Термоэлектрический термометр: Термоэлектрические термометры — Студопедия

Содержание

Термоэлектрические термометры — Студопедия

Для измерения температуры в металлургии наиболее широкое распространение получили термоэлектрические термометры, работающие в интервале температур от — 200 до +2500 °С и выше.

Данный тип устройств характе­ризует высокая точность и на­дежность, возможность исполь­зования в системах автомати­ческого контроля и регулирования параметра, в значительной мере определяющего ход технологических процессов.

Сущность термоэлектрического метода заключается в возникновении электродвижущей силы (э. д. с.) в проводнике, концы которого имеют различную температуру. В зависимости от вели­чины перепада температур и природы проводника (состав, физическое состояние) величина э. д. с. колеблется в значительных пределах. Для того чтобы измерить возникшую э. д. с., ее сравнивают с э. д. с. другого проводника, образующего с первым термоэлектрическую пару АВ (рис. 3.8), в цепи которой потечет ток.

Результирующая термоэлектродвижущая сила (т. э. д. с.) цепи, состоящей из двух разных проводников А и В (однородных по длине), равна

ЕАВ(t2 , t1) = ℮АВ(t2)+ ℮АВ(t1),

Или

ЕАВ(t2 , t1) = ℮АВ(t2) — ℮АВ(t1),

где ℮АВ(t2) и ℮АВ(t1)— разности потенциалов проводников А и В соответственно при температурах t2 и t1, мВ.

Т. э. д. с. данной пары зависит только от температур t2 и t1 и не зависит от размеров термоэлектродов (длины, диаметра) величин теплопроводности и удельного электросопротивления.

При отсутствии перепада температур, т. е. при t2 = t1, т. э. д. с. каждого проводника равна 0 и результирующая т. э, д. с. также равна нулю ЕАВ(t2 , t1) = 0. По этой же причине включение в цепь третьего проводника С, имеющего одинаковую температуру концов, в один из спаев (рис. 3.9, а) или в разрыв одного термоэлектрода (рис. 3.9, б) не изменяет т. э. д. с. термопары, так как собственная э. д. с. проводника равна нулю.



Для получения зависимости т. э. д. с. только от одной температуры t2 необходимо температуру t1 поддерживать па постоянном уровне, обычно при 0 или 20 °С. Спай, помещаемый в измеряемую среду, называют горячим или рабочим концом термопары, а спай, температуру которого поддерживают постоянной, холодным или свободным концом.

Для измерения возникающей т. э. д. с. в контур термопары в холодный спай (см. рис, 3.9, а) или в разрыв одного из термоэлектродов (см. рис. 3.9, б) с помощью проводов С включают измерительный прибор ИП.

В первом случае (см. рис. 3.9, а) в схеме три спая: горячий 1 и два холодных 2 и 3, которые должны находиться при постоянной температуре. Во второй схеме включения (см. рис. 3.9, б) имеются четыре спая: горячий 1, холодный 2 и нейтральные 3 и 4, причем температура последних t3 должна быть одинаковой. Необходимо еще раз подчеркнуть, что для правильного включения ИП температура в обоих местах присоединения третьего проводника должна быть одинаковой, что исключает образование дополнительных “паразитных” термопар, т. э. д. с, которых искажала бы сигнал основной термопары.


Для увеличения чувствительности термоэлектрического метода измерения температуры в ряде случаев применяют термобатарею: несколько последовательно включенных термопар, рабочие концы которых находятся при температуре t2, а свободные при известной и постоянной температуре t1.

Для контроля разности температур двух объектов или различных точек одного объекта используется дифференциальная термопара, у которой одноименные электроды А включены навстречу друг другу, а к другим Б подключен ИП. Рабочие спаи имеют разные температуры, а свободные концы одинаковую.

Требования, предъявляемые к материалу термоэлектродов. Термопару можно изготовить, комбинируя бесчисленное мно­жество различных материалов: чистых металлов, их сплавов, полупроводниковых и тугоплавких соединений. Однако использование большинства из них в термоэлектрических термометрах широкого применения невозможно, так как они не удовлетворяют ряду требований, предъявляемых к термоэлектродным материалам: высокое значение развиваемой т. э. д. с.; стабильность характеристики в течение значительного периода времени и высоких температур; воспроизводимость и линейная зависимость т. э. д. с. от температуры; однородность термоэлектрических свойств по длине проводника; легкость технологической обработки и получения сплава одинакового состава; хорошие экономические показатели.

Большое значение развиваемой т. э. д. с, определяет высокое значение чувствительности устройства: отношения ΔЕ/Δt, т. е. отношения приращения т. э. д. с. ΔЕ к величине изменения температуры Δt, вызвавшее данное приращение сигнала. Данный показатель для технических термоэлектрических термометров находится в пределах 0,01—0,06 мВ/°С. Чем больше это зна­чение, тем менее чувствительный, но более дешевый и надеж­ный вторичный прибор можно использовать в комплекте с термопарой.

Выбор материалов термоэлектродов в значительной степени определяется уровнем температуры и агрессивным воздействием измеряемой среды. Платина и ее сплавы с родием хорошо работают в окислительной и нейтральной средах, вольфрам, молибден, рений и их сплавы — в вакууме, нейтральной и восстановительной средах. Науглероживание проволоки искажает термоэлектрическую характеристику платины и приводит к погрешностям в измерении. Значительный опыт эксплуатации различных термопар привел к тому, что в настоящее время количество применяемых в технике измерений материалов невелико.

Устройство термоэлектрических термометров. Термоэлектрический термометр (ТТ) — это измерительный преобразователь, чувствительный элемент которого (термопара) расположен в спе­циальной защитной арматуре, обеспечивающей защиту термоэлект­родов от механических повреждений и воздействия измеряемой среды. На рис. 3.10 показана конструкция технического ТТ.

Арма­тура включает защитный чехол 1, гладкий или с неподвижным штуцером 2, и головку 3, внутри которой расположено контактное устройство 4 с зажимами для соединения термоэлектродов 5 с проводами, идущими от измерительного прибора к термометру. Термоэлектроды по всей длине изолированы друг от друга и от защитной арматуры керамическими трубками (бусами) 6.

Защитные чехлы выполняются из газонепроницаемых мате­риалов, выдерживающих высокие температуры и агрессивное воздействие среды. При температурах до 1000°С применяют металлические чехлы из углеродистой или нержавеющей стали, при более высоких температурах — керамические: фарфоровые, карбофраксовые, алундовые, из диборида циркония и т. п.

В качестве термоэлектродов используется проволока диаметром 0,5 мм (благородные металлы) и до 3 мм (неблагородные металлы).

Спай на рабочем конце 7 термопары образуется сваркой, пайкой или скручиванием. Последний способ используется для вольфрам-рениевых и вольфрам-молибденовых термопар.

Конструкция технического ТТ предусматривает возможность в процессе эксплуатации извлекать из защитной арматуры термоэлектроды в сборе для поверки или замены. Головка снабжена уплотнением, исключающим попадание пыли и влаги во внутрен­нюю полость устройства.

Термоэлектрические термометры выпускаются двух типов: погружаемые и поверхностные. У последних рабочий спай приво­дится в непосредственный контакт с измеряемой поверхностью. Промышленность изготавливает устройства различных модификаций, отличающихся по назначению и условиям эксплуатации, по материалу защитного чехла, по способу установки термометра в точке измерения, по герметичности и защищенности от действия измеряемой среды, по устойчивости к механическим воздействиям, по степени тепловой инерционности и т. п.

Термоэлектрический термометр Википедия

Схема термопары типа К. При температуре спая проволок из хромеля и алюмеля, равной 300 °C, и температуре свободных концов 0 °C развивает термо-ЭДС 12,2 мВ. Фотография термопары

Термопа́ра (термоэлектрический преобразователь) — устройство, применяемое в промышленности, научных исследованиях, медицине, в системах автоматики. Применяется в основном для измерения температуры.

Международный стандарт на термопары МЭК 60584 (п.2.2) даёт следующее определение термопары: Термопара — пара проводников из различных материалов, соединённых на одном конце и формирующих часть устройства, использующего термоэлектрический эффект для измерения температуры.

Для измерения разности температур зон, ни в одной из которых не находится вторичный преобразователь (измеритель термо-ЭДС), удобно использовать дифференциальную термопару: две одинаковые термопары, соединённые электрически навстречу друг другу. Каждая из них измеряет перепад температур между своим рабочим спаем и условным спаем, образованным концами термопар, подключёнными к клеммам вторичного преобразователя. Обычно вторичный преобразователь измеряет разность их ЭДС, таким образом, с помощью двух термопар можно измерить разность температур между их рабочими спаями по результатам измерения напряжения. Метод не является точным, если во вторичном преобразователе не предусмотрена линеаризация статической характеристики термопар, так как все термопары в той или иной степени имеют нелинейную статическую характеристику преобразования[1].

Принцип действия

Принцип действия основан на эффекте Зеебека или, иначе, термоэлектрическом эффекте. Между соединёнными проводниками имеется контактная разность потенциалов; если стыки связанных в кольцо проводников находятся при одинаковой температуре, сумма таких разностей потенциалов равна нулю. Когда же стыки разнородных проводников находятся при разных температурах, разность потенциалов между ними зависит от разности температур. Коэффициент пропорциональности в этой зависимости называют коэффициентом термо-ЭДС. У разных металлов коэффициент термо-ЭДС разный и, соответственно, разность потенциалов, возникающая между концами разных проводников, будет различная. Помещая спай из металлов с отличными от нуля коэффициентами термо-ЭДС в среду с температурой T1{\displaystyle T_{1}}, мы получим напряжение между противоположными контактами, находящимися при другой температуре T2{\displaystyle T_{2}}, которое будет пропорционально разности температур: T1−T2.{\displaystyle T_{1}-T_{2}.}

Способы подключения

Наиболее распространены два способа подключения термопары к измерительным преобразователям: простой и дифференциальный.
В первом случае измерительный преобразователь подключается напрямую к двум термоэлектродам. Во втором случае используются два проводника с разными коэффициентами термо-ЭДС, спаянные в двух концах, а измерительный преобразователь включается в разрыв одного из проводников.

Для дистанционного подключения термопар используются удлинительные или компенсационные провода. Удлинительные провода изготавливаются из того же материала, что и термоэлектроды, но могут иметь другой диаметр. Компенсационные провода используются в основном с термопарами из благородных металлов и имеют состав, отличный от состава термоэлектродов. Требования к проводам для подключения термопар установлены в стандарте МЭК 60584-3.
Следующие основные рекомендации позволяют повысить точность измерительной системы, включающей термопарный датчик[2]:

— Миниатюрную термопару из очень тонкой проволоки следует подключать только с использованием удлинительных проводов большего диаметра;
— Не допускать по возможности механических натяжений и вибраций термопарной проволоки;
— При использовании длинных удлинительных проводов, во избежание наводок, следует соединить экран провода с экраном вольтметра и тщательно перекручивать провода;
— По возможности избегать резких температурных градиентов по длине термопары;
— Материал защитного чехла не должен загрязнять электроды термопары во всем рабочем диапазоне температур и должен обеспечить надежную защиту термопарной проволоки при работе во вредных условиях;
— Использовать удлинительные провода в их рабочем диапазоне и при минимальных градиентах температур;
— Для дополнительного контроля и диагностики измерений температуры применяют специальные термопары с четырьмя термоэлектродами, которые позволяют проводить дополнительные измерения сопротивления цепи для контроля целостности и надежности термопар.

Применение термопар

Для измерения температуры различных типов объектов и сред, а также в качестве датчика температуры в автоматизированных системах управления. Термопары из вольфрам-рениевого сплава являются самыми высокотемпературными контактными датчиками температуры[3]. Такие термопары незаменимы в металлургии для контроля температуры расплавленных металлов.

Для контроля пламени и защиты от загазованности в газовых котлах и в других газовых приборах (например, бытовые газовые плиты). Ток термопары, нагреваемой пламенем горелки, удерживает в открытом состоянии газовый клапан. В случае пропадания пламени ток термопары снижается и клапан перекрывает подачу газа.

В 1920—1930-х годах термопары использовались для питания простейших радиоприемников и других слаботочных приборов. Вполне возможно использование термогенераторов для подзарядки АКБ современных слаботочных приборов (телефоны, камеры и т. п.) с использованием открытого огня.

Приёмник излучения

Крупный план термобатареи фотоприёмника. Каждый из проволочных уголков представляет собой термопару.

Исторически термопары представляют один из наиболее ранних термоэлектрических приёмников излучения[4]. Упоминания об этом их применении относятся к началу 1830-х годов[5]. В первых приёмниках использовались одиночные проволочные пары (медь — константан, висмут — сурьма), горячий спай находился в контакте с зачернённой золотой пластинкой. В более поздних конструкциях стали применяться полупроводники.

Термопары могут включаться последовательно, одна за другой, образуя термобатарею (англ.). Горячие спаи при этом располагают либо по периметру приёмной площадки, либо равномерно по её поверхности. В первом случае отдельные термопары лежат в одной плоскости, во втором параллельны друг другу[6].

Преимущества термопар

  • Высокая точность измерения значений температуры (вплоть до ±0,01 °С).
  • Большой температурный диапазон измерения: от −250 °C до +2500 °C.
  • Простота.
  • Дешевизна.
  • Надёжность.

Недостатки

  • Для получения высокой точности измерения температуры (до ±0,01 °С) требуется индивидуальная градуировка термопары.
  • На показания влияет температура свободных концов, на которую необходимо вносить поправку. В современных конструкциях измерителей на основе термопар используется измерение температуры блока холодных спаев с помощью встроенного термистора или полупроводникового датчика и автоматическое введение поправки к измеренной ТЭДС.
  • Эффект Пельтье (в момент снятия показаний необходимо исключить протекание тока через термопару, так как ток, протекающий через неё, охлаждает горячий спай и разогревает холодный).
  • Зависимость ТЭДС от температуры существенно нелинейна. Это создает трудности при разработке вторичных преобразователей сигнала.
  • Возникновение термоэлектрической неоднородности в результате резких перепадов температур, механических напряжений, коррозии и химических процессов в проводниках приводит к изменению градуировочной характеристики и погрешностям до 5 К.
  • На большой длине термопарных и удлинительных проводов может возникать эффект «антенны» для существующих электромагнитных полей.

Типы термопар

Технические требования к термопарам определяются ГОСТ 6616-94. Стандартные таблицы для термоэлектрических термометров — номинальные статические характеристики преобразования (НСХ), классы допуска и диапазоны измерений приведены в стандарте МЭК 60584-1,2 и в ГОСТ Р 8.585-2001.

Точный состав сплава термоэлектродов для термопар из неблагородных металлов в МЭК 60584-1 не приводится. НСХ для хромель-копелевых термопар ТХК и вольфрам-рениевых термопар определены только в ГОСТ Р 8.585-2001. В стандарте МЭК данные термопары отсутствуют. По этой причине характеристики импортных датчиков из этих металлов могут существенно отличаться от отечественных, например импортный Тип L и отечественный ТХК не взаимозаменяемы. При этом, как правило, импортное оборудование не рассчитано на отечественный стандарт.

В настоящее время стандарт МЭК 60584 пересматривается. Планируется введение в стандарт вольфрам-рениевых термопар типа А-1, НСХ для которых будет соответствовать российскому стандарту, и типа С по стандарту АСТМ[7].

В 2008 г. МЭК ввел два новых типа термопар: золото-платиновые и платино-палладиевые. Новый стандарт МЭК 62460 устанавливает стандартные таблицы для этих термопар из чистых металлов. Аналогичный Российский стандарт пока отсутствует.

Сравнение термопар

Таблица ниже описывает свойства нескольких различных типов термопар[8]. В пределах колонок точности, T представляет температуру горячего спая, в градусах Цельсия. Например, термопара с точностью ±0,0025×T имела бы точность ±2,5 °C при 1000 °C.

Тип

термопары

IEC (МЭК)

Материал

положительного

электрода

Материал

отрицательного

электрода

Темп.

коэффициент,

μV/°C

Темп.

диапазон, °C

(длительно)

Темп.

диапазон,°C

(кратковременно)

Класс точности 1 (°C)Класс точности 2 (°C)IEC (МЭК)

Цветовая маркировка

KХромель

Cr—Ni

Алюмель

Ni—Al

40…410 до +1100−180 до +1300±1,5 от −40 °C до 375 °C
±0,004×T от 375 °C до 1000 °C
±2,5 от −40 °C до 333 °C
±0,0075×T от 333 °C до 1200 °C
Зелёный-белый
JЖелезо

Fe

Константан

Cu—Ni

55.20 до +700−180 до +800±1,5 от −40 °C до 375 °C
±0,004×T от 375 °C до 750 °C
±2,5 от −40 °C до 333 °C
±0,T от 333 °C до 750 °C
Чёрный-белый
NНихросил

Ni—Cr—Si

Нисил

Ni—Si—Mg

0 до +1100−270 до +1300±1,5 от −40 °C до 375 °C
±0,004×T от 375 °C до 1000 °C
±2,5 от −40 °C до 333 °C
±0,0075×T от 333 °C до 1200 °C
Сиреневый-белый
RПлатинородий

Pt—Rh (13 % Rh)

Платина

Pt

0 до +1600−50 до +1700±1,0 от 0 °C до 1100 °C
±[1 + 0,003×(T − 1100)] от 1100 °C до 1600 °C
±1,5 от 0 °C до 600 °C
±0,0025×T от 600 °C до 1600 °C
Оранжевый-белый
SПлатинородий

Pt—Rh (10 % Rh)

Платина

Pt

0 до 1600−50 до +1750±1,0 от 0 °C до 1100 °C
±[1 + 0,003×(T − 1100)] от 1100 °C до 1600 °C
±1,5 от 0 °C до 600 °C
±0,0025×T от 600 °C до 1600 °C
Оранжевый-белый
BПлатинородий

Pt—Rh (30 % Rh)

Платинородий

Pt—Rh (6 % Rh)

+200 до +17000 до +1820±0,0025×T от 600 °C до 1700 °CОтсутствует
TМедь

Cu

Константан

Cu—Ni

−185 до +300−250 до +400±0,5 от −40 °C до 125 °C
±0,004×T от 125 °C до 350 °C
±1,0 от −40 °C до 133 °C
±0,0075×T от 133 °C до 350 °C
Коричневый-белый
EХромель

Cr—Ni

Константан

Cu—Ni

680 до +800−40 до +900±1,5 от −40 °C до 375 °C
±0,004×T от 375 °C до 800 °C
±2,5 от −40 °C до 333 °C
±0,0075×T от 333 °C до 900 °C
Фиолетовый-белый

См. также

Примечания

Литература

  • Грунин В. К. § 2.3.4. Термоэлектрические приёмники излучения // Источники и приёмники излучения: учебное пособие. — СПб.: Издательство СПбГЭТУ «ЛЭТИ», 2015. — 167 с. — ISBN 978-5-7629-1616-5.

Ссылки

Термометр электронный, цифровой. Сопротивления биметаллические тб манометрические спиртовые, жидкостной электроконтактный газовый электрический воздуха термоэлектрические гильза ткп.

Термометр электронный, цифровой. Сопротивления биметаллические тб манометрические спиртовые, жидкостной электроконтактный газовый электрический воздуха термоэлектрические гильза ткп.

Термометры

Вы находитесь в информационном каталоге нашего сайта, где представлена техническая информация общего характера. Для знакомства и поиска необходимой продукции перейдите на главную страницу или нажмите на данную ссылку для перехода в раздел термометры.
В общем случае, Термометр — устройство для измерения текущей температуры. Изобретателем термометра считают Галилея: в его собственных сочинениях нет описания этого прибора, но известно, что уже в 1597 г. он создал некий прибор, напоминающий термометр. Схема прообраза термометра была следующей: это был сосуд с трубкой, содержащей воздух, отделенный от атмосферы столбиком воды; он изменял свои показания и от изменения температуры, и от изменения атмосферного давления. В 18 веке воздушный термометр был усовершенствован. Современную форму термометру придал ученый Фаренгейт, который описал свой способ изготовления термометра в 1723 г. Первоначально свои трубки он наполнял спиртом и лишь в конце исследований перешел к ртути. Окончательно постоянные точки тающего льда и кипящей воды установил шведский физик Цельсий в 1742 г. Сохранившиеся экземпляры термометров Фаренгейта и Цельсия отличаются тщательностью исполнения.

Существует огромное количество видов термометров — электронные термометры, цифровые, термометры сопротивления, биметаллические термометры, инфракрасные термометры (ик термометры), дистанционные термометры, электроконтактные термометры. И, конечно же, наиболее популярные — спиртовые и ртутные термометры. Помимо непосредственно термометров в продаже широко представлены оправы к термометрам, манометрические термометры (термоманометры), портативные пирометры, гигрометры термометры, термометры барометры, тонометры термометры, термопары и другое оборудование.

Вопрос, где купить термометр, сейчас практически не стоит. На рынке представлен широчайший спектр термометров различного назначения, в том числе и бытовых: уличные термометры для любых окон (и деревянных, и пластиковых), комнатные термометры для дома и офиса, термометры для бань и саун. Можно купить термометры для воды, для чая, даже для вина и пива, для аквариума, специальные термометры для почвы, для инкубаторов, фасадные и автомобильные термометры. Существуют термометры для холодильников, морозильных камер и погребов. Словом, найдётся всё! От вида термометра существенно зависит его цена. Диапазон цен также широк, как и ассортимент видов термометров. Многие компании занимаются оптовой и розничной продажей термометров российских и иностранных производителей, существуют специализированные магазины и интернет-магазины, реализующие данные приборы и способные удовлетворить потребность в приборах практически любого вида этого типа. Наиболее популярно производство и продажа простых моделей измерительного оборудования. Цены на такие приборы более чем доступны. Широкий ассортимент контрольно-измерительной температурной техники и комплексные решения в области метрологии предлагаются теперь не только в Москве, но во многих крупных городах России.

Установка термометра, как правило, технологически не сложна. Но не забывайте, что надёжное и долговечное крепление термометра гарантирует только выполненная по всем правилам установка, не стоит этим пренебрегать. Помните также, что термометр — прибор инерционный, и время установления его показаний составляет 10 — 20 минут, в зависимости от требуемой точности. Поэтому не следует ждать, что термометр изменит свои показания сразу, как только вы его вынете из упаковки или установите.

  • Жидкостные

    Жидкостный термометр — это, как правило, термометр из стекла (стеклянный термометр), увидеть который можно практически везде. Жидкостные термометры бывают как бытовыми, так и техническими (термометр ттж — термометр технический жидкостный). Жидкостный термометр работает по простой схеме — объем жидкости внутри термометра изменяется при изменении температуры вокруг нее. Жидкость, находящаяся в термометре, занимает меньший объем капилляра при низкой температуре, а при высокой температуре жидкость в столбике термометра начинает увеличиваться в объеме, тем самым будет расширяться, и подниматься вверх. Обычно в жидкостных термометрах применяется либо спирт, либо ртуть. Температура, измеряемая жидкостным термометром, преобразуется в линейное перемещение жидкости, шкала наносится прямо на поверхность капилляра или прикрепляется к нему снаружи. Чувствительность термометра зависит от разности коэффициентов объемного расширения термометрической жидкости и стекла, от объема резервуара и диаметра капилляра. Чувствительность термометра обычно лежит в пределах 0,4…5 мм/С (для некоторых специальных термометров 100…200 мм/°С). Технические жидкостные стеклянные термометры применяют для измерения температур от -30 до 600°С. При монтаже стеклянного технического жидкостного термометра его часто помещают в защитную металлическую оправу для изоляции прибора от измеряемой среды. Для уменьшения инерционности измерения в кольцевой зазор между термометром и стенкой оправы при измерении температуры до 150°С заливают машинное масло; при измерении более высоких температур в зазор насыпают медные опилки. Как любые другие точные приборы, промышленные технические термометры требуют проведения регулярной поверки.
  • Манометрические

    Действие манометрических термометров основано на изменении давления газа, пара или жидкости в замкнутом объеме при изменении температуры. Манометрический термометр состоит из термобаллона, гибкого капилляра и собственно манометра. В зависимости от заполняющего вещества манометрические термометры делятся на газовые (термометр ТПГ, термометр ТДГ и др.), парожидкостные (термометр ТПП) и жидкостные (термометр ТПЖ, термометр ТДЖ и др.). Область измерения температур манометрическими термометрами колеблется в диапазоне от -60 до +600°С.

    Термобаллон манометрического термометра помещают в измеряемую среду. При нагреве термобаллона внутри замкнутого объема увеличивается давление, которое измеряется манометром. Шкала манометра градуируется в единицах температуры. Капилляр обычно представляет собой латунную трубку с внутренним диаметром в доли миллиметра. Это позволяет удалить манометр от места установки термобаллона на расстояние до 40 м. Капилляр по всей длине защищен оболочкой из стальной ленты.

    Манометрические термометры могут применяться во взрывоопасных помещениях. При необходимости передачи результатов измерений на расстояние более 40 м манометрические термометры снабжают промежуточными преобразователями с унифицированными выходными пневматическими или электрическими сигналами, речь идет о так называемых дистанционных термометрах.

    Наиболее уязвимы в конструкции манометрических термометров являются места присоёдинения капилляра к термобаллону и манометру. Поэтому устанавливать и обслуживать такие приборы должны специально обученные специалисты.
  • Сопротивления

    Действие термометров сопротивления основано на свойстве тел изменять электрическое сопротивление при изменении температуры. В металлических термометрах сопротивление с возрастанием температуры увеличивается практически линейно. В полупроводниковых термометрах сопротивления оно наоборот, уменьшается.

    Металлические термометры сопротивления изготовляют из тонкой медной или платиновой проволоки, помещенной в электроизоляционный корпус . Зависимость электрического со противления от температуры (для медных термометров диапазон от -50 до +180 С, для платиновых диапазон от -200 до +750 С) весьма стабильна и воспроизводима. Это обеспечивает взаимозаменяемость термометров сопротивления. Для защиты термометров сопротивления от воздействия измеряемой среды применяют защитные чехлы. Приборостроительная промышленность выпускает много модификаций защитных чехлов, рассчитанных на эксплуатацию термометров при различном давлении (от атмосферного до 500•105 Па), различной агрессивности измеряемой среды, обладающих разной инерционностью (от 40 с до 4 мин) и глубиной погружения (от 70 до 2000 мм).

    Полупроводниковые термометры сопротивления (термисторы) для измерений в промышленности применяют редко, хотя их чувствительность гораздо выше, чем проволочных термометров сопротивления. Это объясняется тем, что градуированные характеристики термисторов значительно отличаются друг от друга, что затрудняет их взаимозаменяемость.

    Термометры сопротивления представляют собой первичные преобразователи с удобным для дистанционной передачи сигналом — электрическим сопротивлением, для измерения такого сигнала обычно применяют автоматические уравновешенные мосты. При необходимости выходной сигнал термометра сопротивления может быть преобразован в унифицированный сигнал. Для этого в измерительную цепь включают промежуточный преобразователь. В этом случае измерительным будет прибор для измерения постоянного тока.
  • Термоэлектрические

    Принцип действия термоэлектрических термометров основан на свойстве двух разнородных проводников создавать термоэлектродвижущую силу при нагревании места их соединения — спая. Проводники в этом случае называются термоэлектродами, а все устройство — термопарой. Величина термоэлектродвижущей силы термопары зависит от материала термоэлектродов и разности температур горячего спая и холодных спаев. Поэтому при измерении температуры горячего спая температуру холодных спаев стабилизируют или вводят поправку на ее изменение.

    В промышленных условиях стабилизация температуры холодных спаев термопары затруднительна, поэтому обычно пользуются вторым способом — автоматически вводят поправку на температуру холодных спаев. Для этого применяют неуравновешенный мост, включаемый последовательно с термопарой. В одно плечо такого моста включен медный резистор, расположенный около холодных спаев. При изменении температуры холодных спаев термопары изменяется сопротивление резистора и выходное напряжение неуравновешенного моста. Мост подбирают таким образом, чтобы изменение напряжения было равно по величине и противоположно по знаку, изменению термоэлектродвижущей силы термопары вследствие колебаний температуры холодных спаев.

    Термопары являются первичными преобразователями температуры в термоэлектродвижущую силу — сигнал, удобный для дистанционной передачи. Поэтому в измерительную цепь за термопарой может быть сразу включен измерительный прибор для измерения термоэлектродвижущей силы термопары. Обычно применяют автоматические потенциометры.

    Если термоэлектродвижущую силу термопары преобразуют в унифицированный сигнал промежуточным преобразователем, то компенсация температуры холодных спаев производится неуравновешенным мостом, который входит в состав преобразователя.

    Медный резистор размещают в потенциометре или промежуточном преобразователе. Следовательно, там же должны находиться и холодные спаи термопары. В этом случае длина термопары должна быть равна расстоянию от места измерения температуры до места установки прибора. Такое условие практически невыполнимо, так как термоэлектроды термопар (жесткая проволока) неудобны для монтажа. Поэтому для соединения термопары с прибором применяют специальные соединительные провода, подобные по термоэлектрическим свойствам термоэлектродам термопар. Такие провода называются компенсационными. С их помощью холодные спаи термопары переносятся к измерительному прибору или преобразователю.

    В промышленности применяют различные термопары, термоэлектроды которых изготовлены как из чистых металлов (платина), так и из сплавов хрома и никеля (хромель), меди и никеля (копель), алюминия и никеля (алюмель), платины и родия (платинородий), вольфрама и рения (вольфрамрений). Материалы термоэлектродов определяют предельное значение измеряемой температуры. Наиболее распространенные термоэлектродные пары образуют стандартные термопары: хромель-копель (предельная температура 600°С), хромель-алюмель (предельная температура 1000°С), платинородий-платина (предельная температура 1600°С) и вольфрамрений с 5% рения- вольфрамрений с 20% рения (предельная температура 2200°С). Промышленные термопары отличаются высокой стабильностью характеристик, что позволяет заменять их без какой-либо переналадки остальных элементов измерительной цепи.

    Термопары, как и термометры сопротивления, устанавливают в защитных чехлах, на которых указан тип термопары. Для высокотемпературных термопар применяют защитные чехлы из теплостойких материалов: фарфора, оксида алюминия, карбида кремния и т. п.
  • Электронные

    Если нужно контролировать температуру, скажем, в подвале дома, на чердаке или в любом подсобном помещении, обычный ртутный или спиртовой термометр вряд ли подойдет. Довольно неудобно периодически выходить из комнаты, чтобы взглянуть на его шкалу.

    Более пригоден в подобных, случаях электронный термометр, позволяющий измерять температуру дистанционно — на расстояниях в сотни метров. Причем в контролируемом помещении будет располагаться лишь миниатюрный термочувствительный датчик, а в комнате на видном месте — стрелочный индикатор, по шкале которого и отсчитывают температуру. Соединительная линия между датчиком и устройством индикации может быть выполнена либо экранированным проводом, либо двухпроводным электрическим шнуром. Конечно, электронный термометр — не новинка современной электроники. Но в большинстве случаев термочувствительным элементом в ранних версиях таких термометров был терморезистор, обладающий нелинейной зависимостью сопротивления от температуры окружающей среды. А это менее удобно, поскольку стрелочный индикатор нужно было снабжать специальной нелинейной шкалой, получаемой во время, градуировки прибора с помощью образцового термометра.

    Сейчас в электронных термометрах в качестве термочувствительного элемента применяется кремниевый диод, зависимость прямого напряжения (т. е. падения напряжения на диоде при протекании через него прямого тока — от анода к катоду) которого линейна в широком диапазоне изменения температуры окружающей среды. В этом варианте отпадает необходимость в специальной градуировке шкалы стрелочного индикатора.

    Принцип действия электронного термометра можно понять, вспомнив известную мостовую схему измерения, образованную четырьмя резисторами, с включенным в одну диагональ стрелочным индикатором и поданным на другую диагональ питающим напряжением. При изменении сопротивления одного из резисторов, через стрелочный индикатор начинает протекать ток.

    Электронные термометры способны измерять температуру в диапазоне от -50 до 100 С Питается электронный термометр стабильным напряжением, которое получается благодаря включению в цепь батареи.
  • Электроконтактные

    Электроконтактные термометры предназначены для сигнализации о заданной температуре и для включения или выключения соответствующего оборудования при достижении этой температуры. Электроконтактные термометры могут работать в системах для поддержания постоянной (заданной) температуры от -35 до +300°С в различных промышленных, лабораторных, энергетических и других установках.

    Изготавливаются данные приборы по техническим условиям предприятия. В общем случае электроконтактные термометры конструктивно подразделяются на 2 вида:

    термометры с переменной (устанавливаемой) температурой контактирования, термометры с постоянной (заданной) температурой контактирования (так называемые термоконтакторы).

    Электроконтактные термометры типа ТПК с переменным контактом изготавливаются с вложенной шкалой. Шкальная пластина из стекла молочного цвета с нанесенными на нее делениями шкалы и оцифровкой позволяет проводить визуальный контроль температурных режимов в установках.

    Термоконтакторы изготавливаются из массивной капиллярной трубки, имеют один или два рабочих контакта, т.е. одну или две фиксированные температуры контактирования. Применяются при погружении в измеряемую среду до соединительного (нижнего) контакта.

    Термометры имеют магнитное устройство, с помощью которого рабочая точка контактирования изменяется в диа¬пазоне всего интервала температур.

    Электроконтактные термометры и термоконтакторы работают в цепях постоянного и переменного тока в безыскровом режиме. Допускаемая электрическая на¬грузка на контактах этих приборов не более 1 Вт при напряжении до 220 В и силе тока 0,04 А. Для включения в электроцепь термокон¬такторы снабжены припаянными гибкими проводниками. Термометры подключаются к цепи с помощью контактов под съемной крышкой.
  • Цифровые

    Цифровые, как и любые другие термометры, — это приборы, предназначенные для измерения температуры. Достоинством цифровых термометров является то, что они обладают малыми размерами, широким диапазоном измеряемой температуры в зависимости от используемых внешних датчиков температуры. Внешние датчики температуры могут быть как термопары различных типов, так и термометры сопротивления, иметь различные формы и области применения. Например, имеются внешние датчики температуры для газообразных, жидких и твёрдых тел. Термометры цифровые представляют собой высокоточные, высокоскоростные приборы. В основе цифрового термометра лежит аналого-цифровой преобразователь, работающий по принципу модуляции. Параметры термометра в смысле погрешности измерений всецело определяются датчиками. Цифровые термометры могут применяться в бытовых целях и для контроля технологических процессов в строительстве, в том числе дорожном, а также в строительной индустрии, сельском хозяйстве, деревообрабатывающей, пищевой и других отраслях промышленности. Цифровые термометры обладают памятью измерений и могут обеспечивать несколько режимов наблюдения.
  • Конденсационные

    Конденсационные термометры реализуют зависимость упругости насыщенных паров низкокипящей жидкости от температуры. Поскольку эти зависимости для используемых жидкостей (хлористый метил, этиловый эфир, хлористый этил, ацетон и др.) нелинейные, следовательно, и шкалы термометров неравномерны. Однако эти приборы обладают более высокой чувствительностью, чем, например, газовые жидкостные. В конденсационных термометрах измеряют давление насыщенного пара над поверхностью жидкости, неполно заполняющей термосистему, т.к. изменение давления происходит непропорционально — приборы имеют неравномерные шкалы. Пределы измерений от -25 до 300 С.
  • Газовые

    В основу принципа действия газового термометра положена зависимость между температурой и давлением термометрического (рабочего) вещества, лишенного возможности свободно расширяться при нагревании. Газовые манометрические термометры основаны на зависимости температуры и давления газа, заключенного в герметически замкнутой термосистеме. В газовых термометрах (обычно постоянного объема) изменение температуры прямо пропорционально давлению в диапазоне измеряемых температур от — 120 до 600 °С. На измерении температуры газовыми термометрами построены современные температурные шкалы. Процесс измерения заключается в приведении баллона с газом в состояние теплового равновесия с теплом, температуру которого измеряют, и в восстановлении первоначального объема газа. Газовый термометр высокой точности — довольно сложное устройство. Необходимо учитывать не идеальность газа, тепловое расширение баллона и соединительной трубки, изменение состава газа внутри баллона (сорбцию и диффузию газов), изменение температуры вдоль соединительной трубки.
    Достоинства: шкала прибора практически равномерна.

    Недостатки: сравнительно большая инерционность и большие размеры термобаллона.
  • Спиртовые

    Термометр спиртовой относится к термометрам расширения и является подвидом жидкостного термометра. Принцип действия термометра спиртового основан на изменении объема жидкостей и твердых тел при измерении температуры. Таким образом, в данном термометре используется способность жидкости, заключенной в стеклянную колбочку, к расширению и сжатию. Обычно стеклянная капиллярная трубочка заканчивается шаровидным расширением, которое служит резервуаром для жидкости. Чувствительность такого термометра находится в обратной зависимости от площади поперечного сечения капилляра и в прямой — от объема резервуара и от разности коэффициентов расширения данной жидкости и стекла. Поэтому чувствительные термометры имеют большие резервуары и тонкие трубки, а используемые в них жидкости с увеличением температуры расширяются значительно быстрее, чем стекло. Этиловый спирт применяют в термометрах, предназначенных для измерения низких температур. Точность проверенного стандартного стеклянного спиртового термометра ± 0,05° С. Главная причина погрешности связана с постепенными необратимыми изменениями упругих свойств стекла. Они приводят к уменьшению объема стекла и повышению точки отсчета. Кроме того, ошибки могут возникать в результате неправильного считывания показаний или из-за размещения термометра в месте, где температура не соответствует истинной температуре воздуха. Дополнительные ошибки могут возникать из-за сил сцепления между спиртом и стеклянными стенками трубки, поэтому при быстром понижении температуры часть жидкости удерживается на стенках. Кроме того, спирт на свету уменьшает свой объем.
  • Биметаллические

    Их строение основано на различии теплового расширения веществ, из которых изготовлены пластины применяемых чувствительных элементов. Биметаллические термометры используются для измерения температуры в жидких и газообразных средах, в том числе на морских и речных судах, атомных электростанциях.

    В общем случае, биметаллический термометр состоит из двух тонких лент металла, например медной и железной, которые при нагревании расширяются неодинаково. Плоские поверхности лент плотно прилегают одна к другой. Такая биметаллическая система скручена в спираль, один из концов этой спирали жестко закрепляется. При нагревании или охлаждении спирали ленты, изготовленные из разных металлов, расширяются или сжимаются по-разному. Следовательно, спираль или раскручивается, или туже скручивается. По указателю, который прикреплен к свободному концу спирали, можно судить о величине изменений. Примером биметаллического термометра может служить комнатный термометр с круглым циферблатом.
  • Кварцевые

    Кварцевые термометры основаны на температурной зависимости резонансной частоты пьезокварца. Датчик кварцевого термометра представляет собой кристаллический резонатор, выполненный в виде тонкого диска или линзы, помещенный в герметизирующий кожух, заполненный для лучшей теплопроводности гелием при давлении около 0,1 мм РТ. Ст. (диаметр кожуха составляет 7-10 мм). В центральной части линзы или диска нанесены золотые электроды возбуждения, а держатели (выводы)располагаются на периферии.

    Точность и воспроизводимость показаний определяются главным образом изменением частоты и добротностью резонатора, понижающейся при эксплуатации вследствие развития микротрещин от периодического нагрева и охлаждения.

    Измеряемая схема кварцевого термометра состоит из датчика, включенного в цепь положительной обратной связи усилителя, и частотомера. Существенным недостатком кварцевых термометров является их инерционность, составляющая несколько секунд, и нестабильность работы при температурах выше 100 С из-за возрастающей невоспроизводимости.

Возврат к списку

Термоэлектрический термометр Википедия

Схема термопары типа К. При температуре спая проволок из хромеля и алюмеля, равной 300 °C, и температуре свободных концов 0 °C развивает термо-ЭДС 12,2 мВ. Фотография термопары

Термопа́ра (термоэлектрический преобразователь) — устройство, применяемое в промышленности, научных исследованиях, медицине, в системах автоматики. Применяется в основном для измерения температуры.

Международный стандарт на термопары МЭК 60584 (п.2.2) даёт следующее определение термопары: Термопара — пара проводников из различных материалов, соединённых на одном конце и формирующих часть устройства, использующего термоэлектрический эффект для измерения температуры.

Для измерения разности температур зон, ни в одной из которых не находится вторичный преобразователь (измеритель термо-ЭДС), удобно использовать дифференциальную термопару: две одинаковые термопары, соединённые электрически навстречу друг другу. Каждая из них измеряет перепад температур между своим рабочим спаем и условным спаем, образованным концами термопар, подключёнными к клеммам вторичного преобразователя. Обычно вторичный преобразователь измеряет разность их ЭДС, таким образом, с помощью двух термопар можно измерить разность температур между их рабочими спаями по результатам измерения напряжения. Метод не является точным, если во вторичном преобразователе не предусмотрена линеаризация статической характеристики термопар, так как все термопары в той или иной степени имеют нелинейную статическую характеристику преобразования[1].

Термоэлектрические термометры | Производство стекла

Термоэлектрические термометры — основной прибор для измерения температуры в тепловых установках стекольного производства. Термоэлектрический термометр (рис. 51) состоит из двух проводников 3, изготовленных из различных металлов или сплавов,— термоэлектродов. Проводники свариваются в стык, образуя «горячий» спай, а их свободные концы соединяются проводами с клеммами измерительного прибора (милливольтметра 2, потенциометра). Места соединения термоэлектродов с подводящими проводами приборов образуют «холодный» спай.

Рис. 51. Термоэлектрический термометр:
1 — провода, 2 — милливольтметр, 3 — проводники

Работа термоэлектрического термометра основана на возникновении термоэлектрического тока в процессе нагревания места спая. Электродвижущая сила тока тем больше, чем значительнее разница в термоэлектрических термометрах «горячего» и «холодного» спаев. «Горячий» спай вводят в печное пространство там, где требуется замерить температуру.

Наиболее распространены следующие термоэлектрические термометры: платино-платинородиевые, хромель-алюмелевые и железо-копелевые. При измерении температур 100—700° С применяют железо-копелевые термоэлектрические термометры, при 700— 1000° С хромель-алюмелевые, при 800—1600° С платино-платинородиевые.

Чтобы термоэлектроды не соприкасались друг с другом, их изолируют по всей длине фарфоровыми одноканальными либо двухканальными трубками. Термоэлектрические термометры помещают в защитные чехлы из железа, жароупорной стали. Чехлы для платиновых термопар изготовляют из фарфора или кварца.

Для хромель-алюмелевых и платино-платинородиевых термоэлектрических термометров применяют измерительные приборы с различной градуировкой. Прибор, который предназначен для хромель-алюмелевого термоэлектрического термометра, не даст правильных показаний с платино-платинородиевым термоэлектрическим термометром.

По данным записывающих приборов можно судить об изменении температуры в течение любого промежутка времени.

В качестве записывающих приборов применяют самопишущие гальванометры и потенциометры. В самопишущих приборах температурные кривые наносятся на бумажной ленте, движущейся в приборе с постоянной скоростью. Потенциометр ЭПП-09 может вычерчивать одновременно температурные кривые для нескольких точек печной установки, т. е. обеспечивает показание сразу нескольких термоэлектрических термометров.

Термометр термоэлектрический — Энциклопедия по машиностроению XXL

Основными средствами для измерения температуры контактным >способом являются жидкостно-стеклянные термометры, термоэлектрические термометры (термопары) и электрические термометры сопротивления, которые широко используются в технике эксперимента в области энергомашиностроения.  [c.173]

СТ СЭВ 1059-78. Метрология. Термометры термоэлектрические рабочие. Общие технические требования.  [c.300]










Термопары — термометры термоэлектрические. Диапазон температур, который можно измерять термопарами, очень широк примерно от —270 до 3000 °С. До 400. .. 500 °С термопары по точности уступают термометрам сопротивления, а при температурах выше 2500 °С — оптическим пирометрам.  [c.64]

Назначение контроля работы котельной установки. Приборы для измерения температуры ртутные термометры, манометрические термометры, термоэлектрические и оптические пирометры. Манометры и тягомеры. Уровнемеры. Газоанализаторы,  [c.606]

Блок нормализации типа БН-12 Предназначен для автоматической компенсации термо-э. д. с. холодных спаев термометров термоэлектрических, преоб-, разования сигналов термометров сопротивления в напряжение постоянного тока, преобразования сигналов потенциометрических датчиков в напряжение постоянного тока, используется в качестве источников регулируемого напряжения, Количество каналов в каждом блоке 2. Количество типов блоков 13.  [c.876]

В технике прочностных испытаний наибольшее распространение получили электрические контактные термометры (термоэлектрические термометры — термопары и термометры сопротивления) и пирометры, основанные на методах измерения температуры тел по их излучению [1, 38].  [c.275]

Максимальное число датчиков, подключаемых к одному БНВ, равно 16. Линия связи БНВ с термометрами сопротивления — трехпроводная. Максимальное сечение жил вводимых кабелей—2,5 мм1 Линия связи БНВ с термометрами термоэлектрическими — двухпроводная. Диапазон выходного нормализованного сигнала термометров сопротивления — от О до 35 мВ.  [c.153]

Термоэлектрические термометры Термоэлектрические термометры —200 (-270) 2200 (2800)  [c.18]

ГОСТ 3044-74. Термометры термоэлектрические. Градуировочные таблицы при температуре свободных концов О °С.  [c.93]

Эталонным прибором, используемым в диапазоне температур от 630,74 до 1064,43 °С, является термоэлектрический термометр с платина-платинородиевыми (10% родия) электродами, соотношение между электродвижущей силой и температурой которого выражается уравнением второй степени.  [c.415]

Термометры, основанные на температурной зависимости термо-ЭДС, — это термоэлектрические термометры или термопары (см. 9.2).  [c.173]

Термоэлектрический термометр основан на температурной зависимости контактных термо-ЭДС в цепи из двух разнородных термоэлектродов [см (7.11)1. При этом происходит преобразование неэлектрической величины — температуры в электрический сигнал — ЭДС. Эти термометры в литературе часто называют-просто термопарами.  [c.174]










Термоэлектрические термометры широко применяют в диапазоне температуры от —200 до -1-2500 °С, но в области низкой температуры (ниже —50-Н —100 °С) они получили меньшее распространение, чем электрические термометры сопротивления в области высокой температуры (выше 1300—1600 °С) их. применяют главных образом для кратковременных измерений.  [c.174]

Существенным достоинством термоэлектрических термометров при экспериментальных исследованиях является то, что они позволяют измерять температуру с достаточной степенью точности в отдельных точках тела или среды, обладают малой тепловой инерцией и могут быть легко и просто изготовлены в условиях исследовательской лаборатории. Размеры этой точки определяются размером рабочего спая термопары чем меньше его размеры, тем меньше егО тепловая инерция (но тем сложнее изготовление). Остальные достоинства этого термометра обусловлены тем, что его выходной сигнал является электрическим.  [c.174]

В практике измерения температуры встречаются измерительные системы, включающие в себя большое число термоэлектрических термометров (несколько десятков и больше), которые, как правило, подключают к одному измерительному прибору с помощью одного или нескольких переключателей каждый переключатель позволяет поочередно подключать к прибору до 20 термопар. Чтобы при измерении термо-ЭДС исключить взаимное влияние термопар от разных переключателей, все неиспользуемые переключатели устанавливают в нулевое положение при этом подключенные к ним термометры оказываются отключенными от прибора.  [c.175]

Чистая платина, для которой Лыо/ о= 1>3925, в наибольшей степени удовлетворяет основным требованиям по химической стойкости, стабильности и воспроизводимости физических свойств и занимает особое место в терморезисторах для измерения температуры. Именно платиновые термометры сопротивления используются для интерполяции международной температурной шкалы в диапазоне от —259,34 до 4-630,74 °С. В этом диапазоне температур платиновый термометр сопротивления превосходит по точности измерения термоэлектрический термометр. Но термометром сопротивления невозможно измерить температуру в отдельной точке тела или среды из-за значительных размеров его чувствительного, элемента кроме того, для измерения электрического сопротивления требуется посторонний источник электропитания.  [c.176]

Термоэлектрическая термометрия основана на температурной зависимости термо-ЭДС (Е), возникающей в термопаре — проводнике, состоящем из двух соединенных разнородных электропроводящих элементов (обычно металлических проводников, реже полупроводников). Термопары широко используются для измерения температур примерно от 4 до 3000 К-  [c.179]

Вопросы термоэлектрической термометрии рассмотрены в [6, 25, 49, 52].  [c.179]

Схема термоэлектрического термометра (термопары) показана на рис. 3.1. Термоэлектроды м (например, медная проволока) и к (например, константановая проволока) сое-  [c.112]

В интервале температур от 903,89 до 1337,58 К эталонным прибором для измерения температуры является платинородий-платиновый термоэлектрический термометр. Один электрод такой термопары изготовлен из платино-родия (10% родия, 90%. платины), а второй — из чистой платины, характеризующейся отношением 7 1оо°с/7 о >1,3920.  [c.76]

В лабораториях, как п 1а-вило, при температурах, превышающих 150—200 °С, ртутные термометры не применяют, а используют термоэлектрический термометр (термопару).  [c.83]

Термоэлектрические термометры (термопары) получили исключительно широкое распространение как в лабораторной практике, так и в промышленности.  [c.86]

Температуру измеряют различными приборами жидкостными и газовыми термометрами, термоэлектрическими и оптическими пирометрами и т. д. Каждый прибор, используемый для измерения температуры, естественно, должен быть отградиурован в соответствии с установленной температурной шкалой.  [c.8]

Промышленные средства для контроля температуры . Термометры термоэлектрические, сопротивления и пирометрические термометры разрабатываются Львовским научно-производственным объединением Термоприбор и выпускаются Луцким и Каменец-Подольским приборостроительными заводами. Причем первый специализируется на контактных , а второй — на бесконтактных фотодиодных преобразователях. Агрегатный комП леке стационарных пирометрических преобразователей АПИРС имеет пределы измерения от 30°С (преобразователь ПЧД). Погрешность измерений АПИРС до 2%.  [c.68]

Термометры термоэлектрические ТПР-1408М, ТПР-1418М предназначены для измерения температур в расплавах солей и металлов. Термопары состоят из платино-родиевых термоэлектродов, армированных керамическими бусами, рабочий спай которых защищен кварцевым наконечником от контакта с расплавом. Конструкция термометра ТПР-1418М приведена на рис. 27.  [c.195]

Точное, опредадение температуры в печах возможно только при помощи специальных приборов. К ним относятся ртутные термометры, термоэлектрические и оптические пирометры.  [c.165]

Из экспериментальных исследований известно, что абсолютная термо-э.д.с. и эффект Томсона для металлов, находящихся в сверхпроводящем состоянии, равны нулю. Поскольку здесь затрагиваются лищь вопросы термометрии, термоэлектрические свойства сверхпроводников в данном случае не должны представлять особого интереса. Тем не менее краткий обзор современных работ, относящихся к термоэлектрическим свойствам сверхпроводников, может оказаться полезным, чтобы дать некоторое представление о порядке величин термо-э. д. с. и точности, с которой они устанавливались.  [c.210]

Измерение температуры газа в объеме помещения проводилось для фрагментов высотой 3 м с помощью 27 хромель-алюмелевых термоэлектрических термометров. Термоэлектрические термометры распределялись равномерно на трех уровнях (1,5, 3 4,5 м над уровнем пола).  [c.108]

Температуру измеряют различными приборами жидкостными и газовыми термометрами, термоэлектрическими пирометрами (термопарами), оптическими пирометрами, в которых используется зависимость излучения тела от температуры и длины волны, и т. д. В практике измерения температуры распространение получили различные температурные шкалы—Иельсия, Фаренгейта, Реомюра, Ренкина. Наиболее употребительной является температурная шкала Цельсия, в которой интервал температур от точки плавления льда до точки кипения воды при атмосферном давлении разбит на сто равных частей, называемых градусами (°С).  [c.10]

Для измерения температуры электрическим способом обычно применяются два вида электрических термометров термометры сопротивления, использующие зависимость сопротивления проводника от температуры, и термометры термоэлектрические, использующие явление Зеебека, т. е. появление термо- лектродвижущей силы при нагревании спая двух металлов.  [c.229]

Существуют следующие группы срелств измерения температуры термометры расширения, манометрические термометры, термоэлектрические преобразователи, термопреобразователи сопротивления, пирометры излучения.  [c.20]

ГОСТ 6616-74. Термометры термоэлектрические ГСП. Общие технические условия. В этот ГОСТ включен также термоэлектрический термометр типа ТВ из вольфрамреиия (5 и 20% рения) с градуировочной характеристикой ВР-5/20. Диапазон измерения температуры 0—2200 С. Термометр применяется в металлургии,  [c.92]

Точность, с которой может быть использован пирометр с ис-чезаюшей нитью для измерения температуры, вполне достаточна для большинства практических применений. Во всяком случае, ограничивающим фактором чаще служит неопределенность в излучательной способности объекта, температура которого подлежит измерению. Однако, несмотря на удобство, точность и надежность, оптический пирометр с исчезающей нитью имеет один существенный недостаток его использование требует активного участия квалифицированного наблюдателя. Его нельзя использовать в тех приложениях, которые нуждаются в непрерывных или быстрых измерениях, а также измерениях в недоступных или опасных ситуациях. По этой причине с самого начала некоторые оптические термометры объединялись с тепловыми, термоэлектрическими, фоторезисторными и фо-тоэмиссионными детекторами. Среди них наиболее удачными оказались оптические термометры с кремниевыми фотоэлементами. Высокая прочность и долговременная воспроизводимость  [c.310]

Чистота платинового электрода эталонного термоэлектрического термометра должна быть такой, чтобы его относительное сопротивление li (100° ) составляло не менее 1,3920. Пла-тинородиевый электрод должен номинально содержать 10 % по массе родия и 90 % по массе платины.  [c.418]

Термоэлектрический термометр должен быть таким, чтобы значения электродвижущей силы Е (630,74 X), Е ( esiAg)] и Е [ 68(Аи)] удовлетворяли следующим соотношениям  [c.418]

Система охлаждения состоит из внутреннего и внешнего контуров, причем внутренний контур замкнутого, а внешний разомкнутого типа. Вода внутреннего контура после охлаждения стенок цилиндров и головки блока поступает к водомасляному 3 и водоводяному 5 холодильникам, откуда с помощью насоса 2 центробежного типа подается снова в рабочие полости дизеля. Внешний контур охлаждения используется для отвода теплоты от нагретой воды внутреннего контура. Для этого вода из бака 10 подается в водоводяной холодильник 5, а оттуда идет на слив. Частота вращения п (1/мин) коленчатого вала двигателя определяется по дистанционному электротахометру, установленному на щитке приборов 15. Температура выпускных газов двигателя измеряется с помощью термопары 14, установленной в выхлопном тракте дизеля, и пирометра 13, закрепленного в щитке приборов. Температура воздуха, поступающего в цилиндры двигателя из продувочного насоса, измеряется также термоэлектрическим термометром. Давление окружающей среды измеряется барометром.  [c.117]


Правильный выбор: термометр сопротивления или термопара

Измерение температуры является одним из основных требований практически при любых условиях технологических процессов перерабатывающей промышленности. В большинстве устройств используются датчики, основанные на двух технологиях. Выбор между этими двумя подходами определяется конкретными требованиями к технологическому процессу и его условиями.

Колебания температуры могут оказывать значительное влияние на прибыльность, безопасность и качество. Это справедливо в отношении разных отраслей промышленности, таких как нефтегазовая, энергетическая, нефтеперерабатывающая, нефтехимическая, фармацевтическая и др. Точность непрерывного контроля температуры зависит от нескольких факторов, в том числе от правильного выбора датчика для конкретных задач и технологических процессов.

Наиболее распространенными устройствами измерения температуры являются термометры сопротивления (ТС) и термопары (ТП). Эти устройства основаны на двух разных технологиях, каждая из которых обладает своими преимуществами, в соответствии с которыми и делается выбор в пользу той или иной технологии.

В конструкции ТС используется тот факт, что электрическое сопротивление металла возрастает с повышением температуры — явление, известное как тепловое сопротивление.

В отличие от ТС, ТП представляет собой замкнутый термоэлектрический датчик температуры, состоящий из двух отрезков проволоки из разнородных металлов, соединенных между собой на обоих концах. При этом если температура на одном конце этих отрезков проволоки (спае) отличается от таковой на другом, в ней возникает электрический ток. Такое явление известно под названием эффекта Зеебека. Возникающее напряжение зависит от конкретных используемых металлов, а также от текущей разницы температур. Сопоставление различных значений напряжения, возникающих при использовании разных металлов, представляет собой основу измерения температуры термопарой.

 

Сравнение технологий

Не существует однозначного ответа на вопрос, какой тип датчика является более эффективным в конкретной ситуации. При эксплуатации каждого из них возникают негативные побочные эффекты, которые необходимо принимать во внимание при выборе термодатчика с должной тщательностью.

Термометры сопротивления изготавливаются из резистивного материала с прикрепленными выводами и, как правило, помещаются в защитную оболочку. В качестве резистивного материала может выступать платина, медь или никель. Наибольшее распространение получила платина — благодаря высокой точности и стабильности результатов измерений и их исключительной линейности в широком диапазоне. Не существует однозначного ответа на вопрос, какой тип датчика является более эффективным в конкретной ситуации. При эксплуатации каждого из них возникают негативные побочные эффекты, которые необходимо принимать во внимание при выборе термодатчика с должной тщательностью.

ТС отличаются высоким изменением сопротивления в расчете на один градус изменения температуры. Наиболее распространенными типами датчиков ТС являются проволочный и тонкопленочный. ТС из витой проволоки изготавливаются либо путем навивания резистивной проволоки на керамический сердечник, либо путем помещения спирально витой проволоки в керамическую оболочку, отсюда и название «проволочные ТС». При изготовлении тонкопленочного ТС тонкое резистивное покрытие осаждается на плоскую керамическую подложку (обычно прямоугольной формы). Как правило, тонкопленочные ТС являются менее дорогими по сравнению с проволочными, поскольку для их изготовления требуется меньшее количество различных материалов.

ТП отличаются более высокой скоростью реакции и более широкими допустимыми диапазонами рабочей температуры, чем ТС, однако имеют более низкую точность.

Обычно показания термометров сопротивления являются значительно более стабильными, и ТС обладают более высокой чувствительностью по сравнению с ТП. Долгосрочное смещение показаний ТС является хорошо предсказуемым, в то время как ТП часто ведут себя неустойчиво в данном отношении. За счет этого обеспечивается такое преимущество ТС, как менее частая потребность в калибровке и, следовательно, пониженная стоимость их эксплуатации. Наконец, ТС обеспечивают исключительную линейность показаний. В сочетании с линеаризацией, произведенной в качественном передатчике, становится достижимой точность около 0,1 °C — значительно более высокая по сравнению с максимально возможной при использовании ТП.

Конструкции термометра сопротивления и термопары

Рис. 1. Конструкции термометра сопротивления и термопары

В отличие от ТС, ТП представляет собой замкнутый термоэлектрический датчик температуры, состоящий из двух отрезков проволоки из разнородных металлов, соединенных между собой на обоих концах. При этом различные сочетания металлов классифицируются как разные типы датчиков и, соответственно, обладают отличающимися характеристиками. Наиболее часто используемыми типами ТП являются тип J (железо и константан) и тип K (хромель и алюмель). ТП отличаются более высокой скоростью реакции и более широкими допустимыми диапазонами рабочей температуры, чем ТС, однако имеют более низкую точность. Конструкция кабелей ТП отличается повышенной прочностью, за счет чего они могут выдерживать высокие уровни вибрации (рис. 1). В таблице приводится сравнение основных характеристик датчиков.

Таблица. Сравнение характеристик рассматриваемых устройств для измерения температуры

Свойство

Термометр сопротивления

Термопара

Точность
Взаимозаменяемость

Класс A: ±[0,15+0,002] °C

Класс B: ±[0,30+0,005] °C

Согласно стандарту IEC 60751

Типичная точность составляет ±1,1 °C или ±0,4 % от измеренного значения температуры (большее из двух значений). Зависит от типа ТП и диапазона измерения. Снижается при использовании удлинительного провода.

Стабильность работы

±0,05 °C по истечении 1000 ч работы при температуре <300 °C. Отклонения повышаются с увеличением температуры. ТС проволочной конструкции имеют более высокую стабильность, чем тонкопленочные.

Сильно зависит от типа термопары, качества кабеля и рабочей температуры. Типичные отклонения составляют от ±2 до 10 °C на 1000 ч работы.

Скорость реакции при установке
в термокармане с погружением
в жидкость

Скорость реакции 6-мм датчика примерно равна скорости реакции термопары.

Скорость реакции 6-мм датчика примерно равна скорости реакции ТС. Немного выше
для 3-мм датчика.

Калибровка

С легкостью подвергается повторной калибровке, что обеспечивает длительный срок службы. Наивысшая точность достигается при специальной взаимной подгонке датчика и передатчика.

Ограничивается сравнением со «стандартной термопарой» на месте измерений.

Возможный диапазон измерения температуры, °C

–200…+850

–270…+2300

Срок службы

Многие годы. Сокращается при использовании под воздействием высоких температур.

Снижение чувствительности приводит
к необходимости частой замены ТП.
Срок службы заметно сокращается
при высоких температурах.
Более высокие издержки за срок службы.

Факторы, которые необходимо учитывать при установке

Используется стандартный медный провод. Достаточно высокая невосприимчивость
к ЭМП и радиопомехам.

Требуется использование дорогого удлинительного кабеля, подходящего
для конкретной ТП. Сигналы малой мощности в значительной степени подвержены ЭМП и радиопомехам.

Устойчивость к вибрации

Очень хорошая при тонкопленочной конструкции.

Очень хорошая при большом диаметре кабелей.

Издержки за срок службы

Более низкие.

Более высокие.

Стоимость приобретения

Тонкопленочная конструкция: примерно одинакова по сравнению с ТП. Проволочная конструкция дороже.

Наиболее дорогими являются термопары
типов R и S.

Эффективность использования
системы с передатчиком

Всегда выше при температурах до +650 °C.

Ниже на один порядок.

 

Выбор наиболее подходящего типа датчика

При выборе типа датчика, наиболее подходящего для конкретного технологического процесса и поставленной задачи, следует предварительно поставить несколько основных вопросов. Ответы на них предоставят ценную информацию.

Каков диапазон измеряемых температур?

При выборе датчика определение правильного температурного диапазона является очень важным. Если температура будет превышать +850 °C, необходимо использовать ТП. При температурах ниже +850 °C можно выбрать как ТС, так и ТП. Кроме того, не стоит забывать, что проволочные ТС обладают более широким диапазоном измерения температур, чем тонкопленочные (рис. 2).

Диапазоны измерения температур различными типами термодатчиков

Рис. 2. Диапазоны измерения температур различными типами термодатчиков

Какова требуемая точность измерения датчика?

Определение требуемого уровня точности является еще одним важным фактором при выборе датчика. Как правило, ТС имеют большую точность по сравнению с ТП, а проволочные ТС — по сравнению с тонкопленочными. Если предположить, что на выбор одной из двух технологий не оказывают влияние другие факторы, это правило помогает сделать выбор наиболее точного датчика.

Вызывает ли опасения вибрация, возникающая в ходе процесса обработки?

Уровень вибрации при технологическом процессе также необходимо учитывать при выборе датчика. ТП обладают наиболее высокой вибростойкостью из всех существующих технологий измерения температуры.

Существуют различные типы термопар, определяющиеся сочетанием используемой в них проволоки. ТП большинства типов могут использоваться для измерения более высоких температур, чем ТС.

Если достоверно известно, что в ходе процесса возникает сильная вибрация, использование ТП позволит достичь максимальной надежности измерения температуры. Тонкопленочные ТС также устойчивы к воздействию вибрации; тем не менее они не обладают достаточной прочностью. Использование проволочных ТС в условиях повышенной вибрации исключено.

 

Правильный выбор — точные результаты

Ключевым моментом для успешного применения датчиков температуры является постановка основополагающих вопросов и подбор датчика, наиболее пригодного для поставленных задач и конкретных технологических процессов с учетом всех имеющихся данных. В качестве примера можно привести принятие решения об использовании датчика температуры на участке трубопровода с постоянно изменяющимися условиями при непрерывной вибрации и изменении температуры в диапазоне –200…+300 °C. Целью такого решения является достижение максимально возможной точности, несмотря на описанные непростые условия. Для указанного диапазона температур пригодны термодатчики обоих типов. Хорошо известно, что ТП обладают высокой стойкостью к вибрации, поэтому на первый взгляд может показаться, что ТП являются хорошим вариантом решения поставленной задачи. Тем не менее в данном конкретном случае требуется выполнение измерений с максимально возможной точностью. Правильным выбором для данной задачи будет использование тонкопленочных ТС. Известно, что тонкопленочные ТС отличаются более высокой стойкостью к вибрации по сравнению с проволочными и обеспечивают более высокую точность измерений по сравнению с термопарами.

Приведем еще один пример: измерение температуры в реакторе в диапазоне +550…+900 °C при низком уровне вибрации. Поставлена цель измерения температуры с точностью ±5 °C. ТС дают стабильно точные показания, особенно в условиях невысокой вибрации. Однако не стоит забывать о диапазоне температур. Как правило, ТС не следует использовать при температурах свыше +850 °C. Поскольку температура данного процесса обработки может подниматься до +900 °C, следует остановить свой выбор на ТП. Вероятность получения неверных показаний датчиков или их отказа повышается при их использовании в неподходящих диапазонах температур.

Facebook

Twitter

Вконтакте

Google+

Конструкция термоэлектрического термометра

ТЕМА: КОНСТРУКЦИЯ ТЕРМОЭЛЕКТРИЧЕСКОГО ТЕРМОМЕТРА

ВВЕДЕНИЕ

Термоэлектрическая способность относится к явлениям, которые происходят на стыках разнородных проводников или внутри одного проводника. Когда существует разница температур между соединениями или проводником.
В 1821 году немецкий физик Томсон Иоганн Зеебек обнаружил, что ток течет в электрической цепи, состоящей из двух разных проводников, когда два перехода в цепи поддерживаются при разных температурах.Стрелка магнитного компаса, поднесенная к такой цепи, показывала отклонение из-за магнитного поля, создаваемого током. Это означало, что по проводникам течет ток. Схема с двумя спаями называется термопарой. Для измерения тока используется довольно небольшой термоэлектрический ток, обычно порядка мкА. Эффект обратимый. Если поменять местами горячий и холодный спаи, направление тока меняется на противоположное.

ТЕОРИЯ
Когда два разнородных металла соединяются вместе на концах.И один спай термопары поддерживается при любой фиксированной температуре (холодной), а другой спай поддерживается в области нагрева, между двумя спаями возникает ЭДС. Это связано с протеканием тока. Этот ток называется термоэлектрическим током.

ПРИБОР
Медный провод, постоянный провод, термометр, два стакана и микроамперметр, кокосовое масло, кубики льда, спиртовая лампа.

ПРОЦЕДУРА

Медная и постоянная проволока соединяются в термопару.W подключил провода, которые нельзя касаться, кроме их концов. Один из спая термопары остается холодным до нуля градусов. Для этого мы взяли стакан со льдом внутри и окунули в него один стык. Другой переход остается горячим. Для этого мы взяли масло в стакан и варили его на спиртовой лампе. И термометр, погруженный в это масло для измерения температуры, а другой спай (горячий) погружается в это масло.
Изображение -1
Отмечается показание микроамперметра, подключенного к стыку в центре медного провода, и также отмечается температура горячего спая.
Затем строится график температуры по оси x и термоэлектрического тока по оси y.

НАБЛЮДЕНИЯ
(I) Направление тока

Горячий спай — Т1, холодный спай — Т2, тогда направление тока (в меди — константан)
Рисунок-2
(ii) Изменение тока с увеличением температура, при которой температура холодного спая составляет 24oС.

Таблица-1

(iii) калибр медного провода. — 0,3 мм
калибр константановой проволоки — 0.3 мм

РЕЗУЛЬТАТ
? Ток возникает из-за разницы между холодным и горячим спаем.
? Производящий ток зависит от природы металлов, образующих термопару.
? Термоэлектрический ток прямо пропорционален температуре горячего спая.
? Когда площадь поперечного сечения велика, вырабатывается больше электроэнергии.
? При увеличении длины производимое термоэлектрическое электричество уменьшается.
? Направление тока зависит от типа металлов, образующих термопару.

СПРАВКА

? Плюс два PHYSICS — XAVIER & Joy — Rosary Publications — 2006
? NCERT TEXT — Плюс два ФИЗИКА.

.

определение термоэлектрического термометра и синонимов термоэлектрического термометра (английский)

термоэлектрический термометр: определение термоэлектрического термометра и синонимы термоэлектрического термометра (английский)

арабский
болгарский
китайский язык
хорватский
Чешский
Датский
нидерландский язык
английский
эстонский
Финский
французский язык
Немецкий
Греческий
иврит
хинди
Венгерский
исландский
индонезийский
Итальянский
Японский
Корейский
латышский язык
Литовский
Малагасийский
норвежский язык
Персидский
Польский
португальский
румынский
русский
сербский
словацкий
словенский
испанский язык
Шведский
Тайский
турецкий
вьетнамский

арабский
болгарский
китайский язык
хорватский
Чешский
Датский
нидерландский язык
английский
эстонский
Финский
французский язык
Немецкий
Греческий
иврит
хинди
Венгерский
исландский
индонезийский
Итальянский
Японский
Корейский
латышский язык
Литовский
Малагасийский
норвежский язык
Персидский
Польский
португальский
румынский
русский
сербский
словацкий
словенский
испанский язык
Шведский
Тайский
турецкий
вьетнамский

сообщить о проблеме

Термометр термоэлектрический

(n.)

1. термометр, использующий термоэлектрический ток для измерения температуры

определение (подробнее)

определение Википедии

сообщить о проблеме

аналоговый словарь

Термометр термоэлектрический (н.) ↕

Википедия

Из Википедии, бесплатная энциклопедия

Страница перенаправления

Термопара

Все переводы термометра термоэлектрического

содержание сенсагента

  • определения
  • синонимы
  • антонимы
  • энциклопедия

Решение для веб-мастеров

Александрия

Всплывающее окно с информацией (полное содержание Sensagent), вызываемое двойным щелчком по любому слову на вашей веб-странице.Предоставьте контекстные объяснения и перевод с вашего сайта !

Попробуйте здесь или получите код

SensagentBox

С помощью SensagentBox посетители вашего сайта могут получить доступ к надежной информации на более чем 5 миллионах страниц, предоставленных Sensagent.com. Выберите дизайн, который подходит вашему сайту.

Бизнес-решение

Улучшите содержание своего сайта

Добавьте новый контент на свой сайт из Sensagent by XML.

Сканирует продукты или добавляет

Получите доступ к XML для поиска лучших продуктов.

Индексирование изображений и определение метаданных

Получите доступ к XML, чтобы исправить значение ваших метаданных.

Напишите нам, чтобы описать вашу идею.

Lettris

Lettris — любопытная игра-тетрис-клон, в которой все кубики имеют одинаковую квадратную форму, но разное содержание. На каждом квадрате есть буква. Чтобы квадраты исчезли и сэкономили место для других квадратов, вам нужно собрать английские слова (left, right, up, down) из падающих квадратов.

болт

Boggle дает вам 3 минуты, чтобы найти как можно больше слов (3 буквы и более) в сетке из 16 букв. Вы также можете попробовать сетку из 16 букв. Буквы должны располагаться рядом, и более длинные слова оцениваются лучше. Посмотрите, сможете ли вы попасть в Зал славы сетки!

Английский словарь
Основные ссылки

WordNet предоставляет большинство определений на английском языке. Английский тезаурус
в основном заимствован из The Integral Dictionary (TID).
English Encyclopedia находится под лицензией Wikipedia (GNU).

Перевод

Измените целевой язык, чтобы найти перевод.
Советы: просмотрите семантические поля (см. От идей к словам) на двух языках, чтобы узнать больше.

5550 онлайн посетителей

вычислено за 0,062 с

.

определение термоэлектрика по The Free Dictionary

Таким образом, газовая дочерняя компания вносит свой вклад в выработку мегаватт, поддерживая оптимальные уровни на всех теплоэлектростанциях, чтобы гарантировать электрическое обслуживание на национальной территории.

Что касается TEC, то в [21] предлагается модель всей системы теплопередачи, но со значительными упрощениями при моделировании термоэлектрического модуля, без учета нелинейного материала и с учетом стационарных условий.

Несмотря на термодинамический недостаток снижения эффективности Карно, этот метод позволяет использовать обычные термоэлектрические материалы, основанные на [Bi.sub.2] [Te.sub.3], избегая высокотемпературных материалов и преобразовывая их. суммы мощности при меньших затратах.

Три типа проводящих материалов исследуются для использования в термоэлектрических устройствах: неорганические, органические и гибридные материалы.

Неорганические термоэлектрические материалы эффективно преобразуют тепло в электричество, но не очень гибкие.

Высокопроизводительные термоэлектрические модули компании представляют собой специально разработанные устройства, обеспечивающие чувствительный контроль температуры с точностью до 0,1 градуса Цельсия.

Такаюки Хачида, генеральный менеджер отдела продаж термоэлектрических модулей, сказал: «Ferrotec занимает 36 процентов мирового рынка термоэлектрических модулей.

Теперь существует недорогой и экологически чистый способ их производства с использованием простейших компонентов: обычного карандаша, фотокопировальной бумаги и токопроводящей краски достаточно для преобразования разницы температур в электричество посредством термоэлектрического эффекта.

Термоэлектрические материалы должны иметь низкую теплопроводность, несмотря на их высокую электропроводность.

ТОКИО, 12 февраля 2018 г. — (JCN Newswire) — Корпорация NEC и Университет Тохоку применили новые технологии, разработанные NEC, которые используют ИИ для прогнозирования характеристик неизвестных материалов, для совместной разработки передовой технологии термоэлектрического преобразования, известной как термоэлектрический преобразователь. (TE) устройство (1), использующее спиновой ток (2), и достигло в 100 раз более высокой эффективности термоэлектрического преобразования в течение примерно 1 года.в котором a — электрическая проводимость, S — коэффициент Зеебека (также обычно называемый термоЭДС или термоэлектрической мощностью), T — абсолютная температура, [[каппа]. Sub.e] — электронная теплопроводность, и [[каппа ] .sub.L] представляет собой решеточную теплопроводность. В настоящее время самой большой проблемой полупроводниковой технологии термоэлектрической генерации является низкая эффективность ее термоэлектрического преобразования, которая составляет всего 5-7% [I], и намного ниже, чем у гидроэнергетики. , тепловая энергия, атомная энергия, энергия ветра и фотоэлектрическая энергия..

определение термоэлектрика по The Free Dictionary

Таким образом, газовая дочерняя компания вносит свой вклад в выработку мегаватт, поддерживая оптимальные уровни на всех теплоэлектростанциях, чтобы гарантировать электрическое обслуживание на национальной территории.

Что касается TEC, то в [21] предлагается модель всей системы теплопередачи, но со значительными упрощениями при моделировании термоэлектрического модуля, без учета нелинейного материала и с учетом стационарных условий.

Несмотря на термодинамический недостаток снижения эффективности Карно, этот метод позволяет использовать обычные термоэлектрические материалы, основанные на [Bi.sub.2] [Te.sub.3], избегая высокотемпературных материалов и преобразовывая их. суммы мощности при меньших затратах.

Три типа проводящих материалов исследуются для использования в термоэлектрических устройствах: неорганические, органические и гибридные материалы.

Неорганические термоэлектрические материалы эффективно преобразуют тепло в электричество, но не очень гибкие.

Высокопроизводительные термоэлектрические модули компании представляют собой специально разработанные устройства, обеспечивающие чувствительный контроль температуры с точностью до 0,1 градуса Цельсия.

Такаюки Хачида, генеральный менеджер отдела продаж термоэлектрических модулей, сказал: «Ferrotec занимает 36 процентов мирового рынка термоэлектрических модулей.

Теперь существует недорогой и экологически чистый способ их производства с использованием простейших компонентов: обычного карандаша, фотокопировальной бумаги и токопроводящей краски достаточно для преобразования разницы температур в электричество посредством термоэлектрического эффекта.

Термоэлектрические материалы должны иметь низкую теплопроводность, несмотря на их высокую электропроводность.

ТОКИО, 12 февраля 2018 г. — (JCN Newswire) — Корпорация NEC и Университет Тохоку применили новые технологии, разработанные NEC, которые используют ИИ для прогнозирования характеристик неизвестных материалов, для совместной разработки передовой технологии термоэлектрического преобразования, известной как термоэлектрический преобразователь. (TE) устройство (1), использующее спиновой ток (2), и достигло в 100 раз более высокой эффективности термоэлектрического преобразования в течение примерно 1 года.в котором a — электрическая проводимость, S — коэффициент Зеебека (также обычно называемый термоЭДС или термоэлектрической мощностью), T — абсолютная температура, [[каппа]. Sub.e] — электронная теплопроводность, и [[каппа ] .sub.L] представляет собой решеточную теплопроводность. В настоящее время самой большой проблемой полупроводниковой технологии термоэлектрической генерации является низкая эффективность ее термоэлектрического преобразования, которая составляет всего 5-7% [I], и намного ниже, чем у гидроэнергетики. , тепловая энергия, атомная энергия, энергия ветра и фотоэлектрическая энергия..

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *