Ультрафиолетовый свет: Как получить ультрафиолетовый свет при помощи вспышки iPhone

Содержание

Ультрафиолетовый свет уничтожает коронавирус за несколько секунд

Ультрафиолетовый свет с длиной волны 100-280 нанометров (УФ-С) уничтожает возбудитель COVID-19. Открытие принадлежит учёным Бостонского университета, США, которые использовали в своём исследовании дезинфицирующие лампы компании Signify.

Ожидается, что такие источники света позволят быстро дезинфицировать воздух в больницах и общественном транспорте.

Так называемый дальний ультрафиолет, или УФ-С, не проходит через озоновый слой Земли, также он блокируется кислородом в атмосфере. Также он отфильтровывает большую часть среднего ультрафиолета (УФ-B-лучи). Таким образом, до поверхности Земли доходит только ближний ультрафиолет (УФ-A) и часть среднего ультрафиолета (УФ-B).

При этом давно известно, что УФ-C-лучи обладают бактерицидным действием. В продаже есть несколько ламп, которые очищают поверхности от вирусов и патогенов в лабораториях и на предприятиях пищевой промышленности именно с помощью такого излучения. Также такой свет избавляет от органических загрязняющих веществ воду.


Всего шесть секунд обработки уничтожают 99% частиц нового коронавируса.



Логично было бы попробовать обработать с помощью ультрафиолетовых ламп образцы, содержащие коронавирус SARS-CoV-2. Именно такой эксперимент провели учёные из США. В ходе него они использовали ультрафиолетовые лампы компании Signify. Как выяснил ресурс LEDs Magazine, использовались лампы серии TUV мощностью 35 ватт, генерирующие излучение на длине волны 254 нанометра.

Оказалось, что лампы, генерирующие УФ-С-лучи, уничтожают 96% вирусных частиц в течение трёх секунд. Это позволяет предположить, что за 25 секунд воздействия с определённой мощностью (22 мДж/см2) будет уничтожено 99,9999% патогенных частиц.

Как поясняют специалисты, ультрафиолетовое излучение в данном случае разрушает генетический материал вируса, лишая его возможности заразить клетку и продолжить своё существование.

«Результаты наших тестов показывают, что после определённой дозы облучения УФ-C-светом, вирусы полностью инактивируются: через несколько секунд мы уже не можем обнаружить вирус. Это открытие очень волнующее. Мы надеемся, что оно ускорит разработку решений, которые помогут ослабить распространение COVID-19», – заявил доктор Энтони Гриффитс (Anthony Griffiths) из Медицинской школы Бостонского университета.


Одно из возможных применений ламп, производящих дальнее ультрафиолетовое излучение: дезинфекция образцов одежды после примерки её людьми в магазине.



Отметим, что таким светом нельзя стерилизовать руки и кожу в целом, так как УФ-С-излучение действует губительно и на ДНК человека.

Как сообщается, компания Signify планирует поделиться своими знаниями (отчасти полученными в стенах университетов) с другими компаниями, производящими осветительное оборудование. Правда, пока не ясно, на каких условиях, и будет ли использоваться лицензия.

Ранее Вести.Ru сообщали о разработке в Гонконге полимерного покрытия, которое позволит защитить поверхности от коронавируса на три месяца.

Как сделать ультрафиолетовый детектор из смартфона или карманного фонарика

Любой смартфон можно превратить в ультрафилетовый детектор, с помощью которого видны незаметные невооружённому глазу загрязнения и водяные знаки на денежных купюрах. Для этого понадобится смартфон (обязательно со вспышкой), скотч и два фломастера или маркера — синий и фиолетовый. Наша задача — сделать фильтр, который будет отсеивать все цвета, кроме диапазона, в который входит ультрафиолет.

Наклейте на вспышку смартфона небольшой отрезок скотча и закрасьте его синим маркером. Наклейте ещё один и покрасьте фиолетовым. Повторите ещё раз — один слой с синей краской и один с фиолетовой. Сверху можно наклеить прозрачную ленту для защиты. Используйте обычный скотч, поскольку малярный не подойдёт, он не пропускает ультрафиолет.

Включите вспышку (например, с помощью фонарика или камеры) и посмотрите, работает ли сканер. При включенной вспышке в темноте будут светиться определённые цвета (белый и флоресцентные, хорошо поглощающие ультрафиолет). Имейте в виду, что при ярком дневном освещении увидеть флуоресцентные следы намного труднее, чем в темноте.

С некоторыми смартфонами такой трюк не сработает. Дело в том, что не у всех светодиодных вспышек достаточно широкий спектр света, некоторые из них физически не способны светить в UV-диапазоне.

Ультрафиолетовый сканер также можно сделать из обычного фонарика. Принцип тот же самый — сочетать слои плёнки, закрашенной синим и фиолетовым. При наличии краски можно обойтись без скотча: покрасьте стекло фонарика или сменный фильтр из прозрачного материала синим цветом, дайте подсохнуть и нанесите фиолетовый слой. Сменный фильтр можно использовать и со смартфоном, разместив его вплотную поверх вспышки.

Ультрафиолетовый свет — Черепахи.инфо

Данная брошюра содержит информацию о различных типах существующего террариумного освещения, дополненную подробными объяснениями о свете и его роли в успешном содержании рептилий.

Что такое свет?

Солнечный свет достигает верхних слоёв атмосферы земли, имея мощность около одного киловатта на квадратный метр. Именно эта энергия, в конечном итоге, управляет всеми жизненными процессами на земле. Без солнечной энергии, постоянно питающей нашу землю, её собственная энергия в короткие сроки была бы исчерпана, всё живое погибло бы. Со светом мы получаем электромагнитную радиацию, так как истинная природа света – мельчайшие электромагнитные поля или фотоны. Эти световые фотоны могут обладать различными уровнями энергии, или длиной волн, которая измеряется в нанометрах. Наиболее известные длины волн – видимые. Каждая длина волны представлена своим цветом. Например, солнце обозначено жёлтым цветом, так как его свет наиболее мощный на видимой длине волны жёлтого цвета. Однако существует очень много волн кроме видимого света. Все вместе они образуют электромагнитный спектр. На более мощном конце спектра находятся лучи гамма, за ними лучи рентгена, затем ультрафиолетовый свет, а затем видимый свет, который занимает совсем небольшой отрезок электромагнитного спектра, и находится между ультрафиолетовым и инфракрасным светом. Инфракрасный свет мы воспринимаем как тепло. Спектр продолжают микроволны и заканчивают радиоволны, фотоны, имеющие наименьшую мощность. Из всего электромагнитного спектра нас сейчас интересуют только ультрафиолетовый, видимый и инфракрасный свет.

Видимый свет

Кроме того, что он позволяет нам (и рептилиям тоже) как следует видеть, очень важной функцией является различение дня и ночи (светлого и тёмного времени суток). Спектр видимого света располагается на отрезке от 390 до 700 нм. Свет, регистрируемый глазом, и его цвет зависит от силы каждой длины волны. Индекс цветопередачи (CRI) выражает способность источника света освещать объект в сравнении с естественным освещением, которое имеет CRI 100. На сегодняшний день каждый искусственный источник света с CRI от 95 до 100 принято считать светом, имеющим полный спектр, с тех пор как стало возможным освещать объект так, будто он находится в естественном освещении, то есть получить некоторое количество длин волн в пределах видимого спектра. С этим тесно связана цветовая температура, измеряющаяся в кельвинах (К), которая определяет цвет испускаемого света.Низкая цветовая температура соответствует тёплому или красно-жёлтому свету, например, инкандесцентные (сверкающие) лампы, около 2500 К. Флуоресцентные лампы, от 4500 К и выше, испускают бело-синеватый свет. Чем выше показатель в Кельвинах, выше цветовая температура, тем свет белее и голубее. Стандартный средний показатель температуры дневного света – около 5600К, хотя она может колебаться в диапазоне от столь низкой температуры как 2000К на закате солнца до более чем 18000К в пасмурную погоду или при высокой влажности. Для того чтобы в террариуме создать видимый свет, приближенный к естественному, важно выбрать источники освещения с самым высоким индексом светопередачи (CRI) и цветовой температурой от 6000К для оптимального восприятия цветов животных и растений. Террариумные растения используют некоторые длины волн, в том числе видимый свет для фотосинтеза. Это процесс, в ходе которого растения используют световую энергию для выработки сахара, «топлива», использующегося всеми живыми существами. В преобразовании света в полезную энергию участвует зелёный пигмент, хлорофилл. Источник света с высокой мощностью, диапазон 400-450 нм, обеспечивает здоровый рост растений.

Ультрафиолетовый свет

Ультрафиолет – сегмент электромагнитного спектра, имеющий большую энергетическую мощность, большую имеет только видимый свет.

Спектр ультрафиолета разделяется на три группы по длине волн:

UVA – длинная волна ультрафиолета А, диапазон 320-400 нм, она имеет существенное значение для рептилий.

UVB – Средняя волна ультрафиолета В, диапазон 290-320 нм, имеет наибольшую важность в жизни рептилий.

UVC – Короткая волна ультрафиолета С, диапазон 180-290 нм, опасна для всех живых организмов.Было продемонстрировано, что UVA могут оказывать влияние на агрессивность, сигнальные функции, на размножение рептилий. То, что рептилии могут видеть в диапазоне UVA (320-400 нм), имеет отношение к тому, какими они видят предметы. Цвет пищи или собственных тел в восприятии рептилий отличается от того, который видим мы, если они подвергнуты радиации UVA. Подача сигналов при помощи демонстрации частей тела, как, например, у анолиса испанского или изменения цвета, например, у хамелеона испанского, — распространена у рептилий. Эти сигналы воспринимаются, а также интерпретируются рептилиями по-другому, если отсутствует UVA радиация. Неправильное обеспечение дневных рептилий UVA может вызвать у них стресс, причина которого в изменении восприятия рептилиями окружающего мира. Это также оказывает огромное влияние на размножение рептилий, продолжительность их жизни. UVB, вообще, определяется как длина волны в диапазоне 290-320 нм. В дикой природе большинство рептилий синтезируют витамин D3 из UVB, имеющегося в составе солнечного света. Витамин D3 необходим для метаболизма диетического кальция в организме рептилий. В коже рептилий UVB вступает в реакцию с предшественником витамина D, 7-дегидрохолестеролом, в результате которой образуется провитамин D3. Под воздействием высоких температур и при помощи механизмов кожи провитамин D3 сам преобразуется в витамин D3. Печень и почки трансформируют витамин D3 в его активную форму, гормон (1,25, гидрокси-витамин D), который регулирует метаболизм кальция.Плотоядные и всеядные рептилии в больших пропорциях получают витамин D3 с пищей. Однако растения не содержат D3 (холикалциферол), его заменяет D2 (ергокалциферол), который гораздо менее эффективен в метаболизме кальция, чем витамин D3.Поэтому травоядные рептилии значительно более зависимы от качества и количества искусственного освещения, чем плотоядные особи. Если животное не получает достаточного количества витамина D3, у него очень быстро разовьётся метаболическая болезнь костей, при которой изменяется плотность костей. Появляются следующие симптомы: опухоли, сонливость, общая слабость, судороги, размягчение панциря у черепах. Наряду с источниками UVB света должен присутствовать необходимый уровень кальция в рационе, или он должен быть обеспечен дополнительными диетическими добавками. Рептилии-подростки наиболее подвержены риску, хотя и взрослые особи также могут заболеть, если испытывали дефицит в течение довольно долгого периода. Женские особи в период кладки яиц, которым необходимы для этого дополнительные запасы кальция, также подвержены большому риску возникновения данного заболевания.

Инфракрасный свет

Ектотермическая природа рептилий (хладнокровие) подчёркивает важность инфракрасной радиации (высоких температур) для терморегуляции. Инфракрасный сегмент электромагнитного спектра расположен вниз от «инфра» до красного цвета и является невидимым. Он также может быть воспринят кожей как тепло. Солнце вырабатывает большую часть своей энергии в инфракрасном сегменте спектра. Лучший способ искусственного поддержания высоких температур для рептилий, ведущих дневной образ жизни, — прикрепление сверху яркого источника света, оснащённого инкандесцентными лампами, испускающими большие порции инфракрасного света (+700нм).

Интенсивность

Климат земли определяется количеством солнечной энергии, которая попадает на поверхность. Такие факторы, как положение солнца, вращение земли, географическое положение, слой озона, облака, влажность воздуха, положение над уровнем моря, окружающая среда, и т.д., — влияют на интенсивность света. Также в пределах среды обитания интенсивность освещения, как видимого, так и невидимого света, зависит от плотности растительности и от геологических особенностей. Количество света, падающего на плоскость, называется иллюминацией и измеряется в люминах на кв. м или в люксах. Иллюминация прямого солнечного света составляет приблизительно 100,000 люксов, но нормальный дневной свет, который пробивается через облака, — 5,000 — 10,000 люксов, белый лунный свет равен менее чем 0,25 люксам. Ультрафиолетовая радиация измеряется в микроваттах на кв. см (mW/cm2) и чрезвычайно меняется от полюсов (низкий уровень) к экватору (высокий). Уровень UVB радиации, излучаемой на экваторе в ясный день в полдень, составляет около 270 mW/cm2 . Однако этот высокий уровень понижается по мере приближения вечера, таким же образом он повышается с восхода солнца до полудня, принимая в расчёт то, что не все дни бывают ясными. В дикой природе большинство рептилий греются ранним утром и вечером. Остаток дня они проводят в тени, в норах, щелях или других тенистых местах, также в тени раскидистых кустарников, кустов, деревьев. В тропических лесах, среде обитания многих видов рептилий и земноводных лишь небольшое количество прямых солнечных лучей проникает сквозь завесу леса, а нижний слой растительности не пропускает их к земле. Уровень UV радиации и освещения, который необходим рептилиям, может изменяться, что зависит от многих факторов:

Среда обитания:

В лесах и кустарниках больше тени, чем на равнинах и в пустынях. В густых лесах больше градиентов UV радиации, имеющей высокий уровень на кронах деревьев и очень низкий внизу. Поля и саванны обеспечивают те же градиенты для видов, имеющих меньшие размеры. В пустынях меньше защиты от прямых солнечных лучей, и уровень UV радиации может быть усилен отражением. В некоторых горных районах есть долины, что означает, что солнечный свет проникает в среду обитания только лишь в течение нескольких часов после восхода солнца, значительно уменьшая продолжительность подверженности ультрафиолетовым лучам.

Образ жизни:

Ведущие дневной образ жизни (активные в дневное время суток) животные получают большее количество ультрафиолета, чем виды, активные ночью, по очевидным причинам. Но даже рептилии, ведущие дневной образ жизни, не проводят целый день под прямыми солнечными лучами. Многие разновидности ищут укрытия в жаркое время суток, чтобы уберечься от перегревания. Время, когда они греются, ограничивается утренними и вечерними часами. Такие циклы могут меняться со сменой времён года. Некоторые особи, ведущие ночной образ жизни, получают необходимый уровень UV радиации, когда солнечный свет достигает их укрытий, и некоторые даже выходят из своих нор погреться на солнце, что служит целям терморегуляции.

Время суток:

Солнце находится в самой высокой своей точке в полдень. В это время солнечные лучи преодолевают наименьшее расстояние до земли через атмосферу, и уровень UVB остаётся самым высоким. Ранним утром и вечером солнечные лучи проходят через атмосферу под углом, и их интенсивность значительно уменьшается.

Время года:

Угол солнца меняется в зависимости от времени года, тем самым изменяя интенсивность ультрафиолетовых лучей, которая бывает самой высокой в летние месяцы. В северном полушарии солнце светит прямо сверху в полдень, в тропике Рака — в первый день лета, на экваторе – в первый день весны и осени, в тропике Козерога – в первый день зимы.

Широта

Солнечные лучи имеют самую большую интенсивность на экваторе, где солнце светит прямо сверху, и солнечные лучи проходят наименьшее расстояние через атмосферу. Также слой озона в тропиках, естественно, тоньше в сравнении со средними и высокими широтами, таким образом, там меньше озона, который поглощает UV радиацию, когда она проходит через атмосферу. В высоких широтах солнце стоит ниже в небе, так что ультрафиолетовые лучи должны проходить большие расстояния через слои атмосферы, богатые озоном, что в свою очередь, уменьшает уровень UV радиации в этих широтах.

Высота:

Интенсивность UV радиации растёт с высотой, оттого что в высоких районах меньше атмосферы, поглощающей солнечные лучи.

Погодные условия:

Облака оказывают большое влияние на количество UV радиации, достигающей земли. В облачный день, в зависимости от формы и толщины облаков, они могут поглощать и отражать 35-85% световой энергии солнца, и наряду с другими эффектами предотвращают попадание на землю значительного количества радиации. Многие рептилии прячутся в свои норы или другие скрытые места во время дождя, бури и в пасмурную погоду.

Отражение:

Некоторые поверхности, такие как песок (12%), трава (10%) или вода (5%) имеют свойство отражать большое количество UV радиации, достигающей их. Из-за этого отражения, интенсивность UV может быть обманчивой и оказаться выше в тенистых районах.

Озон:

Слой озона поглощает UV радиацию, которая в противном случае достигла бы поверхности земли. Уровень содержания озона в атмосфере меняется со сменой времени года (и даже в течение дня), также в зависимости от географического положения.

Террариумное освещение ExoTerra

Большинство рептилий нуждаются в соответствующем высококачественном освещении, чтобы обеспечить удовлетворение различных метаболических потребностей. Так как практически невозможно осуществить это с помощью одного источника света, в большинстве случаев требуется комбинация различных источников искусственного света.

 

Искусственное освещение, используемое для террариумов, делится на 2 категории:

Инкандесцентные лампы (лампы накаливания)

Лампы, в которых электрический ток проходит по вольфрамовой нити сопротивления, помещающейся в вакуумной тубе. Нить нагревается до тех пор, пока не начинает светиться и испускать видимый свет. Инкандесцентные лампы – самые распространённые в террариумном освещении. Хотя инкандесцентные лампы более пригодны как источник тепла, чем источник видимого света, они являются идеальной формой дополнительного освещения, так как все рептилии нуждаются в источнике тепловой радиации. В некоторых случаях достаточно инкандесцентных ламп, так как не все рептилии нуждаются в дополнительном видимом свете, что зависит от их поведения; например, рептилии, ведущие ночной образ жизни, паукообразные насекомые или некоторые земноводные. Некоторые змеи будут прекрасно себя чувствовать, если будет использован только этот тип ламп, так как они не нуждаются в ультрафиолетовой радиации. Инкандесцентные лампы не испускают UVB. Exo-Terra дневные инкандесцентные лампы (исключая лампу дневного света напряжённый луч) имеют стеклянный рукав, в который вкраплён неодимий, редкий земной металл, который оказывает влияние на цветовой баланс иллюминации, что позволяет террариумным животным, аксессуарам и растениям выглядеть естественно. Пики в спектре этих ламп также больше способствуют росту растений, чем обычные лампы. Ночная лампа имеет стеклянный рукав тёмно-синего цвета, позволяющий испускать свет, схожий с лунным. Exo-Terra лампы не покрыты, а изготовлены целиком из цветного стекла, тем самым предотвращаются повреждения и трещины, которые видны на стекле с покрытием. Цветное стекло также повышает передачу излучаемого тепла. Непригодна для обеспечения достаточным уровнем ультрафиолетовой радиации!

Флуоресцентные лампы (люминесцентные лампы)

Состоят из длинной, закрытой стеклянной тубы с электродами на концах. В тубе содержится небольшое количество ртути. Внутренняя поверхность тубы покрыта смесью флуоресцентного порошка. Когда электрический ток поступает в лампу, ртуть начинает испаряться и отдаёт невидимую ультрафиолетовую радиацию, которая поглощается флуоресцентным покровом, который затем испускает видимый свет. Самая важная особенность флуоресцентных ламп – способность испускать в достаточном количестве ультрафиолетовый свет В (UVB), который является компонентом солнечного света, тогда как инкандесцентная лампа испускает только небольшое количество UVA-света. Невозможно достичь высокой эмиссии видимого света большим количеством ультрафиолета. Чем более видимый свет испускается, тем меньше ультрафиолетовая радиация, и наоборот. Другой фактор, который нужно принять во внимание: не все рептилии или террариумные животные нуждаются в одинаковом уровне UVB радиации, ночные животные противопоставляются ведущим дневной образ жизни, также следует учитывать географические и климатические особенности (тропики противопоставляются пустыням).

Есть четыре важных свойства, которыми террариумные флуоресцентные лампы должны обладать:

1. Выработка UVB – необходимой для синтеза витамина D3 и метаболизма кальция

2. Выработка UVA – многие рептилии могут видеть в UVA диапазоне (320-400 нм), и это, вероятно, оказывает большое влияние на поведение, и, определённо, на то, как они визуализируют свою пищу.

3. Правильная цветовая температура – не имеет ничего общего с теплом, а, скорее, с цветом от «тёплого» красного до «холодного» синего, измеряется в градусах Кельвина. Дневной свет имеет обычно цветовую температуру от 5,500К. В тропиках цветовая температура может достигнуть 6,500К.

4. Высокий индекс световой отдачи – Световая отдача – величина, которая определяет, насколько верно передаются цвета объектов, освещённых искусственным источником света. Единица измерения – индекс цветовой отдачи (CRI), в норме — от 0 до 100. Обычная флуоресцентная лампа, например, имеет показатель 54 по CRI шкале. Флуоресцентные лампы высокого качества, предназначенные для использования в террариуме, имеют показатель 90-98 по той же самой шкале. Цветовая отдача очень важна, так как многие рептилии полагаются на цветовые сигналы, например, в процессах размножения. Комбинация достаточной UVA радиации содержит «естественную» цветовую температуру, которая активизирует деятельность в том случае, если в террариуме используется высококачественное освещение, имеющее полный спектр.

Кроме качества лампы, её приспособленности к нуждам животных, её мощность и срок службы также являются важными факторами. Если вы инсталлируете тубы, испускающие полный спектр или UVB радиацию, важно, чтобы не было посторонних предметов между тубой и животным. Стекло, пластик или небольшие петли заметно понижают уровень UVB. Нормальная петля обеспечивает самую высокую трансмиссию, но UVB лучи теряют ещё 90% своей обычной силы. Уровень испускаемого лампой UVB также понижается с увеличением расстояния. Рекомендуется устанавливать Repti Glo UVB на расстоянии не больше 30 см от объекта. На большем расстоянии уровень полученной UVB будет минимальным. Для рептилий с потребностями в высоком уровне UVB, например, для животных, обитающих в пустыне, тубы должны быть размещены на расстоянии 20-25 см от объекта. Также ограничен срок годности туб, их необходимо менять по крайней мере один раз в год, чтобы обеспечить гарантированное испускание UVB. Также возможно появление невидимых неисправностей в работе тубы. Невидимое содержимое ультрафиолета распадается со временем. Неплохо на тубе сделать маркировку с указанием даты, когда была осуществлена замена. Exo Terra флуоресцентные тубы, предназначенные для рептилий, классифицируются по уровню испускаемого ультрафиолета в процентном выражении. Наиболее популярны тубы, испускающие 5% UVB (Repti Glo 5.0). В подавляющем большинстве случаев 5%-тубы отвечают всем требованиям, если верно расположены, регулярно меняются и включаются на достаточное время. Доказано, что за 10-12 часов большинство видов получают достаточное количество UVB. Только животные, среда обитания которых – пустыня (области с высоким уровнем UVB радиации), должны облучаться 8%-UVB лампами. Repti Glo 2.0 испускают низкий уровень UVB света, в большинстве случаев недостаточный для синтеза витамина D3. Чем больше испускается ультрафиолета (невидимого света), тем меньше света (видимого). Ультрафиолетовый свет имеет синеватый оттенок. По этой причине рекомендуем для достижения наилучшего результата комбинировать тубы с высоким уровнем испускаемого ультрафиолета (Repti Glo 5.0 и 8.0) с тубами с высоким уровнем видимого света (Repti Glo 2. 0).Флуоресцентные лампы не обеспечивают достаточно тепла!

Рекомендации по применению ламп фирмы Hagen, Канада

Day Glo Neodymium Basking Spot Lamp (нагревающая лампа направленных лучей дневного света типа прожектора)
Day Glo Tight Beam Basking Spot Lamp (нагревающая лампа сильных направленных лучей дневного света типа прожектора)
Night Glo Moonlight Lamp (ночная лампа лунного света)
Heat Glo Infrared Heat Lamp (инфракрасная нагревающая лампа)
Repti Glo 2.0 Daylight Terraium Lamp (террариумная лампа дневного света для рептилий
Repti Glo 5.0 Tropical Terrarium Lamp (лампа для рептилий тропических террариумов)
Repti Glo 8.0 Desert Terraium Lamp (лампа для рептилий пустынных террариумов














ПОДБОР ОСВЕЩЕНИЯ для ТЕРРАРИУМНЫХ ЖИВОТНЫХ ЛАМПЫ НАКАЛИВАНИЯ УЛЬТРАФИОЛЕТОВЫЕ ЛАМПЫ
             
Day Glo Neodymium Basking Spot Lamp Day Glo Tight Beam Basking Spot Lamp Night Glo Moonlight Lamp Heat Glo Infrared Heat Lamp Repti Glo 2. 0 Daylight Terraium Lamp Repti Glo 5.0 Tropical Terrarium Lamp Repti Glo 8.0 Desert Terraium Lamp
Среднеазиатская (Agrionemys horsfieldii)   +   + о +  
Африканска шпороносная (Geochelone sulcata)   +   + о   +
Балканская, греческая (Testudo hermanni)   +   + о +  
Красноногая черепаха (Chelonoidis carbonaria)   +   + о +  
Лучистая черепаха (Astrochelys radiata)   +     о   +
Леопардовая черепаха (Geochelone pardalis)   +   + о   +
Каролинская каробчатая (Terrapene carolina) +   +   о +  
Расписная черепаха (Chrysemys picta) +   +   о +  
Красноухая черепаха (Trachemys scripta) +   +   о +  
Географическая (Graptemys geographica) +   +   о +  

о — Рекомендовано постоянное использование Repti Glo 2. 0 как общий источник света.

Ультрафиолетовое излучение и синий свет

Последствия воздействия опасного излучения на глаза

В наше время специалисты в области заботы о зрении все активнее призывают своих пациентов защищать глаза от вредного воздействия ультрафиолетовых (УФ) лучей. Также звучат предостережения в отношении пагубного влияния на глаза синего света. Давайте подробнее обсудим эти две опасности для нашего зрения, а также методы защиты от них.
Многим известно, что естественный свет может оказывать как полезное, так и вредное влияние на наш организм. Неотъемлемой составляющей солнечного света является ультрафиолет, относящийся к невидимой части спектра. Его воздействие на глаза особенно пагубно сказывается на роговице и хрусталике. Оно способно накапливаться, поэтому с годами может начаться развитие катаракты и некоторых других глазных заболеваний.
Воздействие УФ-излучения представляет опасность даже в пасмурный день: через облака может проходить до 80% УФ-лучей.

Синий, или, если точнее, фиолетово-синий, свет относится к видимой части спектра. Он легко достигает заднего отрезка глаза (рис. 2), и его воздействие, усугубляющееся накопительным эффектом, причиняет вред главным образом сетчатке. Кроме того, волны синего света определенной длины (от 415 до 455 нм) приводят, по мнению исследователей, к развитию возрастной макулярной дегенерации. В солнечном свете в зависимости от времени дня и погодных условий может содержаться от 25 до 30 % синего света. 

Рис. 2. Области пагубного воздействия на глаз УФ-лучей и синего света:
■ – УФ-излучение; ■ – синий свет
1 – склера; 2 – роговица; 3 – зрачок; 4 – хрусталик; 5 – радужка; 6 – цилиарное тело; 7 – сосудистая оболочка глаза; 8 – сетчатка; 9 – центр желтого пятна; 10 – зрительный нерв 
Однако наибольшую опасность для глаз представляет синий свет, который испускают экраны различных гаджетов и такие современные источники освещения, как светодиодные (LED) и компактные люминесцентные лампы.
Неудивительно, что с каждым годом наши глаза подвергаются все более интенсивному воздействию синего света.
По прогнозам ученых, к 2020 году в 90% случаев в качестве источников освещения будут применяться именно LED-лампы.
Тот факт, что защита глаз от УФ-лучей и синего света становится все более актуальной, подтверждают и статистические данные. В США совсем недавно катаракта была диагностирована у 24 млн чел. старше 40 лет, что на 19% выше, чем в 2000 году. А возрастная макулярная дегенерация (ВМД) в этой стране отмечается сегодня приблизительно у 2 млн человек, что на 25% выше, чем в 2000 году. Предполагается, что к 2050 году численность пациентов с катарактой возрастет до 50 млн человек, а с ВМД – до 5 млн человек****.

Защита глаз от УФ-лучей и синего света

Полноценная защита глаз от вредного УФ- излучения может быть только комплексной. Она предполагает использование сразу нескольких аксессуаров. Прежде всего, это солнцезащитные очки с качественными линзами, обеспечивающими надежную защиту от фронтальных УФ-лучей. Также необходимы контактные линзы с УФ-фильтром, которые предотвратят проникновение боковых и отраженных лучей солнца во внутренние структуры глаза. От лучей, падающих сверху, поможет защититься головной убор с широкими полями.

Как мы увидели, современные технологии и образ жизни создают для наших глаз повышенную нагрузку, в связи с чем мы нуждаемся в соответствующих средствах, которые бы предотвращали дальнейшее ухудшение зрения. Кроме того, благодаря усилиям исследователей раскрываются дополнительные факторы риска для наших глаз, например влияние вредного диапазона синего света, на что производители реагируют соответствующими разработками, минимизирующими пагубное воздействие такого света.

В результате многолетних научных исследований японская корпорация сделала прорыв, представив инновационный материал для защиты глаз, аналога которого нет в мире. 

Данный материал блокирует синий диапазон видимого света с длиной волны до 420 нм, используется для производства линз АйРекс®.
ZEN ОПТИКА является эксклюзивным представителем линз АйРекс® в России. 


Уникальное свойство линзы отсекать синий свет в диапазоне 380-420 нм обусловлено введением специальных наночастиц в массу материала, работающих по принципу защитного природного пигмента, расположенного в структурах глаза. Линзы АйРекс ® обеспечивают фильтрование «вредных» сине-фиолетовых лучей от полезных сине-голубых, в большей степени абсорбируя (поглощая) синие лучи более коротких волн (высокоэнергетические лучи).

Использование всех этих новшеств поможет людям долгие годы не испытывать особых проблем со зрением, идя в ногу со стандартами жизни современного общества.

*Данные предоставлены профессором ФГБУ «МНИИ глазных болезней им. Гельмгольца» Минздрава России, д-ром биол. наук Е. Н. Иомдиной.

****  В абзаце приведена статистика National Eye Institute, представленная на его сайте. URL: http://www.nei.nih.gov/eyedata/cataract (дата обращения: 31.10. 2017).

Источник: http://www.ochki.net/articles/Zrenie_svezhie_mirovye_tendentcii/ © Ochki.net

Ультрафиолетовое излучение — действие на кожу, глаза, организм человека, польза и вред.

Ультрафиолет
– это невидимое для наших глаз излучение, которое одновременно может быть как
полезным для организма, а кому-то даже спасти жизнь, так и нанести непоправимый
вред.

Чтобы понять как работает УФ, откуда он берется, изучим этот загадочный спектр поподробнее.

Естественная защита от УФ излучения

Немногие
знают, но на Земле есть люди, для которых даже малейшее УФ излучение,
содержащееся в лучах солнца, может их погубить. Такая болезнь называется
пигментная ксеродерма.

В
простонародье употребляют другое выражение – синдром вампира.

Да,
да не удивляйтесь, боязнь солнечного света “вампирами” это вовсе не сказки.
Даже малейшее пребывание на солнце таких больных, приводит к ожогам кожи и
необратимым изменениям на клеточном уровне.

Процент таких пациентов мизерный — один на несколько сотен тысяч. Однако, если бы природа естественным образом не предусмотрела защиту от УФ, то мы бы все ходили по улице в дневное время в скафандрах.

Что же нас спасает от этого? Данная чудо защита – озоновый слой. Это своего рода солнцезащитный крем для Земли. Какова его толщина?

Если весь озон равномерно “растереть” по всей поверхности вокруг нашего шарика, толщина его составит мизерные 3мм. Это как две монетки сложенные вместе.

Не впечатляет,
правда? Но именно эта тонкая прослойка и защищает нас от убийственных лучей УФ
радиации.

Озоновый
слой находится на высоте от 15 до 50км. Начал он формироваться более 500 млн.
лет назад.

Только
после этого, жизнь как таковая смогла выйти из воды и перебраться на сушу. Кто
его знает, не будь этой защиты, может быть мы с вами жили сейчас в какой-нибудь
Атлантиде и имели жабры.

А
суша была бы для нас такой же экзотикой как открытый космос.

УФ и озоновая дыра

Плотность озона не везде одинакова, и кое-где уже появились дыры. Конечно, не в прямом смысле слова, просто толщина озона в этих местах намного меньше, чем в других частях планеты.

Главная дыра образовалась над Антарктидой. В эпоху бурного промышленного роста она начала расширяться и расползаться в размерах.

Ученые умы забили тревогу и в 1987г был принят Монреальский протокол обязательств по защите озонового слоя. В наши дни активистов-экологов только прибавляется.

Борьба за экологию и повестка глобального потепления превратилась чуть ли не в религию.

Без нормального уровня озона нас конечно не ждет моментальная смерть, однако привычный уровень жизни претерпит существенные изменения:

  • переход на ночной режим работы
  • сплошные шторы на окнах или вообще отсутствие окон как таковых
  • ежедневный обязательный прием витамина Д в таблетках
  • много-много защитного крема в любой сезон года

Даже в древности люди понимали, что от длительного пребывания на солнце требуется защита. В Греции и Риме жители для этого использовали смесь песка с растительным маслом.

Данный
состав отражал лучи и не позволял проникать им под кожу.

Источники ультрафиолета — откуда он берется?

Так
откуда же берется опасный ультрафиолет? Помните детскую считалку – Каждый
Охотник Желает Знать Где Сидит Фазан.

Начальные буквы слов рассказывают о семи основных цветах, которые мы визуально различаем в солнечном спектре. Не всегда кстати, правильно.

Так вот, солнечный свет — это не просто желтый прозрачный лучик, это целый спектр лучей и разноцветные цвета в нем, составляют очень малую часть.

Большую долю (около 53%) занимает невидимое инфракрасное излучение, или попросту говоря тепло.

Мы его не видим, зато чувствуем.

Инфракрасные
лучи находятся с одного края спектра. А вот с другой стороны (Фазан –
Фиолетовый свет), как раз-таки и прячется наш ультрафиолет, плавно переходя в
рентгеновское излучение.

Хотя мы этого света и не видим, зато насекомые (и некоторые люди с отклонениями!) вполне способны его различать. Вот так его распознают пчелы.

Там, где на цветах темные пятна – это “посадочные” полосы для пчелки, куда ей нужно приземляться для сбора нектара.

Поговаривают,
что великий художник Клод Моне тоже видел ультрафиолет. И даже многие его
картины навеяны именно таким зрением.

Причина
была в катаракте одного глаза. После операции по удалению хрусталика, который и
останавливает “синие лучи”, не давая им попадать на сетчатку, у него и
появилась такая сверхспособность.

Многие картины он создавал с одним открытым глазом. Сначала закрывал правый глаз и рисовал одно полотно, затем левый и писал другое. Разница произведений была просто поразительна.

Откуда у людей веснушки?

Еще
одно влияние УФ солнечной радиации — веснушки на лице человека.

Никто
не рождается изначально с веснушками. Однако у некоторых людей эффект с годами
накапливается.

УФ радиация постепенно разрушает наши клетки. Организм по мере сил с этим борется и пытается их восстановить. У тех, у кого организм справляется не очень, как раз-таки и остаются следы в виде веснушек.

Если
вы относитесь к таким людям и не хотите увеличения веснушек по мере взросления,
регулярно используйте солнцезащитный крем. Не только летом на пляжах, но и в
повседневной жизни.

Крем
образует защитный экран от подобной напасти. Вот его эффект в ультрафиолетовых
лучах.

Именно
механизм восстановления клеток после атаки УФ лучей, это то, что не работает у людей
с синдромом вампира. Как вы понимаете, разные люди по-разному воспринимают УФ
излучение.

Опаснее
всего оно для рыжеволосых, бледнолицых ирландцев.

У большинства людей веснушки тоже есть, но их можно увидеть только в свете ультрафиолета. Вот наглядный снимок на специальном аппарате под обычными лампами и с UV подсветкой.

УФ лучи проникают под кожу примерно на 1мм. Следовательно, под их облучением можно разглядеть пигментные пятна (меланин), которые через некоторое время вылезают наружу.

Подобный аппарат с ультрафиолетовым излучением это своеобразная машина времени. Хотите знать как будете выглядеть через несколько лет, взгляните на себя через него.

Виды ультрафиолета и его влияние на кожу, животных и предметы

Каким
образом ультрафиолет действует на нашу кожу и клетки? УФ излучение в своем
спектре не однородно и подразделяется на три составляющие.

“Было
у царя три сына”:

  • коротковолновой или жесткий УФ (спектр “С”) – UVC (100-280нм)

Настоящий убийца всего живого. Непосредственно до нас он не долетает как раз-таки из-за озонового слоя.

  • средний УФ (спектр “В”) – UVB (280-315нм)

Озон блокирует его частично, оставшуюся часть поглощают облака, если они есть. Именно этот вид УФ проникая под кожу, провоцирует в организме выработку полезного витамина D.

Однако
при излишней интенсивности он начинает разрушать клетки. Загар – его рук дело.

Как образуется загар? В нашей коже имеется особый темный пигмент – меланин. При попадании ультрафиолета под кожу он начинает его впитывать, увеличиваться в размерах и накапливаться в нижних слоях эпидермиса.

По мере увеличения он поднимается к поверхности кожи. В итоге она приобретает темный оттенок. Насколько потемневшим он будет, зависит от количества уже другого вида УФ.

  • мягкий или длинноволновой УФ (спектр “А”) – UVA (315-400нм)

Его еще называют черный свет. Он спокойно проникает через любые препятствия – озон, облака, стекло, наша кожа. Ему ничто не помеха.

Быстрое старение из-за ультрафиолета

UVA отвечает за старение материалов и появление морщин раньше
времени. Он разрушает коллагеновые волокна, и кожа теряет эластичность.

Именно
лучи UVA составляют львиную долю всего УФ излучения на Земле (95%).

Все наверняка видели старые выцветшие баннеры на улицах, а также растрескавшуюся изоляцию отдельных марок проводов и кабелей, висящих на открытом воздухе.

Так вот, разрушает их в первую очередь не дождь и ветер, а ультрафиолет. Он и вызывает фактическое старение материала на молекулярном уровне.

Хотите
искусственно состарить вещи? Поместите их на несколько часов под интенсивный
ультрафиолет.

По
примерным расчетам, один год под солнцем равен 40 часам, проведенным в
небольшом ящике с двумя лампами ДРЛ (без стеклянной колбы) мощностью 400Вт.

Один киловатт такого освещения обеспечивает 100Вт вредного излучения. В то время как солнце излучает 1,3 милливатт на 1см2.

Такие
искусственные состариватели пригодятся тем, кто профессионально занимается
наружной рекламой или автосервисом и дает на свою работу длительную гарантию.

Сможете
реально проверить краски и винил. Как они поведут себя через несколько лет и на
что будут похожи.

Польза ультрафиолета в быту

Однако
ультрафиолетовое излучение — это не абсолютное зло. Без него невозможна
нормальная работа организма как человека, так и животных.

Его можно приручить и использовать с выгодой. Как уже говорилось выше, за счет этих невидимых лучей спектра B (UVB) вырабатывается витамин Д, который повышает иммунитет и укрепляет кости.

Ученые быстро сообразили, что полезный ультрафиолет не обязательно ловить только от солнца. В итоге были разработаны искусственные источники света с нужными УФ волнами.

Например,
серийного убийцу UVC запечатали в лампах со стенками из кварца. При
целенаправленном облучении они уничтожают все бактерии вокруг себя и дезинфицируют
окружающее пространство.

Искусственные
источники УФ широко применяют не только в научных или медицинских целях, но и в
бытовых:

  • в аквариумах для здорового роста рептилий

Здесь преобладают на первый взгляд безопасные UVA лучи. Однако такой загар может быть опаснее, чем солнечный. Почему так?

На солнце, при излишнем облучении от UVB+UVA, в зависимости от толщины кожного покрова, рано или поздно у вас сработает защитный механизм, покраснеет кожа, появится жжение, что тут же вызовет дискомфорт и вы сами спрячетесь в тень.

В солярии же можно превратиться в уголёк и при этом даже ничего не почувствовать. Поэтому время нахождения под таким искусственным солнышком рассчитывается всегда индивидуально.

  • в защитных лампах от комаров и насекомых
  • при уборке и выявлении загрязнений или поиске улик на месте преступления

Никогда
не смотрите в ультрафиолете на свою кухню или туалет. Результат вас шокирует.

  • в сушилках для обуви
  • для проверки денег

Защитные
знаки на бумажных купюрах откликаются на длину волны в 365нм.

  • для сушки лака на ногтях

Мощными светильниками UVC обеззараживают огромные объемы воды на очистных сооружениях.

После стадии механической и биологической очистки УФ лампами убиваются все вредные микроорганизмы, содержащиеся в сточных водах. Бомбардируя клетки организмов UVC лучами, мы разрушаем их ДНК.

Только
после этого такую воду выпускают в речку без вреда для ее обитателей.

Данная
технология считается более эффективной, безопасной и экологичной по сравнению с
хлорированием.

Очистка и стирка белья

А
еще УФ лучи помогают нам выглядеть неотразимо. Каким образом? Одна из задач
средств для стирки – создать видимость ярко белого и чистейшего белья.

Это
происходит за счет поглощения длин волн, которые мы не видим, т.е. того самого ультрафиолета.
После чего хим.вещество попавшее в ткань с отбеливателем (из порошка или
чистящей жидкости), переизлучает эти волны в ярко видимом спектре.

В итоге получается, что это не платье стало новее нового и идеально чистым, а его заставили светиться в более ярких белых оттенках. Ваши глаза таким образом просто напросто дурят. Грамотный подход и работа со светом творит настоящие чудеса.

Посмотрите
на порошок в лучах ultravioleta.

Примерно
такой же эффект наблюдается и с вашей постиранной одеждой.

Ультрафиолетовый фонарик своими руками?

Умельцы
считают, что простейший ультрафиолетовый фонарик можно сделать в домашних
условиях всего за несколько минут. Для этого они советуют покрасить стекло
фонаря синим или фиолетовым маркером.

Далее
наложить слой прозрачного скотча и закрасить снова. И так несколько раз.

Однако не ведитесь на советы таких Кулибиных.

Краска и скотч не способны изменить длину волны, а значит в итоге вы получите обычный фонарик с фиолетовым излучением. Не более того.

Пользы
от такой самоделки не будет никакой. Для полноценного эффекта нужны настоящие
УФ светодиоды или ЛБ лампы с правильной волной.

Очки против ультрафиолета

Фонарики и лампы UVB+UVA безопасны для зрения при непродолжительном использовании. При длительной работе, глаза необходимо защищать спец.очками, которые не пропускают данные лучи.

Обычное стекло конечно задерживает длинноволновое излучение, но в недостаточной степени.

А вот современные линзы для очков с этим справляются на ура. Поэтому простые очки (не солнцезащитные), через камеры с фильтрами UV и выглядят темными.

При случайном ожоге глаз резкое жжение вы почувствует только через несколько часов. Это будет похоже на ощущения, как при чистки лука или после сварки. С закрытыми глазами боль будет только усиливаться.

К утру на следующий день боль изменится. Появится чувство, что вам насыпали песок под веки. А солнечный свет будет сильнейшим раздражителем. Причем сами глаза могут и не иметь каких-то явных признаков поражения – краснота и т.п.

Комфортно
чувствовать себя вы сможете только в полной темноте. Даже после того, как
немного полегчает, все вокруг будет выглядеть как в дымке или тумане.

Эффект проходит через один-два дня, в зависимости от степени ожога. Так что будьте осторожны со всеми источниками ультрафиолета.

Чтобы
реально оценить влияние УФ излучения на организм человека, всемирная
организация здравоохранения ввела так называемый UV индекс.

Если
вы обратите внимание, во многих прогнозах погоды выводятся подобные данные.
Однако большинство пропускает их “мимо ушей”. А зря.

  • при UV=1-2 можете смело гулять на улице

Рекомендуется
использовать защитный крем. Даже если вы не собираетесь идти на пляж.

Экстремально
высокий уровень. Под удар УФ лучей попадает ваша ДНК.

На солнце с такими показателями UV находится не рекомендуется. По улице перемещайтесь мелкими перебежками от тени к тени.

Для фактического измерения этих показателей люди с синдромом вампира редко доверяются прогнозам погоды и используют специальные приборы – пиргелиометры.

Только
при низких значениях UV они в редкие дни могут без боязни
показаться снаружи своего жилища.

Кроме
толщины озонового слоя на уровень УФ влияют еще несколько факторов:

  • высота солнца над горизонтом

В
день летнего солнцестояния UV достигает максимальных значений.
Помимо месяцев, пики и спады происходят каждый день.

Максимум
– в полдень. При этом 60% радиации спектра “В”падает на Землю между 11.00 и
15.00.

При этом интенсивность УФ спектра “А” не зависит от времени суток.

  • высота над уровнем моря

Если вы живете в горной местности, там УФ излучение воздействует на вас гораздо сильнее. Поэтому на горнолыжных курортах все и пользуются солнцезащитными очками.

Кстати, «сгорают» там быстрее, чем на жарких солнечных пляжах. Белый снег и лед отражают UV лучи и усиливают эффект загара в несколько раз.

Не
зря самые первые УФ источники света назывались лампами горного солнца.

Их
активно использовали для физиотерапии уже в начале 20-го века! И успешно лечили
некоторые болезни.

Придумал такие аппараты нобелевский лауреат Нильс Рюберг Финзен. Его еще называли — «лечащий светом».

Опасные места на планете Земля

Как не удивительно, но на нашей планете есть места, где из-за повышенного УФ излучения людям уже нельзя находиться без специального защитного костюма.

В
Южной Америке на вулкане Ликанкабур на высоте почти в 6000 метров UV индекс достигает 43 баллов!

Это
в 4 раза выше экстремального уровня для обычного человека. Тем не менее,
неподалеку от вулкана есть населенный пункт с проживающими там коренными
жителями. И уезжать они никуда не собираются.

Это
к вопросу о приспособленности кожи и организма человека.

Вообще подобные места напоминают поверхность Марса и часто используются NASA для тестирования марсоходов и другого космического оборудования. Здесь можно спокойно снимать какую-нибудь киношку не особо вкладываясь в декорации.

Высокий
уровень UV излучения также наблюдается в таких популярных для туристов
странах, как Австралия и Новая Зеландия.

Это
связано с их непосредственной близостью к озоновой дыре, которая расползается в
своих размерах от берегов Антарктики. По статистике в этих странах самый
большой процент заболеваемости раком среди мигрантов из Европы.

Кожа
белого человека, даже родственников переселенцев, которые прибыли сюда 100-200
лет назад, еще не успела должным образом адаптироваться. Поэтому хорошенько
подумайте, прежде чем строить планы по переезду в южное полушарие к хоббитам.

По
закону сохранения ультрафиолета, если его где-то много, значит должны
существовать места с его недостатком. Наиболее дефицитным местом, заселенным людьми,
является Аляска.

В
местном городе Анкоридж люминесцентные лампы законодательно рекомендованы в
детских учреждениях и рабочих офисах.

Именно
лампы ЛБ, а не светодиодные или обычные лампочки накаливания.

Люминесцентные
в некоторой степени способны восполнить недостаток УФ лучей в условиях долгой
полярной ночи.

От солнечной недостаточности страдает большинство жителей северного полушария. Выражается это в первую очередь в нехватке витамина D, который можно компенсировать либо частыми поездками на юга, либо витаминками из аптеки.

Ультрафиолетовая фотография — что это такое и как сделать?

Ультрафиолетовая фотография — жанр, который сравнительно мало используется фотографами, несмотря на то, что снимки получаются захватывающими и неординарными. Почему такое происходит? Осмелимся предположить, что просто фотографы, незнакомые с тонкостями процесса, заранее пугаются сложностей и необходимости дополнительных инвестиций в оборудование для ультрафиолетовой фотографии. А зря! Канадский макрофотограф ©Don Komarechka не только изучает УФ-фотографию для себя, но и с воодушевлением делится своими знаниями со всеми, кто заинтересован.  

Большая часть УФ-фотографии вращается вокруг мира, который мы обычно не замечаем из-за его обыденности. Попытка посмотреть на простые предметы сквозь «невидимую призму» помогает получить прекрасные образы — новые и необыкновенно занимательные своей диковиностью. Использование УФ-света, который находится вне спектра, воспринимаемого человеком, — отличный способ начать исследования и войти в мир ультрафиолетовой фотографии. 

Существует два типа ультрафиолетовой фотографии — УФ-отражения и УФ-флуоресценции. При съемке методом ультрафиолетового отражения используется источник, который содержит ультрафиолетовый свет (например, солнце или источник света полного спектра). При этом ультрафиолет собирается и попадает на датчик камеры. Чтобы это было возможно, требуется модификация камеры, аналогичная такой, как делается для инфракрасной фотографии, только на другом конце спектра. 

При съемке методом УФ-отражения на фотоснимках можно получить скрытые на цветках узоры, которые способны видеть только насекомые. Например, в виде эффектных «посадочных полос» из пыльцы для привлечения опылителей. 

Посмотрите, как отличаются фотографии, сделанные обычным способом и с помощью УФ-отражения. Нижняя часть — видимый свет, а сверху — инфракрасное изображение того же цветка герберы. Хотя обычное монохромное изображение, безусловно, интересно, но флуоресцирование цветка (крупный план)  превратило картинку в волшебную для восприятия.

УФ-флуоресценция не требует модификации камеры. Следует просто уделять пристальное внимание тому, чтобы только УФ-луч попадал на объект. Если что-то в кадре флуоресцирует, видимый свет будет «отскакивать» назад к камере. 

Интересное наблюдение: почти все в природе флуоресцирует в т ой или иной степени. Возможно, вы слышали о насекомых, которые светятся под ультрафиолетом. Но если обеспечить достаточно света только для УФ-луча, то «засветиться» может все. В данном методе ключевым фактором является интенсивность светового потока. И он должен быть чистым», так как даже частичное попадание в объектив видимого спектра загрязнит результаты.  

Так выглядит установка для УФ-съемки. Каждая из этих накамерных вспышек Yongnuo 685 была модифицирована для вывода исключительно ультрафиолетового излучения, и процесс этот занял всего около пяти минут. 

Как модифицировать вспышку для УФ-съемки 

Вам необходимо разобрать вспышку.

 ВНИМАНИЕ! Вспышка — это высоковольтное оборудование, которое вы открываете на свой страх и риск. Вы можете нанести себе серьезные ранения или увечья, если вспышка не разряжена и вы прикоснетесь к частям, к которым нельзя притрагиваться. Если у вас нет опыта в обращении с подобным электрооборудованием, доверьте его профессионалу.

Удалите два куска пластика, которые находятся перед ксеноновой вспышкой. Они управляют лучом света, но также блокируют УФ-излучение.

Есть два винта и несколько зажимов под резиновыми вставками по бокам вспышки. После того, как вы их уберете, а вспышка будет снова собрана, потребуется отфильтровать свет до УФ-излучения. Используйте комбинацию из двух 77-миллиметровых фильтров и получите потрясающие результаты.

Например, каждый из двух фильтров Hoya U340 и MidOpt BP365 дает очень небольшую утечку света видимого спектра; один красного цвета, другой — фиолетового. Вместе они перекрывают друг друга и блокируют волны видимого спектра. 

Некоторые цветы или насекомые совершенно неинтересны, как объекты съемки, так как они не слишком флуоресцируют по сравнению с другими. Важно отметить, что никто и никогда не сможет увидеть мир таким, какой получится на ультрафиолетовых фотографиях — для этого требуется, чтобы весь видимый свет был отфильтрован, чего не может  быть в природе.

Насекомые могут отражать УФ-излучение. Например, как эта цикада. Но когда вы сфотографируете ту же самую цикаду в темной комнате и отсечете весь видимый спектр света, прозрачные крылышки засияют фантастическим синим.

То же самое будет с некоторыми видами стрекоз, хотя большинство насекомых с меньшими размерами крыльев вряд ли получатся такими сказочными на фотографиях. Ключевым моментом УФ-фотографии является постоянное экспериментирование. И об этом следует помнить!

Почему рептилиям нужен ультрафиолетовый свет?

Большинство людей прекрасно знают, что для их домашней рептилии необходимо создать дополнительный источник тепла (как правило, при помощи погружных нагревателей в акватеррариумах, ковриков для рептилий, нагревателей встроенных в декорации, грунтовых термокабелей и керамических нагревателей). Однако многие владельцы до сих пор не понимают, зачем пресмыкающимся нужно еще ультрафиолетовое освещение. Обладателям террариумов следует знать, что ультрафиолетовое освещение не только благоприятно воздействует на рептилий, но и является жизненно важным для их нормального существования.

Под влиянием ультрафиолетового света (например от лампы Exo Terra REPTILE UVB200 26 Вт) клетки кожи рептилии вырабатывают витамин D3. При отсутствии этого витамина ваш питомец не в состоянии усваивать кальций, который он получает через желудочно-кишечный тракт. Кальций необходим для укрепления костной ткани. Конечно, витамин D3 может быть введен в рацион животного в форме лекарственных препаратов, а также продуктов, богатых содержанием данного витамина. Тем не менее для рептилий очень важно синтезировать витамин D3 и в коже. Здесь на помощь как раз и приходит ультрафиолетовое излучение вырабатываемое УФ лампой для рептилий.

Известно, что у людей, организм которых испытывает недостаток в витамине D3, усваивается всего лишь около 10% кальция, который поступает с пищей. Если витамина D3 в организме человека достаточное количество, то процент усвоения кальция возрастает до 30 – 40. Примерно то же самое наблюдается и у рептилий.

Ультрафиолетовый свет также помогает сохранить вашей рептилии активность. Положительное влияние ультрафиолетовых лучей было доказано и при исследованиях на кроликах, морских свинках и даже человеке. Если вы заметили, что ваш питомец стал менее активным, убедитесь, что ультрафиолетовая лампа по-прежнему испускает необходимое количество энергии. Возьмите себе за правило производить замену ультрафиолетовых ламп для черепах каждые шесть месяцев, если у изготовителя нет других рекомендаций.

Кожа пресмыкающихся поглощает ультрафиолетовые лучи и синтезирует витамин D3. Так что неудивительно, почему заметна разница во внешнем виде наших любимцев при воздействии ультрафиолета. Дело в том, что кожа рептилий содержит многочисленные клетки, называемые хроматофорами, которые производят пигмент и отражают свет. Эти клетки также найдены у рыб и амфибий. Ультрафиолетовый свет поглощается хроматофорами, которые производят больше пигмента и отражают свет, чтобы заставить кожу вашей рептилии выглядеть более яркой, здоровой и красивой.

Грибковые инфекции являются довольно распространенными среди обитателей домашних террариумов. Специальные противогрибковые препараты могут быть прописаны после того, как ветеринарный врач диагностировал инфекцию. В дополнение к лечению, которое прописал ветеринар, вы также должны убедиться, что ваш любимец получает достаточное количество ультрафиолетового света на весь период лечения. Поскольку доказано, что воздействие данного типа излучения очень полезно при борьбе с патологиями.

Как правило, ультрафиолетовый свет нужно использовать в террариуме около 10 – 12 часов в сутки. Данная процедура вполне безопасна, но все же и здесь будет нелишним соблюдать ряд простых правил. Прежде всего удостоверьтесь, что ультрафиолетовый светильник для черепах находится на 10 – 12 сантиметров выше точки, до которой может дотянуться ваш питомец. Если это лампа ртутная, следуйте рекомендациям производителя. Помните, что при слишком близком контакте ультрафиолетовый свет может вызвать ожоги кожи и глаз рептилии.

УФ-лучей и ламп: ультрафиолетовое излучение-С, дезинфекция и коронавирус

Учитывая текущую вспышку болезни Коронавирус 2019 (COVID-19), вызванной новым коронавирусом SARS-CoV-2, потребители могут быть заинтересованы в приобретении ультрафиолетовых ламп C (UVC) для дезинфекции поверхностей в доме или подобных местах. FDA дает ответы на вопросы потребителей об использовании этих ламп для дезинфекции во время пандемии COVID-19.


На этой странице:
Связанная страница:

Ультрафиолетовое излучение и коронавирус SARS-CoV-2

В: Могут ли УФ-лампы инактивировать коронавирус SARS-CoV-2?

A: УФС-излучение — известное дезинфицирующее средство для воздуха, воды и непористых поверхностей. Ультрафиолетовое излучение на протяжении десятилетий эффективно использовалось для уменьшения распространения бактерий, таких как туберкулез.По этой причине УФ-лампы часто называют «бактерицидными».

Было показано, что излучение

UVC разрушает внешнее белковое покрытие SARS-Coronavirus, который отличается от вируса SARS-CoV-2. Уничтожение в конечном итоге приводит к инактивации вируса. (см. Дальний УФС-свет (222 нм) эффективно и безопасно инактивирует переносимые по воздуху коронавирусы человека). УФ-излучение также может быть эффективным для инактивации вируса SARS-CoV-2, который вызывает коронавирусную болезнь 2019 (COVID-19). Для получения дополнительной информации см. «В: Где я могу узнать больше об УФ-излучении и дезинфекции?». Однако в настоящее время опубликованы ограниченные данные о длине волны, дозе и продолжительности УФ-излучения, необходимого для инактивации вируса SARS-CoV-2.

В дополнение к пониманию того, эффективно ли УФ-излучение для инактивации конкретного вируса, существуют также ограничения на то, насколько эффективным может быть УФ-излучение для инактивации вирусов в целом.

  • Прямое воздействие: УФ-излучение может инактивировать вирус только в том случае, если вирус подвергается прямому воздействию излучения.Следовательно, инактивация вирусов на поверхностях может быть неэффективной из-за блокировки УФ-излучения почвой, такой как пыль, или другими загрязняющими веществами, такими как физиологические жидкости.
  • Доза и продолжительность: Многие из УФ-ламп, продаваемых для домашнего использования, имеют низкие дозы, поэтому может потребоваться более длительное воздействие на заданную площадь поверхности, чтобы потенциально обеспечить эффективную инактивацию бактерий или вирусов.

УФС-излучение обычно используется внутри воздуховодов для дезинфекции воздуха. Это самый безопасный способ использования УФ-излучения, поскольку прямое воздействие УФ-излучения на кожу или глаза человека может вызвать травмы, а установка УФ-излучения в воздуховоде с меньшей вероятностью вызовет воздействие на кожу и глаза.

Поступали сообщения о ожогах кожи и глаз в результате неправильной установки УФ-ламп в помещениях, в которых могут находиться люди.

В: Может ли излучение UVB или UVA инактивировать коронавирус SARS-CoV-2?

A: Ожидается, что излучение UVB и UVA будет менее эффективно, чем излучение UVC, при инактивации коронавируса SARS-CoV-2.

  • UVB: Есть некоторые свидетельства того, что излучение UVB эффективно при инактивации других вирусов SARS (не SARS-CoV-2).Однако при этом он менее эффективен, чем УФ-С, и более опасен для человека, чем УФ-излучение, поскольку УФ-излучение В может проникать глубже в кожу и глаза. Известно, что УФ-В вызывает повреждение ДНК и является фактором риска развития рака кожи и катаракты.
  • UVA: UVA-излучение менее опасно, чем UVB-излучение, но также значительно (примерно в 1000 раз) менее эффективно, чем UVB- или UVC-излучение, при инактивации других вирусов SARS. УФА также влияет на старение кожи и риск рака кожи.

Q: Безопасно ли использовать УФ-лампу для дезинфекции дома?

A: Учитывайте как риски УФ-ламп для людей и объектов, так и риск неполной инактивации вируса.

Риски: лампы UVC, используемые для дезинфекции, могут представлять потенциальные риски для здоровья и безопасности в зависимости от длины волны UVC, дозы и продолжительности воздействия излучения. Риск может возрасти, если устройство неправильно установлено или используется неподготовленными людьми.

  • Прямое воздействие УФС-излучения некоторых УФС-ламп на кожу и глаза может вызвать болезненное повреждение глаз и кожные реакции, похожие на ожоги. Никогда не смотрите прямо на источник УФ-лампы, даже кратко. Если вы испытали травму, связанную с использованием УФ-лампы, мы рекомендуем вам сообщить об этом в FDA.
  • Некоторые лампы UVC выделяют озон. Вдыхание озона может вызвать раздражение дыхательных путей.
  • UVC может разрушать некоторые материалы, такие как пластик, полимеры и окрашенный текстиль.
  • Некоторые лампы UVC содержат ртуть. Поскольку ртуть токсична даже в небольших количествах, необходимо соблюдать особую осторожность при очистке сломанной лампы и утилизации лампы.

Эффективность: Эффективность УФ-ламп в инактивации вируса SARS-CoV-2 неизвестна, поскольку опубликованные данные о длине волны, дозе и продолжительности УФ-излучения, необходимого для инактивации вируса SARS-CoV-2, ограничены. Важно понимать, что, как правило, УФС не может инактивировать вирус или бактерию, если они не подвергаются прямому воздействию УФС.Другими словами, вирус или бактерия не будут инактивированы, если они покрыты пылью или почвой, внедрены в пористую поверхность или на нижнюю сторону поверхности.

Чтобы узнать больше о конкретной УФ-лампе, вы можете:

  • Спросите производителя о рисках для здоровья и безопасности продукта, а также о наличии инструкций по применению / информации для обучения.
  • Спросите, выделяет ли продукт озон.
  • Спросите, какой материал совместим с УФ-дезинфекцией.
  • Спросите, содержит ли лампа ртуть. Эта информация может оказаться полезной, если лампа повреждена и вам необходимо знать, как очистить и / или утилизировать лампу.

В: Все ли лампы, вырабатывающие УФС-излучение, одинаковы?

Не все лампы UVC одинаковы. Лампы могут излучать ультрафиолетовое излучение с очень специфической длиной волны (например, 254 нм или 222 нм) или могут излучать УФ-свет в широком диапазоне длин волн. Некоторые лампы также излучают видимое и инфракрасное излучение. Длины волн, излучаемые лампой, могут повлиять на эффективность лампы при инактивации вирусов и могут повлиять на риски для здоровья и безопасности, связанные с лампой. Некоторые лампы излучают несколько типов длин волн. Тестирование лампы может определить, излучает ли лампа на других длинах волн и насколько сильно.

Имеются некоторые свидетельства того, что эксимерные лампы с пиковой длиной волны 222 нм могут вызывать меньшее повреждение кожи, глаз и ДНК, чем длина волны 254 нм, но долгосрочные данные о безопасности отсутствуют. Для получения дополнительной информации см. «В: Где я могу узнать больше об УФ-излучении и дезинфекции?».

В: Какие типы ламп могут производить УФ-излучение?

Ртутная лампа низкого давления: Исторически наиболее распространенным типом лампы, используемой для получения УФС-излучения, была ртутная лампа низкого давления, которая имеет основное (> 90%) излучение на длине волны 254 нм.Лампы этого типа также производят волны с другими длинами волн. Существуют и другие лампы, которые излучают ультрафиолетовый свет в широком диапазоне длин волн, но также излучают видимое и инфракрасное излучение.

Эксимерная лампа или лампа Far-UVC: Тип лампы, называемой «эксимерной лампой», с пиковым излучением около 222 нм.

Импульсные ксеноновые лампы: Эти лампы, излучающие короткие импульсы широкого спектра (включая УФ, видимый и инфракрасный) света, были отфильтрованы для испускания в основном УФ-излучения и иногда используются в больницах для обработки поверхностей в операционных или другие пространства.Обычно они используются, когда в помещении нет людей.

Светодиоды (LED): Светоизлучающие диоды (LED), излучающие УФ-излучение, также становятся все более доступными. Обычно светодиоды излучают очень узкую полосу длин волн. Доступные в настоящее время ультрафиолетовые светодиоды имеют максимальную длину волны 265 нм, 273 нм и 280 нм, среди прочего. Одним из преимуществ светодиодов перед ртутными лампами низкого давления является то, что они не содержат ртути. Однако небольшая площадь поверхности и более высокая направленность светодиодов могут сделать их менее эффективными для бактерицидных применений.

Q: Где я могу узнать больше об УФ-излучении и дезинфекции?

A: Для получения общей информации об УФ-излучении см. Ультрафиолетовое (УФ) излучение.

Для получения дополнительной технической информации см. Эти отчеты и публикации:

С вопросами об этой странице обращайтесь 1-888-INFO-FDA или в Управление технологий здравоохранения 7: Управление диагностики in vitro и радиологического здоровья (OIR) / Отдел радиологического здоровья (DRH) по адресу [email protected] .


Регламент FDA для УФ-ламп

Q: Какова роль FDA в надзоре за УФ-лампами?

A: Лампы UVC — это электронные изделия.FDA регулирует электронные изделия, излучающие радиацию (как немедицинские, так и медицинские изделия), посредством Положений о радиационном контроле электронных изделий, которые первоначально были приняты как Закон о радиационном контроле для здоровья и безопасности. Некоторые электронные продукты также могут регулироваться как медицинские устройства. FDA отвечает за регулирование фирм, которые производят, переупаковывают, маркируют и / или импортируют медицинские устройства, продаваемые в Соединенных Штатах.

Производители ламп

UVC несут ответственность за соблюдение всех применимых нормативных требований, включая Раздел 21 Свода федеральных нормативных актов (CFR), части с 1000 по 1004 и раздел 1005.25 и, если применимо, 21 CFR Глава I, подраздел H. Нормы радиологического здоровья включают в себя сообщение о случайных радиационных происшествиях, уведомление FDA и клиентов о дефектах радиационной безопасности и назначение агента США по импортным лампам. Когда УФ-лампа регулируется только как электронное изделие, в настоящее время не существует каких-либо конкретных стандартов производительности FDA.

Ультрафиолетовые лампы, предназначенные для медицинских целей, такие как продукты, дезинфицирующие другие медицинские устройства или облучающие части тела человека, которые соответствуют определению медицинского устройства в соответствии с разделом 201 (h) Федерального закона о пищевых продуктах, лекарствах и косметических средствах, также обычно требуют Разрешение, одобрение или разрешение FDA до выхода на рынок.

Для получения дополнительной информации см. Страницы FDA «Как определить, является ли ваш продукт медицинским устройством» и «Обзор нормативных требований к устройствам».

УФ-излучение может вызвать серьезные ожоги (кожи) и травмы глаз (фотокератит). Избегайте прямого воздействия ультрафиолетового излучения на кожу и никогда не смотрите прямо на источник ультрафиолетового света, даже ненадолго. Если клиенты обнаруживают проблему с УФ-лампой, они могут сообщить об этом производителю и FDA.

Потребители, которые заинтересованы в получении дополнительной информации о роли Агентства по охране окружающей среды (EPA), могут захотеть увидеть страницу EPA, Почему генераторы озона, ультрафиолетовые лампы или очистители воздуха не включены в Список N? Могу ли я использовать их, чтобы убить COVID-19?

Ультрафиолетовое (УФ) излучение | FDA


В: Что такое УФ-излучение?

Любое излучение — это форма энергии, большая часть которой невидима для человеческого глаза. УФ-излучение — это только одна из форм излучения, и оно измеряется в научной шкале, называемой электромагнитным (ЭМ) спектром.

УФ-излучение — это только один из видов электромагнитной энергии, с которым вы, возможно, знакомы. Радиоволны, передающие звук с вышки радиостанции на стереосистему или между мобильными телефонами; микроволновые печи, подобные тем, что разогревают пищу в микроволновой печи; видимый свет, который излучается светильниками в вашем доме; и рентгеновские лучи, подобные тем, которые используются в больничных рентгеновских аппаратах для получения изображений костей внутри вашего тела, — все это формы электромагнитной энергии.

УФ-излучение — это часть электромагнитного спектра между рентгеновскими лучами и видимым светом.

Дополнительная информация об УФ-излучении

Q: Как излучение классифицируется по электромагнитному спектру?

Электромагнитное излучение окружает нас повсюду, но мы можем видеть только его часть. Все электромагнитное излучение (также называемое электромагнитной энергией) состоит из мельчайших пакетов энергии или «частиц», называемых фотонами, которые движутся по волнообразной схеме и движутся со скоростью света. Спектр ЭМ делится на категории, определяемые диапазоном чисел.Эти диапазоны описывают уровень активности или то, насколько энергичны фотоны, и размер длины волны в каждой категории.

Например, в нижней части спектра радиоволн находятся фотоны с низкими энергиями, поэтому их длины волн большие, а пики находятся далеко друг от друга. Фотоны микроволн имеют более высокую энергию, за ними следуют инфракрасные волны, ультрафиолетовые лучи и рентгеновские лучи. В верхней части спектра гамма-лучи имеют фотоны очень высоких энергий и коротких волн с близко расположенными пиками.

Дополнительная информация об электромагнитном спектре

Q: Какие существуют типы УФ-излучения?

Наиболее распространенной формой УФ-излучения является солнечный свет, который производит три основных типа УФ-лучей:

У

лучей UVA самые длинные волны, за ними следуют лучи UVB и UVC, которые имеют самые короткие длины волн. В то время как лучи UVA и UVB проходят через атмосферу, все лучи UVC и некоторые лучи UVB поглощаются озоновым слоем Земли. Итак, большинство УФ-лучей, с которыми вы контактируете, — это УФА с небольшим количеством УФВ.

Как и все формы света в ЭМ спектре, УФ-излучение классифицируется по длине волны. Длина волны описывает расстояние между пиками в серии волн.

  • Ультрафиолетовые лучи B имеют короткую длину волны, которая достигает внешнего слоя кожи (эпидермиса)
  • UVA-лучи имеют более длинную длину волны и могут проникать через средний слой вашей кожи (дерму)
В: Что такое УФ-излучение?

A: УФС-излучение — это часть спектра УФ-излучения с наивысшей энергией.

УФС-излучение Солнца не достигает поверхности Земли, потому что оно блокируется озоновым слоем атмосферы. Таким образом, единственный способ воздействия УФС-излучения на человека — это использование искусственного источника, такого как лампа или лазер.

В: Каковы риски воздействия УФС-излучения?

A: УФ-излучение может вызвать серьезные ожоги кожи и повреждения глаз (фотокератит). Избегайте прямого воздействия ультрафиолетового излучения на кожу и никогда не смотрите прямо на источник ультрафиолетового света, даже ненадолго.Ожоги кожи и травмы глаз от воздействия ультрафиолетового излучения обычно проходят в течение недели без каких-либо известных долгосрочных повреждений. Поскольку глубина проникновения УФ-излучения очень мала, риск рака кожи, катаракты или постоянной потери зрения также считается очень низким. Тип повреждения глаз, связанный с воздействием ультрафиолета, вызывает сильную боль и ощущение песка в глазах. Иногда люди не могут использовать свои глаза в течение одного-двух дней. Это может произойти после очень короткого воздействия (от секунд до минут) УФ-излучения.

Если вы получили травму, связанную с использованием УФ-лампы, мы рекомендуем вам сообщить об этом в FDA.

В: Какие риски связаны с использованием некоторых УФ-ламп?

A: Некоторые лампы UVC излучают небольшое количество UVB-излучения. Следовательно, воздействие высокой дозы или продолжительной низкой дозы излучения некоторых УФ-ламп потенциально может способствовать возникновению таких эффектов, как катаракта или рак кожи, которые вызваны кумулятивным воздействием УФ-В излучения.

Кроме того, некоторые УФ-лампы выделяют озон, который может вызвать раздражение дыхательных путей (то есть носа, горла и легких), особенно у людей с респираторной чувствительностью, такой как астма или аллергия.Воздействие высоких уровней газообразного озона может также усугубить хронические респираторные заболевания, такие как астма, или повысить уязвимость к респираторным инфекциям.

Q: Как УФ-излучение влияет на мое тело?

И UVA, и UVB лучи могут вызвать повреждение вашей кожи. Солнечный ожог — признак кратковременного чрезмерного воздействия, в то время как преждевременное старение и рак кожи — побочные эффекты длительного воздействия ультрафиолета.

Некоторые пероральные и местные лекарственные средства, такие как антибиотики, противозачаточные таблетки и продукты с перекисью бензоила, а также некоторые косметические средства могут повышать чувствительность кожи и глаз к УФ-излучению у всех типов кожи.Проверьте этикетку и обратитесь к врачу за дополнительной информацией.

Солнечный свет — не единственный источник УФ-излучения, с которым вы можете столкнуться. Другие источники включают:

  • Кабины для загара
  • Освещение на парах ртути (часто используется на стадионах и школьных спортзалах)
  • Некоторые галогенные, люминесцентные лампы и лампы накаливания
  • Некоторые типы лазеров

Дополнительная информация о рисках загара

Дополнительная информация об известных воздействиях УФ-излучения

на здоровье

Дополнительная информация о последствиях чрезмерного воздействия солнечных лучей на здоровье

Дополнительная информация о типах УФ-излучения

В: Есть ли польза для здоровья от воздействия УФ-излучения?

Воздействие УФ-В излучения помогает коже вырабатывать витамин D (витамин D3), который играет важную роль — наряду с кальцием — в здоровье костей и мышц.Однако количество UVB-излучения, необходимое для получения положительного эффекта, зависит от нескольких факторов, таких как: количество витамина D в вашем рационе, цвет кожи, использование солнцезащитного крема, одежда, место вашего проживания (широта и высота), время суток, и время года. Кроме того, FDA не одобрило и не одобрило какие-либо устройства для загара в помещении для производства витамина D.

УФ-излучение в форме лазеров, ламп или комбинации этих устройств и местных лекарств, повышающих чувствительность к УФ-излучению, иногда используется для лечения пациентов с определенными заболеваниями, которые не поддаются лечению другими методами.Этот метод воздействия ультрафиолета, также известный как фототерапия, выполняется квалифицированным медицинским работником под наблюдением дерматолога. Исследования показывают, что фототерапия может помочь в лечении тяжелых и тяжелых случаев нескольких заболеваний, в том числе:

Фототерапия заключается в регулярном воздействии на пациента тщательно контролируемой дозы УФ-излучения. В некоторых случаях для эффективной терапии требуется сначала обработать кожу пациента лекарством, мазью или ванной, которые увеличивают ее чувствительность к ультрафиолету.Хотя этот тип терапии не устраняет негативные побочные эффекты УФ-излучения, лечение тщательно контролируется врачом, чтобы убедиться, что польза от него перевешивает риски.

В: Влияет ли место моего проживания на количество УФ-излучения, которому я подвержен?

Многие факторы определяют, сколько ультрафиолета вы подвергаетесь воздействию, в том числе:

  • География
  • Высота
  • Время года
  • Время суток
  • Погодные условия
  • Отражение
География

УФ-лучи наиболее сильны в областях, близких к экватору.Поскольку солнце находится прямо над экватором, ультрафиолетовые лучи проходят через атмосферу лишь небольшое расстояние, чтобы достичь этих областей. УФ-излучение также является самым сильным вблизи экватора, потому что озон в этих областях естественно тоньше, поэтому УФ-излучение меньше поглощается.

Ультрафиолетовое облучение ниже в областях, удаленных от экватора, потому что солнце находится дальше. Воздействие также уменьшается, потому что ультрафиолетовые лучи должны проходить большее расстояние через богатые озоном части атмосферы, чтобы достичь поверхности Земли.

Ультрафиолетовое облучение также больше в областях снега, песка, тротуара и воды из-за отражающих свойств этих поверхностей.

Высота

Высота — еще один фактор, влияющий на количество ультрафиолетового излучения. На больших высотах ультрафиолетовое облучение выше, потому что там меньше атмосферы, поглощающей ультрафиолетовые лучи.

Время года

Угол наклона Солнца по отношению к Земле меняется в зависимости от сезона. В летние месяцы солнце находится под более прямым углом, что приводит к большему количеству УФ-излучения.

Время суток

УФ-лучи наиболее интенсивны в полдень, когда солнце находится в самой высокой точке неба, а УФ-лучи проходят наименьшее расстояние через атмосферу. Особенно в жаркие летние месяцы рекомендуется оставаться в помещении в часы пиковой нагрузки с 10 до 16 часов.

Погодные условия

Многие люди считают, что в пасмурный день нельзя обгореть; Это просто не тот случай. Даже под облачным покровом можно повредить кожу и глаза, а также нанести долговременный вред. Важно защищать себя солнцезащитным кремом даже в пасмурную погоду.

Отражение

Некоторые поверхности, такие как снег, песок, трава или вода, могут отражать большую часть попадающего на них УФ-излучения. Солнцезащитные очки, рассчитанные на 100% защиту от ультрафиолета, шляпа с широкими полями и солнцезащитный крем широкого спектра действия могут помочь защитить ваши глаза и кожу от отраженных ультрафиолетовых лучей.

Дополнительная информация о факторах окружающей среды при воздействии УФ-излучения

Вопрос: Что такое УФ-индекс (UVI)?

Ультрафиолетовый индекс (УФИ) — это оценочная шкала с числами от 1 до 11, которые показывают количество повреждающих кожу УФ-лучей, достигающих поверхности Земли в течение дня.

Ежедневный UVI прогнозирует количество ультрафиолетового излучения, достигающего вашего района в полдень, когда солнце обычно достигает своей самой высокой точки в небе. Чем выше число UVI, тем более интенсивным УФ-лучам вы будете подвергаться.

Агентство по охране окружающей среды (EPA) предлагает прогнозы УФИ по почтовым индексам на своей странице УФ-индекса.

Во многих иллюстрациях UVI используется система цветов для обозначения уровней УФ-облучения для определенной области на карте. Всемирная организация здравоохранения (ВОЗ) разработала международно признанную систему цветов, соответствующих уровням УФИ.

Категория Диапазон UVI Цвет
Низкий 0–2 зеленый
Умеренная 3-5 желтый
Высокая 6–7 оранжевый
Очень высокий 8–10 Красный
Экстремальный 11 + фиолетовый

Ультрафиолетовый свет может сделать внутренние помещения более безопасными во время пандемии — при правильном использовании

Ультрафиолетовое излучение давно используется в качестве дезинфицирующего средства, а вирус SARS-CoV-2, вызывающий COVID-19, легко обезвреживается УФ-светом. Вопрос в том, как лучше всего использовать ультрафиолетовый свет для борьбы с распространением вируса и защиты здоровья человека, когда люди работают, учатся и делают покупки в помещении.

Вирус распространяется несколькими путями. Основной путь передачи — контакт от человека к человеку через аэрозоли и капли, выделяемые, когда инфицированный человек дышит, разговаривает, поет или кашляет. Вирус также может передаваться, когда люди прикасаются к своим лицам вскоре после прикосновения к поверхностям, загрязненным инфицированными людьми.Это вызывает особую озабоченность в медицинских учреждениях, торговых помещениях, где люди часто касаются прилавков и товаров, а также в автобусах, поездах и самолетах.

Как инженер-эколог, изучающий УФ-свет, я заметил, что УФ-излучение можно использовать для снижения риска передачи обоими путями. Ультрафиолетовые лучи могут быть компонентами мобильных машин, управляемых роботами или людьми, которые дезинфицируют поверхности. Они также могут быть включены в системы отопления, вентиляции и кондиционирования воздуха или иным образом размещены в воздушных потоках для дезинфекции воздуха в помещении. Однако УФ-порталы, предназначенные для дезинфекции людей при входе в помещения, скорее всего, неэффективны и потенциально опасны.

Что такое ультрафиолет?

Электромагнитное излучение, которое включает радиоволны, видимый свет и рентгеновские лучи, измеряется в нанометрах или миллионных долях миллиметра. Ультрафиолетовое излучение состоит из длин волн от 100 до 400 нанометров, которые лежат за пределами фиолетовой части спектра видимого света и невидимы для человеческого глаза.УФ делится на области УФ-А, УФ-В и УФ-С, которые составляют 315–400 нм, 280–315 нм и 200–280 нм соответственно.

Озоновый слой в атмосфере отфильтровывает УФ-лучи с длиной волны менее 300 нанометров, что блокирует УФ-С от солнца до того, как оно достигнет поверхности Земли. Я думаю о УФ-А как о диапазоне загара, а УФ-В как о диапазоне солнечного ожога. Достаточно высокие дозы УФ-В могут вызвать поражения кожи и рак кожи.

UV-C содержит наиболее эффективные длины волн для уничтожения патогенов. УФ-C также опасен для глаз и кожи. Источники искусственного УФ-света, предназначенные для дезинфекции, излучают свет в диапазоне УФ-С или в широком спектре, включая УФ-С.

Как УФ убивает патогены

УФ-фотонов размером от 200 до 300 нанометров достаточно эффективно поглощаются нуклеиновыми кислотами, составляющими ДНК и РНК, а фотоны размером менее 240 нанометров также хорошо поглощаются белками. Эти важные биомолекулы повреждаются поглощенной энергией, в результате чего генетический материал внутри вирусной частицы или микроорганизма не может воспроизводиться или вызывать инфекцию, что приводит к инактивации патогена.

Обычно требуется очень низкая доза УФ-излучения в этом бактерицидном диапазоне, чтобы инактивировать патоген. Доза УФ-излучения определяется интенсивностью источника света и продолжительностью воздействия. Для данной необходимой дозы источники более высокой интенсивности требуют более короткого времени воздействия, тогда как источники более низкой интенсивности требуют более длительного времени воздействия.

Запуск УФ-излучения

Ультрафиолетовая дезинфекция, которую могут выполнять подобные роботы, снижает риск внутрибольничных инфекций.
Марси Санчес / Офис по связям с общественностью Медицинского центра армии Уильяма Бомонта

Существует устоявшийся рынок устройств для УФ-дезинфекции.Больницы уже много лет используют роботов, излучающих ультрафиолетовое излучение, для дезинфекции палат, операционных и других мест, где может распространяться бактериальная инфекция. Эти роботы, в том числе Tru-D и Xenex, входят в пустые комнаты между пациентами и бродят вокруг, дистанционно испуская мощное ультрафиолетовое излучение для дезинфекции поверхностей. УФ-свет также используется для дезинфекции медицинских инструментов в специальных боксах для УФ-облучения.

UV используется или тестируется для дезинфекции автобусов, поездов и самолетов. После использования УФ-роботы или управляемые человеком машины, предназначенные для использования в транспортных средствах или самолетах, перемещаются и дезинфицируют поверхности, до которых может добраться свет. Предприятия также рассматривают технологию дезинфекции складских помещений и торговых площадей.

Городская транспортная администрация Нью-Йорка (MTA) тестирует использование ультрафиолетового света для дезинфекции вышедших из строя вагонов метро.
MTA, CC BY-SA

Также можно использовать УФ для дезинфекции воздуха. В закрытых помещениях, таких как школы, рестораны и магазины, где есть поток воздуха, можно установить над головой лампы УФ-С, направленные на потолок, чтобы дезинфицировать воздух во время его циркуляции.Точно так же системы HVAC могут содержать источники ультрафиолетового излучения для дезинфекции воздуха, проходящего через воздуховоды. Авиакомпании также могут использовать ультрафиолетовую технологию для дезинфекции воздуха в самолетах или использовать ультрафиолетовое освещение в ванных комнатах между посещениями.

Far UV-C — безопасно для человека?

Представьте себе, если бы каждый мог постоянно ходить в окружении ультрафиолетового света. Он убьет любой вирус в аэрозольной форме, который попадет в УФ-зону вокруг вас или выйдет из носа или рта, если вы заразились и распространите вирус.Свет также дезинфицирует вашу кожу до того, как вы коснетесь лица. Такой сценарий может быть технологически возможен когда-нибудь в ближайшее время, но риски для здоровья вызывают серьезную озабоченность.

По мере уменьшения длины волны УФ-излучения способность фотонов проникать в кожу уменьшается. Эти более коротковолновые фотоны поглощаются верхним слоем кожи, что сводит к минимуму повреждение ДНК активно делящихся клеток кожи ниже. На длинах волн ниже 225 нанометров (дальний УФ-диапазон C) УФ кажется безопасным для воздействия на кожу при дозах ниже уровней воздействия, определенных Международным комитетом по защите от неионизирующего излучения.

Исследования подтверждают эти цифры с помощью моделей мышей. Однако о воздействии этих длин волн УФ-С на глаза и поврежденную кожу известно меньше, и людям следует избегать прямого воздействия сверх безопасных пределов.


Исследования показывают, что дальний ультрафиолетовый свет может убивать патогены без вреда для здоровья человека.

Обещание Far UV-C для безопасной дезинфекции патогенных микроорганизмов открывает множество возможностей для УФ-приложений. Это также привело к преждевременному и потенциально опасному использованию.

Некоторые предприятия устанавливают УФ-порталы, которые облучают людей, когда они проходят. Хотя это устройство может не причинить большого вреда или повреждения кожи за несколько секунд прохождения через портал, доставленная малая доза и возможность дезинфицировать одежду также, вероятно, не будут эффективны для предотвращения передачи вируса.

[ Глубокие знания, ежедневно. Подпишитесь на рассылку новостей The Conversation.]

Что наиболее важно, безопасность глаз и долгосрочное воздействие не были хорошо изучены, и эти типы устройств необходимо регулировать и проверять на эффективность, прежде чем они будут использоваться в общественных местах. Также необходимо понимать влияние непрерывного бактерицидного облучения на микробиом окружающей среды в целом.

Поскольку все больше исследований дальнего УФ-С подтверждают, что воздействие на кожу человека не опасно, и если исследования воздействия на глаза не покажут вреда, возможно, что утвержденные системы дальнего УФ-С, установленные в общественных местах, могут поддержать попытки борьбы с вирусом. передача SARS-CoV-2 и других потенциальных вирусных патогенов, передающихся по воздуху, сегодня и в будущем.

УФ-свет — Стэнфордский солнечный центр

Что такое ультрафиолетовый свет?

УФ (ультрафиолетовый) свет относится к области электромагнитного спектра между видимым светом и рентгеновскими лучами с длиной волны от 400 до 10 нанометров.Это электромагнитное излучение не видно человеческому глазу, потому что оно имеет более короткую длину волны и более высокую частоту, чем свет, воспринимаемый нашим мозгом как изображения. Легкий способ запомнить положение УФ-света в электромагнитном спектре — изучить концы видимого светового спектра: красный — это свет с самой длинной волной, а фиолетовый — это свет с самой короткой длиной волны. Поэтому свет с длиной волны больше, чем любой свет в видимом спектре, называется инфракрасным светом, а свет с длиной волны, непосредственно меньшей, чем любой свет в видимом спектре, называется ультрафиолетовым светом.

Какие бывают типы УФ-излучения?

Ученые делят УФ-свет на несколько различных подтипов:

  • УФ-свет (320-400 нм) — это УФ-свет с самой длинной длиной волны и наименее вредным. Он более известен как «черный свет», и многие используют его способность вызывать флуоресценцию объектов (эффект цветного свечения) в художественных и праздничных проектах. Многие насекомые и птицы могут воспринимать этот тип УФ-излучения визуально, а некоторые люди — в редких случаях, например, афакия (отсутствие оптических линз).
  • УФ-свет B (290–320 нм) вызывает солнечные ожоги при длительном воздействии, а также увеличивает риск рака кожи и других повреждений клеток. Около 95% всего УФ-В света поглощается озоном в атмосфере Земли.
  • УФ-свет (100–290 нм) чрезвычайно вреден и почти полностью поглощается атмосферой Земли. Он обычно используется в качестве дезинфицирующего средства в пище, воздухе и воде для уничтожения микроорганизмов путем разрушения нуклеиновых кислот их клеток.

При изучении света, проходящего через космическое пространство, ученые часто используют другой набор подтипов УФ-излучения для астрономических объектов.Первые три аналогичны классификации, наиболее часто используемой в науках о Земле:

  • Свет в ближнем ультрафиолете (NUV) (300-400 нм)
  • Средний ультрафиолетовый свет (MUV) (200-300 нм)
  • Дальний ультрафиолетовый свет (FUV) (100-200 нм)

Последний подтип УФ-излучения имеет наибольшую энергию и самую высокую частоту из всех УФ-излучений:

  • Экстремальный ультрафиолетовый свет (EUV) (10–100 нм) может распространяться только через вакуум и полностью поглощается атмосферой Земли.EUV-излучение ионизирует верхние слои атмосферы, создавая ионосферу. Кроме того, термосфера Земли нагревается в основном волнами EUV от Солнца. Поскольку солнечные EUV-волны не могут проникать в атмосферу, ученые должны измерять их с помощью ракет и спутников.

Каковы эффекты УФ-излучения?

Продолжительное воздействие волн УФ-А и УФ-В без надлежащей защиты может иметь опасные последствия для здоровья. Например, у человека, находящегося на солнце в течение нескольких часов, разовьется «солнечный загар», который является результатом скопления меланина в коже, чтобы поглощать УФ-лучи и рассеивать их в виде тепла.Солнцезащитный крем является необходимой мерой защиты от УФ-излучения, поскольку он обеспечивает защитный слой, поглощающий волны УФ-А и УФ-В, прежде чем они могут повлиять на кожу. В случае длительного нахождения под солнечным светом без защиты значительно увеличивается риск рака кожи и других опасных клеточных заболеваний.

Глаза также должны быть защищены от ультрафиолетового излучения на улице с помощью солнцезащитных очков, защищающих от ультрафиолетовых лучей А и В. Если кто-то проводит много времени на улице или в любой среде с УФ-А и УФ-В излучением, у него могут развиться краткосрочные эффекты, такие как фотокератит (известный в некоторых случаях как дуговая глазная или снежная слепота), или серьезные длительные последствия. срочные состояния, включая катаракту, которые приводят к слепоте.


Кредиты изображений

УФ-излучение

Принятие мер по защите от солнца — это ответственность круглый год. Защитите себя и других от солнца тенью, рубашкой или солнцезащитным кремом (SPF 15+) круглый год.

Ультрафиолетовое (УФ) излучение — это форма неионизирующего излучения, испускаемого солнцем и искусственными источниками, такими как солярии. Хотя он имеет некоторые преимущества для людей, включая создание витамина D, он также может быть опасен для здоровья.

  • Наш естественный источник УФ излучения:
  • Примерно искусственных источников УФ-излучения включают:
    • Солярий
    • Освещение на парах ртути (часто используется на стадионах и школьных спортзалах)
    • Некоторые галогенные, люминесцентные лампы и лампы накаливания
    • Некоторые типы лазеров

Какие бывают типы лучей УФ-излучения?

Ультрафиолетовое излучение

подразделяется на три основных типа: ультрафиолетовое A (UVA), ультрафиолетовое B (UVB) и ультрафиолетовое C (UVC). Эти группы основаны на мере их длины волны, которая измеряется в нанометрах (нм = 0,000000001 метр или 1 × 10-9 метров).

Типы волн, длины волн и уровни поглощения
Волновой тип UVA УВБ UVC
Длина волны 315-399 нм 280-314 нм 100-279 нм
Уровень поглощения Не поглощается озоновым слоем В основном поглощается озоновым слоем, но некоторые достигают поверхности Земли Полностью поглощается озоновым слоем и атмосферой

Все УФ-С и большая часть УФ-В-излучения поглощается озоновым слоем Земли, поэтому почти все ультрафиолетовое излучение, получаемое на Земле, является УФ-А. И УФА, и УФВ-лучи могут повлиять на здоровье. Хотя излучение UVA слабее, чем UVB, оно проникает глубже в кожу и остается более постоянным в течение года. Поскольку УФ-излучение поглощается озоновым слоем Земли, оно не представляет такой большой опасности.

Преимущества

Благоприятное воздействие УФ-излучения включает выработку витамина D, важного для здоровья человека. Витамин D помогает организму усваивать кальций и фосфор из пищи и способствует развитию костей.Всемирная организация здравоохранения (ВОЗ) рекомендует от 5 до 15 минут пребывания на солнце 2–3 раза в неделю.

Риски

  • Солнечный ожог — признак кратковременного чрезмерного воздействия, в то время как преждевременное старение и рак кожи — побочные эффекты длительного воздействия ультрафиолета.
  • Некоторые пероральные и местные лекарственные средства, такие как антибиотики, противозачаточные таблетки и продукты с перекисью бензоила, а также некоторые косметические средства могут повышать чувствительность кожи и глаз к УФ-излучению у всех типов кожи.
  • Ультрафиолетовое облучение увеличивает риск потенциально слепящих глазных болезней, если не использовать средства защиты глаз.
  • Чрезмерное воздействие УФ-излучения может привести к серьезным проблемам со здоровьем, включая рак. Рак кожи — самый распространенный вид рака в Соединенных Штатах. Двумя наиболее распространенными типами рака кожи являются базально-клеточный рак и плоскоклеточный рак. Как правило, они образуются на голове, лице, шее, руках и руках, потому что эти части тела наиболее подвержены УФ-излучению. Большинство случаев меланомы, самого смертоносного рака кожи, вызвано воздействием УФ-излучения.

Любой может заболеть раком кожи, но чаще встречается у людей, которые:

  • Проводите много времени на солнце или получили солнечный ожог.
  • Имеют светлую кожу, волосы и глаза.
  • У кого-то из членов семьи есть рак кожи.
  • Возраст старше 50 лет.

Солнцезащитный крем и солнцезащитные очки можно использовать для защиты от УФ-излучения.

Для защиты от УФ-излучения:

  • Оставайтесь в тени, особенно в полдень.
  • Носите одежду, закрывающую руки и ноги.
  • Рассмотрите варианты защиты ваших детей.
  • Наденьте шляпу с широкими полями, чтобы закрашивать лицо, голову, уши и шею.
  • Носите солнцезащитные очки с закругленными краями, которые блокируют лучи UVA и UVB.
  • Используйте солнцезащитный крем с фактором защиты от солнца (SPF) 15 или выше, как для защиты от UVA, так и UVB.
  • Избегайте загара в помещении. Загар в помещении особенно опасен для молодых пользователей; Люди, которые начинают загорать в помещении в подростковом или раннем взрослом возрасте, имеют более высокий риск развития меланомы.

Посетите веб-сайт CDC «Радиация и ваше здоровье» для получения дополнительной информации.

Убивает ли ультрафиолетовый свет коронавирус? Факты и мифы

Ультрафиолетовый (УФ) свет — это вид излучения.Он имеет больше энергии, чем радиоволны или видимый свет, но меньше энергии, чем рентгеновские лучи или гамма-лучи.

Вы можете подвергнуться воздействию ультрафиолетового света через естественный солнечный свет или искусственные источники, такие как солярии.

УФ-свет использовался как средство уничтожения микробов, таких как бактерии и вирусы. Возможно, вы также слышали о его использовании для уничтожения SARS-CoV-2, нового коронавируса, вызывающего COVID-19.

В этой статье мы рассмотрим, как УФ-свет используется для уничтожения микробов, насколько он эффективен в борьбе с новым коронавирусом и многое другое.

Есть несколько типов УФ-излучения. Они классифицируются в зависимости от того, сколько у них энергии.

Типы УФ-излучения

  • УФА-свет имеет наименьшее количество энергии. Когда вы находитесь на солнце, вы в основном подвергаетесь воздействию УФА-лучей. Воздействие УФА-света связано со старением и повреждением кожи.
  • Свет UVB находится в середине спектра УФ-света. Небольшая часть солнечного света содержит УФB-свет. Это основной тип ультрафиолетового излучения, вызывающий солнечные ожоги и большинство видов рака кожи.
  • УФ-свет обладает наибольшей энергией. Солнечные лучи UVC в основном поглощаются озоном Земли, поэтому обычно вы не подвергаетесь его ежедневному воздействию. Однако существуют различные искусственные источники УФ-света.

УФС-свет — это тип УФ-излучения, наиболее эффективный при уничтожении микробов. Его можно использовать для дезинфекции поверхностей, воздуха и жидкостей.

УФ-свет убивает микробы, такие как вирусы и бактерии, путем повреждения молекул, таких как нуклеиновые кислоты и белки.Это делает зародыш неспособным выполнять процессы, необходимые для выживания.

УФ-излучение можно использовать для уничтожения нового коронавируса SARS-CoV-2. Давайте посмотрим, что на данный момент обнаружили исследования об УФС-свете и об этом коронавирусе.

УФ-свет для дезинфекции жидкостей

В недавнем исследовании, опубликованном в Американском журнале инфекционного контроля (AJIC), исследовалось использование УФ-света для уничтожения больших количеств нового коронавируса в жидких культурах.

Исследование показало, что воздействие УФ-света полностью инактивировало вирус за 9 минут.

УФ-свет для дезинфекции поверхностей

В другом исследовании, также опубликованном в AJIC, рассматривалось использование УФ-света определенного типа для уничтожения SARS-CoV-2 на лабораторных поверхностях. Исследование показало, что ультрафиолетовый свет C уменьшил количество живых коронавирусов на 99,7 процента за 30 секунд.

Тип УФ-света, используемый в этом исследовании, называется дальним УФ-светом, который представляет собой УФ-свет с длинами волн от 207 до 222 нанометров.

Дальний ультрафиолетовый свет C по-прежнему опасен для микробов, но менее опасен для вашей кожи и глаз, чем другие типы ультрафиолетового света.

УФ-излучение для дезинфекции воздуха

В одном исследовании, опубликованном в журнале Scientific Reports, изучается использование дальнего УФ-излучения для уничтожения двух типов коронавирусов человека в воздухе. Эти два коронавируса, 229E и OC43, могут вызывать простуду у людей.

Основываясь на своих результатах с этими вирусами, исследователи подсчитали, что при применении к действующим нормативным стандартам дальний УФ-свет может убить 99,9% коронавирусов, переносимых по воздуху, примерно за 25 минут. Они считают, что эти результаты распространятся и на SARS-CoV-2.

Резюме

УФ-излучение может эффективно уничтожать SARS-CoV-2 или другие коронавирусы в жидкостях, на поверхностях или в воздухе. Поскольку он не представляет опасности для здоровья, он может быть хорошим вариантом для дезинфекции.

Поскольку УФ-свет может эффективно инактивировать новый коронавирус без использования химикатов, он является привлекательным вариантом для дезинфекции. Для этой цели обычно используются специальные лампы, излучающие УФС-свет.

В настоящее время использование ультрафиолетового излучения для дезинфекции в основном ограничивается медицинскими учреждениями для дезинфекции таких вещей, как:

  • поверхности
  • оборудование
  • операционные
  • средства индивидуальной защиты (СИЗ), такие как маски для лица N95

Одним из недостатков УФ-света является то, что ему нужен прямой контакт. Это означает, что если место находится в тени или покрыто пылью, ультрафиолетовое излучение C будет менее эффективно убивать микробы, которые могут там присутствовать.

Хотя УФ-излучение может быстро убить SARS-CoV-2, Управление по санитарному надзору за качеством пищевых продуктов и медикаментов (FDA) отмечает некоторые дополнительные риски при его использовании в домашних условиях:

  • Оптимальная длина воздействия, длина волны и доза УФ-света для смертельного исхода SARS-CoV-2 еще предстоит определить.
  • Воздействие ультрафиолетового излучения некоторых типов может повредить кожу или глаза.
  • Типы ламп UVC, которые продаются для домашнего использования, часто имеют меньшую интенсивность.Это означает, что для уничтожения микробов может потребоваться больше времени.
  • Световые лампы UVC потенциально могут содержать ртуть или выделять озон, и то и другое может быть вредным для человека.
  • Возможно, продолжительное воздействие ультрафиолетового излучения C может привести к разрушению таких материалов, как текстиль, пластмассы или полимеры.

Дальний УФ-свет может быть потенциально более безопасным вариантом дезинфекции. Исследования показали, что, в отличие от других типов ультрафиолетового излучения C, он не проникает сквозь внешние слои кожи или глаза.Однако необходимы дальнейшие исследования безопасности.

Инновации в дезинфекции

Различные компании разрабатывают инновационные технологии для световой дезинфекции UVC. Они ориентированы на автоматизацию процесса дезинфекции с помощью роботов.

Одним из примеров является робот LightStrike, который может убить 99,99% вирусных частиц SARS-CoV-2 за 2 минуты. В будущем не исключено, что таких роботов можно будет использовать для дезинфекции больничных палат, гостиничных номеров и самолетов.

Возможно, вы слышали о некоторых методах уничтожения нового коронавируса с помощью ультрафиолета или высоких температур.

Давайте подробнее рассмотрим некоторые популярные мифы и их потенциальную опасность, а также самые безопасные известные способы предотвращения COVID-19.

Миф №1: Солнце может защитить вас от COVID-19

Хотя солнечный свет действительно содержит ультрафиолетовый свет, в основном это свет UVA и UVB. Эти типы УФ-излучения менее эффективны при уничтожении SARS-CoV-2.

Что еще более важно, продолжительное воздействие может также привести к повреждению кожи, солнечным ожогам или даже раку кожи.

Миф № 2: Использование УФ-лампы на теле может защитить вас от COVID-19

Хотя УФ-лампу можно использовать для дезинфекции поверхностей, не используйте ее для уничтожения нового коронавируса на руках или других частях тела. .

Помните, что большинство типов ультрафиолетового излучения могут быть вредными для людей. Воздействие может привести к раздражению, повреждению или ожогам кожи.

Миф № 3: сидение в горячей ванне может предотвратить COVID-19

Этот метод не убережет вас от COVID-19.Фактически, температура вашего тела в горячей ванне останется примерно такой же.

Кроме того, пребывание в очень горячей ванне может навредить вам, вызвав ожог или ожог.

Миф № 4: Горячий воздух из сушилки для рук может убить вирус на ваших руках

Хотя воздух, выходящий из сушилки для рук, теплый, он не убьет SARS-CoV-2 на ваших руках.

Лучший способ избавиться от вируса — это тщательно вымыть руки водой с мылом или использовать дезинфицирующее средство для рук на спиртовой основе.

Факт: существует несколько безопасных способов предотвратить заражение COVID-19

Чтобы предотвратить заражение COVID-19, примите следующие меры:

Тип УФ-излучения, наиболее эффективный для уничтожения микробов, таких как вирусы и бактерии, это УФ-излучение.

УФ-свет может эффективно убить SARS-CoV-2, новый коронавирус, вызывающий COVID-19. Большая часть исследований по этой теме сосредоточена на дальнем УФС-свете. Это тип УФ-света, который по-прежнему убивает микробы, но менее вреден для человека.

УФ-светильник в основном используется для дезинфекции в медицинских учреждениях. Хотя вы можете купить для дома лампу UVC, помните, что эти лампы часто имеют меньшую интенсивность.

Кроме того, еще предстоит определить оптимальную продолжительность воздействия, длину волны и дозу УФС-света, необходимые для уничтожения нового коронавируса.

Ультрафиолетовые волны

РАДИО
ВОЛНЫ | МИКРОВОЛНЫ
| ИНФРАКРАСНЫЙ | ВИДИМЫЙ
СВЕТ | УЛЬТРАФИОЛЕТ | РЕНТГЕНОВСКИЕ ИЗЛУЧЕНИЯ
| ГАММА ЛУЧИ

Ультрафиолетовый (УФ) свет имеет более короткие длины волн, чем
видимый свет.Хотя эти волны невидимы для человеческого глаза,
некоторые насекомые, например шмели, могут их видеть! (Изображение шмеля
любезно предоставлено Марком Кассино.)

Ученые разделили ультрафиолетовую часть спектра на три
регионы: ближний ультрафиолет, дальний ультрафиолет и крайний
ультрафиолет. Эти три региона отличаются тем, насколько энергичны
ультрафиолетовое излучение, а по «длине волны» ультрафиолетового света
что связано с энергией.

Ближний ультрафиолет, сокращенно NUV, является самым близким светом.
к оптическому или видимому свету. Крайний ультрафиолет, сокращенно EUV,
ультрафиолетовый свет наиболее близок к рентгеновским лучам и является самым энергичным из
три типа.
Дальний ультрафиолет, сокращенно FUV, находится между ближним
и крайние ультрафиолетовые области. Это наименее изученный из
три региона.

Наше Солнце излучает свет на всех длинах волн в электромагнитном поле.
спектра, но именно ультрафиолетовые волны ответственны за то, что
солнечные ожоги.Слева — изображение Солнца в крайнем ультрафиолете.
длина волны — 171 Ангстрем, если быть точным. (Ангстрем — это единица длины
равно 10 -10 метров.) Это изображение
был сделан спутником SOHO и показывает, как выглядело Солнце.
24 апреля 2000 г.

Хотя некоторые ультрафиолетовые волны от Солнца проникают в атмосферу Земли,
большинство из них заблокировано для проникновения различных газов, таких как озон.
Несколько дней,
проходит больше ультрафиолетовых волн
наша атмосфера. Ученые разработали УФ-индекс, чтобы помочь людям
защитить себя от этих вредных ультрафиолетовых волн.


Как мы «видим» в ультрафиолетовом свете?

это
хорошо для людей, что мы защищены от слишком большого количества ультрафиолета
радиация, но это плохо для ученых! Астрономам приходится ставить
ультрафиолетовые телескопы на спутниках для измерения ультрафиолетового света от
звезды и галактики — и даже более близкие объекты, такие как Солнце!

Есть много разных спутников, которые помогают нам изучать ультрафиолет.
астрономия.Многие из них обнаруживают лишь небольшую часть
УФ-излучения.
Например, космический телескоп им. Хаббла наблюдает звезды и галактики в основном вблизи
ультрафиолетовое излучение.
Спутник НАСА Extreme Ultraviolet Explorer в настоящее время
исследуя крайнюю ультрафиолетовую вселенную. Международный
Спутник Ultraviolet Explorer (IUE) наблюдал
в дальнем и ближнем ультрафиолете более 17 лет.


Что нам показывает ультрафиолетовый свет?

Мы можем изучать звезды и галактики, изучая излучаемый ими ультрафиолетовый свет — но знаете ли вы, что мы можем даже изучать Землю?
Ниже необычный снимок — это снимок Земли, сделанный с лунного
обсерватория! На этом изображении в искусственных цветах показано, как
Земля светится в ультрафиолетовом (УФ) свете.

Камера / спектрограф в дальнем УФ-диапазоне
Эту фотографию сделал экипаж Аполлона-16, развернутый и оставленный на Луне.
Та часть Земли, которая обращена к Солнцу, отражает много ультрафиолетового света.
Еще интереснее сторона, обращенная от Солнца.
Здесь также видны полосы УФ-излучения. Эти полосы — результат
полярного сияния, вызванного испускаемыми Солнцем заряженными частицами.
Они движутся к Земле по спирали вдоль силовых линий магнитного поля Земли.

Многие ученые заинтересованы в изучении невидимой вселенной
ультрафиолетовый свет, так как самые горячие и самые активные объекты в
космос испускает большое количество ультрафиолетовой энергии.

На изображении ниже показаны три разные галактики, сделанные в видимом диапазоне.
свет (три нижних изображения) и ультрафиолет (верхние
row), сделанное телескопом НАСА для получения ультрафиолетовых изображений (UIT) на
Миссия Астро-2.

Разница в том, как появляются галактики,
из-за чего звезды наиболее ярко светят в оптическом и ультрафиолетовом
длины волн.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

2021 © Все права защищены.