Температура плавления стекловолокно: маты, плиты, ткань, рубленый материал, рулоны, панели

Содержание

маты, плиты, ткань, рубленый материал, рулоны, панели

Фото 1Неорганическое стекловолокно – это популярный многофункциональный материал, применяемый в различных сферах деятельности человека.

Стекловолоконная продукция отлично зарекомендовала себя как утеплитель для стен и пола,ее используют для отделки помещений самого разного назначения.

Из него производится разнообразная строительная, промышленная и другая продукция.

Интересен материал и тем, что может производиться из вторичного сырья.

Технологический процесс получения стекловолокна довольно прост.

Древние жители Египта, которые первыми выплавили стекло из смеси песка, извести и соды, могли получать стеклянные волокна, но промышленную технологию производства стекловолокна изобрел Джон Плаер в далеком 1870 году.

С тех пор производство этого материала совершенствовалось с каждым годом и его стали использовать при изготовлении огромного ассортимента изделий.

В этой статье мы рассмотрим свойства и характеристики стекловолокна из стекольного боя, области его применения и виды продукции, которые изготавливают из этого материала.

Из чего делают стеклянные нити?

Фото 2Классический технологический процесс получения стекловолокна основан на выдувании стеклянных нитей из расплавленной при высокой в 1400 °C температуре смеси кварцевого песка, соды, извести и других специальных добавок.

Полученное жидкое стекло раздувается паром при выбросе из центрифуги или продавливается через фильеры (специальные платиновые сита с микроотверстиями) и на следующем этапе охлаждается.

При использовании центрифуг конечным продуктом является стекловата, а при применении фильеров — стеклянные нити, которые в дальнейшем идут на изготовление разнообразной продукции.

Возможность получения стеклянных волокон была открыта совершенно случайно. Авария на воздухопроводе привела к попаданию в расплав стекла струи воздуха под давлением, что привело к появлению стеклянных нитей. Этот факт и способствовал изобретению технологии производства стекловолокна.

Описанный выше техпроцесс получения стекловолокна является классическим из исходного природного сырья. Но эту же продукцию можно получать и из отходов стекла.

Рециклинг стеклянных изделий позволяет значительно снизить себестоимость конечного продукта, что дает конкурентные преимущества производителю, выбравшему такой способ производства стекловолокна.

Технология производства в этом случае практически не отличается от вышеприведенной, только вместо смеси природных компонентов плавится отсортированный бой стекла с соответствующими присадками.

Количество стеклянного боя в исходном сырье для производства стекловолокна может составлять до 90% общего объема. Это открывает широкие возможности для организации бизнеса по изготовлению стекловолокна на основе отходов стекла.

Фото 3

Свойства и характеристики

Использование стекловолокна в промышленности и строительстве обусловлено его отличными техническими характеристиками и свойствами. Именно они и привели к высокой популярности этого материала.

Ниже мы рассмотрим основной перечень технических характеристик и потребительских качеств изделий из стеклянных волокон:

Теплопроводность

Стекло само по себе имеет очень низкую теплопроводность, поэтому изделия из него обладают отличными теплоизоляционными свойства.

Самым низким коэффициентом среди всех изделий из стекловолокна обладает стекловата. Для этой продукции он составляет 0,05 Вт/м*К, что и определяет сферы ее использования.

Стекловата применяется для термоизоляции различных строительных конструкций, трубопроводов, промышленных объектов и т. д.

Химический состав

Эта характеристика зависит от состава исходного сырья. В любом неорганическом стекле основным компонентом является кварцевый песок, поэтому содержание SiO2 в стеклянных нитях варьируется от 50% до 99% в зависимости от их назначения.

Кроме этого компонента в стеклянном волокне присутствуют Al2O3, CaO и некоторые другие соединения.

От химического состава зависят физические характеристики стекловолокна и свойства изделий из него. В частности — щелочестойкость, которая определяется содержанием диоксида циркония (ZrO2) в стекле. Чем больше этого компонента, тем более щелочестойким является стекловолокно.

Плотность

Этот параметр непосредственно у стеклянных нитей подобен плотности стекла, из которого они изготовлены и равен 2500 кг/м³.

Плотность изделий из стеклянных волокон может колебаться в широких пределах. У стекловаты она минимальна, а такие продукты из этого материала, как листы, ткань и т. д. имеют максимальную плотность.

Для комбинированных материалов, таких как стеклопластик, плотность рассчитывается на основании плотности исходных материалов.

Температура плавления

Плавится любое стекловолокно при температуре от 1200 до 1400 °C.

Температура плавления зависит от состава стекла, из которого изготовлены волокна.

Чем больше в составе кварцевого песка, тем выше температура плавления. Поэтому для качественной переработки стеклянных отходов в стекловолокно необходимо точно знать его химический состав.

Стойкость к возгоранию

Стекло — полностью негорючий материал, поэтому изделия из него не способны поддерживать горение.

Все это в полной мере относится и к стеклянным волокнам – стекловолоконная продукция является пожаробезопасным материалом. Правда, некоторые композитные материалы, изготовленные на основе стекловолокна, могут возгораться при определенных условиях.

Таким образом, горит стекловолокно или нет, зависит от марки и компонентов, входящих в их состав.

Фото 4

Химические и физические характеристики стекловолокна определили виды продукции, которые можно изготовить из этого материала.

Марки

Перечень марок стекловолокна с соответствующими им характеристиками вы можете увидеть в таблице:

Фото 10

Ниже мы рассмотрим основные типы изделий из стеклянных волокон, наиболее популярные на современном рынке.

Материалы из стекловолокна

Среди всего разнообразия продукции из стеклянных волокон можно выделить две основные категории изделий: продукцию на 100% состоящую из этого материала и композитную, содержащую дополнительные вещества и элементы.

Рассмотрим некоторые изделия обоих видов и их характеристики.

  1. Маты из стекловаты. Эта продукция предназначена для теплоизоляции и шумопоглощения как в строительстве, так и в промышленной сфере. Структура теплоизоляционных матов состоит из ненаправленных отрезков стеклянных нитей, скрепленных между собой естественными силами. Продукция на 100% изготавливается из стекловолокна.
  2. Рулонная стекловата. Продукт полностью идентичный матам по своему составу и способу производства, только свернутый в рулоны. Для выполнения некоторых видов работ по теплоизоляции объектов такая форма поставки является более предпочтительной, чем маты.
  3. Сетка из стекловолокна. Изделие предназначено для армирования различных поверхностей при проведении отделочных работ. Состоит из гибких стеклянных нитей, переплетенных между собой и покрытых специальным раствором. Сетка выпускается как в листах, так и в рулонах различного размера.
  4. Ткань из стекловолокна. Эта продукция аналогична сетке из стекловолокна, только у нее более плотное плетение тонких стеклянных нитей. Изготавливается это изделие по ткацкой технологии в разнообразных исполнениях. Стеклоткань имеет широкую сферу применения: изготовление обоев, в частности стеклохолстов «паутинка», электротехнические работы и т. д.
  5. Стеклопластик. Это композитный универсальный материал, состоящий из стеклянных волокон и специальных связующих смол. Области использования стеклопластика самые разнообразные. Из него можно изготовить любые детали способом формовки и другими технологическими приемами.
  6. Стеклопластиковая арматура — достойная альтернатива металлическому аналогу, способная заменить его во всех сферах применения.

Конечно, это далеко не полный перечень продукции из стеклянного волокна.

Стекловолокно нашло применение в строительстве, электротехнике, радиотехники, медицине и других областях промышленности.

Следует заметить, что для производства тех или иных изделий используется стекловолокно разных марок, изготовленное по разным технологиям, имеющее различную длину и толщину нитей.

Фото 5

Штапельные стеклянные нити (короткие отрезки) применяются для производства стекловаты, рубленые из длинных волокон — для изготовления стеклопластика, а длинные (бесконечные) нити стекловолокна — для получения тканей и сеток.

Сферы применения

Стекловолоконная продукция используется в различных областях деятельности человека. Выше были описаны некоторые из них.

Рассмотрим этот вопрос подробнее, для каждой отрасли отдельно с перечнем основных изделий из стекловолокна, предназначенных для выполнения определенных работ, а также предметов, комплектующих и конструкций, которые могут быть изготовлены на основе стеклянных нитей.

Строительная индустрия

В строительстве стекловолоконные изделия используются в первую очередь для теплоизоляции:

  • жилых помещений;
  • промышленных зданий;
  • трубопроводов и других объектов.

Для этих целей используются:

  • маты;
  • рулоны из стекловаты;
  • листовое стекловолокно.

Для изготовления различных конструкций в строительной индустрии широко используется и стеклопластик — композиционный материал, состоящий из стекловолокна и полимеров.

Из него производятся разнообразные панели, плиты, в том числе теплоизоляционные, и другие защитные архитектурные элементы.

Стеклообои нашли свое применение в отделочных работах. Они изготавливаются из стекловолоконной ткани с различной структурой переплетения нитей.

Для штукатурных работ используется сетка из стеклянных волокон. Огнеупорное керамическое стекловолокно применяется в качестве теплоизоляции котлов, футеровки дымоходов, воздуховодов, стен и сводов нагревательных, термических печей.

Производство товаров

Стеклопластик широко используется в судостроении, производстве автотехники и других отраслях промышленности, где легкость, простота обслуживания, устойчивость к коррозии и низкая цена деталей являются определяющими факторами.

Из него изготавливаются корпуса и покрытия для лодок и яхт, элементы автомобилей, корпуса приборов и т. д.

Стеклопластиковые бассейны, емкости под воду, септики, лыжи, и другие товары прочно вошли в быт современного человека.

Ассортимент продукции из стеклопластиков огромен.

Электротехника и электроника

Стеклянное волокно используется для изготовления разнообразных электроизоляционных материалов.

Стекло является отличным диэлектриком, поэтому нити из него применяются при производстве специальных тканых материалов для изоляции токопроводящих конструкций и проводников электрической энергии.

Покрытый медной фольгой стеклотекстолит (смесь стеклянных волокон с эпоксидными смолами) является основой для изготовления многослойных печатных плат электронных устройства.

Оптоволокно, широко используемое в электронике, также является стекловолокном, изготовленным из кварцевого стекла.

Медицина

Стеклопластика применяется при изготовлении протезов различных частей человеческого тела, а также некоторых видов имплантов без вреда для здоровья. В стоматологии стеклянное волокно используется для изготовления зубных протезов. Во многих медицинских инструментах и оборудовании стекловолокно в различном виде присутствует как основной или второстепенный конструкционный материал. Одним из главных элементов хирургических лазерных скальпелей является все то же стекловолокно высокой степени очистки.

Фото 7

Из выше представленной информации можно сделать однозначный вывод, что стекловолокно, как основа для производства разнообразной продукции, является очень востребованным материалом в настоящее время.

Что можно сделать своими руками?

Для самостоятельного творчества стекловолокно является отличным материалом.

В основном поделки своими руками изготавливаются из стекловолоконных тканей и различных связующих смол: эпоксидного клея, полиэфирных смол и других синтетических наполнителей.

Что же можно изготовить из стеклоткани самостоятельно? Да все что угодно, от простой подставки для чайника до корпуса самодельной лодки или автомобиля. Все зависит от вашего желания и фантазии.

Самым простым способом изготовления любых деталей или конструкции из стекловолоконной ткани является технология послойного нанесения тканевой основы на модель с проклейкой каждого слоя эпоксидной смолой.

Этот метод позволяет создать практически любую конструкцию со сложной поверхностью из стеклопластика своими руками.Фото 8Это может быть панель прибора, бампер автомобиля или катер.

Главное — правильно подготовить модель, на которую вы будете накладывать и склеивать слои стеклоткани.

Ее можно изготовить из пластилина, глины, дерева или других легкообрабатываемых материалов.

Модель следует обмазать жидким парафином для облегчения снятия готового изделия.

Каждый слой стекловолокна проклеивается эпоксидным клеем и вся конструкция снимается с модели после полного затвердевания.

Заготовка обрезается по контуру, шлифуется и если необходимо в ней прорезаются отверстия, после этого деталь готова.

В этом описании нет привязки к конкретному изделию и коротко рассказано об общем принципе изготовления любых изделий из стекловолокна своими руками.

Видео по теме

В данном видео описан процесс послойного склеивания листов ткани из стекловолокна для изготовления различных изделий.

Заключение

Минеральное стекловолокно – это универсальный материал, который используется для производства огромного количества изделий во многих областях хозяйственной деятельности человечества.

Рынок сбыта этого уникального продукта практически неограничен, при условии конкурентоспособной цены. Рециклинг отходов стекла и переработка стекольного боя в изделия из стекловолокна позволяют создать рентабельный бизнес с низкой себестоимостью продукции.

технические характеристики, виды материи, дипазаон температур

Время чтения:

5 минут

 

 

Существуют чудесные технологии, благодаря которым вещество меняет свои свойства буквально на противоположные. В результате одного такого преображения хрупкое и звонкое стекло превращается в мягкую материю, обладающую новыми, потрясающими качествами. Это и есть так называемая стеклоткань.

Производство

ткацкие станки для производства стеклоткани

Стеклоткань – это технический материал, который получается из стекловолоконных нитей, пропитанных так называемым замаслеванителем – эмульсией, содержащей парафин. Производство востребованных в народном хозяйстве технических тканей всегда регламентируются государственными стандартами. Стеклоткань не является исключением, она вырабатывается в строгом соответствии с ГОСТ 19907-83.

Рассмотрим подробнее, что же это такое, стекловолокно? Сырьём для материала является силикатное стекло с содержанием алюминия и бора. Его растапливают в специальных печах и продавливают через тончайшие отверстия-фильеры. Полученные волокна отличаются мягкостью, эластичностью и особой тонкостью. Их диаметр зачастую гораздо меньше человеческого волоса и составляет от 3 до 100 микрометров. Они невероятно легкие, например, вес 1м2 стеклоткани Э3/2-100 равен всего 120 г. При этом они обладают невероятной прочностью. Поражает и длина волокон, составляющая 20 километров.

Крепко скрученные нити наматывают на бабины и отправляют в дальнейшую обработку на челночные или бесчелночные ткацкие станки, где различными способами плетения и создаётся стеклоткань.

Волокна тканного материала соединены в  несколько нитей. Нетканое стекловолокно таких пучков не имеет: нити ложатся по одной.

Свойства стеклоткани

Материал обладает парадоксальными для тканей качествами.

  • Невоспламеняемость и негорючесть. Стеклоткань выдерживает кратковременное воздействие открытого огня.
  • Экологическая чистота и абсолютная нетоксичность.
  • Химическая и биологическая инертность. Изделия выносят обработку щелочами и кислотами, они не гниют и не являются питательным субстратом для микроорганизмов.
  • Невосприимчивость к ультрафиолетовым лучам.
  • Беспримерная прочность, превышающая аналогичный показатель стальной проволоки.
  • Долговечность, не знающая конкуренции.
  • Отсутствие таких явлений, как механический износ и коррозия.
  • Электроизоляционные свойства. К тому же, ткань не подвергается магнитным воздействиям.
  • Термостойкость. Некоторые виды материи выдерживают температуру до 1200 оС.
  • Широкий диапазон рабочих температур. Ткань не теряет свойств при использовании её и в -200, и в +600оС.
  • Влагостойкость. Ткань не впитывает влагу, не растягивается и не разрушается под действием жидкостей.
  • Неизменность размеров при эксплуатации.
  • Приобретение высокой жёсткости при определённой обработке.

Из этой эластичной ткани шьют спецодежду, в которой легко, удобно и надежно работать. По гигроскопичности она схожа с вискозой.  В костюме из арселона можно не бояться ни огня, ни органических кислот и растворителей.

С уникальными качествами шерстепона можно ознакомиться

Виды материи и их использование

Марки стеклоткани отличаются различной устойчивостью к воздействиям химических веществ и высоким нагрузкам. На свойства материала во многом влияет способ переплетения нитей. Например, электроизоляционные ткани создаются полотняным плетением, конструкционные – полотняным и сатиновым, а фильтровальные ещё и саржевым методом. Итак, материал бывает следующих видов:

  • Конструкционные – самые популярные, они идут на армирование стеклопластика и на производство надёжных конструкций в автомобильном, авиационном и судостроении.
  • Ровинговые – лучшие материи для стеклорубероида. (Ровингом называют плоский жгут из стекловолокон, который получают сращиванием нескольких нитей.) Из них также делают корпуса яхт, катеров, автомобилей, детали летательных аппаратов.
  • Изоляционные – востребованы при изготовления тепло-или гидроизоляции.
  • Электроизоляционные – менее востребованная стеклоткань. Она идёт на производство печатных плат, фальгированных диэлектриков, а также на электроизоляцию теплопроводов.
  • Базальтовые – выдерживают температуру до +700оС.
  • Кремнезёмные – наиболее термостойкие ткани, выдерживающие до +1200оС. Их применяют в качестве покрывал при сварке, из них шьют средства первой защиты при пожаре.

Другие области применения

Кроме указанных областей, стеклоткань идёт на изготовление кровельных материалов: более дешёвых гладких и не деформирующихся, но более дорогих каркасных.

Используют для утепления и гидроизоляции домов, трубопроводов и автомобилей.

Из стеклоткани делают уникальные по прочности и конфигурации детали для аппаратов и станков.

В 1970-е годы цветное стекловолокно шло даже на украшение интерьеров. Тогда были весьма модными шторы, абажуры и торшеры из этой ткани.

Негорючесть материала служит основанием для использования стеклоткани в качестве штор на некоторых огнеопасных производствах и в наши дни.

Особенность утилизации

переработка стеклоткани

Стеклоткань – это нетоксичный материал, который можно утилизировать, как прочий строительный мусор. Однако при его измельчении в воздух попадает множество микрочастиц, способных вызвать зуд на коже, попасть в дыхательные пути и нанести вред здоровью. При утилизации стекломатерий следует соблюдать некоторые правила.

  • Работу производить в перчатках и масках.
  • Включать вытяжную вентиляцию.
  • Минимизировать количество разрезов.
  • Смачивать ткань при измельчении.
  • Утилизированный материал должен находиться в герметичных пакетах, а рабочее место требует своевременной и тщательной очистки.

Этот необычный материал сегодня стал неотъемлемой частью нашей жизни. Путешествуем ли мы на поезде, летим ли на самолёте, передвигаемся на автомобиле или бороздим океанские просторы на круизном лайнере, кругом нам окружают предметы из стеклоткани или стеклопластика. Лёгкие, надёжные, экологичные изделия делают жизнь эстетичнее и комфортнее, а нашу планету – чище.

   

© 2020 textiletrend.ru

Температура плавления и размягчения пластиков, температура эксплуатации пластмасс

Полиолефины (полиэтилен, полипропилен)
Полиэтилен высокого давления (низкой плотности) ГОСТ 16337900-939105-10880-90-70-50…70
Полиэтилен низкого давления (высокой плотности) ГОСТ 16338948-959125-135128-134-60-60…100
Высокопрочный полиэтилен низкого давления (ТУ 6-05-1721-75)942-957125-135125-140-140
Высокомолекулярный полиэтилен низкого давления (ТУ 6-05-50-76)935140-150
Модифицированный полиэтилен низкого давления (ТУ 6-05-55-76)937-943120-125
Полипропилен (ТУ 6-05-11-05-73)900-910164-17095-100-15…-8
Блоксополимер пропилена с этиленом (ТУ 6-05-1756-76)910164-170140-145
Сополимер этилена с пропиленом низкого давления (ТУ 6-05-529-76)907-913-140
Сэвилин — сополимер этилена с винилацетатом (ТУ 6-05-1636-73)920-95930-95-75…-60*
Кабельный полиэтилен (ТУ 6-05-475-73)921105-120-60
Композиция самозатухающая на основе полиэтилена (ТУ 6-05-1445-72)100080-50
Композиции полиэтилена низкой плотности с наполнителями (ТУ 6-05-1409-74)940-110080-92-60…-30
Композиции на основе поли-4-метил-1-пентена (темплена) (ТУ 6-05-589-77)830-834190-210150-180-60*
Термостойкие окрашенные композиции на основе темплена (ТУ 6-05-637-77)200-210170-180-60*
Композиция темплена с повышенной диэлектрической проницаемостью (ТУ 6-05-583-75)1800-2000220-40*
Полипропиленовая пленка (ТУ 6-05-360-72, ТУ 6-05-469-77, ТУ 38-10524-73)890-910-50…120
Полистирол и пластмассы на его основе
Полистиролы общего назначения1050-110082-95-40*до 65
Полистирол ударопрочный (ОСТ 6-05-406-75)106085-95-40
Полистирол вспенивающийся (ОСТ 6-05-202-73)20-30-65…-60*до 70
АБС-пластики (ТУ 6-05-1587-74)1030-105095-117-60…-40
АБС-пластик СНП (ГОСТ 13077)1140103-40…70
Полистирол оптический и светотехнический (ТУ 6-05-1728-75)1050-108082-100-40…65
Сополимеры стирола САН (ТУ 6-05-1580-75)1000-104096-108-60до 75
Сополимер стирола САМ-Э1050-1170-60до 90
Сополимеры стирола МС и МСН (ГОСТ 12271)1120-114086-88-40…70
Сополимер стирола ударопрочный МСП (ТУ 6-05-626-76)110095-105
Ударопрочные полистирольные пластики СНК и УПМ (ТУ 6-05-041-528-74)1050-108070-80до 70
Пресс-материал 390 (ТУ 84-89-75) 46 и 46а (ТУ 84-142-70)1100-1300-60…60
Материал АТ-1 (МРТУ 6-05-1197-69) и АТ-21150-1300100-102-40…70
Композиция стилон (ТУ 6-05-478-73)1100125-130
Пленка полистирольная (ГОСТ 12998)105095-100-50…70
Высокочастотный диэлектрик стиролинк1200-60…100
Фольгированный материал СА-3,8Ф (ТУ 16-503-108-72)1800120-60…90
Листовой самозатухающий материал АБС-090ЗС (ТУ 6-05-572-75)80-60*
Пенопласт полистирольный ПС-1 (ТУ 6-05-1178-75)70-600-60…65
Пенопласт полистирольный ПС-4 (ТУ 6-05-1178-75)40-65-65…70
Фторопласты
Фторопласт-3 (ГОСТ 13744)2090-2160210-215-195…130
Фторопласт-4 (ПТФЭ или тефлон ГОСТ 10007)2190-2200327100-110-269…260
Фторопласт-4Д (ГОСТ 14906)2210327-269…260
Фторопласт-4ДПТ (ТУ 6-05-372-77)2200-2230-269…260
Фторопласт-4МБ (ОСТ 6-05-400-74)2140-2170270-290100-120-190…205
Фторопласт-4НА (ТУ 6-05-373-77)2000-2100210-23090-120-200…200
Фторопласт-23 (ТУ 6-05-1706-74)1740130-60…200
Фторопласт-26 (ТУ 6-05-1706-74)1790-60…250
Фторопласт-30П, 30А (ТУ 6-05-1706-74)1670215-235-198…170
Фторопласт-32Л (ТУ 6-05-1620-73)1920-1950105-60…200
Фторопласт-40 (ОСТ 6-05-402-74)1650-1700260-275140-143-100…200
Фторопласт-40Д и 40ДП (ТУ 6-05-1706-74)1650-1700265-100…200
Фторопласт-40Б (ТУ 6-05-501-74)1650-1700260-265-60…200
Фторопласт-40ШБ (ТУ 6-05-383-72)1650140-60…200
Фторопласт-2 (ТУ 6-05-646-77)1700-1800170-180140-160-60…150
Фторопласт-2М (ТУ 6-05-1781-76)1750-1800155-165120-145-60…145
Фторопласт-45 (ТУ 6-05-1442-71)1910-2000150-16097-105-60…120
Фторопласт-1 (ТУ 6-05-559-74)1380-1400196-204120-80…200
Фторопласт-10Б и 100Б2100-100…150
Фторопласт-4001700-60…150
Композиция Ф40С15 (ТУ 6-05-606-75)265-275
Композиция Ф4К20 (ТУ 6-05-1412-76)2100-2120-60…250
Композиция Ф4С15 (ТУ 6-05-1412-76)2170-2180-60…250
Композиция Ф4К15М5 (ТУ 6-05-1412-76) и Ф4С15М52190-60…250
Композиция Ф4М152250-60…260
Композиция Ф4Г21М72100-2300-100…250
Антифрикционный материал Ф40Г401700-1800-60…200
Антифрикционный материал Ф40С15М1,51800-100…210
Антифрикционный графитофторопластовый материал 7В-2А1900-200до 250
Антифрикционный графитофторопластовый материал АФГМ2100-2300до 180
Антифрикционный графитофторопластовый материал АФГ-80ВС и 80ФГ2050-2100до 200
Антифрикционный графитофторопластовый материал ГФ-5М2100-2200до 180
Пленка из фторопласта-10 (ТУ 6-05-538-77)2100-100…100
Пленка фторопластовая Ф-42200-2300-60…200
Пленка фторопластовая Ф-4ЭО, Ф-4ИО, Ф-4ИН и Ф-4ЭН2100-2200-60…250
Поливинилхлорид (ПВХ) и пластмассы на его основе
Винипласт листовой (ГОСТ 9639)138070-85-75
Изоляционные пластикаты И40-13, И50-13, И60-12, ИТ-105 (ГОСТ 5960)1180-1340170-190-60…-40
Винипроз и эстепроз (ТУ 6-05-1222-75)1350-1400-35…60
Пенопласт ПВХ-1, ПВХ-270-300-60…60
Пенопласт ПВХ-1, ПВХ-250-400-70…70
Пенопласт ПВХ-Э100-270-10…40
Пеноэласт80-300-20…70
Винипор С, Д, М90-180-10…55
Вибропоглощающий материал ВМЛ-25 (ТУ 6-05-980-75)1500-1600-10…50
Пленка винипластовая (ГОСТ 16389, ГОСТ 15976)1370-1450-50…60
Поливинилацетат119044-50-5*
Поливинилформаль (ГОСТ 10758)1240115-120
Поливинилбутираль (ГОСТ 9439)110060-75
Поливинилэтилаль (ТУ 6-05-564-74)1350118-120
Поливинилформальэтилаль (ГОСТ 10400)1200120
Поливинилбутиральфурфураль (ТУ 6-05-1102-74)105570-85
Поливинилкеталь1180105-115
Пленка ПВС-Э, ПВС1200-1300-5…130
Поливинилбутиральные пленки А-17, Б-Н, Б-10, Б-17, Б-17-О (ГОСТ 9438)1050-1100-60…150
Полиакрилаты
Полиметилметакрилат литьевой ЛПТ (ТУ 6-05-952-74)1180-1200120-125-50*-60…60
Дакрил-2М ( ТУ 6-01-707-72)1190110
Компаунд МБК-1 (ТУ 6-05-1602-71)1600-60…105
Герметики ДН-1 и Анатерм-1, 2, 4, 5, 6, 71050-1200до 150
Герметик Унигерм1050-1200-185…200
Стекло органическое СОЛ (ГОСТ 15809)118090-60…60
Оргстекло СТ-1 (ГОСТ 15809)1180110-60…80
Оргстекло 2-55 (ГОСТ 15809)1190133-60…100
Стекло органическое ТОСП (ГОСТ 17622)118090
Оргстекло ТОСН (ГОСТ 17622)1180105-110
Оргстекло ТОСС (ГОСТ 17622)1180125-130
Полиарилаты
Полиарилаты Д-3, Д-4, Д-3Э ( ТУ 6-05-211-834-72)1150-1190260-285210-100*до 180
Полиарилат Д-4С (ТУ 6-05-818-72)1210255-280210-100*до 180
Полиарилат Ф11110-1260300-310268-100*до 200
Полиарилат Ф21100-1170320-340280-100*до 250
Антифрикционный пластик Аман-13600до 220
Антифрикционный пластик Аман-23700до 180
Антифрикционный пластик Аман-72500до 120
Антифрикционный пластик Аман-102500до 200
Антифрикционный пластик Аман-123000до 300
Антифрикционный пластик Аман-223700до 250
Антифрикционный пластик Аман-243200до 250
Полиарилатная пленка Д-4П (ТУ 6-05-823-72)-60…180
Полиарилатная пленка ДФ-55П и Ф-2П (ТУ 6-05-823-72)-60…250
Полиарилатная пленка Д-3Э (ТУ 6-05-834-72)-60…155
Фенопласты
Фенопласт О6-010-02 (ГОСТ 5689) и К-18-2 (ТУ 6-05-480-72)1400-60…60
Фенопласт О7-010-02 (ГОСТ 5689)1450-50…110
Фенопласты СП1-342-02, СП2-342-02 (ГОСТ 5689)1400-60…60
Фенопласты Э1-340-02, Э2-330-02 (ГОСТ 5689)1400-60…100
Фенопласт Э3-340-65, Э3-340-61 (ГОСТ 5689)1950-60…115
Фенопласт Э6-014-30 (ГОСТ 5689)1850-60…220
Фенопласт В-4-70 (ГОСТ 5.1958)2000-60…150
Фенопласт влагохимстойкий ВХ-090-34 (ГОСТ 5689)1600-40…110
Фенопласт влагохимстойкий ВХ4-080-34 (ГОСТ 5689)1750-60…200
Фенопласты ударопрочные У1-301-07, У2-301-07, У3-301-07 (ГОСТ 5689)1450-40…110
Фенопласты ударопрочные У5-301-41, У6-301-411950-40…130
Фенопласты жаростойкие Ж1-010-40, Ж2-040-60, Ж3-010-62, Ж4-010-621750-1900-40…120
Фенопласт жаростойкий Ж2-010-60 (ГОСТ 5689)1750-40…130
Антифрикционный пластик АФ-3Т ( ТУ 26-01-55-1-73)1760-1800-70…250
Пресс-материал АТМ-1 (антегмит)1800-1850до 115**
Пресс-материал АТМ-1К (антегмит)1800-1850до 300**
Изодин (ТУ 16-503-013-74)1350-1450до 120**
Пластик ПГТ (ТУ 16-503-023-75)1300-1450-60…105
Текстолит конструкционный ПТК, ПТ, ПТМ-1 (ГОСТ 5-72)1300-1400до 130**
Текстолит электротехнический листовой А, Б, Г, ВЧ (ГОСТ 2910)1300-1450-65…105
Текстолит электротехнический листовой ЛЧ (ГОСТ 2910)1250-1350-65…120
Текстолит электротехнический листовой влагостойкий ЛТ (ТУ 16-503.149-75)1200-1350-65…65
Пенофенопласт ФФ (МРТУ 6-05-1302-70)190-230-50…150
Пенофенопласт ФК-20 (МРТУ 6-05-1302-70)190-230-60…120
Звуконепроницаемая теплоизоляция ФС-7-2 (ТУ 6-05-958-73)70-100-55…100
Пенофенопласт ФК-20-А-20 (ТУ 6-05-1303-70)140-200до 250
Пенопласт Резопен (ТУ В-302-71), Виларес-1, Виларес-530-80-150…150
Пенопласт ФРП-2М (ТУ 6-05-304-74)100-180…200
Пенопласт ФЛ-1, ФЛ-240-60-60…120
Карбамидные пресс-материалы (композиты и аминопласты)
Аминопласты А1 и А2 (ГОСТ 9359)1400-1500-60…60
Аминопласт В1 (ГОСТ 9359)1600-1800-60…120
Аминопласт В5 (ГОСТ 9359)1600-1850-60…60
Пресс-материал П-1-11480-60…100
Пенопласты мочевиноформальдегидные МФП-1 и МФП-2 (ТУ 6-05-206-73)10-30-60…100
Пресс-материалы на основе кремнийорганических смол
Пресс-материалы КФ-9 и КФ-10 (ТУ 6-05-1471-71)1500-1650-60…250
Пресс-материалы КЭП-1 и КЭП-21500-1800-60…200
Антифрикционный пластик АМС-1 (ТУ 48-20-45-74)1740-1760-60…210
Антифрикционный пластик АМС-3 (ТУ 48-20-45-74)1780-1800-200…210
Органосиликатный материал Группа А марка 1 и 4-60…500
Органосиликатный материал Группа Т марка 11-60…700
Пенопласт К-40200-400до 250
Полиэфиры
Полиэтилентерефталат (ПЭТ, лавсан, майлар) (ТУ 6-05-830-76)1320160-180
Лавсан ЛС-11530190
Пленка полиэтилентерефталатная (ПЭТФ) аморфная (ТУ 6-05-1454-71)1330-1340260-264до 60
Пленка ПЭТФ общего назначения (ТУ 6-05-1065-76)1380260-60…155
Пленка ПЭТФ электроизоляционная (ТУ 6-05-1794-76)1380260-264-150…156
Пленка ПЭТФ конденсаторная (ТУ 6-05-1099-76)1380-1400250-60*-60…125
Пленка ПЭТФ для металлизации (ТУ 6-05-1108-76)1380260-264
Эпоксидные смолы и компаунды
Заливочный компаунд ЭЗК-1 и ЭЗК-41800-1850-60…120
Эпоксидный заливочный компаунд ЭЗК-61220-60…80
Заливочный компаунд ЭЗК-51520-50…70
Заливочный компаунд ЭЗК-111100-60…120
Заливочный компаунд ЭЗК-121500-60…100
Заливочный компаунд ЭЗК-71600-60…80
Заливочный компаунд ЭЗК-81450-60…70
Компаунд ЭК-201160-1200-60…150
Пропиточный компаунд ЭПК-1 и ЭПК-41230-60…120
Компаунд УП-5-186 (ТУ 6-05-87-74)190-210-60…100
Компаунд УП-5-187 (ТУ 6-05-87-74)200-230-60…100
Пастообразный компаунд УП-5-190 (ТУ 6-05-95-75)2700-2900-50…180
Компаунд ЭНТ-22200250-300
Компаунд ЭНКП-21800150-180
Компаунд ЭНГ-301290125-135
Компаунд ЭНМ-251320125-135
Пресс-материал УП-264С (ТУ 6-05-22-73)1650155-165-60…150
Пресс-материал УП-264П (ТУ 6-05-22-73)1900-2200160-165-60…150
Пресс-материал УП-284С (ТУ 6-05-70-73)1670-1710180-200-60…180
Пресс-материал УП-2198 (ТУ 6-05-94-75)-60…105
Пресс-материал УП-21971700-1900-60…230
Премиксы ЭФП-60, ЭФП-61, ЭФП-621700-1800-60…155
Премиксы ЭФП-64, ЭФП-651800-2300-60…155
Пенопласт ПЭ-2 (ТУ В-172-70)90-450-60…140
Пенопласт ПЭ-5 (ТУ 6-05-215-71)100-300-60…120
Пенопласт ПЭ-6 (ТУ 6-05-215-71)20-50-60…100
Пенопласт ПЭ-7 (ТУ 6-05-289-73)23-60-60…100
Пенопласт ПЭ-8 (ТУ В-171-70)150-500-60…120
Пенопласт ПЭ-9 (ТУ В-173-70)100-500-60…90
Полиамиды
Полиамид-6 (капролон) ОСТ 6-06-С9-761130215190-200
Смола капроновая литьевая (ТУ 6-06-390-70)1130215
Полиамид 610 литьевой (ГОСТ 10589)1090-1110215-221200-220-60…100
Полиамид П-66 литьевой (анид) (ОСТ 6-06-369-74)1140252-260210-220
Полиамид литьевой П-12Л (ТУ 6-05-1309-72)1020178-181140-55…-50
Полиамид П-12Б (ТУ 6-05-145-72)1020170140-50
Полиамид экструзионный П-12Э (ТУ 6-05-147-72)1020178-182140-60
Капролон В (ТУ 6-05-983-73)1150-1160220-225190-220-60…60
Капролит РМ1200220
Литьевой сополимер полиамида АК-93/7 (ГОСТ 19459)1140238-243220-230
Литьевой сополимер полиамида АК-85/15 (ГОСТ 19459)1130224-230210-220
Литьевой сополимер полиамида АК-80/20 (ГОСТ 19459)1130212-218200-210
Смола полиамидная П-54 и П-54/10 (ТУ 6-05-1032-73)1120160-165115-135-40*
Смола полиамидная П-548 (ТУ 6-05-1032-73)112015085-50*
Материал АТМ-2 (ТУ 6-05-502-74)1390218-220-50…60
Антифрикционный материал ЛАМ-1 (ТУ 26-404-74)235-60…165
Полиуретаны
Пенополиуретан ППУ-ЭМ-1 (ТУ 6-05-1473-76)30-50-50…100
Пенополиуретан ППУ-202-1 (ТУ 6-05-234-72)55-85до 100
Пенополиуретан ППУ-ЭФ-1, ППУ-ЭФ-2, ППУ-ЭФ-319-38-40…100
Пенополиуретан ППУ-305А (ТУ 6-05-121-74)35-500120
Пенополиуретан ППУ-307 (ТУ 6-05-251-72)35-220130-150
Пенополиуретан ППУ-311 (ТУ 6-05-221-72)30-60150
Пенополиуретан ППУ-313-2, ППУ-312-335-45120-150
Пенополиуретан ППУ-314 (ТУ 6-05-279-73)20-30080-100
Пенополиуретан ППУ-403 (ТУ 6-05-252-72)75-200120
Пенополиуретан ППУ-202-1 (ТУ 6-05-234-72)200-250-60…100
Пенополиуретан ППУ-202-2 (ТУ 6-05-229-72)130-250-60…100
Пенополиуретан ППУ-3Н, ППУ-9Н50-8070-75
Пенополиуретан ППУ-304Н30-200120
Пенополиуретан ППУ-308Н40-200150
Этролы
Этролы ацетилцеллюлозные АЦЭ-43А, АЦЭ-55А (ТУ 6-05-1528-72)1270-134065-85
Этрол ацетилцеллюлозный АЦЭ-47ТВ (ТУ 6-05-268-73)1270-134065-85
Этрол ацетилцеллюлозный АЦЭ-55АМ (ТУ 6-05-1528-72)1270-134070
Этролы АЦЭ-55У, АЦЭ-50У, АЦЭ-50-20У, АЦЭ-50-5У (ТУ 6-05-268-73)1270-134090
Этрол ацетобутиратцеллюлозный АБЦЭ-15АТ (ТУ 6-05-255-72)1160-125085
Этрол ацетобутиратцеллюлозный АБЦЭ-7,5-5, АБЦЭ-10, АБЦЭ-15ДСМ-В1160-125080
Этрол ацетобутиратцеллюлозный АБЦЭ-151160-125075-80
Пленка электроизоляционная триацетатная (ТУ 6-17-499-73)1260-60…100
Стеклопластики
Стеклопластик АГ-4С-6 (ТУ 84-359-73)1900-2000-60…200
Стеклопластик АГ-4В-10 (ТУ 84-438-74)1700-1900-60…130
Термопласт стеклонаполненный САН-С (ТУ 6-05-369-76)1280-1320115-120-40…120
Полиамид П-6 стеклонаполненный ПА6ВС, ПА6ВС-У (ТУ 6-05-953-74)1350212-216
Смола капроновая стеклонаполненная КС-30а1360214-221
Полиамид стеклонаполненный КПС-30 и КВС-30 (ГОСТ 17648)1350-1380214-221
Дифлон СТН (ТУ 6-05-937-74)1400170-172-100*
Стеклопластик ДАФ-С-22000-2150-60…180
Стеклопластик ДАИФ-С1 и ДАИФ-С22200-60…250
Стеклотекстолит листовой СТЭФ-НТ (ТУ 16-503.146-75)1600-1900-60…55
Стеклотекстолит листовой СТ-НТ (ТУ 16-503.147-75)1600-1850-65…130
Диэлектрик фольгированный ФДГ-1 и ФДГ-2-60…150
Фольгированные травящиеся диэлектрики ФДМТ (ТУ 16-503.113-72)3000-4500-60…100
Фольгированный диэлектрик ФДМ-12800-3400-60…100
Фольгированный диэлектрик ФДМ-23500-4000-60…100
Фольгированные диэлектрики ФДМЭ-1 и ФДМЭ-1-ОС2800-5100-60…105
Пластики на основе формальдегида и диоксолана
Сополимеры формальдегида с диоксоланом СФД (ТУ 6-05-1543-72)1390-1410160-165150-155-60…120
Пентапласт
Пентапласт (ТУ 6-05-1422-74)1400180155-165до 120
Пентапласт кабельный И3 (ТУ 6-05-1693-74)1320-1330170-172123-127-25…125
Пентапласт модифицированный1320176125-20
Пентапласт футеровочный (ТУ 6-05-5-74)1350-1400155-165
Пленка пентапластовая (ТУ 6-05-453-73)1400-50…130
Поликарбонаты
Поликарбонат дифлон (ТУ 6-05-1668-74)1200150-160-100…135
Поликарбонат модифицированный ДАК-8 и ДАК-12-3BN (ОСТ 6-05-5018-73)1200156-160
Дифсан (ТУ 6-05-852-72)1320155-160-100…120
Поликарбонатная пленка ПКО (ТУ 6-05-865-73)1210-60…150
Полиимиды
Полиимид ПМ-671390-1460280до 250
Полиимид ПМ-691380-1470280до 250
Пленки ПМФ-351 и ПМФ-352 (ТУ 6-05-1754-76)1390-1420-60…200
Полисульфон
Полисульфон1250180
Пенопласты изолан
Пенопласт изолан-135-400200-250-60…200
Пенопласт изолан-230-50170-50…180
Пресс-материал фенилон П и С1 (ТУ 6-05-101-71)1350260-270
Пресс-материал фенилон С2 (ТУ 6-05-226-72)1350300
Арилокс
Арилокс-2101 (ТУ 6-05-416-76), 2102 (ТУ 6-05-415-76)180
Арилокс-2103 (ТУ 6-05-417-76), 2104 (ТУ 6-05-421-76), 2105 (ТУ 6-05-423-77)130
Арилокс-1Н (ТУ 6-05-402-75)-60…150
Фольгированный арилокс-1Н (ТУ 6-05-404-74)-60…150
Диэлектрик фольгированный флан (ТУ 16-503.148-75)1200-2600190-200
Ниплон
Термостойкий пластик ниплон-1 (ТУ 6-05-998-75)1340330-340до 300
Термостойкий пластик ниплон-2 (ТУ 6-05-1001-75)1300до 300
Стеклопластик ниплон-1 и ниплон-21800до 300
Углепластик ниплон-1 и ниплон-21300до 300

Стекловолокно. Виды и применение. Производство и особенности

Стекловолокно – это распространенный материал на основе кварцевого песка. Он используется для изготовления стройматериалов, а также различных высокотехнологичных и прочных легких конструкций.

Из чего делают стекловолокно

Впервые стекольное волокно получились случайно. На производстве стекла произошла авария, при которой расплавленная масса была раздута подаваемым под давлением воздухом. В результате получились нити, отличающиеся некой долей гибкости. Это стало неожиданностью, поскольку толстое стекло после застывания является очень твердым. С тех пор прошло уже более 150 лет. Технология немного изменилась, но принцип остался прежним.

Для производства стекловолокна применяется кварцевый песок или битое стекло. Применяемая технология не подразумевает использования сложного оборудования, она является довольно простой. При этом получаемый материал обладает рядом свойств, зависящих от способа подготовки волокна.

Процесс изготовления стекловолокна заключается в выдувании из него тонких ниток. Для этого осуществляется разогрев битого стекла или кварцевого песка до температуры 1400°С. Расплавленная тягучая масса подается на формирующее оборудование. Если ее пропустить через центрифугу, то получится стекловата с переплетенными, замешанными между собой волокнами. Если же применять специальное сито с микроотверстиями, через которые масса выдувается под давлением пара, то получаются ровные длинные волокна. В дальнейшем они могут использоваться как сырье для изготовления сложных изделий.

Технические особенности
Стекловолокно имеет целый ряд положительных качеств, делающих его отличным сырьем для изготовления строительных материалов. К его неоспоримым достоинствам можно отнести:
  • Теплопроводность.
  • Устойчивый химический состав.
  • Высокую плотность.
  • Повышенную температуру плавления.
  • Устойчивость к горению.

Одним из самых важных достоинств стекловолокна является низкая теплопроводность. Это позволяет делать из данного сырья теплоизоляционные материалы. Из всей группы изделий, которые можно получить из данного сырья, самым лучшим теплоизолятором является стекловата.

Стекловолокно имеет высокую химическую устойчивость, поскольку практически полностью состоит из кварцевого песка. При воздействии на него щелочами отсутствует любая химическая реакция, что делает волокно практически универсальным для сочетания с любыми стройматериалами.

Нити имеют высокую плотность, которая составляет 2500 кг/м³. Однако благодаря тому, что они являются распушенными, готовые из них изделия имеют большой объем, при этом малый вес. Чтобы расплавить даже тонкие волокна, их необходимо разогреть до температуры как минимум 1200°С. Такое возможно только при целенаправленном воздействии горелки. Это негорючий материал, что позволяет его использовать для создания различных пожаробезопасных конструкций. Теоретически возможно воссоздание определенных условий, при которых отдельные сорта стекловолокна могут гореть. При этом они должны содержать связующие полимерные компоненты, что встречается редко.

Сфера применения стекловолокна
Стекловолокно очень распространенный материал, из которого изготовляют самые разнообразные изделия. Его используют практически во всех сферах:
  • Строительство.
  • Производство бытовых предметов.
  • Электроизоляция проводников.
  • Медицина.
Использование в производстве стройматериалов
Стекловолокно является сырьем для изготовления различных материалов. Из него делают:
  • Утеплительные маты.
  • Рулонную мягкую стекловату.
  • Штукатурную сетку.
  • Стекломаты.
  • Ткань.
  • Стеклопластик.
  • Стеклопластиковую арматуру.

Жесткие маты делают из стекловаты. Это достаточно плотный материал, применяемый для выполнения утепления фасадов. Кроме этого он при определенной длине нитей может выступать качественным звукоизолятором. Материал отличается стабильностью, но при его раскрое лучше пользоваться респиратором. Во время реза матов поднимается мелкая стекольная пыль. При попадании на кожу она вызывает ее раздражение, также такие частицы могут скапливаться в легких.

Рулонная стекловата является более гибким и менее плотным аналогом жестких матов. Она изготовлена аналогичным способом, однако сворачивается в рулон, что облегчает транспортировку. Ее используют в качестве теплоизоляционного материала, в частности совместно с металлическим профилем. Стекловата закладывается между направляющими, после чего закрывается отделочным материалом. Она в отличие от матов не может штукатуриться сверху, поэтому всегда должна применяться только с дальнейшим накрытием. Ее укладывают под кровлю, дощатый настил пола. В помещении на стенах ее закрывают гипсокартоном, на фасадах – металлическими панелями или вагонкой.

Особым спросом пользуется сетка из стекловолокна. Она применяется как армирующее изделие при выполнении штукатурных работ. Материал обладает высокой устойчивостью к растягиванию, что предотвращает появление трещин на стенах. Ее используют при выполнении внутренних и наружных штукатурных работ. Для отделки внутри помещения применяется сетка с небольшой плотностью от 80 г/м². Она выпускается в рулонах шириной 1 м. Сетка отличается достаточной гибкостью, но при сильном заломе ее волокна разламываются. Достоинство стеклосетки над обычной стальной штукатурной сеткой в том, что она не ржавеет. Со временем от нее на стенах не проявляются рыжие пятна.

Также из стекловолокна делают стекломаты. Их получают путем сложения между собой кусочков стеклянных волокон смешанных в произвольном направлении. Они скрепляются без использования клеящих составов. В результате смешанные иголочки поддерживаются между собой, обеспечивается надежная фиксация. Это армирующий материал, который ламинируется смолой. Из него можно создавать различные крепкие формы, к примеру, корпуса лодки. Для этого стекломаты и смола применяются как папье-маше.

Более легким и тонким аналогом стекловаты является стеклоткань. Она делается по аналогичной технологии с сеткой, но более сложным ткацким способом. В частности из нее состоят стеклообои и стеклохолст. Последний приклеивается на качественно оштукатуренную и шпаклеванную стену, после чего осуществляется ее покраска. Наличие стеклохолста препятствует образованию трещин, позволяет скрыть мелкие дефекты основания. Такая поверхность является ремонтопригодной.

Особым спросом пользуется стеклопластик, который помимо стеклянных волокон содержит в себе связующие смолы. Это очень прочный износоустойчивый материал, из которого делают самые разнообразные изделия. Примером такого использования является стеклопластиковая арматура. Она является аналогом стальной арматуры, используемой для армирования бетонных конструкций. Неоспоримым достоинством стеклопластикового изделия является низкая стоимость, небольшой вес, а также возможность транспортировки в виде скрученной бухты. Материал обладает аналогичной устойчивостью к разрыву, что и стальная арматура, при этом быстро разрезается даже ручной ножовкой по металлу.

Стекловолокно имеет очень широкое использование в строительстве, однако в последнее время уступает свои позиции базальтовой вате по направлению теплоизоляции. Это аналогичный материал, сделанный не из кварцевого песка, а базальта. Последний является более безопасным для человека, поскольку его волокна меньше осыпаются и раздражают слизистые оболочки и кожу. Однако при соблюдении определенных строительных норм возможно использование стекловолокна не только в промышленных зданиях, но и в жилых объектах.

Материал по-прежнему очень широко применяется для утепления трубопроводов. Что касается стеклообоев и штукатурной сетки, то ее применение абсолютно безопасно, поскольку в этом случае для ее производства используются длинные нити, а не короткие высыпающиеся волокна. Поэтому данные материалы являются неоспоримыми лидерами рынка.

Из стекловолокна с полимерными добавками получают стеклопластик, из которого делают корпуса судов и лодок, облегченные кузова гоночных машин. Это отличный материал для изготовления лыж, и даже емкостей для питьевой воды. Стеклопластик гораздо крепче обычной пластмассы, кроме этого он намного долговечнее. Он обладает лучшей устойчивостью к высоким температурам.

Использование в качестве изолятора

Из стекловолокна делают изоляцию для проводов. Она выступает непроницаемым диэлектриком. Изоляционная оболочка представляет собой сплетенную ткань, обмотанную вокруг проводника. Также огромным спросом пользуется оптоволокно, представляющее собой длинные цельные нитки с внешней ПВХ оболочкой.

Применение в медицине

Из стекловолокна изготавливают протезы и безопасные для здоровья импланты, которые могут контактировать с живыми тканями. В частности хорошо зарекомендовали себя зубные протезы. Стекловолокно при стабильной структуре, без осыпающихся частей, является абсолютно нейтральным для человека. Именно поэтому значительная часть медицинского оборудования и инструмента содержит стекловолоконные части. Материал применяется для изготовления хирургического лазерного скальпеля.

Применение в медицине подтверждает безопасность волокна для здоровья человека. Единственным исключением являются пыль и мелкие частицы волокон, которые втягивается в легкие человека из воздуха. Они окружают стекловату, а также образуются при распиле стеклопластика. Во всех остальных случаях материал абсолютно безопасен.

Похожие темы:

Свойства стекловолокон

Справочник по композиционным материалам

Состав стекла в первую очередь определяет свойства стекло­волокон. Не менее значимой оказывается и термическая предысто­рия стекла. Расширение сфер применения стекловолокон опре­деляется в основном их свойствами (табл. 8.3).

Высокая прочность при растяжении. Стекловолокна имеют очень высокий предел прочности при растяжении, превышающий прочность других текстильных волокон. Удельная прочность стекловолокон (отношение прочности при растяжении к плот­ности) превышает аналогичную характеристику стальной про­волоки.

Тепло — и огнестойкость. Так как природа стекловолокон неор­ганическая, они не горят и не поддерживают горение. Высокая температура плавления стекловолокон позволяет использовать их в области высоких температур.

Хемостойкость. Стекловолокна не воздействуют на большин­ство химикатов и не разрушаются под их влиянием. Устой­чивы стекловолокна и к воздействию грибков, бактерий и на­секомых.

Влагостойкость. Стекловолокна не сорбируют влагу, следо­вательно, не набухают, не растягиваются и не разрушаются под ее воздействием. Стекловолокна не гниют и сохраняют свои высо­кие прочностные свойства в среде с повышенной влажностью.

Термические свойства. Стекловолокна имеют низкий коэффи­циент линейного расширения и большой коэффициент теплопро­водности. Эти свойства позволяют эксплуатировать их при повы­шенных температурах, особенно, если необходима быстрая дисси­пация температуры.

8.3. Свойства стекловолокон

Свойства

Марка стекла

А

С

Е

S

Физические

Плотность, кг/м*

2500

2490

2540

2480

Твердость по Моосу

6,5

6,5

6,5

Механические

Предел прочности при растяжении

>

МПа:

/

При 22 °С

3033

3033

3448

4585

При 371 °С

2620

3768

При 533 °С

1724

2413

Модуль упругости при растяжении при

69,о

72,4

85,5

22 °С, МПа

Предел текучести, %

4,8

4,8

5,7

Упругое восстановление, %

100

100

100

Термические

Коэффициент линейного термического

8,6

7,2

5,0

5,6

Расширения, 10~в К-1

Коэффициент теплопроводности,

10,4

Вт/(м — К)

Удельная теплоемкость при 22 °С

0,212

0,197

0,176

Температура размягчения, °С

727

749

841

Электрические

Электрическая прочность, В/мм

_____

_____

19 920

_____

Диэлектрическан постоянная прн 22 °С:

5,0—5,4

При 60 Гц

———

———

5,9—6,4

При 1 МГц

6,9

7.0

6,3

5.1

Потери при 22 °С:

При 60 Гц

0,005

0,003

При 1 МГц

0,002

0,003

Объемное сопротивление прн 22 °С и

10[21]?

1018

500 В постоянного тока, Ом-м

Поверхностное сопротивление прн 22 °С

10*§

10″

И 500 В постоянного тока, Ом-м

Оптические

Коэффициент преломления

1,547

1,423

Акустические

Скорость звука, м/с

5330

5850

Электрические свойства. Поскольку стекловолокна не про­водят ток, они могут быть использованы как очень хорошие изо­ляторы. Это особенно выгодно там, где необходимы высокая электрическая прочность и низкая диэлектрическая постоянная.

Физические, механические, термические и электрические свой­ства А-, С-, Е — и S-стекол приведены в табл. 8.3. Для каждого конкретного применения обычно используют то волокно, в кото­ром реализуется максимальное число необходимых свойств. Так, например, в авиа — и ракетостроении при создании обтекателей используются высокие прочностные и хорошие электрические свойства армирующих стекловолокон. При создании печатно-на — борных плат должны быть соблюдены условия реализации хоро­ших электрических свойств и высокой размеростабильности. Стекловолокна обеспечивают эти качества и при изменении внеш­них условий, и в процессе технологических операций.

Большое разнообразие стекловолокон, как армирующего агента в КМ, требует максимального сохранения свойств в условиях высокой влажности. Для этих целей предпочтительнее волокна из f-стекол, так как они максимально устойчивы к воздействию воды. При кипячении в течение 1 ч волокно из f-стекла теряет 1,7 % массы, в то время как те же потери для волокон из других стекол составляют 0,13 % для S-стекла и 11,1 % для Л-стекла. Хотя при Часовой экспозиции потери массы 5-стекла меньше, чем f-стекла, при длительном кипячении волокна из S-стекла теряют массу больше, чем из £-стекла. В результате этого проис­ходит существенное снижение свойств 5-волокон. Таким образом, если композиты должны сохранять в течение длительного времени стабильные свойства, желательно использовать для их армиро­вания Е-стекла. Высокая прочность при растяжении и малая диэлектрическая проницаемость волокон из £-стекол также яв­ляются важным фактором при их использовании.

Однако волокна из Е — и Л-стекол разрушаются под действием кислот и щелочей, в то время как S-стекла прекрасно сохраняются при воздействии этих реагентов. Поэтому S-стекла применяются в таких средах, как, например, сепараторы в аккумуляторных батареях.

Быстрое развитие исследований и применение материалов, полученных намоткой, привело к созданию большого числа специ­фикаций и стандартов на методы их испытаний. Следующие стан­дарты ASTM представляют собой интерес: ASTM D2290-76. Определение предела …

Ряд испытаний должен проводиться при повышенных темпера­турах. Зависит это от типа композиционного материала и области его применения. Обычные композиты не должны терять проч­ность и модуль после получасовой экспозиции при темпера­туре …

Показатель Исходные значения После выдерж­ки на глубине 1737 м в тече­ние 1045 сут Показатель Исходные значення После выдерж­ки на глубине 1737 м в тече­ние 1045 сут А0Ж( МПа £сш, ГПа …

Что такое стекловолокно, стеклоткань, стеклохолст и полиэстер?

Стекловолокно изготовляют из
расплавленного стекла в виде элементарных волокон диаметром 3—100
мкм и длиной 20 км и более (непрерывное стекловолокно) или
диаметром 0,1—20 мкм и длиной 1—50 см (штапельное стекловолокно).
В такой форме стекловолокно демонстрирует необычные для стекла
свойства: обладает высокой прочностью — не бьётся и не ломается, при
этом легко гнётся без разрушения. Это позволяет ткать из него стеклоткань
и изготавливать гибкие световоды, применяя их в самых различных отраслях.

Стеклохолст — это нетканое полотно,
получаемое путем сваливания стекловолокон, таким образом, достигается
более высокая плотность полотна. В результате образуется прочное
нетканое полотно разной толщины и разной плотности. Стеклохолст часто
применяют при производстве кровельных материалов, т.к он служит отличной
основой с показателями высокой прочности на разрыв.


Полиэстер — полимер, в данном случае мы говорим о
нетканом полотне из нитей полиэстера, так же производится разной
толщиной и плотности и применяется в различных отраслях. Кровельные
материалы на основе полиэстера являются одними из самых дорогих,
значительно превышая в цене все прочие. Но также это и самая надежная
основа, выдерживающая растяжение до 50%.


Стекловолокно

Преимущества

Для придания стекловолокну необходимых свойств используют добавки из горных пород и минералов. Этот материал отличают:

  • Прочность. Стекловолоконные нити превосходят по прочности проволоку из легированной стали аналогичного диаметра. Материалы с добавкой магния и минералов имеют самую высокую прочность.
  • Устойчивость к высоким температурам. Стекловолокно сохраняет свои свойства при сильном нагреве. Температура плавления материала превосходит температуру плавления стекла.
  • Пригодность к применению в качестве основы для многослойных материалов. Благодаря прочности, гибкости, стойкости к высоким температурам, стеклоткань и стеклохолст используют в качестве армирующего слоя стройматериалов, например, финишного покрытия мягкой кровли, подкладочных ковров.
  • Высокие тепло- и звукоизоляционные характеристики. Пространство между волокнами стеклотканей и стеклохолстов заполнено воздухом. Это обеспечивает низкую теплопередачу и поглощение звуков.
  • Низкая гигроскопичность. Стекловолокно не впитывает влагу и не препятствует ее испарению. При высыхании этот материал полностью восстанавливает свои свойства.
  • Негорючесть. Материалы из стеклянных нитей не поддерживают горение, они полностью отвечает требованиям пожаробезопасности и могут применяться для строительства в зонах повышенной пожароопасности.
  • Долговечность. Материалы не изменяют свойств со временем. Срок эксплуатации материалов из стекловолокна практически не ограничен.
  • Экологичность. Стеклянные нити не токсичны и не выделяют вредных и опасных веществ даже при расплавлении.
  • Небольшой вес. Стекловолокнистые материалы имеют низкую плотность и небольшой вес при значительном объеме.
  • Устойчивость к биологическому заражению. В отличии от органических нитей, стекловолокно не гниет, не покрывается плесенью, не разрушается насекомыми и грызунами.

Свойства материалов из таких нитей определяет состав компонентов, их пропорции и технологии производства. Для улучшения стойкости к истиранию стеклоткани и стеклохолсты пропитывают лаками и другими составами.

Стекловолокно и изделия из него

Стекловолокном называют материал, полученный из расплавленного стекла путем выдавливания из него тонких нитей.

Стекловолокно обладает редким сочетанием свойств: высокой прочностью при растяжении и сжатии, негорючестью, нагревостойкостью, малой гигроскопичностью, стойкостью к химическому и биологическому воздействию. Из него изготовляют материалы с высокими электро-, тепло-, звукоизоляционными свойствами и механической прочностью. На основе стекловолокнистых материалов изготавливаются различные виды изделий, которые успешно заменяют традиционные материалы,а также, имеют только им присущие области применения.

Различают два вида стекловолокна: непрерывное – длинной сотни и тысячи метров и штапельное – длинной до 0,5 м. По внешнему виду непрерывное волокно напоминает натуральный или искусственный шелк, а штапельное – хлопок или шерсть. Изделия из непрерывного волокна имеют вид однонаправленных волокон, тканых материалов, нетканых материалов и волокнистых световодов.

Однонаправленное стекловолокно представляет собой короткие пряди волокон или комплексных нитей, срезанных с бобин. Длина однонаправленного волокна изменяется в зависимости от периметра бобины или барабана, на который оно наматывается. Однонаправленное волокно с бобин имеет диаметр 5-10 мкм и длину не менее 0,5 м.

Тканые материалы получают в ходе текстильной переработки стекловолокна: размотки комплексной нити с бобин с комплексной круткой трощения нитей и вторичной их крутки, подготовки нитей к ткачеству и изготовления тканых материалов на ткацких станках. Для текстильной переработки используются волокна диаметром 5-10 мкм. Волокна большего диаметра имеют пониженную прочность при изгибе и чаще ломается в ходе текстильной переработки.

Нетканые материалы из непрерывного стекловолокна – жгут, холсты из рубленных и непрерывных нитей, ленты из склеенных нитей и стекловолокнистые анизотропные материалы. Жгут представляет собой прядь, состоящую из большого числа комплексных стеклянных нитей, холсты – рулонные нетканые материалы. В жестких холстах хаотически расположенные нити или обрезки нитей скреплены смолами, в мягких холстах – механической прошивкой. Первичные нити или жгуты могут быть склеены в длинные ленты.

При упорядоченной намотке нитей и жгутов на барабаны и одновременном нанесении связующего получают анизотропные материалы, свойства которых в разных направлениях различны. Эти материалы могут быть как рулонные при непрерывном способе производства, так и листовыми – при периодическом. Для нетканых материалов могут применяться волокна диаметром до 20 мкм.

Виды изделий из штапельного волокна.

Штапельные волокна различаются по длине элементарных волокон (длинноволокнистые и коротковолокнистые) и по их диаметру. По диаметру различают: микроволокно (0,5 мкм), ультратонкое (0,5-1,0 мкм), супертонкое (1-4 мкм), утолщенное (11-20 мкм) и грубое (20 мкм и более).

На основе коротковолокнистых штапельных волокон получают вату, рулонные материалы, маты, плиты и скорлупы. Все эти материалы состоят из хаотически перепутанных волокон. Волокно, осажденное вместе с органическими синтетическими материалами на конвейерной ленте, после обработки принимает вид непрерывного ковра толщиной 20-100 мм.

Рулонный материал представляет собой длинный кусок ковра, свернутый в рулон. Маты и плиты получают из неподпрессованного ковра. Маты в ряде случаев простегиваются нитями из непрерывного стеклянного волокна, тогда толщина из может быть уменьшена до 5 мм. Плиты покрываются с одной или обеих сторон стеклянной тканью.

Из длинноволокнистых штапельных волокон изготовляют холсты, сепараторные пластины, бумагу. Эти материалы (толщиной 0,5-1,5 мм) могут быть свернуты в рулоны или нарезаны на пластины. Для повышения механической прочности они могут армироваться нитями их непрерывного волокна. Из длинноволокнистых волокон получают по аналогии с шерстью штапельную крученую пряжу, ровницу и при последующей текстильной переработке – штапельные ткани, сетки, ленты. Свойства изделий из штапельного волокна в значительной степени зависят от диаметра волокна, состава стекла и вида связующего материала.

Способ производства стекловолокна.

Способы выработки стекловолокна классифицируется по двум основным принципам его формования:

  • утоньшения струйки стекломассы в непрерывное элементарное волокно;
  • разделения и расчленения струи расплавленного стекла, сопровождаемых вытягиванием коротких волокон.

Вытягивание волокна из струйки стекломассы может производиться как механическим путем, так и воздухом или паром. Каждый из этих способов может быть одно- или двухстадийным. При двухстадийном процессе стеклянное волокно вырабатывается из стеклоплавильных сосудов или печей, питаемых стеклянными шариками, штабиками или эрклезом. При одностадийном процессе стеклянное волокно вырабатывается из стекловаренных печей, питаемых шихтой. Механическое вытягивание волокна может осуществляться с помощью барабана, съемных бобин, вытяжных валков или прядильной головки. Способы разделения струи расплавленного стекла делятся на три группы: способы раздува, центробежные и комбинированные.

Состав и свойства стекол для изготовления стекловолокна.

В зависимости от области применения непрерывного стекловолокна требования к его химическому составу могут быть различными. Для электрической изоляции употребляется только бесщелочное (или малощелочное) алюмосиликатное или алюмоборосиликатное стекло; для конструкционных стеклопластиков применяют главным образом бесщелочные магнийалюмосиликатные или алюмоборосиликатные стекла; для стеклопластиков неответственного назначения можно использовать и щелочесодержащие стекла.

Процесс формирования непрерывного стеклянного волокна предъявляет к стеклу ряд требований: интервал вязкостей, в котором устойчиво протекает формирование непрерывного стеклянного волокна из стекол обычных составов.

Основными требованиями, предъявляемыми к стеклам для производства штапельного волокна, являются малая вязкость при температуре выработки и низкое поверхностное натяжение. В зависимости от способа выработки и назначения штапельного волокна применяют стекла различных составов, однако все они отличаются высоким содержанием оксидов щелочноземельных металлов.

Физико-химические свойства неорганических волокон и материалов на их основе.

Механические свойства. Стекловолокно значительно превосходит по механической прочности исходное (массивное) стекло и незначительно отличается от него по некоторым физическим параметрам.

Механические свойства стеклянных волокон зависят от химического состава стекла, метода производства, окружающей среды и температуры. Метод производства оказывает большое влияние на прочность стеклянных волокон: высокой прочностью обладают волокна, вытянутые с большой скоростью из расплавленного стекла (вытягивание из фильер), наименьшей прочностью – волокна, полученные штабиковым способом и раздувом. При формовании волокна из фильер образуется меньше поверхностных дефектов и трещин, чем обусловливаются их лучшие механические свойства, главным образом прочность.

Прочность при растяжении стекловолокна зависит от его состава и диаметра

Наибольшей прочностью обладают непрерывные волокна из кварцевого и бесщелочного магнийалюмосиликатного стекла. Повышенное содержание щелочей в стекле резко снижает прочность стеклянных волокон. Кристаллизация стекла и присутствие в стекломассе мелких газовых включений понижает прочность стеклянного волокна на 25-30%.

Максимальная прочность стеклянных и кварцевых волокон, испытанных в среде жидкого азота, приближается к расчетной теоретической прочности стекла и плавленого кварца.

В зависимости от диаметра и состава стекла техническая прочность стеклянных волокон при их формировании современными промышленными методами составляет 25-30 % теоретической прочности стекла.

Модуль Юнга стеклянных волокон составляет 6-11 ГПа и выше. Разрушающее напряжение при изгибе и кручении повышается с уменьшением диаметра волокон.

Изделия из стекловолокна плохо работают при многократном изгибе и истирании, однако, стойкости к изгибу и истиранию повышаются после пропитки лаками и смолами. Склеивание волокон в нити повышает прочность нити на 20-25 %, а пропитка стекловолокнистых материалов лаками – на 80-100 %.В сухом воздухе прочность стеклянных волокон резко повышается. Смачивание стеклянных волокон и изделий из них неполярной углеводородной жидкостью аналогично действию сухого воздуха и дает наибольшее значение прочности. Значительное (до 50-60 %) понижение прочности стеклянных волокон и изделий из них происходит при адсорбции ими воды и водных растворов поверхностно-активных веществ. Это объясняется тем, что молекулы веществ, адсорбируемых на стеклянных волокнах, способствуют образованию трещин в слабых местах поверхностного слоя.

При погружении химостойких стекловолокнистых материалов в воду прочность их снижается, но после высушивания полностью восстанавливается. Изделия из стеклянного волокна натрийкальцийсиликатного состава, содержащие более 15 % (мас.) оксидов щелочных металлов, после пребывания во влажном воздухе или в воде снижают прочность необратимо в связи с интенсивным выщелачиванием и разрушением. При длительном действии деформирующего усилия у стеклянных волокон развивается упругое последствие, которое зависит от химического состава стекла и относительной влажности воздуха. Влага снижает также сопротивления стеклянных волокон изгибу и трению.

При нагревании стеклянной ткани до 250-300°С прочность ее сохраняется, в то время как волокна органического состава при этой температуре полностью разрушаются.

При низких и высоких температурах устраняется адсорбционное воздействие влаги воздуха на стеклянные волокна, что приводит к повышению их прочности. Однако после термической обработки (нагрев до различных температур и последующее охлаждение) прочность стеклянных волокон и тканей снижается на 50-70 %.

Состав стекла оказывает значительное влияние на прочность стеклянных волокон, подвергнутых термообработке. Волокна из натрийкальцийсиликатного и боратного стекол теряют свою прочность при термообработке, начиная уже с 100-200°С, волокна из кварцевого, кремнеземного и каолинового стекла теряют прочность на 50 % при нагреве до 1000°С и последующем охлаждении.

Прочность волокон из бесщелочного стекла значительно снижается при 300°С; прочность кварцевых волокон при этой температуре практически не изменяется.

После нагрева и охлаждения стеклянных волокон наблюдается небольшое повышение их плотности и показателя преломления.

Нагревостойкость. Стеклянное волокно обладает высокой нагревостойкостью , которая зависит от химического состава стекла . Температурная область применения стеклянных волокон натрийкальцийсиликатного состава ограничена температурами 450-500°С, при более высоких температурах начинается их спекание. Для бесщелочных волокон нагревостойкость выше на 200-300°С и составляет 600-700°С.

Гигроскопичность отдельных стеклянных волокон около 0,2 % (мас.). Поглощение влаги стеклянной тканью значительно выше, так как влага адсорбируется зазорами между волокнами и замасливателем. Гигроскопичность ткани зависит от характера переплетения нитей и химического состава стекла, например ткани из волокна натрийкальцийсиликатного состава обладают гигроскопичностью до 3-4 %.

Химистойкость теклянных волокон не зависит от их диаметра, но абсолютная растворимость тонких волокон выше растворимости толстых вследствие большего отношения их поверхности к массе. Поэтому при воздействии агрессивных реагентов волокна разрушаются быстрее, чем массивное стекло.

Прочность стеклянных волокон в различных агрессивных средах (горячая вода, водяной пар высокого давления, кислоты, щелочи) зависит от химического состава стекла. Наибольшей прочностью и высокой стойкостью к горячей воде и пару обладают волокна из бесщелочного алюмоборосиликатного и магнийалюмосиликатного стекла. По гидролитической классификации этот вид стекла относится к «стеклам, не изменяемым водой».

Материалы из стеклянного волокна, содержащего в своем составе щелочи, значительно теряют прочность при многократной обработке горячей водой или водяным паром даже нормального давления. В этом случае имеет место интенсивное выщелачивание, приводящее к полному распаду структуры стекла.

При длительном воздействии водяного пара различного давления резко снижается прочность материалов и из волокна бесщелочного алюмоборосиликатного стекла. Наиболее стойкими в этих условиях являются стеклянные ткани из бесщелочного безборного стекла.

Стеклянные ткани и волокна из бесщелочного стекла нестойки к воздействию кислот. При обработке кислотой волокон из бесщелочного стекла все компоненты его растворяются и остается лишь малопрочный кремнекислородный скелет.

Высокой стойкостью к воде, пару высокого давления и различным кислотам (кроме плавиковой) обладают волокнистые материалы кварцевого, а также кремнеземного и каолинового состава.

Производство стекловолокна

Стекловолокно было первым армированием, используемым в современных полимерных композитах, но возникшим в результате древнего искусства. Здесь концы стекловолокна наматываются бок о бок на стержни основы (большие рулоны или цилиндры), которые позже будут использоваться при ткачестве стекловолокна. Источник | AGY

Стекловолокно — это оригинальное армирующее волокно современных композитов. Хотя древние финикийцы, египтяне и греки знали, как плавить стекло и растягивать его в тонкие волокна, только в 1930-х годах этот процесс превратился в промышленное производство непрерывных волокон, которые позже будут использоваться в качестве структурного усиления.Патентные заявки, поданные в период с 1933 по 1937 год сотрудниками компании Owens-Illinois Glass Co. (Толедо, Огайо), Games Slayter, John Thomas и Dale Kleist, фиксируют ключевые разработки, которые перевернули отрасль от производства стекловолокна с прерывистым волокном к производству непрерывные стеклянные волокна диаметром от 4 микрон (4 миллионных метра) и длиной в тысячи футов. Последующие прорывы сделали этот процесс коммерчески жизнеспособным и конкурентоспособным.

Последние два патента из этой серии, озаглавленные «Текстильный материал» и «Стеклоткань», предвещали будущее стекловолокна в качестве текстильного армирования.Патенты были присуждены в 1938 году, в том же году, когда Owens-Illinois и Corning Glass Works (Corning, N.Y.) объединились, чтобы сформировать Owens-Corning Fiberglas Corp. (OCF). Новая компания продавала свое стекловолокно под торговым наименованием Fiberglas, которое явилось родоначальником общей ссылки на стекловолокно. Вскоре на рынок вышел ряд других производителей, которые, благодаря многочисленным инновациям в процессах и продуктах, внесли свой вклад в мировой рынок конструкционной композитной арматуры, что, по данным исследовательской фирмы Lucintel (Даллас, Техас, США).S.), достигла 2,5 млрд фунтов в 2018 году.

Стекловолокно получают путем смешивания сырья, плавления его в трехступенчатой ​​печи, экструзии расплавленного стекла через втулку в нижней части копилки, охлаждения волокон водой и последующего нанесения химического клея. Затем волокна собирают и наматывают в пакет. Источник | OCV

Процесс стекловолокна

Текстильные стекловолокна изготавливаются из кварцевого песка (SiO 2 ), плавящегося при 1720 ° C / 3128 ° F.SiO 2 также является основным элементом кварца, природного камня. Кварц, однако, является кристаллическим (жесткая, высокоупорядоченная атомная структура) и содержит 99% или более SiO 2 . Если SiO 2 нагреть выше 1200 ° C / 2192 ° F, а затем охладить при комнатной температуре, он кристаллизуется и становится кварцем. Стекло производится путем изменения температуры и скорости охлаждения. Если чистый SiO 2 нагреть до 1720 ° C / 3128 ° F, а затем быстро охладить, можно предотвратить кристаллизацию, и в результате будет получена аморфная или случайно упорядоченная атомная структура, известная как стекло.

Несмотря на то, что современные производители стекловолокна постоянно совершенствуются и совершенствуются, они комбинируют эту стратегию сильного нагрева / быстрого охлаждения с другими этапами процесса, который в основном такой же, как и разработанный в 1930-х годах, хотя и в гораздо большем масштабе. Этот процесс можно разбить на пять основных этапов: дозирование, плавление, волокнообразование, нанесение покрытия и сушка / упаковка.

Шаг 1: Дозирование

Хотя жизнеспособное промышленное стекловолокно может быть изготовлено только из диоксида кремния, для снижения рабочей температуры и придания других свойств, полезных в определенных областях применения, добавляют другие ингредиенты.

Например, стекло E, изначально предназначенное для электрических применений, с составом, включающим SiO 2 , AI 2 O 3 (оксид алюминия или оксид алюминия), CaO (оксид кальция или известь) и MgO (оксид магния). или магнезия), была разработана как более устойчивая к щелочам альтернатива оригинальному известково-натриевому стеклу. Позже бор был добавлен через B 2 O 3 (оксид бора), чтобы увеличить разницу между температурами, при которых плавится партия Е-стекла, и при которых она образовывала кристаллическую структуру, чтобы предотвратить засорение форсунок, используемых при волокнообразовании. (Шаг 3, ниже).

S-стекловолокно, разработанное для более высокой прочности, основано на составе SiO 2 -AI 2 O 3 -MgO, но содержит более высокий процент SiO 2 для применений, в которых прочность на разрыв является наиболее важной. свойство.

Следовательно, на начальном этапе производства стекла эти материалы необходимо тщательно взвесить в точных количествах и тщательно перемешать (дозировать). Дозирование стало автоматизированным с использованием компьютеризированных весовых единиц и закрытых систем транспортировки материалов.Например, на заводе Owens Corning в Талодже, Индия, каждый ингредиент транспортируется с помощью пневматических конвейеров в назначенный многоэтажный бункер (силос), способный вместить от 1,98 до 7,36 м3 материала. Непосредственно под каждым бункером находится автоматическая система взвешивания и подачи, которая передает точный

.

Стекловолокно — Infogalactic: ядро ​​планетарного знания

О распространенном композитном материале, армированном стекловолокном, см. Стекловолокно.

Стекловолокно (или стекловолокно ) — это материал, состоящий из множества очень тонких волокон стекла.

Стеклодувы на протяжении всей истории экспериментировали со стекловолокном, но массовое производство стекловолокна стало возможным только с изобретением более тонких станков. В 1893 году Эдвард Драммонд Либби представил на Всемирной Колумбийской выставке платье из стекловолокна с диаметром и текстурой шелковых волокон.Впервые его надела популярная театральная актриса того времени Джорджия Кайван. Стекловолокно также может встречаться в природе, например, волосы Пеле.

Стекловата, которая сегодня называется «стекловолокно», была изобретена в 1932–1933 годах Расселлом Геймзом Слейтером из Owens-Corning в качестве материала для теплоизоляции зданий. [1] Он продается под торговой маркой Fiberglas, которая стала обобщенным товарным знаком. Стекловолокно, когда оно используется в качестве теплоизоляционного материала, специально изготавливается со связующим веществом для улавливания множества небольших ячеек с воздухом, что приводит к типично наполненному воздухом семейству изделий из «стекловаты» низкой плотности.

Стекловолокно имеет примерно сравнимые механические свойства с другими волокнами, такими как полимеры и углеродное волокно. Хотя он не такой прочный или жесткий, как углеродное волокно, он намного дешевле и значительно менее хрупок при использовании в композитах. Поэтому стекловолокно используется в качестве армирующего агента для многих полимерных продуктов; для образования очень прочного и относительно легкого композитного материала из армированного волокном полимера (FRP), называемого стеклопластиком (GRP), также широко известного как «стекловолокно».Этот продукт из конструкционного материала содержит мало воздуха, более плотен, чем стекловата, и является особенно хорошим теплоизолятором.

Волокно

Стекловолокно образуется, когда тонкие пряди стекла на основе диоксида кремния или стекла другого состава экструдируются в множество волокон с малым диаметром, подходящих для обработки текстиля. Техника нагревания и вытягивания стекла в тонкие волокна известна тысячелетиями; однако использование этих волокон в текстильных изделиях появилось совсем недавно.До этого времени все стекловолокно производилось в виде штапеля (то есть кластеров коротких отрезков волокна).

Современный метод производства стекловаты — изобретение Games Slayter, работающего в Owens-Illinois Glass Co. (Толедо, Огайо). Он впервые подал заявку на патент на новый процесс производства стекловаты в 1933 году. Первое коммерческое производство стекловолокна было произведено в 1936 году. В 1938 году компания Owens-Illinois Glass Company и Corning Glass Works объединились, чтобы сформировать Owens-Corning Fiberglas Corporation.Когда две компании объединились для производства и продвижения стекловолокна, они представили непрерывные стекловолокна. [2] Сегодня Owens-Corning по-прежнему является крупнейшим производителем стекловолокна на рынке. [3]

Состав. Наиболее распространенным типом стекловолокна, используемым в стекловолокне, является Е-стекло, которое представляет собой алюмоборосиликатное стекло с содержанием оксидов щелочных металлов менее 1%, используемое в основном для армированных стекловолокном пластиков. Другие используемые типы стекла: A-стекло ( A щелочно-известковое стекло с небольшим содержанием оксида бора или без него), E-CR-стекло ( E электрическое / C химическое R ; силикат алюмосиликата с менее 1% по массе оксидов щелочных металлов, с высокой кислотостойкостью), C-стекло (щелочно-известковое стекло с высоким содержанием оксида бора, используемое для штапельного стекловолокна и изоляции), D-стекло (боросиликатное стекло, названное по D ieэлектрическая постоянная), R-стекло (алюмосиликатное стекло без MgO и CaO с высокими механическими требованиями, например, r einforcement) и S-стекло (алюмосиликатное стекло без CaO, но с высоким содержанием MgO с высоким пределом прочности на разрыв). [4]

Наименование и использование. Чистый диоксид кремния (диоксид кремния) при охлаждении в виде плавленого кварца в стекло без истинной точки плавления может использоваться в качестве стекловолокна для стекловолокна, но имеет недостаток, заключающийся в том, что его необходимо обрабатывать при очень высоких температурах. Чтобы снизить необходимую рабочую температуру, другие материалы вводятся в качестве «флюсующих агентов» (то есть компонентов для понижения точки плавления). Обычное А-стекло («А» для «щелочно-известь») или натриево-известковое стекло, измельченное и готовое к переплавке, как так называемое стекло-стеклобой, было первым типом стекла, используемым для стекловолокна.Е-стекло («Е» из-за первоначального лектрического применения и ) не содержит щелочи и было первым составом стекла, используемым для формирования непрерывных волокон. В настоящее время он составляет большую часть производства стекловолокна в мире, а также является крупнейшим потребителем минералов бора в мире. Он подвержен атаке хлорид-ионами и является плохим выбором для морских применений. S-стекло («S» означает «жесткое») используется, когда важна высокая прочность на разрыв (модуль), и, таким образом, является важным эпоксидным композитом для строительства и самолетов.Это же вещество известно в Европе как R-стекло («R» для «армирования»). C-стекло («C» означает «химическая стойкость») и T-стекло («T» означает «теплоизолятор» — североамериканский вариант C-стекла) устойчивы к химическому воздействию; и то и другое часто встречается в изоляционных материалах из выдувного стекловолокна. [5] [6]

Химия

Основа текстильных стекловолокон — кремнезем SiO 2 . В чистом виде он существует в виде полимера (SiO 2 ) n .У него нет истинной точки плавления, но он размягчается до 1200 ° C, где начинает разлагаться. При 1713 ° C большинство молекул могут свободно перемещаться. Если стекло экструдировать и быстро охладить при этой температуре, оно не сможет сформировать упорядоченную структуру. [7] В полимере он образует группы SiO 4 , которые имеют форму тетраэдра с атомом кремния в центре и четырьмя атомами кислорода по углам. Затем эти атомы образуют сеть, соединенную по углам, разделяя атомы кислорода.

Стекловидное и кристаллическое состояния кремнезема (стекло и кварц) имеют сходные уровни энергии на молекулярной основе, что также подразумевает, что стеклообразная форма чрезвычайно стабильна. Чтобы вызвать кристаллизацию, его необходимо нагревать до температур выше 1200 ° C в течение длительных периодов времени. [2]

Молекулярная структура стекла

Хотя чистый диоксид кремния представляет собой совершенно жизнеспособное стекло и стекловолокно, с ним необходимо работать при очень высоких температурах, что является недостатком, если не требуются его специфические химические свойства.Обычно в стекло вводят примеси в виде других материалов, чтобы снизить его рабочую температуру. Эти материалы также придают стеклу различные другие свойства, которые могут быть полезны в различных областях применения. Первым типом стекла, которое использовалось для изготовления волокна, было известково-натриевое стекло или А-стекло («А» для содержащейся в нем щелочи). Он не очень устойчив к щелочам. Был сформирован новый тип стекла E-glass; это алюмоборосиликатное стекло, не содержащее щелочей (<2%). [8] Это был первый состав стекла, использованный для формирования непрерывных волокон.Электронное стекло по-прежнему составляет большую часть мирового производства стекловолокна. Его отдельные компоненты могут немного отличаться в процентах, но должны попадать в определенный диапазон. Буква E используется, потому что изначально она предназначалась для электрических приложений. S-стекло (S означает «жесткое») — это высокопрочный состав для использования, когда предел прочности при растяжении является наиболее важным свойством. C-стекло было разработано, чтобы противостоять воздействию химикатов, в основном кислот, которые разрушают E-стекло. [8] T-стекло — это североамериканский вариант C-стекла.А-стекло — это промышленный термин для обозначения стеклобоя, часто бутылок, из волокна. AR-стекло — это стекло, устойчивое к щелочам. Большинство стекловолокон имеют ограниченную растворимость в воде, но сильно зависят от pH. Ионы хлора также разрушают и растворяют поверхности из стекла E.

E-стекло на самом деле не плавится, а вместо этого размягчается, причем точка размягчения — это «температура, при которой волокно диаметром 0,55–0,77 мм и длиной 235 мм удлиняется под собственным весом со скоростью 1 мм / мин при вертикальном подвешивании и нагревании. скорость 5 ° C в минуту ». [9] Точка деформации достигается, когда стекло имеет вязкость 10 14,5 пуаз. Точка отжига, то есть температура, при которой внутренние напряжения снижаются до приемлемого коммерческого предела за 15 минут, отмечена вязкостью 10 13 пуаз. [9]

Недвижимость

Тепловой

Стекловолокно является полезным теплоизолятором из-за высокого отношения площади поверхности к весу. Однако увеличенная площадь поверхности делает их гораздо более восприимчивыми к химическому воздействию.Удерживая в себе воздух, блоки из стекловолокна обеспечивают хорошую теплоизоляцию с теплопроводностью порядка 0,05 Вт / (м · К). [10]

Растяжение

Тип волокна Предел прочности на разрыв
(МПа) [11]
Прочность на сжатие
(МПа)
Плотность
(г / см 3 )
Температурное расширение
(мкм / м · ° C)
Смягчение T
(° C)
Цена
($ / кг)
Стекло E 3445 1080 2.58 5,4 846 ~ 2
Стекло С-2 4890 1600 2,46 2,9 1056 ~ 20

Прочность стекла обычно проверяется и сообщается для «первичных» или нетронутых волокон — тех, которые только что были изготовлены. Самые свежие и тонкие волокна являются самыми прочными, потому что более тонкие волокна более пластичны. Чем больше царапается поверхность, тем меньше получается прочность. [8] Поскольку стекло имеет аморфную структуру, его свойства одинаковы вдоль волокна и поперек волокна. [7] Влажность является важным фактором прочности на разрыв. Влага легко адсорбируется и может усугубить микроскопические трещины и дефекты поверхности, а также снизить прочность.

В отличие от углеродного волокна, стекло может подвергаться большему удлинению перед тем, как разбиться. [7] Существует корреляция между диаметром изгиба нити накала и диаметром нити. [12] Вязкость расплавленного стекла очень важна для успеха производства. Во время вытягивания (вытягивания стекла для уменьшения окружности волокна) вязкость должна быть относительно низкой. Если он будет слишком высоким, волокно разорвется во время вытяжки. Однако, если он слишком низкий, стекло будет образовывать капли, а не растягиваться в волокно.

Производственные процессы

Плавка

Существует два основных типа производства стекловолокна и два основных типа изделий из стекловолокна.Во-первых, волокно получают либо путем прямого плавления, либо путем переплавки мрамора. И то, и другое начинается с твердого сырья. Материалы смешиваются и плавятся в печи. Затем для обработки мрамора расплавленный материал разрезается и раскатывается в шарики, которые охлаждают и упаковывают. Шарики доставляются на предприятие по производству волокна, где их помещают в тару и переплавляют. Расплавленное стекло экструдируется во втулку для формирования волокна. В процессе прямого плавления расплавленное стекло в печи направляется прямо во втулку для формования. [9]

Формация

Втулочная пластина — самая важная часть оборудования для производства волокна. Это небольшая металлическая печь с соплами для формовки волокна. Он почти всегда изготавливается из платины, легированной родием для повышения прочности. Платина используется потому, что расплав стекла естественным образом смачивает ее. Когда втулки были впервые использованы, они были на 100% платиновыми, и стекло так легко смачивало втулку, что оно бежало под пластиной после выхода из сопла и накапливалось на нижней стороне.Кроме того, из-за своей стоимости и склонности к износу платина была легирована родием. В процессе прямого плавления втулка служит сборником расплавленного стекла. Его слегка нагревают, чтобы поддерживать температуру стекла, необходимую для образования волокон. В процессе плавления мрамора втулка действует больше как печь, поскольку в ней плавится больше материала. [2]

Втулки — основная статья расходов при производстве стекловолокна. Конструкция сопла также имеет решающее значение. Количество форсунок составляет от 200 до 4000, кратно 200.Важной частью сопла при производстве непрерывной нити является толщина его стенок в области выхода. Было обнаружено, что установка зенковки снижает смачивание. Сегодня форсунки рассчитаны на минимальную толщину на выходе. Когда стекло течет через сопло, оно образует каплю, которая подвешивается на конце. При падении он оставляет нить, прикрепленную мениском к соплу, пока вязкость находится в правильном диапазоне для образования волокна. Чем меньше кольцевое кольцо сопла и чем тоньше стенка на выходе, тем быстрее будет формироваться капля и падать, и тем меньше ее склонность к смачиванию вертикальной части сопла. [2] Поверхностное натяжение стекла — это то, что влияет на формирование мениска. Для E-стекла это должно быть около 400 мН / м. [8]

Скорость затухания (вытяжки) важна в конструкции сопла. Хотя снижение этой скорости может привести к более грубому волокну, работать на скоростях, для которых не предназначены форсунки, неэкономично. [2]

Непрерывный процесс накала

В процессе непрерывной нити после вытяжки волокна наносится клей.Такой размер помогает защитить волокно при намотке на бобину. Применяемый конкретный размер относится к конечному использованию. В то время как некоторые размеры являются вспомогательными средствами обработки, другие придают волокну сродство к определенной смоле, если волокно будет использоваться в композитном материале. [9] Клей обычно добавляют в количестве 0,5–2,0% по весу. Затем намотка происходит со скоростью около 1000 м / мин. [7]

Обработка штапельного волокна

Для производства штапельного волокна существует несколько способов производства волокна.Стекло можно выдуть или обработать струей тепла или пара после выхода из формовочной машины. Обычно из этих волокон делают какой-то мат. Чаще всего используется ротационный процесс. Здесь стекло попадает во вращающийся спиннер и за счет центробежной силы выбрасывается горизонтально. Воздушные форсунки толкают его вертикально вниз, и наносится связующее. Затем мат вакуумируется к сетке, и связующее затвердевает в печи. [13]

Безопасность

Популярность стекловолокна возросла после открытия, что асбест вызывает рак, и его последующего удаления из большинства продуктов.Однако безопасность стекловолокна также ставится под сомнение, поскольку исследования показывают, что состав этого материала (асбест и стекловолокно являются силикатными волокнами) может вызывать такую ​​же токсичность, как и асбест. [14] [15] [16] [17]

Исследования на крысах в 1970-е годы показали, что волокнистое стекло диаметром менее 3 микрометров и длиной более 20 микрометров является «сильнодействующим канцерогеном». [14] Точно так же Международное агентство по изучению рака обнаружило, что в 1990 году «разумно предположить, что это канцероген».Американская конференция государственных промышленных гигиенистов, с другой стороны, заявляет, что доказательств недостаточно и что стекловолокно находится в группе A4: «Не классифицируется как канцероген для человека».

Североамериканская ассоциация производителей изоляционных материалов (NAIMA) заявляет, что стекловолокно фундаментально отличается от асбеста, поскольку оно создано человеком, а не естественным образом. [18] Они утверждают, что стекловолокно «растворяется в легких», а асбест остается в организме на всю жизнь.Хотя и стекловолокно, и асбест производятся из кремнеземных нитей, NAIMA утверждает, что асбест более опасен из-за своей кристаллической структуры, которая заставляет его расщепляться на более мелкие и более опасные части, ссылаясь на Министерство здравоохранения и социальных служб США:

Синтетические стекловолокна [стекловолокно] отличаются от асбеста двумя способами, которые могут дать хотя бы частичное объяснение их более низкой токсичности. Поскольку большинство синтетических стекловидных волокон не являются кристаллическими, как асбест, они не расщепляются в продольном направлении с образованием более тонких волокон.Они также обычно имеют значительно меньшую биоперсистентность в биологических тканях, чем волокна асбеста, потому что они могут подвергаться растворению и поперечному разрушению. [19]

Исследование 1998 года на крысах показало, что биостойкость синтетических волокон через год составляла 0,04–10%, а для амозитного асбеста — 27%. Волокна, которые сохранялись дольше, оказались более канцерогенными. [20]

Стеклопластик (стеклопластик)

Стеклопластик (GRP) — композитный материал или армированный волокном пластик, сделанный из пластика, армированного тонкими стекловолокнами.Подобно пластику, армированному графитом, композитный материал обычно называют стекловолокном . Стекло может быть в форме мата из рубленых прядей (CSM) или тканого материала. [4] [21]

Как и многие другие композитные материалы (например, железобетон), эти два материала действуют вместе, каждый из которых преодолевает недостатки другого. В то время как пластмассовые смолы обладают высокой прочностью на сжатие и относительно низкими показателями прочности на растяжение, стекловолокна очень сильны при растяжении, но не имеют тенденции к сопротивлению сжатию.Комбинируя два материала, стеклопластик становится материалом, который хорошо сопротивляется силам сжатия и растяжения. [22] Два материала можно использовать равномерно, или стекло можно специально разместить в тех частях конструкции, которые будут испытывать растягивающие нагрузки. [4] [21]

Использует

Области применения обычного стекловолокна включают маты и ткани для теплоизоляции, электроизоляции, звукоизоляции, высокопрочные ткани или ткани, устойчивые к нагреванию и коррозии.Он также используется для усиления различных материалов, таких как палки для палаток, шесты для прыжков с шестом, стрелы, луки и арбалеты, полупрозрачные кровельные панели, кузова автомобилей, хоккейные клюшки, доски для серфинга, корпуса лодок и бумажные соты. Его использовали в медицинских целях в слепках. Стекловолокно широко используется для изготовления резервуаров и сосудов из стеклопластика. [4] [21]

Сетки из стекловолокна открытого переплетения используются для армирования асфальтового покрытия. [23] Нетканые маты из смеси стекловолокна и полимера используются, пропитанные асфальтовой эмульсией и покрытые асфальтом, что дает водонепроницаемую, стойкую к растрескиванию мембрану.Использование полимерной арматуры, армированной стекловолокном, вместо стальной арматуры перспективно в тех областях, где желательно избежать коррозии стали. [24]

Роль вторичной переработки в производстве стекловолокна

Производители стекловолоконной изоляции могут использовать переработанное стекло. Переработанное стекловолокно на 40% состоит из переработанного стекла. [25] [26]

См. Также

Примечания и ссылки

  1. ↑ Патент Slayter на стекловату. Заявка 1933 г., удовлетворена в 1938 г.
  2. 2,0 2,1 2,2 2,3 2,4 Loewenstein, K.L. (1973). Технология производства непрерывных стеклянных волокон . Нью-Йорк: Elsevier Scientific. С. 2–94. ISBN 0-444-41109-7 . Ошибка цитирования: недопустимый тег ; имя «Lowenstein» определено несколько раз с разным содержанием Ошибка цитирования: недопустимый тег ; имя «Lowenstein» определяется несколько раз с разным содержанием
  3. «Оценка рынка и анализ влияния на приобретение компанией Owens Corning бизнеса арматуры и композитов Сен-Гобен».Август 2007. Проверено 16 июля 2009 г.
  4. 4,0 4,1 4,2 4,3 E. Fitzer; и другие. (2000). «Волокна, 5. Синтетические неорганические». Энциклопедия промышленной химии Ульмана . Вайнхайм, Германия: Wiley-VCH Verlag GmbH & Co. KGaA. DOI: 10.1002 / 14356007.a11_001. ISBN 3527306730 .
  5. ↑ Redorbit Учебная справка
  6. ↑ Статья Fiberglass на Redorbit, по состоянию на 28 августа 2014 г.
  7. 7,0 7,1 7,2 7,3 Gupta, V.B .; В.К. Котари (1997). Технологии промышленных волокон . Лондон: Чепмен и Холл. С. 544–546. ISBN 0-412-54030-4 . Ошибка цитирования: недопустимый тег ; имя «Гупта» определено несколько раз с разным содержанием
  8. 8.0 8,1 8,2 8,3 Вольф, Милош Б. (1990). Технический подход к стеклу . Нью-Йорк: Эльзевир. ISBN 0-444-98805-X .
  9. 9,0 9,1 9,2 9,3 Любин, Джордж (ред.) (1975). Справочник по стекловолокну и современным пластиковым композитам . Хантингдон, штат Нью-Йорк: Роберт Э. Кригер. CS1 maint: дополнительный текст: список авторов (ссылка)
  10. Фрэнк П. Инкропера; Дэвид П. Де Витт (1990). Основы тепломассообмена (3-е изд.). Джон Вили и сыновья. стр. A11. ISBN 0-471-51729-1 .
  11. Фредерик Т. Валленбергер; Пол А. Бингем (октябрь 2009 г.). Стекловолокно и технология стекла: энергосберегающие композиции и применение . Springer.С. 211–. ISBN 978-1-4419-0735-6 . Проверено 29 апреля 2011 г.
  12. ↑ Hillermeier KH, Melliand Textilberichte 1/1969, Dortmund-Mengede, стр. 26–28, «Стекловолокно — его свойства, связанные с диаметром филаментного волокна».
  13. Mohr, J.G .; W.P. Роу (1978). Стекловолокно . Атланта: Ван Ностранд Рейндхольд. п. 13. ISBN 0-442-25447-4 .
  14. 14,0 14,1 «Стекловолокно: канцероген, который повсюду». Новости Рэйчел . Фонд экологических исследований. 1995-05-31. Проверено 30 октября 2008.
  15. Джон Фуллер. «Стекловолокно и асбест». Опасна ли изоляция? . Проверено 27 августа 2010 г.
  16. «Стекловолокно». Ешива университет. Проверено 27 августа 2010 г.
  17. Инфанте, ПФ; Шуман, Л.Д .; Хафф, Дж (1996). «Стекловолоконная изоляция и рак: ответ и опровержение». Американский журнал промышленной медицины . 30 (1): 113–20. DOI: 10.1002 / (sici) 1097-0274 (199607) 30: 1 <113 :: aid-ajim21> 3.3.co; 2-н. PMID 16374937.
  18. «Что исследования показывают о здоровье и безопасности стекловолокна?». Часто задаваемые вопросы о стекловолоконной изоляции . НАИМА. Проверено 27 августа 2010 г.
  19. ↑ Токсикологический профиль синтетических стекловидных волокон (Министерство здравоохранения и социальных служб США, Службы общественного здравоохранения, Агентство по токсичным веществам и регистру заболеваний), сентябрь 2004 г., стр.17.
  20. T. W. Hesterberga, G. Chaseb, C. Axtenc, 1, W. C. Millera, R. P. Musselmand, O. Kamstrupe, J. Hadleyf, C. Morscheidtg, D. M. Bernsteinh and P. Thevenaz (2 августа 1998 г.). «Биоперсистентность синтетических стекловолокон и амозитного асбеста в легком крысы после вдыхания». Токсикология и прикладная фармакология . 151 (2): 262–275. DOI: 10.1006 / taap.1998.8472. Проверено 27 августа 2010 г. CS1 maint: множественные имена: список авторов (ссылка)
  21. 21,0 21,1 21,2 Ильшнер, В; и другие. (2000). «Композитные материалы». Энциклопедия промышленной химии Ульмана . Вайнхайм, Германия: Wiley-VCH Verlag GmbH & Co. KGaA. DOI: 10.1002 / 14356007.a07_369. ISBN 3527306730 .
  22. ↑ Эрхард, Гюнтер. Проектирование с использованием пластика. Пер. Мартин Томпсон.Мюнхен: Hanser Publishers, 2006.
  23. «Отражающее растрескивание, обработанное GlasGrid» (PDF). Новости CTIP . Федеральное управление автомобильных дорог. 2010. Проверено 09.01.2013.
  24. «Сталь против арматуры из стеклопласта?». Дороги общего пользования . Федеральное управление автомобильных дорог. Сентябрь – октябрь 2005 г. Дата обращения 09.01.2013.
  25. ↑ Новые усилия по переработке стекла направлены на то, чтобы подтолкнуть KC к экологизации своего стекла, Kansas City Star, 14 октября 2009 г.
  26. ↑ Страница часто задаваемых вопросов Североамериканской ассоциации производителей изоляции, получено 15 октября 2009 г.

Внешние ссылки

Найдите glass fiber в Wiktionary, бесплатном словаре.
Викискладе есть медиафайлы, связанные с Fiberglass .

.

Производство дешевого стекловолокна с низкой температурой плавления

производство дешевого стекловолоконного порошка с низкой температурой плавления

Стеклянный порошок с низкой температурой плавления представляет собой усовершенствованный герметизирующий материал, материал имеет более низкую температуру плавления и температуру герметизации, хорошую термостойкость и химическую стабильность, высокую механическую прочность. Широко используется в вакуумной и микроэлектронике, лазерной и инфракрасной технологии, физике высоких энергий, энергетике, авиакосмической, автомобильной и многих других областях.Может обеспечить взаимную герметизацию стекла, керамики, металлов, полупроводников. Легкоплавкий стеклянный порошок в качестве нового типа материала был применен к некоторым новым материалам, но перспективы применения выходят далеко за рамки нынешнего опыта, но также и в области материалов, которые профессионалы должны исследовать и расширять.

Описание ингредиента продукта:

Стеклянный порошок легкоплавкий изготовлен из природных неметаллических минералов высокой чистоты: каолина, известняка, волластонита, кремнезема, нефелина, калиевого полевого шпата, альбит, соли бора и материалы зеленого флюса, после дробления, очистки воды высокой чистоты, сушки, воздушной мельницы, ветряных выборов и других многоканальных процессов из функционального порошка.

Плотность: 2,28 г / см3

Твердость по Моосу: 6,2

Точка плавления: 390 ℃ ~ 700 ℃

Легкоплавкий стеклянный порошок с аналогичными продуктами на рынке Сравнение:

4

90 015

500-850 ℃

аналогичные продукты на рынке

аналогичные продукты на рынке

ингредиент

Содержит Pb

Зеленый без свинца

Сетка

800

1500

Степень белого

56-90

93

Коэффициент теплового расширения

100-140

65-100

Температура плавления

390-700 ℃

Устойчивость к атмосферным воздействиям

хорошая

отличная

После спекания выдерживает высокие температуры

600 ℃

Ликвидность

хорошая

отличная

Химическая стойкость

общая

Спеченная пленка, устойчивая к коррозии, кислоте и щелочам износостойкие

Если вы заинтересованы в наших продуктах, нажмите, чтобы связаться с нами.

Основное применение в основном используется для высокотемпературных покрытий, высокотемпературных красок, высокотемпературных чернил, герметизирующих электродов, инженерной изоляции молниезащиты и материалов для защиты от электрического пробоя, транспортной изоляции сверхвысокого давления, материала для защиты от электрического пробоя, специальных изделий ручной работы, искусственные алмазы, специальная посуда, промышленные носители катализаторов, высокотемпературные неорганические растворители, керамическая цветная глазурь, огнеупорные материалы, компоненты оптических инструментов и химические инструменты.

Zouping DaixiGlass Co., Ltd расположена в округе Цзупин, провинция Шаньдун, и имеет рейтинг «100 сильных экономических округов». Компания была основана в 2002 году, производственная мощность высока, основные продукты включают стеклянные бусины, стеклянную крошку, стеклянный камень. В то же время компания имеет богатый опыт продаж продукции и совершенную систему обслуживания клиентов. Продукция экспортируется в основном в США, Европу и Австралию и занимает большую часть американского рынка.Мы ориентируемся на разработку качественных продуктов для удовлетворения различных потребностей разных клиентов.

Доверие и сотрудничество клиентов — это самая большая мотивация для нашей работы. Мы приглашаем больше клиентов посетить и реализовать беспроигрышный вариант!

Если вы заинтересованы в нашей продукции, проконсультируйтесь с нами. Лучшая цена и бесплатные образцы будут отправлены вам немедленно! Большое спасибо!

Сертификация — гарантия качества! Покажи сертификат, завоюй доверие! У нас есть не только эти сертификаты, но и специальный контроль качества.Мы сделаем все возможное, чтобы защитить права и интересы каждого клиента.

Обычно мы упаковываем в мешки по 25 кг. Как вариант, мы упаковываем в мешки весом в одну тонну. Цена зависит от упаковки. Также можно настроить.

Q1: могу я получить образцы заранее

.

Температурные испытания пластмасс на прогиб

Испытание пластмасс на температуру прогиба

Температура прогиба — это мера способности полимера выдерживать заданную нагрузку при повышенных температурах. Температура отклонения также известна как «температура отклонения под нагрузкой» (DTUL), «температура теплового отклонения» или «температура теплового искажения» (HDT). Обычно используются две нагрузки: 0,46 МПа (66 фунтов на квадратный дюйм) и 1,8 МПа (264 фунтов на квадратный дюйм), хотя испытания проводились при более высоких нагрузках, таких как 5.Иногда встречаются значения 0 МПа (725 фунтов на кв. Дюйм) или 8,0 МПа (1160 фунтов на кв. Дюйм). Обычным испытанием ASTM является ASTM D 648, в то время как аналогичным испытанием ISO является ISO 75. Испытание с использованием нагрузки 1,8 МПа проводится по методу A ISO 75, а испытание с использованием нагрузки 0,46 МПа выполняется по методу ISO 75 B. Рисунок ниже , от Quadrant Engineering Plastic Products, показывает геометрию теста.

ASTM D648:
Температура прогиба — это температура, при которой испытательный стержень, нагруженный до указанного напряжения изгиба, прогибается на 0.010 дюймов (0,25 мм).

Значение, полученное для конкретной марки полимера, будет зависеть от основной смолы и от присутствия усиливающих агентов. Температуры прогиба конструкционных полимеров, армированных стекловолокном или углеродным волокном, могут приближаться к температуре плавления основной смолы.

Результаты испытания температуры прогиба являются полезной мерой относительной рабочей температуры полимера при использовании в несущих частях. Однако испытание на температуру прогиба является краткосрочным испытанием и не должно использоваться отдельно для проектирования изделия.Другие факторы, такие как время воздействия повышенной температуры, скорость повышения температуры и геометрия детали, влияют на производительность.

В таблице ниже приведены средние температуры прогиба при нагрузке 0,46 МПа (66 фунтов на квадратный дюйм), при нагрузке 1,8 МПа (264 фунтов на квадратный дюйм) и значения температуры плавления для некоторых наполненных и ненаполненных полимеров. Конкретные оценки будут отличаться от этих средних.

Типичные температуры прогиба и точки плавления полимеров

Полимер Тип Температура отклонения
при 0.46 МПа (° C)
Температура прогиба
при 1,8 МПа (° C)
Температура плавления (° C)
АБС 98 88
ABS + 30% стекловолокно 150 145
Сополимер ацеталя 160 110 200
Сополимер ацеталя + 30% стекловолокна 200 190 200
Акрил 95 85 130
Нейлон 6 160 60 220
Нейлон 6 + 30% стекловолокно 220 200 220
Поликарбонат 140 130
Полиэтилен, HDPE 85 60 130
Полиэтилентерефталат (ПЭТ) 70 65 250
ПЭТ + 30% стекловолокно 250 230 250
Полипропилен 100 70 160
Полипропилен + 30% стекловолокна 170 160 170
Полистирол 95 85

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *