Тензодатчик как проверить: Диагностика, проверка тензодатчика на исправность

Содержание

Диагностика, проверка тензодатчика на исправность

Внимательно проверьте общее техническое состояние системы измерения веса:

  • наличие заземляющего контура (шунта), затяжку резьбовых соединений;
  • проверка отсутствия следов коррозии, повреждения тензодатчиков, узлов встройки, грузоприемного устройства;
  • проверка суммирующих плат; весового индикатора на имитаторе тензодатчика;
  • тестирование весового индикатора, подключение к имитатору тензодатчика;
  • осмотр состояния кабельной продукции, герметичность кабельного ввода на тензодатчике;

Для выполнения диагностики Вам понадобится:

Тестер HY-LCT – с помощью данного устройства  возможно выполнение  всех необходимых замеров.

В случае отсутствия специализированного оборудования для проверки тензодатчиков, ее можно произвести с помощью следующих устройств:

  • Вольтомметр с пределом измерения ≤0.5Ω и ≤0.1 mV (на крайний случай качественный мультиметр) для измерения нулевого баланса, и целостности тензометрического моста;
  • Мегомметр 1000 МОм не более 50В постоянного тока, для измерения сопротивления изоляции;
  • Грузоподъёмное устройство (домкрат, кран и т.д.), необходимое для поднятия грузоприемного устройства и освобождения тензодатчика от воздействия нагрузки;
  • Подготовить таблицу для фиксации значений снимаемых при замере;

 

Для выявления неисправности тензодатчика достаточно провести 4 основных типа испытаний. Рассмотрим последовательность их выполнения и для чего они необходимы:

1)  Проверка сопротивления изоляции.

Для выполнения данного теста, необходимо подключить мегомметр к кабелю тензодатчика и проверить на наличие тока утечки между корпусом тензодатчика и токоведущими частями. Для проверки тензометрических цепей Keli  допускается применение мегомметра напряжением не более 50В постоянного тока.

Для функционирующего тензодатчика значение снятых замеров не должно быть ниже  5 Мом. Если значение сопротивления изоляции меньше 1кОм – это свидетельствует о явном коротком замыкании. Короткое замыкание может быть между корпусом тензодатчика и токоведущими частями (тензорезисторами), а также в кабеле. При коротком замыкании в кабеле, его можно заменить, если это предусматривает конструкция тензодатчика.

2)  Проверка тензометрического моста – Уитстона.

Отсутствие повреждений моста проверяется путем измерения входного и выходного сопротивления, а также сопротивления баланса моста. Отсоедините датчик из коробки или измерительного прибора. Входные (EXC+, EXC-) и выходные (SIG+, SIG-) сопротивления измеряется омметром, подключаемом к каждой паре входных и выходных проводов тензодатчика. Затем производится сравнение входного и выходного сопротивления со значениями в калибровочном паспорте (выдается производителем) или с техническими данными из каталога. Сопротивление баланса моста измеряется поочередным подключением омметра к каждой паре выводов кабеля. Значение сопротивления между парами, не должно отличаться более чем на 1-2 Ома.

Расхождения входного и выходного сопротивления тензодатчика от паспортных значений, говорит  о неисправности тензометрического моста,  как следствие — появление сопротивления разбаланса, оно свидетельствует о неработоспособности тензодатчика и необходимости его замены. Данные неисправности, как правило возникают вследствие электрического воздействия (сварка, статическое поле, электрический пробой), физического (динамические удары, прокручивание, боковые нагрузки).

3) Проверка нулевого баланса (в ненагруженном состоянии).

Данный тест проводится  для проверки состояния тензодатчика в ненагруженном состоянии,  для этого тензодатчик извлекают из узла встройки и убирают с датчика веса всю приложенную нагрузку. Далее необходимо подключить источник питания, рекомендуемый производителем для правильной работы тензодатчика,  в цепь возбуждения тензодатчика, а с выходной цепи снять сигнал в мВ, и сравнить со значением указанным  в паспорте на датчик. Для тензодатчиков Keli Sensing рекомендуемое напряжение питания составляет 5-12V(DC).

Пример: при чувствительности тензодатчика 2мВ/В и питании 10В, напряжение нулевого баланса не должно превышать +- 0.02 мВ.

Если  значения выходного сигнала существенно отличаются от паспортных значений, можно судить о деформации упругого элемента тензодатчика, также возможна отклейка или нарушение изоляционного слоя тензорезисторов.

4) Проверка тензодатчика в нагруженном состоянии.

Для данного теста тензодатчик должен быть подключен к весовому индикатору или к прибору со стабильным источником питания от 5Vдо 12V. С помощью милливольтметра, подключенного к выходу тензодатчика, нагружают датчик и фиксируют показания выходного сигнала, при снятии нагрузки показания выходного сигнала должны вернуться к исходным. При проведении данного теста необходимо проводить несколько циклов нагружения-разгружения тензодатчика  различным весом, но не менее 50% от НПВ датчика. Также необходимо удержание веса не менее 30 мин. в каждом из циклов и анализ изменения показаний в течении данного периода времени. В случае если при проведении теста показания будут отличаться от значения постоянно прикладываемой нагрузки,  а также не будут возвращаться к исходным значениям, можно судить о нарушении контакта в клеевом слое между тензорезисторами и упругим элементом. Такой тензодатчик требует замены.

Диагностика тензодатчика


Тензодатчики являются основным первичным устройством преобразования физической величины веса в нормированный электрический сигнал. Который впоследствии обрабатывается вторичными преобразователями (весовой индикатор, весопроцессор, аналого-цифровой преобразователь и т.д.). Тензодатчик, является наиболее уязвимым компонентом весоизмерительной системы. В процессе эксплуатации на датчики веса воздействуют: агрессивная окружающая среда, ударные динамические нагрузки, электростатическое воздействие (сварка), вибрации и т.д. Поэтому в периоды технического обслуживания, перед установкой на весы, а также в аварийных случаях, существует необходимость диагностики тензодатчиков.Далее рассмотрим алгоритм проверки состояния тензодатчика.


Общие рекомендации


Внимательно проверьте общее техническое состояние системы измерения веса:


  • наличие заземляющего контура (шунта), затяжку резьбовых соединений;

  • проверка отсутствия следов коррозии, повреждения тензодатчиков, узлов встройки, грузоприемного устройства;

  • проверка суммирующих плат; весового индикатора на имитаторе тензодатчика;

  • тестирование весового индикатора, подключение к имитатору тензодатчика;

  • осмотр состояния кабельной продукции, герметичность кабельного ввода на тензодатчике;


Для выполнения диагностики необходимо:


  • в идеале, калибратор либо вольтомметр с пределом измерения ≤0.5Ω и ≤0.1 mV (на крайний случай качественный мультиметр) для измерения нулевого баланса, и целестности тензометрического моста;

  • мегомметр 1000 Мом не более 50В постоянного тока, для измерения сопротивления изоляции;

  • грузоподъёмное устройство (домкрат, кран и т.д.), необходимое для поднятия грузоприемного устройства и освобождения тензодатчика от воздействия нагрузки;

  • подготовить таблицу для фиксации значений снимаемых при замере;


Алгоритм проведения диагностики и поиск неисправности тензодатчика:



На предложенном ниже алгоритме изображены возможные неисправности и методика поиска неисправности. Далее подробнее рассмотрим каждый из тестов и последовательность выполнения проверки тензодатчика.


Тест 1: Проверка нулевого баланса


Измерение нулевого баланса необходимо для проверки состояния тензодатчика в ненагруженном состоянии, для этого тензодатчик извлекают из узла встройки и убирают с датчика веса всю приложенную нагрузку. Далее подключают источник питания 10 В в цепь возбуждения тензодатчика, с выходной цепи снимают сигнал в мВ и сравнивают со значением в калибровочном листе. Пример: при чувствительности тензодатчика 2мВ/В и питании 10В, напряжение нулевого баланса соответствует +- 0.02 мВ. В случае если значения выходного сигнала существенно отличаются от паспортных значений, можно судить о деформации упругого элемента тензодатчика, а также нарушении изоляционного слоя тензорезисторов.


Тест 2: Проверка сопротивления изоляции




Производится подключением мегомметра к кабелю тензодатчика и проверке на наличие тока утечки между корпусом тензодатчика и токоведущими частями. Низкое значение сопротивления изоляции меньше 1кОм свидетельствует о коротком замыкании (к.з.). Нормальным значением является сопротивление 5Мом. Короткое замыкание может быть между корпусом тензодатчика и токоведущими частями, а также в кабеле. При к.з. в кабеле и появлении тока утечки, кабель можно заменить, если это предусматривает конструкция тензодатчика.


Тест 3: Проверка целостности тензометрического моста (Мост Уитстона)


Целостность моста проверяется путем измерения входного и выходного сопротивления, а также сопротивления баланса моста. Отсоедините датчик из коробки или измерительного прибора. Входные и выходные сопротивления измеряется омметром, подключаемого к каждой паре входных и выходных проводов тензодатчика. Далее производится сравнение входного и выходного сопротивления со значениями в калибровочном сертификате или с технической спецификацией оригинального тензодатчика. Сопротивление баланса моста измеряется поочередным подключением омметра к каждой паре выводов кабеля. Значение сопротивления между парами, не должно отличаться более чем на 1-2 Ома.


Отличие входного и выходного сопротивления тензодатчика от паспортных значений, свидетельствует о неисправности тензометрического моста, появление сопротивления разбаланса, означает неработоспособность тензодатчика и необходимость замены. Подобные неисправности появляются, как правило, в следствии электрического воздействия (сварка, статическое поле, электрический пробой), физического (удары, прокручивание, боковые нагрузки), термического.


Тест 4: Проверка под нагрузкой


Датчик должен быть подключен к весовому индикатору или к прибору со стабильным источником питания не менее 10В. С помощью милливольтметра, подключенного к выходу тензодатчика, нагружают датчик и фиксируют показания выходного сигнала, при снятии нагрузки показания выходного сигнала должны вернуться к исходным . Будьте предельно осторожны, не перегрузите тензодатчик! В случае если при проведении теста показания будут отличаться при постоянно прикладываемой нагрузке и не возвращаться к исходным значениям, можно судить о нарушении контакта в клеевом слое между тензорезисторами и упругим элементом. Тензодатчик требует замены.

Закон Техники. Ремонт и техническое обслуживание. • Просмотр темы

Тензометрический датчик – деталь дорогая и капризная: боится сварки, скачков напряжения и даже может выйти из строя при неправильном подключении.
Вдобавок, производители тензодатчиков (особенно китайские) могут указать ошибочную цветовую маркировку проводов (или не указать ее совсем).

Изображение

Испытуемый: 4-х проводной тензодатчик производства Корея (6-ти проводной будет рассмотрен ниже).

Инструменты: мультиметр в режиме омметра.
Время: 5 мин.
Сложность: средняя.

1. Один из проводов — экран. Обычно он черного цвета. Для уверенности можно зачистить часть верхнего слоя изоляции кабеля. Для наших измерений он не нужен.

2. Поочередно измеряем сопротивление между оставшимися 4-мя концами. Всего 6 вариантов: назовем концы 1, 2, 3, 4 (Белый, Красный, Зелелный, Синий), тогда варианты измерений такие – 1-2 (Бел.-Кр.), 1-3 (Бел.-Зел.), 1-4 (Бел.-Син.), 2-3 (Кр.-Зел.), 2-4 (Кр.-Син.) и 3-4 (Зел.-Син.).

Изображение

В нашем случае получаем:
1-2 (Бел.-Кр.) – 405,9 Ом,
1-3 (Бел.-Зел.) – 342,5 Ом,
1-4 (Бел.-Син.) – 343,8 Ом,
2-3 (Кр.-Зел.) – 288,3 Ом,
2-4 (Кр.-Син.) – 287,4 Ом,
3-4 (Зел.-Син.) – 350,6 Ом.

3. Тензометрические датчики имеют стандарт величины выходного сопротивления: 350, 700 и 1050 Ом. Существуют, конечно, и нестандартные датчики. Но могу сказать с 99,9% гарантией – ваш тензодатчик имеет 350 или 700 Ом на выходе.
Собственно, вся задача проверки подключений тензодатчика сводится к поиску пары выходного сигнала (на схеме обозначена «+ Сигнал» и «– Сигнал»). Полярность «плюс» или «минус» – не важно.

Изображение

Итак, в нашем случае видим, что тензодатчик скорее всего исправен и выходной сигнал должен сниматься с концов 3-4 (Зел.-Син.), т.к. сопротивление точно соответствует 350 Ом. Методом исключения находим, что питание должно подводиться на концы 1-2 (Бел.-Кр.). Здесь полярность тоже безразлична.

Схема подключения 6-ти проводного тензодатчика:

Изображение

То есть, нужно только определить, какие концы являются дублирующими для «+ Питание» и «– Питание». Делается это мультиметром в режиме позвонки (проверки диодов).

Справка. Обратная связь по питанию используется некоторыми производителями весопреобразующих устройств для коррекции показаний весов. Большинство производителей не используют эти выводы совсем, или подключают их параллельно с питанием тензодатчика.

Вот, собственно, и все. Таким незамысловатым способом были подключены некоторые тензодатчики, производители которых не потрудились указать маркировку или этикетка с маркировкой стерлась.

Можно, конечно, приобрести специальный тестер для тензометрических датчиков. Но так как необходимость такой проверки возникает максимум раз в пол-года – тестирование омметром считаю самым оптимальным способом.

© Разрешается использование материалов сайта с обязательной установкой активной гиперссылки www.biltech.ru

Тензометрический датчик: что это, подключение, проверка

В современном производстве достаточно часто возникают ситуации, когда требуется проведение точных замеров уровня деформации объекта, а также его выражение в понятных численных значениях на электроприборах. Разбираться с этой задачей поручено таким устройствам, как тензометрические датчики. Сегодня они представлены на рынке в различных разновидностях, что делает поиск подходящего трудоемкой задачей, требующей хорошего знания технических моментов этих датчиков.

Измерительные приборы

Назначение и классификация

Что такое тензодатчик? Тензометрические датчики были разработаны для использования в составе высокоточного измерительного оборудования.  В задачи тензодатчика входит выполнение функций преобразователя для переработки физической величины измеряемого веса в электрический сигнал. Позже этот сигнал также передается на последующее преобразование, которым может заниматься весовой индикатор или процессор. Основным предметом замеров тензометрического датчика является степень деформации объекта в момент, когда его структура нарушается и перестраивается для оказания сопротивления внешней силе, что влияет на него. Датчик улавливает колебания объекта от этого процесса и преобразует их в цифровые сигналы.

тензометрический датчик

Таким образом, тензометрический датчик, применим для целого спектра измерительных задач:

  • Измерение веса.
  • Замеры степени ускорения
  • Контроль перемещения объекта.
  • Замеры крутящего момента.
  • Замеры давления.

цилиндрический и S-образный датчики

Пригодность отдельно взятой модели замерочного устройства для какой-либо из перечисленных задач зависит от его архитектуры и назначения. По последним параметрам тензометрические датчики делятся на:

  • S-образные датчики получили свое название из-за формы корпуса. Их принцип действия включает в себя как реакцию на сжатие объекта измерения, так и на растяжение. В большинстве приборов этот тип тензодатчиков работает именно по последнему принципу.
  • Одноточечные виды в своей конструкции несут всего один датчик замер, который располагается строго по центру платформы. Это делает их одной из самых доступных разновидностей на рынке, встречающейся в торговых и вагонных весах, а также в дозаторах.
  • Колонные тензометрические датчики получили корпуса в виде колонн, которые позволяют им мониторить объект во время его сжатия. Наличие в их конструкции опорных поверхностей позволяет изделию самостоятельно возвращаться в исходное положение после проведения замер. Отличаются применением на весах с высокой грузоподъемностью, позволяя замерять вес крупных транспортных средств.
  • Цилиндрические используются для измерения реакции объекта на сжатие. Не самый богатый функционал этого типа объясняется отсутствием степеней свободы качения. Цилиндрические датчики полезны в вагоноизмерительных весах, т.к. могут работать с большими массами.
  • Мостовые представлены в виде статично закрепленной балки, на центр которой вешается груз. Встретить такие датчики можно в весах для небольших транспортных средств.
  • Балочные. Подобно мостовым, конструкция тензодатчика представлена балкой на неподвижной опоре. Однако, в отличие от аналога, в балонных устройствах основная нагрузка приходится на конец балки.
  • Миниатюрные тензодатчики разработаны для использования в условиях ограниченного пространства и являются самой мобильной разновидностью. Часто применяются в лабораторных условиях и на испытательных стендах.

Технические особенности

Даже при внушительном разнообразии различных моделей тензометрических датчиков, у них есть технические особенности, объединяющие между собой все разновидности устройств. В первую очередь речь о погрешности результатов замер, которая в той или иной степени присуща любому типу весовых тензодатчиков. Тем не менее, в самых современных устройствах для измерения веса устанавливаются электронные модели, которые отличаются повышенной точностью замер степени деформации. Такие устройства относятся к классу С3, который предлагает возможность проведения измерения с погрешностью всего в 0.02 %. Ещё одной интересной деталью функционала тензометрических датчиков является возможность измерительного устройства с несколькими датчиками сохранять свою работоспособность, если один из них выйдет из строя.

тензодатчик

Отдельно стоит подчеркнуть и материалы, из которых выполнены компоненты тензодатчиков. Чаще всего в эксплуатации встречаются изделия на основе легированной стали или алюминия, благодаря которым датчики обладают отличной долговечностью. Для весов, используемых в пищевой промышленности, принято применять датчики из нержавеющей стали, которые отличаются высокой устойчивостью к коррозии и защитой от влаги уровня IP68.

Устройство и принцип работы тензодатчика

Изгиб и форма корпуса играют большую роль в том, как работает тензодатчик. Принцип действия может быть ориентированным на изгиб моста при замере, его сжатие или растяжение. Наполнение корпуса зависит от типа датчика и может включать в себя множество других блоков, включая преобразователи, форматирователи питания и так далее. Например, в каждом цифровом устройстве должен быть преобразователь аналогового сигнала, которые будет производить перевод механических импульсов в электросигналы.

Устройство и принцип работы тензодатчика

Еще одним важным нюансом остается то, является ли датчик резистивным или пленочным, что отражается на принципе его работы. Первый представлен в виде подложки, которая покрытия резистивным слоем. В случае, если речь идет про пленочный датчик, то в качестве покрытия будет использована тонкая и не плотная фольга. На проволочных устройствах именно проволока намотана на ее гибкой поверхности.

Работа измерительных приборов заключается в том, что подложка с датчиками оказывается платформой весов, на которые устанавливается предмет измерения. В зависимости от типа считывающего устройства, обложка либо сгибается, либо растягивается, что в любом случае передает механический импульс, который в электронных моделях преображается в цифровой сигнал и отправляется на дисплей. Как только предмет убирают с весов, обложка возвращается в изначальное положение и импульсы перестают поступать.

Выбрать тензометрический датчик

тензодатчик на стене

Как и у любого другого точного прибора, у тензодатчиков веса есть ряд важных технических и пользовательских критериев, которые должны соблюдаться покупателем, который хочет правильно подобрать себе это устройство:

  • Материал. Основная роль материала, из которого изготовлен корпус и компоненты датчика, сводится к его долговечности и способности выдерживать механические нагрузки. Большинство разновидностей устройств сделано из стали, будь то легированной или нержавеющей. Исключение составляют недорогие одноточечные классы тензодатчиков, которые производятся из алюминия, что не убавляет их технических качеств. Тем не менее, тот или иной вид материала имеет влияние на итоговую стоимость устройства.
  • Схема подключения тензометрического датчика. Тут выбирать придется между четырех- и шестижильной схема подключения датчика. Как правило, последняя требуется в случае, если установка устройства происходит на измерительный прибор с большим количество смежных датчиков, чей уровень сопротивления заметно отличается от устанавливаемой модели.
  • Наибольший предел измерения. Самое важное, что нужно знать об этом критерии — он определяет механическую прочность и грузоподъемность весов под управлением тензометрического датчика. Если замеряемый груз серьезно превышает НПИ, есть риск порчи и деформации самого датчика. Потому следует учитывать то, для каких целей собираются конкретные весы и какие предметы будут проходить замеры на них.
  • Класс точности измерения. Этот параметр обозначается буквами латинского алфавита и цифрами от D1 до С6. Большинство востребованных тензодатчиков обладают погрешностью в пределах указанных классов. При этом, самым распространенным классом является С3, в который входит большинство доступных измерительных устройств.
  • Способ закрепления. По этому критерию выбор довольно разнообразен и должен опираться на удобство пользователя. Среди вариантов есть датчики с фланцевым, линейным и боковым фиксациями. Также возможна установка тензодатчиков через внутреннюю или внешнюю резьбу, в зависимости от того, что позволяет конструкция устройства, в которому он крепится.
  • Тип защиты корпуса от вредных воздействий окружающей среды. Если измерительному прибору предстоит работать в экстремальных условиях или в иной среде, наполненной агрессивными факторами, стоит позаботиться о наличии соответствующей защиты на тензодатчике. Например, подбирать устройство с устойчивостью к химическому воздействию, перепаду температур, грязи и пыли, электромагнитного воздействия и так далее.
  • Номинальный выходной сигнал выражается в mV/V. Именно этот сигнал посылается и преобразуется тензодатчиком в момент, когда происходят замеры груза и его деформации.
  • Гистерезис является максимальным показателем разницы между значениями измерения одной нагрузки при ее увеличении с нуля и отклонении от номинального уровня.

Таким образом, выбор тензодатчика веса требует тщательного изучения его технических параметров и понимания принципов работы устройства, чтобы иметь представления о том, какие показатели обладают наибольшей важностью и при отборе.

Как подключить

Подключение тензодатчика легко выполняется своими руками в соответствии с простой инструкцией. Важную роль в процессе играет длина кабеля подключения, которую нужно учитывать ещё на стадии подбора датчика. Может потребоваться усилитель в виде контроллера SE 01, который уменьшит погрешность измерений в случае, если потребуется увеличивать размеры контакта для подключения. Провода самих датчиков должны быть заземлены с помощью блока для разветвления, устанавливаемого в одной точке, где они все пересекаются. Данная мера обязательна для предотвращения возможного замыкания.

Схема для подключения тензодатчика

Схема для подключения тензодатчика достаточно проста и подразумевает соединение контактов устройства с измерительным прибором в соответствии с их значениями, описанными на рисунке выше. Кабель, которым монтируется прибор, также нуждается в обязательном экранировании.

После подключения останется провести проверку и калибровку тензометрического датчика. Последняя выполняется одним из двух методов — стандартным или электронным. При первом пользователь записывает значения датчика при нулевой загрузке, после чего устанавливает на весы предмет с эталонным весом, который также вписывается в качестве штатного показателя. Электронный вариант подразумевает ручной ввод минимального и максимального допустимого веса.

Проверка тензодатчика

Проверка весовых тензодатчиков является обязательным этапом подготовки измерительного прибора к работе и проводится сразу после подключения всех контактов устройства. Исправность изделия проверяется тремя способами:

  • Диагностика тензометрического моста-Уитстона осуществляется замерами с помощью омметра сопротивления на его входе и выходе.
  • Проверка в нагруженном состоянии производится милливольтметром, когда датчик подключен к стабильному источнику питания с напряжением от 5 до 12 V.
  • Испытание при нулевой нагрузке проводится с помощью вольтметра при отсутствии нагрузки. Если такового под рукой нет, подойдет хороший мультиметр. В процессе потребуется подключить замерное устройство и подать сигнал, чтобы проверить его значение на выходе. Оно должно соответствовать значениям в паспорте датчика.

Проверка тензодатчика

Видео по теме

Хорошая реклама

 

Основные неисправности тензометрических автомобильных весов часть 1.

Основные неисправности тензометрических автомобильных весов часть 1. — ЮТЭК

ЮТЭК > Ремонт весов > Основные неисправности тензометрических автомобильных весов часть 1.

Сегодня разберем вопрос сервисного ремонта на примере автомобильных электронных весов. Прогресс в сфере производства тензодатчиков неизбежно ведет за собой рост качества данных элементов, но так или иначе ничто не вечно, особенно кода данный модуль подвергается постоянному механическому воздействию. Опираясь на опыт нашей организации в сервисном обслуживании тензометрических весов, рассмотрим основные причины выхода их из строя:

• Обрыв цепи сигнала, либо питания
•Разгерметизация тензометрического модуля
• Нарушение изоляции сигнального кабеля, либо кабеля питания может повлечь за собой не только разрыв контактна, но и разгерметизацию самого тензодатчика
• Деформация металлоконструкции
• Инородные объекты, препятствующие полноценной работке механики конструкции
• Неисправность весового преобразователя
• Брак соединительной коробки тензодатчиков

Разберем каждую неисправность подробнее.

Обрыв цепи сигнала, либо питания

Довольно часто случается так, что весы не подвергались преждевременному износу, не перегружались и обслуживались согласно инструкции, предписанной производителем, однако в самый неподходящий момент просто перестали работать. Бить тревогу и судорожно обзванивать сервисные организации не стоит, если эта ситуация произошла не в гарантийный период, необходимо взять на вооружение вольтметр, набор отверток и попытаться выяснить причину неисправности.

Первым делом необходимо найти и раскрутить соединительную коробку, (как правило, она находится под весами, либо в специально отведенном под нее лючке) обнаружить ее довольно просто, из нее выходит сигнальный кабель, непосредственно ведущий к весовому терминалу. Далее записываем, либо фотографируем последовательность цветов сигнала и питания, затем раскручиваем клеммы и «прозваниваем» питание (как правило это черный «-» и красный «+» провода) и сигнал ( часто белый «-» и зеленый «+»). В случае подобной диагностики нет необходимости обладать специальными техническими знаниями, достаточно проанализировать показания всех датчиков и сделать очевидный вывод, если один из датчиков не «звонится», соответственно проблема в нем. Чаще всего причиной подобной неприятности служит перебитый либо надорваный кабель, останется лишь скоммутировать его по цветам, (в идеале пропаять) заизолировать и снова проверить его мультиметром, скорее всего проблема разрешится.

Разгерметизация тензометрического модуля

Разгерметизация тензодатчика подразумевает под собой попадание влаги на чувствительный элемент (тензорезистор), что выводит датчик из строя, без возможности какого-либо восстановления.

Довольно часто, но все же на порядок реже, первой причины, встречается проблема разгерметизации тензометрического датчика. Это происходит как по вине производителя – производственный брак, так и по вине пользователя – несоблюдение предписанных инструкций.

Производственный брак тензодатчика – явление довольно редкое, ведь перед его отправкой конечному потребителю, датчик проходит множество проверок как на герметизацию, так и на механические воздействия, после которых ему присваивается индивидуальный номер и паспорт с соответствующими характеристиками.

Эксплуатация весов не должным образом, в свою очередь, явление довольно распространенное, спустя год-два беспроблемной эксплуатации, многие забывают о том, что недопустима эксплуатация весов транспортом с перегрузом, так же как и превышение установленного скоростного режима авто на грузоприемной платформе. Ярким примером последствий данных пренебрежений служит деформация корпуса тензодатчика с последующей разгерметизацией. Подобное случается нередко и для того, чтобы этого избежать разгерметизации тензометрического датчика, следует придерживаться установленным требованиям эксплуатации. Так же не лишним будет периодический осмотр тензодатчиков, если к ним есть открытый доступ без применения подъемной техники, в ином случае подобные манипуляции лучше доверить компетентным лицам.

Нарушение изоляции сигнального кабеля, либо кабеля питания может повлечь за собой не только разрыв контактна, но и разгерметизацию самого тензодатчика.

Еще одним неприятным моментом в неисправности весов может послужить попадание влаги на чувствительные элементы тензодатчика (тензорезисторы) за счет нарушения изоляции кабеля датчика. Данная ситуация довольно нетривиальна, хоть и встречается нередко. Особенность данной поломки заключается в том, что при повреждении изоляции кабеля тензодатчика, сам датчик может подсасывать влагу, через каналы коммутации, идущие к тензомосту. Самое коварное в выявлении данного факта – это поведение тензодатчика. Он может какое-то время выдавать вполне адекватные показания и даже при замере номинального сопротивления мультиметром, значения не будут выходить за рамки нормы, однако при все при этом обрабатываемый сигнал будет «прыгать» вверх и вниз от -170% до +170% показаний массы. Выявить такую проблему довольно сложно и для точо, чтобы верно определить неисправный датчик, необходимо иметь специальное оборудование, однако подобные опереции может выполнять весовой терминал NEWTON-2, достаточно зайти в режим диагностики и следовать инструкциям.

8-938-135-69-74 — ЗВОНИТЕ!  МЫ ПОМОЖЕМ В ЛЮБОЕ ВРЕМЯ
БЕСПЛАТНАЯ КОНСУЛЬТАЦИЯ !


Почему ломаются тензодатчики в весах?

   Многие люди, которым приходилось держать тензодатчик в руках, на представляют, как его можно сломать или вывести его из строя. Ведь на вид это металлическая балка, толщиной в несколько сантиметров. Диагностика весов, в результате которой определяется, что один или два датчика вышли из строя из-за перегрузки воспринимается крайне скептично и с высшей степенью недоверия. «Ну как такую железку можно сломать, вот же она, целая» — говорят клиенты.

   Попробуем разобраться в том, как тензодатчик выходит из строя. Для начала возьмем стальной тензодатчик и посмотрим что у него внутри. На вид он действительно представляет собой стальную балку, которая кажется однородной, но это не так. В балке есть технологическая полость-камера.

   Камера закрыта защитными крышками. Удаляем крышки. Видим что внутри камера залита герметиком.

   Герметик очень пластичный и не оказывает никакого влияния на работу датчика, а функция его проста: защитить полость от проникновения влаги.

   Очистим камеру от герметика.

  Камера фрезеруется для того, что бы создать в сплошном куске металла, ту чувствительную область, которая будет растягиваться под действием нагрузки.

   Толщина стенок камеры составляет всего несколько миллиметров, а чувствительная мембрана и того тоньше.

   Именно к этой мембране приклеивают тензорезисторы, которые изгибаются и растягиваются вместе с ней.

   При сжатии и растяжении резисторы меняют сопротивление, и параметры электрического тока, протекающего в этот момент через резисторы, тоже меняются. По изменению напряжения можно судить о величине силы, которая приложена к тензодатчику. Если приложить большую силу, чем та, на которую рассчитан тензодатчик, то мембрана и тензорезисторы деформируются. 

   Вот так и выходит, что тензодатчик только на вид кажется устройством, которое невозможно сломать, а на самом деле является высокотехнологичным и, весьма, хрупким изделием. И, зачастую, деформацию тензометрического датчика невооруженным взглядом не увидеть, о деформации можно судить только по показаниям диагностических приборов, но, бывают случаи…

 

Схема подключения тензодатчиков к индикатору веса

Подключение тензодатчика к индикатору веса, на первый взгляд кажется простой задачей, но неправильное соединение может вызвать уменьшение точности измерения или некорректную работу весовой системы. Тензодатчики различных производителей имеют либо 4-х проводный, либо 6-ти проводный кабель для подключения к весовому индикатору.

Ниже приведены схемы подключения для этих двух типов тензодатчиков:

Большинство промышленных весовых систем используют несколько тензодатчиков, в этом случае они должны быть подключены параллельно. Обычно эту связь делают не простой скруткой, а с применением специализированных соединительных коробок. Дополнительно, некоторые модели таких коробок позволяют «подогнать» сопротивление датчиков друг под друга, т.е. сбалансировать систему из множества датчиков.

Тензодатчики поставляются с кабелем определенной длины. При удлинении соединительного кабеля следует учитывать, что это может привести к падению точности измерения. Также при изменении длины кабеля следует производить перекалибровку весового индикатора, к которому подключен тензодатчик.

Как подключить тензодатчик к весовому терминалу

Большинство тензодатчиков поставляется с документацией, в которой указывается цветовая маркировка идущих от него проводов и их назначение.
4-х проводные тензодатчики, судя по названию, имею 4 соединительных линии:

   +EXC — +Питание

   -EXC — -Питание

   +SIG — +Сигнал

   -SIG — -Сигнал

Т.е. две линии это цепи питания и две это выходной сигнал датчика. Для корректной работы необходимо подать питающее напряжение на линии +EXC и –EXC, в соответствии с техническими характеристиками датчика, обычно оно составляет от 5 до 12 вольт.
После подачи питания на сигнальных линиях SIG меняется напряжение, и это изменение необходимо фиксировать весоизмерительным прибором.



На рисунке приведена схема подключения тензодатчика четырёхпроводного типа, на примере датчика фирмы Zemic и весоизмерительного прибора КВ-001.

Некоторые тензодатчики могут иметь не четыре, а шесть соединительных проводов. Две дополнительные линии называются – линиями обратной связи, и имеют маркировку SENSE. Эти две дополнительные линии позволяют осуществлять компенсацию потерь на длинных проводах.
Как видно из рисунка выше, в случае подключения четырехпроводного тензометрического датчика, функция компенсации потерь не используется, и необходимо использовать перемычки для подключения тензодатчика к прибору.

Четырехпроводные тензодатчики датчики лучше использовать на короткие расстояния передачи сигнала. Шестипроводные датчики, благодаря линиям обратной связи, обладают большей точность и их можно использовать для больших расстояний, т.к. эти две дополнительные линии позволяют осуществлять компенсацию потерь на длинных проводах.




На рисунке приведена схема подключения тензодатчика шестипроводного типа, на примере датчика фирмы Zemic и весоизмерительного прибора КВ-001.

Определение маркировки проводов тензодатчика без документации

Если у вас отсутствует описание тензодатчика, для определения маркировки проводов можно использовать обыкновенный мультиметр, при условии, что датчик аналоговый, а не цифровой.

  • Измерьте сопротивление между всеми проводами.
    В 4-проводном тензодатчике имеется шесть комбинаций проводов, следовательно, вы получите 6 значений сопротивлений, одна пара проводов будет иметь сопротивление больше, чем все остальные.
  • Пара с самым большим сопротивлением – это линия питания, оставшаяся пара проводов – линия сигнала.
  • Подключите линию питания к весоизмерительному прибору, или подайте напряжение.
  • Измерьте напряжение на линии сигнала, определив тем самым полярность подключения.

Подключение нескольких тензодатчиков при помощи соединительной (балансировочной) коробки

Как подключать несколько тензодатчиков при помощи балансировочной коробки можно посмотреть на видео

Заземление и экранирование при подключении тензодатчика.

Организация заземления и экранирования важный вопрос успешного создания весовой системы с использованием тензодатчиков. Надёжное решение данной задачи — ключ к правильной работе тензометрического датчика, генерирующего слаботочные сигналы. Кабели тензодатчиков должны иметь экранирующую оплетку, которая, при правильном подключении, обеспечивает защиту от электростатических и других помех.

Основное правило, которое нельзя нарушать: необходимо избегать «земляных» петель, т. е. заземлять устройства нужно в ОДНОЙ общей точке. Петли могут возникать если экран кабеля подключать к заземляющему контуру с двух концов. Поэтому, если корпус датчика надёжно заземлён и одновременно соединён с экраном — этого достаточно, в противном случае — соединить экран с заземлением только с любого ОДНОГО конца, например, в электрощите, где установлен прибор отдельным жёлто-зелёным проводом. Под «заземлением» мы понимаем защитное заземление, желто-зелёный провод. Использовать «нейтраль» в качестве «земли» очень нежелательно.

Если датчики соединяются параллельно, то необходимо не забывать соединять друг с другом и экранные оплётки кабелей через соответствующий контакт клеммы в соединительной коробке, и тут же их заземлять вместе с корпусом коробки. Общий кабель, идущий от соединительной коробки к прибору, соединять с заземлением также с ОДНОЙ стороны, как описано выше, не допуская образования «земляной» петли, желательно возле входа в измерительный прибор, то есть заземлять со стороны приёмника.

На кабель датчика, прямо поверх изоляции, на расстоянии 4-5 см от клеммы измерительного прибора, желательно защёлкнуть ферритовый фильтр для блокировки возникающих в цеху разнообразных помех по «земле». Такие фильтры производятся под кабели разных диаметров. Фильтры желательно защёлкнуть и на других длинных линиях, например RS-485, на приёмном и передающем устройстве. Если индуктивности одного фильтра недостаточно для надёжного уменьшения уровня помехи, такие фильтры можно защёлкивать последовательно на небольшом расстоянии друг от друга, наращивая тем самым индуктивность до необходимого уровня.

Начало работы с тензодатчиками

Введение

Вы когда-нибудь хотели узнать вес чего-либо? Как насчет того, чтобы знать изменение веса с течением времени? Вы хотите, чтобы ваш проект ощущал присутствие чего-либо, измеряя деформацию или нагрузку на какую-либо поверхность? Если да, то вы попали в нужное место. Это руководство поможет вам начать работу с тензодатчиками и их вариантами.

Один из многих типов датчиков веса.

Предлагаемые показания:

Прежде чем приступить к тензодатчикам и их удивительным возможностям, мы предлагаем вам ознакомиться с некоторыми базовыми концепциями, если вы еще этого не сделали:

Делители напряжения

Превратите большое напряжение в меньшее с помощью делителей напряжения.В этом руководстве рассматривается: как выглядит схема делителя напряжения и как она используется в реальном мире.

Резисторы

Учебник по резисторам. Что такое резистор, как они ведут себя параллельно / последовательно, расшифровка цветовых кодов резисторов и применения резисторов.

Как читать схему

Обзор обозначений схем компонентов, а также советы и рекомендации для лучшего чтения схем.Щелкните здесь и станьте схематически грамотным уже сегодня!

Основные сведения о тензодатчиках

Типы тензодатчиков

Весоизмерительный датчик — это физический элемент (или датчик, если вы хотите быть техническим), который может преобразовывать давление (силу) в электрический сигнал.

Так что это значит?
Есть три основных способа, которыми датчик веса может преобразовать приложенную силу в измеряемые показания.

Гидравлические тензодатчики

В гидравлических весоизмерительных датчиках используется обычная конструкция поршня и цилиндра для передачи изменения давления за счет движения поршня и диафрагма, которая вызывает изменение давления на трубку Бурдона, соединенную с весоизмерительными датчиками.

Схема гидравлического тензодатчика от ракетной установки Nikka

Пневматические тензодатчики

Пневматические весоизмерительные ячейки используют давление воздуха, прикладываемое к одному концу диафрагмы, и оно выходит через сопло, расположенное в нижней части весоизмерительной ячейки, внутри ячейки которой находится манометр.

Схема пневматического датчика веса от Instrumentation Today

Тензометрические датчики веса

И, наконец (хотя есть много других менее распространенных установок датчика веса), существует датчик веса тензодатчика, который является механическим элементом, сила которого измеряется деформацией одного (или нескольких) тензодатчиков (тензодатчиков). ) на элементе.

Схема тензодатчика с сайта Scalenet.com

В тензодатчиках стержневых тензодатчиков ячейка расположена в форме «Z», так что к стержню прилагается крутящий момент, и четыре тензодатчика на ячейке будут измерять деформацию изгиба, два — сжатие и два — растяжение. Когда эти четыре тензодатчика установлены в образовании моста Уитстона, легко точно измерить небольшие изменения сопротивления с помощью тензодатчиков.

Более подробная диаграмма тензодатчиков на стержневых тензодатчиках при приложении силы

В этом уроке мы сосредоточимся на тензодатчиках, таких как те, что есть в SparkFun:

Большинство тензодатчиков работают очень похожим образом, но могут различаться по размеру, материалу и механической настройке, что может привести к тому, что каждая ячейка будет иметь разные максимальные нагрузки и чувствительность, с которыми они могут справиться.Для некоторых возможных механических настроек весоизмерительной ячейки ознакомьтесь с руководством по подключению с настройкой весовой ячейки.

Основы тензодатчика

Тензодатчик — это устройство, которое измеряет изменения электрического сопротивления в ответ на деформацию (или давление, или силу, или как угодно другое название), приложенную к устройству, и пропорциональную им.
Самый распространенный тензодатчик состоит из очень тонкой проволоки или фольги, расположенной в виде сетки таким образом, что при приложении деформации в одном определенном направлении происходит линейное изменение электрического сопротивления, чаще всего с основанием. сопротивление 120 Ом, 350 Ом и 1000 Ом.

Измерительный коэффициент

Каждый тензодатчик имеет разную чувствительность к деформации, которая количественно выражается как коэффициент измерения (GF) . Калибровочный коэффициент определяется как отношение частичного изменения электрического сопротивления к частичному изменению длины (деформации). (Коэффициент для металлических тензодатчиков обычно составляет около 2)

Небольшие изменения в штамме

Мы устанавливаем тензодатчик и измеряем это изменение сопротивления, и все в порядке, верно? Не так быстро.При измерении деформации редко используются величины, превышающие несколько миллистрендов (необычные единицы для деформации, но все же очень маленькие).

Итак, давайте рассмотрим пример: предположим, вы установили деформацию 500µε. Тензодатчик с коэффициентом измерения 2 будет иметь изменение электрического сопротивления только на:

Для датчика 120 Ом это изменение составляет всего 0,12 Ом. 0,12 Ом — очень небольшое изменение, и для большинства устройств его невозможно обнаружить, не говоря уже о точном обнаружении. Поэтому нам понадобится другое устройство, которое может точно измерять сверхмалые изменения сопротивления (спойлер: они очень дороги) или устройство, которое может принять это очень небольшое изменение сопротивления и превратить его в то, что мы можем точно измерить.

Усилители и мост Уитстона

Здесь пригодится усилитель, такой как HX711 или NAU7802.

Хороший способ взять небольшие изменения сопротивления и превратить их в нечто более измеримое — это использовать мост Уитстона. Мост Уитстона представляет собой конфигурацию из четырех резисторов с известным напряжением, приложенным следующим образом:

, где Vin — известное постоянное напряжение, и измеряется результирующий Vout. Если
,
тогда Vout равен 0, но при изменении значения одного из резисторов, Vout будет иметь результирующее изменение, которое можно измерить и которое регулируется следующим уравнением с использованием закона Ома:

Заменив один из резисторов в мосту Уитстона тензодатчиком, мы можем легко измерить изменение Vout и использовать его для оценки приложенной силы.

Пример моста Уитстона со стержневым датчиком веса From All About Circuits

Основы комбинатора

Но что произойдет, если у вас нет тензодатчика с четырьмя тензодатчиками? Или вы хотите измерить что-то действительно тяжелое в каком-нибудь масштабе? Вы можете объединить четыре тензодатчика (иногда называемых датчиками нагрузки), используя коммутационную плату комбинатора датчиков нагрузки!

Весы для ванной с использованием комбинатора датчиков нагрузки для объединения двенадцати проводов в один мост Уитстона

Используя тот же принцип моста Уитстона, вы можете использовать комбинатор для объединения одинарных тензодатчиков в конфигурацию моста Уитстона, где сила, приложенная ко всем четырем одиночным тензодатчикам, добавляется, чтобы дать вам более высокую максимальную нагрузку и лучше точность, чем просто один.Комбинатор можно подключить к тому же усилителю для упрощения измерений.

Тензодатчики, подключенные к комбинатору и усилителю HX711

Это тот же макет, который вы найдете, скажем, в домашних весах. К комбинатору и усилителю будут подключены четыре датчика веса с одним тензодатчиком, чтобы вы могли получать показания вашего веса. Для получения дополнительной информации о настройке четырех отдельных тензодатчиков с комбинатором, ознакомьтесь с аппаратным подключением комбинатора для HX711.Эту настройку также можно использовать с NAU7802.

Ресурсы и движение вперед

Для получения дополнительной информации о тензодатчиках посетите ресурсы ниже:

Для получения дополнительной информации о настройке тензодатчиков и о том, как интегрировать их в ваш следующий проект, ознакомьтесь с нашим руководством по подключению HX711:

Вам также может быть интересно узнать об OpenScale или подключении тензодатчика к облаку с помощью следующих руководств!

Приложения OpenScale и руководство по подключению

OpenScale позволяет иметь постоянный масштаб для промышленных и биологических приложений.Узнайте, как использовать доску OpenScale для чтения и настройки тензодатчиков.

Промышленные масштабы IoT

Сколько весит слоненок? Какая сила удара у прыжка? Ответьте на эти и другие вопросы, создав свой собственный промышленный масштаб Интернета вещей с помощью SparkFun OpenScale.

Весы для регистрации веса IoT

Из этого туториала Вы узнаете, как создать весы, которые будут регистрировать ваш вес на настраиваемом веб-сайте в Интернете.Принципы можно экстраполировать на любой тип данных.

Чтобы получить больше вдохновения, посетите SparkFun IoT Beehive:

И будьте в курсе событий OpenScale, подписавшись на него на GitHub:

Нужно еще больше? Ознакомьтесь с этой замечательной статьей о мостах Уитстона и типах тензодатчиков. Не можете насытиться принципами работы тензодатчиков? Прочтите эту статью для получения более подробной информации.

.

Как выбрать датчик веса?

Следующая информация предназначена для помощи в получении или предоставлении необходимой информации, необходимой для выбора подходящего стандартного датчика веса или предоставления деталей, необходимых для предложения решения для датчика веса индивидуальной конструкции.

Есть много факторов, которые определяют пригодность тензодатчика для данного применения или установки:

Тензодатчик

Load Cell Design

Load Cell Design

Изображение предоставлено: siemens

Условия нагрузки
  • Максимальная рабочая нагрузка, сила или вес — определите максимальную рабочую нагрузку, силу или вес, которые весоизмерительный датчик физически увидит в приложении.В конечном итоге это определит номинальную нагрузку датчика веса.
  • Максимальная измерительная нагрузка, сила или вес — определите, какое максимальное усилие или вес измерительной нагрузки необходимо измерить датчику веса во время работы. Это не обязательно должен быть максимум, который он увидит во время использования, и может повлиять на требования к точности (обсуждаемые ниже).
  • Как загружается тензодатчик? — определить способ загрузки датчика веса i.е. при растяжении, сжатии или растяжении и сжатии.
  • Единицы измерения — подтвердите технические единицы измерения, в которых будут определены измерения. Это может помочь при выборе КИП. Некоторыми популярными вариантами являются тонны (те), килоньютоны (кН), меганьютоны (МН), граммы (г), килограммы (кг) и фунты (фунты), но также можно рассмотреть и другие конкретные единицы.
Точность
  • Точность — определение точности нагружения, требуемой для обеспечения нелинейности и повторяемости.Обычно это выражается в виде ±% полной шкалы выходного сигнала (±% полной шкалы), где выходной сигнал полной шкалы по существу является номинальной нагрузкой весоизмерительного датчика.
  • Температурные ошибки — для высокоточных приложений в широком диапазоне температур может потребоваться температурная компенсация тензодатчика. Определите требуемые тепловые ошибки. Обычно это выражается в виде ±% полной шкалы на C или F (±% FSO / ˚C или ±% FSO / F).
Неблагоприятные условия нагрузки
  • Условия перегрузки — превысит ли приложенная нагрузка максимальную нагрузку? Если да, то на сколько? Это определит требуемую перегрузочную способность и до какого уровня нам потребуется проверить нагрузку на датчик веса.
  • Перегрузочная способность — есть ли какие-либо дополнительные факторы безопасности, которые необходимо учитывать при применении? Это определит требуемую перегрузочную способность и до какого уровня нам потребуется проверить нагрузку на датчик веса.
  • Динамические нагрузки — есть ли в приложении какие-либо динамические нагрузки? Высокая динамика в нормальном рабочем диапазоне тензодатчика может вызвать состояние перегрузки. Получите подробную информацию о скорости, величине и частоте динамических нагрузок, чтобы их можно было учесть при оценке тензодатчика или его перегрузочной способности.
  • Усталостная нагрузка — Усталостная нагрузка может возникнуть, когда к датчику нагрузки прилагается непрерывная циклическая нагрузка. Это может определять номинальные характеристики и конструкцию датчика веса. Получите подробную информацию об уровне нагрузки, применяемой для каждого цикла, частоте цикла и общем количестве циклов, которые весоизмерительный датчик будет видеть в течение своего срока службы. Может потребоваться датчик нагрузки с номинальной усталостной нагрузкой.
  • Внеосевая нагрузка — В некоторых случаях нагрузка не может постоянно прикладываться через основную расчетную ось тензодатчика.Это может повлиять на точность или потенциально повредить датчик веса. Могут быть определенные датчики нагрузки, которые могут противостоять этому, или аксессуары, которые могут исключить их из датчика нагрузки, например, кнопки нагрузки, подшипники на конце штока. Постарайтесь получить установочные чертежи, на которых будет показано, где установлен датчик веса, чтобы мы могли предложить любые возможные решения.
Механические требования
  • Ограничения по размеру — есть ли проблемы с пространством в приложении, которые означают, что датчик веса должен быть определенного размера, чтобы соответствовать? я.е. существуют требования к максимальным размерам или требуются определенные размеры для установки или крепления весоизмерительного датчика?
  • Ограниченный доступ — существует ли ограниченный доступ к месту установки весоизмерительного датчика, который повлияет на тип датчика веса, который необходимо выбрать для обеспечения практичной и экономичной установки?
  • Конфигурация монтажа — требуется ли конкретный тип датчика веса для применения? Популярные стили:
    • тензодатчики сжатия на колонне
    • тензодатчики с низким профилем сжатия
    • миниатюрные тензодатчики сжатия
    • низкопрофильные весоизмерительные ячейки типа «блины»
    • тензодатчики с балкой
    • тензодатчики с резьбой для растяжения и сжатия
    • Датчики веса типа S
    • грузовые звенья
    • грузовые скобы
    • грузовые штифты
монтажное приспособление
  • варианты крепления — существуют различные способы установки / присоединения весоизмерительного датчика в приложении, которые могут повлиять на выбор весоизмерительного датчика ,В дополнение к любым специфическим требованиям заказчика, они могут включать:
    • резьбовые соединения
    • шпилька с проушиной
    • фланцевое крепление
    • нагрузочные кнопки
    • язычок с вилкой
    • соединительное отверстие
    • подшипник шкива
Электрические характеристики
  • Сигнальный выход — для всех тензодатчиков доступны различные опции. Там, где позволяет пространство, можно встроить преобразователь сигнала в датчики веса.Если места нет, можно предложить внешнее оборудование (см. Отдельный лист данных «Как выбрать инструмент»). Вот некоторые примеры внутренних / встроенных формирователей сигналов:
    • Аналоговый
      • мВ / В (стандартный мостовой выход)
      • 0-5 В постоянного тока
      • 0-10 В постоянного тока
      • +/- 10 В постоянного тока
      • 2-проводный 4-20 мА
      • 3-проводной, 4-20 мА
    • Цифровой
      • RS485, ASCII
      • RS485, Mantrabus
      • RS485, Modbus
      • MantraCAN
      • TEDS
    • Беспроводная связь
      • Связанные с беспроводной связью продукты
Способы подключения к электросети

Существуют различные методы подключения тензодатчика к внешнему миру.Это будет зависеть от требований клиентов и будет зависеть от условий окружающей среды, в которых используется весоизмерительный датчик.

  • Встроенный соединитель и соединительный кабель в сборе — для выбора подходящего соединителя потребуются сведения об экологической герметичности и условиях установки
  • Встроенный кабель с сухим заземлением — кабель жестко подключен к тензодатчику через кабельный ввод
  • Защищенный шлангом выход кабеля — для кабеля может потребоваться защита шланга для предотвращения механического износа или ограничения нападения животных или условий окружающей среды
  • Положение выхода кабеля — выход кабеля может потребоваться выйти из определенного положения на датчике веса по причинам установки.
Условия окружающей среды
  • Диапазон рабочих температур — при каких минимальных и максимальных температурах будет работать тензодатчик?
  • Диапазон температур хранения — при какой минимальной и максимальной температуре будет храниться тензодатчик?
  • Шум окружающей среды — Будет ли тензодатчик подвергаться воздействию шума, вызывающего вибрацию?
  • Рейтинг IP / NEMA (защита от воздействия окружающей среды) — какой уровень защиты от воздействия окружающей среды требуется?
  • Опасная зона (ATEX / IECx) — требуется минимальный класс зоны, сертификация ATEX или IECx
  • Использование внутри или снаружи — уровень герметичности, необходимый для проникновения воды и / или пыли.Будет ли погружен датчик нагрузки, на какую глубину и во что он будет погружаться? Требуется ли какая-либо дополнительная механическая защита после установки?

Статья Источник: .lcmsystems

.Весоизмерительные ячейки

сообщают, что нужно отложить пончики

Наш старый учитель алгебры говорил: «Вы должны взять то, что знаете, и использовать это, чтобы получить то, чего вы не знаете». Это высказывание всегда напоминает нам о датчиках, которые преобразуют физические величины в то, что могут измерять наши микроконтроллеры. Иногда ключом к проекту является знание того, какой датчик будет считывать физические свойства интересующей вас системы. Если этим физическим свойством является вес, вы можете использовать так называемый тензодатчик.[DegrawSt] использует четыре датчика нагрузки по 50 кг для создания весов для ванной комнаты с помощью Arduino.

Весоизмерительные ячейки

обычно содержат тензодатчики, которые изменяют сопротивление при деформации. На самом деле это измеряет силу, но если вы установите их так, чтобы они измеряли силу, прилагаемую вами, стоя на платформе, вы получите шкалу. Тензодатчик обычно имеет четыре тензодатчика в виде моста. Это вызывает напряжение на мосту, хотя выход может быть шумным и порядка милливольт.

Существуют и другие типы тензодатчиков, в которых используются пьезоэлектрические материалы, гидравлика, пневматика или другие технологии.Однако тензометрическая ячейка является наиболее распространенной. Если вам нужна дополнительная информация о датчиках веса, ознакомьтесь с лекцией [Рика Селленса] по этой теме ниже.

Чтобы обеспечить возбуждение тензодатчиков и измерить выходное напряжение, обычно требуется использовать усилитель для кондиционирования цепи. [DegrawSt] использует микросхему HX711 на коммутационной плате для управления ячейками. Уже доступна библиотека для Arduino и даже несколько примеров кода.

Четыре датчика веса позволяют датчикам весом 50 кг считывать вес человека, в любом случае до 200 кг.Сами весоизмерительные ячейки имеют конфигурацию моста, которая складывает вес каждой ячейки вместе.

Если вы хотите заглянуть внутрь коммерческого масштаба, мы уже видели это раньше. Если вы не заботитесь о своей фигуре, возможно, вам лучше натянуть ленточную пилу.

,

Как проверить, изменено ли конкретное значение ячейки в Google Таблицах

Переполнение стека

  1. Около
  2. Товары

  3. Для команд
  1. Переполнение стека
    Общественные вопросы и ответы

  2. Переполнение стека для команд
    Где разработчики и технологи делятся частными знаниями с коллегами

  3. работы
    Программирование и связанные с ним технические возможности карьерного роста

  4. Талант
    Нанимайте технических специалистов и создавайте свой бренд работодателя

  5. реклама
    Обратитесь к разработчикам и технологам со всего мира

  6. О компании

,

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *