T n c s: Системы заземления TN-S, TN-C, TNC-S, TT, IT

Содержание

Системы заземления TN-S, TN-C, TNC-S, TT, IT

При проектировании, монтаже и эксплуатации электроустановок, промышленного и бытового электрооборудования, а также электрических сетей освещения, одним из основополагающих факторов обеспечения их функциональности и электробезопасности является точно спроектированное и правильно выполненное заземление. Основные требования к системам заземления содержатся в пункте 1.7 Правил устройства электроустановок (ПУЭ). В зависимости от того, каким образом, и с каким заземляющими конструкциями, устройствами или предметами соединены соответствующие провода, приборы, корпуса устройств, оборудование или определенные точки сети, различают естественное и искусственное заземление.

Естественными заземлителями являются любые металлические предметы, постоянно находящиеся в земле: сваи, трубы, арматура и другие токопроводящие изделия. Однако, ввиду того, что электрическое сопротивление растеканию в земле электротока и электрических зарядов от таких предметов плохо поддается контролю и прогнозированию, использовать естественное заземление при эксплуатации электрооборудования запрещается. В нормативной документации предусмотрено использование только искусственного заземления, при котором все подключения производятся к специально созданным для этого заземляющим устройствам.

Основным нормируемым показателем, характеризующим, насколько качественно выполнено заземление, является его сопротивление. Здесь контролируется противодействие растеканию тока, поступающего в землю через данное устройство — заземлитель. Величина сопротивления заземления зависит от типа и состояния грунта, а также особенностей конструкции и материалов, из которых изготовлено заземляющее устройство. Определяющим фактором, влияющих на величину сопротивления заземлителя, является площадь непосредственного контакта с землей составляющих его пластин, штырей, труб и других электродов.

 

Виды систем искусственного заземления

Основным документом, регламентирующим использование различных систем заземления в России, является ПУЭ (пункт 1.7), разработанный в соответствии с принципами, классификацией и способами устройства заземляющих систем, утвержденных специальным протоколом Международной электротехнической комиссии (МЭК). Сокращенные названия систем заземления принято обозначать сочетанием первых букв французских слов: «Terre» — земля, «Neuter» — нейтраль, «Isole» — изолировать, а также английских: «combined» и «separated» — комбинированный и раздельный.

  • T — заземление.
  • N — подключение к нейтрали.
  • I — изолирование.
  • C — объединение функций, соединение функционального и защитного нулевых проводов.
  • S — раздельное использование во всей сети функционального и защитного нулевых проводов.

В приведенных ниже названиях систем искусственного заземления по первой букве можно судить о способе заземления источника электрической энергии (генератора или трансформатора), по второй – потребителя. Принято различать TN, TT и IT системы заземления. Первая из которых, в свою очередь, используется в трех различных вариантах: TN-C, TN-S, TN-C-S. Для понимания различий и способов устройства перечисленных систем заземления следует рассмотреть каждую из них более детально.

 

1. Системы с глухозаземлённой нейтралью (системы заземления TN)

Это обозначение систем, в которых для подключения нулевых функциональных и защитных проводников используется общая глухозаземленная нейтраль генератора или понижающего трансформатора. При этом все корпусные электропроводящие детали и экраны потребителей следует подключить к общему нулевому проводнику, соединенному с данной нейтралью. В соответствии с ГОСТ Р50571.2-94 нулевые проводники различного типа также обозначают латинскими буквами:

  • N — функциональный «ноль»;
  • PE — защитный «ноль»;
  • PEN — совмещение функционального и защитного нулевых проводников.

Построенная с использованием глухозаземленной нейтрали, система заземления TN характеризуется подключением функционального «ноля» — проводника N (нейтрали) к контуру заземления, оборудованному рядом с трансформаторной подстанцией. Очевидно, что в данной системе заземление нейтрали посредством специального компенсаторного устройства — дугогасящего реактора не используется. На практике применяются три подвида системы TN: TN-C, TN-S, TN-C-S, которые отличаются друг от друга различными способами подключения нулевых проводников «N» и «PE».

Система заземления TN-C

Как следует из буквенного обозначения, для системы TN-C характерно объединение функционального и защитного нулевых проводников. Классической TN-C системой является традиционная четырехпроводная схема электроснабжения с тремя фазными и одним нулевым проводом. Основная шина заземления в данном случае – глухозаземленная нейтраль, с которой дополнительными нулевыми проводами необходимо соединить все открытые детали, корпуса и металлические части приборов, способные проводить электрический ток..

Данная система имеет несколько существенных недостатков, главный из которых – утеря защитных функций в случае обрыва или отгорания нулевого провода. При этом на неизолированных поверхностях корпусов приборов и оборудования появится опасное для жизни напряжение. Так как отдельный защитный заземляющий проводник PE в данной системе не используется, все подключенные розетки земли не имеют. Поэтому используемое электрооборудование приходится занулять – соединять корпусные детали с нулевым проводом. .

Если при таком подключении фазный провод коснется корпуса, из-за короткого замыкания сработает автоматический предохранитель, и опасность поражения электрическим током людей или возгорания искрящего оборудования будет устранена быстрым аварийным отключением. Важным ограничением при вынужденном занулении бытовых приборов, о чем следует знать всем проживающим в помещениях, запитанных по системе TN-C, является запрет использования дополнительных контуров уравнивания потенциалов в ванных комнатах.

В настоящее время данная система заземления сохранилась в домах, относящихся к старому жилому фонду, а также применяется в сетях уличного освещения, где степень риска минимальна.

Система TN-S

Более прогрессивная и безопасная по сравнению с TN-C система с разделенными рабочим и защитным нолями TN-S была разработана и внедрена в 30-е годы прошлого века. При высоком уровне электробезопасности людей и оборудования это решение имеет один, но достаточно очень существенный недостаток — высокую стоимость. Так как разделение рабочего (N) и защитного (PE) ноля реализовано сразу на подстанции, подача трехфазного напряжения производится по пяти проводам, однофазного — по трем. Для подключения обоих нулевых проводников на стороне источника используется глухозаземленная нейтраль генератора или трансформатора.

В ГОСТ Р50571 и обновленной редакции ПУЭ содержится предписание об устройстве на всем ответственных объектах, а также строящихся и капитально ремонтируемых зданиях энергоснабжения на основе системы TN-S, обеспечивающей высокий уровень электробезопасности. К сожалению, широкому распространению и внедрению системы TN-S препятствует высокий уровень затрат и ориентированность российской энергетики на четырехпроводные схемы трехфазного электроснабжения.

Система TN-C-S

С целью удешевления оптимальной по безопасности, но финансово емкой системы TN-S с разделенными нулевыми проводниками N и PE, было создано решение, позволяющее использовать ее преимущества с меньшим бюджетом, незначительно превышающим расходы на энергоснабжение по системе TN-C. Суть данного способа подключения состоит в том, что с подстанции осуществляется подача электричества с использованием комбинированного нуля «PEN», подключенного к глухозаземленной нейтрали. Который при входе в здание разветвляется на «PE» — ноль защитный, и еще один проводник, исполняющий на стороне потребителя функцию рабочего ноля «N».

Данная система имеет существенный недостаток — в случае повреждения или отгорания провода PEN на участке подстанция — здание, на проводнике PE, а, следовательно, и всех связанных с ним корпусных деталях электроприборов, появится опасное напряжение. Поэтому при использовании системы TN-C-S, которая достаточно распространена, нормативные документы требуют обеспечения специальных мер защиты проводника PEN от повреждения.

Система заземления TT

При подаче электроэнергии по традиционной для сельской и загородной местности воздушной линии, в случае использования здесь небезопасной системы TN-C-S трудно обеспечить надлежащую защиту проводника комбинированной земли PEN. Здесь все чаще используется система TT, которая предполагает «глухое» заземление нейтрали источника, и передачу трехфазного напряжения по четырем проводам. Четвертый является функциональным нолем «N». На стороне потребителя выполняется местный, как правило, модульно-штыревой заземлитель, к которому подключаются все проводники защитной земли PE, связанные с корпусными деталями.

Совсем недавно разрешенная к использованию на территории РФ, данная система быстро распространилась в российской глубинке для энергоснабжения частных домовладений. В городской местности TT часто используется при электрификации точек временной торговли и оказания услуг. При таком способе устройства заземления обязательным условием является наличие приборов защитного отключения, а также осуществление технических мер грозозащиты.

 

2. Системы с изолированной нейтралью

Во всех описанных выше системах нейтраль связана с землей, что делает их достаточно надежными, но не лишенными ряда существенных недостатков. Намного более совершенными и безопасными являются системы, в которых используется абсолютно не связанная с землей изолированная нейтраль, либо заземленная при помощи специальных приборов и устройств с большим сопротивлением. Например, как в системе IT. Такие способы подключения часто используются в медицинских учреждениях для электропитания оборудования жизнеобеспечения, на предприятиях нефтепереработки и энергетики, научных лабораториях с особо чувствительными приборами, и других ответственных объектах.

Система IT

Классическая система, основным признаком которой является изолированная нейтраль источника – «I», а также наличие на стороне потребителя контура защитного заземления – «Т». Напряжение от источника к потребителю передается по минимально возможному количеству проводов, а все токопроводящие детали корпусов оборудования потребителя должны быть надежно подключены к заземлителю. Нулевой функциональный проводник N на участке источник – потребитель в архитектуре системы IT отсутствует.

 

Надежное заземление — гарантия безопасности

Все существующие системы устройства заземления предназначены для обеспечения надежного и безопасного функционирования электрических приборов и оборудования, подключенных на стороне потребителя, а также исключения случаев поражения электрическим током людей, использующих это оборудование. При проектировании и устройстве систем энергоснабжения, необъемлемыми элементами которых является как функциональное, так и защитное заземление, должна быть уменьшена до минимума возможность появления на токопроводящих корпусах бытовых приборов и промышленного оборудования напряжения, опасного для жизни и здоровья людей.

Система заземления должна либо снять опасный потенциал с поверхности предмета, либо обеспечить срабатывание соответствующих защитных устройств с минимальным запаздыванием. В каждом таком случае ценой технического совершенства, или наоборот, недостаточного совершенства используемой системы заземления, может быть самое ценное — жизнь человека.

 


Смотрите также:

Смотрите также:

Системы защитного заземления TNC, TNCS, TNS, TT, IT

 

Стандарт Стандарт ПУЭ 1.7, EN60950, IEC60364
Схемы электроснабжения нагрузки TNC, TNCS, TNS, TT, IT

 

TNC – Нейтраль и PE («земля») объединены вместе везде в системе в единую щину PEN.
Neutral and PE (protected earth conductor) are combined throughout the system.

 

TNS – Нейтраль соединена с землёй трансформатора, но не соединена с землёй (PE) где-нибудь ещё в системе. PE приходит на объект от трансформатора отдельно и может быть соединена с местной землёй.

Neutral is earthed at the transformer but is not bonded to earth or the PE elsewhere. PE is carried to the site from the transformer and bonded to site earth.

 

TNCS – Общая в начале шина PEN затем разъеделяется на 2 отдельных проводника: N (нейтраль) и PE (защищённую шину земли). Стандарт США – разновидность данного. Нейтраль заземлена на трансформаторе.

TNCS splits the combined PEN into a separate neutral and PE at service entry (U.S. practice is a variation of this). The neutral is earthed at the transformer.

TT – Нейтраль заземлена на трансформаторе. Местная Земля – PE (объект-потребитель) не связана с нейтралью. Между землёй трансформатора и землёй потребителя (PE) соединений нет.

Neutral is earthed at the transformer. The PE originates at site but is not bonded to the neutral. There is no interconnection between PE and transformer earth.

 

IT – Нейтраль трансформатора не заземлена (или заземлена через сопротивление с высоким импедансом).

The transformer is unearthed (or earthed through high impedance). The PE originates at site but is not bonded to a service conductor; no conductor in this system is designated as ‘neutral’ (standard IT system).

Разновидности IT системы:

  • A) проводник «N / Нейтраль» отсутствует в системе (стандартная счистема IT).
  • B) проводник «N / Нейтраль» есть в системе.

Нейтраль на потребителе также не заземлена (или заземлена через сопротивление с высоким импедансом).

Для обоих случаев возможны разновидности:

  • I) Местная Земля – PE (объект-потребитель) отсутствует. Потребитель использует PE от трансформатора.
  • II) Местная Земля – PE (объект-потребитель) есть. Потребитель может использовать местную Землю или Землю трансформатора. Эти Земли могут быть как соединены так и не соединены.

Главное требование системы IT – незаземлённая или импедансно-заземлённая нейтраль трансформатора.

 

 

Термины / сокращения:

  • T – Terra / Земля (лат. terra, франц. terre)
  • N – Neutral / Нейтраль
  • C – Combined / Совмещённый
  • S – Separated / Отдельный
  • I – Isolated / Изолированный (франц. terre isolee)
  • PE – Protected Earth conductor / Защищённая шина Земли
  • PEN – Protected Earth + Neutral conductor / единая шина объединяющая Нейтраль (N) и Землю (PE)

 

 

Различные стандарты СИСТЕМ ЗАЗЕМЛЕНИЯ

Трём системам заземления дан официальный статус посредством стандарта (IEC 60364) который подразделяется на большое число национальных стандартов.

 

Системы TN

Основные принципы схемы TN:

  • Нейтраль трансформатора заземлена, поэтому корпуса нагрузок (подключенные к заземлению PE или PEN трансформатора) оказываются гальванически соединены с нейтралью.
  • Нагрузка не имеет местного заземления.

Существующие варианты схемы TN:

  • TNC – «Земля» и нейтраль объединены в 1 проводнике (PEN) (C = Combined).
  • TNS – «Земля» и нейтраль разъединены (PE и N) (S = Separate).
  • TNCS = TNC+TNS Объединённые вначале «Земля» и нейтраль затем разъединяются (CS = Combined then Separate). То-есть TNC преобразуется в TNS.

Система TNS не может существовать перед системой TNC.

 

Система TNС (TN-C). Нарушение изоляции в системе TNC

Общие замечания:

В системе TNC, с защитными токовыми автоматами, нарушение изоляции опасно. Разрушение изоляции, то есть замыкание фазного проводника на «Землю» вызывает рост тока замыкания до максимального значения, ограниченного защитными автоматами в цепи.

Такая защита во многих случаях достаточна для защиты самой нагрузки, но не является полной, например если изоляция разрушена не полностью и ток фаза-«Земля» недостаточен для срабатывания защитного автомата. Однако этого может привести к возникновению пожара или для опасного поражения током человека, а защитный автомат при этом не сработает (не обеспечит защитное отключения аварийного участка цепи).

Cистема имеет самый низкий уровень безопасности так как УЗО корректно установить невозможно.

Несмотря на опасность система продолжает использоваться в России в т.ч. на госпредприятиях. В России в настоящий момент вытесняется системой TNS.

Подробные замечания:


Рис.1. Нарушение изоляции в системе TNC

Возможные варианты:

  • Человек коснулся фазного проводника и «Земли» одновременно.
  • При затоплении (пожаре и др.) изоляция провода разрушена и фаза замкнулась на корпус (на «Землю»).
  • Изоляция старого провода разрушена и фаза замкнулась на корпус (на «Землю»).

 

Система TNS (TN-S). Нарушение изоляции в системе TNS

Общие замечания:

В системе TNS, с защитными токовыми автоматами, нарушение изоляции опасно. Разрушение изоляции, то есть замыкание фазного проводника на «Землю» вызывает рост тока замыкания до максимального значения, ограниченного защитными автоматами в цепи.

Такая защита во многих случаях достаточна для защиты самой нагрузки, но не является полной, например, если изоляция разрушена не полностью и ток фаза-«Земля» недостаточен для срабатывания защитного автомата. Тем не менее, этого тока может быть достаточно для возникновения пожара или для опасного поражения током человека, а защитный автомат при этом не сработает (не обеспечит защитное отключения аварийного участка цепи).

Максимальная степень безопасности может быть достигнута путём установки УЗО. Система является самой распространённой в мире. В России введена как стандарт.

Степень безопасности TNS выше чем TNC по следующим причинам (П1, П2):

  • П1) защитные автоматы в TNS при срабатывании могут размыкать цепь полностью (как нейтраль так и фазы), защитная шина «Земли» PE продолжает при этом выполнять свои функции. В то время, как и в системе TNC при аварии могут быть разомкнуты только фазы.
  • П2) Защитный проводник «Земля» PE выполняет только свои функции, то есть служит заземлением. В то время как в системе TNC защитный проводник выполняет сразу две функции:  заземления и нейтрали, что может привести к проблемам, например: нагрузка (ПК) будет «зависать» от помех из-за некачественного заземления, так как на заземляющем проводнике возникают наводки (помехи), вызванные текущим по нему току нагрузки.

Подробные замечания:


Рис.2. Нарушение изоляции в системе TNS

Возможные варианты:

  • Человек коснулся фазного проводника и Земли одновременно.
  • При затоплении (пожаре и др.) изоляция провода разрушена и фаза замкнулась на корпус («Землю»).
  • Изоляция старого провода разрушена и фаза замкнулась на корпус («Землю»).

 

Система TNСS (TN-C-S). Нарушение изоляции в системе TNСS

Общие замечания:

В системе TNS, с защитными токовыми автоматами, нарушение изоляции опасно. Разрушение изоляции, то есть замыкание фазного проводника на «Землю» вызывает рост тока замыкания до максимального значения, ограниченного защитными автоматами в цепи.

Такая защита во многих случаях достаточна для защиты самой нагрузки, но не является полной, например, если изоляция разрушена не полностью и ток фаза-«Земля» недостаточен для срабатывания защитного автомата. Тем не менее, этого тока может быть достаточно для возникновения пожара или для опасного поражения током человека, а защитный автомат при этом не сработает (не обеспечит защитное отключения аварийного участка цепи).

Система защиты имеет средний уровень безопасности, так как установив УЗО можно добиться достаточно высокой степени безопасности, но при этом остаётся проблема некачественного заземления из-за использования объединённой шины PEN.

Используется достаточно часто в России. В России в настоящий момент вытесняется системой TNS.

Подробные замечания:


Рис.3. Нарушение изоляции в системе TNCS

Возможные варианты:

  • Человек коснулся фазного проводника и Земли одновременно.
  • При затоплении (пожаре и др.) изоляция провода разрушена и фаза замкнулась на корпус («Землю»).
  • Изоляция старого провода разрушена и фаза замкнулась на корпус («Землю»).

 

Система TT

Основные принципы схемы TT:

  • Нейтраль трансформатора заземлена.
  • «Земля» / корпус нагрузки также заземлены.
  • «Земля» трансформатора не связана кабелем с землёй нагрузки / потребителя (PE).

 

Нарушение изоляции в системе TT

Общие замечания:

Степень безопасности зависит от сопротивления между «Землей» трансформатора ТП и «Землей» потребителя. Если это сопротивление низкое, безопасность такая же как в TNS с УЗО. Если это сопротивление высокое, безопасность системы снижается, так как УЗО может не сработать.

Установка УЗО является общепринятой в системе TT. Данная система в России используется редко.

Подробные замечания:


Рис.4. Нарушение изоляции в системе TT

Возможные варианты:

  • Человек коснулся фазного проводника и Земли одновременно.
  • При затоплении (пожаре и др.) изоляция провода разрушена и фаза замкнулась на корпус («Землю»).
  • Изоляция старого провода разрушена и фаза замкнулась на корпус («Землю»).

Показана стандартная схема ТТ с УЗО. Ток пробоя (нарушения) изоляции фазных проводов и нейтрального провода ограничен сопротивлением (импедансом) участка между «Землей» трансформатора и «Землей» потребителя.

Защита обеспечена Устройством защитного отключения (УЗО): повреждённый блок / участок отключается устройством УЗО как только порог тока ΔI УЗО помещённого перед данным блоком / участком будет превышен током утечки / пробоя изоляции (на землю) IL:

IL > ΔI

IL = UL / RL – ток пробоя / утечки / leakage

Условие надёжной работы УЗО:

R (CD) << 220 В / ΔI; для УЗО с ΔI=30мА: R (CD) << 7кОм.

R(AB) =RL – сопротивление повреждённого участка (между точкой токоведущего проводника из которого произошла утечка на «землю» и «Землей»).

U(AB) =UL – разность потенциалов между точкой токоведущего проводника (из которого произошла утечка на «землю») и «Землей» (напряжение пробоя).

R(CD) – сопротивления между «Землей» трансформатора ТП и «Землей» потребителя.

Если R(CD) мало (в норме), то при нарушении изоляции срабатывание УЗО будет обеспечивать безопасное отключение аварийного участка и свидетельствовать, что это место подлежит ремонту.

Если R(CD) велико (не в норме) и УЗО работать не будет, то первое нарушение изоляции не приведёт к удару током, но отсутствие сработавшего УЗО не позволит обнаружить аварию и сделать своевременный ремонт, а второй пробой приведёт к аварии.

 

Система IT (Изолированная нейтраль)

Основные принципы схемы IT:

  • Нейтраль трансформатора НЕ заземлена. Но не заземлена только теоретически. Фактически она заземлена посредством паразитных ёмкостей кабелей и / или принудительно через высокое сопротивление около 1.5 кОм («импедансно-заземлённая нейтраль»).
  • Земля/корпус нагрузки заземлены.

 

Нарушение изоляции в системе IT

Подробные замечания:


Рис.5а. Одиночный пробой / нарушение изоляции в системах IT


Рис.5б. Двойной пробой / нарушение изоляции в системах IT

 

Если происходит первое нарушение изоляции на фазном проводнике, в месте нарушения развивается и протекает небольшой ток (между токоведущим проводником и «Землей»), обусловленный паразитными емкостями кабелей (и / или дополнительным принудительным высоким сопротивление ZN Нейтраль-«Земля») (см. рис. 5а). Контактная разность потенциалов (напряжение пробоя) U(A1B1) = UL1 при этом достигает всего нескольких вольт и не опасно (ток также не опасен):

IL1 = UФ / Rлинии

UL1 = RL1 * IL1

Первое нарушение изоляции не опасно в IT! То есть человек безопасно может коснуться одновременно фазы и «Земли »в IT.

RL1 – сопротивление повреждённого участка (между точкой токоведущего проводника из которого произошла утечка на землю и «Землей».

Rлинии – сопротивление линии, включающее паразитные емкостные сопротивления кабелей RП и принудительное высокое разрядное сопротивление Нейтраль-«Земля» ZN (если установлено).

UL1 – разность потенциалов между точкой токоведущего проводника (из которого произошла утечка на землю) и «Землей» (напряжение пробоя).

Uф – фазное напряжение трансформатора

IL1 – ток пробоя / утечки / leakage.

 

Если происходит второе нарушение изоляции на другом фазном проводнике, в то время как первое нарушение ещё не устранено (см. рис. 5б), контактная разность потенциалов второго места нарушения (напряжение пробоя) равна UL2 = √3*UФ-UL1 может быть велика и опасна.

При малых сопротивлениях первого и второго повреждённых участков (RL1, RL2) значительный ток утечки может протекать по проводнику, соединяющему «земли» первого и второго повреждённого участков (корпуса нагрузок):

IL1 = IL2 = √3*UФ / (RL1 + RL2)

Второе нарушение изоляции опасно в IT!

Корпуса нагрузок приобретают потенциалы, обусловленные этим током. Таким образом, если КЗ на 1 участке не опасно то последующее КЗ на 2 участке так же опасно, как и в системах TN. Поэтому необходимо УЗО.

 

Обозначения:

  • UL1 (UL2) – напряжение пробоя первого (второго) повреждённого участка.
  • UФ – фазное напряжение трансформатора.
  • IL1 (IL2) – ток пробоя/утечки 1 участка (2 участка).
  • RL1 (RL2) – сопротивление 1 (2) повреждённого участка.

Совместное использование автоматов токовой защиты и УЗО обеспечивают в данных случаях необходимую защиту. В этом случае по безопасности система IT сравнима с TNS с УЗО, то есть срабатывание УЗО (аварийный участок отключается) свидетельствует о том, что произошло первое нарушение изоляции и позволяет его своевременно устранить.

Для надёжного срабатывания УЗО требуется установка принудительного сопротивления ZN (Нейтраль-«Земля») обычно не более 1500 Ом. Без этого сопротивления первый пробой нельзя обнаружить (и своевременно устранить), если в системе других устройств нет (кроме УЗО и токовых автоматов – см. ниже).

Кроме этих возможностей, только система IT позволяет ещё сильнее повысить безопасность.

Дополнительно повысить степень защищённости можно установкой ПМИ / PIM (постоянного мониторинга изоляции / датчика изоляции). ПМИ представляет собой высокоомный амперметр (или вольтметр, подключенный параллельно ZN), включаемый так же как и ZN между Нейтралью и «Землей» ТП.

ПМИ позволяет:

  • Точно фиксировать серьёзные пробои фаза – «Земля», вплоть до КЗ.
  • Постоянно фиксировать состояние изоляции проводников в системе (медленное старение и ухудшение параметров изоляционного материала).

В отличие от остальных систем (TN, TT), это позволяет обнаружить первое нарушение изоляции, но не отключать аварийный участок (так как в IT первое нарушение изоляции не опасно), а довести работу на нём до конца, и только после ее завершения произвести штатное отключение и ремонт изоляции. Это особенно важно, например, для больниц и др. мест где важно не столько своевременно автоматически «отрубить» аварийную цепь, сколько заранее устранять все неисправности и исключать возможности внезапного неконтролируемого автоматического отключения цепей. Поэтому система IT введена во многих странах как стандарт для госпиталей, сооружений связанных с проводящими средами (водой, землёй и др.), например, корабли, метро и др. мест требующих повышенной безопасности.

Таким образом под повышенной безопасностью системы IT понимается возможность безопасно обнаруживать и устранять аварии изоляции всех проводников в системе.

В IT системе установка токовых автоматов обязательна. УЗО устанавливаются в зависимости от особенностей нагрузок и применяемых ZN и ПМИ.

Кроме этого, сами защитные цепи ПМИ дополнительно защищаются, например, на ТП с помощью разрядника или блока защиты от выбросов напряжения (surge limiter, surge suppresor).

 

 

Обозначения:

  • SCPD (Short-Circuit Protection Device) – автомат защиты от короткого замыкания, токовый автомат, автоматический выключатель с термомагнитным расцепителем. Автомат размыкает цепь, если ток в цепи превысил паспортный номинальный ток автомата.
  • RCD (Residual Current Devices) – УЗО, устройство защитного отключения, устройство разностного тока или более точное название: устройство защитного отключения, управляемое дифференциальным (остаточным) током, сокращенно УЗО−Д) или выключатель дифференциального тока (ВДТ) или защитно-отключающее устройство (ЗОУ) – механический коммутационный аппарат, который при достижении (превышении) дифференциальным током заданного значения вызывает размыкание цепи нагрузки.
  • PIM (permanent insulation monitor) – ПМИ постоянный мониторинг изоляции / датчик изоляции.
  • ZN optional impedance – дополнительное принудительное сопротивление Нейтраль-Земля на ТП.
  • Surge Limiter (surge suppresor, surge arrestor) – разрядник или блок защиты от выбросов напряжения или блок защиты от перенапряжения.

 

Внимание!

Все вышеприведённая информация относится к защите пользователя, имеющего доступ только к изолированным проводам и электрооборудованию в защитном корпусе.

Пожалуйста помните, что более глубокое проникновение в электрооборудование может быть опасно для жизни, даже при самых безопасных системах заземления, при использовании автоматов, УЗО, датчиков изоляции и т.п.

Примеры тяжёлой опасности для человека:

 

Пример 1

Установлены: Любая система заземления. Любые устройства защиты в цепях переменного тока. ИБП 100 кВА – батареи в батарейном кабинете всегда под напряжением (в том числе. при отключенном ИБП) и опасны.
ВНИМАНИЕ! ВЫСОКОЕ ПОСТОЯННОЕ НАПРЯЖЕНИЕ!

 

Пример 2

Система IT. Есть автомат. Есть УЗО. Есть датчик изоляции. Есть изолированный коврик. Имеется любое устройство, например, электромотор, стабилизатор, ИБП 100 кВA. Касание (одновременное) человеком фазы и нейтрали или двух фаз на клеммной панели (или соответствующих проводов с нарушенной изоляцией) этого устройства опасно
ВНИМАНИЕ! ВЫСОКОЕ ПЕРЕМЕННОЕ НАПРЯЖЕНИЕ!

(УЗО не сработает, если человек находится на изолирующем коврике!)

 

Пример 3

Так же поражение человека может случиться вообще без касания им проводников под током, например гаечный ключ уроненный на клеммы сборки аккумуляторов 100 А·ч может сгореть как предохранитель с опасной световой вспышкой и поражая окружающее пространство брызгами металла.

 

Внимание!

Для обеспечения полной безопасности необходимо ещё 4 дополнительных условия:

  1. Разработчик оборудования принял меры по обеспечению высокого уровня безопасности оборудования и его обслуживания.
  2. Инженер, работающий с оборудованием, принял меры по обеспечению высокого уровня безопасности проводимых работ.
  3. Окружающая среда в норме, например, температура, влажность в норме и нет опасности прорыва соседней водопроводной трубы и т.д.
  4. Часы наработки оборудования не превысили опасный предел (вопрос времени).

 

Нулевой защитный и нулевой рабочий проводники

Нулевой защитный и нулевой рабочий проводники различаются по назначению, способу подключения и функциональной нагрузки в электрических сетях.

Нулевой рабочий проводник

Нулевой рабочий проводник это проводник сети, подключенный к глухозаземленной нейтрали трансформатора трехфазного или нулевому выводу трансформатора однофазного. По нулевому рабочему проводнику протекает нагрузочный ток. На схеме нулевой рабочий проводник, обозначается буквой «N».

Нулевой защитный и нулевой рабочий проводникиНулевой защитный и нулевой рабочий проводники

Нулевой защитный проводник

В системах TN-C, TN-S, TN-C-S, где нулевой вывод трансформатора глухозаземлен, нулевой защитный проводник соединяет нулевую точку питающего трансформатора и токопроводящие части электроприемников, которые могут оказаться под напряжением в аварийной ситуации (косвенное прикосновение). Нулевой защитный проводник несет, по названию понятно, защитные функции. Защитный проводник участвует в защите, как самой электросети, так и человека.

Нулевой защитный проводник это один из видов защитных проводников электросети и относится он к электросетям до 1кВ с глухозаземленной нейтралью трансформатора или генератора.

Согласно ПУЭ 1.7.76. подлежат защите от косвенного прикосновения следующие элементы электросети:

  • Металлические корпуса светильников, электромашин, трансформаторов;
  • Металлические корпуса распределительных щитов, квартирные и этажные щитки;
  • Металлические корпуса распределительных устройств, лотков, муфт кабелей и металлические конструкции с электрооборудованием;
  • Металлические корпуса переносных и передвижных устройств.

В качестве защитной меры применяется соединение этих устройств с глухозаземленной нейтралью ТП (трансформатора питания) в системах TN или заземление в системах TT и IT.

Нулевой защитный и нулевой рабочий проводникиНулевой защитный и нулевой рабочий проводники

На схемах нулевой защитный проводник обозначается двумя латинскими буквами «PE». В нормальном режиме работы электросети по нулевому защитному проводнику электрический ток не течет.

На схемах буквами PE обозначаются не только нулевой защитный проводник, но и все защитные проводники сети: заземляющие проводники, защитный проводник в системе уравнивания потенциалов, отдельные жилы в кабелях, отдельно проложенные проводники и шины.

Разделение защитного и рабочего нулей электросети

В электросети с глухозаземленной нейтралью TN, нулевой рабочий проводник N и защитный проводник PN, до определенной точки в электросети объединены в один проводник и обозначается этот проводник буквами PEN.

нулевой-проводник-3нулевой-проводник-3

нулевой-проводник-1нулевой-проводник-1

Разделение PEN проводника, обычно, производится на ГЗШ-главной заземляющей шине, которая устанавливается на вводе электроустановки.

главная заземляющая шинаглавная заземляющая шина

А именно:

  • Для жилого дома ГЗШ стоит на вводном устройстве в дом;
  • Для частного дома ГЗШ монтируется во вводном устройстве (ВУ) рядом с ответвлением к дому (на столбе) или в доме в вводно-распределительном устройстве (ВРУ).

Нулевой защитный и нулевой рабочий проводники — выводы

  • Нулевой рабочий проводник (нейтральный) вместе с фазным проводником участвует в электропитании устройств. По нему течет рабочий ток;
  • Нулевой защитный проводник не участвует в электропитании и предназначен для защиты от косвенного прикосновения в сетях с глухозаземленной нейтралью.

©Ehto.ru

Другие статьи радела «УЗО»

Похожие посты:

Параметры УЗО показанные на его корпусе

Вступление

Согласно стандартам и нормативам, производства и испытаний УЗО имеют целый список параметров и характеристик. Знать их все не реально, да и незачем. Вряд ли вы пойдете покупать УЗО со справочником и будете сверять марку УЗО с таблицами, да и найти такие таблицы не так просто.

Согласно нормативам производители УЗО обязаны наносить на корпус основные параметры УЗО важные для их правильного монтажа. Посмотрим параметры УЗО нанесенные на его корпусе, на примере УЗО IBK ВД1-63.

маркировка-параметров-узо-на-корпусемаркировка-параметров-узо-на-корпусе

Основные параметры УЗО нанесенные на его корпус

Сразу замечу, что в зависимости от производителя и страны производителя количество параметров может быть меньше.

1. Обозначения клемм подключения устройства к питающей цепи. 2. Обозначения клемм подключения нагрузки к устройству. 3. Производитель прибора. В сокращенном варианте, авторский логотип. 4. Модель УЗО. Модель устройства согласно ассортименту выпускаемой продукции производителя. Чаще в сокращенном варианте. 5. Номинальный ток. Значение тока, которое УЗО может пропускать в нормальном режиме «замкнуто». 6. Номинальное напряжение: Величина напряжения, для которого рассчитано устройство. 7. Номинальная частота тока: Значение частоты тока, на которое рассчитано УЗО. Для одного УЗО может быть несколько значений частоты тока. 8. Дифференциальный ток срабатывания. Значение дифференциального тока, при котором срабатывает (размыкается) УЗО. Это значение можно назвать током не срабатывания, то есть до этой величины УЗО будет работать в режиме «замкнуто». 9. Буквенный тип УЗО, по типу дифференциального тока срабатывания. Приняты буквы: А, АС, B, S, G.

обозначение типа узообозначение типа узо

10. Схематичное обозначение типа УЗО по типу тока срабатывания; 11. Температурная характеристика УЗО. Чаще указана минимальная температура, при которой УЗО останется работоспособным; 12. Схема подключения УЗО. Сама по себе, схема не имеет особого практичного значения. Однако, важна для моментального определения типа УЗО по зависимости работоспособности УЗО от подачи на него электропитания.

Здесь остановимся.

Есть два типа УЗО по зависимости электропитания устройства. Электромеханическое УЗО не требует подачи электропитания на вводные клеммы, такое УЗО срабатывает, используя мощность дифференциального тока.

тип узоп-1тип узоп-1

электромеханическое узо-1электромеханическое узо-1

Электронные УЗО, не работают без подачи электропитания на вводные клеммы. В их схеме есть усилитель тока, который не будет работать без стороннего источника.

электронное-uzo-1электронное-uzo-1

электронное узо-1электронное узо-1

Более стабильны и надежные электромеханические УЗО.

13. Величина тока КЗ (короткого замыкания). Напоминаю, УЗО без защиты от сверхтоков не «видит» короткого замыкания и не отключает цепь при появлении сверхтоков КЗ. Но при сверхтоках выделяется большое количество тепловой энергии, так вот, это значение тока короткого замыкания указанное на корпусе устройства, и показывает какое, значение сверхтока, выдержит УЗО. 14. Осталось два значка: Росстандарта и стандарта на пожароустойчивость. Значки формальные, означают, что УЗО прошли все необходимые испытания по ГОСТ.

Предпочтительные и стандартные величины устройств защитного отключения

По стандартам, есть такие понятия, Предпочтительные и стандартные значения УЗО. Можно сказать, что это значения наиболее используемых УЗО.

  • Предпочтительные величины номинального напряжения 240 Воль и 120 Вольт;
  • Стандартные величины номинального тока 6, 10, 13, 16  10, 20, 32 Ампер;
  • Стандартные величины номинального отключающего дифференциального тока выбирают из ряда: 0,006; 0,01; 0,03 Ампер.
  • Предпочтительными величинами номинальной частоты являются 50 и 60 Гц.
  • Стандартная величина номинального условного тока КЗ 1500 Ампер(импорт до 10000 А).

Иногда производители переносят часть марркировки на боковые стенки корпуса.

маркировка парметров узо Moellerмаркировка парметров узо Moeller

И последнее напоминание

УЗО установленные в электрическую цепь, должны защищаться от короткого замыкания с помощью автоматических выключателей (предохранителей) с меньшим значением тока срабатывания. ГОСТ Р 50571.4.

маркировка параметров узо shneiderмаркировка параметров узо shneider

©Ehto.ru

Статьи по теме: УЗО

Похожие посты:

Системы заземления TN-S, TN-C, TNC-S, TT, IT

При проектировании, стандарте и эксплуатации электроустановок, промышленного и бытового электрооборудования, а также электрических сетей освещения, одним из основополагающих факторов их функциональности и электробезопасности является точно спроектированное и правильно выполненное заземление. Основные требования к системам заземления в жилом доме 1.7 Правил устройства электроустановок (ПУЭ). В зависимости от того, каким образом и с какими заземляющими конструкциями, устройства или предметами соединены соответствующие провода, приборы, корпуса, оборудование или электрические точки сети, различают естественное и искусственное заземление.

Естественными заземлителями являются любые металлические предметы, находящиеся постоянно в земле: трубы, арматура и другие токопроводящие изделия. Однако, что электрическое сопротивление растеканию в земле, электротока и электрических зарядов таких предметов плохо поддается контролю и прогнозированию, использовать естественное заземление при эксплуатации электрооборудования запрещено.В нормативных документах предусмотрено только использование искусственного заземления, при котором все подключения производятся к специально созданным для этого заземляющим устройствам.

Основным нормируемым показателем, показывающим, насколько качественно выполнено заземление, является его сопротивление. Здесь контролируется противодействие растеканию тока, поступающего в землю через данное устройство — заземлитель. Величина сопротивления заземления зависит от типа и состояния грунта.Определяющим фактором, влияющим на сопротивление заземлителя, является площадь непосредственного контакта с землей его пластин, штырей, труб и других электродов.

Виды систем искусственного заземления

Основным документом, регламентирующим использование различных систем заземления в России, является ПУЭ (пункт 1.7), соблюдайте в соответствии с принципами, классификацией и устройствами заземляющих систем, утвержденных специальным протоколом Международной электротехнической комиссии (МЭК).Сокращенные названия системного заземления приняты обозначать сочетанием первых французских английских слов: «Terre» — земля, «Neuter» — нейтраль, «Isole» — изолировать, а также а такжеских: «комбинированный» и «отдельный» — комбинированный и раздельный.

  • T — заземление.
  • N — подключение к нейтрали.
  • I — изолирование.
  • C — объединение функций, соединение функционального и защитного нулевых проводов.
  • S — раздельное использование во всей сети функционального и защитного нулевых проводов.

В приведенных ниже названиях систем искусственного заземления по первому букве можно судить о способе заземления источника электрической энергии (генератора или трансформатора), по второй — потребителя. Принято различать TN, TT и IT системы заземления. Первая из которых, в свою очередь, используется в трех различных вариантах: TN-C, TN-S, TN-C-S. Для понимания различий и способов устройств перечисленного системного заземления следует рассмотреть каждую из них более детально.

1. Системы с глухозаземлённой нейтралью (системы заземления TN)

Это обозначение систем, которое используется для подключения нулевых функциональных и защитных проводников, используется общая глухозаземленная нейтраль генератора или понижающего трансформатора. При этом все корпусные электропроводящие детали и экраны потребителей подключить к общему нулевому проводнику, соединенному с данной нейтралью. В соответствии с ГОСТ Р50571.2-94 нулевые проводники различного типа также обозначают латинскими буквами:

  • N — функциональный «ноль»;
  • ЧП — защитный «ноль»;
  • PEN — совмещение функционального и защитного нулевых проводников.

Построенная с использованием глухозаземленной нейтрали, система заземления TN демонстрирует подключение функционального «ноля» — проводника N (нейтрали) к контуру заземления, оборудованному рядом с трансформаторной подстанцией. Очевидно, что в данной схеме заземления нейтрали посредством специального компенсаторного устройства — дугогасящего реактора не используется. На практике применяются три подвида системы TN: TN-C, TN-S, TN-C-S, которые отличаются друг от друга способами подключения нулевых проводников «N» и «PE».

Система заземления TN-C

Как следует из буквенного обозначения, для системы TN-C характерно объединение функционального и защитного нулевых проводников. Классической системой TN-C является традиционная четырехпроводная схема электроснабжения с тремя фазными и одним нулевым проводом. Основная шина заземления в данном случае — глухозаземленная нейтраль, с дополнительными нулевыми проводами необходимо соединить все открытые детали, корпуса и металлические части, способные проводить электрический ток..

Данная система имеет несколько существенных недостатков, из которых — утеря защитных функций в случае обрыва или отгорания нулевого провода. При этом на неизолированных поверхностях корпусов приборов и оборудования появится опасное для жизни напряжение. Так как отдельный защитный заземляющий проводник PE в данной системе не используется, все подключенные розетки земли не имеют. Поэтому используемое электрооборудование приходится занулять — соединять корпусные детали с нулевым проводом..

Если при таком подключении фазный провод коснется корпуса, из-за короткого замыкания сработает автоматический предохранитель, и опасность выйдет из строя электрическим током людей или возгорания искрящего оборудования будет устранена быстрым аварийным отключением. Важным ограничением использования дополнительных контуров уравнивания потенциалов в ванных комнатах является запрет использования дополнительных контуров уравнивания потенциалов в ванных комнатах.

В настоящее время система заземления сохранилась в домах, относящихся к старому жилому фонду, а также в сети уличного освещения, где степень риска минимальна.

Система TN-S

Более прогрессивная и безопасная по сравнению с системой TN-C с разделением рабочими и защитными нолями TN-S была внедрена в 30-е годы прошлого века. При высоком уровне электробезопасности людей и оборудования это решение имеет один, но достаточно очень существенный недостаток — высокая стоимость.Так как разделение рабочего (N) и защитного (PE) ноля реализовано сразу на подстанции, подача трехфазного напряжения производится по пяти проводам, однофазного — по трем. Для подключения обоих нулевых проводников на стороне источника используется глухозаземленная нейтраль генератора или трансформатора.

В ГОСТ Р50571 и обновленной редакции ПУЭ содержит предписание об устройстве на всех ответственных объектах, а также строящихся и капитально ремонтируемых зданий энергоснабжения на основе системы TN-S, обеспечивающей высокий уровень электробезопасности.К сожалению, широкому распространению и внедрению системы TN-S препятствует уровень затрат и ориентированность российской энергетики на четырехпроводные схемы трехфазного электроснабжения.

Система TN-C-S

С целью удешевления оптимальной по безопасности, но финансово емкой системы TN-S с разделенными нулевыми проводниками N и PE, было создано решение, позволяющее использовать ее преимущества с меньшим бюджетом, незначительно превышающим расходы на энергоснабжение по системе TN-C.Суть данного подключения состоит в том, что с подстанцией осуществляется подача электричества с использованием комбинированного нуля «PEN», подключенного к глухозаземленной нейтрали. Который при входе в здание разветвляется на «PE» — ноль защитный, и еще один проводник, исполняющий на стороне потребителя функцию рабочего ноля «N».

Данная система имеет существенный недостаток — в случае повреждения или отгорания провода PEN на участке подстанция — здание, на проводнике PE, а, следовательно, и всех связанных с ним корпусных деталей электроприборов, появится опасное напряжение.Поэтому при использовании системы TN-C-S, которая распространена, нормативные документы требуют специальных мер защиты проводника PEN от повреждений.

Система заземления TT ​​

При использовании здесь небезопасной системы TN-C-S трудно обеспечить надлежащую проводку комбинированной земли PEN. Здесь все чаще используется TT, которая предполагает «глухое» заземление нейтрали источника, передачу трехфазного напряжения по четырем проводам.Четвертый является функциональным нолем «N». На стороне потребителя выполняется местный, как правило, модульно-штыревой заземлитель, к которому подключаются все проводники защитной земли PE, связанные с корпусными деталями.

Совсем недавно разрешенная к использованию на территории РФ. Система быстро распространилась в российской глубинке для энергоснабжения частных домовладений. В городской местности TT часто используется при электрификации временной временной торговли и оказания услуг.При таком способе заземления устройства обязательным условием является наличие приборов защитного отключения, а также выполнение технических мер грозозащиты.

2. Системы с изолированной нейтралью

Во всех описанных системах нейтраль с землей, что делает их достаточно надежными, но не лишенными ряда существенных недостатков. Используется не связанная с землей изолированная нейтраль, либо заземленная при помощи специальных приборов и устройств с большим сопротивлением.Например, как в системе IT. Такие способы подключения часто используются в медицинских учреждениях для электропитания оборудования жизнеобеспечения, на предприятиях нефтепереработки и энергетики, научных лабораторий с чувствительными приборами, и других ответственных объектов объектов.

Система IT

Классическая система, основной признаком которой является изолированной нейтраль источника — «I», а также наличие на стороне потребителя контура защитного заземления — «Т».Напряжение от источника к потребителю передается по минимально возможному количеству проводов, все токопроводящие детали корпусов оборудования потребителя должны быть надежно подключены к заземлителю. Нулевой функциональный проводник На участке источник — потребитель в системе жилой недвижимости IT отсутствует.

Надежное заземление — гарантия безопасности

Все устройства подключенного заземления предназначены для обеспечения надежного и безопасного функционирования электрических приборов и оборудования, устройств, подключенных к стороне потребителя.При проектировании и устройстве систем энергоснабжения, необъемлемыми элементами являются функциональные, так и защитные заземления, которые должны быть уменьшены до минимума, возможность установки токопроводящих корпусах бытовых приборов и промышленного оборудования напряжения, опасного для жизни и здоровья людей.

Система заземления должна либо снять опасный потенциал с поверхности предмета, либо обеспечить срабатывание соответствующих защитных устройств с минимальным запаздыванием.В каждом таком случае ценой технического совершенства, или наоборот, недостаточного совершенства используемой системы заземления, может быть самое ценное — жизнь человека.


Смотрите также :

Смотрите также:

.

Системы защитного заземления TNC, TNCS, TNS, TT, IT

Стандарт Стандарт ПУЭ 1.7, EN60950, IEC60364
Схемы электроснабжения нагрузки TNC, TNCS, TNS, TT, IT

TNC — Нейтраль и PE («земля») объединены вместе везде в системе в единую щину PEN.
Нейтраль и PE (защищенный заземляющий провод) объединены во всей системе.

TNS — Нейтраль соединена с землёй трансформатора, но не соединена с землёй (PE) где-нибудь ещё в системе.PE приходит на объект от трансформатора отдельно и может быть соединена с местным землёй.

Нейтраль заземлена на трансформаторе, но не связана с землей или PE где-либо еще. PE подается на площадку от трансформатора и крепится к земле.

TNCS — Общая в начале шина PEN затем разъеделяется на 2 отдельных проводника: N (нейтраль) и PE (защищённую шину земли). Стандарт США — разновидность данного. Нейтраль заземлена на трансформаторе.

TNCS разделяет объединенный PEN на отдельную нейтраль и PE при входе в службу (практика США является разновидностью этого). Нейтраль заземлена на трансформаторе.

TT — Нейтраль заземлена на трансформаторе. Местная Земля — ​​PE (объект-потребитель) не связана с нейтралью. Между землёй трансформатора и землёй потребителя (PE) соединений нет.

Нейтраль заземлена на трансформаторе. PE возникает на месте, но не связан с нейтралью.Между защитным заземлением и землей трансформатора нет взаимного соединения.

IT — Нейтраль трансформатора не заземлена (или заземлена через сопротивление с высоким импедансом).

Трансформатор не заземлен (или заземлен через высокое сопротивление). PE возникает на месте, но не соединен с проводником обслуживания; ни один провод в этой системе не обозначен как «нейтральный» (стандартная система IT).

Разновидности IT системы:

  • А) проводник «Нейтраль» отсутствует в системе (стандартная счистема ИТ).
  • Б) проводник «Н / Нейтраль» есть в системе.

Нейтраль на потребителе также не заземлена (или заземлена через сопротивление с высоким импедансом).

Для обоих случаев возможны разновидности:

  • I) Местная Земля — ​​ЧП (объект-потребитель) отсутствует. Потребитель использует PE от трансформатора.
  • II) Местная Земля — ​​PE (объект-потребитель) есть. Потребитель может использовать местную Землю или Землю трансформатора.Эти Земли могут быть как соединены так и не соединены.

Главное требование системы IT — незаземлённая или импедансно-заземлённая нейтраль трансформатора.

Термины / сокращения:

  • T — Terra / Земля (лат. Terra, франц. Terre)
  • N — Нейтраль / Нейтраль
  • C — Комбинированный / Совмещённый
  • S — Отдельный / Отдельный
  • I — Изолированный / Изолированный (франц.terre isolee)
  • PE — Защищенный проводник земли / Защищённая шина Земли
  • PEN — Protected Earth + нейтральный проводник / единая шина объединяющая Нейтраль (N) и Землю (PE)

Различные стандарты СИСТЕМ ЗАЗЕМЛЕНИЯ

Трём системам заземления официальный статус стандарта (IEC 60364) который подразделяется на большое число национальных стандартов.

Системы TN

Основные принципы TN:

  • Нейтраль трансформатора заземлена, поэтому нагрузок (подключенные к заземлению PE или PEN трансформатора) оказываются гальванически соединены с нейтралью.
  • Нагрузка не имеет местного заземления.

Существующие варианты схемы TN:

  • TNC — «Земля» и нейтраль объединены в 1 проводнике (PEN) (C = Combined).
  • TNS — «Земля» и нейтраль разъединены (PE и N) (S = Отдельно).
  • TNCS = TNC + TNS Объединенные вначале «Земля» и нейтраль затем разъединяются (CS = Объединенные, затем Отдельные). То-есть TNC преобразуется в TNS.

Система TNS не может существовать перед системой TNC.

Система TNC (TN-C). Нарушение изоляции в системе TNC

Общие замечания:

В системе TNC, с защитными токовыми автоматами, нарушение опасно. Разрушение изоляции, то есть замыкание фазного проводника на «Землю» вызывает рост тока замыкания до крайних значений, ограниченного защитными автоматами в цепи.

Такая защита во многих случаях не является полной, например, если изоляция разрушена не полностью и ток фаза «Земля» недостаточна для срабатывания защитного автомата.Однако этого может привести к возникновению пожара или для опасного отключения током человека, а защитный автомат не сработает (не обеспечит защитное отключение аварийного участка цепи).

Cистема имеет самый низкий уровень безопасности так как УЗО корректно установить невозможно.

Несмотря на то, что система отопления в России в т.ч. на госпредприятиях. В России в настоящий момент вытесняется системой TNS.

Подробные замечания:

Рис.1. Нарушение изоляции в системе TNC

Возможные варианты:

  • Человек коснулся фазного проводника и «Земли» одновременно.
  • При затоплении (пожаре и др.) Изоляция провода разрушена и фаза замкнулась на корпусе (на «Землю»).
  • Изоляция старого провода разрушена и фаза замкнулась на корпус (на «Землю»).
Система TNS (TN-S). Нарушение изоляции в системе TNS

Общие замечания:

В системе TNS, с защитными токовыми автоматами, нарушение опасно.Разрушение изоляции, то есть замыкание фазного проводника на «Землю» вызывает рост тока замыкания до крайних значений, ограниченного защитными автоматами в цепи.

Такая защита во многих случаях недостаточна для защиты самой нагрузки, но не является полной, например, если изоляция разрушена не полностью и ток фаза- «Земля» недостаточен для срабатывания защитного автомата. Тем не менее, этого тока может быть достаточно для возникновения пожара или для опасного отключения током человека, а защитный автомат этого не сработает (не обеспечит защитное отключение аварийного участка цепи).

Максимальная степень безопасности может быть достигнута путём установки УЗО. Система является самой распространённой в мире. В России введена как стандарт.

Степень безопасности TNS выше, чем TNC по следующим причинам (П1, П2):

  • П1) защитные автоматы в TNS при срабатывании размыкать цепь полностью (как нейтраль так и фазы), защитная шина «Земли» PE продолжает при этом выполнять свои функции. В то время, как и в системе TNC при аварии могут быть разомкнуты только фазы.
  • П2) Защитный проводник «Земля» PE выполняет только свои функции, то есть заземление. В то время как в системе TNC защитный проводник сразу две: заземление и нейтрали, что может привести к проблемам, например: нагрузка (ПК) будет «зависать» от помех из-за некачественного заземления, так как функции на заземляющем проводнике наводки наводки ( помехи), вызванные текущим по нему току нагрузки.

Подробные замечания:

Рис.2. Нарушение изоляции в системе TNS

Возможные варианты:

  • Человек коснулся фазного проводника и Земли одновременно.
  • При затоплении (пожаре и др.) Изоляция провода разрушена и фаза замкнулась на корпусе («Землю»).
  • Изоляция старого провода разрушена и фаза замкнулась на корпус («Землю»).
Система TNCS (TN-C-S). Нарушение изоляции в системе TNCS

Общие замечания:

В системе TNS, с защитными токовыми автоматами, нарушение опасно.Разрушение изоляции, то есть замыкание фазного проводника на «Землю» вызывает рост тока замыкания до крайних значений, ограниченного защитными автоматами в цепи.

Такая защита во многих случаях недостаточна для защиты самой нагрузки, но не является полной, например, если изоляция разрушена не полностью и ток фаза- «Земля» недостаточен для срабатывания защитного автомата. Тем не менее, этого тока может быть достаточно для возникновения пожара или для опасного отключения током человека, а защитный автомат при этом не сработает (не обеспечит защитное отключение аварийного участка цепи).

Система защиты имеет средний уровень безопасности, так как установив УЗО можно достичь достаточно высокой степени безопасности, но при этом остаётся проблема некачественного заземления из-за использования объединённой шины PEN.

Используется достаточно часто в России. В России в настоящий момент вытесняется системой TNS.

Подробные замечания:

Рис.3. Нарушение изоляции в системе TNCS

Возможные варианты:

  • Человек коснулся фазного проводника и Земли одновременно.
  • При затоплении (пожаре и др.) Изоляция провода разрушена и фаза замкнулась на корпусе («Землю»).
  • Изоляция старого провода разрушена и фаза замкнулась на корпус («Землю»).

Система TT

Основные принципы TT:

  • Нейтраль трансформатора заземлена.
  • «Земля» / корпус нагрузки также заземлены.
  • «Земля» трансформатора не связан кабелем с землёй нагрузки / потребителя (PE).
Нарушение изоляции в системе ТТ

Общие замечания:

Степень безопасности зависит от сопротивления между «Землей» трансформатора ТП и «Землей» потребителя. Если это сопротивление низкое, такая же как в TNS с УЗО. Если это сопротивление, высокое значение системы снижается, так как УЗО может не сработать.

Установка УЗО является общепринятой в системе TT. Данная система в России используется редко.

Подробные замечания:

Рис.4. Нарушение изоляции в системе ТТ

Возможные варианты:

  • Человек коснулся фазного проводника и Земли одновременно.
  • При затоплении (пожаре и др.) Изоляция провода разрушена и фаза замкнулась на корпусе («Землю»).
  • Изоляция старого провода разрушена и фаза замкнулась на корпус («Землю»).

Показана стандартная схема ТТ с УЗО.Ток пробоя (нарушение) изоляции фазных проводов и нейтрального провода ограничен сопротивлением (импедансом) участка между «Землей» трансформатора и «Землей» потребителя.

Защита обеспечена устройством защитного отключения (УЗО): поврежденный блок / участок отключается УЗО как только порог тока ΔI УЗО помещённого перед данным блоком / участком будет превышен током утечки / пробоя изоляции (на землю) IL:

IL> ΔI

IL = UL / RL — ток пробоя / утечки / утечки

Условие надёжной работы УЗО:

R (CD) << 220 В / ΔI; для УЗО с ΔI = 30мА: R (CD) << 7кОм.

R (AB) = RL — сопротивление повреждённого участка (между точкой токоведущего проводника из которого произошла утечка на «землю» и «Землей»).

U (AB) = UL — разность потенциалов между точкой токоведущего проводника (из которого произошла утечка на «землю») и «Землей» (напряжение пробоя).

R (CD) — сопротивление между «Землей» трансформатора ТП и «Землей» потребителя.

Если R (CD) мало (в норме), то при нарушении изоляции срабатывание УЗО будет обеспечивать безопасное отключение аварийного участка и свидетельствовать, что это место подлежит ремонту.

Если R (CD) велико (не в норме) и УЗО работать не будет, то первое нарушение изоляции не приведёт к удару током, но отсутствие сработавшего УЗО не позволит аварии и сделать своевременный ремонт, а второй пробой приведёт к аварии.

Система IT (Изолированная нейтраль)

Основные принципы IT:

  • Нейтраль трансформатора НЕ заземлена. Но не заземлена только теоретически. Фактически она заземлена посредством паразитных ёмкостей кабелей и / или принудительно через сопротивление около 1.5 кОм («импедансно-заземлённая нейтраль»).
  • Земля / корпус нагрузки заземлены.
Нарушение изоляции в системе ИТ

Подробные замечания:

Рис.5а. Одиночный пробой / нарушение изоляции в системе IT

Рис.5б. Двойной пробой / нарушение изоляции в системе IT

Если происходит первое нарушение изоляции на фазном проводнике , происходит нарушение и протекает небольшой ток (между токоведущим проводником и «Землей»), обусловленный паразитными емкостями кабеля (и / или дополнительным усилительным сопротивлением Z N Нейтраль- «Земля» ») (См.рис. 5а). Контактная разность потенциалов (напряжение пробоя) U (A1B1) = U L1 при этом достигает всего нескольких вольт и не опасно (ток также не опасен):

I L1 = U Ф / R линии

U L1 = R L1 * I L1

Первое нарушение изоляции не опасно в IT! То есть человек безопасно может коснуться одновременно фазы и «Земли» в IT.

R L1 — сопротивление повреждённого участка (между точкой токоведущего проводника из произошла утечка на землю и «Землей».

R линии — сопротивление линии, включающее паразитные емкостные сопротивления кабеля R П и принудительное высокое разрядное сопротивление Нейтраль- «Земля» Z N (если установлено).

U L1 — разность потенциалов между точкой токоведущего проводника (из произошла утечка на землю) и «Землей» (пробоя).

U ф — фазное напряжение трансформатора

I L1 — ток пробоя / утечки / утечки.

Если происходит второе нарушение изоляции на другом фазном проводнике, в то время как первое нарушение ещё не устранено (см. Рис. 5б), контактная разность потенциалов второго места нарушения (пробоя) равна U L2 = √3 * U Ф -U L1 может быть велика и опасна.

При малых сопротивлениях первого и второго поврежденных участков (R L1 , R L2 ) значительный утечки может протекать по проводнику, соединяющему «земли» первого и второго повреждённого участков (корпуса нагрузок):

I L1 = I L2 = √3 * U Ф / (R L1 + R L2 )

Второе нарушение изоляции опасно в IT!

Корпуса нагрузок приобретают потенциалы, обусловленные этим током.Таким образом, если КЗ на 1 участке не опасно то последующее КЗ на 2 участке так же опасно, как и в системах TN. Поэтому необходимо УЗО.

Обозначения:

  • U L1 (U L2 ) — напряжение пробоя первого (второго) повреждённого участка.
  • U Ф — фазное напряжение трансформатора.
  • I L1 (I L2 ) — ток пробоя / утечки 1 участка (2 участка).
  • R L1 (R L2 ) — сопротивление 1 (2) повреждённого участка.

Совместное использование автоматов токовой защиты и УЗО в усиленных защитах. В этом случае по безопасности система IT сравнима с TNS с УЗО, то есть срабатывание УЗО (аварийный участок отключается) свидетельствует о том, что произошло первое нарушение изоляции и позволяет его своевременно устранить.

Для надёжного срабатывания УЗО требуется установка принудительного сопротивления Z N (Нейтраль- «Земля») обычно не более 1500 Ом.Без этого сопротивления невозможно произвести (и своевременно устранить), если в других устройствах нет (кроме УЗО и токовых автоматов — см. Ниже).

Кроме этих возможностей, только система IT позволяет ещё сильнее повысить безопасность.

Дополнительная степень защиты защищённости можно установкой ПМИ / PIM (постоянное наблюдение за изоляцией / датчиком изоляции). ПМИ представляет собой высокоомный амперметр (или вольтметр, подключенный параллельно Z N ), включающий так же как и Z N между Нейтралью и «Землей» ТП.

ПМИ позволяет:

  • Точно фиксировать серьёзные пробои фаза — «Земля», вплоть до КЗ.
  • Постоянно фиксировать состояние изоляции проводников в системе (медленное старение и ухудшение параметров изоляционного материала).

В отличие от остальных систем (TN, TT), это позволяет нарушить первое нарушение изоляции, но не отключить аварийный участок (так как в IT первое нарушение изоляции не опасно), а довести работу на нём до, и только после ее завершения произвести штатное отключение и ремонт изоляции.Это особенно важно, например, для больниц и др. мест где важно не настолько оперативно автоматически «отрубить» аварийную цепь, сколько заранее устранять все неисправности и исключить возможности внезапного неконтролируемого автоматического отключения цепей. Это система введена во многих странах, например, водой, землёй и др., Например, корабли, метро и др. мест требующих повышенной безопасности.

Таким образом можно безопасно обнаруживать и устранять отключение всех проводников в системе.

В IT системе установка токовых автоматов обязательна. УЗО устанавливаются в зависимости от нагрузки и применяемых Z N и ПМИ.

Кроме этого, сами защитные цепи ПМИ защищаются, например, на ТП с помощью разрядника или блока защиты от напряжения (ограничитель перенапряжения, ограничитель перенапряжения).

Обозначения:

  • SCPD (Устройство защиты от короткого замыкания) — автомат защиты от короткого замыкания, токовый автомат, автоматический выключатель с термомагнитным расцепителем.Автомат размыкает цепи, если ток в цепи превысил паспортный номинальный ток автомата.
  • УЗО (Устройства дифференциального тока) — УЗО, устройство защитного отключения, устройство разностного тока или более точное название: устройство защитного отключения, управляемое дифференциальным (остаточным) током, сокращенно УЗО − Д) или выключатель дифференциального тока (ВДТ) или защитно- отключающее устройство (ЗОУ) — механический коммутационный аппарат, который при достижении (превышении) дифференциальным током заданного значения размыкание цепи нагрузки.
  • PIM (монитор постоянной изоляции) — ПМИ постоянный мониторинг изоляции / датчик изоляции.
  • Z N Дополнительное сопротивление — дополнительное сопротивление Нейтраль-Земля на ТП.
  • Ограничитель перенапряжения (ограничитель перенапряжения, ограничитель перенапряжения) — разрядник или блок от выбросов напряжения или блок защиты от перенапряжения.

Внимание!

Все вышеприведённая информация относится к защите пользователя, имеющему доступ только к изолированным проводам и электрооборудованию в защитном корпусе.

Пожалуйста, помните, что более глубокое проникновение в электрооборудование может быть опасно для жизни, даже при самых безопасных заземления, при использовании автоматов, УЗО, датчиков изоляции и т.п.

Примеры тяжёлой опасности для человека:

Пример 1

Установлены: Любая система заземления. Любые устройства защиты в цепях переменного тока. ИБП 100 кВА — батареи в батарейном кабинете всегда под напряжением (в том числе.при отключенном ИБП) и опасны.
ВНИМАНИЕ! ВЫСОКОЕ ПОСТОЯННОЕ НАПРЯЖЕНИЕ!

Пример 2

Система IT. Есть автомат. Есть УЗО. Есть датчик изоляции. Есть изолированный коврик. Имеется любое устройство, например, электромотор, стабилизатор, ИБП 100 кВА. Касание (одновременное) переключение фаз и нейтрали или двух фаз на клеммной панели (или соответствующих проводов с нарушенной изоляцией) этого устройства опасно
ВНИМАНИЕ! ВЫСОКОЕ ПЕРЕМЕННОЕ НАПРЯЖЕНИЕ!

(УЗО не сработает, если человек находится на изолирующем коврике!)

Пример 3

Так же поражение человека может случиться вообще без касания им проводников под током, например гаечный ключ урон на клеммы сборки аккумуляторов 100 А · ч может сгореть как предохранитель с опасной световой вспышкой и поражающая окружающее пространство брызгами металла.

Внимание!

Для обеспечения полной безопасности необходимо ещё 4 дополнительных условия:

  1. Разработчик оборудования принял меры по обеспечению высокого уровня безопасности оборудования и его обслуживания.
  2. Инженер, работающий с оборудованием, принял меры по обеспечению высокого уровня безопасности проводимых работ.
  3. Окружающая среда в норме, например, температура, влажность в норме и нет опасности прорыва соседней водопроводной трубы и т.д.
  4. Часы наработки оборудования не превысили опасный предел (вопрос времени).

.

Нулевой защитный и нулевой рабочий проводники

Нулевой защитный и нулевой рабочий проводники различаются по назначению, способу подключения и функциональной нагрузки в электрических сетях.

Нулевой рабочий проводник

Нулевой рабочий проводник это проводник сети, подключенный к глухозаземленной нейтрали трансформатора трехфазного или нулевому выводу трансформатора однофазного. По нулевому рабочему проводнику протекает нагрузочный ток. На схеме нулевой рабочий проводник, обозначается буквой «N».

Нулевой защитный и нулевой рабочий проводники Нулевой защитный и нулевой рабочий проводники

Нулевой защитный проводник

В системах TN-C, TN-S, TN-CS, где нулевой трансформатора глухозаземлен, нулевой защитный проводник соединяет нулевую точку питающего трансформатора и токопроводящие части электроприемников, которые могут оказаться под напряжением в аварийной ситуации (косвенное прикосновение). Нулевой защитный проводник несет, по названию понятно, защитные функции. Защитный проводник участвует в защите, как самая электросети, так и человека.

Нулевой защитный проводник это один из видов защитных проводников электросети и относится он к электросетям до 1кВ с глухозаземленной нейтралью трансформатора или генератора.

Согласно ПУЭ 1.7.76. запрещать защиту от косвенного прикосновения следующие элементы электросети:

  • Металлические корпуса светильников, электромашин, трансформаторов;
  • Металлические корпуса распределительных щитов, квартирные и этажные щитки;
  • Металлические корпуса распределительных устройств, лотков, муфт кабеля и металлической конструкции с электрооборудованием;
  • Металлические корпуса переносных и передвижных устройств.

В качестве защитной меры устройства этих устройств с глухозаземленной нейтралью ТП (трансформатора питания) в системах TN или заземлении в системах TT и IT.

Нулевой защитный и нулевой рабочий проводники Нулевой защитный и нулевой рабочий проводники

На схемах нулевой защитный проводник обозначается двумя латинскими буквами «PE». В нормальном режиме работы электросети по нулевому защитному проводнику электрический ток не течет.

На схемах буквами PE обозначаются не только нулевой защитный проводник, но и все защитные проводники сети: заземляющие проводники, защитный проводник в системе уравнивания потенциалов, отдельные жилы в кабелях, отдельно проложенные проводники и шины.

Разделение защитного и рабочего нулей электросети

В электросети с глухозаземленной нейтралью TN, нулевой рабочий проводник N и защитный проводник PN, до определенной точки в электросети объединены в один проводник и обозначается этим проводником буквами PEN.

нулевой-проводник-3 нулевой-проводник-3

нулевой-проводник-1 нулевой-проводник-1

Разделение проводника PEN, обычно производится на ГЗШ-заземляющей шине, которая устанавливается на вводе электроустановки.

главная заземляющая шина главная заземляющая шина

А именно:

  • Для жилого дома ГЗШ стоит на вводном устройстве в дом;
  • Для частного дома ГЗШ монтируется во вводном устройстве (ВУ) рядом с ответвлением к дому (на столбе) или в доме в вводно-распределительном устройстве (ВРУ).

Нулевой защитный и нулевой рабочий проводники — выводы

  • Нулевой рабочий проводник (нейтральный) вместе с фазным проводником участвует в электропитании устройств. По нему течет рабочий ток;
  • Нулевой защитный проводник не участвует в системе электропитания и защиты от косвенного прикосновения в системах с глухозаземленной нейтралью.

© Ehto.ru

Другие статьи радела «УЗО»

Похожие посты:

.

Параметры УЗО показанные на его корпусе

Вступление

Согласно стандартам и нормативам, производства и испытаний УЗО имеют целый список параметров и характеристик. Знать их все не реально, да и незачем. Вряд ли вы пойдете покупать УЗО со справочником и будете сверять марку УЗО с таблицами, да и найти такие таблицы не так просто.

Согласно нормативам производителей УЗО должны наносить на корпус основные параметры УЗО важные для их правильного монтажа. Посмотрим параметры УЗО нанесенные на его корпус, на примере УЗО ИБК ВД1-63.

маркировка-параметров-узо-на-корпусе маркировка-параметров-узо-на-корпусе

Основные параметры УЗО нанесенные на его корпус

Сразу замечу, что в зависимости от производителя и страны производителя количество параметров может быть меньше.

1. Обозначения клемм подключения устройства к питающей цепи. 2. Обозначения клемм питания к устройству. 3. Производитель прибора . В сокращенном варианте, авторский логотип. 4. Модель УЗО . Модель устройства согласно ассортименту выпускаемой продукции производителя.Чаще в сокращенном варианте. 5. Номинальный ток . Значение тока, которое УЗО может пропускать в нормальном режиме «замкнуто». 6. Номинальное напряжение : Величина напряжения, для которого рассчитано устройство. 7. Номинальная частота тока : Значение частоты тока, на которое рассчитано УЗО. Для одного УЗО может быть несколько значений частоты тока. 8. Дифференциальный ток срабатывания . Значение дифференциального тока, который при срабатывает (размыкается) УЗО.Это значение можно назвать током не срабатывания, то есть до этой величины УЗО будет работать в режиме «замкнуто». 9. Буквенный тип УЗО, по типу дифференциального тока срабатывания. Приняты буквы: А, АС, B, S, G.

обозначение типа узо обозначение типа узо

10. Схематичное обозначение типа УЗО по типу тока срабатывания; 11. Температурная характеристика УЗО. Чаще указана минимальная температура, при которой УЗО останется работоспособным; 12. Схема подключения УЗО. Сама по себе, схема не имеет особого практичного значения.Однако важна для моментального определения типа УЗО по зависимости работоспособности УЗО от подачи на него электропитания.

Здесь остановимся.

Есть два типа УЗО по зависимости электропитания устройства. Электромеханическое УЗО не требует подачи электропитания на вводные клеммы, такое УЗО срабатывает, используя мощность дифференциального тока.

тип узоп-1 тип узоп-1

электромеханическое узо-1 электромеханическое узо-1

Электронные УЗО , не работают без подачи электропитания на вводные клеммы.В их схеме есть усилитель тока, который не будет работать без стороннего источника.

электронное-uzo-1 электронное-uzo-1

электронное узо-1 электронное узо-1

Более стабильные и надежные электромеханические УЗО.

13. Величина тока КЗ (короткого замыкания). Напоминаю, УЗО без защиты от сверхтоков не «видит» короткого замыкания и не отключает цепь при появлении сверхтоков КЗ. При сверхтоках выделяется большое количество тепловой энергии, так вот, это значение тока короткого замыкания на корпусе устройства, и показывает какое, значение сверхтока, выдержит УЗО.14. Осталось два значка: Росстандарта и стандарт на пожароустойчивость. Значки формальные, означают, что УЗО прошли все необходимые испытания по ГОСТ.

Предпочтительные и стандартные величины устройств защитного отключения

По стандартам, есть такие понятия, Предпочтительные и стандартные значения УЗО. Можно сказать, что это значения наиболее часто используемых УЗО.

  • Предпочтительные величины номинального напряжения 240 Воль и 120 Вольт;
  • Стандартные величины номинального тока 6, 10, 13, 16 10, 20, 32 Ампер;
  • Стандартные величины номинального отключающего дифференциального тока выбирают из ряда: 0,006; 0,01; 0,03 Ампер.
  • Предпочтительными величинами номинальной частоты частоты 50 и 60 Гц.
  • Стандартная величина номинального условного тока КЗ 1500 Ампер (импорт до 10000 А).

Иногда производители переносят часть марркировки на боковые стенки корпуса.

маркировка парметров узо Moeller маркировка парметров узо Moeller

И последнее напоминание

УЗО установленные в электрическую цепь, должны защищаться от короткого замыкания с помощью автоматических выключателей (предохранителей) с меньшим значением тока срабатывания.ГОСТ Р 50571.4.

маркировка параметров узо shneider маркировка параметров узо shneider

© Ehto.ru

Статьи по теме: УЗО

Похожие посты:

.

Отправить ответ

avatar
  Подписаться  
Уведомление о