Сопротивление кабеля формула: Формула зависимости сопротивления проводников от длины проводника, площади поперечного сечения и мат — Теоретические вопросы — Технический форум

Содержание

Основные особенности расчета кабеля по его длине

Одним из самых важных критериев в процессе выбора кабеля, который обеспечивает электропитание, является определенное количество величин, потому стоит обращать внимание на такой способ, как расчет сечения кабеля по нагрузке, а также расчет по сечению. Для того чтобы обеспечить высокий уровень безопасности и предельной надежности, очень важно обратить внимание на длину каждого из элементов линии, кроме того, всей линии в целом. Стоит отметить, что практически все современные приспособления в первую очередь рассчитаны на какие-то определенные максимальные значения рабочего напряжения, которое может быть равно показателям от 185 до 240 Вольт. Именно по этой причине, если при расчете не учитывать показатели потери напряжения, которые связаны именно с длиной кабеля, появляется большая вероятность того, что напряжение на конце линии будет значительно меньше, чем то, что требуется для обеспечения нормальной работы всех имеющихся устройств. В свою очередь это может привести к невозможности их эксплуатации или, что еще более неприятно, могут вообще выйти из строя. Таким образом, проводя подобные расчеты сечения кабеля по показателям длины, можно обеспечить безопасность и качественную работу всей системы в целом.

Расчет сечения кабеля по длине в быту

Прежде всего, подобный метод идеально подойдет в быту. Как правило, такой расчет в данных условиях необходим в процессе изготовления удлинителей, которые рассчитаны на достаточно большие расстояния. Что касается остальных случаев, то при прокладке кабеля в бытовых условиях подобные сложные расчеты не требуются. Это основано на том, что длина линий в быту отличается относительно небольшой длиной, потому все потери напряжения настолько малы, что ими вполне можно пренебречь. Несмотря на это, в процессе прокладки линии всегда следует оставлять определенный запас, равный примерно 15 см, причем оставлять его требуется с каждой стороны на проведение таких процессов, как коммутация проводов, их подключение, где осуществляется такой процесс, как пайка, сварка или обжим. Что касается концов кабелей, то те, которые входят в щиток, должны иметь еще больший запас для подключения защитной автоматики и достаточно аккуратной укладки.

Говоря иными словами, в бытовых условиях на той поверхности, где планируется прокладывать кабель, прежде всего, стоит проставить определенные отметки мест расположения розеток, выключателей, электропотребителей, коммутационных коробок и иных подобных приспособлений. После этого рулеткой осуществляется замер расстояния и отрезается кабель, но с небольшим запасом. По окончании данных работ крепится непосредственно сам кабель к поверхности, но в строго соответствии со всеми требованиями ПУЭ.

Многие монтажники, имеющие большой опыт работы в данной сфере деятельности, а также те, которые имеют напарника, поступают еще более просто, что позволяет им сэкономить немалое количество времени. В самом начале производится разметка расположения таких устройств, как коммутационные коробочки, выключатели и розетки. Затем, без предварительного замера осуществляется прокладка и крепление кабеля, но с запасом, после чего отрезается.

Расчет сечения кабеля по длине в промышленности

Что касается области промышленности, то здесь требуемый расчет сечения кабеля по длине осуществляется уже на этапе проектирования электрических сетей. Подобные расчеты важно сделать в том случае, если на кабель будут возложены долговременные и достаточно серьезные нагрузки.

Практически все проводники по причине своих свойств, обладают определенной величиной электрического сопротивления, которое может вызвать потери в процессе прохождения по проводам электрического тока. Стоит отметить такие факторы, влияющие на параметры величины потерь и сопротивления, как материал, из которого выполнен проводник, то есть алюминий и медь, имеет значение сечение проводника, как правило, чем меньше сечение, тем потери больше. Кроме того, важна длина проводника, то есть чем больше данный параметр, тем соответственно больше и потери.

На основании всех вышеперечисленных факторов становится ясно, по какой причине в проводниках присутствует явление некоторого падения напряжения, которое, как правило, равно величине тока, умноженного на показатели сопротивления проводника. Согласно установленным правилам, примерное значение падения показателей напряжения должно быть равно 5%. Если данный параметр немного выше, проводник следует подобрать с большим сечением.

Как осуществляется расчет сечения кабеля по длине

Для осуществления подобных расчетов, как правило, используется специальная формула. В ней содержаться показатели длины, удельное сопротивление самого проводника, площадь сечения. При этом сопротивление определяется по специальным справочным таблицам, при этом можно убедиться в том, что много здесь зависит от марки провода и самого кабеля. После определения всех необходимых составляющих, определяются особые расчетные значения тока. Для этой цели суммарная мощность нагрузки разделяется на величину показателей напряжения в сети. По специальной справочной формуле рассчитывается величина падения в сети или в линии напряжения. Оценка величины соотношения в процентах к значению изначального напряжения, а также выбор оптимального сечения проводника, который должен укладываться в пятипроцентный барьер.

Важно обратить внимание, что для промышленных и иных предприятий со средним и крупным товарооборотом, рекомендуется производить специальный комплексный расчет, в процессе которого учитываются все необходимые требования для тех или иных конкретных условий эксплуатации. Для проведения подобных расчетов можно обратиться за помощью к специалистам, которые на самом высоком профессиональном уровне, с определенными гарантиями обеспечения работоспособности сети в процессе рабочих нагрузок произведут все расчеты. Кроме того, будут выполнены расчеты, которые обеспечат минимальные затраты, если есть необходимость произвести наращивание производственной мощности.

Пример расчета бытовой сфере

Если после осуществления подсчета суммарной мощности потребителей было получено 3,8 кВт, находится сила тока по такой формуле — I = P/U·cosφ. Здесь P – представляет собой суммарную мощность, (Вт), I — это сила тока, (А), cosφ – коэффициент, который равен 1, но только если сети бытовые, а также U — напряжение в сети, (В).

В данном случае, если 3,8 кВт разделить на напряжение 220 В, получится число, равное 17,3 А. Применяя специальные таблицы ПУЭ под номерами 1.3.4 и 1.3.5 определяется необходимое сечение медного кабеля или выполненное из алюминия. Что касается материала, то в быту рекомендуется использовать именно медь, потому при полученных показателях силы тока потребуется кабель из меди с сечением 1,5 кв. мм.

После этого, как правило, рассчитывается показатель сопротивления, по формуле R = p·L/S, где R — это сопротивление провода, (Ом), указатель p  представляет собой значение удельного сопротивления, (Ом·мм2/м), L – это параметр длины провода или кабеля, (м), а S — площадь поперечного сечения, который выражается в мм2. Стоит отметить, что удельное сопротивление Р – это постоянная величина, которая прямо зависит от материала. Если это медь, то удельное сопротивление равно 0,0175, если алюминий, то он равен 0,0281. На основании проведенных расчетов для одной жилы в кабеле, длина которого составляет 20 м, получается R = 0,0175·20/1,5 = 0,232 Ом.  По той причине, что ток проходит только по одной жиле, а по другой возвращается, параметр длины удваивается, то есть получается Rобщ = 0,464 Ом.

При необходимости рассчитать потери напряжения используется формула dU = I·R. В данной формуле I — это сила тока, (А),dU – потери напряжения, (В), а R — показывает сопротивление кабеля или провода в Ом. После проведения расчетов получается такой пример dU = 17,3·0,464 = 4,06 В = 8,02 В.

Что касается расчета потерь в процентном соотношении, то данный показатель выводится так — 8,02 В / 220 В х 100% = 3,65%. Как видно, полученный показатель не превышает 5% то есть допустимое значение, а соответственно выбор был осуществлен верно. В ситуации, если цифра будет больше данной величины, рекомендуется подобрать медный кабель с параметром сечения не 1,5 мм, а 2,5 кв. мм.

Параметры линий и трансформаторов: расчет, формулы

Удельные активные сопротивления проводов r0 , Ом/км, приводятся в справочниках. Для алюминиевых проводов произведение сечения провода F и его активного сопротивления r0 практически постоянно (определяется характеристиками алюминия). Некоторые отличия от среднего значения обусловлены конструкцией провода (числом и диаметром свитых проволок и наличием сердечника из стальных проводов в проводах марки АС).

Проводимость стали намного ниже алюминия, однако наличие дополнительного проводника несколько снижает общее сопротивление. Так, для проводов с сечением алюминия 185 мм2 и сечениями стального сердечника 29 и 43 мм2 удельные сопротивления составляют 0,159 и 0,156 Ом/км. Произведение F ⋅ r 0 для всех используемых марок проводов находится в диапазоне 27,2–30,4. В связи с этим в оценочных расчетах используют формулу r0 = 28,5 / F.

На некоторых старых ВЛ 0,4 кВ, а иногда и 6–10 кВ остались стальные провода марок ПСО-3,5; ПСО-4 и ПСО-5 (цифра означает диаметр провода в мм), а также ПС-25 (35, 50, 70; цифра означает сечение провода). Их активное сопротивление сильно зависит от протекающего тока. Например, для ПСО-5 при токе 1,5 А r0 = 7,9 Ом/км, а при токе 20 А r0 = 12,7 Ом/км. Для ПС-35 при тех же токах r0 = 5,26 и 6,7 Ом/км.

Активные сопротивления проводов ВЛ существенно зависят от температуры окружающего воздуха. Эта зависимость имеет вид (прил. 2):

 

Коэффициент kарм. принимают равным 1,02 для линий 110 кВ и выше и равным нулю для линий более низких напряжений (см. прил. 2). Наличие в формуле параметра j предусматривает учет некоторого превышения температуры провода над температурой окружающего воздуха за счет нагрева провода проходящим по нему током. Как следует из формулы (2.39), при плотности тока 1 А/мм2 нагрев провода сечением F = 300 мм2 повысит его температуру на 8,3 °С, что приведет к увеличению сопротивления на 3,3 %.

Для проводов меньших сечений влияние тока снижается (более тонкий провод охлаждается быстрее, так как тепловыделение в проводе пропорционально сечению, а площадь охлаждения – длине окружности). Например, для провода сечением F = 120 мм2 оно составит 5,2 °С. При отсутствии данных о средней плотности тока за расчетный период можно принять j = 0,5 А/мм2 . В этом случае приведенные значения повышения температуры провода снизятся в четыре раза.

Температура провода зависит не только от температуры окружающего воздуха и тока в проводе, но и от солнечной радиации, приводящей к некоторому его нагреву, и от силы и направления ветра, приводящего к охлаждению провода. Учет действительных значений солнечной радиации, силы и направления ветра в практических расчетах затруднен в силу информационной необеспеченности.

В связи с тем, что степень воздействия этих двух факторов на температуру провода значительно меньше, чем первых двух, а также учитывая противоположную направленность их воздействия, в практических расчетах ими можно пренебречь.

Реактивные (индуктивные) сопротивления проводов определяются внутренним и внешним магнитными полями. Характеристики внутреннего поля определяются материалом проводника, а внешнего – диаметром провода и его расположением относительно земли и особенно относительно проводов других фаз. Для алюминиевых проводов внутреннее реактивное сопротивление пренебрежимо мало.

Расположение проводов влияет на характеристики внешнего 53 магнитного поля слабее, чем диаметр провода, хотя и последний в силу логарифмической зависимости индуктивного сопротивления от геометрических размеров и сравнительно небольших различий в диаметрах проводов также не оказывает существенного влияния на величину сопротивления.

В частности, для проводов сечением 70 мм2 , подвешенных на опорах линий 35 и 110 кВ (геометрические размеры различны), удельные реактивные сопротивления x0 равны соответственно 0,432 и 0,444 Ом/км (различие – 2,8 %). Для провода сечением 240 мм2 на линии 110 кВ x0 = 0,405 Ом/км, что на 9,6 % ниже x0 = 0,444 Ом/км для провода сечением 70 мм2 . В оценочных расчетах часто используют значение x0 = 0,4 Ом/км.

Внутреннее реактивное сопротивление стальных проводов существенно, поэтому общее реактивное сопротивление определяют как сумму внешнего сопротивления, аналогичного сопротивлению алюминиевых проводов, и внутреннего, сильно зависящего от протекающего тока. Например, для провода ПСО-5 при токе 1,5 А внутреннее реактивное сопротивление x0в = 2,13 Ом/км, а при токе 20 А x0в = 10,5 Ом/км. Для ПС-35 при тех же токах x0в = 0,34 и 1,04 Ом/км. Поэтому при расчетах сетей со стальными проводами необходимо учитывать зависимости их активного и реактивного сопротивления от протекающего тока.

Кроме сопротивления проводов воздушные линии характеризуются емкостной проводимостью на землю. Хотя провод имеет сравнительно малые размеры, он вместе с землей представляет собой конденсатор, одна обкладка которого имеет потенциал фазного провода, а другая – ноль. Емкость такого конденсатора характеризуется удельной емкостной проводимостью b0 , См/км (Сименс на 1 км), приводимой в справочниках.

Генерируемую линией реактивную мощность определяют по формуле Qc = b0 U 2 . Несмотря на малые значения b0 , при большой протяженности линии значения Qc оказываются существенными. Особенно это характерно для линий 330–750 кВ в связи с применением на них расщепленной фазы, увеличивающей эквивалентный радиус провода и соответственно значение b0 . Реактивная мощность, генерируемая одним километром линий различного напряжения, составляет:

В расчетах режимов линию представляют в виде ∏-образной схемы с соответствующими продольными активным и реактивным сопротивлением и поперечными емкостными проводимостями по концам линии, каждая из которых равна половине суммарной емкостной проводимости.

Трансформаторы характеризуются активным и реактивным сопротивлениями и активными и реактивными потерями мощности холостого хода. Эти параметры приводятся в справочниках. Трехобмоточные трансформаторы (автотрансформаторы) в расчетных схемах представляют в виде звезды, реактивные сопротивления лучей которой определяют по данным о напряжениях короткого замыкания, а активные сопротивления – по потерям мощности короткого замыкания между каждой парой обмоток. Для большинства трансформаторов и автотрансформаторов потери мощности короткого замыкания приводятся в виде одной величины. Поэтому активные сопротивления лучей приходится принимать одинаковыми. Расчетные значения сопротивлений двухобмоточных трансформаторов и лучей трехобмоточных трансформаторов (автотрансформаторов) и сопротивлений проводов при температуре провода t п = 20 °С приведены в прил. 9.

Расчёт сопротивления нулевой последовательности линии

Величина сопротивления нулевой последовательности используется в расчетах однофазного короткого замыкания методом симметричных составляющих. Но, зачастую проблематично найти значение этой величины в справочниках для различного исполнения электрических сетей, и, следовательно, невозможно выполнить расчет. При этом значения сопротивлений фазного и нулевого проводников в справочниках присутствуют. Как же быть?

Можно использовать следующие формулы расчета сопротивления нулевой последовательности:

 

 

где R0л (X0л) – активное (индуктивное) сопротивление нулевой последовательности линии;

Rф (Xф) – активное (индуктивное) сопротивление фазного проводника;

Rн (Xн) – активное (индуктивное) сопротивление нулевого проводника.

Вывод формул смотри ниже.

Сразу следует подчеркнуть, что этими формулами следует пользоваться, если сопротивление нулевой последовательности неизвестно. Если есть выбор, использовать справочные данные, или выполнить расчет сопротивления нулевой последовательности, то, наверное, следует отдать предпочтение справочным данным.

Итак, основным документом, регламентирующим расчеты токов короткого замыкания до 1000 В, является ГОСТ 28249-93 «Короткие замыкания в электроустановках. Методы расчета в электроустановках переменного тока напряжением до 1 кВ». В справочном приложении 2 этого ГОСТ, в таблицах №№ 6-14 содержатся данные о сопротивлениях прямой и нулевой последовательностей для различного исполнения кабельных линий. К сожалению, есть варианты исполнения линий, довольно распространенные, для которых нет подходящей таблицы в этом стандарте. Например, нельзя найти параметры 4-жильного кабеля с алюминиевыми жилами в непроводящей оболочке, если сечение жил одинаковое (в табл. 11 сечение нулевого провода меньше, чем сечение фазного). Также, отсутствуют аналогичные данные для кабеля с медными жилами (в табл.14 приведены данные для кабеля в стальной оболочке; да и номенклатура сечений неполная).

В то же время, в справочниках есть данные сопротивлений для любого исполнения линий. Вот только приведены эти данные в виде сопротивлений фазного и нулевого проводников (для применения в расчетах тока однофазного короткого замыкания методом петли «фаза-ноль»), а не сопротивлений прямой, обратной и нулевой последовательностей.

Логично предположить, что если результаты расчета по двум разным методам:

— методу петли «фаза-ноль»;

— методу симметричных составляющих,

приравнять, то можно сделать вывод о соотношениях сопротивлений, используемых в этих методах.

Формула расчета тока однофазного КЗ методом петли «фаза-ноль» выглядит следующим образом (см. [2] и [3]):

 

где U – линейное напряжение сети;

Uф – фазное напряжение сети;

Zпт – полное сопротивление петли фаза-ноль от трансформатора до точки КЗ;

Zс.т. – сопротивление системы и трансформатора току однофазного КЗ.

 

где Х1т, Х2т, Х0т, R1т, R2т, R0т – индуктивные (Х) и активные (R) сопротивления трансформатора токам прямой (1), обратной (2) и нулевой (0) последовательностей;

Хс – индуктивное сопротивление питающей сети;

Rд – сопротивление электрической дуги.

Перепишем формулу (3) в более удобной форме, при этом:

— учтем, что сопротивления прямой и обратной последовательностей равны;

— умножим числитель и знаменатель на 3;

— в знаменателе будем складывать не модули полных сопротивлений, а отдельно их активные и индуктивные составляющие (это сделает расчет более точным).

 

где Rф (Rн) – активное сопротивление фазного (нулевого) проводника линии;

Xф (Xн) – индуктивное сопротивление фазного (нулевого) проводника линии.

Вот формула расчета тока однофазного КЗ методом симметричных составляющих (см. [1], п.8.2.1, формула 24):

 

где R1сум. (R0сум.) – суммарное активное сопротивление прямой (нулевой) последовательности;

X1сум. (X0сум.) – суммарное индуктивное сопротивление прямой (нулевой) последовательности.

Перепишем формулу (6), подставив в нее значение фазного напряжения, а также расписав более подробно суммарные величины сопротивлений прямой и обратной последовательностей:

 

где R1л (R0л) – суммарное активное сопротивление прямой (нулевой) последовательности линии;

X1л (X0л) – суммарное индуктивное сопротивление прямой (нулевой) последовательности линии.

После сравнения формул (5) и (7) получим следующие выражения:

 

Считая, что Rф=R1л, Xф=X1л, выразим из соотношений (8) и (9) величины сопротивлений нулевой последовательности:

 

 

Итак, при отсутствии справочных значений о величине сопротивления нулевой последовательности линии, эти значения можно рассчитать, используя справочные данные сопротивлений фазного и нулевого проводников линии.

Используемая литература

ГОСТ 28249-93 «Короткие замыкания в электроустановках. Методы расчета в электроустановках переменного тока напряжением до 1 кВ».

Кужеков С. Л. Практическое пособие по электрическим сетям и электрооборудованию / С.Л. Кужеков, С. В. Гончаров. – Ростов н/Д.: Феникс, 2007.

Тульчин И. К., Нудлер Г. И. Электрические сети и электрооборудование жилых и общественных зданий. – 2-е изд., перераб. и доп. – М.: Энерготамиздат, 1990.

Сопротивление проволоки, как узнать электрическое сопротивление провода.

 

 

 

Тема: какое сопротивление имеет провод, кабель, электрический шнур, как его найти.

 

В области электротехники, электроники понятие электрического сопротивления является фундаментальным. Оно относится к основным электрическим величинам, которое повсеместно используется как в теории, так и на практике. Любой электрический проводник имеет свое определенное сопротивление, которое во многом зависит от таких основных факторов: материала проводника, его размер (длина и сечение), температура. Помимо этого стоит учитывать, что сопротивление может быть активным и реактивным.

 

Электрическое сопротивление провода можно вычислить по следующей простой формуле, в которой присутствуют такие величины: удельное сопротивление материала, из которого сделан провод, его сечение и длина:

 

 

 

Есть такое понятие как удельное сопротивление материала (вещества). У каждого проводника, сделанного из того или иного материала свое удельное сопротивление. Это обуславливается особенностями внутренней структуры (на атомном уровне) самого вещества. То есть, у каждого отдельно взятого материала (проводника тока) при одних и тех же размерах и условиях будет различное сопротивление. Это удельное сопротивление выражается как Ом на метр (при сечении 1 миллиметр квадратный). Удельное сопротивление каждого отдельного материала проводника нужно смотреть в специальной таблице (в справочниках, интернете).

 

 

Нахождением сопротивления по формуле имеет смысл при теоретических расчетах, на практике же намного проще воспользоваться обычным измерителем (электронным тестером, мультиметром, омметром). Стоит учитывать, что измерения электрического сопротивления должны производиться при отключенном электропитании схемы, участка цепи, провода. Если на схеме (измеряемом проводе) будет присутствовать хоть какое-то напряжение, то в лучшем случае это повлечет за собой неверные результаты измерения, ну, а в худшем может выйти из строя и сам измерительный прибор.

 

 

 

 

Само же измерение электрического сопротивления мультиметром сводится к его включению и выбору на нём определённого диапазона измерения (Ом, килоОм, мегаОм). Наиболее малым сопротивлением является Ом. 1000 Ом, это 1 кОм (килоом). 1000 000 Ом или 1000 кОм, это 1 мОм (мегаом). В обычных проводах (шнуры питания, небольшие куски кабеля и проводов) сопротивление будет примерно до десятков Ом. Сопротивление от десятков и до тысяч Ом уже можно встретить к примеру у обмоток трансформатора, катушек электромагнита, звонка и т.д. Ну, а мега омным сопротивлением уже обладает электрическая изоляция кабелей и проводов.

 

В электротехнике в большинстве случаев в роли электрического проводника используют медь. Именно она имеет достаточно хорошую электрическую проводимость при относительно низкой цене (если сравнивать с серебром, золотом). В линиях электропередач и на отдельных участках бытовой электросети также широко применяют алюминий, хотя его электрическая проводимость хуже, чем у меди, зато стоит меньше. И медь и алюминий (если говорить о сопротивлении небольших участков электрической сети, кабеля и шнуры питания) имеет электрическое сопротивление в пределах единиц и десятков Ом. Ну, естественно, чем длиннее и тоньше будет проводник, тем сопротивление будет увеличиваться (допустим у трансформаторной первичной обмотки на 220 вольт сопротивление уже от десятков до нескольких тысяч Ом, в зависимости от мощности транса).

 

Для чего может, собственно, пригодится известная величина электрического сопротивления? Наиболее используемой в электрике и электронике является формула закона Ома. Она гласит, что сила тока равна электрическое напряжение разделенное на сопротивление. Следовательно, зная любые две величины из трех (тока, напряжения и сопротивления) можно всегда найти одну неизвестную. К примеру, нам нужно узнать, какой ток будет протекать по спирали нагревателя. Нам известно, что этот нагреватель рассчитан на напряжение 220 вольт. Берём мультиметр и измеряем его сопротивление (допустим это 100 Ом). Используя формулу закона Ома мы легко вычислим силу тока: 220 вольт / 100 Ом = 2,2 ампера.

 

P.S. При нахождении электрического сопротивления через формулу учитывайте, что реальные величины могут слегка отличаться от теоретических (по причине материальных факторов, условий окружающей среды и т.д.). При нахождении сопротивления путем простого измерения учитывайте, что измерительные приборы имеют свою погрешность (хоть она и достаточно мала, но всё же есть).

Площадь сечения проводов и кабелей в зависимости от силы тока, расчет необходимого сечения кабеля


Если старая проводка вышла из строя нужно её заменить, но прежде чем менять на аналогичную, узнайте, почему произошла проблема со старой. Возможно, что было просто механическое повреждение, или изоляция пришла в негодность, а еще более весомой проблемой является – выход из строя проводки из-за превышения допустимой нагрузки.

Чем отличается кабельная продукция, какие основные характеристики?


Начнем с того, что определяется, какое напряжение в сети, в которой будут работать кабеля. Для бытовых сетей часто применяются кабеля и провода типа ВВГ, ПУГНП (только он запрещен современными требованиями ПУЭ из-за больших допусков по сечению при производстве, до 30%, и допустимой толщине изолирующего слоя 0.3мм, против 0.4 в ПУЭ), ШВВП и другие.


Если отойти от определений провод от кабеля отличается минимально, в основном по определению в ГОСТе или ТУ по которому он производится. Ведь на рынке есть большое количество проводов с 2-3 жилами и двумя слоями изоляции, например тот же ПУГНП или ПУНП.

Допустимое напряжение определяется изоляцией кабеля


Для выбора кабеля кроме напряжения принимают во внимание и условия, в которых он будет работать, для подключения движущегося инструмента и оборудования он должен быть гибким, для подключения неподвижных элементов, в принципе, все равно, но лучше предпочесть кабель с монолитной жилой.


Решающим фактором при покупке является площадь поперечного сечения жилы, она измеряется в мм2, от неё и зависит способность проводника выдерживать длительную нагрузку.

Что влияет на допустимый ток через кабель?


Для начала обратимся к основам физики. Есть такой закон Джоуля-Ленца, он был открыт независимо друг от друга двумя ученными Джеймсом Джоулем (в 1841) и Эмилием Ленцом (в 1842), поэтому и получил двойное название. Так вот этот закон количественно описывает тепловое действие электрического тока протекающего через проводник.


Если выразить его через плотность тока получится такая формула:


Расшифровка: w – мощность выделения тепла в единице объема, вектор j – плотность тока через проводник измеряется в Амперах на мм2. Для медного провода принимают от 6 до 10 А на миллиметр площади, где 6 – рабочая плотность, а 10 кратковременная. вектор E – напряженность электрического поля. σ – проводимость среды.


Так как проводимость обратно пропорциональна сопротивлению: σ=1/R


Если выразить закон Джоуля-Ленца через количество теплоты в интегральной форме, то:


Таким образом, dQ – количество теплоты, которое выделится за промежуток времени dt в цепи, где протекает ток I, через проводник сопротивлением R.


То есть количество тепла прямо пропорционально току и сопротивлению. Чем больше ток и сопротивление – тем больше выделяется тепла. Это опасно тем, что в определенный момент количество тепла достигнет такого значения, что у проводов плавится изоляция. Вы могли замечать, что провода дешевых кипятильников ощутимо теплеют во время работы, это оно и есть.


Если выделяется мощность на кабеле, значит, падает и напряжение на его концах, подключенных к нагрузке.


В калькуляторах для расчета сечений кабеля, обычно задаются такие параметры:


Чем больше сопротивление – тем больше упадет напряжение и нагреется кабель, поскольку на нем выделится мощность (P=UI, где U падение напряжения на кабеле, I – ток, протекающий через него).


Все расчеты свелись к току и сопротивлению. Сопротивление проводника вычисляется по формуле:


Здесь: ρ (ро) – удельное сопротивление, l – длина кабеля, S – площадь поперечного сечения.


Удельное сопротивление зависит от структуры металла, величины удельных сопротивлений можно определить из таблицы.


В проводке в основном используются алюминий и медь. У меди сопротивление 1.68*10-8 Ом*мм2/м., а у аллюминия в 1.8 раза больше чем у меди, равняется 2.82*10-8 Ом*мм2/м. Это значит, что алюминиевый провод нагреется почти в 2 раза сильнее, чем медный при одинаковом сечении и токе. Отсюда следует, что для прокладки проводки придется покупать более толстый алюминиевый провод, к тому же жилы легко повредить.


Поэтому медные провода вытеснили с домашней проводки медные, а применение аллюминия в проводке запрещено, разрешается только применение алюминиевых кабелей для монтажа очень мощных электроустановок, потребляющих большой ток, тогда используют провод из аллюминия сечением больше 16 мм2 (смотрите — Почему алюминиевый кабль нельзя использовать в электропроводке)

Как определить сопротивление провода по диаметру жилы?


Бывают случаи, когда площадь поперечного сечения жилы не известна, поэтому можно посчитать по диаметру. Для определения диаметра монолитной жилы можно использовать штангенциркуль, если его нет, то возьмите стержень, например шариковую ручку или гвоздь, намотайте плотно 10 витков провода на него, и измерьте линейкой длину получившейся спирали, разделив эту длину на 10 – вы получите диаметр жилы.


Для определения общего диаметра многопроволочной жилы, измерьте диаметр каждой жилы и умножьте на их количество.


Дальше считают поперечное сечение по этой формуле:


И вновь возвращаются к этой формуле для расчета сопротивления провода:

Как определить необходимую площадь сечения провода?


Самый простой вариант – определить площадь сечения жил по таблице. Он подходит для расчета не слишком длинных линий проложенных в нормальных условиях (с нормальной температурой окружающей среды). Также так можно подобрать провод для удлинителя. Обратите внимание, что в таблице указаны сечения при определенном токе и мощности в однофазной и трёхфазной сети для аллюминия и меди.


При расчете длинных линий (больше 10 метров) такой таблицей лучше не пользоваться. Нужно провести расчеты. Быстрее всего воспользоваться калькулятором. Алгоритм расчета такой:


Берут допустимые потери по напряжению (не более 5%), это значит что при напряжении в сети 220В и допустимым потерям напряжения в 5% на кабеле падение напряжения (от конца до конца) не должно превышать:


5%*220=11В.


Теперь, зная ток, который будет протекать, мы может вычислить сопротивление кабеля. В двух проводной линии сопротивление умножают на 2, так как ток течет по двум проводам, при линии длиной в 10м, общая длина проводников – 20м.


Отсюда по вышеприведенным формулам вычисляют необходимое поперечное сечение кабеля.


Вы можете сделать это автоматически со своего смартфона, с помощью приложений «Мобильный электрик» и electroDroid. Только в калькуляторе задается не общая длина проводов, а именно длина линии от источника питания к приемнику электричества.

Заключение


Правильно рассчитанная проводка это уже 50% залог её успешного функционирования, вторая половина зависит от правильности монтажа. Следует учитывать все особенности проводки, максимальную потребляемую мощность всеми потребителями. При этом введите запас по допустимому току на 20-40% «на всякий случай».

Сечение удлинителя — расчет сечения кабеля для переноски, формула, примеры


При самостоятельной сборке переноски часто возникает вопрос о сечении удлинителя. Как правило для бытовых удлинителей на 5-10 м для однофазной сети 220 В достаточно сечения 0,75-1 мм2 при одновременном подключении приборов суммарной мощностью до 3,5 кВт (16 А). Если расстояние или требуемая нагрузка больше, то лучше рассматривать сечения от 1,5-2,5 мм2.

Расчет сечения удлинителя по потере напряжения

Чтобы точно убедиться, подходит ли выбранное сечение удлинителя для ваших целей, можно провести несложный расчет.


  1. Для самостоятельного расчета нужно знать токовую нагрузку в Амперах (Iнагрузки).Если вы не знаете этот параметр, то его нужно рассчитать. Для этого необходимо суммировать мощность приборов в Ваттах (P), которые будут подключаться к переноске одновременно и разделить на номинальное напряжение (Uном), т.е.


     Iнагрузки = P/Uном



  2. Далее выполняется расчет сопротивления кабеля удлинителя. Формула имеет следующий вид: 


    R=(p*L)/S,


    где:


    p — удельное сопротивление проводника (p меди = 0,0175)


    L—длина переноски


    S —выбранное Вами сечение проводника, мм2


    Rпровода = 2R, так как ток идет по одной жиле, а потом возвращается по другой.


  3. Далее рассчитываются потери напряжения: 


    Uпотерь= Iнагрузки*  Rпровода


    ПОТЕРИ=(Uпотерь/Uном) * 100%

ВАЖНО


Согласно ГОСТ 29322-14 «Стандартные напряжения», если значение ПОТЕРИ меньше 5%, то выбранное сечение жилы подходит, если больше 5%, то необходимо произвести расчет и проверить большее сечение. На практике стараются закладывать сечение, обеспечивающее падение напряжения не более 3-4%.


Пример:


Необходимо подобрать сечение кабеля переноски на расстояние 10 м для электрообогревателя мощностью 2,2 кВт (2200 Вт). Электрообогреватель подключается в бытовую сеть 220 В.


Проверим сечение 0,75 мм2.


1. Рассчитаем токовую нагрузку:  Iнагрузки = P/Uном = 2200 Вт/220 В = 10 А


2. Рассчитаем сопротивление кабеля сечением 0,75 мм2: R=(p*L)/S = 0,0175*10/0,75 = 0, 23 Ом; Rпровода = 2R 0,23*2 = 0,46 Ом


3. Рассчитаем потери напряжения: Uпотерь= Iнагрузки*  Rпровода = 10*0,46= 4,6 В; ПОТЕРИ=(Uпотерь/Uном) * 100% = (4,6/220) *100% =2,09%


Потери напряжения составляют 2,09%, что не превышает нормы в 4%, значит сечение удлинителя 0,75 мм2 подходит для данных целей.


Для решения бытовых задач вы можете воспользоваться нашим шаблоном расчета в excel файле:



Скачать файл расчет сечения удлинителя.xlsx

Тепловое сопротивление кабеля

Тепловое сопротивление кабеля рассчитывается по следующей формуле:

Одним из необходимых расчетных параметров является удельное тепловое сопротивление кабеля, определяющееся падением температуры точек противоположных сторон изделия объемом 1 см3 при значении потока тепла 1 Вт. Данная величина обозначается символом «а», единицей измерения является град?см/Вт.

Тепловое сопротивление других различных материалов определяется:

Удельные тепловые сопротивления для разных типов материала, используемых при изготовлении кабелей, приведены в таблице.

Тепловое сопротивление кабеля определяется чаще всего из расчета геометрических параметров и конструкции кабельного изделия. На этот параметр также влияет материал проводника, влияющий на удельный параметр.

Тепловое сопротивление изоляции кабеля рассчитывается следующим образом:

Одножильное исполнение:

Двухжильное исполнение:

где a = r +?; R ? 2(r+?)=2a;

Трехжильное исполнение кабелей с круглой формой жил:

Трехжильное исполнение кабелей с секторной формой жил:

 

где
.

 

Многожильное исполнение:

где

— коэффициент или множитель, определяющий геометрию проводника. Множитель определяется из графика кривой (рисунок 1.4). С помощью этого же графика рассчитывается введение поправочного коэффициента, учитывающего форму жил при расчете параметров проводника с секторной формой жил.

Тепловое сопротивление изоляции кабеля с жилами секторной формой также возможно вычислить по следующей формуле.

где Rck – радиус скручивания жил секторной формы.

Величина теплового сопротивления изоляции кабельного проводника, рассчитанная по формуле (4-13), получится на 10-20% больше, чем при вышеуказанном расчете.

Рисунок 4-1 представляет собой кривую зависимости величины теплового сопротивления от толщины изоляции. Если толщина изолирующего материала превышает 12 мм, то тепловое сопротивление кабеля сохраняет постоянный характер. Из рисунка 4.2 видно, что при увеличении температуры проводника, значение удельного теплового сопротивления начинает уменьшаться.

Резкое изменение температуры изоляции, возникающее вследствие диэлектрических потерь, рассчитывается из произведения потерь и теплового сопротивления, разделенного пополам. Токоведущие жилы и металлоболочка имеют теплопроводность, в несколько раз превышающая аналогичный параметр изоляции, на основании которого принимают поверхность жил и оболочек изотермическими.

Если трехжильный кабель имеет защитный экран на каждой жиле, то зависимость величины Р на графике кривых рисунка 4.3 позволит определить, насколько уменьшилось тепловое сопротивление:

где ?Э и ?Э – соответственно толщина и удельное тепловое сопротивление экранов.

Рисунок 4.3 – Зависимость теплового сопротивления кабеля с пофазно экранированными жилами и жил без экранов (а – круглые жилы, б – секторные жилы).

Значение теплового сопротивления проводника с наличием металлической оболочки для каждой жилы:

где Sп рассчитывается с помощью зависимости графика рисунка 4.4, умножая параметр, определенной на оси ординат, на значение ?2 для защитной оболочки согласно таблице.

Для расчета теплового сопротивления защитного покрова кабелей, прокладываемых под землей, используется выражение:

где R1 – величина радиуса проводника с оболочкой из свинца, мм; R2 – значение внешнего радиуса кабеля, мм; ?2 – значение удельного теплового сопротивления защитной оболочки, град?см/Вт (таблица).

Калькулятор сопротивления круглого провода

Калькулятор сопротивления круглого провода

Логотип Chemandy Electronics

Логотип Chemandy Electronics
CHEMANDY ELECTRONICSПоставщики навигации UnusualShow
Скрыть навигацию

Рассчитывает сопротивление постоянному току одиночного круглого провода из обычных проводящих материалов, используя уравнение 2 ниже.

Примечание. Чтобы использовать другие значения удельного сопротивления, выберите «Ввести данные» в текстовом поле выбора материала проводника, а затем введите необходимое значение удельного сопротивления (ρ) в поле, выделенное желтым цветом.

Этот калькулятор использует JavaScript и будет работать в большинстве современных браузеров. Для получения дополнительной информации см. О наших калькуляторах

.

Сопротивление проводника постоянному току рассчитывается с использованием удельного сопротивления и площади поперечного сечения: —

Уравнение 1.

Где:

ρ — удельное сопротивление проводника, Ом · м

l Длина в метрах

А — площадь поперечного сечения в метрах

Круглый провод обычно определяется диаметром, а сопротивление постоянному току, зависящее от диаметра, составляет: —

Уравнение 2.

Где:

ρ — удельное сопротивление проводника, Ом · м

l Длина в метрах

d — диаметр круглого проводника в метрах

Значения ρ взяты из CRC Handbook of Chemistry and Physics 1st Student Edition 1998 page F-88 и относятся к элементам высокой чистоты при 20 ° C.

Таблица «контрольных» измерений, выполненных в нашей лаборатории с использованием эмалированного медного провода
Измерено Вычислено
Диаметр Длина Напряжение Текущий Сопротивление Сопротивление
(мм) (мм) (В) (А) (Ом) (Ом)
1. 0 410 0,0091 1.031 0,008826 0,0087596
0,5 410 0,0359 1.031 0,03482 0,0350385
0,2 410 0,24 1.032 0,2326 0,2189908

Этот калькулятор предоставляется Chemandy Electronics бесплатно для продвижения FLEXI-BOX

Вернуться к списку калькулятора

Как рассчитать электрическое сопротивление провода

Сегодня вы можете найти основные формулы для расчета электрического сопротивления кабеля .Но сначала давайте взглянем на , некоторые основы сопротивления.

Электрическое сопротивление — это сопротивление электронов, движущихся по проводнику. Или, другими словами, трудности, возникающие при прохождении тока по замкнутой электрической цепи, что позволяет замедлить или уменьшить свободный поток электронов.

Согласно Международной системе, единицей сопротивления является ом , представленный греческой буквой омега (Ом), в честь немецкого физика Георга Ома, открывшего этот принцип. Ом — сопротивление проводника при движении на один ампер (ток). Между его концами есть разность потенциалов (напряжение) вольт.

Во-первых, для расчета сопротивления кабеля должны быть известны следующие проблемы :

  • Каков его коэффициент сопротивления или удельное сопротивление «» (rho)
  • его длина ,
  • и сечение .

Сопротивление кабеля рассчитывается по следующей формуле:

где,

  • R — сопротивление в омах (Ом).
  • ρ — удельное сопротивление в Ом-метре (Ом × м)
  • l длина жилы в метрах (м)
  • s — площадь поперечного сечения проводника в квадратных метрах (м 2 )

В таблице ниже вы можете увидеть удельное сопротивление Ом · мм2 / м наиболее распространенных материалов при температуре 20 ° Цельсия:

И здесь у вас есть формула для площади окружности проводника (поверхность или площадь поперечного сечения материала в мм2), которую необходимо знать для расчета сопротивления:

где,

  • A — площадь окружности металлической части проводника.
  • π , — постоянная, равная 3,1416
  • r , радиус круга (эквивалентный половине диаметра).

Надеемся, этот пост был для вас полезен.

Нравится:

Нравится Загрузка …

Relacionado

Видео с вопросом: Расчет сопротивления проводника

Стенограмма видео

Диаметр алюминиевой проволоки 10 миллиметров.Найдите сопротивление такого провода длиной 0,56 км, используемого для передачи энергии. Для удельного сопротивления алюминия используйте значение 2,65 умноженное на 10 к отрицательной восьмой омметру.

Мы можем начать с рисования эскиза описываемого провода. Хотя эскиз нарисован не в масштабе, он дает нам представление о размерах алюминиевой проволоки. Помимо размеров, нам сообщили, что этот провод имеет удельное сопротивление, обозначенное греческой буквой, от 2,65 умноженное на 10 до отрицательной восьмой омметра. Учитывая все это, мы хотим найти сопротивление этого провода.

Для этого существует математическая связь между сопротивлением и удельным сопротивлением, которую мы хотим вспомнить. Сопротивление 𝑟 провода равно удельному сопротивлению, умноженному на его длину, деленную на площадь поперечного сечения. И в нашем случае, поскольку наша площадь поперечного сечения круглая, мы также можем вспомнить площадь круга с точки зрения его диаметра, эта площадь равна 𝜋, деленному на четыре квадрата диаметра.

Наша задача состоит в том, чтобы использовать это соотношение и предоставленную информацию для определения 𝑟, где 𝑟 — сопротивление алюминиевого провода. Мы можем начать с того, что подставим в это уравнение заданное значение удельного сопротивления 𝜚, а также длину провода в метрах. Обратите внимание, что мы пересчитали километры. Как только эти значения для 𝜚 и 𝐿 входят в наше уравнение, наша последняя задача — ввести выражение для площади поперечного сечения этого провода.

Глядя на наше уравнение для площади круга, мы видим, что оно выражается в диаметре, что и указано в постановке задачи. Но в настоящее время наш диаметр выражается в миллиметрах, и мы хотим преобразовать его в метры, чтобы они соответствовали единицам в остальной части этого выражения для 𝑟. Таким образом, вместо 10 миллиметров мы запишем диаметр как 10 в отрицательной трети метра. И это количество возводится в квадрат и умножается на на четыре, чтобы найти площадь поперечного сечения.

Перед тем, как вычислить значение, обратите внимание, что происходит с единицами измерения в этом выражении. В частности, единицы измерения сокращаются от числителя и знаменателя, и мы остаемся с единицами измерения сопротивления — омами.Эта доля составляет 0,19 Ом. Вот сопротивление этого длинного узкого провода.

Учебное пособие по физике: электрическое сопротивление

Электрон, движущийся по проводам и нагрузкам внешней цепи, встречает сопротивление. Сопротивление препятствует прохождению заряда. Для электрона путешествие от терминала к терминалу не является прямым маршрутом. Скорее, это зигзагообразный путь, возникающий в результате бесчисленных столкновений с неподвижными атомами в проводящем материале.Электроны сталкиваются с сопротивлением — препятствием для их движения. В то время как разность электрических потенциалов, установленная между двумя выводами , способствует перемещению заряда , а — это сопротивление. Скорость, с которой заряд перетекает от терминала к терминалу, является результатом совместного действия этих двух величин.

Переменные, влияющие на электрическое сопротивление

Поток заряда по проводам часто сравнивают с потоком воды по трубам.Сопротивление потоку заряда в электрической цепи аналогично эффектам трения между водой и поверхностями трубы, а также сопротивлению, создаваемому препятствиями на пути. Именно это сопротивление препятствует потоку воды и снижает как ее расход, так и скорость ее дрейфа . Подобно сопротивлению потоку воды, общее сопротивление потоку заряда в проводе электрической цепи зависит от некоторых четко идентифицируемых переменных.

Во-первых, общая длина проводов влияет на величину сопротивления.Чем длиннее провод, тем большее сопротивление будет. Существует прямая зависимость между величиной сопротивления, с которым сталкивается заряд, и длиной провода, который он должен пройти. В конце концов, если сопротивление возникает в результате столкновений между носителями заряда и атомами проволоки, то, вероятно, столкновений будет больше в более длинной проволоке. Больше столкновений означает большее сопротивление.

Во-вторых, на величину сопротивления влияет площадь поперечного сечения проводов.Более широкие провода имеют большую площадь поперечного сечения. Вода будет течь по более широкой трубе с большей скоростью, чем по узкой. Это можно объяснить меньшим сопротивлением, которое присутствует в более широкой трубе. Таким же образом, чем шире провод, тем меньше сопротивление будет течению электрического заряда. Когда все другие переменные одинаковы, заряд будет течь с большей скоростью через более широкие провода с большей площадью поперечного сечения, чем через более тонкие провода.

Третья переменная, которая, как известно, влияет на сопротивление потоку заряда, — это материал, из которого сделан провод. Не все материалы созданы равными с точки зрения их проводящей способности. Некоторые материалы являются лучшими проводниками, чем другие, и обладают меньшим сопротивлением потоку заряда. Серебро — один из лучших проводников, но никогда не используется в проводах бытовых цепей из-за своей стоимости. Медь и алюминий являются одними из наименее дорогих материалов с подходящей проводящей способностью, позволяющей использовать их в проводах бытовых цепей.На проводящую способность материала часто указывает его удельное сопротивление . Удельное сопротивление материала зависит от электронной структуры материала и его температуры. Для большинства (но не для всех) материалов удельное сопротивление увеличивается с повышением температуры. В таблице ниже приведены значения удельного сопротивления для различных материалов при температуре 20 градусов Цельсия.

Материал

Удельное сопротивление

(Ом • метр)

Серебро

1.59 х 10 -8

Медь

1,7 х 10 -8

Золото

2,2 х 10 -8

Алюминий

2,8 х 10 -8

Вольфрам

5.6 х 10 -8

Утюг

10 х 10 -8

Платина

11 х 10 -8

Свинец

22 х 10 -8

Нихром

150 х 10 -8

Углерод

3. 5 х 10 -5

Полистирол

10 7 -10 11

Полиэтилен

10 8 — 10 9

Стекло

10 10 -10 14

Твердая резина

10 13

Как видно из таблицы, существует широкий диапазон значений удельного сопротивления для различных материалов.Материалы с более низким удельным сопротивлением обладают меньшим сопротивлением потоку заряда; они лучше дирижеры. Материалы, показанные в последних четырех строках приведенной выше таблицы, обладают таким высоким удельным сопротивлением, что их даже нельзя рассматривать как проводники.

Посмотри!

Используйте виджет Resistivity of a Material , чтобы найти удельное сопротивление данного материала. Введите название материала и нажмите кнопку Отправить , чтобы узнать его удельное сопротивление.

Математическая природа сопротивления

Сопротивление — это числовая величина, которую можно измерить и выразить математически. Стандартной метрической единицей измерения сопротивления является ом, представленный греческой буквой омега -. Электрическое устройство с сопротивлением 5 Ом будет представлено как R = 5 . Уравнение, представляющее зависимость сопротивления ( R ) проводника цилиндрической формы (например,, провод) от влияющих на него переменных равно

, где L представляет длину провода (в метрах), A представляет площадь поперечного сечения провода (в метрах 2 ) и представляет удельное сопротивление материала (в Ом • метр). В соответствии с приведенным выше обсуждением это уравнение показывает, что сопротивление провода прямо пропорционально длине провода и обратно пропорционально площади поперечного сечения провода. Как показывает уравнение, знание длины, площади поперечного сечения и материала, из которого сделан провод (и, следовательно, его удельного сопротивления), позволяет определить сопротивление провода.

Расследовать!

Резисторы — один из наиболее распространенных компонентов электрических цепей. На большинстве резисторов нанесены цветные полосы или полосы. Цвета отображают информацию о значении сопротивления.Возможно, вы работаете в лаборатории и вам нужно знать сопротивление резистора, используемого в лаборатории. Используйте виджет ниже, чтобы определить значение сопротивления по цветным полосам.

Проверьте свое понимание

1. В бытовых цепях часто используются провода двух разной ширины: калибра 12 и калибра 14. Проволока 12-го калибра имеет диаметр 1/12 дюйма, а проволока 14-го калибра — 1/14 дюйма.Таким образом, провод 12-го калибра имеет более широкое сечение, чем провод 14-го калибра. Цепь на 20 А, используемая для настенных розеток, должна быть подключена с использованием провода 12-го калибра, а цепь на 15 А, используемая для цепей освещения и вентиляторов, должна быть подключена с помощью провода 14-го калибра. Объясните физику такого электрического кода.

2. Основываясь на информации, указанной в вопросе выше, объясните риск, связанный с использованием провода 14-го калибра в цепи, которая будет использоваться для питания 16-амперной пилы.

3. Определите сопротивление медного провода 12 калибра длиной 1 милю. Дано: 1 миля = 1609 метров и диаметр = 0,2117 см.

4. Два провода — A и B — круглого сечения имеют одинаковую длину и изготовлены из одного материала. Тем не менее, сопротивление провода A в четыре раза больше, чем у провода B.Во сколько раз диаметр проволоки B больше диаметра проволоки A?

Сопротивление провода — Обмен электротехнического стека

Иногда сопротивление провода незначительно. В других случаях сопротивление провода может стать значительным. Сначала я покажу сопротивление провода и то, как его можно игнорировать в большинстве случаев, а затем покажу примеры, когда его влияние является значительным, и, наконец, несколько приложений.{−8} \ Omega \ cdot \ text {m} \ $ при 20 ° C. Формула дает \ $ R \ приблизительно 0,0164 \ Omega \ $.

Пример : Какое сопротивление 5 см медного провода AWG-24 (диаметр 0,511 мм)?

Ответ: \ $ R \ приблизительно 0,004 \ Omega \ $.

  • Замечание 1: Как видим, сопротивление проволоки тем ниже, чем больше толщина проволоки. В частности, когда диаметр цилиндрической проволоки увеличивается вдвое, ее сопротивление уменьшается до одной четвертой от исходного. Таким образом, калибр проволоки — это не только показатель ее формы.Это действительно показатель его электрических свойств, когда указаны его материал (почти всегда медь) и длина.

  • Примечание 2: Количественный расчет сопротивления проводов не всегда выполняется. Иногда используются практические правила. Часто вопрос заключается только в том, «достаточно ли толстый провод», а не «сколько сопротивления / падения напряжения / повышения температуры у этого провода». С другой стороны, первый шаг — провести количественный анализ провода, зная его калибр. Не говоря уже о том, что провода продаются по калибру, поэтому люди чаще говорят о «толщине провода» (или «ширине дорожки» в конструкции печатной платы), чем о сопротивлении провода.

На печатной плате сопротивление дорожек можно рассчитать аналогичным образом, исходя из толщины меди и длины дорожки. Единственное отличие: провода цилиндрические, а следы прямоугольные.

Пример : Каково сопротивление дорожки размером 10 мил и 10 см на печатной плате весом в 1 унцию?

Ответ: 1 мил составляет тысячную долю дюйма (0,0254 мм). «Печатная плата весом в 1 унцию» — это монтажная плата с содержанием меди в 1 унцию на квадратный фут, или толщиной 1 унцию. 2} = 0,19 \ Omega \

$

Когда сопротивление можно игнорировать

В большинстве случаев сопротивление провода слишком низкое, если сравнивать его с сопротивлением других компонентов и нагрузок, поэтому его можно пренебречь, и часто его можно игнорировать. Более того, \ $ V = IR \ $, чем ниже ток, который должна принимать нагрузка, тем выше ее эквивалентное сопротивление, поэтому вы также игнорируете сопротивление провода, если ток, подаваемый проводом, низкий, потому что это эквивалентно подключению небольшого резистор (провод) к большому резистору (устройству, принимающему ток) — почти никакого эффекта.

Например, подключите два резистора 1000 Ом с помощью медного провода AWG-30 длиной 5 см (тонкий провод диаметром 0,255 мм). Если мы измеряем фактическое сопротивление между двумя резисторами с помощью идеального омметра с идеальными пробниками, что бы это было?

Чтобы рассчитать его влияние, использование приведенной выше формулы для сопротивления цилиндрического провода часто является пустой тратой времени, в качестве альтернативы мы можем найти сопротивление провода AWG-30 на единицу длины из инженерной таблицы в Википедии, в ней указано, что сопротивление составляет «338 . 6 мОм / м «. Другими словами, дополнительное сопротивление, вносимое проводом, равно \ $ 0,3386 \ Omega \ times 0,05 \ text {m} = 0,01693 \ Omega \ $. В идеале сопротивление должно быть 2000 Ом, но из-за наличие провода, измеренное сопротивление составляет 2000,01693 Ом, оно меньше, чем на 10 частей на миллион выше, почти не обнаруживается.

  • Примечание 3: В неточных приложениях обычно используемым типом сквозного резистора является металлопленочный резистор, допуск 5%, с температурным коэффициентом около 50-100 ppm на каждый рост температуры на 1 ° C — ошибка вносимый малейшим изменением температуры все еще выше, чем у вашего провода в этом примере.

  • Примечание 4: Даже для лучшего универсального мультиметра, такого как Fluke 87, максимальное разрешение измерения сопротивления составляет 0,1 Ом, поэтому даже измерение сопротивления провода 0,01693 Ом затруднено.

Другим примером является макетная плата микроконтроллера, для работы которой может потребоваться источник постоянного тока 5 В и ток 50 мА. Если вы используете пять метров AWG-30 для подключения питания (положительный электрод) и заземления (отрицательный электрод), общее сопротивление составит \ $ 0.3386 \ Omega \ times 5 \ text {m} \ times 2 = 3.386 \ Omega \ $. Общее падение напряжения на 5-метровом проводе питания и 5-метровом проводе заземления составляет \ $ 3.386 \ Omega \ times 0,05 \ text {A} = 0,1693 \ text {V} \ $. Фактическое напряжение, подаваемое на плату микроконтроллера, составляет \ $ 5 \ text {V} — 0,1693 \ text {V} = 4.8307 \ text {V} \ $, или 96,6% от исходного напряжения.

  • Примечание 5: Обычное отклонение напряжения для цифровой электроники составляет +/- 5%.

Если сам источник питания исправен, падение, вызванное проводом, все еще находится в пределах нормы.Не забывайте, что здесь я использовал экстремальный пример: 10 метров очень длинных и тонких проводов, что не совсем реалистично для большинства экспериментов с электроникой.

Как видите, при использовании проводов для межсоединений вы часто можете игнорировать сопротивление проводов, и, вероятно, вы никогда не увидите упоминания о сопротивлении проводов в схемах. Аналогичная ситуация возникает, когда вы подключаете кабель через розетку, разъем или зажим — вы также добавите дополнительное контактное сопротивление, но обычно оно незначительно.

  • Примечание 6: В промышленности допустимое контактное сопротивление, создаваемое соединителем, часто составляет 1 Ом. Для высококачественного разъема иногда указывается контактное сопротивление 0,1 Ом.

Когда следует учитывать сопротивление провода

Но по мере того, как ток, протекающий по проводу, увеличивается до определенной точки, вы больше не можете игнорировать дополнительное сопротивление от провода. Опять же, из-за закона Ома это также происходит, когда абсолютный ток все еще невелик, но сопротивление других электрических компонентов вокруг провода уменьшилось — это всего лишь две стороны одной медали.

Высокое сопротивление провода имеет три вредных последствия:

  1. Падение напряжения \ $ V = IR \ $ на проводе становится чрезмерным и неприемлемым, в результате чего напряжение источника питания выходит за пределы допустимого диапазона. {2} R \ $.Это представляет собой потерянную энергию. Если сопротивление проволоки на единицу длины слишком велико, проволока не может достаточно быстро рассеивать тепло. Температура повысится до точки, когда проволока станет слишком горячей и плавится, что создает опасность возгорания.

Распределение низкого напряжения постоянного тока

Типичный пример — питание через порт USB. Номинальное напряжение USB составляет 5 В, обычно с регулировкой +/- 5%. USB 2.0 позволяет устройству с низким энергопотреблением потреблять 100 мА, а устройство с высоким уровнем мощности может получать ток 500 мА.Если использовать USB в качестве источника питания для зарядного устройства, требования по току еще выше, в настоящее время типично 2000 мА.

Допустим, у нас есть 1-метровый USB-кабель сомнительного качества, в котором используются два провода AWG-28 (диаметром 0,361 мм) для питания и заземления. Его сопротивление составляет 0,42 Ом, при пропускании тока 500 мА мы теряем 0,21 В из-за кабеля. Чтобы усложнить ситуацию, поскольку мощность USB регулируется на +/- 5%, самое низкое допустимое напряжение фактически составляет 4,75 В, полученное напряжение на другом конце кабеля может быть всего 4.54 В — погрешность уже намного больше 5%.

Чтобы решить эту проблему, в стандарте USB 2.0 предусмотрен дополнительный бюджет падения напряжения для кабелей.

  • Максимальное падение напряжения (для съемных кабелей) между вилкой серии A и вилкой серии B на VBUS составляет 125 мВ (VBUSD).

  • Максимальное падение напряжения для всех кабелей между входом и выходом на GND составляет 125 мВ (VGNDD).

  • Функции, отображающие более одной единичной нагрузки, должны работать с 4.Минимальное входное напряжение 75 В на соединительном конце их входных кабелей.

Спецификация универсальной последовательной шины, версия 2.0

Другими словами, для любого совместимого со стандартом устройства USB 2. 0 высокой мощности производитель этого устройства USB должен либо поставлять продукт с кабелем лучшего качества с меньшим падением напряжения, либо проектировать устройство для работы при напряжении до 4,5 В. любыми средствами.

В данном случае наш аппарат заработал.Через несколько дней кто-нибудь найдет этот USB-кабель и подключит его к настенному USB-адаптеру, чтобы зарядить смартфон до 2000 мА. Теперь падение напряжения на кабеле составит 0,84 В, при этом для смартфона доступно максимум 4,16 В. Кабель либо вообще не работает, либо заряжает смартфон крайне медленно.

  • Замечание 7: Часто на практике некоторые зарядные устройства USB намеренно регулируют USB до 5,25 В, чтобы допустить большее падение напряжения на кабелях, даже если это строго нарушает стандарт USB.

Дистанционное зондирование

Отвод кабеля также является проблемой в конструкции регулятора напряжения. В то время как легко использовать регулируемую микросхему регулятора, чтобы сделать источник питания и отрегулировать его до +/- 2% или даже ниже. К сожалению, как и в предыдущем примере USB, ваше регулирование происходит только на выходном контакте регулятора, а не на нагрузке.

Источник: Дистанционное зондирование важно для вашего источника питания, компания Keysight, добросовестное использование.

Дополнительное сопротивление провода ухудшает точность регулятора напряжения, особенно когда нагрузка находится далеко от него или когда ток большой.Обычно следует проявлять особую осторожность при прокладке выходных дорожек для регулятора: делайте их как можно короче на печатной плате.

Но полностью устранить ошибку невозможно, особенно когда разработчик не может контролировать, есть ли между ними длинный кабель. Когда критически важно точно регулировать напряжение на нагрузке, для решения проблемы можно использовать метод, называемый «дистанционное зондирование». Основная идея — добавить два дополнительных провода для «контроля» «реального» напряжения на другой стороне.Если регулятор видит напряжение ниже ожидаемого, он еще больше увеличит свое напряжение, чтобы преодолеть падение.

Источник: Дистанционное зондирование важно для вашего источника питания, компания Keysight, добросовестное использование.

Провода дистанционного зондирования на + s и -s могут иметь такое же сопротивление, что и провода питания (той же толщины), но на них не влияет падение напряжения. Это правда, даже если они имеют гораздо большее сопротивление (тонкие провода).

Один из способов подумать об этом — это принять во внимание тот факт, что через силовые провода проходит большой ток, производящий \ $ 10 A \ раз 0.015 \ times 2 = 0,3 В \ $ падение, но чувствительные провода служат здесь только для передачи слабого сигнала — по чувствительному проводу проходит небольшой ток, поэтому падение напряжения на кабеле практически отсутствует.

Другой способ — считать, что входное сопротивление эквивалентно плюсам и минусам чувствительного входа. В идеале его входное сопротивление должно быть бесконечным (т.е. ток не поступает, идеальный вольтметр, как будто ничего не подключено). На практике сопротивление в 1 мегаом (1 МОм, 1 миллион Ом) является реалистичным ожиданием.Таким образом, эквивалентная схема представляет собой небольшой резистор (провода), соединенный последовательно с большим резистором (вход датчика регулятора).

Например, на этой схеме, хотя чувствительные провода имеют общее сопротивление 200 Ом, но входное сопротивление чувствительного элемента составляет 1 МОм, что на много порядков выше. Напряжение на входе датчика составляет

.

$$ V_ \ text {sensed} = 5 \ text {V} \ times \ frac {1,000,000} {1,000,000 + 200} $$

Падение напряжения есть, но оно всего 0.02%, между тем 99,98% напряжения с удаленной стороны измеряется входным сигналом регулятора.

Измерение сопротивления для четырехпроводной сети

Иногда необходимо измерить сопротивление очень маленького резистора (менее 1 Ом) с помощью омметра. Сопротивление проводов, соединяющих щупы и омметр, становится значительным. Одним из решений является короткое замыкание измерительных щупов перед выполнением измерения — обнуление ошибки. Но это требует дополнительного шага, а также вносит дополнительный источник возможной ошибки: давление, приложенное между датчиками, может повлиять на сопротивление, используемое для калибровки.

Распространенным методом решения проблемы является четырехпроводное измерение сопротивления или измерение Кельвина.

Мы можем рассматривать выходные контакты омметра как источник тока, а вольтметр — как источник тока поддерживает свое выходное напряжение на любом значении, необходимом для определенного тока. Затем вольтметром измеряется выходное напряжение источника тока. Как ток, так и напряжение известны, поэтому определяется сопротивление.

Из-за того, что мы измеряем напряжение непосредственно на выходных клеммах измерителя, он не может отличить сопротивление от тестируемого резистора и сопротивление от тестовых щупов.

Добавление двух дополнительных проводов решает проблему, теперь мы можем измерять напряжение на дальнем конце тестируемого резистора, а не на выходе нашего омметра на ближнем конце. Независимо от проводов зонда, мы можем провести точное измерение. Это похоже на конструкцию дистанционного зондирования в регуляторах напряжения.

Меры безопасности

Это основное соображение, определяющее размер проводов при установке электроснабжения в домах. Когда через резистор проходит ток, возникает не только падение напряжения, но и нагрев резистора.{2} R \ $ не превышает максимального предела, иначе резистор перегреется.

Если это проволока, она может стать опасно горячей и расплавиться, что может стать причиной возгорания. Чтобы узнать максимально допустимый ток, пропускаемый по проводу, сначала рассчитывается рассеиваемая мощность в проводе, затем определяется поток тепла — какова температура окружающей среды, разные материалы имеют разную теплопроводность и т. Д. Наконец, определяют максимальную рабочую температуру и используют ее для расчета максимально допустимого тока, и, наконец, включают коэффициент безопасности.

Фактический расчет довольно сложен, и он также должен соответствовать Электрооборудованию с одобрения регулирующих органов. Вместо того, чтобы рассчитывать это с нуля, используется инженерная таблица. Опять же, таблица в Википедии является справочной.

Например, при температуре окружающей среды 20 ° C одиночный неограниченный провод AWG-30 в корпусе устройства не может выдерживать ток более 0,52 А, чтобы поддерживать его рабочую температуру ниже 60 ° C.

  • Примечание 8: Если вы разрабатываете продукт, вы должны использовать надежное руководство с инженерными таблицами, рассчитанными в соответствии со стандартами вашего местного регулирующего органа.

Токовую нагрузочную способность дорожек на печатной плате можно определить, обратившись также к технической таблице или программе расчета.

Применение: Резистор с проволочной обмоткой

Сопротивление провода — не всегда неприятность, у него есть полезные применения. Резистор с проволочной обмоткой — это тип резистора, который изготавливается путем наматывания на сердечник металлической проволоки, обычно из нихрома из-за удельного сопротивления.

Источник: Резистор с проволочной обмоткой, ResistorGuide, добросовестное использование.

Имеет ряд преимуществ.

  1. Изготовить высокоточные резисторы несложно, так как их сопротивление пропорционально длине провода.

  2. Из проволоки большого диаметра легко сделать резисторы большой мощности.

Следует отметить, что резистор с проволочной обмоткой имеет ту же форму, что и индуктор, поэтому он имеет самую высокую индуктивность среди всех типов резисторов. Его следует использовать только в цепях постоянного тока и, возможно, в цепи звуковой частоты, но она не подходит для любых цепей переменного тока с более высокой частотой.

Применение: Шунтирующий резистор

Иногда помогает падение напряжения из-за сопротивления провода. Самый простой способ измерения тока — это последовательно подключить маломощный шунтирующий резистор и измерить падение напряжения на нем, поскольку \ $ I = \ frac {V} {R} \ $.

Использование резистора большого номинала предотвращает подачу достаточного тока в тестируемую цепь, желательно сделать сопротивление шунта как можно более низким. По-прежнему будет падение напряжения, которое в мультиметре называется напряжением нагрузки , но достаточно низким, чтобы быть приемлемым.

Если вы откроете мультиметр, вы найдете шунтирующий резистор, похожий на этот рисунок. Как видите, это просто прославленный кусок проволоки.

Источник: Открытый резистор — датчик тока металлического элемента, TT Electronics, добросовестное использование.

Если высокая точность не требуется, вы можете сделать свободный шунтирующий резистор, нарисовав дорожку на печатной плате — сама проволока (дорожка) является вашим шунтирующим резистором.

Источник: низкоомный шунтирующий резистор непосредственно на медном слое печатной платы, добросовестное использование

Калькулятор импеданса коаксиального кабеля

— все RF

Большинство коаксиальных радиочастотных кабелей имеют импеданс 50 или 75 Ом. Они считаются стандартизованными значениями импеданса для легко доступных кабелей. В некоторых случаях пользователям требуется настраиваемое значение импеданса. Этого можно добиться, регулируя внутренний и внешний диаметр коаксиального кабеля вместе с диэлектриком.

Примечание: Для работы этого калькулятора единицы диаметра внешнего и внутреннего проводника должны совпадать. Они всегда находятся в соотношении, поэтому нейтрализуют друг друга.

Результат

  • Емкость на единицу длины (C)

    пФ

  • Индуктивность на единицу длины (L)

    нГн

  • Импеданс на единицу длины (Z)

    3

    Ом Частота среза (f c )

    ГГц

Щелкните здесь, чтобы просмотреть изображение

Емкость коаксиального кабеля

Коаксиальный кабель имеет емкость из-за зазора между внутренним проводником и внешним экраном кабеля.Значение емкости зависит от расстояния между проводниками, диэлектрической проницаемости и импеданса кабеля. Эту емкость можно рассчитать по следующей формуле.

Где:

C = емкость в пФ / метр
εr = относительная проницаемость диэлектрика между внутренним и внешним проводниками
D = внешний диаметр
d = внутренний диаметр

Индуктивность коаксиального кабеля

Индуктивность коаксиального кабеля пропорциональна длине линии и не зависит от диэлектрической проницаемости материала между проводниками.Индуктор можно рассчитать по следующей формуле.

Где:

L = Индуктивность в мкГн / метр

D = Внешний диаметр

d = внутренний диаметр

Примечание: Значение μr в данном калькуляторе принято равным 1.

Расчет импеданса коаксиального кабеля

Импеданс коаксиального ВЧ кабеля зависит от диэлектрической проницаемости кабеля и диаметра внутреннего и внешнего проводников. Импеданс можно рассчитать по следующей формуле.

Где:

Zo = характеристическое сопротивление в Ом

εr = относительная проницаемость диэлектрика

D = Внутренний диаметр внешнего проводника

d = Диаметр внутреннего проводника

Примечание. Единицы измерения внутреннего и внешнего диаметров проводника могут быть в любых единицах, поскольку они всегда находятся в соотношении, поэтому они компенсируют друг друга.

Частота среза коаксиального кабеля

Импеданс отсечки коаксиального кабеля зависит от относительной диэлектрической проницаемости среды, а также от внешнего и внутреннего диаметра проводников.Частоту среза можно рассчитать по следующей формуле.

Где:

εr = относительная проницаемость диэлектрика

D = Внутренний диаметр внешнего проводника

d = Диаметр внутреннего проводника

Сопротивление провода и падение напряжения

Полли Френдшух, преподаватель кафедры электрического строительства и технического обслуживания Технологического колледжа Данвуди, объясняет, как рассчитать сопротивление провода и падение напряжения в электрической цепи в этих двух видеороликах. Полли шаг за шагом обучает принципу электрического сопротивления и факторам, которые могут влиять на сопротивление, приводя примеры.

В первом видео вы поймете, как вычисляется формула сопротивления:

Сопротивление (Ом) = (K x L) / CM , где;

  1. K (постоянная тока)
    1. Температура: удельное сопротивление металла увеличивается с повышением температуры
    2. Материал: лучшие проводники имеют наименьшее сопротивление (лучший проводник: серебро> медь> золото> алюминий)
    3. K = 12.9 (для меди); K = 21,2 (для алюминия)
  2. L (Длина провода в футах)
    1. Удельное сопротивление увеличивается при увеличении расстояния
  3. CM (Круглый Mil, размер поперечного сечения провода)
    1. Размер провода (AWG: американский размер провода) определяет значение CM.
    2. Чем меньше значение CM, тем тоньше провод и тем выше номер калибра.
    3. Пожалуйста, посмотрите таблицу в конце статьи.

Во втором видео Полли на примере показывает, как рассчитать падение напряжения по следующей формуле.

Vd (падение напряжения) = (2 x K x I x L) / CM , где;

  1. K (постоянная тока) — обсуждалось выше
  2. I (ток в амперах)
    1. Чем выше ток, тем больше падение напряжения
  3. L (Длина провода в футах) — обсуждалось выше
  4. CM (круглые милы) — обсуждалось выше

Вот таблица значений CM (круглых милов) для размеров AWG:

Американский калибр проволоки
AWG
Диаметр
(дюйм)
Круглый Mil
(CM)
4/0 0.460 211,592
3/0 0,410 167,800
2/0 0,365 133,072
1/0 0,325 105,531
2 0,258 83,690
4 0,204 41,740
6 0,162 26,251
8 0,128 16,509
10 0.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

2021 © Все права защищены.