Таблица сопротивления кабелей: Определение активных и индуктивных сопротивлений проводов

Содержание

Определение активных и индуктивных сопротивлений проводов

Доброго времени суток. В данной статье речь пойдет о расчете активных и индуктивных сопротивлений для воздушных и кабельных линий из цветных металлов, таких как медь и алюминий. Данные расчеты обычно приходится выполнять, когда нужно выполнить расчет токов короткого замыкания в распределительных сетях.

Определение активного сопротивления проводов

Активное сопротивлении проводов проще всего определять по справочным данным, составленным на основании ГОСТ 839-80 – «Провода неизолированные для воздушных линий электропередач» таблицы 1 – 4. Данные таблицы вы сможете найти непосредственно в самом ГОСТ, приведу лишь не которые.

Пользоваться всеми известными формулами по определению активного сопротивления — не рекомендуется [Л1. с.18],связано это с тем, что действительное сечение отличается от номинального сечения, провода выпускались в разное время, по разным ГОСТ и ТУ и величины удельной проводимости (ρ) и удельного сопротивления (γ) у них разные:

где:

  • γ – значение удельной проводимости для медных и алюминиевых проводов при температуре 20 °С принимается: для медных проводов – 53 м/Ом*мм2; для алюминиевых проводов – 31,7 м/Ом*мм2;
  • s – номинальное сечение провода(кабеля),мм2;
  • l – длина линии, м;
  • ρ – значение удельного сопротивления принимается: для медных проводов — 0,017-0,018 Ом*мм2/м; для алюминиевых проводов – 0,026 — 0,028 Ом*мм2/м, см. таблицу 1.14 [Л2. с.30].

Активные сопротивления стальных проводов математическому расчету не поддаются. Поэтому рекомендую для определения активного сопротивления использовать приложения П23 – П25 [Л1. с.80,81].

Определение индуктивного сопротивления проводов

Индуктивное сопротивление воздушных линий для стандартной частоты f = 50 Гц и относительной магнитной проницаемости для цветных металлов µ = 1, определяется по известной всем формуле [Л1.с.19]:

где:

  • Dср. – среднее геометрическое расстояние между проводами, мм;
  • dр – расчетный диаметр провода (мм2), определяется по ГОСТ 839-80, таблицы 1 -4;

Среднее геометрическое расстояние между проводами определяется по формуле [Л1.с.19]:

где:

  • D1-2 — расстояние между проводами первой и второй фазы;
  • D2-3 — расстояние между проводами второй и третей фазой;
  • D1-3 — расстояние между первой и третей фазой.

Данные значения определяются по чертежам опор линий электропередачи.

Для упрощения расчетов индуктивного сопротивления проводов рекомендуется использовать приложения П28-П31 [Л1.с.83-85], предварительно определив значение Dср.

Если же нужно выполнить приближенный расчет, то можно использовать в расчетах средние значения сопротивлений:

  • для линий 0,4 – 10 кВ х = 0,3 Ом/км;
  • для линий 35 кВ х = 0,4 Ом/км;
  • для стальных проводов использовать приложение П6 [Л1.с.70];

Индуктивное сопротивление кабелей рассчитать довольно сложно, из-за различной их конструкции. Поэтому активные и индуктивные сопротивления кабелей рекомендуется принимать по справочникам, приложение П7 [Л1.с.70].

Если же нужно выполнить приближенный расчет, можно принять индуктивные сопротивления:

  • для кабелей сечением 16 – 240 мм2 х = 0,06 Ом/км для напряжения до 1000 В;
  • для кабелей сечением 16 – 240 мм2 х = 0,08 Ом/км для напряжения 6 – 10 кВ;
  • для проводов проложенных на роликах х = 0,20 Ом/км;
  • для проводов проложенных на изоляторах х = 0,25 Ом/км;

Литература:

1. Расчет токов короткого замыкания в электросетях 0,4-35 кВ, Голубев М.Л. 1980 г.
2. Справочная книга электрика. Григорьева В.И. 2004 г.

Поделиться в социальных сетях

Расчет сопротивления медных проводов и выбор сечения кабеля

На стадии проектирования линий электропередач, информационных и контрольных сетей существенное значение приобретает выбор материала и площади поперечного сечения проводника. Правильное инженерное решение помогает снизить потери, уменьшить вероятность аварийных ситуаций, решить другие задачи. Сравнительно небольшое электрическое сопротивление медного провода объясняет популярность применения этого варианта. Дополнительные преимущества и альтернативы рассмотрены в данной публикации.

Увеличением сечения повышают стойкость проводника к токовым нагрузкам

Увеличением сечения повышают стойкость проводника к токовым нагрузкам

От чего зависит сопротивление металла

Электрический ток по классическому определению – это направленное движение заряженных частиц. В металлах перемещаются электроны, если создать между двумя точками подключения источника питания разницу потенциалов. Этому процессу препятствуют примеси, поэтому проводимость лучше в однородном материале.

К сведению. Качественные проводники тока выпускают из электротехнической меди, которая содержит не более 0,01% сторонних примесей. Незначительная добавка алюминия (0,02-0,03%) уменьшает проводимость на 10-11%. При большой длине трассы существенно увеличиваются потери на передачу энергии.

Отрицательное влияние оказывают колебательные процессы атомов кристаллической решетки. При повышении температуры увеличивается амплитуда этих движений, что создает дополнительные препятствия перемещению зарядов. Для компенсации этого явления резисторы создают из специальных сплавов. Правильно подобранные пропорции материалов обеспечивают стабильность электрического сопротивления в расчетном температурном диапазоне.

Удельное сопротивление различных металлов

Чтобы рассчитать потери, которые обеспечивает определенная длина проводника, удобно оперировать удельными параметрами. Базовая формула для вычисления электрического сопротивления:

R = p*(L/S),

где:

  • L – длина в метрах;
  • S – площадь поперечного сечения, мм кв.;
  • p – удельное сопротивление кабеля, изготовленного из определенного материала, (Ом*мм кв.)/м.

При необходимости сечение можно вычислить по диаметру (D), применив известную формулу из геометрии:

S = (π * D2)/4.

Если микрометр отсутствует, применяют намотку провода на цилиндрический инструмент (отвертку, карандаш). Далее измеряют длину созданной катушки обычной линейкой, делят полученное значение на количество витков.

Измерение диаметра подручными средствами

Измерение диаметра подручными средствами

Медь и алюминий

Для значительного изменения сопротивления провода достаточно минимального количества примесей. Однако даже при высокой степени очистки медь гораздо лучше проводит электрический ток, по сравнению с алюминием. Ниже приведены значения удельного сопротивления соответствующих материалов. С применением справочных сведений несложно проверить потери при выборе кабельной продукции для формирования трассы определенной длины:

  • pм = 0,0175;
  • pа = 0,028.

Другие металлы

Удельное сопротивление нихрома составляет от 1,04 до 1,42 (Ом*мм кв.)/метр. Большой разброс параметров объясняется пропорциональным изменением составляющих сплава. Такие материалы применяют для создания нагревательных элементов, так как целостность изделий сохраняется при высокой температуре. С учетом высокого сопротивления нихромовой проволоки на единицу длины этот кабель идеально подходит для создания «теплого пола».

Особенности других материалов (удельное сопротивление Ом*мм кв.)/м):

  • золото (0,023) обеспечивает хорошую проводимость и устойчивость к окислению, но стоит дорого;
  • ограниченное применение серебра (0,015) также объясняется высокой ценой;
  • высокая температура (+3 422°C) плавления вольфрама (0,05) позволяет применять его для изготовления спиралей классических ламп накаливания;
  • константан (0,5) применяют для создания резисторов.

Выбор сечения кабелей

Для крупных расчетов можно использовать специализированный калькулятор на справочном сайте либо соответствующее программное обеспечение. Следующий алгоритм применяют для последовательного вычисления рабочих параметров по формулам:

  • при передаче в подключенную нагрузку мощности P = 1 600 Вт в линии с напряжением U = 220 V постоянный ток (I) определяют следующим образом: I = P/U ≈ 7,27А;
  • сопротивление медного проводника (в обе стороны) длиной 800 м и сечением 2,5 мм кв.: R = (2*I*p)/S = (2*800*0,0175)/2,5 = 11,2 Ом;
  • потери по напряжению в этой трассе: ΔU = (2*L*I)/((1/p)*S) = (2*800*7,27)/((1/0,0175)*2,5) = 11 520/ 142,86 = 80,63 V.

При необходимости последнее выражение несложно математически преобразовать для выбора площади поперечного сечения проводника по суммарному значению подключаемой нагрузки:

S = (2*I*L)/((1/p)*ΔU.

В рассмотренном примере потери напряжения составляют более 36%. Этот результат свидетельствует о необходимости корректировки расчета сопротивления проводника. По действующим нормативам допустимо уменьшение контрольного параметра не более, чем на 5 %. Увеличив диаметр провода, можно получить необходимый результат. При сечении 19 мм кв. напряжение уменьшится до 209,41 V (4,81%).

С учетом увеличенного сопротивления алюминиевого провода предполагаются пропорциональные изменения потерь. Выполнив аналогичный расчет, можно получить рекомендованное сечение 31 мм кв. Использование такого проводника в аналогичных условиях снизит напряжение до 209,2 V, что позволит обеспечить соответствие нормативам – 4,92%.

К сведению. Для проверки расчетных данных можно использовать мультиметр. Измерения выполняют в соответствующем диапазоне с учетом амплитуды сигнала, переменного (постоянного) тока.

Измерение сопротивления кабеля мультиметром

Измерение сопротивления кабеля мультиметром

При подключении источника питания переменного тока алгоритм вычислений усложняется. Для таких исходных условий пользуются формулой:

ΔU = ((Pа * Rа + Pр * Rи) *L)/ U,

где:

  • Pа (Pр) – активная (реактивная) мощность;
  • Rа (Rи) – относительное активное (индуктивное) сопротивление линии в Ом на километр.

Для определенных материалов проводников исходные данные берут из справочника. По аналогии с упомянутыми нормативами уменьшение напряжения не должно быть в общем случае более 5%. Дополнительные ограничения применяют с учетом особенностей электрических сетей и подключаемых потребителей (от 1% до 12%). Действующие правила уточняют по тексту последней редакции ПУЭ.

Приведенные итоги расчетов убедительно подтверждают преимущества меньшего удельного сопротивления медного провода. При использовании алюминиевого аналога значительно увеличивается количество материала для передачи электроэнергии с нормативными потерями. Для комплексного анализа следует учитывать лучшие показатели меди по прочности, гибкости.

Алюминий отличается меньшей стоимостью, легкостью. Но при работе с этим материалом следует исключить вибрационные воздействия и перемещения в процессе эксплуатации. Особо тщательно проектируют изгибы, чтобы сохранить целостность проводника. Электрический контакт нарушается образованием окислов на поверхности изделий, изготовленных из этого металла.

К сведению. В определенных ситуациях многое будет значить свободное место для прокладки трассы. По экономии пространства преимущественными параметрами обладает медь.

Выбор сечения проводника по допустимому нагреву

По мере увеличения силы тока повышается температура проводящего металла. На определенном уровне повреждается слой защитной изоляции, созданный из полимеров. Это провоцирует короткие замыкания и образование пламени. Опасные ситуации предотвращают корректным расчетом площади поперечного сечения. Определенное значение имеет способ прокладки (совместный/ раздельный).

Выбор кабельных изделий с учетом нагрева

Выбор кабельных изделий с учетом нагрева

Выбор сечения по потерям напряжения

Как показано в расчетах, при большой длине трасы нужно учитывать снижение напряжения и соответствующие энергетические потери. В крупных проектах рассматривают всю цепь тока с распределительными устройствами и подключаемыми нагрузками.

Выбор по допустимым потерям

Выбор по допустимым потерям

Для точного определения подходящей кабельной продукции рассматривают особенности процесса эксплуатации. Делают необходимый запас, чтобы предотвратить аварийные ситуации при подключении новых потребителей и бросках напряжения в сети питания.

Видео

Таблица сопротивления алюминиевых и медных кабелей и проводов

Стабильность работы кабелей и проводов зависит от точности выбора сечения, который необходим при проектировании и монтаже электроустановок или прокладке силовых сетей.

Ключевой параметр расчетов — максимально допустимая нагрузка по току, обеспечивающая рабочую температуру жилы, отсутствие перегрева и безопасность эксплуатации линии и электрооборудования. Сила тока для однофазной и трехфазной сети рассчитывается, исходя из суммарной мощности всех подключаемых приборов, аппаратов и установок.

Для правильного определения сечения медной и алюминиевой жилы воспользуйтесь таблицей, в которой сведены основные характеристики — номинальное напряжение, мощность и допустимая токовая нагрузка.

Сечение жил, ммМедные жилы проводов и кабелейСечение жил, ммАлюминиевые жилы проводов и кабелей
Напряжение 220 ВНапряжение 380 ВНапряжение 220 ВНапряжение 380 В
Ток, АМощность, кВтТок, АМощность, кВтТок, АМощность, кВтТок, АМощность, кВт
1,5194,11610,51,5
2,5275,92516,52,5224,41912,5
4388,33019,84286,12315,1
64610,14026,46367,93019,8
107015,450331050113925,7
168518,77549,5166013,25536,3
2511525,39059,4258518,77046,2
3513529,711575,935100228556,1
5017538,514595,75013529,711072,6
7021547,3180118,87016536,314092,4
9526057,2220145,29520044170112,2
12030066260171,612023050,6200132
150150
185185
240240

Сопротивление изоляции кабеля: нормы, таблица

Одной из важнейших характеристик проводника является сопротивление. Особенно это важно для кабелей, которые могут иметь длину в несколько километров. Сопротивление зависит от материала и площади поперечного сечения провода. Отклонение сопротивления от нормы в большую или меньшую стороны влияет на потери энергии и безопасность системы.

Какое должно быть сопротивление изоляции кабеля и проводов

Минимальное значение этой характеристики измеренного напряжения должно быть выше номинального значения. Требуемое значение определяется производителем кабеля или электротехнического изделия в соответствии с текущими спецификациями. Существует несколько видов электротехнических изделий:

  • Универсальные.
  • Силовые.
  • Контрольные.
  • Распределительные.

Измерение сопротивления

Делятся они не только по физическим характеристикам, но и по структуре. Например, кабели, предназначенные для прокладки под землей, армированы металлической лентой и состоят из нескольких слоев изоляционного материала. Измеряется сопротивление изоляции в омах. Однако поскольку значение индикатора велико, всегда используется приставка «мега». Указанное число рассчитывается для конкретной длины, обычно одного километра. Если длина менее 1000 метров, нужно выполнить пересчет. Для кабелей, используемых для передачи и передачи низкочастотных сигналов, сопротивление изоляции должно быть не менее 5000 МОм / км. Но для основной линии — более 10 МОм / км. В то же время минимальное требуемое значение всегда указывается в паспорте продукта.

Как правило, принимаются следующие спецификации сопротивления изоляции:

  • Кабели, размещенные в комнате с нормальными условиями окружающей среды, 0,50 Мом.
  • Электрические плиты, не используемые для передачи − 1 МОм.
  • Распределительные щиты, содержащие компоненты для распределения электроэнергии И магистральные линии − 1 МОм.
  • Изделия, обеспечивающие напряжение до 50 В — 0,3 МОм.
  • Двигатели и другое оборудование, работающее при напряжении 100-380 В, − 0,5 МОм.
  • Оборудование, подключенное к линиям электропередачи, предназначенное для передачи сигналов с максимальной амплитудой 1 кВ — 1 МОм.

Важно! Для кабелей, подключенных к силовой цепи, применяются немного другие характеристики. Следовательно, провода, используемые в электрической сети с напряжением, превышающим 1 кВ, должны иметь значение сопротивления не менее 10 МОм.

Для линий управления стандарт требует значения сопротивления не менее 1 МОм

Проверка сопротивления

Безопасность зависит от сопротивления. Поэтому важно регулярно измерять это значение для выявления отклонений. Кроме того, для промышленных объектов указаны обязательные циклы измерений. В соответствии с установленными нормами и правилами, проверки сопротивления изоляции проводов и кабелей должны проводиться:

  • Для мобильных или переносных установок не реже одного раза в шесть месяцев.
  • Для внешнего оборудования и наружных кабелей и более опасных помещений — не реже одного раза в год.
  • Во всех других случаях — каждые три года.

Схема подключения мегомметра

Как измерить сопротивление изоляции кабеля

Перед испытанием следует удалить остаточный заряд с отсоединенных токоведущих частей. Это делается путем подключения их к наземной шине. Снимается контактная перемычка только после подключения прибора-измерителя. В конце теста остаточный заряд снова снимается путем кратковременного замыкания на землю. Найти величину сопротивления можно двумя путями: либо с помощью расчета или таблицы, либо непосредственно с помощью приборов.

По таблице ПУЭ

Значения сопротивления зависят от поперечного сечения элемента, проводящего электрический ток, и материала, из которого он изготовлен.

Таблица для алюминиевого провода

Обычно это медь или алюминий. Основные значения указаны в таблице:

Таблица для медного провода

С помощью приборов

Как правило, оборудование, используемое для проведения измерений, делится на две группы: панельные измерители и мегомметры. Первый используется для мобильных или стационарных электрических установок с независимой нейтралью. Индикаторы и компоненты реле включены в типичную конструкцию оборудования контроля изоляции. Эти счетчики могут работать в непрерывном режиме и могут использоваться в сетях переменного тока напряжением 220 В или 380 В с разными частотами.

В большинстве же случаев измерение производится с помощью мегомметра. Он отличается от обычных омметров тем, что может работать при достаточно высоких значениях напряжения, генерируемых самим устройством. Существует два типа мегомметров:

Аналоговый приборЦифровой датчик

Стандартный мегомметр содержит три датчика. К ним подключаются: защитное заземление, измерительные провода, экранирование. Последний используется для устранения тока утечки.

Метод измерения можно выразить следующим образом:

  • В соответствии с требованиями, предъявляемыми к производственной линии, выбирается испытательное напряжение. Например, для домашней проводки значение устанавливается в диапазоне от 100 до 500 В.
  • При использовании цифрового устройства необходимо нажать кнопку «Тест», а на аналоговом устройстве поворачивать ручку, пока индикатор не покажет требуемое значение напряжения.
  • Линейный выход тестера подключить к испытательному сердечнику кабеля, а выход заземления к жгуту из остальных проводов. То есть каждый сердечник проверяется относительно остальных электрических проводов, электрически соединенных друг с другом.

Важно! Если полученные данные неудовлетворительные, каждая жила в кабеле проверяется отдельно.

  • Записать все полученные значения и сравнить их со спецификациями.

Подключение датчика к кабелям

Меры безопасности

Один из основных принципов исследования изоляции — невозможно начать работу, не убедившись, что в зоне измерения нет напряжения. Оборудование, используемое для тестирования, должно быть сертифицированным. Должен использоваться мегомметр, выходное напряжение которого соответствует установленным стандартам. Поэтому для сетей или устройств с напряжением до 50 В будет использоваться тестер, который имеет значение в 100 В, в то время как устройства с более низкими значениями не смогут предоставить правдивую информацию о, а более мощные устройства могут вызвать повреждение цепи.

Измерение сопротивления важно для любого типа кабеля. От этого зависит безопасность работы всей электрической цепи. Проводится измерение специальным прибором, а затем результаты сравниваются с таблицей и данными, указанными в прикладной документации.

Сопротивление медного кабеля | Полезные статьи

Несмотря на то, что медь – один из лучших проводников электричества, она обладает сопротивлением. Оно незначительно – поэтому, например, при прокладке трасс небольшой длины (например, в квартире) им можно пренебречь.

Однако при прокладке трасс большой длины сопротивление медного кабеля имеет решающее значение – поскольку никому не хочется получить на «выходе» значительно меньшее напряжение, чем на «входе».

Сопротивление жилы медного кабеля

Существует три способа узнать сопротивление жилы медного кабеля – получить его из таблицы, рассчитать или же измерить специальным прибором (омметром). Первый вариант наиболее прост, но при этом не слишком точен. Таблицы, в которых указывается номинальное электросопротивление токоведущих жил медного кабеля в расчёт на 1 км длины, приведены в ГОСТ 22483-2012.

Дело в том, что табличные величины сопротивления указываются для кабелей определённого сечения и с определённым составом проводника. На практике же выясняется, что состав медного сплава может отличаться от нормативов. Особенно если речь заходит о некачественных, бюджетных кабелях.

Второй способ получения сопротивления медного кабеля – расчёт по формуле. Потребуется указать следующие значения:

  • Удельное сопротивление меди ρ, которое варьируется в зависимости от процентного содержания меди в сплаве от 0,01724 до 0,018 Ом×мм²/м;
  • Длину медного кабеля в метрах;
  • Сечение кабеля S в мм².

Далее используется следующая формула:

формула расчёта сопротивления

Полученное сопротивление R– это сопротивление всего проводника на произвольную длину. Так что этой формулой удобно пользоваться при расчётах как длинных, так и коротких линий.

Якорь И третий вариант – это измерить сопротивление проводника самостоятельно. Он наиболее точен, поскольку показывает фактическое значение. Тем не менее, главный минус этого способа заключается в трудоёмкости.

Измерение электросопротивления токоведущих жил производится одинарным, двойным или одинарно-двойным мостом с постоянным напряжением. Конкретная методика и принципиальные схемы описываются ГОСТ 7229-76.

Сопротивление изоляции кабелей медных

Измерение сопротивления изоляции кабелей с медными токоведущими жилами является частью испытаний кабельных линий. Эти процедуры проводятся при положительной температуре окружающего воздуха.

Дело в том, что в изоляции кабеля могут находиться микрокапли влаги. При отрицательных температурах они замерзают. Кристаллы льда, в свою очередь, являются диэлектриками, то есть ток они не проводят. И, как следствие, измерения медных кабелей при отрицательной температуре не выявят наличия вкраплений влаги в изоляции.

Для измерения сопротивления изоляции используется мегаомметр. Нормативы подразумевают, что его погрешность должна составлять не более 0,2%. Так, одним из допускаемых соответствующим госреестром устройств является SonelMIC-2500 – гигаомметр, предназначенный для измерения сопротивления изоляции, степени её увлажнённости и старения.

Схема замещения при измерении сопротивления изоляции фазы А относительно земли и других заземлённыйх фазВ общем виде процедура измерения сопротивления изоляции медных кабелей проводится следующим образом:

  1. С кабеля снимается напряжение. Его отсутствие проверяется специальным устройством;
  2. Устанавливается испытательное заземление на стороне, где проводится измерение;
  3. Жилы с другой стороны разводятся на значительное расстояние друг от друга;
  4. На каждую жилу подаётся напряжение. На кабели с изоляцией из бумаги, ПВХ, полимеров и резины подаётся постоянное напряжение, а на кабели с изоляцией из сшитого полиэтилена – переменное;
  5. В течение одной минуты замеряется сопротивление изоляции.

Измерение проходит следующим образом:

  • Предположим, измеряется сопротивление изоляции жилы «А»;
  • Тогда испытательное заземление подключается к жилам «В» и «С»;
  • Один конец мегаомметра подключается к жиле «А», второй – к заземляющему устройству («земле»).

Стоит отметить, что конкретная методика измерения зависит от типа кабеля – низковольтный силовой, высоковольтный силовой, контрольный. Вышеприведённый алгоритм имеет общий характер.

Удельное активное сопротивление кабеля таблица: ом км

Расчет активного и реактивного сопротивлений кабеля

1234Следующая ⇒

Построение эквивалентной схемы замещения заданного участка сети

Для рассматриваемого примера эквивалентная расчетная схема будет иметь следующий вид (рисунок 3.1)

Рисунок 3.1 – Эквивалентная схема замещения заданного участка сети

 

Расчет сопротивлений систем

Расчетное напряжение определим по формуле:

.

Зная расчетное напряжение, можно определить сопротивление для первой системы :

.

Аналогично найдем сопротивление для второй системы :

.

 

Расчет сопротивлений линий электропередач

 

Зная что погонное сопротивление линий и их длину можно найти сопротивление.

Практическая работа №3 Электрический расчет кабельной линии

Определим сопротивление линии :

.

Аналогично сопротивление линии :

.

 

3.4 Расчет тока короткого замыкания и результирующего сопротивления в точке

Ток короткого замыкания от первой системы в точке находиться по формуле:

.

Ток короткого замыкания от второй системы в точке находиться по формуле:

.

Суммарный ток короткого замыкания в точке можно найти следующим образом:

.

Зная суммарный ток короткого замыкания можно найти результирующее сопротивление в точке по формуле:

.

 

3.5 Расчет тока короткого замыкания и результирующего сопротивления в точке

Сопротивление трансформатора, приведенной к напряжению 110 кВ:

.

Зная сопротивление трансформатора и результирующее сопротивление в точке можно найти результирующее сопротивление в точке , приведенное к напряжению 110 кВ, по формуле:

.

А результирующее сопротивление в точке , приведенное к напряжению 10 кВ, по формуле:

.

Тогда ток короткого замыкания в точке найдем из следующего выражения:

3.6 Расчет тока короткого замыкания и результирующего сопротивления в точке

Выбор типа и сечение питающего кабеля

Сечение жил кабеля выбирают по техническим и экономическим условиям.

Номинальный ток нагрузки:

Экономическая плотность тока для кабелей с алюминиевыми жилами для района Сибири . Найдем отчисления на амортизацию . Удельное значение потерь по замыкающим затратам .

Находим :

, где – нормативный коэффициент эффективности; – суммарные издержки на амортизацию и обслуживание, в относительных единицах; – время максимальных потерь ; – стоимость потерь электроэнергии .

Для прокладки в земляной траншее выберем кабель ААШвУ Для данного кабеля при рассчитанном по номограмме выберем сечение .

Расчет активного и реактивного сопротивлений кабеля

 

Погонное активное сопротивление 1 км алюминиевого кабеля равно , длина кабеля . Зная это можно найти активное сопротивление кабеля:

.

Погонное реактивное сопротивление 1 км алюминиевого кабеля равно , длина кабеля . Зная это можно найти реактивное сопротивление кабеля:

.

Тогда полное сопротивление кабеля:

.

 

3.6.3 Расчет результирующего сопротивления в точке

 

Результирующее сопротивление в точке можно найти по следующей формуле:

.

 

3.6.4 Расчет тока короткого замыкания в точке

 

Ток короткого замыкания в точке найдем из следующего выражения:

.

 


1234Следующая ⇒


Дата добавления: 2016-10-22; просмотров: 367 | Нарушение авторских прав


Похожая информация:



Поиск на сайте:


Удельное сопротивление кабеля таблица

Удельное сопротивление меди

Главная > Теория > Удельное сопротивление меди

Одним из самых распространённых металлов для изготовления проводов является медь. Её электросопротивление минимальное из доступных по цене металлов. Оно меньше только у драгоценных металлов (серебра и золота) и зависит от разных факторов.

Формула вычисления сопротивления проводника

Что такое электрический ток

На разных полюсах аккумулятора или другого источника тока есть разноимённые носители электрического заряда. Если их соединить с проводником, носители заряда начинают движение от одного полюса источника напряжения к другому. Этими носителями в жидкости являются ионы, а в металлах – свободные электроны.

Определение. Электрический ток – это направленное движение заряженных частиц.

Удельное сопротивление

Удельное электрическое сопротивление – это величина, определяющая электросопротивление эталонного образца материала. Для обозначения этой величины используется греческая буква «р». Формула для расчета:

p=(R*S)/l.

Эта величина измеряется в Ом*м. Найти её можно в справочниках, в таблицах удельного сопротивления или в сети интернет.

Свободные электроны по металлу двигаются внутри кристаллической решётки. На сопротивление этому движению и удельное сопротивление проводника влияют три фактора:

  • Материал. У разных металлов различная плотность атомов и количество свободных электронов;
  • Примеси. В чистых металлах кристаллическая решётка более упорядоченная, поэтому сопротивление ниже, чем в сплавах;
  • Температура. Атомы не находятся на своих местах неподвижно, а колеблются. Чем выше температура, тем больше амплитуда колебаний, создающая помехи движению электронов, и выше сопротивление.

На следующем рисунке можно увидеть таблицу удельного сопротивления металлов.

Удельное сопротивление металлов

Интересно. Есть сплавы, электросопротивление которых падает при нагреве или не меняется.

Проводимость и электросопротивление

Так как размеры кабелей измеряются в метрах (длина) и мм² (сечение), то удельное электрическое сопротивление имеет размерность Ом·мм²/м. Зная размеры кабеля, его сопротивление рассчитывается по формуле:

R=(p*l)/S.

Кроме электросопротивления, в некоторых формулах используется понятие «проводимость». Это величина, обратная сопротивлению. Обозначается она «g» и рассчитывается по формуле:

g=1/R.

Проводимость жидкостей

Проводимость жидкостей отличается от проводимости металлов. Носителями зарядов в них являются ионы. Их количество и электропроводность растут при нагревании, поэтому мощность электродного котла растёт при нагреве от 20 до 100 градусов в несколько раз.

Интересно. Дистиллированная вода является изолятором. Проводимость ей придают растворенные примеси.

Электросопротивление проводов

Самые распространенные металлы для изготовления проводов – медь и алюминий. Сопротивление алюминия выше, но он дешевле меди. Удельное сопротивление меди ниже, поэтому сечение проводов можно выбрать меньше. Кроме того, она прочнее, и из этого металла изготавливаются гибкие многожильные провода.

В следующей таблице показывается удельное электросопротивление металлов при 20 градусах. Для того чтобы определить его при других температурах, значение из таблицы необходимо умножить на поправочный коэффициент, различный для каждого металла. Узнать этот коэффициент можно из соответствующих справочников или при помощи онлайн-калькулятора.

Сопротивление проводов

Выбор сечения кабеля

Поскольку у провода есть сопротивление, при прохождении по нему электрического тока выделяется тепло, и происходит падение напряжения. Оба этих фактора необходимо учитывать при выборе сечения кабелей.

Выбор по допустимому нагреву

При протекании тока в проводе выделяется энергия. Её количество можно рассчитать по формуле электрической мощности:

P=I²*R.

В медном проводе сечением 2,5мм² и длиной 10 метров R=10*0.0074=0.074Ом. При токе 30А Р=30²*0,074=66Вт.

Эта мощность нагревает токопроводящую жилу и сам кабель. Температура, до которой он нагревается, зависит от условий прокладки, числа жил в кабеле и других факторов, а допустимая температура – от материала изоляции. Медь обладает большей проводимостью, поэтому меньше выделяемая мощность и необходимое сечение. Определяется оно по специальным таблицам или при помощи онлайн-калькулятора.

Таблица выбора сечения провода по допустимому нагреву

Допустимые потери напряжения

Кроме нагрева, при прохождении электрического тока по проводам происходит уменьшение напряжения возле нагрузки. Эту величину можно рассчитать по закону Ома:

U=I*R.

Справка. По нормам ПУЭ оно должно составлять не более 5% или в сети 220В – не больше 11В.

Поэтому, чем длиннее кабель, тем больше должно быть его сечение. Определить его можно по таблицам или при помощи онлайн-калькулятора. В отличие от выбора сечения по допустимому нагреву, потери напряжения не зависят от условий прокладки и материала изоляции.

В сети 220В напряжение подаётся по двум проводам: фазному и нулевому, поэтому расчёт производится по двойной длине кабеля. В кабеле из предыдущего примера оно составит U=I*R=30A*2*0.074Ом=4,44В. Это немного, но при длине 25 метров получается 11,1В – предельно допустимая величина, придётся увеличивать сечение.

Максимально допустимая длина кабеля данного сечения

Электросопротивление других металлов

Кроме меди и алюминия, в электротехнике используются другие металлы и сплавы:

  • Железо. Удельное сопротивление стали выше, но она прочнее, чем медь и алюминий. Стальные жилы вплетаются в кабеля, предназначенные для прокладки по воздуху. Сопротивление железа слишком велико для передачи электроэнергии, поэтому при расчёте сечения жилы не учитываются. Кроме того, оно более тугоплавкое, и из него изготавливаются вывода для подключения нагревателей в электропечах большой мощности;
  • Нихром (сплав никеля и хрома) и фехраль (железо, хром и алюминий). Они обладают низкой проводимостью и тугоплавкостью. Из этих сплавов изготавливаются проволочные резисторы и нагреватели;
  • Вольфрам. Его электросопротивление велико, но это тугоплавкий металл (3422 °C). Из него изготавливаются нити накала в электролампах и электроды для аргонно-дуговой сварки;
  • Константан и манганин (медь, никель и марганец). Удельное сопротивление этих проводников не меняется при изменениях температуры. Применяются в претензионных приборах для изготовления резисторов;
  • Драгоценные металлы – золото и серебро. Обладают самой высокой удельной проводимостью, но из-за большой цены их применение ограничено.

Индуктивное сопротивление

Формулы для расчёта проводимости проводов с

Расчет данных кабеля

Расчетный выход: Диаметр кабеля, общая емкость (мкФ), общий ток зарядки (амперы), параметры заряда на фазу (кВАр), реактивное сопротивление заряда (МОм * 1000 футов), индуктивность (мГн), реактивное сопротивление (Ом), переменный ток Сопротивление, соотношение X / R и импульсное сопротивление (Ом).

Основа расчета


Емкость кабелей, зарядный ток и зарядная реактивная мощность

Емкость одножильного экранированного кабеля определяется по следующей формуле:

Где:

C = Общая емкость кабеля (микрофарады) I заряда = Ток зарядки кабеля
SIC = Диэлектрическая проницаемость изоляции кабеля (Таблица 3) D = Диаметр по длине изоляция (дюймы)
d = диаметр проводника (дюймы) В LL = рабочее напряжение системы в (кВ)
f = рабочая частота системы (Гц) L = длина Кабель в футах
I заряд = зарядный ток (амперы) кВАр заряд = однофазный кВАр или зарядный вар на кабель

Индуктивность и реактивное сопротивление кабеля

Индуктивность и индуктивное сопротивление трех однофазных кабелей рассчитываются по формулам ниже.Формулы предполагают конфигурацию кабеля, показанную на рисунке выше. Кроме того, поскольку индуктивность зависит от окружающего материала, используйте Таблицу 4, чтобы определить соответствующий коэффициент «K» (множитель) для индуктивности.

Где:

X L = Индуктивное сопротивление проводника (Ом) L C = Индуктивность кабеля (мГн)
L = Длина кабеля в футах A, B, C = Расстояние на рисунок вверху (дюймы)
K = Коэффициент поправки для установки, указанный в Таблице 4 d = Диаметр проводника (дюймы)

Сопротивление кабеля при рабочей температуре

Сопротивление жилы обеспечивается при 20 град.C в Таблице-1. При работе при другой температуре сопротивление меняется и определяется по следующей формуле:

Где:

R AC = сопротивление переменному току проводника при рабочей температуре (Ом)
R AC20C = сопротивление переменного тока проводника при 20 ° C (Ом)
T = рабочая температура проводник (° C)

Импеданс

Импеданс кабеля можно рассчитать по следующей формуле:

Где:

Z o = Импеданс кабеля (Ом)
L C = индуктивность проводника (мГн)
C = общая емкость кабеля (микрофарады)

,

Таблица пропускной способности по току — Расчет поперечного сечения кабеля

Допустимая нагрузка по току: таблицы

(Выдержка из таблиц VDE 0298 T4 06/13: 11, 17, 18, 21, 26 и 27)

300 , 00 мм 2

Ток -пропускная способность, кабели с номинальным напряжением до 1000 В и термостойкие кабели VDE 0298 T4 08/03 таблица 11, столбец 2 и 5
столбец 2 столбец 5
способ прокладки в воздухе на поверхности или на поверхности
монопроводники

— с резиновой изоляцией
— с изоляцией из ПВХ
— термостойкие

Многожильные кабели
(кроме домашних или портативных устройств)
— с резиновой изоляцией
— С ПВХ изоляцией
— термостойкость
Количество заряженных проводников 1 2 или 3
Номинальное сечение n Емкость (Ампер)
0,75 мм 2 15A 12A
1,00 мм 2 19A 15A
1,50 мм 2 24A 18A
2,50 мм 2 32A 26A
4,00 мм 2 42A 34A
6,00 мм 2 54A 44A
10,00 мм 2 73A 61A
16,00 мм 2 98A 82A
25,00 мм 2 129A 108A
35,00 мм 2 158A 135A
50,00 мм 2 198A 168A
70, 00 мм 2 245A 207A
95,00 мм 2 292A 250A
120,00 мм 2 344A 292A
150, 00 мм 2 391A 335A
185,00 мм 2 448A 382A
240,00 мм 2 528A 453A
608A 523A
Максимальный ток кабелей для изменения температуры окружающей среды
VDE 0298 T4 06/13, таблица 17, столбец 4 1 )
Температура окружающей среды Коэффициент
10 ° C 1,22
15 ° C 1,17
20 ° C 1,12
25 ° C 1,06
30 ° C 1,00
35 ° C 0,94
40 ° C 0,87
45 ° C 0,79
50 ° C 0,71
55 ° C 0,61
60 ° C 0, 50
65 ° C 0,35

1) для кабелей с рабочей температурой макс.70 ° C на токопроводе

Допустимая нагрузка многожильных кабелей номинальным сечением до 10 мм2
VDE 0298 T4 06/13 таблица 26. При прокладке на открытом воздухе.
Кол-во нагруженных сердечников Коэффициент
5 0,75
7 0,65
10 0,55
14 0,50
19 0,45
24 0,40
40 0,35
61 0,30
Допустимая нагрузка кабеля для разделения температур окружающей среды для термостойких кабелей VDE 0298 T4 06/13 таблица 18, столбец 3-6
столбец 3 столбец 4 столбец 5 колонка 6
zulässige Betriebstemperatur
90 ° C 110 ° C 135 ° C 180 ° C
ambi температура коэффициенты преобразования, применяемые к емкости термостойких кабелей в таблице 11, столбец 2 и 5
до 50 ° C 1,00 1,00 1,00 1,00
55 ° C 0,94 1,00 1,00 1,00
60 ° C 0,87 1,00 1,00 1,00
65 ° C 0,79 1,00 1,00 1,00
70 ° C 0,71 1,00 1,00 1,00
75 ° C 0,61 1,00 1,00 1,00
80 ° C 0 , 50 1,00 1,00 1,00
85 ° C 0,35 0,91 1,00 1,00
90 ° C —— 0,82 1,00 1,00
95 ° C —— 0,71 1, 00 1,00
100 ° C —— 0,58 0,94 1,00
105 ° C —— 0,41 0,87 1,00
110 ° C —— —— 0,79 1,00
115 ° C —— —— 0,71 1,00
120 ° C —— —— 0 , 61 1,00
125 ° C —— —— 0,50 1,00
130 ° C — — —— 0,35 1,00
135 ° C —— —— —— 1,00
140 ° C —— —— — — 1,00
145 ° C —— —— —— 1,00
150 ° C — —- —— —— 1,00
155 ° C —— —— —- — 0,91
160 ° C —— —— —— 0,82
165 ° C — — —— —— 0,71
170 ° C —— —— —— 0,58
175 ° C —— —— —— 0,41
90 252 Допустимая токовая нагрузка кабелей для аккумулирования на стенах, в трубах и трубопроводах, на полу и потолке VDE 0298 T4 06/13 таблица 21

No.многожильных кабелей

(2 или 3 токоведущих жилы)

Фактор

1

1,00

2 0,80
3 0,70
4 0,65
5 0,60
6 0,57
7 0,54
8 0,52
9 0,50
10 0,48
12 0,45
14 0,43
16 0,41
18 0,39
20 0,38

Максимально допустимая токовая нагрузка в соотв.согласно DIN VDE 0891, часть 1, пункт 7 необходимо учитывать при применении изолированных кабелей в телекоммуникационных системах и устройствах обработки данных.

Допустимая нагрузка на кабели для намотанных кабелей VDE 0298 T4 06/13 таблица 27
1 2 3 4 5 6
нет. слоев на одном барабане 1 2 3 4 5
коэффициенты пересчета 0,80 0,61 0,49 0,42 0, 38

Примечание : для спиральной намотки коэффициент преобразования 0,80 действителен

.

Размер кабеля для вспомогательных электрических цепей (рабочие примеры)

Несколько слов о вспомогательных цепях

Подглавная электрическая цепь может быть определена как цепь, подключенная непосредственно от главного распределительного щита низкого напряжения к вспомогательной распределительной панели или к восходящей магистрали для окончательного подключения оборудования, потребляющего малый ток.

Cable Sizing Of Sub-Main Electrical Circuits (Working Examples) Cable Sizing Of Sub-Main Electrical Circuits (Working Examples) Расчет размеров кабелей вспомогательных электрических цепей (рабочие примеры)

Кодекс требует, чтобы максимальные потери в меди в каждой вспомогательной цепи не превышали 1.5% от общей активной мощности передается по проводникам цепи при номинальном токе цепи.

При выборе размера проводника можно применить аналогичный подход, как и для фидерной цепи. Однако при проектировании необходимо сделать допущение для различных характеристик вспомогательной цепи, включая расчетный ток, ожидаемый гармонический ток (THD) в цепи, степень дисбаланса и т. Д.

В качестве альтернативы, метод повышения энергоэффективности, введенный Кодексом, может также использоваться для предварительного определения размеров кабеля.Этот метод энергоэффективности для определения размеров кабеля требует расчета максимально допустимого сопротивления проводника на основе требований к максимальным потерям в меди, как указано в кодексе.

Для 3-фазной 4-проводной схемы (предположительно симметричной, линейной или нелинейной):

Активная мощность, передаваемая по проводникам цепи //

P = √3 · U L · I 1 · cosθ

Суммарные потери меди в проводниках //

P медь = (3 · I b 2 + I N 2 ) · r · L

где:

  • U L — Линейное напряжение, 380 В
  • I b — Расчетный ток цепи в амперах
  • I 1 — Основной ток цепи в амперах
  • I N — Ток нейтрали в цепи в амперах
  • cosθ — Коэффициент смещения мощности контура
  • r — а.с. сопротивление / проводник / метр при рабочей температуре проводника
  • L — Длина кабеля в метрах

Процент потерь в меди по отношению к полной передаваемой активной мощности:

Percentage copper loss

Percentage copper loss

Следовательно,

Max. a.c. resistance

Max. a.c. resistance

Таблицы 4.2A и 4.2B в Кодексе предоставляют быструю первоначальную оценку размера кабеля, необходимого для общих типов кабелей и методов установки, используемых в Гонконге для этого примера.

Табулированный номинальный ток выбранного кабеля затем можно скорректировать, применив соответствующие поправочные коэффициенты. Эффективная допустимая токовая нагрузка выбранного кабеля должна быть проверена так, чтобы ее значение было больше или равно номинальному значению устройства защиты цепи.

Рассчитайте подходящий размер кабеля

Трехфазная вспомогательная цепь с расчетным основным током 100 А должна быть подключена кабелем 4 / C PVC / SWA / PVC на специальном кабельном лотке.При температуре окружающей среды 30 ° C и длине цепи 40 м рассчитайте соответствующий размер кабеля для следующих условий:

  1. CASE 1 // Неискаженное сбалансированное состояние с использованием традиционного метода (cosθ = 0,85)
  2. ВАРИАНТ 2 // Неискаженное сбалансированное состояние с макс. потери в меди 1,5% (cosθ = 0,85)

Корпус №1

Неискаженное сбалансированное состояние с использованием обычного метода:
  • I b = 100A
  • I n = 100A
  • I т (мин) = 100A

Предположим, что поправочные коэффициенты C a , C p , C g и C i равны единице.

Itmin

Itmin

См. BS7671: 2008 , Требования к электрическим установкам,

Таблица 4D4A для 25 мм 2 — 4 / C кабель PVC / SWA / PVC — It = 110A
Таблица 4D4B для r = 1,5 мВ / A / м x = 0,145 мВ / A / м (незначительно)

Рабочая температура проводника т 1 = 30 + 100 2 /110 2 · (70-30) = 63 ° C
Коэффициент сопротивления проводника при температуре от 63 ° C до 70 ° C r = (230 + 63) / (230 + 70) = 0.98
Падение напряжения u = 1,5 мВ / А / м · 0,85 · 0,98 · 100 А · 40 м = 5 В (1,3%)
Передаваемая активная мощность (P) P = √3 · 380 В · 100 A · 0,85 = 56 кВт
Суммарные потери меди в проводниках (P cu ) = 3 · 100 2 A 2 · 0,0015 Ом / м / √3 · 0,98 · 40 м
= 1.02 кВт (1,82%) (Выбранный размер кабеля неприемлем, если максимально допустимые потери в меди составляют 1,5%)

Корпус №2

Неискаженное сбалансированное состояние с максимальными потерями в меди 1,5%
(cosθ = 0,85)

Метод максимальных потерь в меди с использованием Таблицы 4.2A Кодекса для первоначальной оценки приблизительного сечения проводника, требуемого для расчета макс. сопротивление проводника при 1,5% потери мощности :

Maximum copper loss method

Maximum copper loss method

Из таблицы 4.2A 35 мм 2 — требуется кабель 4 / C PVC / SWA / PVC с сопротивлением проводника 0,625 мОм / м . См. BS7671: 2008, Требования к электроустановкам:

Таблица 4D4A для кабеля 35 мм 2 4 / C PVC / SWA / PVC Cable It = 135A
Таблица 4D4B для r = 1,1 мВ / A / м x = 0,145 мВ / A / м

Рабочая температура проводника т 1 = 30 + 100 2 /135 2 · (70-30) = 52 ° C
Коэффициент сопротивления проводника при температуре от 52 ° C до 70 ° C r = (230 + 52) / (230 + 70) = 0.94
Падение напряжения u = 1,1 мВ / А / м · 0,85 · 0,94 · 100 A · 40 м = 3,5 В (0,92%)
Передаваемая активная мощность (P) P = √3 · 380 В · 100 A · 0,85 = 56 кВт
Суммарные потери меди в проводниках (P cu ) = 3 · 100 2 A 2 · 0,0011 Ом / м / √3 · 0,94 · 40 м
= 716 кВт (1.28%) (выбранный размер кабеля является приемлемым, т. Е. Потеря мощности <1,5%, в неискаженных и сбалансированных условиях)

СВЯЗАННЫЕ ТАБЛИЦЫ //

ТАБЛИЦА 4.2A

Многожильные бронированные и небронированные кабели (медный проводник), сопротивление проводника при 50 Гц, однофазный или трехфазный переменный ток.

Multicore Armoured and Non-armoured Cables (Copper Conductor), Conductor Resistance at 50 Hz Single-phase or Three-phase a.c. Multicore Armoured and Non-armoured Cables (Copper Conductor), Conductor Resistance at 50 Hz Single-phase or Three-phase a.c. Многожильные бронированные и небронированные кабели (медный проводник), проводник
Сопротивление при 50 Гц Однофазное или трехфазное a.с.

Вернуться к делам ↑

ТАБЛИЦА 4.2B

Одножильные небронированные кабели из ПВХ / сшитого полиэтилена, с оболочкой или без нее (медный проводник), сопротивление проводника при 50 Гц, однофазный или трехфазный переменный ток

TABLE 4.2B Single-core PVC/XLPE Non-armoured Cables, with or without sheath (Copper Conductor), Conductor Resistance at 50 Hz Single-phase or Three-phase a.c. TABLE 4.2B Single-core PVC/XLPE Non-armoured Cables, with or without sheath (Copper Conductor), Conductor Resistance at 50 Hz Single-phase or Three-phase a.c. ТАБЛИЦА 4.2B
Одножильные небронированные кабели из ПВХ / сшитого полиэтилена, с оболочкой или без нее (медный проводник
), сопротивление проводника при 50 Гц, однофазный или трехфазный переменный ток.

Вернуться к делам ↑

ТАБЛИЦА 4D4A

Многожильный армированный кабель с термопластической изоляцией 70C

TABLE 4D4A - Multicore armoured 70C thermoplastic insulated cable TABLE 4D4A - Multicore armoured 70C thermoplastic insulated cable ТАБЛИЦА 4D4A — Многожильный армированный кабель с термопластической изоляцией 70C

Вернуться к случаям ↑

ТАБЛИЦА 4D4B

Падение напряжения (на ампер на метр)

TABLE 4D4B - Voltage drop (per ampere per-metre) TABLE 4D4B - Voltage drop (per ampere per-metre) ТАБЛИЦА 4D4B — Падение напряжения (на ампер на метр)

Вернуться к случаям ↑

Ссылка // Свод практических правил по энергоэффективности электрических установок — Департамент электрических и механических услуг — Правительство Особого административного района Гонконг

,

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *