по недогляду окажется забытой у вас в руках.
Но к торговым ларькам, откуда пахнет съестным сильнее, чем из карманов туристов, они не подходят! Для меня долго это было загадкой: почему эти наглые обжорки не воруют то, что лежит на прилавках открыто? Неужели пресловутая японская честность — это не признак нации, а географическая составляющая?
И вдруг мои спутницы, девушки-музыкантки, раскрыли мне тайну.
Когда мы поравнялись с торговыми палатками, одна из них даже схватилась за голову, мол, давайте побыстрее уйдём, невыносимо бьёт по ушам. Торговцы съестным, как оказалось, специально, чтоб отпугнуть оленей, включают ультразвук. А внешне всё благопристойно. Я не слышала ничего, сколько ни оглядывалась вокруг, толпы туристов спокойно ходили там и делали покупки, слышали ультразвук только мои спутницы и олени. Уехали мы из Нары без сувениров. Вот какие у нас в стране чувствительные виолончелистки! )

Я очень часто бываю в парке Нары, но не смотря на тайное знание, так ни разу и не расслышала звук, который отпугивает оленей. И хоть раньше мне было всё равно, теперь озаботилась своим слухом. Не знаю, какой диапазон ультразвука там используется…

невидимый убийца: terrao — LiveJournal

Даже у людей, стремящихся разобраться в увиденном или услышанном, необъяснимые явления могут порождать суеверные мысли. Это происходит чаще всего тогда, когда человек сталкивается с чем-то загадочным.
Человеческое ухо способно воспринимать звуковые колебания в определенном диапазоне от 20 Гц (некоторые ученые утверждают — от 17 Гц) до 20 кГц. Все, что лежит ниже этого предела (до 20 Гц), называется инфразвуком, все, что выше 20 кГц — ультразвуком.
[more]

У многих животных этот диапазон восприятия шире: они слышат как более низкие, так и более высокие звуки. Некоторые животные (летучие мыши, морские млекопитающие, рыбы и насекомые) сами способны не только слышать, но и издавать ультразвуки.

Инфразвук (от лат. infra — ниже, под) — это упругие волны, аналогичные звуковым, но не слышимые человеческим ухом из-за низкой частоты. Они слабо поглощаются различными средами, поэтому в воздухе, воде и земной коре распространяются на очень далекие расстояния. Возникают, как правило, при землетрясениях, подводных и подземных взрывах, во время бурь, ураганов, цунами и прочих стихийных бедствиях. Так трактует это событие наука.

Природа этих неслышимых звуков изучена еще недостаточно, хотя они являются постоянными спутниками человека. И спутники эти довольно небезопасны. Ученые многих стран решают проблему — инфразвук и состояние человека, его здоровье и безопасность.

Органы человека тоже имеют собственную частоту колебаний — инфразвуковую. Внешние колебания в промежутке 6—12 Гц воздействуют на наши органы самым губительным образом. При малой интенсивности они вызывают звон в ушах, тошноту, могут привести к расстройству зрения.

Часто при этом люди испытывают безотчетный панический страх. Инфразвуковые колебания средней интенсивности нарушают работу органов пищеварения и мозга. Упругие, мощные волны инфразвука частотой 7 Гц способны разорвать кровеносные сосуды, вызвать в дальнейшем остановку сердца. Попадая в резонанс с биоритмами человека, инфразвук высокой интенсивности может вызвать мгновенную смерть.

В основу защиты человека от губительного действия инфразвука должно быть положено понимание механизма действия этого загадочного природного явления. Еще древнекитайская философия — даосизм — утверждала: «сильные звуки не слышны». А один из великих мудрецов и материалистов древности Гераклит писал: «Я предпочитаю то, что можно увидеть, услышать и изучить».

Ученые многих стран работают над проблемами изучения инфразвука и воздействия его на человека.

Профессор биологии из Франции В. Гавро познакомился с этим загадочным явлением, можно сказать, случайно. С некоторых пор в помещении одной из его лабораторий стало просто невозможно работать. Сотрудники, не пробыв в ней и двух часов, жаловались на сильную головную боль, сильную усталость, болевые ощущения в ушах, ухудшение интеллектуальных способностей.

Профессор и его коллеги-биологи стали искать причину столь негативного явления. Ответ был неожиданным. Через несколько дней они обнаружили, что вентиляционная система завода, который был построен рядом с лабораторией, создавала инфразвуковые колебания большой мощности. Частота этих волн находилась в пределах 7 Гц. Для человека это опасно. Подтверждением этого стал случай, когда Гавро и его сотрудники вынуждены были прекратить работу и опыты с одним из генераторов.

Участники эксперимента почувствовали себя настолько плохо, что даже спустя несколько часов обычные низкие звуки воспринимались ими очень болезненно. Во время опыта у всех, кто находился в лаборатории, стали вибрировать предметы, находившиеся в карманах: ручки, ключи, записные книжки. Ученые сделали однозначным вывод: совпадение инфразвуковой частоты с альфаритмами головного мозга человека небезопасно для его здоровья.

Интересный случай произошел с постановкой пьесы в одном из лондонских театров. Ставили пьесу, одна из сцен которой должна была перенести зрителя в далекое прошлое. Но как создать впечатление ужаса и тайны, ожидания близкой беды? Директор привлек к постановке спектакля известного американского физика Роберта Вуда.

Ученый сконструировал специальную трубу для органа, способную издавать необычные звуки. Испытание показало, что изобретение небезопасно. Труба не издавала слышимых звуков, но в театре дребезжали оконные стекла, звенели подвески на люстрах.

Все, кто был в этот момент в зале, почувствовали беспричинный страх. Позднее все жители квартала, где располагался театр, подтвердили, что неожиданно их охватил ужас и ожидание чего то плохого. Прохожие обеспокоено озирались, мгновенно разлетелись птицы, а собаки беспричинно выли и лаяли. Режиссер спектакля вместе с ученым решили навсегда избавиться от ужасной трубы.

Советский психиатр М. Никитин в 1984 году наблюдал за одним больным эпилепсией. У него приступы появлялись всякий раз, когда при нем начинали играть на органе. Ученый сделал вывод: орган порождал звуки не только в слышимом диапазоне, но и инфразвуки.

У здоровых людей они только усиливали музыкальные впечатления, придавая звучанию больше драматизма и экспрессии, а вот у больного человека с нарушением биоритмов мозга и повышенной чувствительностью вызывали припадки.

Необычная история произошла в 30-е годы XX века. В Северном Ледовитом океане на судне «Таймыр» работала советская научная экспедиция. Ученые изучали верхние слои атмосферы. Для этого запускались шары-зонды. Их наполняли водородом и снабжали необходимыми приборами и радиопередатчиками. Но стоило приблизить шар к уху — и человек начинал чувствовать сильную боль, будто кто-то невидимый сильно давил на барабанную перепонку.

Эта загадка заинтересовала академика В. В. Шулейкина. Сначала он «прослушал» шары-зонды в различных регионах страны, в частности в Москве. Здесь болевых ощущений не наблюдалось. А вот на Черном море они возникали тоже. Так родилась гипотеза о том, что неизвестное явление связано с морем. Инфразвуковые колебания, возникающие в штормовых районах, академик Шулейкин назвал «голосом моря».

Волны инфразвука движутся со скоростью около 330 метров в секунду, причем они немного опережают движение породившего их урагана.

Сравнительно небольшой шторм генерирует инфразвук мощностью в десятки киловатт. И этот звук способен распространяться на сотни и тысячи километров как в воздухе, так и в воде. Есть документальное подтверждение того, что перед штормом в приморских районах увеличивается число дорожных катастроф, больные чувствуют себя намного хуже, растет число самоубийств.

Некоторые жители прибрежных районов, в особенности моряки, могут, выйдя на берег, за несколько часов предсказать надвигающуюся бурю или шторм. Можно сказать, что эти уникумы слышат «голос моря». Видимо, мощные инфразвуковые колебания воздуха, принесенные издалека, они воспринимают как болевые ощущения в ушах. Примерно так же люди, болеющие ревматизмом, ощущают наступающее изменение погоды.

Замечено также, что многие животные заблаговременно узнают о приближении беды в виде различных природных катаклизмов. Например, морские медузы являются безошибочным индикатором штормовой погоды. Строение колокола у медузы весьма своеобразно. Тут присутствуют примитивные глаза и органы равновесия — слуховые колбочки величиной с булавочную головку. Это уши медузы, которые способны воспринимать инфразвук с частотой 8—13 Гц. Шторм бушует за тысячу километров и придет только через несколько часов, а они слышат его и уходят на глубину. Чем не загадка природы?

Морские блохи, наоборот, с приближением непогоды выбираются на сушу. Более развитые животные могут слышать инфразвуки более высоких частот. Собаки воспринимают неслышимые человеком звуки частотой 20—30 кГц (это уже ультразвук). Летучие мыши, комары и осы способны улавливать звуки в 50—60 кГц. Промысловики заметили, что киты обнаруживают китобойные суда по подводному шуму двигателей за сотни километров и стараются уйти.

За два часа до разрушительного землетрясения в Ашхабаде (1948) лошади местного конезавода громко ржали и срывались с привязей. А животные в зоопарке югославского города Скопье — гиены, тигры, львы, слоны — за много часов до катастрофического землетрясения проявляли сильное беспокойство. Японцы давно уже держат в аквариумах интересных рыбок. За несколько часов до первого подземного толчка они начинают метаться по аквариуму.

В прессе неоднократно описывались случаи, когда собаки выносили из дома маленьких детей перед землетрясением.

Мы уже знаем, что мощный инфразвук с частотой 7 Гц смертелен для человека: Возникает вопрос, а не причастны ли инфразвуковые волны к морским и другим природным катаклизмам. Сильные инфразвуковые колебания вызывают у человека панический страх вместе с желанием вырваться из замкнутого пространства. Не это ли заставляет экипажи и пассажиров морских судов в панике покидать их?

Науке хорошо известны наиболее опасные для плавания и полетов аномальные зоны нашей планеты. Видимо, «отправной точкой» мифа о сиренах послужил панический страх, вызываемый интенсивными инфразвуковыми колебаниями. Ученые установили, что при сильных тропических штормах и ураганах частота колебаний инфразвуковых волн доходит до 6 Гц. До опасного для человека порога совсем близко (7 Гц).

Если такая волна накроет судно, она способна за секунды убить всех. При этом самое тщательное расследование не обнаружит ни отравления, ни заразной болезни. У человека просто остановится сердце. В лучшем случае люди сойдут с ума, что и подтверждается многочисленными фактами.

С детства мы знаем легенду о «бессмертном капитане», вечно плавающем без команды по морям и океанам. «Летучий голландец» — это старинная морская легенда, согласно которой голландский капитан Ван Страатен был осужден на вечное скитание по морям. По морским поверьям, встреча с ним предвещает морякам гибель.

Основана эта легенда на вполне реальных фактах. Еще в эпоху Великих географических открытий моряки встречали на бескрайних морских просторах суда, покинутые экипажами. Страховое общество «Ллойд» подсчитало, что только за два года (1891 — 1893) было зарегистрировано 1828 случаев рапортов капитанов о встрече с «летучими голландцами».

Загадочная судьба моряков с «Марии Селесты» до сих пор волнует историков мореплавания, литераторов и даже криминалистов. 4 декабря 1872 года в Атлантическом океане был обнаружен двухмачтовый бриг, шедший под полными парусами. На палубе не было ни души, на подаваемые сигналы судно не отвечало. На корабль высадились моряки с другого судна.

Они на борту никого не обнаружили, причем груз был и полной сохранности, продовольствия в кладовых оставалось много. Больше всего удивляло отсутствие какого-либо беспорядка. Расследование длилось 11 лет и никакого результата не принесло.

В 1890 году из Новой Зеландии в Англию вышло судно «Мальборо», груженное мороженой бараниной и шерстью. В порт назначения корабль не пришел, и его списали как погибший. И вот через 20 лет у берегов Огненной Земли судно нашли. Оно двигалось под парусами, но на борту находились скелеты погибших моряков.

Вся команда находилась на своих местах: один лежал у штурвала, трое на палубе, вахтенные на постах, шестеро «отдыхали» внизу. На всех моряках сохранилась полуистлевшая одежда. Тщательное расследование ничего не дало. Записи в вахтенном журнале разобрать не удалось.

В сентябре 1894 года в водах Индийского океана был обнаружен трех мачтовый барк «Эбий Эсс Харт». На его мачте развивался сигнал бедствия. Немецкие моряки, осматривавшие судно, были ошеломлены увиденным: 38 членов экипажа были мертвы, а капитан сошел с ума.

Похожая участь постигла команду четырехмачтового барка «Фрейя», ходившего под германским флагом. 3 октября 1902 года он был обнаружен у побережья Мексики полузатопленным, мачты сломаны. Команда отсутствовала. Никаких штормов в том районе не было. Причина исчезновения экипажа осталась загадкой.

31 января 1921 года у мыса Гаттерас найдена большая пятимачтовая шхуна «Керрол Диринг». Экипаж отсутствовал: исчезли девять матросов и капитан. Груз, личные вещи и запасы провизии были на месте. Единственным живым существом оказался судовой кот.

В 1948 году с теплоходом «Уранг Медан» произошла еще более удивительная история. Радиостанции засекли сигнал SOS в Матакском проливе. Неизвестный многократно повторял: «Погибли все офицеры и капитан… Я умираю». Спасатели, прибывшие на выручку, увидели ужасную картину. Все люди были мертвы, их лица искажены гримасой ужаса. Погибла даже собака. При самом тщательном осмотре ни у кого из команды не было обнаружено никаких следов насилия.

История мореплавания насчитывает сотни подобных случаев. И происходили они не только в прошлом. В 2003 году у берегов Австралии обнаружили шхуну «Высокая цель». Судно находилось в прекрасном состоянии, в трюме — тонны протухшей рыбы и ни одного из 12 членов экипажа на борт).

Что же заставляет обезумевшую команду покидать свой корабль, и куда исчезают люди? Возможно, и тут не обошлось без инфразвука?

Однако большинство труднообъяснимых и загадочных происшествий на морских просторах происходит в определенных районах. Ученым они хорошо известны. Это в первую очередь: Бермудский треугольник, «море дьявола» к юго-западу от Японии и «ревущие сороковые» широты. Здесь исчезают не только самолеты, но и крупные грузовые суда, оборудованные по последнему слову техники надежными двигателями и радиостанциями. Исчезают бесследно вместе с экипажами.

По одной из гипотез, береговая линия Северной Америки в районе мыса Гаттерас, полуостров Флорида и остров Куба как бы образуют гигантский рефлектор. Шторма, происходящие в Атлантическом океане, генерируют инфразвуковые волны, которые, отразившись от этого рефлектора, фокусируются в районе так называемого Бермудского треугольника.

Это дает основание предположить наличие областей, где инфразвуковые колебания могут достигать значительной величины. Не это ли является причиной происходящих тут аномальных явлений? Ответа пока нет, хотя инфразвуки являются нашими постоянными спутниками.

Вспышки на Солнце, грозы и шторма, ураганы и цунами, сильные ветры и землетрясения, взрывы и обвалы — все эти явления порождают инфразвуки. В повседневной жизни они тоже окружают нас — их излучают заводские вентиляторы и воздушные компрессоры, дизели, городской транспорт и все медленно работающие машины. Природа этих не слышимых нами звуков изучена еще недостаточно.
http://planeta.moy.su/news/alfa_ritm_i_beta_ritm/2016-04-16-66387

Как услышать ультразвук? — Меандр — занимательная электроника

Известно, что ультразвук оказывает определенное воздействие как на живот­ных, так и на человека. Да, человек ультразвук не слышит. Но, когда вы нахо­дитесь рядом с мощным источником ультразвука острота вашего слуха снижается. Почему это происходит? Да потому что мы, люди, слышим ультразвук, просто не понимаем этого. И очень часто это оказывает на нас весьма негативное влияние. Длительное нахождение рядом с достаточно мощным источником ультра­звука оказывает на человека почти такое же влияние, как и нахождение рядом с источником слышимого звука. Но, ультра­звук мы вроде бы не слышим, и потому не понимаем почему голова болит и закладывает уши.

Для того чтобы зарегистрировать наличие ультразвука существуют различ­ные акустические приборы, измеряющие его уровень, частоту и т.д. Но, хотелось бы его еще и услышать (вернее, осознать как звук). Сделать это можно с помощью прибора, который понизит частоту ультра­звука, так как в приемнике прямого преобразования понижается частота радиосигнала до звуковой частоты.1

Схема, показанная на рисунке, во многом напоминает схему приемника прямого преобразования, только вместо антенны на её входе включен микрофон. За неи­мением ультразвукового микрофона здесь используется обычный электретный микрофон типа МСЕ-2500 или анало­гичный. Согласно тех. данным АЧХ этого микрофона практически линейна до 20 кГц. Далее что происходит с АЧХ в тех. данных не указывается. Как показали испытания (проведенные в радиолюби­тельских условиях, и потому не претен­дующие на исключительную точность), микрофон неплохо слышит аж до 70-100 кГц, но конечно его чувствительность с ростом частоты сильно снижается.

И так, схема показана на рисунке в тексте. Ультразвук воспринимается электретным микрофоном М1. Питание на него поступает через R6. Переменное напря­жение с выхода микрофона через конден­сатор С5 подается на двухкаскадный УНЧ на транзисторах VT1 и VT2. Здесь исполь­зуются  малошумящие транзисторы ВС550С. Основное усиление происходит в транзисторе VT1. Транзистор VT2 служит эмиттерным повторителем. С него переменное напряжение ультразвуковой частоты поступает на вход смесителя на основе микросхемы А1 типа SA612 (или NE612).

Микросхема SA612 представляет собой преобразователь частоты и широко при­меняется в разнообразной связной и радиоприемной технике. Здесь она тоже работает по прямому назначению, — преобразователь частоты.

Для того чтобы понизить частоту ультра­звука, лежащего обычно по частоте от 22кГц до 100 кГц в слышимый звук, нужно соответственно, подать на смеситель частоту гетеродина, которая будет на 200- 5000 Гц отличаться от частоты принима­емого ультразвука. То есть, желательно чтобы частоту гетеродина можно было оперативно регулировать от 10 до 100 кГц.

Схема гетеродина выполнена на цифро­вых микросхемах D1 и D2. На инверторах микросхемы D1 сделана схема генера­тора прямоугольных импульсов частоту которых можно регулировать переменным резистором R2 в пределах от 20 кГц до 200 кГц. Как известно, на выходе мульти­вибратора на логических элементах импульсы не симметричные, поэтому для придания им симметричной формы используется D-триггер на микросхеме D2, включенный в режиме одноразрядного двоичного счетчика. Он делит частоту входных импульсов, подаваемых на его вход «С» на два, но придает им строго симметричную форму. Таким образом, частота на выводе 1 D2 регулируется переменным резистором R2 в пределах от 10 кГц до 100 кГц.

Амплитуда этих импульсов понижается до необходимого для нормальной работы смесителя микросхемы А1, уровня дели­телем на резисторах R3 и R4.

На выходе смесителя, как обычно, есть суммарный и разностный сигнал. Суммарный подавляется как простейшим фильтром, состоящим из конденсатора С9, так и самим УНЧ, на который сигнал поступает с регулятора громкости R13, так и нашим слухом. Таким образом, в остатке остается разностный сигнал, который, при соответствующей установке частоты гетеродина (резистором R2) и можно услышать вполне отчетливо. Например, можно услышать звук от кварцевого резонатора на 32768 Гц, работающего в электронных часах. Или звуки импульсных источников питания различной аппара­туры, а так же, весьма странные изменяю­щиеся звуки, происхождение которых мне кажется непонятным.

УНЧ желательно чтобы работал на наушники. Можно использовать любой УНЧ, на транзисторах или микросхеме, например, использовать в качестве УНЧ плату неисправного аудиоплеера (с точки входа телефонного УНЧ). Или УНЧ от слухового аппарата.

Детали. Конечно, лучше всего исполь­зовать специальный ультразвуковой электретный микрофон, если конечно есть возможность его приобрести. В против­ном случае — любой обычный электретный, но желательно меньшего диаметра (чтобы мембрана была более подвижной и могла лучше двигаться с большой частотой).

Транзисторы ВС550С можно заменить отечественными КТ3102Е. Микросхему SA612 можно заменить на SA602 или NE612, NE602.

Цифровые микросхемы можно заменить отечественными аналогами К561ЛЕ1 или К561ТМ2. Впрочем, микросхему D1 можно заменить любой КМОП-микросхемой, у которой есть не менее трех инверторов, то есть это может быть и CD4011 (К561ЛА7) и CD4025 (К561ЛА9), CD4023 (К561ЛЕ10) или К561ЛН2.

Вполне возможно гетеродин вообще сделать по совсем другой схеме, напри­мер, по схеме генератора НЧ на опера­ционном усилителе или транзисторах, на интегральном таймере 555, или другие варианты, важно чтобы можно было частоту регулировать в указанных пределах и импульсы были либо симметричные, либо неискаженный синус.

Так как устройство собиралось с чисто экспериментальными целями, плата для него не разрабатывалась, — так на «макетке» и работает.

Автор: Снегирев И.

Слышит ли человек ультразвуки и инфразвуки?

Человек не слышит ультразвуки.

Источник ультразвука – генераторы, которые работают в диапазоне от 12 до 22 кГц – в литейной промышленности, в аппаратах для очистки газов, в гальванических цехах. Его влияние наблюдается на расстоянии 25-50 м от оборудования. Ультразвуковые генераторы используются при плазменной и диффузной сварке, резке металлов, напылении металлов. Ультразвук высокой интенсивности возникает во время удаления загрязнений, при химическом травлении, обдувке струей сжатого воздуха, при очистке деталей при сборке.

Ультразвук влияет на человека через воздух, через жидкую  и твердую среды.

Влияние на человека ультразвука:

— вызывает функциональные нарушения нервной системы,

—         головная боль;

—         изменения кровяного давления;

—         состава и свойства крови;

Внимание!

Если вам нужна помощь в написании работы, то рекомендуем обратиться к
профессионалам. Более 70 000 авторов готовы помочь вам прямо сейчас. Бесплатные
корректировки и доработки. Узнайте стоимость своей работы.

—         потеря слуховой чувствительности;

—         повышает утомляемость.

Методы защиты от ультразвука:

—         звукоизоляция – эффективна в области высоких частот;

—         установка экранов между работником и оборудованием;

—         помещать оборудование в спец. кабинах, помещениях;

—         укрытия – из стали, дюралюминия, оргстекла, текстолита;

Инфразвук человек не слышит, однако ощущает.

Источники возникновения инфразвука:

—         в механизмах работающих при частотах вращения менее 20 обс.

—         при движении автомобиля со скоростью более 100 кмчас – за счет срыва воздушного потока с его поверхности;

—         при работе вентиляторов, компрессоров;

—         двигателей внутреннего сгорания;

—         дизельных двигателях;

Влияние на человека инфразвука:

—         оказывает разрушающее действие;

—         нарушение функции вестибулярного аппарата;

—         головокружение;

—         головная боль;

—         снижение внимания, работоспособности;

—         возникает чувство страха,

—         влияние на психику людей;

Благодаря большой длине инфразвук распространяется в атмосфере на большие расстояния. Практически невозможно при помощи строительных конструкций защититься на пути его распространения. Неэффективны средства индивидуальной защиты.

 

Поможем написать любую работу на аналогичную
тему

Получить выполненную работу или консультацию специалиста по вашему
учебному проекту

Узнать стоимость

Влияние ультразвука на организм человека

Ухо человека может улавливать такие звуки, частота которых варьирует в пределах от 16 до 20000 колебаний в течение секунды.

Инфразвук – это низкочастотная звуковая волна (то есть с частотой ниже 16 колебаний), ультразвук – высокочастотная звуковая волна с частотой свыше 20 тысяч колебаний. Они не воспринимаются человеческим слуховым аппаратом, и для их обнаружения требуется использование специальных приборов.

Именно огромное число исследований, в которых анализировались признаки звуковой волны и воздействие ультразвука способствовало возникновению предпосылок, позволивших использовать ультразвук в больших масштабах в различных промышленных отраслях, в выпуске отдельных лекарственных средств, в медицине, физике, современной военной технике, биологии, народном хозяйстве и повседневной жизни. Рассмотрим подробнее влияние на организм человека ультразвука.

Что такое ультразвук?

Влияние ультразвука и инфразвука на организм человека уникально. Ультразвук является звуковой волной с высокой частотой, которая может распространяться в твердых материалах, в жидкости и в газообразной среде, что обусловлено влиянием упругих сил. Происхождение ультразвука может быть как естественным, так и искусственным. Так, в природе существуют органы чувств, которые позволяют воспроизводить и получать колебания, сформированные ультразвуковой волной, например у дельфинов, летучих мышей, бабочек, китов, саранчи, кузнечиков, сверчков, отдельных видов рыб и птиц.

Благодаря этому они способны прекрасно ориентироваться в пространстве, включая ночное время, а также общаться с сородичами. Дельфины и киты могут посылать необходимые сигналы на десятки тысяч километров. Кроме того, ультразвук способны улавливать собаки и кошки. На интенсивность и скорость распространения ультразвука непосредственно воздействуют признаки того вещества, в котором он передается: если он удаляется от источника, находящегося в воздухе, то звук довольно быстро ослабевает. В жидкостях, а также при прохождении сквозь твердое вещество сила ультразвука уменьшается медленно. Каково действие на организм человека ультразвука?

Отличие от обычного звука

От обычного звука он отличается тем, что распространяется во всех направлениях от источника. Ультразвук по сути своей является волной в форме узкого луча. Такие особенности позволяют применять его для исследования морского и океанского дна, обнаружения затонувших кораблей и подводных лодок, а также различных препятствий, находящихся под водой, и точного расстояния.

Но при распространении в воде ультразвуковые волны могут причинить вред тем организмам, которые в ней обитают. Под влиянием ультразвука у рыб нарушается чувство равновесия, они всплывают к поверхности воды вверх животом, и поэтому не могут принять свое нормальное положение. Если воздействие ультразвука интенсивное и продолжительное, превышает допустимые пределы, то в конечном итоге это станет причиной очень серьезных повреждений и даже смерти рыб. Если же его влияние временное, а интенсивность не слишком высокая, после прекращения его образ жизни и поведение рыб возвращаются в привычные рамки.

Влияние на организм человека ультразвука

Ультразвук воздействует на организм человека аналогичным образом. Во время проведения эксперимента в сложенную в форме чаши ладонь наливали воду, после чего испытуемый погружал ее в ультразвуковое пространство. При этом у него отмечались болезненные неприятные ощущения. Какое влияние ультразвука на организм человека, знают не все.

Стоит отметить, что сущность биологического влияния ультразвука до настоящего времени все еще не изучена до конца. Но с большей вероятностью оно основывается на локальных давлениях, возникающих в тканях, а также местном тепловом эффекте, который связан напрямую с поглощением энергии, происходящим при подавлении вибраций. Так как газообразная и жидкая среды способны отлично поглощать ультразвук, в то время как твердые вещества его проводят, скелетная система тела человека также представляет собой хороший проводник. Ультразвуковое воздействие в организме человека в первую очередь провоцирует появление термического эффекта, являющегося следствием энергетической трансформации волны ультразвука в тепло. Что еще нужно знать про ультразвук и его влияние на организм человека?

Стимулирует кровообращение

Помимо этого, он становится причиной микроскопических растяжений и сжатий ткани (это называется микромассажем), а также стимулирует кровообращение. В связи с этим происходит улучшение функционирования разных тканей организма человека и кровотока. Кроме того, ультразвук может оказывать стимулирующее влияние на протекание процессов обмена и рефлекторно-нервное действие. Он способствует изменениям не только в органах, на которые воздействует, но также на другие органы и ткани.

Вред интенсивного влияния

При этом интенсивное и продолжительное влияние разрушает клетки и приводит к их гибели. Связано это с тем, что в жидкостях организма под воздействием ультразвука формируются полости (такое явление называется кавитацией), из-за чего происходит отмирание тканей. Волна ультразвука способна также разрушить многие микроорганизмы, а это способствует инактивации таких вирусов, как энцефалит либо полиомиелит. Влияние ультразвука на белок вызывает нарушение структуры составляющих его частиц и дальнейший их распад. Кроме того, он разрушает в крови эритроциты и лейкоциты, ее свертываемость и вязкость значительно повышаются, также происходит ускорение РОЭ. Волна ультразвука угнетающе воздействует на клеточное дыхание, снижает количество кислорода, потребляемого ею, становится причиной инактивации ряда гормонов и ферментов.

Так что влияние на организм человека ультразвука все же не очень хорошее.

Последствия для человеческого организма

Высокоинтенсивный ультразвук может вызвать такие последствия у человека:

— появление усиленного болевого синдрома;

— облысение;

— гемолиз;

— помутнение хрусталика и роговицы глаза;

— увеличение содержания молочной и мочевой кислоты, холестерина в крови;

— небольшие кровоизлияния в ряде органов и тканей организма;

— значительные дефекты со стороны слуха;

— патологическое формирование и разрушение костной ткани;

— разрушение нервных клеток и клеток Кортиева органа. Это основные заболевания, вызванные воздействием ультразвука.

В результате продолжительного влияния ультразвука появляются чрезмерная сонливость, головокружения, высокая утомляемость, симптомы вегетососудистой дистонии (расстройства сна, дефекты памяти, апатия, нерешительность, уменьшение аппетита, пугливость, склонность к состоянию депрессии и т. п.).

Где чаще всего применяется воздействие ультразвука на организм?

Использование ультразвука в области медицины

Терапевтическое влияние ультразвука обусловлено способностью его к проникновению в ткани, их прогреванию и микромассажу. Необходимо отметить, что ультразвук, вероятно, обладает рядом специфических особенностей воздействия, поскольку глубокое прогревание тканей достигается и посредством других методик, но положительный эффект в некоторых случаях наступает только после использования ультразвука.

С учетом рефлекторного механизма можно использовать ультразвук не только для того, чтобы он прямо воздействовал на эпицентр боли, но также для влияния косвенного.

Благодаря свойствам, указанным выше, ультразвук при ряде условий способен оказывать бактерицидное, спазмолитическое, противовоспалительное и болеутоляющее действие. Использование ультразвука может сочетаться с другими терапевтическими приемами. Из-за повышенной биологической активности необходимо соблюдать осторожность при лечении ультразвуком. Положительные результаты при его терапевтическом применении получены в ряде заболеваний. Очень эффективен он при лечении невралгий, миальгий, невритов ампутированных конечностей, периартритов, артритов и артрозов. Вреден ли ультразвук для человека, интересно многим.

Общее воздействие

Общее воздействие ультразвука на человеческий организм подтверждается, в частности, тем, что при поражении ряда суставов зачастую достаточно ограничиться терапией какого-либо из них, поскольку при этом отмечается параллельное улучшение остальных суставов. Положительные результаты были получены при лечении с помощью ультразвука спондилитов, болезни Бехтерева, варикозных, вяло гранулирующих и трофических язв, облитерирующих эндартериитов.

Существуют отдельные указания о положительном использовании ультразвука при бронхиальной астме, язве двенадцатиперстной кишки и желудка, бронхоэктазиях, легочной эмфиземе, болезни Меньера и отосклерозе. Есть также наблюдения, которые свидетельствуют о том, что предварительное кожное озвучение усиливает эффективность облучения рентгеном.

Противопоказания к использованию ультразвука

Запрещается озвучивать половые органы, растущие кости, опухоли, сердечные области (это может стать причиной стенокардии). При гипертонической болезни, легочном туберкулезе, беременности, гипертиреозе, изменениях паренхиматозных органов использование ультразвука тоже противопоказано. Если применять его во все более широких масштабах, то необходимо организовать тщательное наблюдение за пациентами, которые контактируют с ультразвуком, чтобы выявить ранние симптомы заболевания и вовремя провести требуемые профилактические и лечебные мероприятия. Также есть данные о положительном влиянии ультразвука на некоторые формы неврита и рака. Но еще не определена с точностью ширина безопасной области между положительным и повреждающим воздействием.

Мы рассмотрели влияние на организм человека ультразвука.

УЗИ: как они работают?

Ультразвуковое сканирование использует высокочастотные звуковые волны для создания изображений внутренней части тела. Подходит для использования во время беременности.

Ультразвуковое сканирование или сонография безопасны, потому что они используют звуковые волны или эхо для создания изображения вместо излучения.

Ультразвуковое сканирование используется для оценки развития плода и может обнаруживать проблемы в печени, сердце, почках или брюшной полости. Они также могут помочь в выполнении определенных видов биопсии.

Полученное изображение называется сонограммой.

Краткие сведения об УЗИ

  • Ультразвуковые исследования безопасны и широко используются.
  • Их часто используют для проверки течения беременности.
  • Используются для диагностики или лечения.
  • Обычно перед ультразвуковым сканированием не требуется специальной подготовки.

Человек, выполняющий ультразвуковое сканирование, называется специалистом по ультразвуковой диагностике, но изображения интерпретируются радиологами, кардиологами или другими специалистами.

У сонографиста обычно есть датчик, ручное устройство, такое как палочка, который помещается на кожу пациента.

Ультразвук — это звук, который проходит через мягкие ткани и жидкости, но отражается или отражается от более плотных поверхностей. Вот как создается изображение.

Термин «ультразвук» относится к звуку с частотой, которую люди не могут слышать.

Для диагностических целей частота ультразвука обычно составляет от 2 до 18 мегагерц (МГц).

Более высокие частоты обеспечивают более высокое качество изображения, но легче поглощаются кожей и другими тканями, поэтому они не могут проникать так же глубоко, как более низкие частоты.

Более низкие частоты проникают глубже, но качество изображения хуже.

Как снимается изображение?

Ультразвук будет проходить через кровь, например, в сердечную камеру, но если он попадает в сердечный клапан, он будет эхом или отражаться от него.

Он будет проходить прямо через желчный пузырь, если желчных камней нет, но если камни есть, он отскочит от них.

Чем плотнее объект, на который попадает ультразвук, тем сильнее звук отражается.

Это отражение, или эхо, придает ультразвуковому изображению его особенности. Различные оттенки серого отражают разную плотность.

Ультразвуковые преобразователи

Измерительный преобразователь или палочка обычно размещается на поверхности тела пациента, но некоторые виды размещаются внутри.

Они могут обеспечить более четкие и информативные изображения.

Примеры:

  • эндовагинальный датчик для использования во влагалище
  • эндоректальный датчик для использования в прямой кишке
  • чреспищеводный датчик, проходящий через горло пациента для использования в пищеводе

Некоторые очень маленькие датчики могут быть помещены на конец катетера и вставлены в кровеносные сосуды для исследования стенок кровеносных сосудов.

Поделиться на PinterestУльтразвуковые изображения создаются на основе отраженного звука, после чего можно поставить диагноз.

Ультразвук обычно используется для диагностики, лечения и контроля во время таких процедур, как биопсия.

Его можно использовать для исследования внутренних органов, таких как печень и почки, поджелудочная железа, щитовидная железа, семенники и яичники и др.

Ультразвуковое исследование может определить, является ли уплотнение опухолью. Это может быть злокачественная опухоль или киста, заполненная жидкостью.

Может помочь диагностировать проблемы с мягкими тканями, мышцами, кровеносными сосудами, сухожилиями и суставами. Он используется для исследования замороженного плеча, теннисного локтя, синдрома запястного канала и других.

Проблемы с кровообращением

Ультразвуковая допплерография позволяет оценить кровоток в сосуде или кровяное давление. Он может определить скорость кровотока и наличие препятствий.

Эхокардиограмма (ЭКГ) является примером ультразвуковой допплерографии. Его можно использовать для создания изображений сердечно-сосудистой системы и для измерения кровотока и движения сердечной ткани в определенных точках.

Ультразвуковая допплерография позволяет оценить функцию и состояние областей сердечных клапанов, любые аномалии в сердце, клапанную регургитацию или утечку крови из клапанов, а также может показать, насколько хорошо сердце перекачивает кровь.

Его также можно использовать для:

  • исследования стенок кровеносных сосудов
  • проверки ТГВ или аневризмы
  • проверки сердца и сердцебиения плода
  • оценки образования бляшек и сгустков
  • оценки закупорки или сужения артерий

Дуплекс сонной артерии — это форма ультразвукового исследования сонной артерии, которое может включать ультразвуковое допплеровское исследование.Это покажет, как клетки крови перемещаются по сонным артериям.

Ультразвук в анестезиологии

Ультразвук часто используется анестезиологами для направления иглы с анестетическими растворами вблизи нервов.

Ультразвук можно сделать в кабинете врача, в поликлинике или в больнице.

Обычно сканирование занимает от 20 до 60 минут. Обычно это не вызывает боли и нет шума.

В большинстве случаев специальная подготовка не требуется, но пациенты могут захотеть носить свободную и удобную одежду.

Если поражена печень или желчный пузырь, пациенту, возможно, придется голодать или ничего не есть в течение нескольких часов перед процедурой.

Для сканирования во время беременности, и особенно на ранних сроках беременности, пациентке следует пить много воды и стараться не мочиться в течение некоторого времени перед тестом.

Когда мочевой пузырь заполнен, сканирование дает лучшее изображение матки.

Сканирование обычно проводится в радиологическом отделении больницы. Тест проведет врач или специально обученный специалист по сонографии.

Внешний ультразвук

Сонограф наносит смазывающий гель на кожу пациента и помещает датчик на смазанную кожу.

Датчик перемещают по той части тела, которую необходимо исследовать. Примеры включают ультразвуковое исследование сердца пациента или плода в матке.

Пациент не должен чувствовать дискомфорта или боли. Они просто почувствуют датчик по коже.

Во время беременности может возникнуть легкий дискомфорт из-за переполненного мочевого пузыря.

Внутренний ультразвук

Если необходимо оценить внутренние репродуктивные органы или мочевыделительную систему, датчик может быть помещен в прямую кишку для мужчин или во влагалище для женщин.

Для оценки некоторых частей пищеварительной системы, например пищевода, лимфатических узлов грудной клетки или желудка, можно использовать эндоскоп.

Свет и ультразвуковое устройство прикреплены к концу эндоскопа, который вводится в тело пациента, обычно через рот.

Перед процедурой пациентам дают лекарства, снимающие боль.

Внутреннее ультразвуковое сканирование менее комфортно, чем внешнее, и существует небольшой риск внутреннего кровотечения.

Большинство видов ультразвука неинвазивны и не требуют воздействия ионизирующего излучения. Процедура считается очень безопасной.

Однако, поскольку долгосрочные риски не установлены, ненужные «памятные» сканирования во время беременности не приветствуются. Ультразвук во время беременности рекомендуется только по медицинским показаниям.

Любой, у кого аллергия на латекс, должен сообщить об этом своему врачу, чтобы он не использовал зонд, покрытый латексом.

.

Ультразвуковое лечение рака простаты столь же эффективно, как операция или лучевая терапия — ScienceDaily

Использование высокоэнергетических ультразвуковых лучей для уничтожения опухолей рака простаты может быть таким же эффективным, как хирургическое вмешательство или лучевая терапия, но с меньшими побочными эффектами.

Новое исследование, проведенное в шести больницах Великобритании, отслеживало 625 мужчин с раком простаты, которые получали лечение, называемое высокоинтенсивным сфокусированным ультразвуком (HIFU).

Исследование, опубликованное в журнале European Urology , является крупнейшим в истории исследованием лечения HIFU, применяемого для нацеливания на опухоли простаты.Лечение похоже на «лампэктомию» при других видах рака, когда врачи удаляют только опухолевые клетки, оставляя как можно больше здоровых тканей.

Результаты ряда институтов, включая Имперский колледж Лондона и Университетский колледж Лондона, показали, что через пять лет выживаемость рака в HIFU составила 100 процентов. Примерно 1 из 10 мужчин нуждался в дальнейшем лечении. Выживаемость рака после хирургического вмешательства и лучевой терапии также составляет 100 процентов через пять лет.

Исследование также показало, что риск побочных эффектов HIFU, таких как недержание мочи и эректильная дисфункция, был ниже, чем при других вариантах лечения, на 2% и 15% соответственно.

Исследование финансировалось Советом по медицинским исследованиям и SonaCare Inc., которые производят ультразвуковое оборудование, используемое в процедуре.

Профессор Хашим Ахмед, ведущий автор из отделения хирургии и рака в Imperial, сказал: «Хотя выживаемость при раке простаты сейчас очень хорошая, побочные эффекты хирургического вмешательства или лучевой терапии могут изменить жизнь. Некоторым пациентам требуется множественное недержание мочи. прокладки каждый день или при тяжелой эректильной дисфункции.«

Он добавил: «Теперь нам нужно сосредоточиться на улучшении качества жизни этих мужчин после лечения. Это последнее испытание фокального HIFU — которое является самым крупным и продолжительным исследованием лечения на сегодняшний день — предполагает, что мы можем бороться с раком с меньшим количеством побочных эффектов ».

Рак простаты — самый распространенный вид рака у мужчин в Великобритании, ежегодно его заболевают около 47 000 человек.

Лечение включает операцию по удалению железы или лучевую терапию, при которой облучение распространяется на всю простату.Однако эти методы лечения могут вызвать побочное повреждение окружающих чувствительных тканей, таких как нервы, мышцы, мочевой пузырь и прямая кишка. Простата размером примерно с грецкий орех находится между мочевым пузырем и пенисом.

Хирургия и лучевая терапия всей простаты являются эффективными методами лечения, но могут привести к долгосрочному риску возникновения проблем с мочеиспусканием, таких как недержание мочи, в пределах 5-30 процентов. Они также несут риск эректильной дисфункции от 30 до 60 процентов. Лучевая терапия также может вызвать проблемы с прямой кишкой, такие как кровотечение, диарея и дискомфорт, у 5% пациентов.

HIFU — это новый метод лечения, проводимый под общим наркозом, при котором пучки ультразвука высокой энергии доставляются непосредственно в предстательную железу через зонд, вставленный в задний проход. Это позволяет хирургу точно нацеливать опухолевые клетки внутри железы с точностью до миллиметра с меньшим риском повреждения окружающих тканей. На коже нет игл и порезов.

В новом исследовании HIFU, проведенном среди мужчин со средним возрастом 65 лет и у которых рак не распространился, риск недержания мочи (определяемый как необходимость использования прокладок) через пять лет после лечения составил 2%, а риск эректильной дисфункции 15 процентов.Команда говорит, что результаты включают пациентов со средним и высоким риском рака.

Ученые также отслеживали количество пациентов, которым требовалось дополнительное лечение после HIFU (например, хирургическое вмешательство или лучевая терапия) для лечения любых возвращенных раковых клеток. Они обнаружили, что 10% пациентов нуждаются в дальнейшем лечении к пяти годам, что сопоставимо с количеством пациентов, нуждающихся в дальнейшем лечении после операции или лучевой терапии (5-15%).

Команда добавляет, что пациенты с раком простаты должны обсудить все возможные методы лечения со своей медицинской бригадой, чтобы они могли полностью обдумать свои варианты.

Необходимы дальнейшие контрольные испытания для отслеживания прогресса пациентов через десять лет, а также испытания, которые напрямую сравнивают HIFU с хирургией и лучевой терапией.

Энтони Мурланд прошел курс лечения HIFU в ноябре прошлого года для лечения рака простаты. «Впервые я услышал о лечении от друга, у которого была процедура несколько месяцев назад. Мой терапевт не слышал о HIFU, но был очень заинтересован, поэтому в конце концов я рассказал ему об этом. Затем он направил меня на лечение в NHS », — пояснил 67-летний гражданин графства Саффолк.

«Мне понравилось звучание процедуры, так как это казалось наименее инвазивным вариантом с низким риском. Лечение закончилось через день — я вошел первым делом утром и вышел к вечеру. У меня не было любая боль, но мне нужен катетер в течение пяти дней, что было немного неудобно. «Мой терапевт внимательно наблюдает за мной, и пока рак не вернулся»

Работа финансировалась Советом по медицинским исследованиям и SonaCare Inc.

.

определение ультразвука по The Free Dictionary

ultrazvuk

ultralyd

ultraääni

ultrazvuk

ultrahang

ultraskana

ultrazvuk

ultraljud

คลื่น เสียง ที่ มี ความถี่ สูง สูง

sóng siêu âm 9000ə William Collins Sons & Co.Ltd. 1971, 1988 © HarperCollins Publishers 1992, 1993, 1996, 1997, 2000, 2003, 2005

Английский / французский электронный ресурс Collins. © HarperCollins Publishers 2005

ультразвук

[ˌʌltrəˈsaʊnd] n ( Med ) → ecografia

Collins Italian Dictionary 1-е издание © HarperCollins Publishers 1995

ультразвук

(альтернативный сканер) сущ. , который может показать, что находится внутри тела человека.ultraklank فوق الصوتي свръхзвук ultrassom Ультразвук дер Ultraschall ultralyd υπέρηχοςultrasonido ultraheli امواج فرا صوتی ultraääni ультразвуковы אוּלטרָה-סָאוּנד अल्ट्रा-साउंड Ультразвук ultrahang ultrasuono 초음파 ultragarsas ultraskaņa ultrabunyi ультразвуковой ultralydultradźwięk د فرا صوتی امواج ультразвук Ультразвук Ультразвук ultrazvok ultraljud คลื่น เสียง ที่ มี ความถี่ มากกว่า 20000 เฮิรตซ์; บำบัด โดย อุ işitim ötesi ses 超音波 ультразвук الٹرا ساؤنڈ ، بدن کے اندر ديکھنے کي مشين sóng siêu âm (波)

Kernerman Dictionary, 2006, English Multilingual Dictionary, Ltd.

ультразвуковые

→ موجات فوق صوتية Ультразвук ultralyd ULTRASCHALL υπέρηχος ecografía, ultrasonido ultraääni échographie Ультразвук ecografia 超音波 초음파 Ultrasone Klank ultralyd ultradźwięk ультра-Som Ультразвук ultraljud คลื่น เสียง ที่ มี ความถี่ สูง Ultrason ПЕСНЯ Sieu 超 Am 频率 音响

Multilingual Переводчик © HarperCollins Publishers 2009

ul · tra · sound

n. ultrasonido, ondas de frecuencia superior a las del oído humano que se usan en ultrasonografía en Procedimientos terapéuticos y de Diagnóstico;

брюшной ___ → ___ брюшной;

грудь ___ → ___ де ла мама;

беременность ___ → ___ дель эмбаразо;

щитовидная железа ___ → ___ de la tiroides.

Англо-испанский медицинский словарь © Farlex 2012

УЗИ

adj ultrasónico; n ultrasonido; ( fam, исследование изображений ) ecografía

Англо-испанский / испанско-английский медицинский словарь Авторские права © 2006 McGraw-Hill Companies, Inc. Все права защищены.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *