Удельное сопротивление латунь: Проводниковые материалы: медь, алюминий, бронза, латунь.

Содержание

Проводниковые материалы: медь, алюминий, бронза, латунь.

Проводниковые материалы

1. Общие сведения

К проводниковым материалам в электротехнике относятся металлы, их сплавы, контактные металлокерамические композиции и электротехнический уголь. Металлические вещества являются проводниками первого рода и характеризуются электронной проводимостью; основной параметр для них — удельное электрическое сопротивление в функции температуры.

Диапазон удельных сопротивлений металлических проводников весьма узок и составляет от 0,016 мкОм×м для серебра до 1,6 мкОм×м для жаростойких железохромоалюминиевых сплавов.

Электрическое сопротивление графита с увеличением температуры проходит через минимум с последующим постепенным повышением.

По роду применения проводниковые материалы подразделяются на группы:

· проводники с высокой проводимостью — металлы для проводов линий электропередачи и для изготовления кабелей, обмоточных и монтажных проводов для обмоток трансформаторов, электрических машин, аппаратуры, катушек индуктивности и пр.;

· конструкционные материалы — бронзы, латуни, алюминиевые сплавы и т.д., применяемые для изготовления различных токоведущих частей;

· сплавы высокого сопротивления — предназначаемые для изготовления дополнительных сопротивлений к измерительным приборам, образцовых сопротивлений и магазинов сопротивлений, реостатов и элементов нагревательных приборов, а также сплавы для термопар, компенсационных проводов и т.п.;

· контактные материалы — применяемые для пар неразъемных, разрывных и скользящих контактов;

· материалы для пайки всех видов проводниковых материалов.

Кроме чисто электротехнических свойств, для проведения необходимой технологической обработки и обеспечения заданных сроков службы в эксплуатации, проводниковые материалы должны обладать достаточной нагревостойкостью, механической прочностью и пластичностью.

2. Медь

Чистая медь по электрической проводимости занимает следующее место после серебра, обладающего из всех известных проводников наивысшей проводимостью. Высокая проводимость и стойкость к атмосферной коррозии в сочетании с высокой пластичностью делают медь основным материалом для проводов.

На воздухе медные провода окисляются медленно, покрываясь тонким слоем окиси CuO, препятствующим дальнейшему окислению меди. Коррозию меди вызывают сернистый газ SO2, сероводород h3S, аммиак Nh4, окись азота NO, пары азотной кислоты и некоторые другие реактивы.

Проводниковую медь получают из слитков путем гальванической очистки ее в электролитических ваннах. Примеси даже в ничтожных количествах, резко снижают электропроводность меди, делая ее малопригодной для проводников тока, поэтому в качестве электротехнической меди применяют лишь две ее марки М0 и М1.

Почти все изделия из проводниковой меди изготавливаются путем проката, прессования и волочения. Так, волочением могут быть изготовлены провода диаметром до 0,005 мм, ленты толщиной до 0,1 мм и медная фольга толщиной до 0,008 мм.

Проводниковая медь применяется как в отожженном после холодной обработки виде (мягкая медь марки ММ), так и без отжига (твердая медь марки МТ).

При температурах термообработки выше 900 °C вследствие интенсивного роста зерна механические свойства меди резко ухудшаются.

В целях повышения предела ползучести и термической устойчивости медь легируют серебром в пределах 0,07—0,15%, а также магнием, кадмием, цирконием и другими элементами.

Медь с присадкой серебра применяется для обмоток быстроходных и нагревостойких машин большой мощности, а медь, легированная различными элементами, используется в коллекторах и контактных кольцах сильно нагруженных машин.

3. Латуни

Сплавы меди с цинком, называемые латунями, широко используются в электротехнике. Цинк растворяется в меди в пределах до 39%.

В различных марках латуни содержание цинка может доходить до 43%. Латуни, содержащие до 39% цинка, имеют однофазную структуру твердого раствора и называются a-латунями. Эти латуни обладают наибольшей пластичностью, поэтому из них изготавливают детали горячей или холодной прокаткой и волочением: листы, ленты, проволоку. Без нагрева из листовой латуни методом глубокой вытяжки и штамповкой можно изготовить детали сложной конфигурации.

Латуни с содержанием цинка свыше 39% называют a+b-латунями или двухфазными и применяют главным образом для фасонных отливок.

Двухфазные латуни являются более твердыми и хрупкими и обрабатываются давлением только в горячем состоянии.

Присадка к латуням олова, никеля и марганца повышает механические свойства и антикоррозионную устойчивость, а добавки алюминия в композиции с железом, никелем и марганцем сообщают латуням кроме улучшения механических свойств и коррозионной стойкости высокую твердость. Однако присутствие в латунях алюминия затрудняет пайку, а проведение пайки мягкими припоями становится практически невозможным.

· латуни марок Л68 и Л63 вследствие высокой пластичности хорошо штампуются и допускают гибку, легко паяются всеми видами припоев. В электромашиностроении широко применяются для различных токоведущих частей;

· латуни марок ЛС59-1 и ЛМЦ58-2 применяются для изготовления роторных (беличьих) клеток электрических двигателей и для токоведущих деталей, изготовленных резанием и штамповкой в горячем состоянии; хорошо паяются различными припоями;

· латунь ЛА67-2,5 применяется для литых токоведущих деталей повышенной механической прочности и твердости, не требующих пайки мягкими припоями;

· латуни ЛК80-3Л и ЛС59-1Л широко применяются для литых токоведущих деталей электрической аппаратуры, для щеткодержателей и для заливки роторов асинхронных двигателей. Хорошо воспринимают пайку различными припоями.

4. Проводниковые бронзы

Проводниковые бронзы относятся к медным сплавам, необходимость применения которых в основном вызвана недостаточной в ряде случаев механической прочностью и термической устойчивостью чистой меди.

Общая номенклатура бронз весьма обширна, но высокой электропроводностью обладают лишь немногие марки бронз.

· кадмиевая бронза относится к наиболее распространенным проводниковым бронзам. Из числа всех марок кадмиевая бронза обладает наивысшей электрической проводимостью. Вследствие повышенного сопротивления истиранию и более высокой нагревостойкости эта бронза широко применяется для изготовления троллейных проводов и коллекторных пластин;

· бериллиевая бронза относится к сплавам, приобретающим прочность в результате старения. Она обладает высокими упругими свойствами, устойчивыми при нагревании до 250 °C, и электрической проводимостью в 2—2,5 раза большей, чем проводимость других марок бронз общего назначения. Эта бронза нашла широкое применение для изготовления различных пружинных деталей, выполняющих одновременно и роль проводника тока, например: токоведущие пружины, отдельные виды щеткодержателей, скользящие контакты в различных приборах, штепсельные разъемы и т.п.;

· фосфористая бронза обладает высокой прочностью и хорошими пружинными свойствами, из-за малой электропроводности применяется для изготовления пружинных деталей с низкими плотностями тока.

Литые токоведущие детали изготовляются из различных марок машиностроительных литьевых бронз с проводимостью в пределах 8—15% проводимости чистой меди. Характерной особенностью бронз является малая усадка по сравнению с чугуном и сталью и высокие литейные свойства, поэтому они применяются для отливки различных токоведущих деталей сложной конфигурации, предназначенных для электрических машин и аппаратов.

Все марки литьевых бронз можно подразделить на оловянные и безоловянные, где основными легирующими элементами являются Al, Mn, Fe, Pb, Ni.

5. Алюминий

Характерными свойствами чистого алюминия является его малый удельный вес, низкая температура плавления, высокая тепловая и электрическая проводимость, высокая пластичность, очень большая скрытая теплота плавления и прочная, хотя и очень тонкая пленка окиси, покрывающая поверхность металла и защищающая его от проникновения кислорода внутрь.

Малая плотность делает алюминий основой легких конструкционных материалов; большая пластичность позволяет применять к алюминию все виды обработки давлением и получать из него листы, прутки, проволоку, трубы, тончайшую фольгу, штампованные детали с глубокой вытяжкой и др.

Хорошая электрическая проводимость обеспечивает широкое применение алюминия в электротехнике. Так как плотность алюминия в 3,3 раза ниже, чем у меди, а удельное сопротивление лишь в 1,7 раза выше, чем у меди, то алюминий, на единицу массы имеет вдвое более высокую проводимость, чем медь.

Прочная пленка окиси быстро покрывает свежий срез металла уже при комнатной температуре, обеспечивая алюминию высокую устойчивость против коррозии в атмосферных условиях.

Сернистый газ, сероводород, аммиак и другие газы, находящиеся в воздухе промышленных районов, не оказывают заметного влияния на скорость коррозии алюминия. Действие водяного пара на алюминий также незначительно. В контакте с большинством металлов и сплавов, являющихся благородными по электрохимическому ряду потенциалов, алюминий служит анодом и, следовательно, коррозия его в электролитах будет прогрессировать.

Чтобы избежать образования гальванопар во влажной атмосфере, место соединения алюминия с другими металлами герметизируется лакировкой или другим путем.

Длительные испытания проводов из алюминия показали, что они в отношении устойчивости против коррозии не уступают медным.

Таблица 1. Основные характеристики проводниковых материалов

Материал

Плотность, кг/м3·103

Температура плавления,

°C

Удельное электрическое сопротивление при 20 °C, Ом×м·10–6

Средний температурный коэффициент сопротивления от 0 до 100 °C, 1/град

Примечание

Алюминий

2,7

660

0,026—0,028

4·10–3

Провода, кабели, шины, проводники короткозамкнутых роторов, корпуса и подшипниковые щиты малых электромашин

Бронза

8,3—8,9

885—1050

0,021—0,052

4·10–3

Кадмиевая бронза — контакты, фосфористая — пружины

Латунь

8,4—8,7

900—960

0,03—0,08

2·10–3

Контакты, зажимы

Медь

8,7—8,9

1080

0,0175—0,0182

3·10–2

Провода, кабели, шины

Олово

7,3

232

0,114—0,120

4,4·10–3

Припои для лужения и пайки в сплаве со свинцом

Свинец

11,34

327

0,217—0,222

3,8·10–3

Защитная обложка кабелей, вставки предохранителей, пластины аккумуляторов, припои в сплаве с оловом для лужения и пайки

Серебро

10,5

960

0,0160—0,0162

3,6·10–3

Контакты электроприборов и аппаратов

Сталь

7,8

1400

0,103—0,137

62·10–2

Шины заземления

Таблица 2. Сопротивление металлов или сплавов по сравнению с медью

Металл или сплав

Сопротивление

по сравнению с медью

Металл или сплав

Сопротивление

по сравнению с медью

Серебро

0,9

Олово

8,5

Медь

1,0

Сталь

12

Хром

1,6

Свинец

13

Алюминий

1,67

Нейзильбер

17

Магний

2,8

Никелин

25

Молибден

2,9

Манганин

26

Вольфрам

3,6

Реотан

28

Цинк

3,7

Константан

29

Латунь

4,5

Чугун

30

Платина

5,5

Ртуть

60

Кобальт

6,0

Нихром

60

Никель

6,5

Уголь

15000

Железо

7,7

Таблица 3. Изменение сопротивления медных проводов при нагревании (сопротивление при 15 °C принято за единицу)

Температура, °C (десятки)

Температура, °C (единицы)

0

1

2

3

4

5

6

7

8

9

0

0,940

0,944

0,948

0,952

0,956

0,960

0,964

0,968

0,972

0,976

10

0,980

0,984

0,988

0,992

0,996

1,000

1,004

1,008

1,012

1,016

20

1,020

1,024

1,028

1,032

1,036

1,040

1,044

1,048

1,052

1,056

30

1,060

1,064

1,068

1,072

1,076

1,080

1,084

1,088

1,092

1,096

40

1,100

1,104

1,108

1,112

1,116

1,120

1,124

1,128

1,132

1,136

50

1,140

1,144

1,148

1,152

1,156

1,160

1,164

1,168

1,172

1,176

60

1,180

1,184

1,188

1,192

1,196

1,200

1,204

1,208

1,212

1,216

70

1,220

1,224

1,228

1,232

1,236

1,240

1,244

1,248

1,252

1,256

80

1,260

1,264

1,268

1,272

1,276

1,280

1,284

1,288

1,292

1,296

90

1,300

1,304

1,308

1,312

1,316

1,320

1,324

1,328

1,332

1,336

100

1,340

1,344

1,348

1,352

1,356

1,360

1,364

1,368

1,372

1,376

Примечание. Таблица служит для пересчета сопротивлений при температурах нагрева. Например, для подсчета сопротивления при температуре 44 °C надо по вертикали взять температуру 40 °C и по горизонтали поправку на 4 °C: получается изменение сопротивления в 1,116 раза.

Удельное электрическое сопротивление проводников (при 20°C) | Формулы и расчеты онлайн

Алюминий
удельное электрическое сопротивление проводников алюминия
2.700 · 10 − 8 (Ом · Метр)
Вольфрам
удельное электрическое сопротивление проводников вольфрама
5.500 · 10 − 8 (Ом · Метр)
Графит
удельное электрическое сопротивление проводников графита
800.000 · 10 − 8 (Ом · Метр)
Железо
удельное электрическое сопротивление проводников железа
10.000 · 10 − 8 (Ом · Метр)
Золото
удельное электрическое сопротивление проводников золота
2.200 · 10 − 8 (Ом · Метр)
Иридий
удельное электрическое сопротивление проводников иридия
4.740 · 10 − 8 (Ом · Метр)
Константан
удельное электрическое сопротивление проводников константана
50.000 · 10 − 8 (Ом · Метр)
Магний
удельное электрическое сопротивление проводников магния
4.400 · 10 − 8 (Ом · Метр)
Марганец
удельное электрическое сопротивление проводников марганца
43.000 · 10 − 8 (Ом · Метр)
Медь
удельное электрическое сопротивление проводников меди
1.720 · 10 − 8 (Ом · Метр)
Молибден
удельное электрическое сопротивление проводников молибдена
5.400 · 10 − 8 (Ом · Метр)
Нейзильбер
удельное электрическое сопротивление проводников нейзильбера
33.000 · 10 − 8 (Ом · Метр)
Никель
удельное электрическое сопротивление проводников никеля
8.700 · 10 − 8 (Ом · Метр)
Нихром
удельное электрическое сопротивление проводников нихрома
112.000 · 10 − 8 (Ом · Метр)
Олово
удельное электрическое сопротивление проводников олова
12.000 · 10 − 8 (Ом · Метр)
Платина
удельное электрическое сопротивление проводников платины
10.700 · 10 − 8 (Ом · Метр)
Ртуть
удельное электрическое сопротивление проводников ртути
96.000 · 10 − 8 (Ом · Метр)
Свинец
удельное электрическое сопротивление проводников свинца
20.800 · 10 − 8 (Ом ·

Таблица удельных сопротивлений проводников — Zygar

Электрическое сопротивление 1 метра провода (в Ом), сечением 1 мм², при температуре 20 С°. Формула: ρ = Ом · мм²/м.

Материал проводникаУдельное сопротивление  ρ в Ом
Серебро0.015
Медь0.0175
Золото0.023
Латунь0,025… 0,108
Хром0,027
Алюминий0.028
Натрий0.047
Иридий0.0474
Вольфрам0.05
Цинк0.054
Молибден0.059
Никель0.087
Бронза0,095… 0,1
Железо0.1
Сталь0,103… 0,137
Олово0.12
Свинец0.22
Никелин (сплав меди, никеля и цинка)0.42
Манганин (сплав меди, никеля и марганца)0,43… 0,51
Константан (сплав меди, никеля и алюминия)0,44-0,52
Копель ( медно-никелевый сплав с 43% никеля и 0,5% марганца)0.5
Титан0.6
Ртуть0.94
Хромель (хром 8,7—10 %; никель 89—91 %; кремний, медь, марганец, кобальт — примеси)1.01
Нихром (сплав никеля, хрома, железа и марганца)1,05… 1,4
Фехраль1,15… 1,35
Висмут1.2
Хромаль (Сплав 4.5 – 6% алюминия, 17%-30% хрома, остальное железо)1,3… 1,5

Наименьшим удельным сопротивлением обладает серебро. 1 Ом сопротивления можно получить, если взять 62,5 м серебряной проволоки сечением 1 мм². Серебро — лучший проводник, но стоимость серебра исключает возможность его массового применения. После серебра в таблице идет медь: 1 м медной проволоки сечением 1 мм² обладает сопротивлением 0,0175 Ом. Чтобы получить сопротивление в 1 Ом, нужно взять 57 м такой проволоки.

Химически чистая, полученная путем рафинирования, медь нашла себе повсеместное применение в электротехнике для изготовления проводов, кабелей, обмоток электрических машин и аппаратов. Широко применяют также в качестве проводников алюминий и железо.

Сопротивление проводника можно определить по формуле:

где r — сопротивление проводника в омах; ρ — удельное сопротивление проводника; l — длина проводника в м; S — сечение проводника в мм².

Удельное сопротивление (при 20° C)

ВеществоУровень удельного сопротивления, мкОм • мм2
Алюминий0,028
Вольфрам0,055
Железо0,098
Золото0,023
Константан0,44−0,52
Латунь0,025−0,06
Манганин0,42−0,48
Медь0,0175
Молибден0,057
Никелин0,39−0,45
Никель0,100
Олово0,115
Ртуть0,958
Свинец0,221
Серебро0,016
Тантал0,155
Фехраль1,1−1,3
Хром0,027
Цинк0,059
ВеществоКВеществоК
Алюминий0,0042Олово0,0042
Вольфрам0,0048Платина0,004
Константан0,2Ртуть0,0009
Латунь0,001Свинец0,004
Медь0,0043Серебро0,0036
Манганин0,3Сталь0,006
Молибден0,0033Тантал0,0031
Никель0,005Хром0,006
Никелин0,0001Фехраль0,0002
Нихром0,0001Цинк0,004

Сплавы сопротивления

  • Константан (58,8 Cu, 40 Ni, 1,2 Mn)
  • Манганин (85 Cu, 12 Mn, 3 Ni)
  • Нейзильбер (65 Cu, 20 Zn, 15 Ni)
  • Никелин (54 Cu, 20 Zn, 26 Ni)
  • Нихром (67,5 Ni, 15 Cr, 16 Fe, 1,5 Mn)
  • Реонат (84Cu, 12Mn, 4 Zn)
  • Фехраль (80 Fe, 14 Cr, 6 Al)

Удельное сопротивление нихрома

Рассмотрим электронную теорию данного явления. При движении по проводнику свободные электроны постоянно встречают на своем пути другие электроны и атомы. Взаимодействуя с ними, свободный электрон теряет часть своего заряда. Таким образом, электроны сталкиваются с сопротивлением со стороны материала проводника. Каждое тело имеет свою атомную структуру, которая оказывает электрическому току разное сопротивление. Единицей сопротивления принято считать Ом.

Сопротивление каждого отдельно взятого проводника (обозначается R или r.) зависит от свойств материала, из которого он изготовлен. Для точной характеристики электрического сопротивления того или иного материала было введено понятие — удельное сопротивление (нихрома, алюминия и т. д.). Удельным считается сопротивление проводника длиной до 1 м, сечение которого — 1 кв. мм. Этот показатель обозначается буквой p. Каждый материал, использующийся в производстве проводника, обладает своим удельным сопротивлением. Для примера рассмотрим удельное сопротивление нихрома и фехрали.

  • Х15Н60 — 1.13 Ом* мм2
  • Х23Ю5Т — 1.39 Ом* мм2
  • Х20Н80 — 1.12 Ом* мм2
  • ХН70Ю — 1.30 Ом* мм2
  • ХН20ЮС — 1.02 Ом* мм2

Применение

Высокий уровень удельное сопротивления нихрома, фехрали позволяет использовать эти материалы в произвгоодстве нагревательных элементов. Самая распространенная продукция — нихромовая нить, лента, полоса Х15Н60 и Х20Н80, а также фехралевая проволока Х23Ю5Т. для приборов теплового действия, бытовых приборов и электронагревательных элементов промышленных печей.

Удельное сопротивление латуни. Удельное сопротивление меди

Как нам известно из закона Ома, ток на участке цепи находится в следующей зависимости: I=U/R
. Закон был выведен в результате серии экспериментов немецким физиком Георгом Омом в XIX веке. Он заметил закономерность: сила тока на каком-либо участке цепи прямо зависит от напряжения, которое к этому участку приложено, и обратно — от его сопротивления.


Позже было установлено, что сопротивление участка зависит от его геометрических характеристик следующим образом: R=ρl/S
,

где l- длина проводника, S — площадь его поперечного сечения, а ρ — некий коэффициент пропорциональности.

Таким образом, сопротивление определяется геометрией проводника, а также таким параметром, как удельное сопротивление (далее — у. с.) — так назвали этот коэффициент. Если взять два проводника с одинаковым сечением и длиной и поставить их в цепь по очереди, то, измеряя силу тока и сопротивление, можно увидеть, что в двух случаях эти показатели будут разными. Таким образом, удельное электрическое сопротивление
— это характеристика материала, из которого сделан проводник, а если быть еще более точным, то вещества.

Проводимость и сопротивление

У.с. показывает способность вещества препятствовать прохождению тока. Но в физике есть и обратная величина — проводимость. Она показывает способность проводить электрический ток. Выглядит она так:

σ=1/ρ, где ρ — это и есть удельное сопротивление вещества.

Если говорить о проводимости, то она определяется характеристиками носителей зарядов в этом веществе. Так, в металлах есть свободные электроны. На внешней оболочке их не больше трех, и атому выгоднее их «отдать», что и происходит при химических реакциях
с веществами из правой части таблицы Менделеева. В ситуации же, когда мы располагаем чистым металлом, он имеет кристаллическую структуру, в которой эти наружные электроны общие. Они-то и переносят заряд, если приложить к металлу электрическое поле.

В растворах носителями заряда являются ионы.

Если говорить о таких веществах, как кремний, то по своим свойствам он является полупроводником
и работает несколько по иному принципу, но об этом позже. А пока разберемся, чем же отличаются такие классы веществ, как:

  1. Проводники;
  2. Полупроводники;
  3. Диэлектрики.

Проводники и диэлектрики

Есть вещества, которые ток почти не проводят. Они называются диэлектриками. Такие вещества способны поляризоваться в электрическом поле, то есть их молекулы могут поворачиваться в этом поле в зависимости от того, как распределены в них электроны
. Но поскольку электроны эти не являются свободными, а служат для связи между атомами, ток они не проводят.

Проводимость диэлектриков почти нулевая, хотя идеальных среди них нет (это такая же абстракция, как абсолютно черное тело или идеальный газ).

Условной границей понятия «проводник» является ρ

Между этими двумя классами существуют вещества, называемые полупроводниками. Но выделение их в отдельную группу веществ связано не столько с их промежуточным состоянием в линейке «проводимость — сопротивление», сколько с особенностями этой проводимости в различных условиях.

Зависимость от факторов внешней среды

Проводимость — не совсем постоянная величина. Данные в таблицах, откуда берут ρ для расчетов, существуют для нормальных условий среды, то есть для температуры 20 градусов. В реальности для работы цепи сложно подобрать такие идеальные условия; фактически у.с. (а стало быть, и проводимость) зависят от следующих факторов:

  1. температура;
  2. давление;
  3. наличие магнитных полей;
  4. свет;
  5. агрегатное состояние.

Разные вещества име

Удельное электрическое сопротивление — это… Что такое Удельное электрическое сопротивление?

Удельное электрическое сопротивление, или просто удельное сопротивление вещества характеризует его способность препятствовать прохождению электрического тока.

Единица измерения удельного сопротивления в Международной системе единиц (СИ) — Ом·м; также измеряется в Ом·см и Ом·мм²/м. Физический смысл удельного сопротивления в СИ: сопротивление однородного куска проводника длиной 1 м и площадью токоведущего сечения 1 м².

В технике часто применяется в миллион раз меньшая производная единица: Ом·мм²/м, равная 10−6 от 1 Ом·м: 1 Ом·м = 1·106 Ом·мм²/м. Физический смысл удельного сопротивления в технике: сопротивление однородного куска проводника длиной 1 м и площадью токоведущего сечения 1 кв.мм.

Величина удельного сопротивления обозначается греческой буквой .

Сопротивление проводника с удельным сопротивлением , длиной и площадью сечения может быть рассчитано по формуле

Обобщение понятия удельного сопротивления

Удельное сопротивление можно определить также для неоднородного материала, свойства которого меняются от точки к точке. В этом случае оно является не константой, а скалярной функцией — коэффициентом, связывающим напряжённость электрического поля и плотность тока в данной точке

Эта формула справедлива для неоднородного, но изотропного вещества. Вещество может быть и анизотропно (большинство кристаллов, намагниченная плазма и т. д.), то есть его свойства зависят от направления (вообще говоря, в нём векторы тока и напряжённости электрического поля в данной точке не сонаправлены). В этом случае удельное сопротивление является зависящим от координат тензором второго ранга:

Удельное электрическое сопротивление металлов и сплавов, применяемых в электротехнике

Металлρ, Ом·мм2
Серебро0,016
Медь0,0175
Золото0,023
Алюминий0,0271
Иридий0,0474
Молибден0,054
Вольфрам0,055
Цинк0,059
Никель0,087
Железо0,098
Платина0,107
Олово0,12
Свинец0,205
Титан0,5562 — 0,7837
Висмут1,2
Сплавρ, Ом·мм2
Сталь0,1400
Никелин0,42
Константан0,5
Манганин0,43…0,51
Нихром1,05…1,4
Фехраль1,15…1,35
Хромаль1,3…1,5
Латунь0,07…0,08

Значения даны при температуре t = 20° C. Сопротивления сплавов зависят от их точного состава и могут варьироваться.

Тонкие плёнки

Удельное сопротивление в тонких плёнках (когда толщина образца много меньше расстояния между контактами) характеризуется «удельным сопротивлением на квадрат», . В этом случае удельное сопротивление не зависит от линейных размеров образца если он имеет форму прямоугольника, а только от отношения (длины к ширине) L/W: , где R — измеренное сопротивление. В случае если форма образца отличается от прямоугольной используют метод ван дер Пау.

См. также

Ссылки

Удельное электрическое сопротивление стали — таблицы при различных температурах

Представлены таблицы значений удельного электрического сопротивления сталей различных типов и марок в зависимости от температуры — в диапазоне от 0 до 1350°С.

В общем случае, удельное сопротивление определяется только составом вещества и его температурой, оно численно равно полному сопротивлению изотропного проводника, имеющего длину 1 м и площадь поперечного сечения 1 м2.

Удельное электрическое сопротивление стали существенно зависит от состава и температуры. При повышении температуры этого металла увеличивается частота и амплитуда колебаний атомов кристаллической решетки, что создает дополнительное сопротивление прохождению электрического тока через толщу сплава. Поэтому, с ростом температуры сопротивление стали увеличивается.

Изменение состава стали и процента содержания в ней легирующих добавок значительно сказывается на величине электросопротивления. Например, углеродистые и низколегированные стали в несколько раз лучше проводят электрический ток, чем высоколегированные и жаропрочные, которые имеют высокое содержание никеля и хрома.

Углеродистые стали

Углеродистые стали при комнатной температуре, как уже было сказано, имеют низкое удельное электросопротивление за счет высокого содержания железа. При 20°С значение их удельного сопротивления находится в диапазоне от 13·10-8 (для стали 08КП) до 20·10-8 Ом·м (для У12).

При нагревании до температур более 1000°С способность углеродистых сталей проводить электрический ток сильно снижается. Величина сопротивления возрастает на порядок и может достигать значения 130·10-8 Ом·м.

Удельное электрическое сопротивление углеродистых сталей ρэ·108, Ом·м
Температура, °ССталь 08КПСталь 08Сталь 20Сталь 40Сталь У8Сталь У12
01213,215,9161718,4
201314,216,917,11819,6
5014,715,918,718,919,821,6
10017,81921,922,123,225,2
15021,322,425,425,726,829
20025,226,329,229,630,833,3
25029,530,533,433,935,137,9
30034,135,238,138,739,843
35039,340,243,243,84548,3
40044,845,848,749,350,554
45050,951,854,655,356,560
50057,558,460,161,962,866,5
55064,865,768,268,969,973,4
60072,573,475,876,677,280,2
65080,781,683,784,485,287,8
70089,890,592,593,293,596,4
750100,3101,1105107,9110,5113
800107,3108,1109,4111,1112,9115
850110,4111,1111,8113,1114,8117,6
900112,4113113,6114,9116,4119,6
950114,2114,8115,2116,6117,8121,2
1000116116,5116,7117,9119,1122,6
1050117,5117,9118,1119,3120,4123,8
1100118,9119,3119,4120,7121,4124,9
1150120,3120,7120,7122122,3126
1200121,7122121,9123123,1127,1
1250123123,3122,9124123,8128,2
1300124,1124,4123,9124,6128,7
1350125,2125,3125,1125129,5

Низколегированные стали

Низколегированные стали способны чуть более сильно сопротивляться прохождению электричества, чем углеродистые. Их удельное электросопротивление составляет (20…43)·10-8 Ом·м при комнатной температуре.

Следует отметить марки стали этого типа, которые наиболее плохо проводят электрический ток — это 18Х2Н4ВА и 50С2Г. Однако при высоких температурах, способность проводить электрический ток у сталей, приведенных в таблице, практически не различается.

Удельное электрическое сопротивление низколегированных сталей ρэ·108, Ом·м
Марка стали2010030050070090011001300
15ХФ28,142,160,683,3
30Х2125,941,763,693,4114,5120,5125,1
12ХН233365267112
12ХН329,667116
20ХН324294666123
30ХН326,831,746,968,198,1114,8120,1124,6
20ХН4Ф36415672102118
18Х2Н4ВА4144587397115
30Г220,825,942,164,594,6114,3120,2125
12МХ24,627,440,659,8
40Х3М33,148,269,596,2
20Х3ФВМ39,854,474,398,2
50С2Г42,94760,178,8105,7119,7124,9128,9
30Н327,1324767,999,2114,9120,4124,8

Высоколегированные стали

Высоколегированные стали имеют удельное электрическое сопротивление в несколько раз выше чем углеродистые и низколегированные. По данным таблицы видно, что при температуре 20°С его величина составляет (30…86)·10-8 Ом·м.

При температуре 1300°С сопротивление высоко- и низко- легированных сталей становится почти одинаковым и не превышает 131·10-8 Ом·м.

Удельное электрическое сопротивление высоколегированных сталей ρэ·108, Ом·м
Марка стали2010030050070090011001300
Г1368,375,693,195,2114,7123,8127130,8
Г20Х12Ф72,379,291,2101,5109,2
Г21Х15Т82,495,6104,5112119,2
Х13Н13К1090100,8109,6115,4119,6
Х19Н10К4790,598,6105,2110,8
Р1841,947,262,781,5103,7117,3123,6128,1
ЭХ123136537597119
40Х10С2М (ЭИ107)8691101112122

Хромистые нержавеющие стали

Хромистые нержавеющие стали имеют высокую концентрацию атомов хрома, что увеличивает их удельное сопротивление — электропроводность такой нержавеющей стали не высока. При обычных температурах ее сопротивление составляет (50…60)·10-8 Ом·м.

Удельное электрическое сопротивление хромистых нержавеющих сталей ρэ·108, Ом·м
Марка стали2010030050070090011001300
Х1350,658,476,993,8110,3115119125,3
2Х1358,865,38095,2110,2
3Х1352,259,576,993,5109,9114,6120,9125
4Х1359,164,678,894108

Хромоникелевые аустенитные стали

Хромоникелевые аустенитные стали также являются нержавеющими, но за счет добавки никеля имеют удельное сопротивление почти в полтора раза выше, чем у хромистых — оно достигает величины (70…90)·10-8 Ом·м.

Удельное электрическое сопротивление хромоникелевых нержавеющих сталей ρэ·108, Ом·м
Марка стали201003005007009001100
12Х18Н974,389,1100,1109,4114
12Х18Н9Т72,379,291,2101,5109,2
17Х18Н97273,592,5103111,5118,5
Х18Н11Б84,697,6107,8115
Х18Н9В7177,691,6102,6111,1117,1122
4Х14НВ2М (ЭИ69)81,587,5100110117,5
1Х14Н14В2М (ЭИ257)82,495,6104,5112119,2
1х14Н18М3Т89100107,5115
36Х18Н25С2 (ЭЯ3С)98,5105,5110117,5
Х13Н25М2В2103112,1118,1121
Х7Н25 (ЭИ25)109115121127
Х2Н35 (ЭИ36)87,592,5103110116120,5
Н2884,289,199,6107,7114,2118,4122,5

Жаропрочные и жаростойкие стали

По своим электропроводящим свойствам жаропрочные и жаростойкие стали близки к хромоникелевым. Высокое содержание в этих сплавах хрома и никеля не позволяет им проводить электрический ток, подобно обычным углеродистым с высокой концентрацией железа.

Значительное удельное электросопротивление и высокая рабочая температура таких сталей делают возможным их применение в качестве рабочих элементов электрических нагревателей. В частности, сталь 20Х23Н18 по своему сопротивлению и жаростойкости в некоторых случаях способна заменить такой популярный сплав для нагревателей, как нихром Х20Н80.

Удельное электрическое сопротивление жаропрочных и жаростойких сталей ρэ·108, Ом·м
Температура, °С15Х25Т
(ЭИ439)
15Х28
(ЭИ349)
40Х9С2
(ЭСХ8)
Х25С3Н
(ЭИ261)
20Х23Н18
(ЭИ 417)
Х20Н35
0106
207580
10097
20098113
400102105120
600113115124
800122121128
900123
1000127132

Источники:

  1. Казанцев Е. И. Промышленные печи. Справочное руководство для расчетов и проектирования.
  2. Физические величины. Справочник. Под ред. И. С. Григорьева, Е. З. Мейлихова. — М.: Энергоатомиздат, 1991. — 1232 с.

Таблица удельного сопротивления

07

000

000

000 48,2

9007

9007

Материал Удельное сопротивление ρ
(Ом · м)
Температура
Коэффициент α
на градус C
Электропроводность σ
x 10 7 / Ом · м
Ref
Серебро

07

73 1,59 x -8

.0038 6,29 3
Медь 1,68 x10 -8 .00386 5,95 3
Медь, отожженная 1,72 x10 -8 .00393 5,81 2
.00429 3,77 1
Вольфрам 5,6 x10 -8 .0045 1,79 1
Железо

71 x10 -8 .00651 1.03 1
Platinum 10.6 x10 -8 .003927 x10 -8 .000002 0,207 1
Свинец 22 x10 -8 0,45 0,45 98 x10 -8 .0009 0,10 1
Нихром
(сплав Ni, Fe, Cr)
100 x10 -8 .0004 0,10 12

000000 x10 -8 0,20 1
Углерод *
(графит)
3-60 x10 -5 -.0005 1
Германий * 1-500 x10 -3 -.05 1
Кремний * 0,1-60 -.07 1
Стекло 1-10000 x10 9 1
Кварцевый
(плавленый)
7,5 x10 17 1
Твердая резина 1-100 x10 13 1

* Удельное сопротивление полупроводников сильно зависит от наличия примесей в материале, что делает их полезными в твердотельной электронике.

Ссылки:

1. Джанколи, Дуглас К., Физика, 4-е изд., Прентис Холл, (1995).

2. Справочник CRC по химии и физике, 64-е изд.

3. Википедия, Удельное электрическое сопротивление и проводимость.

Индекс

Таблицы

Ссылка
Giancoli

.

Удельное сопротивление (ρ) и проводимость (σ) металлов, сплавов, горных пород и грунтов

Удельное сопротивление, также именуемое
как удельное сопротивление, зависит от природы материала, а также его объема
определение (форма и размер). Удельное сопротивление выражается в единицах, которые являются произведением
сопротивление и длина; например, Ом · см. Символ, наиболее часто используемый для обозначения удельного сопротивления.
есть rho (ρ).

Электропроводность — это
величина, обратная сопротивлению.Электропроводность выражается в единицах, являющихся частным от
проводимость (Сименс) и длина; например, S / см. Символ, наиболее часто используемый для
удельное сопротивление — сигма (σ).

В качестве примера расчета сопротивления объема рассмотрим рисунок слева.
Предположим, что медный провод 12 AWG с удельным сопротивлением (из таблицы) 1,72×10 -6 Ом · см,
площадь поперечного сечения (A) 0,03309 см 2 и длина 1 метр.
По данной формуле его сопротивление составляет:

,

, что хорошо согласуется с типичными указанными значениями Ом / км, опубликованными производителями проводов.Alpha утверждает, что 1,59 Ом / 1000 ‘или 5,22 Ом / км.

Таблица
Значения удельного сопротивления ниже взяты из справочных данных для радио.
Инженеры
, 1995, Самс Паблишинг. Пожалуйста, проверьте точность у другого источника. Видеть
Таблица пород и грунтов внизу. Интересное примечание: никель-серебро
соединение фактически не содержит серебра; его название происходит от серебристого цвета.

Алюмель цельный 33.3 0 0,0012
Алюминий жидкий
твердый
20,3
2,62
670
20
.0039
Сурьма жидкий
твердый
123
39,2
800
20
0,0036
мышьяк цельный 35 0 0.0042
Бериллий цельный 4,57 20
висмут жидкий
твердый
128,9
115
300
20
0,004
Бор цельный 1,8х10 12 0
Латунь (66 Cu, 34 Zn) цельный 3.9 20 0,002
Кадмий жидкий
твердый
34
7,5
400
20
0,0038
Углерод алмаз
графит
графен
5×10 20
1400
15
20
-0,0005
Церий цельный 78 20
Цезий жидкий
твердый
36.6
20
30
20
Chromax (15 Cr, 35 Ni, остальное Fe) цельный 100 20 0,00031
Хромель цельный 70-110 0 0,00011-0,000054
Хром цельный 2,6 0
Кобальт цельный 9.7 20 0,0033
константан (55 Cu, 45 Ni) цельный 44,2 20 0,0002
Медь (отожженная) жидкий
твердый
21,3
1,7241
1083
20
0,0039
Галлий твердый
жидкий
27
53
30
0
Золото жидкий
твердый
30.8
2,44
1063
20
0,0034
Гранит цельный 1×10 13 — 1×10 15
Гафний цельный 32,1 20
Индий жидкий
твердый
29
9
157
20
0.00498
Иридий цельный 5,3 20 0,0039
Утюг цельный 9,71 20 0,0052-0,0062
Ковар A (29, Ni, 17 Co, 0,3 Mn, остальное Fe) цельный 45-84 20
Поток лавы (основной)
Лава, свежая
жидкость 1×10 12 — 1×10 13
Свинец жидкий
твердый
98
21.9
400
20
0,004
ПБО 2 цельный 92
Литий жидкий
твердый
45
9,3
230
20
0,003
0,005
Магний цельный 4,46 20 0.004
Марганец цельный 5 20
MnO 2 цельный 6000000 20
Магнанин (84 Cu, 12 Mn, 4 Ni) цельный 44 20 ± 0,0002
Меркурий жидкий
твердый
95.8
21,3
20
-50
0,00089
Молибден цельный 5,17
4,77
0
20
0,0033
Металлический монель (67 Ni, 30 Cu, 1,4 Fe) цельный 42 20 0,002
Неодим цельный 79 18
Нихром (65 Ni, 12 Cr, 23 Fe) цельный 100 20 0.00017
Никель цельный 6,9 20 0,0047
Никель-серебро (64 Cu, 18 Zn, 18 Ni) цельный 28 20 0,00026
Ниобий цельный 12,4 20
Осмий цельный 9 20 0.0042
Палладий цельный 10,8 20 0,0033
Фосфорная бронза (4 Sn, 0,5 P, остальное Cu) цельный 9,4 20 0,003
Платина цельный 10,5 20 0,003
Плутоний цельный 150 20
Калий жидкий
твердый
13
7
62
20
0.006
празеодим цельный 68 25
Рений цельный 19,8 20
Родий цельный 5,1 20 0,0046
Рубидий цельный 12,5 20
Рутений цельный 10 20
Селен цельный 1.2 20
Серебро цельный 1,62 20 0,0038
Натрий жидкий
твердый
9,7
4,6
100
20
Сталь (0,4-0,5 C, остальное Fe) цельный 13-22 20 0.003
Сталь, марганец (13 Mn, 1 C, 86 Fe) цельный 70 20 0,001
Сталь нержавеющая (0,1 C, 18 Cr, 8 Ni, остальное Fe) цельный 90 20
Стронций цельный 23 20
Сера цельный 2х10 23 20
Тантал цельный 13.1 20 0,003
Таллий цельный 18,1 20 0,004
торий цельный 18 20 0,0021
Олово цельный 11,4 20 0,0042
Титан цельный 47.8 25
Тофет A (80 Ni, 20 Cr) цельный 108 20 0,00014
Вольфрам цельный 5,48 20 0,0045
Вт 2 O 5 цельный 450 20
WO 3 цельный 2х10 11 20
Уран цельный 29 0 0.0021
цинк жидкий
твердый
35,3
6
420
20
0,0037
цирконий цельный 40 20 0,0044
Гранит 10 7 — 10 9
Поток лавы (основной)
Лава, свежая
10 6 — 10 7
3×10 5 — 10 6
Мрамор
Мрамор, белый
Мрамор, желтый
4×10 8
10 10
10 10
Кварц, жила, массив> 10 6
Сланец, слюда 10 7
Сланец, пласт
Сланец, не такой
10 5
10 4
Известняк
Известняк, кембрийский
10 4
10 4 -10 5
Песчаник
Песчаник, восточный
10 5
3×10 3 -10 4
Глина синяя
Глина огненная
2×10 4
2×10 5
Глинистая земля 10 4 — 4×10 4
Гравий 10 5
Песок сухой
Песок влажный
10 5 –10 6
10 6 –10 5

Опубликовано: 13 июля, 2018

.

Таблица удельного электрического сопротивления и проводимости

A resistor has high electrical resistance while a conductor has high conductivity. (Nicolas Thomas) A resistor has high electrical resistance while a conductor has high conductivity. (Nicolas Thomas) Резистор имеет высокое электрическое сопротивление, а проводник — высокую проводимость. (Николас Томас)

Это таблица удельного электрического сопротивления и электропроводности нескольких материалов. Включены металлы, элементы, вода и изоляторы.

Удельное электрическое сопротивление, обозначаемое греческой буквой ρ (ро), является мерой того, насколько сильно материал препятствует прохождению электрического тока. Чем ниже удельное сопротивление, тем легче материал пропускает электрический заряд.Чем выше удельное сопротивление, тем труднее течь току. Материалы с высоким удельным сопротивлением представляют собой электрические резисторы.

Электропроводность — величина, обратная удельному сопротивлению. Электропроводность — это мера того, насколько хорошо материал проводит электрический ток. Материалы с высокой электропроводностью являются электрическими проводниками. Электропроводность может быть представлена ​​греческой буквой σ (сигма), κ (каппа) или γ (гамма).

Таблица удельного сопротивления и проводимости при 20 ° C

Материал ρ (Ом • м) при 20 ° C
Удельное сопротивление
σ (См / м) при 20 ° C
Электропроводность
Серебро 1.59 × 10 −8 6,30 × 10 7
Медь 1,68 × 10 −8 5,96 × 10 7
Медь отожженная 1,72 × 10 — 8 5,80 × 10 7
Золото 2,44 × 10 −8 4,10 × 10 7
Алюминий 2,82 × 10 −8 3,5 × 10 7
Кальций 3.36 × 10 −8 2,98 × 10 7
Вольфрам 5,60 × 10 −8 1,79 × 10 7
Цинк 5,90 × 10 −8 1,69 × 10 7
Никель 6,99 × 10 −8 1,43 × 10 7
Литий 9,28 × 10 −8 1,08 × 10 7
Утюг 1.0 × 10 −7 1,00 × 10 7
Платина 1,06 × 10 −7 9,43 × 10 6
Олово 1,09 × 10 −7 9,17 × 10 6
Углеродистая сталь (10 10 ) 1,43 × 10 −7
Свинец 2,2 × 10 −7 4,55 × 10 6
Титан 4.20 × 10 −7 2,38 × 10 6
Текстурированная электротехническая сталь 4,60 × 10 −7 2,17 × 10 6
Манганин 4,82 × 10 −7 2,07 × 10 6
Константан 4,9 × 10 −7 2,04 × 10 6
Нержавеющая сталь 6,9 × 10 −7 1.45 × 10 6
Меркурий 9,8 × 10 −7 1,02 × 10 6
Нихром 1,10 × 10 −6 9,09 × 10 5
GaAs 5 × 10 −7 до 10 × 10 −3 5 × 10 −8 до 10 3
Углерод (аморфный) 5 × 10 От −4 до 8 × 10 −4 1.От 25 до 2 × 10 3
Углерод (графит) 2,5 × 10 −6 до 5,0 × 10 −6 // базисная плоскость
3,0 × 10 −3 ⊥базальная плоскость
От 2 до 3 × 10 5 // базисная плоскость
3,3 × 10 2 ⊥базальная плоскость
Углерод (алмаз) 1 × 10 12 ~ 10 −13
Германий 4,6 × 10 −1 2,17
Морская вода 2 × 10 −1 4.8
Питьевая вода 2 × 10 1 до 2 × 10 3 5 × 10 −4 до 5 × 10 −2
Кремний 6,40 × 10 2 1,56 × 10 −3
Дерево (влажное) 1 × 10 3 до 4 10 −4 до 10 -3
Деионизированная вода 1,8 × 10 5 5,5 × 10 −6
Стекло 10 × 10 10 до 10 × 10 14 10 −11 до 10 −15
Твердая резина 1 × 10 13 10 −14
Древесина (сушка в печи) 1 × 10 14 до 16 10 −16 до 10 -14
Сера 1 × 10 15 10 −16 9 0039
Воздух 1.3 × 10 16 до 3,3 × 10 16 3 × 10 −15 до 8 × 10 −15
Парафиновый воск 1 × 10 17 10 −18
Плавленый кварц 7,5 × 10 17 1,3 × 10 −18
ПЭТ 10 × 10 20 10 −21
Тефлон 10 × 10 22 до 10 × 10 24 10 −25 до 10 −23

Факторы, влияющие на электропроводность

Есть три основных фактора, которые влияют на проводимость или удельное сопротивление материала:

  1. Площадь поперечного сечения: Если поперечное сечение материала велико, он может позволить большему току проходить через него.Точно так же тонкое поперечное сечение ограничивает ток. Например, толстая проволока имеет большее поперечное сечение, чем тонкая проволока.
  2. Длина проводника: Короткий проводник позволяет току течь с большей скоростью, чем длинный провод. Это все равно, что пытаться провести через коридор множество людей по сравнению с дверью.
  3. Температура: Повышение температуры заставляет частицы вибрировать или больше двигаться. Увеличение этого движения (повышение температуры) снижает проводимость, потому что молекулы с большей вероятностью будут мешать прохождению тока.При чрезвычайно низких температурах некоторые материалы становятся сверхпроводниками.

Ссылки

  • Glenn Elert (ed.). «Удельное сопротивление стали». Справочник по физике.
  • Данные о свойствах материалов MatWeb.
  • Оринг, Милтон (1995). Engineering Materials scienc e, Volume 1 (3-е изд.). п. 561.
  • Pawar, S.D .; Муругавел, П .; Лал, Д. М. (2009). «Влияние относительной влажности и давления на уровне моря на электропроводность воздуха над Индийским океаном». Журнал геофизических исследований 114: D02205.

.

Сопротивление и удельное сопротивление

Электрическое сопротивление электрического проводника

  • зависит от длины проводника
  • материала проводника
  • температуры материала
  • площади поперечного сечения проводника

и может быть выражено как

R = ρ L / A (1)

где

R = сопротивление проводника (Ом, Ом)

ρ = удельное сопротивление материала проводника (Ом метр, Ом · м)

L = длина проводника (м)

A = площадь поперечного сечения проводника (м 2 )

Удельное сопротивление некоторых обычных проводников

  • Алюминий: 2.65 x 10 -8 Ом м (0,0265 мкОм м)
  • Углерод: 10 x 10 -8 Ом м (0,10 мкОм м)
  • Медь: 1,724 x 10 -8 Ом м (0,0174 мкОм м)
  • Железо: 10 x 10 -8 Ом м (0,1 мкОм м)
  • Серебро: 1,6 x 10 -8 Ом · м (0,0265 мкОм · м)

Обратите внимание, что удельное сопротивление зависит от температуры .Вышеуказанные значения относятся к температурам 20 o C .

Удельное сопротивление некоторых обычных изоляторов

  • бакелит: 1 x 10 12 Ом м
  • стекло: 1 x 10 10 1 x 10 11 Ом м
  • мрамор: 1 x 10 8 Ом м
  • слюда: 0,9 x 10 13 Ом м
  • парафиновое масло: 1 x 10 16 Ом м
  • парафиновый воск (чистый ) : 1 x 10 16 Ом м
  • плексиглас: 1 x 10 13 Ом м
  • полистирол: 1 x 10 14 Ом м
  • фарфор: 1 x 10 12 Ом м
  • прессованный янтарь: 1 x 10 16 Ом м
  • вулканит: 1 x 10 14 Ом м
  • вода, дистиллированная: 1 x 10 10 Ом м

Обратите внимание, что хороший кон электрические проводники имеют низкое удельное сопротивление, а хорошие изоляторы имеют высокое удельное сопротивление.

Пример — Сопротивление проводника

Сопротивление 10 метров калибра 17 медного провода с площадью поперечного сечения 1,04 мм 2 можно рассчитать как

R = (1,7 x 10 — 8 Ом м) (10 м) / ((1,04 мм 2 ) (10 -6 м 2 / мм 2 ))

= 0,16 Ом

Пример — перекрестный площадь сечения и сопротивление

Медный провод выше уменьшен до калибра 24 и сечения 0.205 мм 2 . Увеличение сопротивления можно рассчитать как

R = (1,7 x 10 -8 Ом м) (10 м) / ((0,205 мм 2 ) (10 -6 м 2 / мм 2 ))

= 0,83 Ом

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *