Стабилитрон чем заменить: Чем заменить стабилитрон. — Форум про радио

Содержание

Стабилитрон. Особенности практического применения. — Радиомастер инфо

Рассказано о назначении и применении стабилитронов, как проверить их исправность и основные параметры, чем и как можно заменить.

Сердцем практически любого стабилизатора напряжения является стабилитрон. Его основная функция поддерживать постоянное напряжение на выходе при изменении напряжения на входе. Информации на эту тему очень много. Я постараюсь ее систематизировать и подать максимально коротко, только то, что нужно для практики.

На схемах обозначаются так:

Выглядят, в основном, вот так:

Стабилитрон — специально изготовленный диод с особой воль-амперной характеристикой. Показать ее и пояснить нужно обязательно, для понимания принципа работы. Вот как она выглядит для обычного стабилитрона, например, Д814:

Когда на анод подают плюс, а на катод минус, то стабилитрон ведет себя как обычный диод. На рисунке прямая ветвь. При возрастании напряжения ток растет. Когда плюс подают на катод, а минус на анод, т.е. включают в обратном направлении, то характеристика стабилитрона, зависимость тока через него от приложенного напряжения, тоже кардинально меняется. Это хорошо видно по форме обратной ветви характеристики. Когда напряжение на стабилитроне достигает напряжения пробоя, cтабилитрон пробивается, но не перегорает, так как ток через него ограничен резистором. Этот резистор называется балластным.  Если не будет этого резистора, или его номинал подобран не правильно, то стабилитрон выйдет из строя. Величина сопротивления этого резистора подбирается таким образом, чтобы в диапазоне изменения входных напряжений ток через стабилитрон не выходил за допустимые для данного стабилитрона пределы Iст min Iст max. При этом напряжение на стабилитроне остается постоянным и равно напряжению стабилизации. Его величина для каждого типа стабилитрона своя. У двуханодных стабилитронов прямая ветвь такая же как и обратная только расположена справа вверху. В схемах двуханодный стабилитрон можно включать независимо от полярности входного напряжения. Это удобно для ограничения переменного напряжения по амплитуде.

Типовая схема включения стабилитрона на конкретном примере:

Параметры стабилитрона КС182 указаны в справочнике:

Напряжение стабилизации стабилитрона 8,2В. При этом ток стабилизации может изменяться от 3мА до 17мА.

Как правило, в расчетах рекомендуют брать минимальное напряжение на входе в 1,5 раза выше напряжения стабилизации. Получаем 12,3 В. Максимальное примем исходя из допустимого разброса напряжения сети 20%. Получаем 14,73 В. Номинал резистора по закону Ома можно посчитать вручную, но в интернете много онлайн калькуляторов для решения таких задач, например, вот этот:

При таких заданных параметрах получим ток в нагрузке от 0 до 12 мА, что соответствует максимальной мощности 0,1 Вт.

Сопротивление балластного резистора 340 Ом, его мощность 0,125 Вт.

Мощность стабилитрона 0,156 Вт.

Мощность, рассеиваемая на резисторе и стабилитроне, составляет в сумме 0,28 Вт. При этом мощность в нагрузке 0,1 Вт. КПД получается 36%. При больших мощностях это не рационально.

Теперь основные моменты из практики.

  1. Как проверить исправность стабилитрона? Обычный стабилитрон проверяется как диод, т.е. прозванивается мультиметром и должен обладать односторонне проводимостью. Другое дело, стабилитрон двухстронний (или двуханодный) или стабилитрон с защитным диодом. Их прозвонить как диод не удастся. Они показывают обрыв в обе стороны. Проверяются только по методике, указанной в следующем пункте.
  2. Проверка напряжения стабилизации. Перед проверкой нужно определиться с мощностью стабилитрона. Это можно сделать по внешнему виду. Если стабилитрон малых размеров и выводы тонкие, то это малая мощность с током стабилизации от 3 до 20 мА. Если корпус чуть больше и выводы толще, то это средняя мощность и ток стабилизации до 90 мА. Ну а мощный стабилитрон имеет большие размеры и возможность установки на радиатор. У него ток стабилизации до ампера и выше.

Есть еще одна особенность. Чем выше напряжение стабилизации стабилитрона, тем меньше ток стабилизации, так как определяющей в этом случае является рассеиваемая стабилитроном мощность. Так что для стабилитронов малой и средней мощности при проверке достаточно тока 10 мА, для большой мощности 20-30мА. Поэтому для большинства проверок стабилитронов с напряжением стабилизации до 30В  берем резистор 1-2 кОм и через него подключаем катод стабилитрона к плюсу регулируемого блока питания, анод соответственно к минусу.

Параллельно стабилитрону подключаем вольтметр. От нуля плавно повышаем напряжение и следим за показаниями вольтметра. Как только они перестали расти при увеличении напряжения блока питания снимаем показания вольтметра. Если напряжение перестало расти при значениях около 1В, значит перепутан анод и катод стабилитрона. Нужно их поменять местами и повторить процедуру. Значение напряжения, при котором прекратились увеличиваться показания вольтметра, и есть напряжение стабилизации. У двуханодных оно будет одинаковым при смене полярности подключения. У стабилитрона с диодом напряжение стабилизации при неправильном включении будет достаточно высоким, на практике выше напряжения блока питания. Теоретически оно будет равно обратному напряжению диода. Можно применять для проверки и нерегулируемый блок питания напряжением выше предполагаемого напряжения стабилизации стабилитрона. При подключении, как на схеме, измеренное напряжение на стабилитроне будет равно напряжению стабилизации стабилитрона. Если показания вольтметра равны напряжению блока питания, значит стабилитрон включен наоборот или имеет напряжение стабилизации выше напряжения блока питания.

  1. В некоторых случаях очень важным параметром является температурный коэффициент напряжения стабилизации. Например, в автомобильном реле-регуляторе, которое управляет величиной напряжения в бортсети автомобиля. Если оно будет сильно изменяться в зависимости от температуры в моторном отсек, то выйдет из строя электрооборудование автомобиля. Следующий наглядный пример. В телевизорах и радиоприемниках в блоке формирования напряжения настройки на частоту принимаемого сигнала также недопустима зависимость напряжения от температуры, иначе сигнал будет плавать и пропадать. Именно поэтому в реле-регуляторах применяют стабилитроны типа Д818Е, а в блоках настройки телевизоров КС531. У первых температурный коэффициент составляет +0,001 %/град, у вторых ±0,005%/град. В то время, как у других, например, КС182 о которых упоминалось в начале статьи, температурный коэффициент составляет около 0,1 %/град. Это почти в 100 раз хуже. как правило, стабилитроны с хорошим температурным коэффициентом содержат внутренний диод, катод которого соединен с катодом стабилитрона. Температурный коэффициент этого диода имеет знак противоположный температурному коэффициенту самого стабилитрона. Таким образом достигается высокая температурная стабильность напряжения стабилизации.

Пока проверяемый стабилитрон подключен для проверки напряжения стабилизации по схеме п. 2 этой статьи, можно его выводы подогреть паяльником, немного, градусов до 60-70 и понаблюдать за изменением напряжения на вольтметре. Разница между термостабильным стабилитроном и обычным будет очень заметна.

  1. То, что основное назначение стабилитрона поддерживать постоянное напряжение на нагрузке при изменении входного напряжения и тока нагрузки уже понятно. Но тут есть особенность. Для эффективного выполнения этих задач, мощность нагрузки реально не должна превышать 30% от мощности, рассеиваемой на балластном резисторе и стабилитроне. Об этом уже было сказано в начале статьи. Для увеличения КПД и тока в нагрузке применяют транзисторы. Наиболее простая схема:

Если ток стабилитрона 10мА, а коэффициент усиления транзистора по току 100 раз, то ток в нагрузке будет 10х100=1000мА. Установив параллельно стабилитрону переменный резистор можно напряжение стабилизации в нагрузке изменять от нуля почти до максимального значения напряжения стабилизации стабилитрона.

  1. Чем можно заменить стабилитрон или изменить напряжение стабилизации?

Обычный кремниевый диод включенный в прямом направлении может выполнять функции стабилитрона напряжением около 0,7 В. Для увеличения напряжения диоды можно включать последовательно с такими же диодами или стабилитроном, напряжение которого нужно немного увеличить. Германиевый диод, при прямом включении, стабилизирует напряжение около 0,5 В, светодиод, в зависимости от типа 2…3,2 В.

Примеры показаны ниже на фото:

Кремниевые транзисторы в диодном включении также могут выполнять функции стабилитрона напряжением 5…6 В. Причем можно использовать последовательное подключение транзистора с диодами, нескольких транзисторов, как показано ниже:

Если есть маломощный стабилитрон на нужное напряжение, а нужен более мощный, то можно использовать такую аналогию ( где VD1 маломощный стабилитрон):

R2 – балластный резистор. Напряжение стабилизации схемы равно напряжению стабилизации стабилитрона плюс напряжение б-э транзистора (0,7В у кремниевых и 0,5В у германиевых). Максимальный ток стабилизации схемы равен току стабилитрона, умноженному на коэффициент усиления транзистора по току (h21). Используя такие схемы нельзя допускать превышения значений параметров применяемых элементов.

Если нужны высоковольтные стабилитроны на напряжения 120…180В (КС620А, КС630А, КС650А, КС680А), то можно использовать такие схемы:

Как источник стабильного тока используют германиевые диоды Д220, Д220А, Д219А которые имеют низкое дифференциальное сопротивление при обратном включении и обратном токе 0,1…10 мА. Понятно, что напряжение применяемого транзистора должно быть выше 180 В.

Материал статьи продублирован на видео:

 

Аналоги стабилитронов — Меандр — занимательная электроника

 

Вы ищите чем заменить стабилитрон? Здесь вы найдете ответ на свой вопрос!

Импортные аналоги отечественных стабилитронов.

Для поиска воспользуйтесь Ctrl+F 

 

Обознач.              Аналог             Обознач.             Аналог         Обознач.            Аналог

1075Z4                 Д808                1N1807A            Д815В            1N2046-1            Д815Д

1094Z4                 Д814В                 1N1817               Д815Е             1N2047-1             Д815Е

1095Z4                 Д814В                 1N1817C            Д815Е              1N2048-1            Д815Ж

1102                     КС133А              1N1819               Д815Ж             1N2498               Д815Г

1103                     КС133А              1N1819A            Д815Ж             1N2500               Д815Д

1104                     КС147А              1N1927               КС139А           1N2500A            Д815Д

1106                     КС168А              1N1927A            КС139А           1N3148               Д815В

1111                     Д811                   1N1927B             КС139А           1N3519               Д815Г

1322                     Д816А                1N1984                КС168В           1N3827               КС456А

1327                     Д816Б                 1N1984A            КС168В            1N3827A            КС456А

1333                     Д816В                 1N1984B            КС168В            1N3995              Д815И

1347                     Д816Д                1N1985               КС182А            1N3995A           Д815И

1422                     Д816А                1N1985A            КС182А            1N4026              Д816А

1427                     Д816Б                1N1985B             КС182А            1N4026A           Д816А

1433                     Д816В                1N1986               КС210Б             1N4026B           Д816А

1439                     Д816Г                1N1986A             КС210Б             1N4028             Д816Б

1447                    Д816Д                1N1986B              КС210Б             1N4028A           Д816Б

185Z4                  Д814Б, (В)         1N1988                КС215Ж            1N4028B            Д816Б

1N1355               Д815Е                1N1988A              КС215Ж            1N4030              Д816В

1N1355A            Д815Е                1N1988B              КС215Ж            1N4030A            Д816В

1N1520               КС456А            1N1989                КС218Ж             1N4030B            Д816В

1N1520A            КС456А            1N1989A             КС218Ж              1N4032             Д816Г

1N1602              Д815Б                1N1989B              КС218Ж             1N4032A           Д816Г

1N1765              КС456А            1N1990                 КС222Ж             1N4032B            Д816Г

1N1765A           КС456А            1N1990A              КС222Ж             1N4038               Д817Б

1N1803              Д815А              1N1990B               КС222Ж             1N4038A            Д817Б

1N1803A           Д815А              1N2041                 Д815И                 1N4038B             Д817Б

1N1805              Д815Б              1N2042                 Д815А                  1N4040               Д817В

1N1807              Д815В              1N2045A              Д815Г                   1N4040A            Д817В

 

 

Обознач.               Аналог             Обознач.             Аналог         Обознач.            Аналог

1N4040B           Д817В                  1S2110                 Д814Г                 BLVA168C      КС168А

1N4042              Д817Г                  1S2110A              Д814Г                 BLVA195         КC196А

1N4042A           Д817Г                  1S333                   Д814А                BLVA195A      КС196А

1N4042B           Д817Г                  1S334                   Д814А                BLVA195B       КС196А

1N4099              КС168А              1S336                    Д814Г                BLVA195C       КС196А

1N4622              КС139А              1S472                    КС190А             BLVA468         КС168А

1N4624              КС147А              1S473                    Д811, Д814Г      BLVA468A     КС168А

1N4655              КС456А              1S55                      Д818В                BLVA468B      КС168А

1N4686              КС139А              1S7033                  КС133А             BLVA468C      КС168А

1N4688              КС147А              1S7033A               КС133А             BLVA495         КС196А

1N4734              КС456А              1S7033B               КС133А             BLVA495A       КС196А

1N4734A           КС456А              1S760                    Д813                  BLVA495B        КС196А

1N4912              Д814Д                2A44                      КС133А            BLVA495C        КС196А

1N4912A           Д814Д                5330                       Д816Б               BZ6,8                 КС168В

1N4968              Д816Б                5332                       КС168В            BZ7,5                 КС175А

1N4968A           Д816Б                5338                       Д817А               BZ8,2                КС182А

1N4968B           Д816Б                5430                       Д816Б                BZ9,1               КС191А

1N4978             Д817Б                 5432                      Д816В                BZX29C4V7    КС447А

1N4978A           Д817Б                5508                      КС133А             BZX29C5V6    КС456А

1N4978B           Д817Б                653C3                   КС168В              BZX46C3V3   КС133А

1N4980             Д817В                653C4                   КС170А              BZX55C3V3   КС133А

1N5518B          КС133А             653C7                   Д808                    BZX55C4V7   КС147А

1N5518C          КС133А             653C9                   Д808                    BZX55C5V6   КС156А

1N5518D          КС133А             654C9                  КС190А               BZX59C11      Д811

1N674               КС147А             655C9                  КС210Б               BZX69C11       Д811

1N710               КС168А            7708                      КС433А              BZX83C12      КС212Е

1N710A            КС168А            9607                      КС175А              BZX83C33      КС133А

1N715А            Д814Г                AZ10                   КС210Б                BZX83C3V3  КС133А

1N721А            КС156А            AZ11                    КС211Ж              BZX84C10     КС210Б

1N750A            КС147А            AZ13                    КС213Ж              BZX84C11     КС211Ж

1N752A            КС156А            AZ15                    КС215Ж              BZX84C7V5  КС175А

1N764               Д809                 AZ22                    КС222Ж              BZX84C7V8   КС175А

1N764-1           Д814А              AZ4                       Д814А                 BZX84C9V1   КС191А

1N764-3           Д818А              AZ6,8                    КС168В               BZX85C4V7   КС447А

1N764A            Д809                AZ7,5                    КС175А               BZX85C5V6   КС456А

1N766              Д813                 AZ8,2                     КС182А              BZX88C4V7   КС147А

1N766A           Д813                  AZ9,1                    КС191А              BZX88C5V6   КС156А

1S193               Д814А              AZX84C11            КС211Ж             BZY56             КС147А

1S194               Д818А             BLVA168               КС168А             BZY50              КС168А

1S196               Д814Г             BLVA168A             КС168А             BZY83C11       Д811

1S2033             КС133А          BLVA168B             КС168А             BZY83C4V7    КС147А

1S2033A          КС133А

Импортные аналоги отечественных стабилитронов

Обознач.               Аналог             Обознач.             Аналог         Обознач.            Аналог

 

1075Z4                 Д808                1N1807A            Д815В            1N2046-1            Д815Д

1094Z4                 Д814В                 1N1817               Д815Е             1N2047-1             Д815Е

1095Z4                 Д814В                 1N1817C            Д815Е              1N2048-1            Д815Ж

1102                     КС133А              1N1819               Д815Ж             1N2498               Д815Г

1103                     КС133А              1N1819A            Д815Ж             1N2500               Д815Д

1104                     КС147А              1N1927               КС139А           1N2500A            Д815Д

1106                     КС168А              1N1927A            КС139А           1N3148               Д815В

1111                     Д811                   1N1927B             КС139А           1N3519               Д815Г

1322                     Д816А                1N1984                КС168В           1N3827               КС456А

1327                     Д816Б                 1N1984A            КС168В            1N3827A            КС456А

1333                     Д816В                 1N1984B            КС168В            1N3995              Д815И

1347                     Д816Д                1N1985               КС182А            1N3995A           Д815И

1422                     Д816А                1N1985A            КС182А            1N4026              Д816А

1427                     Д816Б                1N1985B             КС182А            1N4026A           Д816А

1433                     Д816В                1N1986               КС210Б             1N4026B           Д816А

1439                     Д816Г                1N1986A             КС210Б             1N4028             Д816Б

1447                    Д816Д                1N1986B              КС210Б             1N4028A           Д816Б

185Z4                  Д814Б, (В)         1N1988                КС215Ж            1N4028B            Д816Б

1N1355               Д815Е                1N1988A              КС215Ж            1N4030              Д816В

1N1355A            Д815Е                1N1988B              КС215Ж            1N4030A            Д816В

1N1520               КС456А            1N1989                КС218Ж             1N4030B            Д816В

1N1520A            КС456А            1N1989A             КС218Ж              1N4032             Д816Г

1N1602              Д815Б                1N1989B              КС218Ж             1N4032A           Д816Г

1N1765              КС456А            1N1990                 КС222Ж             1N4032B            Д816Г

1N1765A           КС456А            1N1990A              КС222Ж             1N4038               Д817Б

1N1803              Д815А              1N1990B               КС222Ж             1N4038A            Д817Б

1N1803A           Д815А              1N2041                 Д815И                 1N4038B             Д817Б

1N1805              Д815Б              1N2042                 Д815А                  1N4040               Д817В

1N1807              Д815В              1N2045A              Д815Г                   1N4040A            Д817В

Обознач.               Аналог             Обознач.             Аналог         Обознач.            Аналог

1N4040B           Д817В                  1S2110                 Д814Г                 BLVA168C      КС168А

1N4042              Д817Г                  1S2110A              Д814Г                 BLVA195         КC196А

1N4042A           Д817Г                  1S333                   Д814А                BLVA195A      КС196А

1N4042B           Д817Г                  1S334                   Д814А                BLVA195B       КС196А

1N4099              КС168А              1S336                    Д814Г                BLVA195C       КС196А

1N4622              КС139А              1S472                    КС190А             BLVA468         КС168А

1N4624              КС147А              1S473                    Д811, Д814Г      BLVA468A     КС168А

1N4655              КС456А              1S55                      Д818В                BLVA468B      КС168А

1N4686              КС139А              1S7033                  КС133А             BLVA468C      КС168А

1N4688              КС147А              1S7033A               КС133А             BLVA495         КС196А

1N4734              КС456А              1S7033B               КС133А             BLVA495A       КС196А

1N4734A           КС456А              1S760                    Д813                  BLVA495B        КС196А

1N4912              Д814Д                2A44                      КС133А            BLVA495C        КС196А

1N4912A           Д814Д                5330                       Д816Б               BZ6,8                 КС168В

1N4968              Д816Б                5332                       КС168В            BZ7,5                 КС175А

1N4968A           Д816Б                5338                       Д817А               BZ8,2                КС182А

1N4968B           Д816Б                5430                       Д816Б                BZ9,1               КС191А

1N4978             Д817Б                 5432                      Д816В                BZX29C4V7    КС447А

1N4978A           Д817Б                5508                      КС133А             BZX29C5V6    КС456А

1N4978B           Д817Б                653C3                   КС168В              BZX46C3V3   КС133А

1N4980             Д817В                653C4                   КС170А              BZX55C3V3   КС133А

1N5518B          КС133А             653C7                   Д808                    BZX55C4V7   КС147А

1N5518C          КС133А             653C9                   Д808                    BZX55C5V6   КС156А

1N5518D          КС133А             654C9                  КС190А               BZX59C11      Д811

1N674               КС147А             655C9                  КС210Б               BZX69C11       Д811

1N710               КС168А            7708                      КС433А              BZX83C12      КС212Е

1N710A            КС168А            9607                      КС175А              BZX83C33      КС133А

1N715А            Д814Г                AZ10                   КС210Б                BZX83C3V3  КС133А

1N721А            КС156А            AZ11                    КС211Ж              BZX84C10     КС210Б

1N750A            КС147А            AZ13                    КС213Ж              BZX84C11     КС211Ж

1N752A            КС156А            AZ15                    КС215Ж              BZX84C7V5  КС175А

1N764               Д809                 AZ22                    КС222Ж              BZX84C7V8   КС175А

1N764-1           Д814А              AZ4                       Д814А                 BZX84C9V1   КС191А

1N764-3           Д818А              AZ6,8                    КС168В               BZX85C4V7   КС447А

1N764A            Д809                AZ7,5                    КС175А               BZX85C5V6   КС456А

1N766              Д813                 AZ8,2                     КС182А              BZX88C4V7   КС147А

1N766A           Д813                  AZ9,1                    КС191А              BZX88C5V6   КС156А

1S193               Д814А              AZX84C11            КС211Ж             BZY56             КС147А

1S194               Д818А             BLVA168               КС168А             BZY50              КС168А

1S196               Д814Г             BLVA168A             КС168А             BZY83C11       Д811

1S2033             КС133А          BLVA168B             КС168А             BZY83C4V7    КС147А

1S2033A          КС133А

АНАЛОГИ СТАБИЛИТРОНОВ

АНАЛОГИ СТАБИЛИТРОНОВ

     Здесь приведены ближайшие аналоги всех типов импортных и отечественных стабилитронов.  Даташит на каждый стабилитрон можно посмотреть введя название в поисковую форму datasheet вправой части сайта. Цены на радиодетали смотрите в любом интернет магазине.

Импортн. Аналог  Импортн. Аналог  Импортн. Аналог


1075Z4 Д808  1N1807A Д815В  1N2046-1 Д815Д
1094Z4 Д814В 1N1817 Д815Е 1N2047-1 Д815Е
1095Z4 Д814В 1N1817C Д815Е 1N2048-1 Д815Ж
1102 КС133А 1N1819 Д815Ж 1N2498 Д815Г
1103 КС133А 1N1819A Д815Ж 1N2500 Д815Д
1104 КС147А 1N1927 КС139А 1N2500A Д815Д
1106 КС168А 1N1927A КС139А 1N3148 Д815В
1111 Д811 1N1927B КС139А 1N3519 Д815Г
1322 Д816А 1N1984 КС168В 1N3827 КС456А
1327 Д816Б 1N1984A КС168В 1N3827A КС456А
1333 Д816В 1N1984B КС168В 1N3995 Д815И
1347 Д816Д 1N1985 КС182А 1N3995A Д815И
1422 Д816А 1N1985A КС182А 1N4026 Д816А
1427 Д816Б 1N1985B КС182А 1N4026A Д816А
1433 Д816В 1N1986 КС210Б 1N4026B Д816А
1439 Д816Г 1N1986A КС210Б 1N4028 Д816Б
1447 Д816Д 1N1986B КС210Б 1N4028A Д816Б
185Z4 Д814Б, (В) 1N1988 КС215Ж 1N4028B Д816Б
1N1355 Д815Е 1N1988A КС215Ж 1N4030 Д816В
1N1355A Д815Е 1N1988B КС215Ж 1N4030A Д816В
1N1520 КС456А 1N1989 КС218Ж 1N4030B Д816В
1N1520A КС456А 1N1989A КС218Ж 1N4032 Д816Г
1N1602 Д815Б 1N1989B КС218Ж 1N4032A Д816Г
1N1765 КС456А 1N1990 КС222Ж 1N4032B Д816Г
1N1765A КС456А 1N1990A КС222Ж 1N4038 Д817Б
1N1803 Д815А 1N1990B КС222Ж 1N4038A Д817Б
1N1803A Д815А 1N2041 Д815И 1N4038B Д817Б
1N1805 Д815Б 1N2042 Д815А 1N4040 Д817В
1N1807 Д815В 1N2045A Д815Г 1N4040A Д817В
1N4040B Д817В 1S2110 Д814Г BLVA168C КС168А
1N4042 Д817Г 1S2110A Д814Г BLVA195 КC196А
1N4042A Д817Г 1S333 Д814А BLVA195A КС196А
1N4042B Д817Г 1S334 Д814А BLVA195B КС196А
1N4099 КС168А 1S336 Д814Г BLVA195C КС196А
1N4622 КС139А 1S472 КС190А BLVA468 КС168А
1N4624 КС147А 1S473 Д811, Д814Г BLVA468A КС168А
1N4655 КС456А 1S55 Д818В BLVA468B КС168А
1N4686 КС139А 1S7033 КС133А BLVA468C КС168А
1N4688 КС147А 1S7033A КС133А BLVA495 КС196А
1N4734 КС456А 1S7033B КС133А BLVA495A КС196А
1N4734A КС456А 1S760 Д813 BLVA495B КС196А
1N4912 Д814Д 2A44 КС133А BLVA495C КС196А
1N4912A Д814Д 5330 Д816Б BZ6,8 КС168В
1N4968 Д816Б 5332 КС168В BZ7,5 КС175А
1N4968A Д816Б 5338 Д817А BZ8,2 КС182А
1N4968B Д816Б 5430 Д816Б BZ9,1 КС191А
1N4978 Д817Б 5432 Д816В BZX29C4V7 КС447А
1N4978A Д817Б 5508 КС133А BZX29C5V6 КС456А
1N4978B Д817Б 653C3 КС168В BZX46C3V3 КС133А
1N4980 Д817В 653C4 КС170А BZX55C3V3 КС133А
1N5518B КС133А 653C7 Д808 BZX55C4V7 КС147А
1N5518C КС133А 653C9 Д808 BZX55C5V6 КС156А
1N5518D КС133А 654C9 КС190А BZX59C11 Д811
1N674 КС147А 655C9 КС210Б BZX69C11 Д811
1N710 КС168А 7708 КС433А BZX83C12 КС212Е
1N710A КС168А 9607 КС175А BZX83C33 КС133А
1N715А Д814Г AZ10 КС210Б BZX83C3V3 КС133А
1N721А КС156А AZ11 КС211Ж BZX84C10 КС210Б
1N750A КС147А AZ13 КС213Ж BZX84C11 КС211Ж
1N752A КС156А AZ15 КС215Ж BZX84C7V5 КС175А
1N764 Д809 AZ22 КС222Ж BZX84C7V8 КС175А
1N764-1 Д814А AZ4 Д814А BZX84C9V1 КС191А
1N764-3 Д818А AZ6,8 КС168В BZX85C4V7 КС447А
1N764A Д809 AZ7,5 КС175А BZX85C5V6 КС456А
1N766 Д813 AZ8,2 КС182А BZX88C4V7 КС147А
1N766A Д813 AZ9,1 КС191А BZX88C5V6 КС156А
1S193 Д814А AZX84C11 КС211Ж BZY56 КС147А
1S194 Д818А BLVA168 КС168А BZY50 КС168А
1S196 Д814Г BLVA168A КС168А BZY83C11 Д811
1S2033 КС133А BLVA168B КС168А BZY83C4V7 КС147А
BZY83C6V8 КС168А KS2068A КС168А MZ4622 КС139А
BZY83D4V7 КС147А KS2068B КС168А MZ4624 КС147А
BZY83D6V8 КС168А KS2110A Д811 MZ4A КС147А
BZY85B3V3 КС133А KS2110B Д811 MZ5112 КС620А
BZY85C11 Д811 KS30A КС133А MZ5113 КС630А
BZY85C3V9 КС139А KS30AF КС133А MZ5115 КС650А
BZY85C4V7 КС147А KS30B КС133А MZ5118 КС680А
BZY85C6V8 КС168А KS30BF КС133А MZ5212 КС620А
BZY88C3V3 КС133А KS32A КС139А MZ5213 КС630А
BZY88C4V7 КС147А KS32AF КС139А MZ5215 КС650А
BZY88C5V6 КС156А KS32B КС139А MZ5218 КС680А
BZZ13 Д818Б KS32BF КС139А MZ5312 КС620А
C6102 КС133А KS34A КС147А MZ5313 КС630А
C6102A КС133А KS34AF КС147А MZ5315 КС650А
CD3127 Д813 KS34B КС147А MZ5318 КС680А
CZ5,6 КС456А KS34BF КС147А MZ6A КС168А
E86 Д814А KS36A КС156А MZC3,3A10 КС133А
ES2110 Д811 KS36AF КС156А OA126/8 Д814А
FYZ5V6 КС456А KS36B КС156А OAZ200 КС147А
GLA47A КС147А KS36BF КС156А OAZ202 КС156А
GLA47B КС147А KS38A КС168А OAZ204 КС168А
HR11 Д811 KS38AF КС168А OAZ240 КС147А
HR9,0 Д818А KS38B КС168А OAZ244 КС168А
HS2039 КС139А KS38BF КС168А PD6004 КС139А
HS2039A КС139А KS77 КС190А PD6004A КС139А
HS2039B КС139А KS77B КС190А PD6006 КС147А
HS2047 КС147А KS78 КС190А PD6006A КС147А
HS2110 Д811 KS78B КС190А PD6010 КС168А
HS7035 КС133А KZ721 КС156А PD6010A КС168А
HZ100 Д817Г LAC2002 КС147А PD6043 КС133А
HZ2110 Д811 LDD70/6A8 КС168А PD6045 КС139А
HZ27 Д816Б LDZ70/6A8 КС168А PD6047 КС147А
HZ33 Д816В LR33H КС133А PD6051 КС168А
HZ47 Д816Д LZ8,2 КС182А PD6056 Д811
HZ56 Д817А MC6010 КС168А PD6202 КС147А
HZ82 Д817В MC6010A КС168А PD6206 КС168А
JAN1N3827A КС456А MC6015 Д811 PL5V6Z КС156А
KS033A КС133А MC6015A Д811 PZZ11 КС211Ж
KS033B КС133А MGLA39A КС139А RD13A Д813
KS2039A КС139А MGLA39B КС139А RD6D Д815А
KS2039B КС139А MR39C-H КС139А RD9A Д814Б
KS2047A КС147А MR47C-H КС147А RZ18 КС218Ж
KS2047B КС147А MZ1008 Д814А RZ22 КС222Ж
MZ1009 Д818А RZZ11 КС211Ж 
1S2033A КС133А
RZZ18 КС218Ж Z1A11 Д811 ZP3,3 КC133
RZ22 КС222Ж Z1A5,6 КС156А ZPD12 КС212Е
SV128 Д814А Z1A6,8 КС168А ZPD7,5 КС175А
SV131 Д818А,Г Z1B11 Д811 ZPY-16 КС216Ж
SV132 КС196А Z1B5,6 КС156А ZZ10 КС210В
SV134 Д811 Z1B6,8 КС168А ZZ11 КС211Ж
SVM9010 Д818А Z1C11 Д811 ZZ13 КС213В
SVM9011 Д818А Z1C5,6 КС156А ZZ15 КС215Ж
SVM9020 Д818А Z1C6,8 КС168А ZZ22 КС222Ж
SVM9021 Д818А Z1D4,7 КС147А ZZ6,8 КС168В
SVM905 Д818А,Г Z1D5,6 КС156А ZZ7,5 КС175А
SVM91 Д818А,Г Z1D6,8 КС168А ZZ8,2 КС182А
SZ11 Д811 Z22 КС222Ж ZZ9,1 КС191А
SZ9 Д818А Z3D3,3 КС433А
UZ5212 КС620А Z4,7 КС447А,КС147А
UZ5213 КС630А Z47CH КС447А
UZ5215 КС650А Z4A3,3 КС433А
UZ5218 КС680А Z4A3,9 КС439А
UZ5312 КС620А Z4A4,7 КС447А
UZ5313 КС630А Z4B3,3 КС433А
UZ5315 КС650А Z4B3,9 КС439А
UZ5318 КС680А Z4B4,7 КС447А
UZ5827 Д816Б Z4C3,3 КС433А
UZ5833 Д816В Z4C3,9 КС439А
UZ5856 Д817А Z4C4,7 КС447А
UZ5922 Д816А Z4D3,3 КС433А
UZ5927 Д816Б Z4D4,7 КС447А
UZ5933 Д816В Z5,6 КС156А
UZ5956 Д817А Z5A3,3 КС133А
VZ33CH КС433А Z5B3,3 КС133А
VZ39CH КС439А Z5C3,3 КС133А
VZ47CH КС447А Z5D3,3 КС133А
VZ56CH КС456А Z6,8 КС168В
WZ528 Д818Б Z7,5 КС175А
Z10 КС210Б Z8,2 КС182А
Z10K Д818А Z8K Д818В
Z11 КС211Ж Z9,1 КС191А
Z13 КС213Б ZEC4,7 КС447А
Z15 КС215Ж ZF3,3 КС133А
Z1550 КС515 ZG3,3 КС133А
Z1555 КС156А ZM4,7 КС447А
Z1560 КС156А ZN39 Д816Г
Z1565 КС156А ZN39A Д816Г
Z1570 КС156А ZN39B Д816Г

Стабилитрон или диод Зенера — подробное описание

Полупроводниковый прибор, каким является диод Зенера или как его еще называют стабилитрон, служит для стабилизации напряжения на выходе.

Принцип действия стабилитрона

Принцип работы прибора заключается в подаче на диод через резистор запирающего напряжения, величина которого превышает величину напряжения пробоя самого диода. До того времени, пока не наступил момент совершения пробоя, через стабилитрон идут токи утечки величина, которых очень незначительна, в тоже время сопротивление прибора очень высокое.

В момент совершения пробоя величина тока резко повысится, а значение дифференцированного сопротивления понизится до самых малых величин. Благодаря этому свойству режим пробоя характеризуется стабильным значением напряжения в широких границах обратного тока. Иными словами стабилитрон служит для распределения тока резистора, на который приходится избыток напряжения, а также тока, составляющего полезную нагрузку.

Рис. №1. Вольт-амперная характеристика (ВАХ) стабилитрона. Для работы стабилитрона используются участки ВАХ, на которых при существенных изменениях тока, напряжение практически  не изменяется, что бывает при обратном подключении прибора на участке электрического пробоя.

Рис.№2. Стабилитрон с резистором

Рис. №3. Стабилитрон, состоящий из двух последовательно-встречно подключенных диодов, служит для ограничения напряжения обеих полярностей.

 

Основа действия прибора строится на двух механизмах – это туннельный пробой и p-n-переход, его называют эффект Зенера и лавинный пробой p-n-перехода.

Основные электрические параметры, характеризующие стабилитрон

Рис. №4. Электрические характеристики важные для стабилитрона.

Пояснение главных величин, которые характеризуют стабилитрон:

  • Стабилизирующее напряжение – U раб, оно соответствует средней точке в месте стабилизации. Напряжение стабилизации – средняя величина между минимальным и предельно-максимальным значением стабилизируемого напряжения.
  • Минимальный ток стабилизации, для этого значения осуществляется лавинный пробой p-n-перехода обратимого действия, он неизменно соответствует минимальному значению стабилизируемого напряжения.
  • Максимальный предельно-допустимый ток стабилитрона.
  • Ток стабилизации или прямой ток, он определяется, как – Iст.ном = Imax – Imin. (он способен выдержать в течение продолжительного отрезка времени p-n-переход без термического разрушения.
  • Температурный коэффициент – величина, которая служит для определения отношения изменяющейся температуры окружающей среды при токе неизменной величины. Для каждого типа стабилитрона свойствен свой коэффициент температуры.
  • Дифференциальное сопротивление – величина, которая зависит от приращения стабилизационного напряжения к приращению тока в определенном диапазоне частоты.
  • Рассеиваемая мощность – величина мощности, обеспечивающей необходимую надежность и рассеиваемую на стабилитроне.

 

Типы стабилитронов

Существует три основных типа стабилитронов:

  1. Прецизионные стабилитроны – для них свойственно наличие повышенной стабильности напряжения. Пример: 2С191 или КС211.
  2. Двухсторонние – ограничивают и стабилизируют двухполярное напряжение. Пример: 2С170А или 2С182А.
  3. Быстродействующий стабилитрон – пониженная величина барьерной емкости и небольшая работа переходного процесса – это делает возможным работать в области кратковременных импульсов напряжений. Это такие стабилитроны: 2С175Е; КС182Е; 2С211Е.

Распределение по мощности – это мощные и маломощные стабилитроны.

 

Особенности использования стабилитронов

Для использования стабилитронов, особенно российских производителей не желательна работа вне зоны пробоя, что является следствием повышения, со временем, тока утечки. Например, на стабилитрон рассчитанный на U15 В, не рекомендуется подавать отличное от расчетного значение напряжения, по крайней мере необходимо следить за минимальным током стабилизации.

Во время неудачного разброса напряжений, при выборе его к предельному значению, может произойти перегрев устройства и возникает режим пробоя.

Нежелательно подключать стабилитроны в сеть в качестве предохранителя, последствия для стабилитрона будут плачевны, при превышении значения тока они выйдут из строя. Для защиты лучше всего использовать, в некоторых случаях, специализированные стабилитроны (супрессоры) марки ZY5.6. Установка стабилитрона (диода Зенера) в цепь низковольтного питания крайне нежелательно из того, что туннельный пробой при U обладает отрицательным температурным коэффициентом.

Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на карту сайта, буду рад если вы найдете на моем сайте еще что-нибудь полезное.

Похожее

Д814 (Д814А, Д814Б, Д814В, Д814Г, Д814Д)

Д814 — это серия кремниевых, сплавных стабилитронов средней мощности. В Д814 серию стабилитронов входят стабилитроны: Д814А, Д814Б, Д814В, Д814Г, Д814Д. Основным отличием между стабилитронами данной серии является напряжение стабилизации, которое составляет от 7 Вольт (Стабилитрон Д814А) до 14 Вольт (Стабилитрон Д814Д). Ток стабилизации находится в диапазоне от 3 мА до 40 мА.

Д814 серия стабилитронов выполнена в металлостеклянном корпусе, по бокам которого расположены гибкие выводы. На корпусе стабилитрона нанесены его наименование, тип и цоколевка. В Д814 серии стабилитронов, корпус является анодом, имеет несколько большую толщину вывода (около 1мм), чем катод (0,6мм).

Вес стабилитронов данной серии, около 1 г.

Д814 размер.

Д814 серия стабилитронов выполнена в корпусах цилиндрической формы. Диаметр корпуса около 5мм. Длина корпуса без учета выводов около 15 мм.

Д814 внешний вид.

Д814 параметры.

 

Напряжение стабилизации при Iст = 5 мА
При Т = +25°C При Т = -60°C При Т = +125°C
Д814А 7…8,5 В 6…8,5 В 7…9,5 В
Д814Б 8…9,5 В 7…9,5 В 8…10,5 В
Д814В 9…10,5 В 8…10,5 В 9…11,5 В
Д814Г 10…12 В 9…12 В 10…13,5 В
Д814Д 11,5…14 В 10…14 В 11,5…15,5 В

 

— Уход напряжения стабилизации, не более:
Через 5 с после включения в течение последующих 10 с:
Д814А 170 мВ
Д814Б 190 мВ
Д814В 210 мВ
Д814Г 240 мВ
Д814Д 280 мВ

Через 15 с после включения в течение последующих 20 с: 20 мВ

 

— Прямое напряжение (постоянное) при Iпр = 50 мА,
Т = -60 и +25°С, не более 1 В

 

— Постоянный обратный ток при Uобр = 1 В, не более 0,1 мкА

 

Дифференциальное сопротивление, не более:
при Iст = 5 мА и Т = +25°C: при Iст = 1 мА и Т = +25°C: при Iст = 5 мА, Т = -60 и +125°C:
Д814А 6 Ом 12 Ом 11,5 мА
Д814Б 10 Ом 18 Ом 10,5 мА
Д814В 12 Ом 25 Ом 9,5 мА
Д814Г 15 Ом 17 мА 8,3 мА
Д814Д 18 Ом 14 мА 7,2 мА

 
при Iст = 1 мА и Т = +25°C:
Д814А 12 Ом
Д814Б 18 Ом
Д814В 25 Ом
Д814Г 30 Ом
Д814Д 35 Ом

при Iст = 5 мА, Т = -60 и +125°C:
Д814А 15 Ом
Д814Б 18 Ом
Д814В 25 Ом
Д814Г 30 Ом
Д814Д 35 Ом

 

Предельные характеристики стабилитрона Д814 (Д814А, Д814Б, Д814В, Д814Г, Д814Д)

— Минимальный ток стабилизации: 3 мА

Максимальный ток стабилизации:
При Т ≤ +35°C: При Т ≤ +100°C: При Т ≤ +125°C:
Д814А 40 мА 24 мА 11,5 мА
Д814Б 36 мА 21 мА 10,5 мА
Д814В 32 мА 19 мА 9,5 мА
Д814Г 29 мА 17 мА 8,3 мА
Д814Д 24 мА 14 мА 7,2 мА

 

— Прямой ток (постоянный):100 мА

— Рассеиваемая мощность:
При Т ≤ +35°C 340 мВт
При Т = +100°C 200 мВт
При Т = +125°C 100 мВт

— Рабочая температура (окружающей среды): -60…+125°C

Д814 содержание драгметаллов.

Содержание драгметаллов (золота, серебра, платины и металлов платиновой группы (МПГ)) в Д814 указанно в граммах на единицу изделия.

Золото : 0,001102
Серебро : 0
МПГ : 0

Д814 аналоги.

Стабилитрон Зарубежный аналог
Д814А 1S333, 1S334, 1N764-1, AZ4, 1S193
Д814Б 185Z4
Д814В 1094Z4, 1095Z4
Д814Г 1S2110, 1S2110A, 1S336, 1S473, 1N715А, 1S196
Д814Д 1N4912, 1N4912A

 

Стабилитроны. Справочник.

Стабилитроны. Справочник.

Zener diodes

Для удобства можно воспользоваться поиском на странице (Ctrl+F).
Список в алфавитном порядке есть здесь.

Внимание!
Буквенный индекс A, B, C, D в конце маркировки характеризует разброс параметров по напряжению стабилизации.
В отдельных случаях индекс может указывать на температурный коэффициент.
Подробности необходимо уточнять в приложенной технической документации.

POWER(Watts)

Volt 0.25-0.4W 0.4-0.5W 0.5W 1.0W 1.5W 5.0W 10.0W 50.0W
1.8 1N4614 1N4678 1N4614,A
2.0 1N4615 1N4679 1N4615,A
2.2 1N4616 1N4680 1N4616,A
2.4 1N4617 1N4681 1N4617,A
2.4 IN4370,A
2.4 1N5221,A
2. 4 1N5837,A
2.4 1N5985,A
2.5 1N5222,A
2.5 1N5838,A
2.6 1N702
2.7 1N4618 1N4682 1N4371,A
2.7 1N702A 1N5223,A
2.7 1N5839,A
2.7 1N5986,A
2. 8 1N5224,A
2.8 1N5840,A
3.0 1N4619 1N4683 1N4372,A
3.0 1N5225,A
3.0 1N5841,A
3.0 1N5987,A
3.3 1N4620 1N4684 1N746,A 1N3821,A 1N5913 1N5333,A,B
3.3 1N5226,A 1N4728,A
3.3 1N5518 1N5842,A
3. 3 1N5988,A
3.6 1N4621 1N4685 1N747,A 1N3822,A 1N5914 1N5334,A,B
3.6 1N703A 1N5519 1N5227,A 1N4729,A
3.6 1N5843,A
3.6 1N5989,A
3.9 1N4622 1N4686 1N748,A 1N3823,A 1N5915 1N5335,A,B 1N3993,A,B 1N4549,A,B
3.9 1N5520 1N5228,A 1N4730,A 1N4557,A,B
3.9 1N5844,A
3. 9 1N5990,A
4.1 1N704
4.3 1N4623 1N4687 1N749,A 1N3824,A 1N5916 1N5336,A,B 1N3994,A,B 1N4550,A,B
4.3 1N704A 1N5521 1N5229,A 1N4731,A 1N4558,A,B
4.3 1N5845,A
4.3 1N5991,A
4.7 1N4624 1N5728,B 1N750,A 1N3825,A 1N5917 1N5337,A,B 1N3995,A,B 1N4551,A,B
4.7 1N5522 1N5230,A 1N4732,A 1N4559,A,B
4. 7 1N705 1N5846,A
4.7 1N4688 1N5992,A
5.1 1N4625 1N5729,B 1N751,A 1N3826,A 1N5918 1N5338,A,B 1N3996,A,B 1N4552,A,B
5.1 1N5523 1N5231,A 1N4733,A 1N4560,A,B
5.1 1N705A 1N4689 1N5847,A
5.1 1N5993,A
5.6 1N708 1N5730,B 1N752,A 1N3827,A 1N5919 1N5339,A,B 1N3997,A,B 1N4553,A,B
5.6 1N4626 1N5524 1N5232,A 1N4734,A 1N4561,A,B
5. 6 1N4690 1N5848,A
5.6 1N5994,A
5.8 1N706
6.0 1N706A 1N5233,A 1N5340,A,B
6.0 1N5849,A
6.2 1N709 1N5731,B 1N753,A 1N3828,A 1N5920 1N5341,A,B 1N3998,A,B 1N4554,A,B
6.2 1N4627 1N821,A 1N5234,A 1N4735,A 1N4562,A,B
6.2 MZ605 1N823,A 1N5850,A
6. 2 MZ610 1N825,A 1N5995,A
6.2 MZ620 1N827,A 1N4691
6.2 MZ640 1N829,A
6.2 1N5525
6.4 1N4565-84,A
6.8 1N4099 1N5732,B 1N754,A 1N3016,A,B 1N3785,A,B 1N5342,A,B 1N2970,A,B 1N2804,A,B
6.8 1N710 1N4692 1N957B 1N3829,A 1N5921 1N3999,A,B 1N3305,A,B
6.8 1N5526 1N5235,A 1N4736,A 1N4555,A,B
6. 8 1N5851,A 1N4563,A,B
6.8 1N5996,A
7.1 1N707
7.5 1N4100 1N5733,B 1N755,A 1N3017,A,B 1N3786,A,B 1N5343,A,B 1N2971,A,B 1N2805,A,B
7.5 1N711 1N4693 1N958B 1N3830,A 1N5922 1N3940,A,B 1N3306,A,B
7.5 1N5527 1N5236,A 1N4737,A 1N4556,A,B
7.5 1N5852,A 1N4564,A,B
7.5 1N5997,A
8. 2 1N712 1N5734,B 1N756,A 1N3018,A,B 1N3787,A,B 1N5344,A,B 1N2972,A,B 1N2806,A,B
8.2 1N4101 1N4694 1N959B 1N4738,A 1N5923 1N3307,A,B
8.2 1N5528 1N5237,A
8.2 1N5853,A
8.2 1N5998,A
8.4 IN3154-57,A
8.5 1N4775-84,A 1N5238,A
8.5 1N5854,A
8. 7 1N4102 1N4695 1N5345,A,B
8.8
9.0 1N935-8;A,B
9.1 1N4103 1N5735,B 1N757,A 1N3019,A,B 1N3788,A,B 1N5346,A,B 1N2973,A,B 1N2807,A,B
9.1 1N713 1N4696 1N960B 1N4739,A 1N5924 1N3308,A,B
9.1 1N5529 1N5239,A
9.1 1N5855,A
9.1 1N5999,A
10. 0 1N4104 1N5736,B 1N758,A 1N3020,A,B 1N3789,A,B 1N5347,A,B 1N2974,A,B 1N2808,A,B
10.0 1N714 1N4697 1N961B 1N4740,A 1N5925 1N3309,A,B
10.0 1N5530 1N5240,A
10.0 1N5856,A
10.0 1N6000,A
11.0 1N715 1N5737,B 1N962B 1N3021,A,B 1N3790,A,B 1N5348,A,B 1N2975,A,B 1N2809,A,B
11.0 1N4105 1N4698 1N4741,A 1N5926 1N3310,A,B
11. 0 1N5531 1N5241,A
11.0 1N5857,A
11.0 1N6001,A
11.7 1N941-5;A,B
11.7
12.0 1N716 1N5738,B 1N759,A 1N3022,A,B 1N3791,A,B 1N5349,A,B 1N2976,A,B 1N2810,A,B
12.0 1N4106 1N4699 1N963B 1N4742,A 1N5927 1N3311,A,B
12.0 1N5532 1N5242,A
12. 0 1N5858,A
12.0 1N6002,A
13.0 1N4107 1N5739,B 1N964B 1N3023,A,B 1N3792,A,B 1N5350,A,B 1N2977,A,B 1N2811,A,B
13.0 1N717 1N5533 1N5243,A 1N4743,A 1N5928 1N3312,A,B
13.0 1N4700 1N5859,A
13.0 1N6003,A
14.0 1N4108 1N5534 1N5244,A 1N5351,A,B 1N2978,A,B 1N2812,A,B
14.0 1N4701 1N5860,A 1N3313,A,B
15. 0 1N4109 1N5740,B 1N965B 1N3024,A,B 1N3793,A,B 1N5352,A,B 1N2979,A,B 1N2813,A,B
15.0 1N718 1N5535 1N5245,A 1N4744,A 1N5929
15.0 1N4702 1N5861,A 1N3314,A,B
15.0 1N6004,A
16.0 1N4110 1N5741,B 1N966B 1N3025,A,B 1N3794,A,B 1N5353,A,B 1N2980,A,B 1N2814,A,B
16.0 1N719 1N5536 1N5246,A 1N4745,A 1N5930 1N3315,A,B
16.0 1N4703 1N5862,A
16. 0 1N6005,A
17.0 1N4111 1N5537 1N5247,A 1N5354,A,B 1N2981,A,B 1N2815,A,B
17.0 1N4704 1N5863,A 1N3316,A,B
18.0 1N4112 1N5742,B 1N967B 1N3026,A,B 1N3795,A,B 1N5355,A,B 1N2982,A,B 1N2816,A,B
18.0 1N720 1N5538 1N5248,A 1N4746,A 1N5931 1N3317,A,B
18.0 1N4705 1N5864,A
18.0 1N6006,A
19.0 1N4113 1N5539 1N5249,A 1N5356,A,B 1N2983,A,B 1N2817,A,B
19. 0 1N4706 1N5865,A 1N3318,A,B
20.0 1N4114 1N5743,B 1N968B 1N3027,A,B 1N3796,A,B 1N5357,A,B 1N2984,A,B 1N2818,A,B
20.0 1N721 1N5540 1N5250,A 1N4747,A 1N5932 1N3319,A,B
20.0 1N4707 1N5866,A
20.0 1N6007,A
22.0 1N4115 1N5744,B 1N969B 1N3028,A,B 1N3797,A,B 1N5358,A,B 1N2985,A,B 1N2819,A,B
22.0 1N722 1N5541 1N5251,A 1N4748,A 1N5933
22. 0 1N4708 1N5867,A 1N3320,A,B
22.0 1N6008,A
24.0 1N4116 1N5542 1N970B 1N3029,A,B 1N3798,A,B 1N5359,A,B 1N2986,A,B 1N2820,A,B
24.0 1N723 1N5252,A 1N4749,A 1N5934 1N3321,A,B
24.0 1N5745,B 1N5868,A
24.0 1N4709 1N6009,A
25.0 1N4117 1N5543 1N5253,A 1N5360,A,B 1N2987,A,B 1N2821,A,B
25.0 1N4710 1N5869,A 1N3322,A,B
27. 0 1N4118 1N971B 1N3030,A,B 1N3799,A,B 1N5361,A,B 1N2988,A,B 1N2822,A,B
27.0 1N724 1N5254,A 1N4750,A 1N5935 1N3323,A,B
27.0 1N5746,B 1N5870,A
27.0 1N4711 1N6010,A
28.0 1N4119 1N5544 1N5255,A 1N5362,A,B
28.0 1N4712 1N5871,A
30.0 1N4120 1N972B 1N3031,A,B 1N3800,A,B 1N5363,A,B 1N2989,A,B 1N2823,A,B
30.0 1N725 1N5545 1N5256,A 1N4751,A 1N5936 1N3324,A,B
30. 0 1N5747,B 1N5872,A
30.0 1N4713 1N6011,A
33.0 1N4121 1N973B 1N3032,A,B 1N3801,A,B 1N5364,A,B 1N2990,A,B 1N2824,A,B
33.0 1N726 1N5546 1N5257,A 1N4752,A 1N5937 1N3325,A,B
33.0 1N5748,B 1N5873,A
33.0 1N4714 1N6012,A
36.0 1N4122 1N5749,B 1N974B 1N3033,A,B 1N3802,A,B 1N5365,A,B 1N2991,A,B 1N2825,A,B
36. 0 1N727 1N5258,A 1N4753,A 1N5938 1N3326,A,B
36.0 1N4715 1N5874,A
36.0 1N6013,A
39.0 1N4123 1N5750,B 1N975B 1N3034,A,B 1N3803,A,B 1N5366,A,B 1N2992,A,B 1N2826,A,B
39.0 1N728 1N5259,A 1N4754,A 1N5939 1N3327,A,B
39.0 1N4716 1N5875,A
39.0 1N6014,A
43.0 1N4124 1N5751,B 1N976B 1N3035,A,B 1N3804,A,B 1N5367,A,B 1N2993,A,B 1N2827,A,B
43. 0 1N729 1N5260,A 1N4755,A 1N5940 1N3328,A,B
43.0 1N4717 1N5876,A
43.0 1N6015,A
45.0 1N2994,A,B 1N2828,A,B
45.0 1N3329,A,B
47.0 1N4125 1N5752,B 1N977B 1N3036,A,B 1N3805,A,B 1N5368,A,B 1N2995,A,B 1N2829,A,B
47.0 1N730 1N5261,A 1N4756,A 1N5941 1N3330,A,B
47.0 1N5877,A
47. 0 1N6016,A
50.0 1N2996,A,B 1N2830,A,B
50.0 1N3331,A,B
51.0 1N4126 1N5753,B 1N978B 1N3037,A,B 1N3806,A,B 1N5369,A,B 11N2997,A,B 1N2831,A,B
51.0 1N731 1N5262,A 1N4757,A 1N5942 1N3332,A,B
51.0 1N5878,A
51.0 1N6017,A
52.0 1N2998,A,B 1N3333,A,B
56. 0 1N4127 1N5754,B 1N979B 1N3038,A,B 1N3807,A,B 1N53670,A,B 1N2999,A,B 1N2832,A,B
56.0 1N732 1N5263,A 1N4758,A 1N5943 1N3334,A,B
56.0 1N5879,A
56.0 1N6018,A
60.0 1N4128 1N5264,A 1N5371,A,B
60.0 1N5880,A
62.0 1N4129 1N5755,B 1N980B 1N3039,A,B 1N3808,A,B 1N5372,A,B 1N3000,A,B 1N2833,A,B
62.0 1N733 1N5265,A 1N4759,A 1N5944 1N3335,A,B
62. 0 1N5881,A
62.0 1N6019,A
68.0 1N4130 1N5756,B 1N981B 1N3040,A,B 1N3809,A,B 1N5373,A,B 1N3001,A,B 1N2834,A,B
68.0 1N734 1N5266,A 1N4760,A 1N5945 1N3336,A,B
68.0 1N6020,A
75.0 1N4131 1N5757,B 1N982B 1N3041,A,B 1N3810,A,B 1N5374,A,B 1N3002,A,B 1N2835,A,B
75.0 1N735 1N5267,A 1N4761,A 1N5946 1N3337,A,B
75.0 1N6021,A
82. 0 1N4132 1N983B 1N3042,A,B 1N3811,A,B 1N5375,A,B 1N3003,A,B 1N2836,A,B
82.0 1N736 1N5268,A 1N4762,A 1N5947 1N3338,A,B
82.0 1N6022,A
87.0 1N4133 1N5269,A 1N5376,A,B
91.0 1N4134 1N984B 1N3043,A,B 1N3812,A,B 1N5377,A,B 1N3004,A,B 1N2837,A,B
91.0 1N5270,A 1N4763,A 1N5948 1N3339,A,B
91.0 1N6023,A
100.0 1N4135 1N985B 1N3044,A,B 1N3813,A,B 1N5378,A,B 1N3005,A,B 1N2838,A,B
100. 0 1N5271,A 1N4764,A 1N5949 1N3340,A,B
100.0 1N6024,A
105.0 1N3006,A,B 1N2839,A,B
105.0 1N3341,A,B
110.0 1N986B 1N3045,A,B 1N3814,A,B 1N5379,A,B 1N3007,A,B 1N2840,A,B
110.0 1N5272,A 1M110ZS10 1N5950 1N3342,A,B
110.0 1N6025,A
120.0 1N987B 1N3046,A,B 1N3815,A,B 1N5380,A,B 1N3008,A,B 1N2841,A,B
120. 0 1N5273,A 1M120ZS10 1N5951 1N3343,A,B
120.0 1N6026,A
130.0 1N988B 1N3047,A,B 1N3816,A,B 1N5381,A,B 1N3009,A,B 1N2842,A,B
130.0 1N5274,A 1M130ZS10 1N5952 1N3344,A,B
130.0 1N6027,A
140.0 1N5275,A 1N5382,A,B 1N3010,A,B 1N3345,A,B
150.0 1N989B 1N3048,A,B 1N3817,A,B 1N5383,A,B 1N3011,A,B 1N2843,A,B
150. 0 1N5276,A 1M150ZS10 1N5953 1N3346,A,B
150.0 1N6028,A
160.0 1N990B 1N3049,A,B 1N3818,A,B 1N5384,A,B 1N3012,A,B 1N2844,A,B
160.0 1N5277,A 1M160ZS10 1N5954 1N3347,A,B
160.0 1N6029,A
170.0 1N5278,A 1M170ZS10 1N5385,A,B
175.0 1N3013,A,B 1N3348,A,B
180.0 1N991B 1N3050,A,B 1N3819,A,B 1N5386,A,B 1N3014,A,B 1N2845,A,B
180. 0 1N5279,A 1M180ZS10 1N5955 1N3349,A,B
180.0 1N6030,A
190.0 1N5280,A 1N5387,A,B
200.0 1N992B 1N3051,A,B 1N3820,A,B 1N5388,A,B 1N3015,A,B 1N2840,A,B
200.0 1N5281,A 1M200ZS10 1N5956 1N3350,A,B
200.0 1N6031,A

Побликации основаны на данных из открытых источников.

Разница между диодом и стабилитроном

Обновлено 23 ноября 2019 г.

Автор: S. Hussain Ather

Функционирование электронных устройств в вашем доме зависит от их схемотехники. Эти электрические цепи спроектированы таким образом, чтобы позволить электричеству течь в нужном направлении для различных целей. Управление потоком электроэнергии может быть затруднено из-за различных целей, которым служит электричество. Вот где на помощь приходят диоды.

Стабилитрон

Диоды используются для пропускания электричества в одном направлении через цепь. Стабилитроны отличаются от других типов диодов тем, что, когда вы подключаете их в цепи в обратном направлении, так что ток течет в обратном направлении через диод, они пропускают небольшой ток утечки. Это тип тока, который течет на землю, чтобы предотвратить его влияние на другие части цепи, а также предотвратить повреждение самого диода.

Вы можете использовать диоды, такие как стабилитрон, для преобразования переменного тока (AC) в постоянный ток (DC).Переменный ток меняется между течением в одном направлении и течением в другом, в то время как постоянный ток движется только в одном направлении. Вы можете найти мостовые выпрямители или выпрямительные диоды во многих из этих электрических установок.

Выпрямители могут преобразовывать переменный ток в постоянный, пропуская ток только в одном направлении, положительном или отрицательном, или путем преобразования одного направления цикла переменного тока в другое. Выпрямители преобразуют источники питания постоянного тока, которые транспортируют электричество на большие расстояния, в мощность переменного тока, которая присутствует в большинстве бытовых приборов.

Напряжение обратного пробоя стабилитрона

Эти характеристики позволяют стабилитронам иметь определенное напряжение обратного пробоя. Это напряжение, при котором диоды начинают проводить ток в обратном направлении, и это одно из различий между стабилитронами и выпрямительными диодами. Эти диоды имеют определенное падение напряжения, которое не сильно меняется в диапазоне входных напряжений.

Как только вы увеличиваете напряжение в обратном направлении для стабилитрона до точки, где оно достигает напряжения пробоя, ток течет через диод. Последовательный резистор диода регулирует максимальное значение тока, прежде чем он стабилизируется до постоянного значения. Это значение остается постоянным независимо от того, насколько сильно вы меняете входное напряжение.

Если вы увеличите напряжение до значения, превышающего напряжение пробоя, на резисторе образуется падение напряжения. Ток протекает через диод, и устройство подключается к земле, замыкая диод. Это отключит нагрузку от источника питания и отрегулирует напряжение.

Применение стабилитронов

По этим причинам стабилитроны хорошо подходят для регулирования напряжения в цепях. Вы найдете эти характеристики стабилитронов в устройствах регулирования напряжения, в ограничителях перенапряжения и ограничителях напряжения.

Стабилитроны в схемах ограничителей могут изменять форму переменного тока, ограничивая его прямые или обратные циклы. Стабилитроны полезны для регулирования напряжения в различных цепях, когда его слишком много или слишком мало. Простота конструкции и использования делает их идеальными кандидатами для преобразования напряжения.

Конструкция диода

Как и стабилитроны, в выпрямителях используются P-N-переходы, полупроводниковые материалы, которые пропускают ток только в одном направлении. Они спроектированы с использованием полупроводников p-типа рядом с полупроводниками n-типа со стороной «p», которая имеет дополнительные дырки, места без электронов, которые имеют положительный заряд. Напротив, сторона «n» имеет больше электронов на внешних оболочках, что делает ее заряженной отрицательно.

Эти полупроводниковые материалы изготовлены из металлов, таких как галлий, или металлоидов, таких как кремний, основного материала, который содержит стабилитроны, смешанные с другими элементами, такими как фосфор. Расположение между этими атомами позволяет току течь, и вы можете найти мостовые выпрямители, контролирующие широкий диапазон токов с помощью этих конструкций.

Как проверить стабилитрон

Стабилитрон — это диод, предназначенный для работы в области пробоя. Эти условия разрушают нормальные диоды, но стабилитрон проводит небольшой ток.Он поддерживает постоянное напряжение на устройстве, поэтому обычно используется в качестве простого регулятора напряжения во многих схемах. Чтобы проверить один, используйте мультиметр для проверки его напряжения как внутри, так и вне цепи.

Стабилитрон 1N4734A имеет номинальную мощность 5,6 В и 1 Вт. Он обеспечивает стабильное напряжение в цепи 5,6 В. Максимальный ток составляет примерно 1 Вт / 5,6 В = 179 мА. Чтобы предотвратить чрезмерный ток в испытательной цепи, используйте резистор на 200 Ом последовательно с диодом.

    Установка мультиметра на диоде.Обычно на это указывает маленький символ диода на корпусе.

    Измерьте прямое падение напряжения на стабилитроне. Для этого подключите положительный или красный провод мультиметра к анодной стороне диода, на которой нет маркировки. Поместите отрицательный или черный провод на катодную сторону диода, отмеченную полосой. Стабилитрон сделан из кремния, поэтому неповрежденное устройство показывает от 0,5 до 0,7 В при прямом смещении.

    Измерьте обратное смещенное напряжение на стабилитроне, переключив щупы мультиметра.Поместите положительный провод на сторону с маркировкой или со стороны катода, а отрицательный провод на сторону без маркировки или со стороны анода. Вы должны получить показания, указывающие на бесконечное сопротивление или отсутствие тока.

    Присоедините положительный полюс 9-вольтовой батареи к одной стороне резистора, а другой конец резистора подсоедините к катодной стороне стабилитрона, чтобы он имел обратное смещение. Затем подключите оставшуюся клемму диода к отрицательной клемме аккумулятора.

    Установите мультиметр в режим постоянного напряжения.Измерьте напряжение на диоде, поместив провод мультиметра на каждую клемму. Он должен показывать примерно 5,6 вольт, хотя значение может быть от 5,32 до 5,88 вольт. Обратите внимание, что напряжение между аккумулятором и землей остается на уровне 9 В.

Стабилитрон — плохой стабилизатор

Стабилитрона часто используются для создания опорного напряжения. В учебных пособиях и даже учебных пособиях упоминается создание стабилизатора на основе стабилитрона. Идея состоит в том, что стабилитрон поддерживает известное падение напряжения.Проблема в том, что текущее имеет значение. В этом посте представлен краткий обзор стабилитронов и показано, что произошло, когда я попытался запитать микроконтроллер с помощью «стабилизатора на стабилитронах».

Обзор стабилитронов

Просто краткий обзор, если вы не знакомы с стабилитронами. Как и обычные диоды, стабилитроны имеют низкое прямое напряжение. Обычно у вас напряжение около 0,7. Однако разные наборы материалов могут иметь разное прямое напряжение.

Также, как и в обычных диодах, существует обратное напряжение пробоя.Если вы посмотрите на здоровенный диод, такой как 1n4001, вы обнаружите, что напряжение пробоя начинается с 50 вольт.

1n4001 Напряжение обратного пробоя

Стабилитроны

уникальны тем, что их обратное напряжение пробоя относительно низкое. Например, у меня есть такие, которые на 3,3, 5,0, 9,1 и 12 вольт. (Интересные цифры, не правда ли?)

Кривая показывает, что выше прямого напряжения и «ниже» обратного напряжения диод проводит. Я заключил ниже в кавычки, потому что это предполагает отрицательный потенциал.Этот комментарий не означает, что вам нужен источник отрицательного напряжения, просто диод имеет обратное смещение. Также известен как обернулся.

Стабилитрон

Как уже упоминалось, идея стабилитрона заключается в том, что на диоде падает стабильное напряжение при обратном смещении. Более того, со значениями вроде 3.3 и 5.0, о которых я говорил ранее, это начинает звучать как хороший вариант, не так ли?

BZX79C3V3 от Fairchild (на полу)

Давайте возьмем BZX79C3V3 в качестве примера стабилитрона.Обратите внимание в таблице характеристик, что обратное напряжение составляет 3,3 вольт при 5,0 мА.

Идея заключается в том, что вы выбираете номинал резистора, возможно, даже прецизионное значение, чтобы создать достаточный ток для обратного смещения стабилитрона на 5,0 мА.

Однако есть проблема с этой базовой схемой. Ток, протекающий через нагрузку, также должен протекать через резистор. Согласно закону Ома падение напряжения на резисторе изменяется в зависимости от протекающего тока.

Питание ESP8266 со стабилитроном

Используя приведенную выше схему, я попытался запитать ESP8266 с помощью 5.Питание 0 вольт. Перед построением этой схемы я измерил, что ток, потребляемый ESP8266, составляет 60 мА при питании от источника питания 3,3 В.

При использовании стабилитрона 3,3 В на последовательном резисторе падает 1,7 В. Закон Ома гласит, что при 60 мА на нагрузке и 5 мА на стабилитроне нам нужен резистор 28 Ом. Ближайшее значение у меня 22 Ом.

Когда я подключил схему, с ESP8266 ничего не произошло. Узел VOUT измерял около 0,9 вольт. Что еще хуже, независимо от того, какое напряжение источника я сделал, узел VOUT оставался на 0.9 вольт.

Догадываясь, я уменьшил сопротивление резистора примерно на 10 Ом.

Когда я измерил мультиметром, то увидел на делителе всего 1,8 вольт. Однако ESP8266 работал. После сброса ESP8266 увидел 2,5 вольта. И в зависимости от того, какой вес был на моей левой или правой ноге, любое промежуточное значение.

Так что, черт возьми, здесь происходит? Что ж, во-первых, спасибо, что продолжаете читать, прежде чем переходить к комментариям, чтобы сказать следующее утверждение.Вы не можете рассматривать микроконтроллер, особенно систему на кристалле (SOC), как постоянную нагрузку.

Когда я нажимаю и удерживаю кнопку RESET, узел Vout подскакивает до хороших чистых 3,4 вольт. В этот момент большинство активных схем в микросхеме выключено.

Поскольку ESP8266 был нагрузкой с высоким сопротивлением, почти весь ток в этой цепи протекает через последовательный резистор и ESP8266. Величина тока была ошеломляющей, почти 200 мА. Что ж, ошеломляюще, когда можно было ожидать только около шестидесяти.

Больше проблем с стабилитроном

Все это упражнение было направлено на то, чтобы показать, почему стабилитрон — плохой стабилизатор. Падение напряжения слишком сильно зависит от тока, протекающего через переход. Это означает, что «схема регулятора» зависит от постоянной нагрузки. Любое активное устройство вызовет нестабильность узла VOUT.

Так что же хорошего в этой схеме стабилитрона? Ну это не регулятор. Вместо этого это ссылка.

Например, вы можете использовать аналогичную схему на AREF Arduino.Допустим, вы используете аналоговый датчик, который выдает максимум 3 В. Использование ссылки стабилитрон может дать A / D большее разрешение.

Вы можете использовать стабилитрон в качестве эталона для операционного усилителя. Эта схема не слишком отличается от того, как работают линейные регуляторы.

Урок здесь в том, что если вы хотите использовать схему стабилизатора на стабилитроне, вам необходимо пересмотреть свою конструкцию. В некоторых очень редких или критических случаях это сработает.

Если вы использовали стабилитрон в качестве регулятора, а не для справки, оставьте комментарий ниже. Я хотел бы услышать, как вы это использовали.

Как использовать стабилитроны

AN008 — Как использовать стабилитроны

Elliott Sound Products АН-008

Род Эллиотт (ESP)


Прил. Индекс банкнот
Главный индекс


О стабилитронах
Стабилитроны
очень часто используются для базовых задач регулирования напряжения. Они используются в качестве дискретных компонентов, а также в пределах ИС, которые требуют опорного напряжения.Стабилитроны (также иногда называемые опорное напряжение диоды) действует как обычный диод кремния в прямом направлении, но предназначены для разрушения при определенном напряжении, когда подвергается воздействию обратного напряжения.

Все диоды делают это, но обычно при напряжениях, которые непредсказуемы и слишком высоки для обычных задач регулирования напряжения. В стабилитронах используются два разных эффекта …

  • Ударная ионизация (также называемая лавинным пробоем) — положительный температурный коэффициент
  • Пробой Зенера — отрицательный температурный коэффициент

Ниже около 5.При напряжении 5 В преобладает стабилитрон, при лавинном пробое — первичный эффект при напряжении 8 В и более. Хотя у меня нет намерения вдаваться в подробности, в сети есть много информации (см. Ссылки) для тех, кто хочет знать больше. Поскольку эти два эффекта имеют противоположные тепловые характеристики, стабилитроны при напряжении около 6 В обычно имеют очень стабильные характеристики в отношении температуры, поскольку положительный и отрицательный температурные коэффициенты компенсируются.

Очень высокая термостойкость может быть получена путем последовательного включения стабилитрона с обычным диодом.Здесь нет жестких правил, и обычно требуется выбор устройства, чтобы комбинация была как можно более стабильной. Можно выбрать стабилитрон около 7-8 В для работы с диодом, чтобы компенсировать температурный дрейф. Излишне говорить, что диодный и стабилитронный переходы должны находиться в тесном тепловом контакте, иначе температурная компенсация не будет успешной.

Стабилитрон — это уникальный полупроводниковый прибор, который выполняет множество различных задач в отличие от любого другого компонента. Похожее устройство (которое, по сути, является самим специализированным стабилитроном) — это диод TVS (ограничитель переходного напряжения).Однако есть несколько альтернатив TVS-диодам, в отличие от стабилитронов. Прецизионные опорное напряжение ИС можно рассматривать как аналогичные Zeners, но они не являются — они ИСЫ, которые используют ссылку запрещенной зоны (как правило, около 1.25V). Это ИС, содержащие множество внутренних деталей. Стабилитрон — это цельная деталь с одним P-N переходом.


Использование стабилитронов

По непонятным мне причинам в сети почти нет информации о том, как именно использовать стабилитрон.Вопреки тому, что можно было ожидать, существуют ограничения для правильного использования, и если они не будут соблюдены, производительность будет намного хуже, чем ожидалось. На рисунке 1 показаны стандартные характеристики стабилитрона, но, как и почти на всех подобных диаграммах, отсутствует важная информация.

Рисунок 1 — Проводимость стабилитрона

Итак, чего не хватает? Важная часть, которую легко упустить, — это то, что наклон секции разбивки составляет , а не прямую . Стабилитроны обладают так называемым «динамическим сопротивлением» (или импедансом), и это следует учитывать при проектировании схемы с использованием стабилитрона.

Фактическое напряжение, при котором начинается пробой, называется изломом кривой, и в этой области напряжение довольно нестабильно. Он довольно сильно меняется в зависимости от тока, поэтому важно, чтобы стабилитрон работал выше колена, где наклон является наиболее линейным.

В некоторых технических паспортах приводится значение динамического сопротивления, которое обычно составляет около 0,25 от максимального номинального тока. Динамическое сопротивление при таком токе может составлять всего пару Ом, а стабилитроны около 5-6 В дают лучший результат. Обратите внимание, что это также соответствует лучшим тепловым характеристикам.

Это все хорошо, но что такое динамическое сопротивление? Это просто «кажущееся» сопротивление, которое можно измерить, изменив силу тока. Лучше всего это пояснить на примере. Предположим, что динамическое сопротивление для конкретного стабилитрона составляет 10 Ом. Если изменить ток на 10 мА, то напряжение на стабилитроне изменится на …

.

В = R × I = 10 Ом * 10 мА = 0.1 В (или 100 мВ)

Таким образом, напряжение на стабилитроне изменится на 100 мВ при изменении тока на 10 мА. Хотя, например, для стабилитрона 15 В это может показаться не очень большим, это все же представляет собой значительную ошибку. По этой причине стабилитроны в схемах регуляторов обычно запитываются от источника постоянного тока или через резистор от регулируемого выхода. Это минимизирует колебания тока и улучшает регулирование.

В технических паспортах производителей часто указывается динамическое сопротивление как в колене, так и при заданном токе. Стоит отметить, что, хотя динамическое сопротивление стабилитрона может составлять всего 2-15 Ом при 25% максимального тока (в зависимости от номинального напряжения и мощности), оно может быть более 500 Ом на уровне колена, так же как и стабилитрон начинает выходить из строя. Фактические цифры меняются в зависимости от напряжения пробоя, при этом стабилитроны высокого напряжения имеют намного более высокое динамическое сопротивление (на всех участках кривой пробоя), чем блоки низкого напряжения. Точно так же детали с более высокой мощностью будут иметь более низкое динамическое сопротивление, чем версии с низким энергопотреблением (но для достижения стабильной рабочей точки требуется больший ток).

Наконец, полезно посмотреть, как определить максимальный ток стабилитрона, и установить практическое правило для оптимизации тока для достижения наилучших характеристик. В технических паспортах стабилитронов обычно указывается максимальный ток для различных напряжений, но это можно очень легко решить, если у вас нет таблицы данных под рукой . ..

I = P / V , где I = ток, P = номинальная мощность стабилитрона и V = номинальное напряжение стабилитрона.

Например, стабилитрон 27 В, 2 Вт может выдерживать максимальный непрерывный ток…

I = 2/27 = 0,074 A = 74 мА (при 25 ° C)

Как указано в примечании к приложению «стабилитрон с использованием транзистора» (AN-007), для оптимальной работы стабилитрона лучше всего поддерживать ток на уровне максимум 0,7 от номинального тока, поэтому стабилитрон 27 В / 2 Вт не должен работать с током более 47 мА. Идеальное значение составляет 20-30% от максимума, так как это сводит к минимуму потери энергии, поддерживает разумную температуру стабилитрона и гарантирует, что стабилитрон работает в пределах наиболее линейной части кривой.Если вы посмотрите на таблицу данных стабилитрона ниже, вы увидите, что испытательный ток обычно составляет от 25% до 36% от максимального продолжительного тока. Мудрый читатель поймет, что этот диапазон был выбран, чтобы показать диод в наилучшем свете, и, следовательно, это рекомендуемый рабочий ток.

Хотя все это не является сложным, оно показывает, что в скромном стабилитроне (не очень) есть нечто большее, чем склонны осознавать новички (и многие профессионалы в том числе). Только поняв, какой компонент вы используете, вы сможете добиться от него максимальной производительности.Конечно, это относится не только к стабилитронам — большинство (так называемых) простых компонентов имеют характеристики, о которых многие не подозревают.

Помните, что стабилитрон очень похож на обычный диод, за исключением того, что он имеет определенное обратное напряжение пробоя, которое намного ниже, чем у любого стандартного выпрямительного диода. Стабилитроны всегда подключены с обратной полярностью по сравнению с выпрямительным диодом, поэтому катод (клемма с полосой на корпусе) подключается к наиболее положительной точке в цепи.


Зажимы Зенера

Часто необходимо применять зажим, чтобы напряжение переменного тока не превышало заданное значение. На рисунке 2 показаны два способа сделать это. Первый явно неверен — хотя он будет работать как фиксатор, пиковое выходное напряжение (на стабилитронах) будет всего 0,65 В. Стабилитроны действуют как обычные диоды с примененной обратной полярностью, поэтому первая цифра идентична паре обычных диодов.

Рисунок 2 — Зажим для переменного тока на стабилитроне

В первом случае оба стабилитрона будут вести себя как обычные диоды, потому что напряжение стабилитрона никогда не будет достигнуто.Во втором случае фактическое зафиксированное напряжение будет на 0,65 В выше напряжения стабилитрона из-за последовательного диода. Таким образом, стабилитроны на 12 В будут фиксировать напряжение около 12,65 В — R1 предназначен для ограничения тока до безопасного значения для стабилитронов, как описано выше.

Важно помнить, что стабилитроны идентичны стандартным диодам при напряжении ниже своего стабилитрона — фактически, обычные диоды могут использоваться как стабилитроны. Фактическое напряжение пробоя обычно намного выше, чем обычно используется, и каждый диод (даже из одного производственного цикла) будет иметь другое напряжение пробоя, которое обычно слишком велико, чтобы быть полезным.


Стабилитрон

Приведенные ниже данные довольно типичны для стабилитронов мощностью 1 Вт в целом и показывают напряжение стабилитрона и одно из наиболее важных значений — динамическое сопротивление. Это полезно, потому что показывает, насколько хорошо стабилитрон будет регулировать и (с небольшими расчетами), сколько пульсаций вы получите, когда стабилитрон будет питаться от типичного источника питания. Пример расчета показан ниже.

Если вы хотите измерить динамическое сопротивление самостоятельно, это довольно просто сделать.Во-первых, используйте ток около 20% от номинального максимума от регулируемого источника питания через подходящий резистор. Измерьте и запишите напряжение на стабилитроне. Теперь увеличьте ток (скажем) на 10 мА для стабилитронов менее 33 В. Вам нужно будет использовать меньшее увеличение тока для более высоких типов напряжения. Снова измерьте напряжение стабилитрона и отметьте точное увеличение тока.

Например, вы можете измерить следующее . ..

Напряжение стабилитрона = 11,97 В при 20 мА
Напряжение стабилитрона = 12.06 В при 30 мА
ΔV = 90 мВ, ΔI = 10 мА
R = ΔV / ΔI = 0,09 / 0,01 = 9 Ом

Этот процесс можно использовать с любым стабилитроном. Вам просто нужно отрегулировать ток в соответствии с требованиями, убедившись, что начальный и конечный испытательные токи находятся в пределах линейной части характеристик стабилитрона. Точность зависит от точности вашего испытательного оборудования, и важно убедиться, что температура стабилитрона остается стабильной во время теста, иначе вы получите неправильный ответ из-за теплового коэффициента стабилитрона.По возможности, испытания должны быть очень короткими с использованием импульсов, но это очень сложно без специального оборудования.

Следующие данные представляют собой полезный краткий справочник для стандартных стабилитронов мощностью 1 Вт. Основная информация взята из таблицы данных Semtech Electronics для стабилитронов серии 1N47xx. Обратите внимание, что суффикс «A» (например, 1N4747A) означает допуск 5%, а стандартный допуск обычно составляет 10%. Напряжение стабилитрона измеряется в условиях теплового равновесия и постоянного тока при указанном испытательном токе (I zt ).

Обратите внимание, что стабилитрон 6,2 В (1N4735) имеет самое низкое динамическое сопротивление из всех показанных, и, как правило, также имеет температурный коэффициент, близкий к нулю. Это означает, что это один из лучших значений для использования, где требуется достаточно стабильное опорное напряжение. Поскольку это очень полезное значение, оно выделено в таблице. Если вам нужна ссылка стабильного напряжения на действительно , то не использовать стабилитрон, но использовать специальную ссылку точности напряжения IC вместо этого.

90N6

9030 1 9013 901

901 301 1

901

901 9017

901 901 301

901

9013 901

901

901 301 9030 5,0 7

901 901

901 901 901

901

9030 76

901 901 901 901 301 901 301 9013 901

901

901 309

901

901

9030 1000

901 901 301 9030 1000

9030 115

9013 9013 901 301

9030 1 9030 1 9015

9013 901 301

9030 90

901 30N

901

901

9013. 0

901

901 301 50

Таблица характеристик 9014-1

  1. I Zt = испытательный ток стабилитрона
  2. R Zt = динамическое сопротивление при заявленном испытательном токе
  3. R Z = динамическое сопротивление при токе, показанном в следующем столбце (Ток в колене (мА))
  4. Ток утечки = ток через стабилитрон ниже изгиба кривой проводимости стабилитрона при напряжении, указанном в следующем столбце (Напряжение утечки)
  5. Пиковый ток = максимальный неповторяющийся кратковременный ток (обычно <1 мс)
  6. Постоянный ток = максимальный непрерывный ток, при условии, что провода на расстоянии 10 мм от тела имеют температуру 25 ° C (на практике маловероятно)

Рисунок 3 — Температурное снижение номинальных характеристик стабилитрона

Как и все полупроводники, стабилитроны должны быть снижены, если их температура превышает 25 ° C. Это , всегда — это случай при нормальном использовании, и если вы используете приведенные выше рекомендации, вам обычно не о чем беспокоиться. На приведенном выше графике показана типичная кривая снижения характеристик стабилитронов, и это необходимо соблюдать для надежности. Как и любой другой полупроводник, если стабилитрон слишком горячий, чтобы дотронуться до него, он горячее, чем должен быть. Уменьшите ток или используйте усиленный стабилитрон, описанный в AN-007.

Стабилитроны могут использоваться последовательно, либо для увеличения мощности, либо для получения напряжения, недоступного иным образом. Не используйте стабилитроны параллельно, так как они не будут делить ток поровну (помните, что большинство из них имеют допуск 10%). Стабилитрон с более низким напряжением «перехватит» ток, перегреется и выйдет из строя. При последовательном использовании старайтесь поддерживать отдельные напряжения стабилитрона близкими к одинаковым, так как это гарантирует, что оптимальный ток через каждый находится в оптимальном диапазоне. Например, использование стабилитрона на 27 В последовательно с стабилитроном на 5,1 В было бы плохой идеей, потому что невозможно легко достичь оптимального тока через оба.


Использование стабилитронов

Использовать стабилитроны в качестве стабилизаторов достаточно просто, но есть некоторые вещи, которые вам нужно знать, прежде чем все подключать. Типичная схема показана ниже для справки и не предназначена для чего-либо конкретного — это просто пример. Обратите внимание, что если вам нужен двойной источник питания (например, ± 15 В), тогда схема просто дублируется для отрицательного источника питания, меняя полярность стабилитрона и C1 по мере необходимости. Мы будем использовать стабилитрон 1 Вт, в данном случае 1N4744, диод 15 В.Максимальный ток, который мы хотели бы использовать, составляет примерно половину расчетного максимума (не более 33 мА). Минимально допустимый ток составляет около 10% (достаточно близко к 7 мА).

Рисунок 4 — Типичная схема стабилитрона

Во-первых, вам необходимо знать следующие подробности о предполагаемой схеме . ..

  1. Источник напряжения — например, от источника питания усилителя мощности (включая любые пульсации напряжения)
  2. Максимальное и минимальное значения напряжения источника — оно будет меняться в зависимости от напряжения сети, тока нагрузки и пульсаций
  3. Желаемое регулируемое напряжение — желательно с использованием стабилитрона стандартного значения.Мы будем использовать 15V
  4. Ток нагрузки — ожидаемый ток потребления схемы, питаемой от стабилизированного источника питания.

Когда у вас есть эта информация, вы можете определить последовательное сопротивление, необходимое для стабилитрона и нагрузки. Резистор должен пропускать ток, достаточный для обеспечения того, чтобы стабилитрон находился в пределах своей линейной области, но значительно ниже максимального значения для уменьшения рассеиваемой мощности. Если напряжение источника изменяется в широком диапазоне, может оказаться невозможным успешно использовать простой стабилизатор стабилитрона.

Предположим, что напряжение источника поступает от источника питания 35 В, используемого для усилителя мощности. Максимальное напряжение может достигать 38 В и падать до 30 В, когда усилитель мощности работает на полную мощность при низком сетевом напряжении. Между тем, предусилитель, которому требуется регулируемое питание, использует пару операционных усилителей и потребляет 10 мА. Вы хотите использовать источник питания 15 В. для операционных усилителей. Это вся необходимая информация, поэтому мы можем провести расчеты. Vs — напряжение источника, Is — ток источника, Iz — ток стабилитрона, I , L — ток нагрузки, Rs — сопротивление источника.

Iz (макс.) = 30 мА (наихудший случай, отсутствие нагрузки на сетевое питание и максимальное сетевое напряжение)
I L = 10 мА (ток, потребляемый операционными усилителями)
Is (макс.) = 40 мА (опять же, полный ток от источника в наихудшем случае)

Из этого мы можем вычислить сопротивление Rs. Напряжение на Rs составляет 23 В, когда напряжение источника максимальное, поэтому Rs должно быть …

.

Rs = Vs / I = 23 / 40м = 575 Ом

Когда напряжение источника минимально, на резисторе Rs будет только 15 В, поэтому нам нужно проверить, будет ли ток стабилитрона достаточным…

Is = V / R = 15/575 Ом = 26 мА
Iz = Is — I L = 26 мА — 10 мА = 16 мА

Когда мы убираем ток нагрузки (10 мА для операционных усилителей), у нас все еще остается доступный ток стабилитрона 16 мА, так что регулирование будет вполне приемлемым, и стабилитрон не будет нагружен. 575 Ом — нестандартное значение, поэтому вместо него мы будем использовать резистор 560 Ом. Нет необходимости пересчитывать все заново, потому что изменение небольшое, и мы позаботились о том, чтобы дизайн изначально был консервативным.Следующим шагом является определение мощности, рассеиваемой в истоковом резисторе Rs …

для наихудшего случая.

Is = 23 В / 560 Ом = 41 мА
P = Is² × R = 41 мА² * 560 Ом = 941 мВт

В этом случае было бы неразумно использовать резистор менее 2 Вт, но лучше с проволочной обмоткой 5 Вт. Точно так же, как рассчитывалась мощность резистора, неплохо еще раз проверить рассеивание стабилитрона в худшем случае. Возможно, удастся отключить операционные усилители, и в этом случае стабилитрон должен будет полностью поглотить 41 мА, поэтому рассеиваемая мощность составит 615 мВт.Это выше, чем цель, установленная в начале этого упражнения, но находится в пределах рейтинга стабилитрона 1W и никогда не будет проблемой в долгосрочной перспективе. Нормальное рассеивание в худшем случае составляет всего 465 мВт при подключенных операционных усилителях, и это вполне приемлемо.

На рисунке 4 показан конденсатор 220 мкФ, подключенный параллельно стабилитрону. Это не влияет на выходной шум , а не , потому что импеданс (он же динамическое сопротивление) стабилитрона очень низок. Мы использовали пример стабилитрона на 15 В, поэтому мы ожидаем, что его полное сопротивление будет около 14 Ом (из таблицы).Чтобы быть полезным для снижения шума, C1 должен быть не менее 1000 мкФ, но в большинстве случаев используются гораздо более низкие значения (обычно 100–220 мкФ). Цель состоит в том, чтобы подавать мгновенный (импульсный) ток, который может потребоваться для схемы или в случае операционных усилителей, чтобы гарантировать, что полное сопротивление источника питания останется низким, по крайней мере, до 2 МГц или около того.

Поскольку стабилитроны обладают динамическим сопротивлением, на выходе будет некоторая пульсация. Его можно рассчитать, исходя из входной пульсации, изменения тока источника и динамического сопротивления стабилитрона.Предположим, что на источнике есть пульсации 2В P-P. Это означает, что ток через Rs будет изменяться на 3,57 мА (I = V / R). Стабилитрон имеет динамическое сопротивление 14 Ом, поэтому изменение напряжения на стабилитроне должно быть . ..

.

V = R × I = 14 × 3,57 м = 50 мВ пик-пик (менее 20 мВ RMS)

При условии, что активная схема имеет хороший коэффициент отклонения источника питания (PSRR), пульсация 20 мВ при 100 Гц (или 120 Гц) не будет проблемой. Если по какой-то причине это недопустимо, то дешевле использовать трехконтактный регулятор, чем любой из известных методов уменьшения пульсаций.Наиболее распространенным из них является использование двух резисторов вместо резисторов Rs и установка конденсатора высокого номинала (не менее 470 мкФ) от места соединения резисторов с землей. Это снизит пульсации до уровня ниже 1 мВ, в зависимости от размера дополнительного конденсатора.


Максимальное увеличение стабильности (опорного напряжения)

Стандартный резистор стабилитрона подвержен большим колебаниям тока и рассеиваемой мощности при изменении входного напряжения. Простая цепь обратной связи может помочь поддерживать очень стабильный ток через стабилитрон и, следовательно, обеспечить более стабильное опорное напряжение. Как обсуждалось ранее, стабилитрон 6,2 В имеет очень низкий тепловой коэффициент напряжения, и если мы сможем обеспечить стабильный ток, это еще больше улучшит регулирование напряжения. Питание стабилитрона источником тока является стандартной практикой в ​​производстве ИС, и это достаточно просто сделать и в дискретных конструкциях.

Устройство, показанное ниже не предназначено для использования в качестве источника питания, но, чтобы обеспечить фиксированное опорное напряжение для других схем, которые могут потребовать напряжения для стабильных компараторов (к примеру).Схема не может конкурировать с выделенной ссылкой точности напряжения, но это будет удивительно хорошо для многих применений общего назначения. Токовое зеркало (Q2b и Q3b) питается от источника тока (Q1b), опорная точка которого поступает от стабилитрона, поэтому существует замкнутый контур, и изменение тока через сам стабилитрон может быть очень небольшим. При указанных значениях ток стабилитрона составляет всего 2,5 мА, что, похоже, противоречит приведенным ранее рекомендациям. Однако увеличение тока стабилитрона не очень помогает, но увеличивает рассеиваемую мощность в транзисторах.Например, если R1b уменьшается до 1 кОм, ток стабилитрона увеличивается до 5,4 мА, рассеивание в Q1b и Q3b удваивается, но регулирование улучшается лишь незначительно.

Рисунок 5 — «Обычные» по сравнению с. Схема прецизионного стабилитрона

Сравните (a) и (b) в схемах на Рисунке 5, и сразу станет очевидно, что напряжение от стабилизированной версии (b) должно быть действительно очень стабильным, даже при большом изменении входного напряжения. При моделировании в диапазоне напряжений от 10 В до 30 В изменение напряжения на стабилитроне составляет менее 3 мВ, из чего следует, что ток стабилитрона и рассеиваемая мощность стабилитрона практически не изменяются во всем диапазоне напряжений.Это также означает, что пульсация отказ чрезвычайно высокий, так и с добавлением трех дешевых транзисторов и четыре резисторов, мы можем приблизиться к опорному напряжению цепи реальной точности. R4b необходим, чтобы схема могла запускаться при подаче напряжения, но, к сожалению, это отрицательно влияет на производительность. Более высокое сопротивление снижает эффекты, но может вызвать ненадежный запуск.

Стандартный стабилизатор стабилитрона (a) будет показывать типичное изменение напряжения около 110 мВ от входного напряжения 10-30 В, при изменении тока стабилитрона от 1.От 7 мА до более 15 мА. Это значительно хуже, чем у стабилизированной версии, но может вообще не представлять проблемы, если входное напряжение достаточно стабильно. В действительности маловероятно, что вам когда-нибудь понадобится использовать более сложный стабилизированный стабилитрон, и он включен сюда исключительно в интересах полноты картины.


Список литературы

1 Обратное смещение / пробой — обсуждение явления, когда диод имеет обратное смещение / пробой. Билл Уилсон
2 Радиоэлектроника.com — Обзор стабилитрона
3 Архив технических данных — Коммерческие микрокомпоненты BZX2C16V Стабилитрон 2 Вт, от 3,6 до 200 В.
4 Теория стабилитронов — Руководство OnSemi HBD854 / D (Больше не выпускается в OnSemi.)



Прил. Индекс банкнот
Основной указатель

Тип V Z (ном.) I Zt мА R Zt Ом R Z Ом при . .. Колено
Ток
(мА)
Утечка
мкА
Утечка
Напряжение
Пик
Ток (мА)
Продолж.
Ток (мА)
1N4728 3,3 76 10 400 1 150 1 1375 275
69 10 400 1 100 1 1260 252
1N4730 3,9 64 3,9 64 1190 234
1N4731 4,3 58 9,0 400 1 50 1 10704 10704 53 8,0 500 1 10 1 970 193
1N4733 5,1 49 49 7 1 890 178
1N4734 5,6 45 5,0 600 1 10 2 810 810 2 41 2,0 700 1 10 3 730 146
1N4736 6,8 37 6,8 37 4 660 133
1N4737 7,5 34 4,0 700 0,5 10 5 605 121 301 1212 31 4,5 700 0,5 10 6 550 110
1N4739 9,1 28 500 100
1N4740 10 25 7,0 700 0,25 7,6 454 454 8. 0 700 0,25 5 8,4 414 83
1N4742 12 21 9,0 700 9,0 700
1N4743 13 19 10 700 0,25 5 9,9 344 69130 9,9 344 691
901 901 0.25 5 11,4 304 61
1N4745 16 15,5 16 700 0,25 5 1 5 18 14 20 750 0,25 5 13,7 250 50
1N4747 20 12.5 22 750 0,25 5 15,2 225 45
1N4748 22 11,5 750 23 11,5 750 23 205 41
1N4749 24 10,5 25 750 0,25 5 18,2 190 3812 3812 5 35 750 0,25 5 20,6 170 34
1N4751 30 8,5 401 301 9013 901 901 901 301 9030 401 9013 901 9030 150 30
1N4752 33 7,5 45 1000 0,25 5 25,1 135 2712
0 50 1000 0,25 5 27,4 125 25
1N4754 39 6,5 23
1N4755 43 6,0 70 1500 0,25 5 32,7 110 2212 2212 80 1500 0,25 5 35,8 95 19
1N4757 51 5,0 95 95 18
1N4758 56 4,5 110 2000 0,25 5 42,6 80 16 0 125 2000 0,25 5 47,1 70 14
1N4760 68 3,7 150 2000 65 13
1N4761 75 3,3 175 2000 0,25 5 56,0 60 1212 200 3000 0,25 5 62,2 55 11
1N4763 91 2,8 250 3,8 250 10
1N4764 100 2,5 350 3000 0,25 5 76,0 45 9
Уведомление об авторских правах. Эта статья, включая, но не ограничиваясь, весь текст и диаграммы, является интеллектуальной собственностью Рода Эллиотта и защищена авторским правом © 2004.Воспроизведение или переиздание любыми средствами, электронными, механическими или электромеханическими, строго запрещено международными законами об авторском праве. Автор (Род Эллиотт) предоставляет читателю право использовать эту информацию только в личных целях, а также разрешает сделать одну (1) копию для справки во время создания проекта. Коммерческое использование запрещено без письменного разрешения Рода Эллиотта.

Страница создана и © Род Эллиотт 30 июня 2005 г./ Июл 2015 — Обновлена ​​информация, добавлен рисунок 4.

Стабилитроны

  • Изучив этот раздел, вы сможете:
  • • Опишите типичную конструкцию стабилитрона.
  • • Опишите эффект Зенера.
  • • Опишите эффект лавины в стабилитронах.
  • • Опишите типичные применения стабилитронов.
  • • Регулировка напряжения шунта.
  • • Последовательное регулирование напряжения.
  • • Рассчитайте соответствующие значения для токоограничивающих резисторов для стабилитронов.

Рисунок 2.4.1. Конструкция стабилитрона

Конструкция стабилитрона

Стабилитрон

представляет собой модифицированную форму кремниевого диода PN, широко используемого для регулирования напряжения. Используемый кремний P-типа и N-типа имеет более сильное легирование, чем стандартный PN-диод.Как показано на рис. 2.4.1, это приводит к относительно тонкому переходному слою и, следовательно, к обратному напряжению пробоя, которое может быть намного ниже, чем в обычном диоде. Фактическое напряжение пробоя контролируется во время производства путем регулирования количества используемого легирования. Таким образом, напряжение пробоя может быть выбрано таким образом, чтобы оно происходило с точными предварительно установленными значениями в диапазоне от 3 до 300 В. Стабилитроны также могут выдерживать более высокий обратный ток, чем сопоставимые PN-диоды, и доступны с различной номинальной мощностью, обычно от 500 мВт до 50 Вт.

Когда стабилитроны смещены в прямом направлении, а напряжение на аноде выше, чем на катоде, они ведут себя так же, как обычный кремниевый диод. Когда они смещены в обратном направлении, они демонстрируют очень высокое сопротивление и, следовательно, низкое значение обратного тока утечки. Однако, когда обратное смещение достигает значения обратного напряжения пробоя диода (напряжения стабилитрона), происходит быстрое падение сопротивления и увеличение тока. Чтобы предотвратить увеличение этого тока до значения, превышающего номинальную мощность диода и разрушающего его, в стабилитроне используется резистор, подключенный последовательно с диодом, чтобы ограничить обратный ток до безопасного значения.

Рисунок 2.4.2. Альтернативные символы стабилитрона

Работа диода в этом состоянии означает, что из-за очень крутого наклона обратной характеристики диода любое небольшое изменение напряжения на диоде вызовет большое изменение тока через диод. Этот эффект очень полезен в схемах регулятора напряжения, как описано в наших модулях источников питания 2.1 (шунтирующие регуляторы напряжения) и 2.2 (последовательные регуляторы напряжения). Стабилитроны также полезны для обеспечения точного опорного напряжения для таких целей, как форма волны зажим.Это быстрое увеличение обратного тока при работе стабилитрона происходит из-за одного или обоих из двух эффектов:

Рисунок 2.4.3. Зенеровские и лавинные эффекты

1. Эффект Зенера

Из-за сильно легированных материалов P и N по обе стороны от перехода, которые, следовательно, являются хорошими проводниками, и очень тонкого обедненного слоя, напряженность электрического поля через обедненный слой очень высока, и становится относительно легко даже при низкие напряжения, чтобы дырки и электроны пересекали обедненный слой и объединялись, чтобы создать обратный ток. Этот эффект чаще всего встречается в стабилитронах с низким обратным напряжением пробоя, обычно от 5 до 6 В или меньше, и приводит к постепенному, а не к внезапному увеличению обратного тока.

2. Эффект лавины

В стабилитронах с более широкими обедненными слоями и, следовательно, с более высокими напряжениями пробоя, увеличение тока при напряжении пробоя происходит гораздо быстрее, что приводит к резкому снижению обратного сопротивления диода и почти вертикальной области к обратному току диода. характеристика.Этот эффект происходит в основном в диодах с более высоким напряжением обратного пробоя (более 5 В) и менее легированными областями P и N. Ниже напряжения обратного пробоя, хотя протекает только небольшой ток обратной утечки, некоторый ток все же течет, и поэтому электроны и дырки попадают в обедненный слой. Когда обратное напряжение приближается к обратному напряжению пробоя, электроны и дырки, попадающие в обедненный слой, попадают под действие сильного электрического поля и быстро ускоряются. В этом ускоренном состоянии они начинают сталкиваться с другими атомами и выбивать электроны из их атомных связей в процессе, называемом «ударной ионизацией», создавая больше пар электрон / дырка, которые также сильно ускоряются электрическим полем. Эти вторичные носители тока, в свою очередь, ионизируют другие атомы, вызывая очень быстрое увеличение обратного тока через диод. Этот процесс называется «Лавина»

.

Практические стабилитроны

Практические стабилитроны могут использовать либо стабилитрон, либо лавинный эффект, а в некоторых диодах оба эффекта также могут возникать одновременно, но на практике все эти диоды называют стабилитронами.И стабилитрон, и лавинный эффект также в некоторой степени зависят от температуры перехода диода. Однако в то время как ток в чисто стабилитроне имеет отрицательный температурный коэффициент, то есть ток уменьшается с увеличением температуры, противоположный эффект происходит в диоде, использующем лавинный эффект. Следовательно, можно изготавливать стабилитроны, которые используют оба эффекта, и поэтому эти температурные эффекты имеют тенденцию нейтрализовать друг друга, производя диоды с очень минимальным изменением тока из-за температуры.

Стабилитроны

широко используются в цепях питания как для стабилизации напряжения, так и для защиты от перенапряжения, их использование более подробно обсуждается в нашем Модуле источников питания 2.1.

Начало страницы

Принцип работы и характеристики стабилитронов

Введение

Стабилитроны — это диоды, которые действуют как стабилизаторы. Используя состояние обратного пробоя PN перехода, ток стабилитронов может изменяться в широком диапазоне, в то время как напряжение остается неизменным.Этот диод представляет собой полупроводниковый прибор с очень высоким сопротивлением вплоть до критического напряжения обратного пробоя. В этой критической точке пробоя обратное сопротивление снижается до очень небольшого значения. В этой области с низким сопротивлением ток увеличивается, а напряжение остается постоянным. Стабилитрон разделен по напряжению пробоя. Из-за этой характеристики, стабилитрон в основном используется в качестве регулятора напряжения или опорного напряжения элемента. Стабилитроны можно подключать последовательно для использования при более высоких напряжениях, а более стабильные напряжения можно получить, подключая последовательно.

базовое введение в стабилитроны, которые используются в качестве регуляторов напряжения в цепях постоянного тока.

Каталог

I Принцип стабилитронов

Прямая характеристика характеристической кривой вольт-ампер стабилитрона аналогична характеристике обычного диода. Обратной характеристикой является то, что когда обратное напряжение ниже, чем обратное напряжение пробоя, обратное сопротивление очень велико, а обратный ток утечки чрезвычайно мал.Однако, когда обратное напряжение приближается к критическому значению обратного напряжения, обратный ток внезапно увеличивается, что называется пробоем. В этой критической точке пробоя обратное сопротивление внезапно падает до очень небольшого значения. Хотя ток варьируется в большом диапазоне, напряжение на диодах стабильно вблизи напряжения пробоя, что обеспечивает стабилизацию напряжения диодов. Полупроводниковые диоды предотвращают обратный ток, но если приложенное обратное напряжение становится слишком высоким, может произойти преждевременный пробой или повреждение.

Стабилитроны

аналогичны стандартным диодам с PN переходом, но они специально разработаны для обеспечения низкого и заданного напряжения обратного пробоя. Он использует любое обратное напряжение, приложенное к нему. Стабилитрон ведет себя как обычный диод общего назначения, который сделан из кремниевой структуры PN. При прямом смещении анод расположен относительно своего катода и ведет себя как обычный сигнальный диод, пропускающий номинальный ток. Однако, в отличие от обычных диодов, которые предотвращают протекание тока через себя при обратном смещении, катод становится более положительным, чем анод, и как только обратное напряжение достигает заданного значения, стабилитрон начинает проводить обратное. Это связано с тем, что когда обратное напряжение на стабилитронах превышает номинальное напряжение устройства, происходит процесс, называемый Лавинный пробой . Слой обеднения полупроводником и ток начинают течь через диоды, чтобы ограничить рост напряжения.

II IV характеристика стабилитронов

Рисунок 1. ВАХ стабилитронов

Стабилитрон

используется в режиме « с обратным смещением, » или режиме обратного пробоя, когда анод диода подключен к отрицательному источнику питания.Из приведенной выше кривой ВАХ видно, что область характеристики обратного смещения стабилитрона представляет собой почти постоянное отрицательное напряжение, которое не имеет ничего общего с величиной тока, протекающего через диод, и остается почти неизменным, даже если ток сильно меняется. Ток стабилитрона остается между током пробоя I Z (мин.) И максимальным номинальным током I Z (макс.).

Эта способность управления может использоваться для регулирования или стабилизации источника напряжения для предотвращения изменений мощности или нагрузки. Тот факт, что напряжение на диоде в области пробоя почти постоянно, оказался важной особенностью стабилитронов, поскольку его можно использовать в простейших приложениях регулятора напряжения.

Регулятор должен обеспечивать постоянное выходное напряжение на нагрузку, подключенную параллельно. Несмотря на колебания напряжения питания или изменение тока нагрузки, стабилитрон будет продолжать регулировать напряжение до тех пор, пока ток диода не упадет ниже минимального значения IZ (min) в области обратного пробоя.

III Стабилитрон

Стабилитроны

могут быть использованы для получения стабильного выходного напряжения с низкой пульсацией при переменных токах нагрузки. Пропуская небольшой ток от источника напряжения через диод через подходящий токоограничивающий резистор (RS), стабилитрон будет проводить ток, достаточный для поддержания падения напряжения Vout.

Помните, что выходное напряжение постоянного тока полуволнового или двухполупериодного выпрямителя содержит пульсации, наложенные на постоянное напряжение и среднее выходное напряжение при изменении значения нагрузки. Подключив к выходу выпрямителя простую схему стабилитрона, как показано ниже, можно получить более стабильное выходное напряжение.

Рисунок 2. Схема стабилитрона

Резистор RS соединен последовательно со стабилитроном для ограничения тока через диод, а VS включен в комбинации. Регулируемое выходное напряжение Vout снимается с стабилитрона. Катодный вывод стабилитрона подключен к положительной шине источника питания постоянного тока, поэтому он имеет обратное смещение и будет работать в своем состоянии пробоя.Затем выберите резистор RS, чтобы ограничить максимальный ток, протекающий в цепи.

Без нагрузки, подключенной к цепи, ток нагрузки будет нулевым (IL = 0), и весь ток схемы проходит через стабилитрон, который, в свою очередь, потребляет максимальную мощность. Когда небольшая часть сопротивления нагрузки RLRS приведет к большему току подключения диода, потому что это увеличит требования к рассеиваемой мощности диода. Выбор соответствующего значения последовательного сопротивления, чтобы при отсутствии нагрузки или в условиях высокого импеданса не превышалась максимальная номинальная мощность стабилитрона.

Нагрузка подключена параллельно стабилитрону, поэтому напряжение на RL всегда совпадает с напряжением стабилитрона (V — [R = V ž). Существует минимальный ток Зенера, при котором стабилизация напряжения эффективна, и ток Зенера всегда должен оставаться выше этого значения при работе под нагрузкой в ​​области ее пробоя. Верхний предел тока зависит, конечно, от номинальной мощности устройства. Напряжение питания VS должно быть больше VZ.

Одна небольшая проблема такая же, как и в схеме стабилизатора на стабилитроне. Иногда диод генерирует электрический шум поверх источника постоянного тока, потому что он пытается стабилизировать напряжение. Обычно это не проблема для большинства приложений, но может потребоваться добавить большой конденсатор развязки на выходе стабилитрона для достижения сглаживания.

Стабилитроны

всегда работают в условиях обратного смещения. Стабилитрон может использоваться для разработки схемы регулятора напряжения для поддержания постоянного выходного напряжения постоянного тока на нагрузке в случае изменения входного напряжения или тока нагрузки. Стабилизатор напряжения Зенера состоит из токоограничивающего резистора RS, включенного последовательно с входным напряжением V S. При этом условии обратного смещения стабилитрон включен параллельно нагрузке RL. Стабильное выходное напряжение всегда выбирается таким же, как напряжение пробоя VZ диода.

Пример

Требуется стабильное питание 5,0 В от входа постоянного тока 12 В. Стабилитроны имеют максимальную номинальную мощность PZ 2 Вт. Рассчитано с использованием схемы стабилитрона выше:

а).Максимальный ток, протекающий через стабилитрон.

б). Минимальное значение последовательного сопротивления, RS

в). Ток нагрузки IL, если резистор нагрузки 1 кОм подключен к стабилитрону.

г). Ток стабилитрона IZ, при полной нагрузке.

IV Напряжение стабилитрона

В дополнение к генерации один выход стабильного напряжения, диоды Зенера также могут быть соединены последовательно с обычных сигналов кремниевых диодов , чтобы произвести множество различных выходных значений опорного напряжения, как показано ниже.

Стабилитроны, включенные последовательно

Рисунок 3. Стабилитроны, включенные последовательно

Значение каждого стабилитрона можно выбрать в соответствии с приложением, в то время как кремниевые диоды всегда падают примерно на 0,6–0,7 В при прямом смещении. Напряжение питания Vin должно, конечно, быть выше, чем максимальное выходное опорное напряжение, которое в приведенном выше примере является 19v.

Типичная электронная схема типичного стабилитрона — 500 мВт, серия BZX55 или 1.3W, серия BZX85. Например, C7V5 — это диод на 7,5 В, а ссылочный номер диода — BZX55C7V5.

Стабилитроны серии 500 мВт имеют диапазон напряжения приблизительно от 2,4 до вольт и обычно имеют ту же последовательность значений для серии резисторов 5% (E24). Эти небольшие, но очень полезные диоды имеют разные номиналы напряжения, как показано в таблице ниже.

BZX55 Номинальная мощность стабилитрона 500 мВт

2.

2,7 В

3,0 В

3,3 В

3,6 В

3,9 В

4,3 В

4,7 В

5,1 В

5,6 В

6,2 В

6,8 В

7,5 В

8,2 В

9.1В

10 В

11 В

12В

13 В

15 В

16 В

18 В

20 В

22 В

24 В

27В

30 В

33В

36 В

39 В

43В

47 В

BZX85 Номинальная мощность стабилитрона 1. 3Вт

3,3 В

3,6 В

3,9 В

4,3 В

4,7 В

5,1 В

5,6

6.2В

6,8 В

7,5 В

8,2 В

9,1 В

10 В

11 В

12В

13 В

15 В

16 В

18 В

20 В

22 В

24 В

27В

30 В

33В

36 В

39 В

43В

47 В

51 В

56В

62 В

В Цепь фиксатора стабилитрона

До сих пор мы изучали, как стабилитрон регулирует постоянный источник питания постоянного тока. Но как стабилитрон реагирует на изменяющийся сигнал , если входной сигнал не является установившимся постоянным током, а имеет форму волны переменного-переменного тока.

Схема ограничения и ограничения диодов используется для формирования или изменения формы входного сигнала переменного тока (или любой синусоидальной волны) и создания выходных сигналов различной формы в соответствии с расположением схемы. Цепи диодного ограничителя также называют ограничителями, потому что они ограничивают положительную (или отрицательную) часть входного сигнала переменного тока. Так как схемы фиксации Зенера ограничивают или отсекают часть формы сигнала, они в основном используются для защиты схем или схем формирования сигналов.

Например, если мы хотим ограничить выходной сигнал до +7,5 В, мы будем использовать стабилитрон на 7,5 В. Если форма выходного сигнала пытается превысить предел 7,5 В, стабилитрон «отсекает» перенапряжение на входе, создавая сигнал с плоской вершиной и сохраняя постоянный выход на уровне + 7,5 В. Обратите внимание, что при прямом смещении стабилитрон остается диодом. Когда выходной сигнал переменного тока ниже -0,7 В, стабилитрон будет «проводить», как любой нормальный кремниевый диод, и ограничивать выход до -0.7V, как показано ниже.

Рисунок 4. Схема фиксатора стабилитрона

Стабилитроны, соединенные встречно-спиной, могут использоваться в качестве того, что вырабатывает стабилизатор напряжения переменного тока, так называемый «генератор прямоугольных волн Пора». С помощью этой конфигурации мы можем разрезать форму волны между положительным значением + 8,2 В и отрицательным значением -8,2 В для стабилитрона 7,5 В

.

Так, например, если мы хотим ограничить форму выходного сигнала между двумя разными минимальным и максимальным значениями, такими как + 8 В и -6 В, нам нужно использовать только два стабилитрона с разными номиналами.Обратите внимание, что выход ограничивает форму волны переменного тока в диапазоне от + 8,7 В до -6,7 В из-за увеличения смещенного напряжения на диоде.

Другими словами, размах напряжения составляет 15,4 вольт вместо ожидаемых 14 вольт, потому что падение напряжения прямого смещения на диоде увеличивается на 0,7 вольт в каждом направлении.

Этот тип конфигурации ограничителя довольно распространен для защиты электронных схем от перенапряжений. Два стабилитрона обычно размещаются на клеммах ввода питания.Во время нормальной работы один из стабилитронов выключен, и диод мало влияет. Однако, если форма входного напряжения превышает его предел, стабилитрон включается и фиксирует вход для защиты схемы.

VI Применение стабилитронов

1. Типовая схема последовательного регулятора

Рисунок 5. Типовая схема последовательного регулятора

В этой схеме база транзистора T стабилизируется на уровне 13 В стабилитроном D, затем его эмиттер будет выдавать постоянное напряжение 13-0.7 = 12,3 В. В пределах определенного диапазона, независимо от того, увеличивается или уменьшается входное напряжение, независимо от сопротивления нагрузки, а выходное напряжение остается неизменным. Эта схема используется во многих ситуациях. 7805 — это последовательная схема встроенного регулятора напряжения, которая может выдавать 5 В. 7805-7824 может выводить напряжение 5-24 В. Он применяется на многих устройствах.

Рисунок 6. Схема встроенного регулятора напряжения серии 7805

2.Схема защиты от перенапряжения в ТВ

Рисунок 7. Схема защиты от перенапряжения в ТВ

115V — основное напряжение питания телевизора. Когда выходное напряжение источника питания слишком высокое, включается D и включается транзистор T. Его коллекторный потенциал изменится с исходного высокого уровня (5 В) на низкий уровень. Подача напряжения через линию управления режимом ожидания переводит телевизор в режим ожидания.

3.Схема гашения дуги

Рисунок 7. Схема гашения дуги

Когда соответствующий стабилитрон подключен параллельно катушке индуктивности (принцип также может быть подключен к обычному диоду), и катушка отключена во включенном состоянии, высокое напряжение, генерируемое высвобождением ее электромагнитной энергии берется диодом. Таким образом, когда переключатель выключен, дуга переключателя устраняется. Эта прикладная схема чаще используется в промышленности, например, в некоторых более мощных схемах электромагнитного управления.

Артикул Рекомендуемый:

Введение в типы диодов

Что такое лазерные диоды?

Преимущества замены варистора микросхемы и точки выбора

Электронные компоненты, используемые для защиты от электростатического разряда / перенапряжения, включают MLCC (многослойные керамические чип-конденсаторы), подавители электростатического разряда, TVS-диоды (стабилитроны) и варисторы микросхемы.

В последнее время стало тенденцией заменять варисторы на микросхемы в областях, где до сих пор широко использовались TVS-диоды.Варисторы для микросхем TDK обладают отличной способностью подавлять электростатические разряды / скачки напряжения, и, кроме того, они доступны в широком спектре продуктов, поддерживающих широкий диапазон скоростей передачи сигналов. Замена TVS-диода дает различные преимущества в основном с точки зрения экономии места, но также с точки зрения снижения затрат и подавления шума.

Что такое варистор микросхемы?

Это устройство защиты от электростатического разряда / перенапряжения, в котором используются характеристики сопротивления керамических полупроводников.

Вставляется между цепью и землей и устраняет статическое электричество и скачки напряжения на землю

Варистор микросхемы — это компонент микросхемы, структура которой состоит из чередующихся слоев внутренних электродов и материала варистора (керамический полупроводник на основе оксида цинка). Материал варистора имеет нелинейные характеристики сопротивления и первоначально работает с высоким сопротивлением как конденсатор, но как только оно превышает заданное напряжение (напряжение варистора), значение сопротивления внезапно падает и позволяет току течь.Используя это свойство, , вставив его между линией и землей, он обходит статическое электричество и выбросы на землю и защищает цепь.

Емкость варистора микросхемы почти такая же, как у TVS-диода

.

На приведенном рядом графике представлено сравнение формы сигнала измерения во время испытания на устойчивость к электростатическому разряду в соответствии с IEC61000-4-2, когда TVS-диод и варистор микросхемы используются в качестве устройств для подавления электростатических разрядов / перенапряжения.
Когда нет защитного устройства, пиковая форма волны может достигать 1500 В, , но как для TVS-диодов, так и для варисторов микросхемы, пиковое напряжение (Vpeak) подавляется до 40 В, а среднее напряжение (Vave) — до 10 В. , который показывает отличные характеристики поглощения электростатического разряда.

Преимущества замены TVS диода на варистор микросхемы

Однако TVS-диод имеет следующие особенности. Следовательно, в схеме, которая требует емкостных компонентов, варистор микросхемы более эффективен, чем TVS-диод, и ожидается, что он заменит TVS-диоды в устройствах ICT, таких как смартфоны, автомобильное электрическое оборудование, промышленное оборудование и медицинское оборудование

Характеристики диода TVS

Из-за полярности его сложно сделать компактным
и низкий профиль

Нормальный TVS-диод имеет полярность и только в однонаправленном режиме подавления электростатического разряда / перенапряжения. Существуют продукты, которые поддерживают оба направления с помощью одного элемента, но есть ограничения на то, насколько компактными и низкопрофильными они могут быть.

Превосходная защита за счет низкой емкости
Обладает отличными защитными характеристиками за счет малой емкости, но из-за конструкции элемента трудно увеличить емкость.

Характеристики варистора микросхемы
  • ● Поскольку полярность отсутствует, один элемент может использоваться для двунаправленного ESD / подавления скачков напряжения
  • ● Легко получить высокую емкость
  • ● Компактный и низкий профиль
  • ● Отличная устойчивость к электростатическим разрядам и скачкам напряжения

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *