Шаговое напряжение понятие: Шаговое напряжение, правила перемещения в зоне шагового напряжения

Содержание

Понятие «шагового напряжения» — ЗАО «СИ» Тел.: 84992359878 89055749848 [email protected]

Понятие «шагового напряжения»

Электрический ток не проявляет никаких признаков надвигающейся угрозы – невозможно почувствовать запах, не наблюдается видимых обстоятельств для беспокойства, ни каких-то остальных проявлений, которые могли бы вызывать тревогу либо волнение.

Исходя их этого, человек будет осведомлен в том, что попал в зону действия электрического тока лишь тогда, когда мало что уже можно исправить. Гальванический ток поражает моментально. Электрический ток, сквозь тело человека, может проходить по разнообразным следствиям: нечаянное касание к неизолированному проводу (либо с нарушенной изоляцией), к оболочке оборудования либо устройства с неисправной изоляцией, к даже самому обычному предмету, сделанного из металла, но находившегося в тот момент под напряжением. Также рассматриваются варианты касания заземленных предметов, самой земли и так далее.

Угроза шагового напряжения

Напряжение, находящиеся между 2-мя точками поверхности земли, которые расположены на дистанции в один шаг друг от друга (0,7-0,8 м), в опасной зоне, где наблюдается растекания электрического тока, и при случайном сбое изоляции, характеризующиеся внезапным обрывом проводов с линий электропередачи принято называть шаговым напряжением. Данное напряжение будет обладать самыми большими свойствами, когда человек приблизиться на максимальное расстояние к упавшему проводу, а меньшее—если он находится дальше, чем двадцать метров. Когда люди попадают под шаговое напряжение, сразу же чувствуются невольные судорожные сокращения мускул ног, вследствие чего человек падает.

Именно тогда, и останавливается влияние на человеческий организм шагового напряжения. Но, есть и друга причина, которая в два раза хуже предыдущей: возможность поражения электрическим током с фатальным исходом (по статистике, шаговое напряжение может стать причиной смерти). Если уже, так сложились обстоятельства, что вы случайно попали в опасную зону шагового напряжения, стоит немедленно покинуть участок. Специалисты советуют передвигаться маленькими шажками, с особой осторожностью, или вообще выпрыгивать на одной ноге. Только т.о., можно избавиться от негативных последствий.

Особенно критически сказывается шаговое напряжение на большой рогатой скот, т.к. отдаление шага у данных животных чрезвычайно велико, исходя из этого, животные чаще попадают в зоны с неизбежным исходом. Были зафиксированы смертельные ситуации, связанные с животными от шагового напряжения.

Недалеко от провода, где наблюдаются высокие показатели напряжения на поверхности земли в радиусе 8 метров появляется страшная зона, проводящая гальванический ток. Она и называется зоной «шагового» напряжения.

© 2016 — 2018, wpadmincheg963. Все права защищены.

Понятие шагового напряжения — Стройпортал Biokamin-Doma.ru

Что такое шаговое напряжение

Шаговым напряжением (напряжением шага) называется напряжение между двумя точками цепи тока, находящимися одна от другой на расстоянии шага, на которых одновременно стоит человек. Шаговое напряжение зависит от удельного сопротивления грунта и силы протекающего через него тока.

Шаговое напряжение — это напряжение между двумя точками на земле на расстоянии шага, возникающее вокруг точки замыкания на землю токоведущей линии. Наибольшая величина этого напряжения наблюдается на расстоянии 80 — 100 см от точки касания провода с землей, затем оно бистро понижается и на расстоянии 20 м практически становится равным нулю.

В области защитных устройств от поражения током — заземления, зануления и др. — интерес представляют в первую очередь напряжения между точками на поверхности земли (или иного основания, на котором стоит человек) в зоне растекания тока с заземлителя.

Очень часто путают напряжения прикосновения и напряжение шага. Напряжение прикосновения — это разность потенциалов двух точек электрической цели, которых одновременно касается человек, а напряжение шага есть напряжение между двумя точками поверхности земли в зоне растекания тока, отстоящими друг от друга на расстоянии одною шага.

Шаговое напряжение при одиночном заземлителе

Шаговое напряжение определяется отрезком, длина которого зависит от формы потенциальной кривой, т.е. от типа заземлителя, и изменяется от некоторого максимального значения до нуля с изменением расстояния от заземлителя.

Допустим, что в земле в точке О размещен один заземлитель (электрод) и через этот заземлитель проходит ток замыкания на землю. Вокруг заземлителя образуется зона растекания тока по земле, т. е. зона земли, за пределами которой электрический потенциал, обусловленный токами заземления на землю, может быть условно принят равным нулю.

Причина этого явления заключается в том, что объем земли, через который проходит ток замыкания на землю, по мере удаления от заземлителя увеличивается, при этом происходит растекание тока в земле. На расстоянии 20 м и более от заземлителя объем земли настолько возрастает, что плотность тока становится весьма малой, напряжение между точками земли и точками еще более удаленными не обнаруживается сколько нибудь ощутимо.

Распределение напряжения на различных расстояниях от заземлителя: 1 — потенциальная кривая 2 — кривая характеризующая изменение шагового напряжения

Если измерить напряжение Uз между точками, находящимися на разных расстояниях в любом направлении от заземлителя, а затем построить график зависимости этих напряжений от расстояния до заземлителя, то получится потенциальная кривая ) Если разбить линию ОН на участки длиной 0,8 м, что соответствует длине шага человека, то ноги его могут оказаться в точках разного потенциала Чем ближе к заземлителю, тем напряжение между этими точками на земле будет больше (U a б > U бв; U бв > U вг)

Шаговое напряжение для точек В и Г определяется как разность потенциалов между этими точками

U ш = U в — U г = U з B

где B —коэффициент напряжения шага, учитывающий форму потенциальной кривой 1 . Наибольшие значения напряжения шага и коэффициента B будут при наименьшем расстоянии от заземлителя, когда человек одной ногой стоит на заземлителе, а другая нога на расстоянии шага.

Кривая 2 характеризует изменение шагового напряжения.

Опасное шаговое напряжение может, например, возникнуть вблизи упавшего на землю и находящегося под напряжением провода. В этом случае запрещается приближаться к проводу, лежащему на земле, на расстояние ближе 8 — 10 м.

Шаговое напряжение отсутствует, если человек стоит или на линии равного потенциала или вне зоны растекания тока.

Максимальные значения шагового напряжения будут при наименьшем расстоянии от заземлителя, когда человек одной ногой стоит непосредственно на заземлителе, а другой — на расстоянии шага от него. Объясняется это тем, что потенциал вокруг заземлителей распределяется по вогнутым кривым и, следовательно, наибольший перепад оказывается, как правило, в начале кривой.

Наименьшие значения шагового напряжения будут при бесконечно большом удалении от заземлителя, а практически за пределами поля растекания тока, т.е. дальше 20 м. Напряжение шага будет отсутствовать, когда человек стоит в зоне малых (близких к кулевому) потенциалов, на линии равного потенциала или на одной ноге (поэтому выходить из зоны растекания тока рекомендуется, перемещаясь прыжками на одной ноге и располагая ступню вдоль линии равного потенциала).

Шаговое напряжение при групповом заземлителе

В пределах площади, на которой размещены электроды группового заземлителя, шаговое напряжение меньше, чем при использовании одиночного заземлителя. Шаговое напряжение также изменяется от некоторого максимального значения до нуля — при удалении от электродов.

Максимальное шаговое напряжение будет, как и при одиночном заземлителе, в начале потенциальной кривой, т.е. когда человек одной ногой стоит непосредственно на электроде (или на участке земли, под которым зарыт электрод), а другой — на расстоянии шага от электрода.

Минимальное шаговое напряжение соответствует случаю, когда человек стоит на «точках» с одинаковыми потенциалами.

Опасность шагового напряжения

При обнаружении замыкания на землю до отключения поврежденного участка запрещается приближаться к месту повреждения на расстояние менее 4 — 5 м в закрытых распределительных устройствах и 8 — 10 м на открытых подстанциях. В случае необходимости (например, в целях ликвидации аварии, оказания подойди пострадавшему) можно приблизится к месту повреждения на меньшее расстояние, но при этом необходимо использовать защитные средства: боты, галоши, коврики, деревянные лестницы их т. п.

При попадании под шаговое напряжение возникают непроизвольные судорожные сокращения мышц ног и как следствие этого падение человека на землю. В этот момент прекращается действие на человека шагового напряжения и возникает иная, более тяжелая ситуация: вместо нижней петли в теле человека образуется новый, более опасный путь тока, обычно от рук к ногам и создается реальная угроза смертельного поражения током. При попадании в область действия шагового напряжения необходимо выходить из опасной зоны минимальными шажками («гусиным шагом»).

Особо опасно шаговое напряжение для крупного рогатого скота, т.к. расстояние шага у этих животных очень велико и соответственно велико напряжение, под которое они попадают. Нередки случаи гибели скота от шагового напряжения.

Понятие шагового напряжения и пути его преодоления

Определение опасности

Что такое шаговое напряжение — это напряжение, которое может возникнуть вблизи от упавшего рабочего провода или кабеля, растекаясь по поверхности земли и создавая опасный потенциал между двумя точками, на расстоянии одного шага человека (обычный шаг взрослого мужчины около 80 см). В зависимости от напряжения и расстояния до точки контакта провода и нахождении человека эта величина может достигать от десяти до нескольких тысяч вольт на один шаг.

Часто, после бури упавшие деревья ложатся на воздушные линии, обрывая провода или ломая опоры кидают ВЛ на землю, создавая таким образом причину данного явления, и опасность возникновения потенциала в зоне возможного поражения. Во время таких аварий отключение на подстанции происходит в несколько этапов. Сначала автоматически подается повторно напряжение, проверяя устранилась ли причина. Это нужно в том случае, если возможно причина самоустранилась, освободив линию из своих ветвей или лап в случае мелких животных или птиц, которые по неосторожности перекрыли воздушный изолятор. Нет гарантии что автоматика отработает четко, определив обрыв или провисание провода с качающейся веткой и обесточив линию.

Пересекая линии электропередач убедитесь в отсутствии на вашем пути свисающих проводов и лежащих на деревьях кабелей. По стволу также расходится ток, создавая потенциал вокруг него.

Пример опасной ситуации вы можете просмотреть на видео:

Безопасный выход из зоны поражения

Безопасным считается расстояние более 20 метров от источника высокого потенциала. Несмотря на это, считается, что максимальный радиус поражения шагового напряжения составляет 8 метров, если в месте обрыва опасное напряжение составляет выше 1000 вольт и 5 метров, если значение не превышает 1000 вольт.

В то же время начиная с 380 В и выше, напряжение считается опасным, т.к. способно вызвать такой шаговый потенциал. Чтобы покинуть опасную зону, безопасно выйти, не нужно быстро бежать, делая длинные шаги. Шаговое напряжение увеличивается при увеличении длины шага, и наоборот. Пока ноги рядом угрозы для жизни не возникнет. Выходить из зоны высокого электрического потенциала нужно, переступая с ноги на ногу, делая небольшой шаг в пределах размера ступни (такое перемещение еще называют гусиным шагом). Ни в коем случае не пробуйте выпрыгнуть из зоны поражения на одной ноге. Такой способ выхода конечно действенный, но если вы упадете на руки либо локти, возникнет шаговое напряжение более высокой величины, что может сразу же привести к летальному исходу.

Эффективными средствами защиты при такой опасности считаются галоши и перчатки из диэлектрической резины. Если вдруг под рукой у вас оказались такие средства, обязательно нужно передвигаться в них.

С условиями безопасного выхода из зоны растекания электрического тока вы можете также ознакомиться, просмотрев видеоуроки:

Как освободить человека?

Если вы были не одни и ваш спутник впереди внезапно упал, попав в зону растекания шагового напряжения, потому что электроток вызвал непроизвольное сокращение мышц ног, не стоит бросаться к нему бегом. Нужно оценить ситуацию и подходить к нему мелкими шагами, обмотав руки сухой одеждой, оттянув пострадавшего из зоны поражения.

Под шаговое напряжение можно попасть и дома, прикоснувшись к включенному в сеть неисправному электроприбору, образовав таким образом электрическую цепь. Для избежания таких несчастных случаев в квартирном щитке необходимо установить УЗО либо организовывать систему заземления вместе с системой уравнивания потенциалов.

Что делать если на ваших глазах человек попал под действие электротока в помещении? Не паниковать, первым делом нужно разорвать цепь, выключив рубильник или автомат питания. Если нет такой возможности, сухим деревянным предметом, обмотав руки сухой одеждой, помня о своей безопасности, попытаться освободить пострадавшего этим предметом, откинув его или поместив между человеком и источником, чтобы разорвать цепь. На картинках ниже показаны меры, которые нужно предпринять для освобождения пострадавшего, в том числе после поражения шаговым напряжением:

Освободив человека, оттяните его в безопасное место, прощупайте пульс и посмотрите на реакцию зрачков на свет. Вызовите скорую и начинайте экстренную сердечно-легочную реанимацию, искусственное дыхание и массаж сердца, до приезда бригады скорой помощи.

Если пострадавший пришел в сознание положите его набок, чтобы внезапный рвотный рефлекс не попал в дыхательные пути. Более наглядные пошаговые действия вы можете узнать в нашей статье — как оказать помощь при поражении электрическим током. Помните что каждый пункт в правилах, это жизнь или горький опыт пострадавшего.

Вот и все, что хотелось рассказать вам о том, что такое шаговое напряжение, какая причина его возникновения и что самое главное — как определить опасность и покинуть эту зону. Берегите себя и напоминаем еще раз — обходите стороной оборванные провода, минимум за 8 метров, т.к. на таком расстоянии опасный потенциал снижается до нуля.

Опасность шагового напряжения

Электрический ток всегда является потенциальной опасностью для жизни человека. Шаговое напряжение – одно из самых опасных явлений в электротехнике, определение которого знать нужно любому электрику.

Определение

Что это такое – шаговое напряжение? Это определенное напряжение, которое возникает между ногами человека, стоящего рядом с заземленным объектом без соприкосновения с ним. Оно равно разности напряжений электричества между объектом и точкой, которая находится на некотором расстоянии от него. Главными факторами, влияющими на него, являются расстояние, удельное сопротивление земли (сетка заземления) и силы тока, протекающего по проводнику.

Фото — Пример шагового вихря напряжения

Опасность шагового напряжения заключается в том, что прикосновения не нужны для поражения током, а после поражения перемещение практически невозможно. За счет того, что земля также имеет определенное удельное напряжение, удар может произойти независимо от действий человека.

Фото — Зависимости размеров шага и напряжения

Причины

Опасное напряжение чаще всего возникает при обрыве электрического локального кабеля, поставляющего электричество к определенному объекту. Опаснее всего в такой момент человеку находиться на болоте, в воде или даже стоять на мокром асфальте, т. к. вода является превосходным проводником электрического тока.

О том, какое напряжение называют шаговым, изучается даже в школах, но, к сожалению, предугадать момент его появления и конкретное поле действия очень сложно. Оно может проявиться из-за перепадов атмосферного давления, возникновения взрыва на электрических подстанциях, при коротком замыкании на проводе в помещении или на улице, и даже от взаимодействия земли с молнией.

Действие

Для того, чтобы предупредить вредное воздействие шагового напряжения, необходимо провести расчет. Он поможет вычислить размер диапазон и его силу.

Фото — Расчет шагового напряжения

Каждый параметр отвечает за определенный показатель, важный при вычислении радиуса. На данной схеме:

  • IЗ – ток короткого замыкания, измеряется в Амперах;
  • ρ – удельное сопротивление грунта, Ом*м;
  • a – расчетная длина шага, м
  • x – расстояние от места повреждения, измеряется в метрах.

Исходя из графика может быть рассчитана зона шагового напряжения и непосредственно его размер:

UШ = (I3 * ρ * a) / 2 π x (x + a). Измеряется в вольтах.

Конечно, точно определить шаговое предельное напряжение и его радиус очень сложно, т. к. нужно рассчитать примерное сопротивление разных слоев почвы и вывести средний показатель, умноженный на определенный коэффициент. Но такая формула поможет провести прикидочные расчеты и вычислить напряжение, диапазон и прочие параметры.

Благодаря этому расчету можно определить не только пошаговое напряжение, но и шаг сетки, что поможет минимизировать вероятность летального исхода. Считается, что воздействие будет минимальным, если сокращать шаги, но это зависит от частоты полос напряжения. Например, есть схема кривой, которая поможет рассчитать размер шага при аварии.

Фото — Кривая расчета ширины шага

Для того чтобы получить такой график на местности, необходимо измерить вольтаж на разных расстояниях от провода, а после свести данные в одну схему. Обратите внимание на отрезок ОН, на чертеже указано, что его можно разбить на несколько участков, которые по размеру будут соответствовать среднему шагу человека. В таком случае, Вы сможете вывести рабочего из зоны опасности. Если просчитать места образования опасных линий, то при шагах ступни будут находиться в участках разности потенциалов. Также график наглядно демонстрирует, что чем ближе объект (см. человек), находится к эпицентру аварии (оборванному проводу), тем меньшими становятся отрезки и выше напряжение.

Учитывая это, формула будет иметь такой вид:

Uш = Uв — Uг = Uз*B

В данном случае, коэффициент напряжения между человеческими ступнями, также именуемый как коэффициент напряжения шага равняется 1 (по умолчанию). Этот показатель зависит от расстояния до аварии. Например, чем ближе источник напряжения – тем выше коэффициент между ступнями.

На графике 2 демонстрируется, как именно изменяются данные при движении тела в зоне опасности. Особенно высоко влияние тока в грозу или на мокром асфальте. В подобных случаях без специальной экипировки запрещается приближаться к эпицентру ближе, чем на десять метров.

При этом нужно учитывать сторонние факторы, влияющие на проводимость человеческого тела и сопротивление между ступнями. Так, если рабочий в момент падения провода будет в мокрой одежде, обуви или просто вспотеет, то для смертельного удара будет достаточно даже нескольких десятков Вольт, в отличие от значащихся в технике безопасности 220.

Со временем может произойти самостоятельное выравнивание электрического тока, если будет отключен источник. В такой случае, вся энергия просто уйдет в землю, не требуя дополнительных процессов.

Видео: расчет шагового напряжения

Действия при аварийной ситуации

Пройдя понятие о шаговом напряжении, становится понятно, что для осуществления каких-либо спасательных операций, понадобятся специальные меры защиты. Это костюм, выполненный из неприводимого материала и определенные знания оказания первой помощи.

Поражение начинается с нижних частей ног, в зависимости от напряжения, ощущения могут быть разными:

Правила выхода из опасной ситуации гласят, что если помощи нет, то нужно стараться выбраться из зоны действия тока. Электробезопасность рекомендует уменьшать размер шагов, например, двигаться прыжками на одной ноге, размером менее 40 см. Способы зависят от конкретной ситуации.

Фото — памятка БЖД по спасению человека в зоне шагового напряжения

Когда вошли в безопасный участок, сразу нужно определить возможные симптомы поражения шаговым напряжением:

  1. Дрожь и онемение конечностей;
  2. Бессвязность речи;
  3. Головокружения, потеря сознания, тошнота;
  4. Боль в мышцах;
  5. Любые виды нарушения дыхания, начиная от першения в горле и заканчивая спазмами;
  6. Фибрилляция.

В сводах БЖД сказано, что в 80 % случаев самостоятельный выход из зоны, где действует шаговое напряжение, практически не имеет последствий. Но у 20 % освобождение из ловушки может оставить след на всю жизнь в виде проблем с сердцем или легкими.

Шаговое напряжение

Шаговое напряжение — напряжение, обусловленное электрическим током, протекающим в земле или токопроводящем полу, и равное разности потенциалов между двумя точками поверхности земли (пола), находящимися на расстоянии одного шага человека. Шаговое напряжение зависит от длины шага, удельного сопротивления грунта и силы протекающего через него тока. Опасное шаговое напряжение может возникнуть, например, около упавшего на землю провода под напряжением или вблизи заземлителей электроустановок при аварийном коротком замыкании на землю (допустимые значения сопротивления заземлителей и удельное сопротивление грунта нормируются для того, чтобы избежать подобной ситуации). [1]

При попадании под шаговое напряжение возникают непроизвольные судорожные сокращения мышц ног и, как следствие, падение человека на землю. Ток начинает проходить между новыми точками опоры — например, от рук к ногам, что чревато смертельным поражением. При подозрении на шаговое напряжение надо покинуть опасную зону минимальными шажками («гусиным шагом») или прыжками.

Особо опасно шаговое напряжение для крупного рогатого скота, так как расстояние между передними и задними ногами у этих животных очень велико и, соответственно, велико напряжение, под которое они попадают. Нередки случаи гибели скота от шагового напряжения.

Расчёт

Шаговое напряжение зависит от сопротивления разных слоёв почвы [2] — тем не менее, поддаётся прикидочным расчётам [3] . Для примера рассмотрим однофазное замыкание на землю в одной точке. Сначала надо вычислить ток однофазного замыкания.

,

где Isc — ток короткого замыкания, Uphase — напряжение фазы, R — сопротивление рабочего заземления нейтрали (единицы ом), Rcont — сопротивление растеканию тока в месте контакта (обычно оценивают в 12 Ом). После этого можно вычислить шаговое напряжение:

,

где ρ — удельное сопротивление земли (сотни ом-метров), x — расстояние от проводника, a — длина шага.

При определённых условиях (вспотевший человек, промокшая обувь) сопротивление между ногами может быть меньше 1 кОм — так что даже низкие (несколько десятков вольт) напряжения не всегда безопасны! На производстве имелось немало несчастных случаев от удара напряжением в 36 и менее вольт [4] .

Лошадиная авария

В 1928 году в Ленинграде произошла авария, вошедшая в учебники под названием «лошадиной» [5] .

Посреди площади, вымощенной деревянными шестиугольниками, стоял чугунный колодец с разъединителем на 2000 вольт. Однажды в колодце растрескался изолятор, и разъединитель повис на проводе в нескольких сантиметрах от стенки. Прошёл дождь, и мостовая стала проводящей и податливой. Когда рядом с колодцем проехала гружёная телега, мостовая прогнулась — и провод замкнуло на колодец.

Людей, чья длина шага не превышала метра, просто било током. А лошадь, с её двухметровым корпусом и железными подковами, убило насмерть. Мостовая была под напряжением в течение двух секунд, после чего на подстанции сработал «автомат».

Неожиданная гибель лошади вызвала интерес людей, прибыл конный патруль. Телегу оттащили, и короткое замыкание прекратилось. В это время дежурный по подстанции проверил сопротивление изоляции и, посчитав отключение ложным, подал ток. Разъединитель с колодцем образовали электрическую дугу, и на мостовой снова возникло шаговое напряжение, погибли две милицейские лошади.

Все о шаговом напряжении

Здравствуйте, уважаемые читатели!

Сегодня мы поговорим о напряжении шага.

Обсудим причины его возникновения, риски, связанные с попаданием под воздействие шагового напряжения, расскажу как избежать поражения током и не только.

Эту информацию необходимо знать каждому!

  • Что такое шаговое напряжение
  • Причины возникновения шагового напряжения
  • В чем заключается опасность
  • Зона шагового напряжения
  • Правила перемещения в зоне опасности
  • Расчет шагового напряжения
  • Выход из зоны шагового напряжения
  • Первая помощь при поражении током
  • Средства защиты

Что такое шаговое напряжение

Как часто вы видите ток, протекающий по проводам? Всем известно, что ток невидим. Увидеть его, значит столкнуться с аварийной ситуацией лицом к лицу.

Если оголенный провод падает на землю, такой реакции не происходит, но вокруг места касания этого провода будет напряжение. На расстоянии шага оно представляет большую опасность.

В этой и подобных ситуациях: разницу потенциалов между двумя точками электрической цепи тока, находящимися на расстоянии шага одна от другой, на которых одновременно стоит человек, называют шаговым напряжением или напряжением шага.

Чтобы разобраться откуда возникает данное напряжение рассмотрим причины.

Причины возникновения шагового напряжения

По принципу проводимости электрического тока все материалы делятся на проводники и диэлектрики. Так, например, земля являет проводником, особенно в сырую погоду. Если при обрыве провода линии электропередачи, он касается земли, то там образуется опасная зона, в которой и возникает напряжение шага.

Подобная ситуация происходит, когда молния попадает в молниеотвод, который соединён с электроустановкой. В этом случае образуется контакт между токопроводящими элементами установки и землей, на которой образуется зона под напряжением.

Причиной для образования зоны опасного напряжения шага может послужить:

  • Авария на электрической подстанции;
  • Короткое замыкание воздушных линий на улице или кабельных — в помещении.

Все вышеперечисленные случаи представляют опасность для людей и животных.

В чем заключается опасность

Представьте ситуацию: на земле лежит оборванный провод и как может показаться на первый взгляд не представляет никаких признаков угрозы, а ведь он может быть под напряжением.

Напомню, земля — хороший проводник электричества. Когда человек оказывается в непосредственной близости с проводом, он незаметно попадает под действие шагового напряжения. Опасность заключается в том, что между ног образуется разность потенциалов.

Попадая под воздействие электрического тока, человек пытается сделать шире шаг, а в этот момент разница потенциалов становится выше. В итоге непроизвольные судорожные сокращения мышц приводят к падению человека на землю.

При падении происходит увеличение расстояния между точками касания земли, что в свою очередь представляет повышенною опасность.

Когда мы говорим про оборванный провод, касающийся земли своим оголенным концом, то и не задумываемся какую опасность он может представлять. Чем выше напряжение поврежденной линии, тем более опасна зона действия этого напряжения.

Целые воздушные линии или кабельные системы не представляют опасности, но при аварийной ситуации природного или технического характера они представляют большую угрозу.

Например попадание молнии в молниеотвод, опору электропередач или просто в дерево, вызывает растекание электрического тока через проводники на землю. В этом месте и образуется опасная зона шагового напряжения.

Правило выживания гласит:

Во время грозы и молнии нужно подальше находиться от высоких деревьев, зданий и строений.

В сырую погоду вообще старайтесь не приближаться к открытым (неизолированным) электроприборам и технике. Помните, если одной ногой стоять на заземлителе, а второй на расстоянии шага от него, то к добру это не приведет. И учитывайте, что среднестатистическая длина шага мужчины, равна 0,81 м.

Тело человека включается в электрическую цепь, как нагрузка, и происходит вредное воздействие электрического тока на организм. Но если обувь человека сделана из не проводящих ток материалов, например в резиновых сапогах – вероятность получения травмы меньше.

Риском в данной ситуации может стать наличие алкоголя в крови и наличие открытых ран на ногах. Потому что данный факт влияет на проводимость человека. А так как кожа является защитным диэлектриком, то нарушение кожного покрова снимает вашу защиту.

Помимо проводимости, риском может стать температура окружающей среды. Ведь чем она выше, тем более опасно находиться в зоне риска.

Во всех ранее перечисленных случаях представлена опасность шагового напряжения для жизни человека, животных и особенно детей. Поэтому ограничьте игру ваших детей вблизи электроустановок.

Зона опасности шагового напряжения

Зона растекания тока может быть в радиусе порядка 10 и более метров от места касания земли оборванного провода. Радиус зоны опасности, которая находится под напряжением, зависит от нескольких факторов.

Во-первых: расстояние от источника опасности. Чем удаленнее, тем опасность меньше.

Во-вторых: напряжение линии оборванного провода: 0,4; 1; 3; 6; 10; 35; 110; 220 кВ.

Если влажность земли, по которой будет протекать ток, будет выше нормы, то нужно принять во внимание, что в перечисленных выше случаях радиус действия увеличивается. Исходя из всех вышеперечисленных условий, особо опасной является зона, расположенная в радиусе 8-10 метров от источника.

Правила перемещения в зоне шагового напряжения

В радиусе действия напряжения необходимо передвигаться соблюдая технику безопасности.

Передвигаться нужно не отрывая ног от земли с шагом не более длины стопы. Ни в коем случае не касайтесь руками оголенных проводов и кабелей, пока не убедитесь, что напряжение снято!

Запрещается!

Бежать или двигаться по спирали в радиусе действия шагового напряжения.

Согласно правилам, передвижение ремонтного персонала в радиусе поражения током должно выполняться после проведения расчета предельного шагового напряжения и его радиуса.

Расчет шагового напряжения

Рассчитывают величину напряжения по формуле:

Из формулы видно, что напряжение шага напрямую зависит от тока короткого замыкания, удельного сопротивления грунта и обратно пропорционально разнице потенциалов между двух точек грунта, умноженной на 2π.

Под двумя точками подразумевают разность соотношений между длиной до места аварии и суммой расстояний от места повреждения до субъекта и расчетную длину шага. При расчетах, шаг человека или животного принимают значение равное 0,7-1 метр.

Так как шаговое напряжение протекает сквозь землю, а она в свою очередь состоит из разных слоев грунта, то для проведения точных расчетов необходимо умножить сопротивление грунта на соответствующий коэффициент.

Пример расчета.

При токе замыкания на землю в 400 Ампер, сопротивлении грунта 150 Ом*м (суглинок), расстоянии от человека до места касания проводом земли в 15 метров и расстоянии шага 0,50 м мы получаем напряжение 20,5 Вольт.

Ток замыкания будет зависеть от напряжения сети и соответственно, чем он выше, тем больше напряжение шага. Отсюда и вытекает рекомендация по сокращению расстояния при ходьбе в опасной зоне. Но чем ближе к источнику опасности, тем напряжение больше в несколько раз.

На расстоянии от источника 10 метров напряжение шага, при тех же параметрах, будет уже 45 Вольт, что в свою очередь является небезопасным для человека.

Выход из зоны шагового напряжения

Когда вы поздно заметили оголенный провод, касающийся земли, то есть оказались в зоне действия, то передвигаться нужно «гусиным шагом», направляясь прямо от места касания провода в противоположную сторону.

Прыгать или передвигаться на одной ноге, как советуют некоторые люди — опасно!

Так как при падении все ваше тело окажется под действием того напряжения, от которого вы хотели уйти. В таком случае поражение будет нанесено всему организму. Будьте внимательны!

Первая помощь при поражении током

Постоянно думай о собственной безопасности!

  1. Начать оказание первой помощи необходимо немедленно. Первым делом нужно обязательно освободить пострадавшего от действия электрического тока.
  2. Затем сразу же вызвать скорую помощь!
  3. При отсутствии дыхания и сердцебиения приступить к искусственному дыханию и массажу сердца.
  4. По возможности наложить стерильную повязку на место электрического ожога.
  5. Обеспечить покой пострадавшему.

Пострадавшего независимо от его самочувствия следует направить в лечебное учреждение.

Что нельзя делать с пострадавшим и почему:

  • Закапывать в землю (будет затруднено дыхание, что повлияет на работу сердца)
  • Обливать водой (происходит охлаждение организма)
  • Загрязнять поверхность ожога (начинает развиваться столбняк или гангрена)

Средства защиты

По регламенту «Охраны труда» рабочие должны соблюдать меры защиты и передвигаться по зоне в диэлектрических ботах, иметь при себе диэлектрические перчатки, изолирующие штанги, измерители напряжения, монтажные инструменты с изолирующими рукоятками.

Что касается работников электрических профессий самым основным риском является работа без наряда допуска. Когда вы знаете, что должно быть отключено и где заземлено, вы можете работать безопасно.

Помимо наряд-допуска существует оценка риска, которая поможет вам сориентироваться на объекте и избежать опасности. Оценка риска — это документ, в котором указан предполагаемый ущерб здоровью и жизни работника, связанный с производством работ на объекте.

В завершении жизненная мудрость. Будьте осторожны и соблюдайте технику безопасности, это поможет вам спасти вашу жизнь. Всегда смотрите не только по сторонам, но и под ноги, тем более, если находитесь в знакомой вам местности, порой за ночь может все измениться.

Что такое шаговое напряжение и как покинуть опасную зону

Опасность электрического тока с большим напряжением появляется не только, если коснуться провода без изоляции. Провод линии электропередач, оборвавшийся во время бури и грозы, представляет не меньшую опасность. В определенном радиусе от провода, находящегося под напряжением возникает сильное электрическое поле, опасное для человека. Коварство явления заключается в том, что его нельзя предварительно увидеть или почувствовать, оно не излучает звуков или запаха. Однако, оторвавшись, кабель представляет серьезную опасность поражения шаговым напряжением.

Что такое шаговое напряжение

При замыкании на землю кабель излучает электричество. При этом ток никуда не исчезает, а на поверхности грунта в определенном радиусе создается участок растекания. Шаговое напряжение – это явление, возникающее между точками зоны активности вблизи электрического провода с большой силой тока. Условия возникновения шагового напряжения – касание высоковольтного кабеля к земле или другой поверхности. Причины возникновения следующие:

  • обрыв кабеля ЛЭП или локального провода;
  • авария на подстанции;
  • попадания молнии в опору ЛЭП;
  • короткое замыкание высоковольтных проводов.

В случае обрыва на электрической подстанции включается система поэтапного автоматического отключения. Сначала происходит обесточивание линии, однако через некоторое время ток на поврежденный кабель подается повторно. В некоторых случаях причина замыкания устраняется автоматически: воздушный изолятор может быть перекрыт ветками или птицами. Поэтому даже обесточенный кабель является потенциальной опасностью шагового напряжения.

Максимальный радиус поражения

Радиус шагового напряжения напрямую зависит от напряжения, поданного на оборванный провод. Потенциальную опасность для человека представляет электричество напряжением более 360 Вольт. При минимальном значении особую опасность представляет зона шагового напряжения ближе 3 метров к источнику электричества. При росте величины до 1000 Вольт опасной считается область до 5 метров.

При обрыве ЛЭП или аварии на подстанции источник тока значительно превышает 1000 Вольт. В этом случае радиус поражения достигает 8 метров. При больших токах опасная зона значительно превышает эту величину, но ток на расстоянии 12-15 метров от источника не представляет смертельную опасность. Значение безопасного электричества для шагового напряжения – 40 Вольт. На расстоянии от 8 до 20 метров от источника шаговое напряжение редко превышает эту величину.

Наибольшая поражающая сила получается когда человек одной ногой станет на провод, а второй – в шаге (80 см) от него. При этом расстояние между ступнями играет не меньшую роль, чем удаление от источника. Именно на этом расстоянии возникает разность потенциалов между двумя точками, обуславливающая поражение током человека.

Уровень опасности значительно повышается во влажную погоду. Так, мокрый асфальт или грунт является лучшим проводником, чем сухая земля. Он обладает большим сопротивлением. Поэтому во время дождя или в болотистой местности следует быть максимально внимательным.

Правила перемещения в зоне шагового напряжения

Лучший способ не стать жертвой шагового напряжения – избегать опасности поражения. Для этого требуется быть предельно внимательным, особенно во влажную погоду и при ограниченной видимости. При пересечении линий электропередач в ветреную погоду требуется убедиться в отсутствии оторвавшихся проводов. Кроме кабелей, упавших на землю, опасность представляют источники, обмотанные вокруг столбов или деревьев. При обнаружение следует обойти провод за 10-15 метров. В случае, если кабель упал непосредственно возле человека, необходимо сохранять спокойствие и следовать следующему алгоритму:

  1. Встать прямо на 2 ноги, максимально сведя пятки;
  2. Определить ближайший путь от потенциального источника напряжения, минуя препятствия;
  3. Аккуратно совершить поворот в нужное направление;
  4. Передвигаться от источника максимально мелкими шагами;
  5. После выхода из опасной зоны незамедлительно обратиться в МЧС для устранения опасности.

Наиболее эффективно при выходе из опасной зоны является передвижение гусиными шагами. Это значит, что передняя пятка практически касается носка задней ноги, нога при шаге переставляется на длину ступни. Таким образом сохраняется минимальное расстояние между ступнями, которого не хватает для возникновения опасного напряжения.

Такой способ движения отнимает много сил, однако является наиболее безопасным. Движение необходимо производить максимально быстро, но без спешки и паники (по статистике во время любых ЧП именно паника является причиной 80% несчастных случаев). Бежать или пытаться выпрыгивать из опасной зоны категорически запрещается.

При выходе можно постепенно увеличивать интервал шага на несколько сантиметров, однако делать это рекомендуется при удалении на 5-7 метров от источника опасности. Признаками шагового напряжения является покалывание в конечностях, при большем значение напряжения – спазмы, резкая боль. В исключительных случаях возможен паралич ног. Спазм конечностей особо опасен, так как вызывает непроизвольное сокращение мышц и может привести к падению (после чего покинуть опасную область самостоятельно практически невозможно).

Еще одним действенным, но запрещенным по технике безопасности способом безопасного выхода зоны являются прыжки на одной ноге. Соприкосновение с землей только одной конечностью в этом случае полностью безопасно, но при падении на вторую ногу или руку существует риск опасного для жизни поражения.

Как вытащить человека из зоны шагового напряжения

При попадании в опасный радиус от источника рекомендуется выбираться самостоятельно. Однако, если человек не может самостоятельно покинуть её, его необходимо вытаскивать. Делать это нужно так же, как и при выходе из зоны: мелкими шагами. При этом требуется обмотать руки сухой одеждой, в лучшем случае – изоляционными материалами, после чего медленно, мелкими шагами вытянуть человека.

Помочь при выходе из зоны шагового напряжения поможет одежда с изоляцией: прорезиненные ботинки и перчатки. Именно этот вид одежды используется работниками, обслуживающими ЛЭП и службами МЧС для устранения неисправностей и опасностей.

После выхода из опасной зоны

Первым делом необходимо оценить свое состояние (или состояние спасенного, оказав пострадавшему первую помощь). Обычно после выхода человек чувствует себя нормально, но в некоторых случаях наблюдаются проблемы со здоровьем. Необходимо сосредоточиться и оценить свое состояние, обратить внимание на сердце и легкие. По статистике ВОЗ у 20% людей после самостоятельного выхода из зоны шагового электричества наблюдаются проблемы с этими органами. После этого необходимо обратиться в МЧС для устранения опасности, а при подозрении на плохое состояние здоровья – вызвать «скорую». Не лишним будет и прохождение медицинского обследования в течение нескольких дней.

что это такое и меры безопасности

Электрический ток представляет опасность для окружающих прежде всего отсутствием каких-либо внешних признаков, указывающих на возможность потенциального вреда. Особо следует отметить шаговое напряжение, которое в большинстве случаев становится настоящей ловушкой. Его нельзя заранее увидеть или услышать, это явление обнаруживается лишь в последний момент, когда сложно принять действенные меры.

Отчего возникает явление шагового напряжения

Согласно определению электротехники, такое понятие, как шаговое напряжение представляет само по себе опасный потенциал, возникающий неподалеку от любого проводника, находящегося в рабочем состоянии. Непосредственную опасность представляют две точки зоны шагового напряжения, находящиеся в опасной близости, на дистанции примерно 0,8 метра одна от другой. Этот показатель по своей сути ни что иное, как средний размер шага, который делает взрослый человек.

Данный потенциал обладает опасной величиной, которая зависит от сетевого напряжения и расстояния между оборванным проводом и человеком. Поэтому данное значение находится в очень широком диапазоне и составляет от десятков до тысяч вольт, приходящихся на один шаг. В связи с этим, его называют потенциально опасным.

Основной причиной возникновения подобной ситуации являются деревья, довольно часто падающие на ЛЭП под действием неблагоприятных проявлений непогоды. Из-за этого происходит обрыв проводов, которые находятся под высоким напряжением, создавая тем самым небезопасную зону воздействия электрического тока.

Шаговое напряжение, как электротехнический термин, находится в прямой зависимости от различных физических условий. Кроме величины напряжения в ЛЭП, большое значение имеет величина удельного сопротивления земли на данном участке. В тех случаях, когда наблюдаются повышенные показатели влажности, радиус действия зоны поражения значительно возрастает. Это связано с ростом площади сильно увлажненного грунта, по которому электрический ток неравномерно растекается.

При попадании в зону, где возможно получить удар током, любой оборванный провод, находящийся на поверхности земли, следует обходить как можно дальше и не сближаться с ним на дистанцию двадцати метров и менее. Если величина опасного напряжения в точке обрыва будет равна более 1000 вольт, то максимальный радиус опасной зоны поражения составит восемь метров. При значении напряжении менее 1000 вольт радиус шагового напряжения, представляющего реальную опасность, снижается до пяти метров.

Негативные факторы шагового напряжения

Наибольшее значение, до которого в данных условиях доходит шаговое напряжение, наблюдается в непосредственной близости от оборванного проводника. До минимального значения оно доходит к 20 метрам, а затем, когда расстояние увеличивается, постепенно исчезает. Земля сама по себе является хорошим проводником электричества.

После того как человека стала окружать опасная зона шагового напряжения, у него в промежутке между обеими ногами возникает электрический ток, проявляющийся в виде разности потенциалов. Под действием тока начинается самопроизвольное сокращение ножных мышц. В результате судорожных сокращений пострадавший не может удержаться и совершает непроизвольное падение на землю.

После того как человек упал и оказался в горизонтальном положении, шаговое напряжение останавливает свое воздействие, но ситуация не становится менее опасной. Электрический ток изменяет свое направление внутри человеческого тела и начинает двигаться в направлении руки-ноги, что нередко приводит к поражению, вызывающему летальный исход.

В подобных ситуациях особенно сильно достается крупному рогатому скоту из-за большого размера шага, на который влияет расстояние, измеряемое между каждой ногой. Естественно, что и напряжение на этих участках также будет очень высоким. Поэтому животные часто погибают от поражения током.

Опасная ситуация нередко усугубляется в зависимости от поведения, которое часто бывает неправильным. Человек старается как можно быстрее выйти из опасной зоны и пытается делать максимально широкие шаги. Это приводит к еще большему увеличению разности потенциалов. Поэтому не следует поддаваться панике, а сосредоточиться на выполнении мероприятий по безопасному выходу с угрожающего участка.

Как выйти из опасной зоны

Правила электробезопасности необходимо соблюдать не только в опасной зоне, но и там, где уже не действует радиус поражения. Это связано с самой природой электрического тока, не имеющего запахов, цветовой гаммы и прочих аналогичных внешних признаков.

Потенциальная опасность устанавливается исключительно специальными приборами, а иногда – определяется внешним осмотром, то есть путем визуального наблюдения. В последнем случае становятся хорошо видны оторванные проводники линии электропередачи, находящиеся непосредственно на земле. Одно это безусловно указывает на потенциальную опасность и предполагаемый радиус действия тока. К таким участкам вообще не рекомендуется близко подходить в связи с реальной опасностью, угрожающей здоровью и самой жизни людей.

Место падения оторвавшегося проводника необходимо покинуть максимально быстро, соблюдая при этом определенные правила безопасности. Когда потенциальная угроза стала реальностью, рекомендуется с максимально возможной скоростью соединить обе ноги между собой. За счет этого в точках соприкосновения конечностей с грунтом наступает заметное снижение отрицательного влияния электрического тока. После этого принимаются все меры по безопасному выходу с площади, представляющей реальную угрозу. Бежать нельзя ни при каких обстоятельствах, поскольку существует возможность вновь попасть под действие напряжения. Эти меры определяются Правилами устройства электроустановок.

Наиболее безопасным считается движение так называемой гусиной походкой. Данный способ передвижения предполагает неторопливое совершение движений мелкими скользящими шагами, поэтому он так и называется. Нужно следить, чтобы ноги постоянно касались земли и не отрывались от нее.

Во время движения рекомендуется наступать исключительно на сухие предметы, обладающие хорошими диэлектрическими свойствами. И, наоборот, не следует передвигаться по конструкциям из железобетона, кирпичам и другие аналогичным материалам, избегать влажных участков грунта. Это основные правила перемещения в зоне шагового напряжения, требующие неукоснительного выполнения.

Существует еще один вариант, как безопасно и безболезненно покинуть зону возможного поражения. В подобных ситуациях необходимо передвигаться, совершая прыгающие движения с помощью одной ноги. Однако данный способ несет в себе потенциальную угрозу в связи с возможным случайным падением. Ток изменит свой путь в теле человека и станет более опасным, вплоть до летального исхода. Поэтому пользоваться методом прыжков для переноса нужно очень осторожно, преимущественно на ровной местности, без каких-либо препятствий.

Меры безопасности

Если же, несмотря на все усилия, все-таки не удалось избежать удара электрическим током, пострадавшему нужно в кратчайшие сроки оказать первую медицинскую помощь:

  • В первую очередь всеми возможными способами останавливается негативное влияние тока.
  • Одновременно производится вызов скорой помощи.
  • При необходимости выполняется процедура искусственного дыхания и массаж сердца.
  • Электрический ожог закрывается стерильной повязкой.
  • Пострадавшему нужно обеспечить полный покой и в любом случае – определение в лечебное медицинское учреждение, независимо от состояния здоровья на данный момент.

Категорически запрещается закапывать пострадавшего в землю, поскольку вес грунта затрудняет дыхание и нарушает работу сердечной мышцы. Нельзя производить обливание водой, по возможности избегайте переохлаждения организма. Ожоговая поверхность должна содержаться в чистоте, в противном случае может получить развитие гангрена или столбняк.

Существуют общие правила безопасности и меры защиты, позволяющие избежать неприятных последствий. Чаще всего, от поражения шаговым напряжением страдают рабочие и персонал обслуживающие электрические сети. Поэтому передвигаться в зоне возможного поражения следует только в специальных диэлектрических ботах, а с собой иметь защитные перчатки. В соответствии с требованиями ПУЭ, рукоятки всех рабочих инструментов оборудуются изоляцией, точно так же изолируются другие устройства.

Нередко рабочие получают травмы в процессе эксплуатации устройств при отсутствии наряда-допуска, в котором точно указывается, что, где и когда отключено, и оборудовано защитным заземлением, сколько метров до опасного участка. Любой человек, предупрежденный о наличии напряжения, никогда не полезет к неизолированному проводнику, находящемуся на поверхности земли и сможет избежать поражения.

Риск травматизма от шагового напряжения очень сильно возрастает, если в крови присутствует алкоголь, а на ногах имеются открытые повреждения и раны. Поскольку кожный покров выполняет функции своеобразного изолятора, то любое нарушение ведет к снижению защиты. Негативное влияние оказывает и повышенный температурный баланс окружающей среды. Чем выше температура, тем опаснее присутствие человека на участке возможного поражения.

В этой и подобных ситуациях: разницу потенциалов между двумя точками  электрической цепи тока, находящимися на расстоянии шага одна от другой, на которых одновременно стоит человек, называют шаговым напряжением или напряжением шага.

Чтобы разобраться откуда возникает данное напряжение рассмотрим причины. 

Причины возникновения шагового напряжения

По принципу проводимости электрического тока все материалы делятся на проводники и диэлектрики. Так, например, земля являет проводником, особенно в сырую погоду. Если при обрыве провода линии электропередачи, он касается земли, то там образуется опасная зона, в которой и возникает напряжение шага.

Подобная ситуация происходит, когда молния попадает в молниеотвод, который соединён с электроустановкой. В этом случае образуется контакт между токопроводящими элементами установки и землей, на которой образуется зона под напряжением.

Причиной для образования зоны опасного напряжения шага может послужить:

  • Авария на электрической подстанции;
  • Короткое замыкание воздушных линий на улице или кабельных — в помещении.

Все вышеперечисленные случаи представляют опасность для людей и животных.

В чем заключается опасность

Представьте ситуацию: на земле лежит оборванный провод и как может показаться на первый взгляд не представляет никаких признаков угрозы, а ведь он может быть под напряжением.

Напомню, земля — хороший проводник электричества. Когда человек оказывается в непосредственной близости с проводом, он незаметно попадает под действие шагового напряжения. Опасность заключается в том, что между ног образуется разность потенциалов.

Попадая под воздействие электрического тока, человек пытается сделать шире шаг, а в этот момент разница потенциалов становится выше. В итоге непроизвольные судорожные сокращения мышц приводят к падению человека на землю.

При падении происходит увеличение расстояния между точками касания земли, что в свою очередь представляет повышенною опасность.

Когда мы говорим про оборванный провод, касающийся земли своим оголенным концом, то и не задумываемся какую опасность он может представлять. Чем выше напряжение поврежденной линии, тем более опасна зона действия этого напряжения.

Целые воздушные линии или кабельные системы не представляют опасности, но при аварийной ситуации природного или технического характера они представляют большую угрозу.

Например попадание молнии в молниеотвод, опору электропередач или просто в дерево, вызывает растекание электрического тока через проводники на землю. В этом месте и образуется опасная зона шагового напряжения.

Правило выживания гласит:

Во время грозы и молнии нужно подальше находиться от высоких деревьев, зданий и строений.

В сырую погоду вообще старайтесь не приближаться к открытым (неизолированным) электроприборам и технике. Помните, если одной ногой стоять на заземлителе, а второй на расстоянии шага от него, то к добру это не приведет. И учитывайте, что среднестатистическая длина шага мужчины, равна 0,81 м.

Тело человека включается в электрическую цепь, как нагрузка, и происходит вредное воздействие электрического тока на организм. Но если обувь человека сделана из не проводящих ток материалов, например в резиновых сапогах – вероятность получения травмы меньше.

Риском в данной ситуации может стать наличие алкоголя в крови и наличие открытых ран на ногах. Потому что данный факт влияет на проводимость человека. А так как кожа является защитным диэлектриком, то нарушение кожного покрова снимает вашу защиту.

Помимо проводимости, риском может стать температура окружающей среды. Ведь чем она выше, тем более опасно находиться в зоне риска.

Во всех ранее перечисленных случаях представлена опасность шагового напряжения для жизни человека, животных и особенно детей. Поэтому ограничьте игру ваших детей вблизи электроустановок.

Зона опасности шагового напряжения

Зона растекания тока может быть в радиусе порядка 10 и более метров от места касания земли оборванного провода. Радиус зоны опасности, которая находится под напряжением, зависит от нескольких факторов.

Во-первых: расстояние от источника опасности. Чем удаленнее, тем опасность меньше.

Во-вторых: напряжение линии оборванного провода: 0,4; 1; 3; 6; 10; 35; 110; 220 кВ.

Если влажность земли, по которой будет протекать ток, будет выше нормы, то нужно принять во внимание, что в перечисленных выше случаях радиус действия увеличивается. Исходя из всех вышеперечисленных условий, особо опасной является зона, расположенная в радиусе 8-10 метров от источника.

Правила перемещения в зоне шагового напряжения

В радиусе действия напряжения необходимо передвигаться соблюдая технику безопасности.

Передвигаться нужно не отрывая ног от земли с шагом не более длины стопы. Ни в коем случае не касайтесь руками оголенных проводов и кабелей, пока не убедитесь, что напряжение снято!

Запрещается!

Бежать или двигаться по спирали в радиусе действия шагового напряжения.

Согласно правилам, передвижение ремонтного персонала в радиусе поражения током должно выполняться после проведения расчета предельного шагового напряжения и его радиуса.

Расчет шагового напряжения

  1. Рассчитывают величину напряжения по формуле:
  2. Из формулы видно, что напряжение шага напрямую зависит от тока короткого замыкания, удельного сопротивления грунта и обратно пропорционально разнице потенциалов между двух точек грунта, умноженной на 2π.

Под двумя точками подразумевают разность соотношений между длиной до места аварии и суммой расстояний от места повреждения до субъекта и расчетную длину шага. При расчетах, шаг человека или животного принимают значение равное 0,7-1 метр.

  • Так как шаговое напряжение протекает сквозь землю, а она в свою очередь состоит из разных слоев грунта, то для проведения точных расчетов необходимо умножить сопротивление грунта на соответствующий коэффициент.
  • Пример расчета.
  • При токе замыкания на землю в 400 Ампер, сопротивлении грунта 150 Ом*м (суглинок), расстоянии от человека до места касания проводом земли в 15 метров и расстоянии шага 0,50 м мы получаем напряжение 20,5 Вольт.

Ток замыкания будет зависеть от напряжения сети и соответственно, чем он выше, тем больше напряжение шага. Отсюда и вытекает рекомендация по сокращению расстояния при ходьбе в опасной зоне. Но чем ближе к источнику опасности, тем напряжение больше в несколько раз.

На расстоянии от источника 10 метров напряжение шага, при тех же параметрах, будет уже 45 Вольт, что в свою очередь является небезопасным для человека.

Выход из зоны шагового напряжения

Когда вы поздно заметили оголенный провод, касающийся земли, то есть оказались в зоне действия, то передвигаться нужно «гусиным шагом», направляясь прямо от места касания провода в противоположную сторону.

Прыгать или передвигаться на одной ноге, как советуют некоторые люди — опасно!

Так как при падении все ваше тело окажется под действием того напряжения, от которого вы хотели уйти. В таком случае поражение будет нанесено всему организму. Будьте внимательны!

Первая помощь при поражении током

Постоянно думай о собственной безопасности!

  1. Начать оказание первой помощи необходимо немедленно. Первым делом нужно обязательно освободить пострадавшего от действия электрического тока.
  2. Затем сразу же вызвать скорую помощь!
  3. При отсутствии дыхания и сердцебиения приступить к искусственному дыханию и массажу сердца.
  4. По возможности наложить стерильную повязку на место электрического ожога.
  5. Обеспечить покой пострадавшему.

Пострадавшего независимо от его самочувствия следует направить в лечебное учреждение.

Что нельзя делать с пострадавшим и почему:

  • Закапывать в землю (будет затруднено дыхание, что повлияет на работу сердца)
  • Обливать водой (происходит охлаждение организма)
  • Загрязнять поверхность ожога (начинает развиваться столбняк или гангрена)

Средства защиты

По регламенту «Охраны труда» рабочие должны соблюдать меры защиты и передвигаться по зоне в диэлектрических ботах, иметь при себе диэлектрические перчатки, изолирующие штанги, измерители напряжения, монтажные инструменты с изолирующими рукоятками.

Что касается работников электрических профессий самым основным риском является работа без наряда допуска. Когда вы знаете, что должно быть отключено и где заземлено, вы можете работать безопасно.

Помимо наряд-допуска существует оценка риска, которая поможет вам сориентироваться на объекте и избежать опасности. Оценка риска — это документ, в котором указан предполагаемый ущерб здоровью и жизни работника, связанный с производством работ на объекте.

В завершении жизненная мудрость. Будьте осторожны и соблюдайте технику безопасности, это поможет вам спасти вашу жизнь. Всегда смотрите не только по сторонам, но и под ноги, тем более, если находитесь в знакомой вам местности, порой за ночь может все измениться. 

С уважением, Сергей Александрович.

Источник: https://elektrobiz.ru/obg/shagovoe-napryazhenie.html

Шаговое напряжение: его опасность и меры защиты

Получить удар током можно не только прикоснувшись к оголённому проводу, заземлённым предметам или корпусу устройства с неисправной электроизоляцией. Существует вероятность попадания под шаговое напряжение, возникающее в том случае, если провод с действующей ЛЭП падает на землю.

Увидев кабель, лежащий на земле, не стоит радоваться нежданной удаче, ведь он может таить в себе опасность. Если ЛЭП не отключена, то электроток продолжает спокойно течь и может оказать негативное влияние на любой объект, будь то человек, животное или автомобиль.

Опасность шагового напряжения имеет тенденцию к снижению, если объект расположен на значительном удалении от оборванного провода.

Что такое шаговое напряжение?

Напряжение прикосновения и шаговое напряжение – это термины-синонимы. И в обоих случаях речь идёт о напряжении, возникающем между двумя точками цепи электротока.

Точки располагаются на дистанции в один шаг, а это примерно 80 см, и именно между ними создаётся опасный потенциал. Здесь многое зависит от силы тока и расстояния от человека до точки контакта провода с землёй.

Когда возможно возникновение шагового напряжения? Если:

  • Оборвался провод ЛЭП или локальный кабель, при помощи которого электричество поставляется конкретному потребителю.
  • Произошла авария на электроподстанции.
  • Попала молния в опору ЛЭП или молниеотвод.
  • Случилось короткое замыкание.
  • Имеет место быть иным чрезвычайным происшествиям.

В каком радиусе можно попасть под шаговое напряжение?

Шаговое напряжение зависит от силы тока и удельного сопротивления материала, через который он проходит.

Как правило, это грунт, и если он влажный, то это нужно принять во внимание, так как радиус действия увеличивается. Относительно безопасным является расстояние от оборванного провода до объекта в 20 м.

Зона действия шагового напряжения зависит от многих факторов, равно как и уровень воздействия на человека:

  • Температура окружающей среды.
  • Тип обуви, в которую обут человек (если это резиновые сапоги, то вероятность получения электротравмы минимальна).
  • Наличие в крови алкоголя.
  • Расстояние от источника опасности.
  • Тип и влажность грунта.
  • Наличие открытых ран на ногах.

Радиус действия шагового напряжения существенно увеличивает влажное основание. И особо опасной является зона, расположенная в радиусе 5-10 метров от источника. Радиус поражения на воде и земле вычисляется по специальным формулам и на проведение расчётов в критической ситуации не хватает времени.

Для проведения таких расчётов необходимо вычислить сопротивление грунта, который состоит из разных слоёв, а потом умножить эту величину на определённый коэффициент. Это позволяет определить и шаговое напряжение, и безопасное расстояние, и на сколько метров эта зона распространяется.

Чем опасно шаговое напряжение?

Приближение к упавшему проводу, на который подаётся электроток, очень опасно и для животных, и для людей, особенно, если объект находится в радиусе 5-10 м от источника.

При попадании в зону действия шаговых напряжений человек падает на землю из-за того, что его мышцы начинают непроизвольно, судорожно сокращаться.

Именно в этот момент оно перестаёт воздействовать на объект, поскольку электрический ток начинает уже проходить через всё тело, а это уже может стать причиной летального исхода.

Человек может выйти из зоны поражения самостоятельно, если будет знать некоторые простые правила, а вот животное, попавшее в столь опасную зону, запросто может погибнуть, и в группе риска находится крупнорогатый скот, да и вообще – все крупные животные, имеющие солидное расстояние шага. Следует запомнить, что причина возникновения шагового напряжения сокрыта в оборванном проводе, к которому нельзя подходить на расстояние, ближе, чем 8 м. Если это нужно сделать по долгу службы, то следует принять все меры защиты.

Выход из зоны шагового напряжения

Если помощи ждать неоткуда, а человек оказался в опасной зоне, то он должен помочь себе сам. Даже безопасное для жизни шаговое напряжение может оказать негативное влияние на здоровье. Но чем ближе расстояние к упавшему проводу, тем выше вероятность получения электротравмы. Сначала человек может почувствовать лёгкое покалывание, зуд или жжение, потом спазмы. Когда он падает на землю, то действие негативное воздействие электротока увеличивается, и потерпевший начинает испытывать резкую боль, и всё может закончиться параличом.

Способы выхода из зоны шагового напряжения зависят от конкретной ситуации. В любом случае, нужно снизить размер шагов.

Если человек находится в относительно адекватном состоянии, то порядок перемещения таков: нужно встать на одну ногу и совершать прыжки, причём, чем меньше будет их размер, тем больше появится шансов на благополучный исход. Способы защиты от шагового напряжения достаточно разнообразны.

Например, если человек почувствовал, что «он попал», нужно быстро сомкнуть обе ноги. Это позволит понизить разность потенциалов в месте соприкосновения ступней с грунтом.

Как необходимо передвигаться в зоне шагового напряжения?

Бежать стремглав из опасного места категорически запрещено. Каждый, кто это сделает, рискует попасть под повторное напряжение.

Безопасный выход подразумевает медленное передвижение, мелкими «семенящими» шажками, и такую «походку» принято называть «гусиным шагом». Ноги от земли отрывать запрещено.

Если по пути движения имеются сухие доски, то идти нужно по ним, так как сухое дерево является отличным диэлектриком, а вот к кирпичам и железобетонным конструкциям это не относится.

Каким образом следует передвигаться по зоне шагового напряжения? Ещё один способ – это тот, который описан выше: на одной ноге.

Но его задействовать не всегда возможно, так как не все умеют «скакать на одной ножке», а случайное падение может даже стать причиной летального исхода.

Правила перемещения в зоне шагового напряжения запрещают двигаться по спирали или по направлению к оборванному проводу. По статистике, 80% самостоятельных выходов из опасной зоны не имеют никаких последствий для здоровья.

Правила эвакуации пострадавшего из зоны действия электротока

Если пострадавший лежит в зоне шагового напряжения, то не стоит бежать к нему, особенно, если ноги «спасателя» обуты не в диэлектрические боты, а обычную обувь. В идеале, нужно входить в опасную зону подготовленным, а это значит, что в наличии должны быть диэлектрические перчатки и хотя бы резиновые галоши.

При отсутствии подходящей обуви нужно приблизиться к пострадавшему «гусиным шагом», не отрывая подошвы обуви от земли.

Чтобы исключить поражение человека, пришедшего на помощь, электрическим током, он должен браться за пострадавшего только одной рукой, и только в том случае, если его одежда – сухая. Расстояние, на которое придётся оттащить потерпевшего, составляет 8 м, но если инцидент произошёл в помещении, то оно сокращается в два раза. При наличии возможности, следует отключить электричество так быстро, как это возможно. Освобождение пострадавшего от воздействия шагового напряжения возможно только при использовании средств индивидуальной защиты.

Источник: https://VseOToke.ru/elektrobezopasnost/shagovoe-napryazhenie

Что понимается под напряжением шага: радиус поражения и правила перемещения

Как использовать нагрузочную вилку для проверки аккумулятора

Зачем проверять А К Б. Что проверить перед оценкой состояния аккумулятора. Что такое нагрузочная вилка: особенности применения. Порядок проверки аккумулятора с помощью нагрузочной вилки. Параметры (таблица) для оценки годности батареи….

17 02 2020 6:50:55

Виды переключателей фаз -механический, ручной и трехфазный

Принцип работы и устройство фазового переключателя. Правила выбора переключателя фаз. Использование фазового переключателя для постоянного функционирования техники. Виды переключателей фаз -механический, ручной и трехфазный: какой переключатель фаз выбрать — механический или электронный….

13 02 2020 5:50:31

Технические характеристики и расшифровка кабелей ВБбШв

Маркировка установочных проводов и кабелей согласно Г О С Ту. Конструкция В Бб Шв: требования предъявляемые к изоляции провода. Технические характеристики В Бб Шв-провода. Конструктивные характеристики проводов В Бб- Шв (таблица)….

11 02 2020 17:48:19

Единица измерения света и формула расчета освещенности помещения

Единицы освещения и формула для расчета освещенности. Человеческий фактор и характер деятельности при расчете измерения света. Приборы для определения уровня освещенности и методика его определения. Способы измерений. Важность величины пульсации….

06 02 2020 7:38:11

Зарядное устройство для аккумулятора 18650

Аккумуляторная батарея 18650: преимущества и недостатки, маркировка аккумулятора. Определение эффекта памяти аккумуляторных батарей. Порядок заряда А К Б-18650. Схемы зарядных устройств для аккумуляторов типа 18650….

03 02 2020 17:23:57

Счетчик электроэнергии старого образца

Счётчики старого и нового образца их отличие. Типы устаревших счётчиков. Для начала нужно разобраться какие, вообще, бывают счётчики….

28 01 2020 16:50:33

Схема изготовления сетевого фильтра под напряжение 220В

Принцип работы сетевого фильтра: измерение выхода системы через конденсатор. Как изготовить сетевой фильтр самостоятельно: схемы распайки и подключения элементов цепи. Изготовление сетевых фильтров своими руками на основе двухобмоточного дросселя….

25 01 2020 3:48:31

Формула активного сопротивления в цепи переменного тока

Сопротивление с активным свойством в цепи переменного тока. Характеристики потерь. Формула активного сопротивления в цепи переменного тока. Треугольник сопротивлений. Особенности реактивного сопротивления….

14 01 2020 21:36:47

Все о монтаже СИП (самонесущем изолированном проводе) своими руками

Описание и виды самонесущих изолированных проводов, преимущества изделий. Монтаж С И П своими руками. Подготовка к работе, прокладка линий, обустройство ответвления требуемой длины. Советы специалистов по прокладке самонесущего изолированного провода….

13 01 2020 15:15:46

Пульт дистанционного управления или пду

Принцип работы П Д У. Варианты и назначение пультов дистанционного управления. Программируемые П Д У и работа с ними. Как запрограммировать универсальный пульт. Какими устройствами можно управлять с помощью программируемого П Д У….

12 01 2020 16:39:46

Как сделать гирлянду падающий дождь своими руками

Зачем нужны гирлянды метеоритный дождь. Как и где применять гирлянду падающий дождь. Устройство электрической гирлянды звездный дождь. Самостоятельное изготовление гирлянды занавес звезды….

05 01 2020 16:55:41

Какая аккумуляторная батарея лучше для шуруповерта

Какие элементы питания лучше для шуруповертов: литиевые или никеливые. Сроки службы А К Б шуруповертов. Сравнительные рейтинги аккумуляторов. Возможна ли переделка шуруповерта под другой тип аккумулятора….

04 01 2020 5:32:45

Изготовление самодельного цифрового вольтметра в домашних условиях

Вольтметр на основе микропроцессора: подготовка платы и блока питания. Изготовление цифрового вольтметра своими руками в домашних условиях. Сборка и настройка прибора. Пайка на плате с применением активного флюса. Милливольтметр переменного тока….

21 12 2019 16:50:37

Умный дом — создаем автономную систему

Перечень функций которые выполняет умный дом, варианты применяемого оборудования, а также проектирование умного дома. Как работает система….

10 12 2019 22:18:29

Самонесущий изолированный силовой электрокабель

Что такое провод С И П: характеристика самонесущего изолированного провода, конструкция и состав. Преимущества С И П-кабеля. Виды кабелей С И П, правила монтажа самонесущих изолированных проводов….

09 12 2019 5:47:39

Выпаиваем микросхемы из плат: распайка деталей паяльником

Принципы безопасной работы с полупроводниковыми радиодеталями. Типы микросхем и общие правила выпаивания деталей. Перетягивание припоя с места припайки на медные провода, смоченные флюсом. Использование паяльника с отсосом….

08 12 2019 21:46:49

Выбор стабилизатора напряжения для дома: рейтинг качественных стабилизаторов

Разновидности стабилизаторов: по типу подключения, по методу установки, по классу исполнительного механизма (схеме стабилизации). Как правильно выбрать стабилизатор для дома или офиса. Что лучше сетевой фильтр или стабилизатор напряжения. Механический стабилизатор напряжения для дома….

26 11 2019 20:40:49

Солнечная батарея: подключение внешних аккумуляторов

Особенности подключения аккумуляторов к солнечным батареям. Как рассчитать основные параметры А К Б для солнечных батарей. Основные виды аккумуляторных батарей для гелиосистем. Гелиосистема с AGM-накопителями….

25 11 2019 1:17:51

Примеры магнитной (диамагнитной) левитации, диамагнетизм

Определение магнитной (диамагнитной) левитации. Магнитная левитация: эксперименты в домашних условиях. Как сделать левитирующий магнит своими руками. Применение магнитов в подшипниках. Как используют магнитную левитацию в ветрогенераторах….

09 11 2019 18:56:51

Контурные токи: калькулятор расчета, примеры применения метода

Определение и суть метода контурных токов. Контурные токи: особенности метода. Разновидности контурного представления. Пример расчета сложных цепей. Преимущества М К Т. Использование планарных графов и метод выделения максимального дерева….

02 11 2019 3:29:37

Управление светодиодными лентами

Знакомство с устройством светодиодных лент, способы регулирования их яркости и управление цветом. Подключение диммеров к светодиодным источникам света….

17 10 2019 7:55:31

Физическая формула расчета эквивалентного сопротивления в цепи

Определение эквивалентного сопротивления. Разница в методике определения эквивалентного сопротивления в цепях с последовательным и параллельным соединением элементов. Расчёт при смешанном соединении устройств. Физические формулы, примеры вычислений….

08 10 2019 2:14:21

Источник: https://flatora.ru/electro/8127.php

радиус опасного участка, способ безопасного выхода за контур

В естественной среде электричество обнаруживает себя разрядами молнии, которые иногда приводят к поражению человека. Причиной становится поза стояния на двух ногах: между точками опоры возникает разность потенциалов, меняющаяся в широких пределах. Избежать удара током можно, если знать правила перемещения в зоне шагового напряжения (ШН). Обнаруживают электризованную зону только по косвенным признакам: расчётному расстоянию до эпицентра источника.

Понятие о шаговом напряжении

Опасное напряжение на почве возникает при касании оборванным электрическим проводом, свисающим с линии электропередач, земли, когда в жиле протекает ток. Если авария случилась на болоте, воде или мокром асфальте, человеку, оказавшемуся вблизи, грозит опасность быть поражённым электротоком. Шаговое напряжение — это разность потенциалов, снятых с двух взаимоудалённых на расстояние человеческого шага точек на земле. Этот базис составляет 0,7―0,8 м, а растекается энергия на площади с радиусом до 20 метров.

Чем больше дистанция между оставляемыми следами, тем значительнее потенциал возникает, возрастает вероятность травмирования электрическим током. Причинами возникновения ШН становятся:

  • обрыв или провисание до земли провода ЛЭП вследствие падения деревьев от урагана, бури или повреждения опор;
  • аварии на электроподстанциях;
  • попадание молнии в громоотвод или высокое дерево;
  • короткое замыкание кабельных жил на улице или в здании.

Величина пошагового напряжения и площадь распространения обусловливается силой тока источника энергии и удельного электросопротивления земли. Типовые значения потенциала ЛЭП — 6, 10, 35, 100 и больше киловольт. Проводимость грунта определяется его составом — песок, суглинок, дресва — и степенью влажности.

В момент попадания человека под ШН у него случаются судороги мышц ног, что вызывает падение. Такая поза способствует образованию опасного пути электротока: от стоп к рукам — это грозит смертельным поражением.

Максимальная площадь распространения тока

Территория возможного неблагоприятного воздействия на живые организмы, попавшие в зону аварии или чрезвычайного происшествия, определяется радиусом шагового напряжения. Для человека имеет значение расстояние до провода, и на каких точках земли расположены его ноги. Изменение ШН подчиняется следующим положениям:

  • 20 метров — внутрь круга означенного радиуса заходить небезопасно, в центре обнаруживается источник растекания тока: провод на земле, дерево, поражённое молнией или пробой питающего кабеля энергоприёмника;
  • расстояние 8 м от места утечки электричества считается допустимым, когда напряжение в точке контакта ≥1000 В;
  • 5 метров — настолько можно приблизиться к эпицентру, если разность потенциалов там меньше тысячи вольт.

Максимальный ущерб здоровью будет от шагового напряжения в радиусе поражения, если одной ногой человек находится на заземлителе, а другой — на земле в пределах 80 см от первой. Для животных расстояния будут иными.

Определение разницы потенциалов шага

Границы изменения напряжения в случаях инцидентов с аварийным или природным растеканием тока по земле — от 10 В до тысяч вольт на подвижку. Безопасная величина ШН — до 40, а переменного потенциала — до 50 В. Существует формула, которой пользуются для приблизительного определения напряжения шага — U = (I *ρ* a)/2π* R (R + a), где:

  • I — ток короткого замыкания или утечки на землю, ампер;
  • ρ — удельное сопротивление грунта в месте происшествия, Ом*м;
  • R — расстояние объекта или человека от точки пробоя, м;
  • a — заданный шаг в метрах;
  • π — постоянная величина, равная 3,14 (отношение длины окружности к диаметру).

Размерность полученной из формулы цифры — вольт. Точное значение ШН получают посредством мультиметра.

Порядок движения на участке поражения

Чтобы не попасть в затруднительную ситуацию, надо быть внимательным и замечать касающиеся земли провода, искрящие контакты электрооборудования, избегать нахождения вблизи высоких отдельно стоящих объектов во время грозы. Если случилось стать участником инцидента с растеканием тока, знание правил передвижения в зоне шагового напряжения поможет выйти из ситуации без ущерба для здоровья:

  1. Первоочередное действие при внезапной аварии — быстро сдвинуть вплотную обе ноги. Это позволит исключить условие возникновения разности электропотенциалов.
  2. При нахождении человека в зоне шагового напряжения передвигаться необходимо, как гуси — неторопливо и мелкими шаркающими шажками. Маршрут покидания опасного радиуса прокладывать по сухим токонепроводящим поверхностям.
  3. Уходить с поражённой территории надо незамедлительно, предварительно известив о местоположении службу МЧС, если такая возможность имеется. Нельзя бежать — широкий шаг влечёт возрастание напряжения. Прыжки приведут к падению.

Ремонтный персонал в опасную зону допускают после расчёта потенциала и в диэлектрической обуви, резиновых перчатках. При себе они несут инструменты с изолирующими ручками и приборы для измерения напряжения. Основная задача — отключить источник тока и оказать первую помощь пострадавшему.

Вопросы и ответы. Шаговое напряжение, правила поведения в зоне шагового напряжения?


Категория вопроса: Охрана труда

Настя: Шаговое напряжение, правила поведения в зоне шагового напряжения (жд транспорта)

Admin:

При падении на землю случайно оборванного электрического провода, при пробое изоляции на землю в электрической установке, а также в местах расположения заземления или грозозащитного устройства поверхность земли может оказаться под электрическим напряжением. Образуется зона растекания токов замыкания в радиусе до 20 м от за-землителя. Между двумя точками поверхности земли в этой зоне, отстоящими друг от друга в радиальном направлении на расстояние шага (0,8 м), образуется шаговое напряжение, под которым могут оказаться ноги человека.

Шаговое напряжение зависит от распределения потенциала на поверхности земли, длины шага, положения человека относительно заземлителя и направления по отношению к месту замыкания. Шаговое напряжение считается безопасным, если оно не превышает 40 В. Чем ближе будет находиться человек к месту соприкосновения провода с землей, тем под большим шаговым напряжением он окажется.

Движение человека по спирали от места замыкания безопасно, так как разность потенциалов на ногах человека будет близка нулю. На величину шагового напряжения влияет и ширина шага человека. Чем шире шаг, тем большее напряжение испытывает человек.

Рекомендации по выходу из зоны шагового напряжения:

При попадании под опасное шаговое напряжение необходимо выходить из зоны растекания токов замыкания шагами (в пределах 25-30 см) или прыжками на одной ноге.

Данная рекомендация встречается у следующих авторов:

1. «Безопасность жизнедеятельности» Под редакцией проф. Э. А. Арустамова

2. «Безопасность жизнедеятельности на производстве» Зотов Б.И.

3. «Промышленная, пожарная и экологическая безопасность на железнодорожном транспорте» — Е.А. Клочкова

Однако в документе, «Межотраслевая инструкция по оказанию первой помощи при несчастных случаях на производстве». РД 153-34.0-03.702.99, указаны следующие правила перемещения в зоне шагового напряжения:

Нельзя!Отрывать подошвы от поверхности земли и делать широкие шаги

Нельзя!Приближаться бегом к лежащему проводу

В радиусе 8 метров от мета касания земли электрическим проводом можно попасть под «шаговое» напряжение

Передвигаться в зоне «шагового» напряжения следует в диэлектрических ботах или галошах, либо «гусиным шагом» — пятка шагающей ноги, не отрываясь от земли, приставляется к носку другой ноги.


Полезная информация:

Step and Touch

Например, человек может вытягивать обе руки и одновременно касаться двух предметов, например, опоры башни и металлического шкафа. Иногда инженеры будут использовать трехметровое расстояние, чтобы быть особенно осторожными, поскольку они предполагают, что кто-то может использовать электроинструмент со шнуром питания длиной 3 метра.

Выбор места для размещения контрольных точек, используемых в расчетах потенциала прикосновения или напряжения прикосновения, имеет решающее значение для получения точного понимания уровня опасности на данном участке.Фактическое вычисление касания потенциалов использует заданный объект (например, башенную нога) в качестве первой опорной точки. Это означает, что чем дальше от башни расположена другая контрольная точка, тем больше разница потенциалов. Если вы можете представить себе человека с невероятно длинными руками, касающегося ножки башни, но стоящего на расстоянии нескольких десятков футов, у вас будет огромная разница в потенциале между его ступнями и башней. Очевидно, что этот пример невозможен: вот почему так важно установить, где и как далеко опорные точки, используемые при вычислении касаний, и почему было установлено правило одного метра.

Снижение вероятности наступления и прикосновения Обычно достигается с помощью одного или нескольких из следующих трех (3) основных методов:

1. Снижение сопротивления заземления системы заземления.
2. Правильное размещение заземляющих проводов.
3. Добавление резистивных поверхностных слоев.

Понимание правильного применения этих методов — ключ к снижению и устранению любых опасностей, связанных с повышением потенциала земли.Только за счет использования сложного программного обеспечения для трехмерного электрического моделирования, которое может моделировать структуры грунта с несколькими слоями и конечными объемами различных материалов, инженер может точно смоделировать и спроектировать систему заземления, которая будет безопасно устранять электрические повреждения высокого напряжения.

Снижение сопротивления заземлению

Снижение сопротивления заземления (RTG) площадки часто является лучшим способом уменьшить негативные последствия любого события повышения потенциала земли, где это возможно. Повышение потенциала земли — это произведение тока короткого замыкания, протекающего в систему заземления, на сопротивление заземлению системы заземления. Таким образом, уменьшение повышения потенциала заземления приведет к уменьшению повышения потенциала заземления до такой степени, что ток короткого замыкания, протекающий в систему заземления, действительно возрастет в ответ на снижение повышения потенциала заземления. Например, если ток короткого замыкания для высоковольтной опоры составляет 5 000 ампер, а сопротивление заземления системы заземления составляет 10 Ом, повышение потенциала заземления будет составлять 50 000 вольт.Если мы уменьшим сопротивление заземления системы заземления до 5 Ом и в результате ток короткого замыкания увеличится до 7000 ампер, то повышение потенциала заземления станет 35000 вольт.

Как видно из приведенного выше примера, уменьшение сопротивления заземления может иметь эффект, позволяя большему току протекать в землю в месте повреждения, но всегда будет приводить к более низким значениям повышения потенциала земли, а также к ступенчатому и контактному напряжению при место неисправности. С другой стороны, дальше от места повреждения, на соседних объектах, не подключенных к поврежденной конструкции, увеличение тока в землю приведет к большему протеканию тока вблизи этих смежных объектов и, следовательно, к увеличению роста потенциала земли, коснитесь напряжения и ступенчатые напряжения на этих объектах.Конечно, если они изначально низкие, увеличение может не представлять проблемы, но есть случаи, когда есть основания для беспокойства. Уменьшение сопротивления заземления может быть достигнуто любым количеством способов, как обсуждалось ранее в этой главе.

Правильное размещение заземляющих проводов

Типичная спецификация для заземляющих проводов на высоковольтных опорах или подстанциях заключается в установке контура заземления вокруг всех металлических объектов, связанных с объектами; имейте в виду, что может потребоваться изменить глубину и / или расстояние, на котором контуры заземления заглублены от конструкции, чтобы обеспечить необходимую защиту. Как правило, для этих контуров заземления требуется неизолированный медный проводник сечением не менее 2/0 AWG, проложенный в непосредственном контакте с землей на расстоянии 3 фута от периметра объекта на 18 дюймов ниже уровня земли. Целью петли является минимизация напряжения между объектом и поверхностью земли, где человек может стоять, касаясь объекта, то есть минимизировать потенциал прикосновения.

Важно, чтобы все металлические объекты в среде георадара были связаны с системой заземления, чтобы устранить любую разницу потенциалов.Также важно учитывать удельное сопротивление почвы как функцию глубины при вычислении напряжения прикосновения и ступенчатого напряжения, а также при определении глубины размещения проводников. Например, в почве с сухим поверхностным слоем с высоким удельным сопротивлением проводники в этом слое будут неэффективными; слой с низким удельным сопротивлением под ним будет лучшим местом для заземляющих проводов. С другой стороны, если ниже существует еще один слой с высоким удельным сопротивлением, длинные заземляющие стержни или глубокие колодцы, проходящие в этот слой, будут неэффективными.

Иногда считается, что размещение горизонтальных проводников контура заземления очень близко к поверхности приводит к наибольшему снижению потенциала прикосновения. Это не обязательно так, поскольку проводники, расположенные близко к поверхности, скорее всего, будут находиться в более сухой почве с более высоким удельным сопротивлением, что снижает эффективность этих проводников. Кроме того, в то время как потенциалы прикосновения непосредственно над петлей могут быть уменьшены, потенциалы прикосновения на небольшом расстоянии могут фактически увеличиться из-за уменьшения зоны влияния этих проводников.Наконец, ступенчатые потенциалы, вероятно, увеличатся в этих местах: действительно, ступенчатые потенциалы могут быть проблемой вблизи проводников, которые расположены близко к поверхности, особенно по периметру системы заземления. Обычно для решения этой проблемы можно увидеть проводники по периметру вокруг небольших систем заземления, заглубленных на глубину 3 фута ниже уровня земли.

Снижение потенциальной опасности шагов и прикосновения

Один из простейших методов снижения потенциальной опасности шагов и прикосновений — это носить обувь для защиты от поражения электрическим током.В сухом состоянии обувь для защиты от поражения электрическим током имеет сопротивление в миллионы Ом на подошве и является отличным средством обеспечения безопасности персонала. С другой стороны, когда эти ботинки мокрые и грязные, ток может обойти подошвы ботинок в пленке материала, скопившейся по бокам ботинка. Мокрый кожаный ботинок может иметь сопротивление порядка 100 Ом. Более того, нельзя предполагать, что широкая публика, которая может иметь доступ к внешнему периметру некоторых объектов, будет носить такое защитное снаряжение.

Еще одна технология, используемая для снижения вероятности ступенек и прикосновений, — это добавление более резистивных поверхностных слоев. Часто на башню или подстанцию ​​добавляют слой щебня, чтобы обеспечить изоляцию между персоналом и землей. Этот слой уменьшает количество тока, который может протекать через человека в землю. Борьба с сорняками — еще один важный фактор, так как во время неисправности растения получают питание и могут проводить опасное напряжение в организме человека. Асфальт — отличная альтернатива, поскольку он намного более устойчив, чем щебень, и рост сорняков не является проблемой.Добавление резистивных поверхностных слоев всегда повышает безопасность персонала во время георадара.
.

Телекоммуникации в высоковольтных средах

Когда телекоммуникационные линии необходимы на высоковольтной площадке, требуются особые меры предосторожности для защиты коммутационных станций от нежелательных напряжений. При вводе любого медного провода в подстанцию ​​или вышку другой конец провода подвергается воздействию опасного напряжения, поэтому требуются определенные меры предосторожности.

Отраслевые стандарты, касающиеся этих мер предосторожности и защитных требований, описаны в стандартах IEEE Standard 387, IEEE Standard 487 и IEEE Standard 1590. Эти стандарты требуют проведения исследования повышения потенциала земли, чтобы можно было правильно рассчитать линию пика 300 В.

Для обеспечения надлежащего заземления сотовой станции и заземления телекоммуникационной вышки стандарты электросвязи требуют использования оптоволоконных кабелей вместо медных проводов в пределах пикового напряжения 300 В.Коробка преобразования медь-оптоволокно должна быть расположена за пределами зоны события георадара на расстоянии, превышающем пик 300 В или среднеквадратичное значение 212 Вольт. Это известно в промышленности как «линия на 300 вольт». Это означает, что согласно результатам расчетов, длина медного провода телекоммуникационной компании не может быть ближе, чем пиковое расстояние в 300 вольт. Это расстояние, на котором медный провод должен быть преобразован в оптоволоконный кабель. Это может помочь предотвратить попадание любых нежелательных напряжений в телекоммуникационную сеть телефонных компаний.

Текущие формулы для расчета 300-вольтовой линии, перечисленные в стандартах, привели к неправильному толкованию и расхождению во мнениях, что привело к изменению порядка величины в расчетных расстояниях для практически идентичных исходных данных проекта. Более того, опыт эксплуатации показал, что строгое применение теории приводит к излишне большим расстояниям. Это вызвало множество компромиссов в телекоммуникационной отрасли. Наиболее известным является новый стандарт IEEE Standard 1590-2003, в котором отметка 150 метров (~ 500 футов) указывается в качестве расстояния по умолчанию, если исследование повышения потенциала земли не проводилось в данном месте.

Понимание возможности шагов и касания — предотвращение инцидентов

Наступает сезон летних штормов, и вместе с ними приходят оборванные провода, сломанные столбы, деревья и ветви, которые иногда соприкасаются с находящимися под напряжением воздушными проводниками. Эта задняя дверь покрывает некоторые из основных опасностей при работе с обесточенными проводниками под напряжением или рядом с ними, а также невидимую опасность ступенчатого и касательного потенциала.

Что такое ступенчатый и сенсорный потенциал?
Чтобы понять потенциал шага и касания, нам сначала необходимо понять, как энергия рассеивается через проводящие объекты. В условиях обрыва полюса или обрыва провода существуют действительно хорошие проводники, которые обеспечивают путь к земле, включая металлические ограждения, влажную почву и лужи. Существуют и другие проводники, которые могут быть не такими хорошими, но все же позволяют току проходить на землю, например, деревья, деревянные заборы и опоры. Дерево обычно рассматривается как изолятор, но влажное дерево будет проводить электрический ток.

Когда находящийся под напряжением провод падает через сетчатый забор или прямо на землю, объект и непосредственная область находятся под напряжением, создавая зону высокого напряжения по отношению к земле.Фактическое напряжение зависит от источника, сопротивления объекта и условий почвы, включая материал и влажность.

Рассеяние напряжения от заземленного проводника — или от заземленного конца заземленного объекта под напряжением — называется градиентом потенциала земли. Падения напряжения, связанные с этим рассеянием напряжения, называются потенциалами земли. Напряжение быстро падает с увеличением расстояния от заземленного конца.

Другой способ описать это — пример камня, брошенного в пруд.Камень создает рябь, которая постепенно исчезает по мере продвижения от центра. Напряжение является самым высоким у источника и спадает по мере того, как энергия перемещается по земле.

Шаговый потенциал
Когда ток течет от электрического проводника через сетчатый забор к земле, создается состояние высокого напряжения, и возникает градиент напряжения в зависимости от удельного сопротивления почвы, что приводит к разнице напряжений — также известный как разность потенциалов — между двумя точками на земле.Это называется ступенчатым потенциалом, так как он может вызвать разницу в напряжении между ногами человека.

Потенциал прикосновения
Потенциал прикосновения — это напряжение между любыми двумя точками на теле человека — рука к руке, плечо к спине, локоть к бедру, рука к ноге и так далее. Например, если электрический провод падает на автомобиль, и человек касается этого автомобиля, ток может пройти от автомобиля под напряжением через человека к земле.

Как защитить себя
Во время шторма первое, что нужно помнить, это то, что линии электропередач могут быть в неправильной конфигурации.Для вашей защиты помните об этих основных правилах безопасности при урагане, приведенных в Информационном бюллетене OSHA «Безопасная работа с поврежденными электрическими проводами» (www.osha.gov/OshDoc/data_General_Facts/downed_electrical_wires.pdf):
• Не предполагайте, что сбитый проводник безопасен просто потому, что он находится на земле или не искрит.
• Не думайте, что весь провод с покрытием, атмосферостойкий или изолированный провод — это просто телефонный, телевизионный или оптоволоконный кабель.
• Низко висящие провода все еще имеют потенциал напряжения, даже если они не касаются земли, поэтому не касайтесь их.Все находится под напряжением, пока не будет проведено испытание на обесточивание.
• Никогда не приближайтесь к вышедшей из строя или упавшей линии электропередачи. Всегда предполагайте, что он находится под напряжением. Прикосновение к нему могло быть фатальным.
• Электричество может распространяться через землю по кругу от точки контакта. По мере удаления от центра могут возникнуть большие перепады напряжений.
• Никогда не проезжайте по вышедшим из строя линиям электропередач. Предположим, что они находятся под напряжением. И даже если это не так, сбитые стропы могут запутаться в вашем оборудовании или транспортном средстве.
• При контакте с линией электропередачи, находящейся под напряжением, когда вы находитесь в автомобиле, сохраняйте спокойствие и не выходите, пока автомобиль не горит. Если возможно, обратитесь за помощью.
• Если вам необходимо выйти из любого оборудования из-за пожара или по другим причинам безопасности, постарайтесь полностью отпрыгнуть, убедившись, что вы не касаетесь оборудования и земли одновременно. Приземлитесь обеими ногами вместе и покачивайтесь небольшими шагами, чтобы минимизировать путь электрического тока и избежать поражения электрическим током. Будьте осторожны, чтобы сохранить равновесие.

Используя свои знания и несколько основных правил безопасности во время штормов, вы можете уберечь свою команду и себя от опасности.

Об авторе: Джон Бойл — вице-президент по безопасности и качеству INTREN, строительной компании в области электроснабжения, газа и электросвязи, расположенной в Юнионе, штат Иллинойс. Имеет более чем 28-летний опыт работы в ядерной и ветровой производство электроэнергии и распределение электроэнергии и газа.

Что такое шаг и потенциал касания?

Белая книга

Осведомленность о возможности шага и касания: повышение безопасности экипажа линии электропередачи

Прочитать технический документ

Статьи

Защитите себя от наведенного тока — журнал Powerlineman

Читать статью

Остерегайтесь заземления транспортных средств и оборудования — журнал Powerlineman

Читать статью

Защитное соединение и заземление для линейных экипажей — журнал Powerlineman

Читать статью

Понимание ступенчатого и касательного потенциала, вызванного повышением потенциала земли, важно для всех, кто работает с системами передачи электроэнергии высокого напряжения. В типичном применении SNT линия передачи обесточивается и присоединяется к опоре для обеспечения безопасности работы. Однако сама линия передачи действует как очень большая антенна и может принимать большое количество энергии, которую необходимо шунтировать на землю. А если заземление опоры неисправно, потенциал земли может возрасти, что может привести к возникновению опасной ситуации.

Шаг потенциала: напряжение между ногами человека

Когда ток течет от вышки к заземлению, потенциал земли на вышке повышается, и возникает градиент напряжения в зависимости от удельного сопротивления почвы, что приводит к разнице потенциалов между двумя точками на земле.Это называется ступенчатым потенциалом, поскольку он может вызвать напряжение между ногами человека.

Потенциал прикосновения: напряжение между объектом под напряжением и ступнями человека

Если заземление между башней и почвой имеет высокое сопротивление (обычное для некоторых почвенных условий), сама башня (и любой токопроводящий элемент, касающийся башни) может быть под напряжением. Потенциал прикосновения — это напряжение между объектом под напряжением и ступнями человека, контактирующего с объектом.

Мониторинг шага и потенциала касания с помощью SNT

По мере того, как системы передачи электроэнергии становятся все более сложными, а энергетические коридоры переполнены, для параллельных линий под напряжением становится все более обычным передавать энергию (посредством электромагнитной индукции) в линии без напряжения.Кроме того, благодаря сложному контролю мощности, необходимому для управления экологически чистой энергией, уровни мощности на различных линиях могут резко меняться в течение рабочей смены.

Комплект SNT-02 обеспечивает простой в использовании метод постоянного мониторинга и сигнализации о возможном шаге и касании. Просто переместите специальный заземляющий стержень на расстояние примерно 15 футов от вышки, установите прибор и подсоедините зонд к вышке с помощью стандартной ручки.

Общая практика Лучшая практика
Измерить шаговый и контактный потенциал перед началом работы. Измерьте шаг и потенциал касания перед и непрерывно во время работы .
Используйте вольтметр для измерения потенциала. Используйте SNT для отслеживания и сигнализации потенциала.

Основы заземления подстанции: максимально допустимые ступенчатые и контактные напряжения

Для того, чтобы заземляющая сеть выполняла свою функцию безопасности, она должна предотвращать скачки напряжения и напряжения прикосновения выше тех, которые считаются безопасными. Таким образом, нам сначала необходимо оценить максимально допустимые значения напряжения ступени и напряжения прикосновения.

Теоремы Тевенина и Нортона

Чтобы получить математические выражения для максимально допустимого шага и напряжения прикосновения, мы будем полагаться на теоремы Тевенина и Нортона. Эти имена названы в честь французского инженера-телеграфиста Шарля Леона Тевенина (1857-1926) и американского инженера Э.Л. Нортон (1898-1983).

Теоремы Тевенина и Нортона позволяют специалисту по анализу схем или проектировщику упростить менее важные части схемы и сконцентрироваться на той части, которая имеет большее отношение к рассматриваемой проблеме.

Теоремы Тевенина и Нортона разделяют любую электрическую цепь на две сети: сеть источника и сеть нагрузки, соединенных одной парой клемм, называемых клеммами нагрузки.

Теорема Тевенина заменяет сеть источника эквивалентной, состоящей из идеального независимого источника напряжения, включенного последовательно с линейным сопротивлением. Эта эквивалентная сеть подает на клеммы нагрузки такое же напряжение и ток, что и исходная сеть. Источником напряжения является напряжение Тевенина Vth, а сопротивлением — сопротивление Тевенина Rth.

Теорема Нортона двойственная теореме Тевенин. Эквивалентная схема представляет собой источник тока, включенный параллельно линейному сопротивлению. Источником тока является ток Нортона In, а сопротивлением — сопротивление Нортона Rn.

Источник

Norton — это преобразование исходного кода Тевенина, и наоборот. Также верно, что Rth = Rn.

Напряжение Тевенина измеряется эмпирически или аналитически на клеммах нагрузки при удаленной сети нагрузки: напряжение холостого хода Voc = Vth.См. Рисунок 1.

Рисунок 1. Эквивалентная схема Тевенина со снятой нагрузкой

Ток Нортона — это ток короткого замыкания на клеммах нагрузки при удаленной сети нагрузки: In = Isc. См. Рисунок 2.

Рисунок 2. Эквивалентная схема Тевенина с заменой нагрузки на короткое замыкание

На рис. 2 показано, что измеренный или рассчитанный ток короткого замыкания зависит только от Vth и Rth.Затем

$$ Isc = \ frac {Vth} {Rth} $$

или

$$ Rth = \ frac {Vth} {Isc} = \ frac {Vth} {In} $$

Тело как параметр цепи

В условиях повреждения по земле проходит ток, идущий от заземляющего электрода. Этот ток создает потенциальные градиенты на поверхности Земли, которые, в свою очередь, приводят к опасным скачкам напряжения и напряжениям прикосновения.

На рис. 3 показан человек, стоящий рядом с заземленной конструкцией.Точки на Земле, соприкасающиеся со стопами, имеют разные потенциалы, то есть разность потенциалов (напряжение) присутствует. Эта разность потенциалов создает ступенчатое напряжение Vs.

Рисунок 3. Шаговое напряжение на заземленной конструкции

Общее сопротивление заземления электрода можно разделить на три части: R1, R2 и R0.

R1 — сопротивление заземления от заземляющего электрода до первой ножки; R2 — сопротивление заземления между ступнями; R0 — сопротивление заземления от второй ноги до бесконечности.

Прочие электрические параметры:

  • Rf = сопротивление контакта босой ноги с Землей без учета сопротивления обуви и носков, Ом
  • Rb = сопротивление корпуса, Ом
  • Ib = ток через тело, А
  • Если = источник тока, моделирующий ток короткого замыкания через заземляющий электрод, A

На рисунке 4 показана простая электрическая эквивалентная сеть с телом (Rb) в качестве параметра цепи.

Рисунок 4.Эквивалентная сеть для ступенчатого напряжения

Как будет видно позже, Vs = Vth (мы получаем это удалением Rb).

На рис. 5 показан человек, стоящий на Земле и касающийся металлического объекта, соединенного с заземляющим электродом. Разность потенциалов между рукой и ступнями создает напряжение прикосновения Vt. Стопы расположены достаточно близко, чтобы рассматривать их параллельно, таким образом, R2 = 0.

Рисунок 5. Напряжение прикосновения на заземленной конструкции

На рисунке 6 показана эквивалентная электрическая сеть с корпусом (Rb) в качестве параметра цепи.

Рисунок 6. Эквивалентная сеть для напряжения прикосновения

Как и раньше, Vt = Vth (получаем, удаляя Rb).

Расчет максимально допустимого ступенчатого напряжения

Напряжение ступени Vs равно напряжению Тевенина Vth.

Нагрузочная сеть на рисунке 4 представляет собой сопротивление тела Rb. Применяя теорему Тевенина, Vth будет вычисляться путем разделения Rb и решения напряжения холостого хода Voc.См. Рисунок 7.

Рисунок 7. Напряжение холостого хода

Напряжение холостого хода

$$ Voc = Vth = Vs = Если \ cdot R2 $$

Isc = In — ток короткого замыкания. См. Рисунок 8.

Рисунок 8. Ток короткого замыкания

Применяя текущее правило делителя,

$$ I_ {SC} = In = Если \ cdot \ frac {R2} {R2 + 2 \ cdot Rf} $$

$$ Rth = \ frac {Voc} {Isc} = \ frac {(Если \ cdot R2) (R2 + 2 \ cdot Rf)} {Если \ cdot R2} = R2 + 2 \ cdot Rf $$

Предполагая, что R2 << 2 ∙ Rf,

$$ Rth = 2 \ cdot Rf $$

Это предположение консервативно, потому что падение напряжения будет выше с R2 в цепи.

На рисунке 9 показана эквивалентная схема Тевенина, где

$$ Vs = Vth = Ib \ cdot (Rth + Rb) = Ib \ cdot (2 \ cdot Rf + Rb) $$

Рисунок 9. Эквивалентная схема Тевенина для ступенчатого напряжения

Типичное значение сопротивления тела — между руками и ногами и ногами — составляет 1000 Ом.

Закопанные горизонтальные круглые пластины могут моделировать ступни с радиусом 8 см. Используя выражение П. Г. Лорана для этого сопротивления,

$$ Rf = \ frac {\ varrho} {4 \ cdot b} = \ frac {\ varrho} {4 \ cdot 0.08} = 3 \ cdot \ varrho $$

где

ρ = удельное сопротивление грунта, Ом ∙ м0

b = радиус плиты, м

Максимально переносимый телесный ток для человека весом 70 кг по данным C.F. Исследование Далзиэля —

.

$$ Ib = \ frac {0.157} {\ sqrt {ts}} $$

где

ts = длительность текущего воздействия, с

Максимально допустимое напряжение ступени

$$ Vs = \ frac {0.157} {\ sqrt {ts}} \ cdot (2 \ cdot 3 \ cdot \ varrho + 1000) = \ frac {0.94 \ cdot \ varrho + 157} {\ sqrt {ts}}

$

Расчет максимально допустимого напряжения прикосновения

Аналогично, напряжение прикосновения Vt равно напряжению Тевенина Vth.

Из рисунка 6, Vth рассчитывается путем разделения Rb и решения напряжения холостого хода Voc. См. Рисунок 10.

Рисунок 10. Напряжение холостого хода

Напряжение холостого хода

$$ Voc = Vth = Если \ cdot R1 $$

Isc = In — ток короткого замыкания. См. Рисунок 11.

Рисунок 11. Ток короткого замыкания

Применяя текущее правило делителя,

$$ Isc = In = Если \ cdot \ frac {R1} {R1 + \ frac {Rf} {2}} $$

$$ Rth = \ frac {Voc} {Isc} = \ frac {(Если \ cdot R1) (R1 + \ frac {Rf} {2})} {Если \ cdot R1} = R1 + \ frac {Rf} {2} $$

Предполагая, что R1 <

$$ Rth = \ frac {Rf} {2} $$

На рисунке 12 показана эквивалентная схема Тевенина, где

$$ Vt = Vth = Ib \ cdot (Rth + Rb) = Ib \ cdot (\ frac {Rf} {2} + Rb) $$

Рисунок 12.Эквивалентная схема Тевенина для напряжения прикосновения

Тогда максимально допустимое напряжение прикосновения равно

$$ Vt = \ frac {0.157} {\ sqrt {ts}} \ cdot (\ frac {3} {2} \ cdot \ varrho + 1000) = \ frac {0.24 + \ varrho + 157} {\ sqrt { ts}} $$

Ключевое разъяснение

Фундаментальная концепция заключается в том, что разности потенциалов, вызывающие ступенчатое напряжение и напряжение прикосновения, — это те же разности потенциалов, которые существуют на Земле, когда человека нет. Эквивалентные схемы Тевенина моделируют этот факт.

Однако, сравнивая рисунок 9 с рисунком 4 и рисунок 12 с рисунком 6, мы заключаем, что, предполагая, что R2 намного меньше 2 ∙ Rf, а R1 намного меньше Rf2, ступенчатое напряжение — это падение напряжения на R2, а Напряжение прикосновения — это падение напряжения на R1, даже с учетом сопротивления тела в цепи.

Обзор максимально допустимого шага и напряжения прикосновения

Повреждение или ток молнии, протекающий через заземляющий электрод подстанции, создает градиенты потенциала на Земле.Эти потенциальные градиенты могут повлиять на людей вокруг подстанции.

Особого внимания заслуживают напряжение ступени и напряжение прикосновения.

Две ноги на земле в точках с разным потенциалом подвергаются ступенчатому напряжению. Точно так же прикосновение к заземленному металлическому объекту, когда ноги находятся на земле, у другого потенциального объекта подвергает человека воздействию напряжения прикосновения.

Шаговое напряжение и напряжение прикосновения — это напряжение на Земле, когда человека нет.Эквивалентные схемы Тевенина моделируют это состояние.

Заземляющий электрод подстанции должен обеспечивать соответствующее ступенчатое напряжение и напряжение прикосновения, обеспечивая безопасность людей.

В этой статье описана элементарная методика оценки максимально допустимого скачка напряжения и напряжения прикосновения.

повышающие и понижающие трансформаторы | Трансформеры

До сих пор мы наблюдали моделирование трансформаторов, в которых первичная и вторичная обмотки имели одинаковую индуктивность, что давало примерно равные уровни напряжения и тока в обеих цепях.Однако равенство напряжения и тока между первичной и вторичной сторонами трансформатора не является нормой для всех трансформаторов.

Если индуктивности двух обмоток не равны, происходит кое-что интересное:

трансформатор
 v1 1 0 ac 10 грех
 rbogus1 1 2 1e-12
 rbogus2 5 0 9e12
 l1 2 0 10000
 l2 3 5 100
 к l1 l2 0,999
 vi1 3 4 ac 0
 rload 4 5 1k
 .ac lin 1 60 60
 .print ac v (2,0) i (v1)
 .print ac v (3,5) i (vi1)
 .конец
 
частота v (2) i (v1)
6.000E + 01 1.000E + 01 9.975E-05 Первичная обмотка

частота v (3,5) i (vi1)
6.000E + 01 9.962E-01 9.962E-04 Вторичная обмотка
 

Обратите внимание, что вторичное напряжение примерно в десять раз меньше первичного напряжения (0,9962 вольт по сравнению с 10 вольт), а вторичный ток примерно в десять раз больше (0,9962 мА по сравнению с 0,09975 мА).

У нас есть устройство, которое понижает напряжение на в десять раз, а ток на вверх на в десять раз:

Коэффициент трансформации 10: 1 дает соотношение первичного напряжения: вторичного напряжения 10: 1 и соотношение первичного тока: вторичного тока 1:10.

Что такое повышающие и понижающие трансформаторы?

Это действительно очень полезное устройство. С его помощью мы можем легко умножить или разделить напряжение и ток в цепях переменного тока. Действительно, трансформатор сделал передачу электроэнергии на большие расстояния реальностью, поскольку напряжение переменного тока может быть «повышено», а ток «понижен» для уменьшения потерь мощности сопротивления проводов вдоль линий электропередач, соединяющих генерирующие станции с нагрузками.

На обоих концах (как на генераторе, так и на нагрузках) уровни напряжения снижаются трансформаторами для более безопасной работы и менее дорогого оборудования.

Трансформатор, который увеличивает напряжение от первичной к вторичной (больше витков вторичной обмотки, чем витков первичной обмотки), называется повышающим трансформатором .

И наоборот, трансформатор, предназначенный для работы с точностью до наоборот, называется понижающим трансформатором .

Давайте еще раз рассмотрим фотографию, показанную в предыдущем разделе:

Поперечное сечение трансформатора с первичной и вторичной обмотками имеет высоту несколько дюймов (приблизительно 10 см).

Это понижающий трансформатор, что подтверждается большим числом витков первичной обмотки и малым числом витков вторичной. В качестве понижающего устройства этот трансформатор преобразует низковольтную слаботочную мощность в низковольтную сильноточную мощность.

Провод большего сечения во вторичной обмотке необходим из-за увеличения тока. Первичная обмотка, которая не должна проводить такой большой ток, может быть изготовлена ​​из провода меньшего сечения.

Обратимость работы трансформатора

Если вам интересно, можно использовать любой из этих типов трансформаторов в обратном направлении (питание вторичной обмотки от источника переменного тока и обеспечение питания нагрузки первичной обмоткой) для выполнения противоположной функции: может функционировать повышающий как понижение и виза-наоборот.

Однако, как мы видели в первом разделе этой главы, эффективная работа трансформатора требует, чтобы индуктивности отдельных обмоток были спроектированы для определенных рабочих диапазонов напряжения и тока, поэтому, если трансформатор должен использоваться «в обратном направлении», как это должны использоваться в пределах исходных проектных параметров напряжения и тока для каждой обмотки, чтобы не оказаться неэффективным (или чтобы не был поврежден из-за чрезмерного напряжения или тока!).

Этикетки для изготовления трансформаторов

Трансформаторы

часто имеют такую ​​конструкцию, что не очевидно, какие провода ведут к первичной обмотке, а какие — к вторичной. В электроэнергетике для облегчения недоразумений используется одно из условных обозначений «H» для обмотки более высокого напряжения (первичная обмотка в понижающем блоке; вторичная обмотка в повышающем) и «X». обозначения низковольтной обмотки.

Следовательно, у простого силового трансформатора будут провода с маркировкой «H 1 », «H 2 », «X 1 » и «X 2 ».Обычно это важно для нумерации проводов (H 1 по сравнению с H 2 и т. Д.), Что мы рассмотрим немного позже в этой главе.

Практическое значение повышающих и понижающих трансформаторов

Тот факт, что напряжение и ток «скачкообразно меняются» в противоположных направлениях (одно вверх, другое вниз), имеет смысл, если вы вспомните, что мощность равна напряжению, умноженному на ток, и поймете, что трансформаторы не могут производить мощность , а только преобразовывают ее .

Любое устройство, которое могло бы выдавать больше энергии, чем потребляло, нарушило бы закон сохранения энергии в физике, а именно, что энергия не может быть создана или уничтожена, а только преобразована. Как и в случае с первым рассмотренным нами примером трансформатора, эффективность передачи энергии от первичной к вторичной стороне устройства очень хорошая.

Практическое значение этого становится более очевидным, когда рассматривается альтернатива: до появления эффективных трансформаторов преобразование уровня напряжения / тока могло быть достигнуто только за счет использования двигателей / генераторных установок.

Чертеж моторно-генераторной установки показывает основной принцип: (рисунок ниже)

=

Двигатель-генератор иллюстрирует основной принцип работы трансформатора.

В такой машине двигатель механически соединен с генератором, причем генератор предназначен для выработки требуемых уровней напряжения и тока при скорости вращения двигателя.

Хотя и двигатели, и генераторы являются довольно эффективными устройствами, использование обоих таким образом усугубляет их неэффективность, так что общий КПД находится в диапазоне 90% или меньше.Кроме того, поскольку для двигателей / генераторных установок явно требуются движущиеся части, механический износ и балансировка являются факторами, влияющими как на срок службы, так и на производительность.

С другой стороны, трансформаторы

способны преобразовывать уровни переменного напряжения и тока с очень высоким КПД без движущихся частей, что делает возможным широкое распространение и использование электроэнергии, которую мы считаем само собой разумеющимся.

Справедливости ради следует отметить, что двигатели / генераторные установки не обязательно были заменены трансформаторами для всех приложений .

Хотя трансформаторы явно превосходят мотор-генераторные установки по преобразованию напряжения переменного тока и уровня тока, они не могут преобразовывать одну частоту переменного тока в другую или (сами по себе) преобразовывать постоянный ток в переменный или наоборот.

Электродвигатели / генераторные установки могут выполнять все эти задачи с относительной простотой, хотя и с уже описанными ограничениями эффективности и механических факторов.

Мотор-генераторные установки также обладают уникальным свойством накопления кинетической энергии: то есть, если подача питания двигателя на мгновение прерывается по какой-либо причине, его угловой момент (инерция этой вращающейся массы) будет поддерживать вращение генератора на короткое время. продолжительность, таким образом изолируя любые нагрузки, питаемые от генератора, от «сбоев» в основной энергосистеме.

Анализ работы повышающего и понижающего трансформатора

Если внимательно посмотреть на числа в анализе SPICE, мы должны увидеть соответствие между коэффициентом трансформации трансформатора и двумя индуктивностями. Обратите внимание на то, что первичная катушка индуктивности (l1) имеет в 100 раз большую индуктивность, чем вторичная катушка индуктивности (10000 Гн против 100 Гн), и что измеренный коэффициент понижения напряжения составил от 10 до 1.

Обмотка с большей индуктивностью будет иметь более высокое напряжение и меньший ток, чем другая.

Поскольку две катушки индуктивности намотаны на один и тот же материал сердечника в трансформаторе (для наиболее эффективной магнитной связи между ними), параметры, влияющие на индуктивность двух катушек, равны, за исключением количества витков в каждой катушке.

Если мы еще раз посмотрим на нашу формулу индуктивности, мы увидим, что индуктивность пропорциональна квадрату числа витков катушки:

Итак, должно быть очевидно, что наши две катушки индуктивности в последней примерной схеме трансформатора SPICE — с отношениями индуктивности 100: 1 — должны иметь отношение витков катушки 10: 1, поскольку 10 в квадрате равняется 100.

Это получается то же соотношение, которое мы обнаружили между первичным и вторичным напряжениями и токами (10: 1), поэтому мы можем сказать, как правило, что коэффициент трансформации напряжения и тока равен отношению витков обмотки между первичной и вторичной обмотками. .

Понижающий трансформатор: (много витков: несколько витков).

Эффект повышения / понижения передаточных чисел обмотки в трансформаторе аналогичен передаточным числам зубчатых колес в механических зубчатых передачах, преобразуя значения скорости и крутящего момента примерно таким же образом:

Редуктор крутящего момента понижает крутящий момент, одновременно увеличивая скорость.

Повышающие и понижающие трансформаторы для целей распределения электроэнергии могут быть гигантскими по сравнению с показанными ранее силовыми трансформаторами, причем некоторые блоки могут быть высотой с дом. На следующей фотографии показан трансформатор подстанции высотой около двенадцати футов:

Подстанция трансформаторная.

ОБЗОР:

  • Трансформаторы «повышают» или «понижают» напряжение в соответствии с соотношением витков первичной и вторичной обмоток.
  • Трансформатор, предназначенный для повышения напряжения от первичной к вторичной, называется повышающим трансформатором . Трансформатор, предназначенный для понижения напряжения с первичной обмотки на вторичную, называется понижающим трансформатором .
  • Коэффициент трансформации трансформатора будет равен квадратному корню из отношения его первичной индуктивности к вторичной индуктивности (L).

СВЯЗАННЫЕ РАБОЧИЕ ЛИСТЫ:

Напряжение и ток | Основные понятия электричества

Как упоминалось ранее, нам нужно нечто большее, чем просто непрерывный путь (т.е.е., цепь) до того, как возникнет непрерывный поток заряда: нам также нужны средства, чтобы протолкнуть эти носители заряда по цепи. Так же, как мрамор в трубе или вода в трубе, для инициирования потока требуется какая-то сила воздействия. В случае электронов эта сила — это та же сила, которая действует в статическом электричестве: сила, вызванная дисбалансом электрического заряда. Если мы возьмем примеры воска и шерсти, которые были натерты друг о друга, мы обнаружим, что избыток электронов в воске (отрицательный заряд) и дефицит электронов в шерсти (положительный заряд) создают дисбаланс заряда между ними.Этот дисбаланс проявляется как сила притяжения между двумя объектами:

Если между заряженным воском и шерстью поместить токопроводящую проволоку, электроны будут проходить через нее, так как некоторые из избыточных электронов в воске устремляются через провод, чтобы вернуться к шерсти, восполняя там недостаток электронов:

Дисбаланс электронов между атомами воска и атомами шерсти создает силу между двумя материалами. Поскольку электроны не могут перемещаться от воска к шерсти, все, что может сделать эта сила, — это притягивать два объекта вместе.Однако теперь, когда проводник перекрывает изолирующий зазор, сила заставит электроны течь в однородном направлении через провод, хотя бы на мгновение, пока заряд в этой области не нейтрализуется и сила между воском и шерстью не уменьшится. Электрический заряд, образующийся между этими двумя материалами при их трении друг о друга, служит для хранения определенного количества энергии. Эта энергия мало чем отличается от энергии, накопленной в высоком резервуаре с водой, который выкачивается из пруда нижнего уровня:

Влияние силы тяжести на воду в резервуаре создает силу, которая пытается снова опустить воду на более низкий уровень.Если подходящая труба проложена от резервуара обратно к пруду, вода под действием силы тяжести будет стекать вниз из резервуара по трубе:

Для перекачки этой воды из пруда с низким уровнем в резервуар с высоким уровнем требуется энергия, и движение воды по трубопроводу обратно к исходному уровню представляет собой высвобождение энергии, накопленной от предыдущей откачки. Если вода перекачивается на еще более высокий уровень, для этого потребуется еще больше энергии, таким образом, будет сохранено больше энергии, и больше энергии будет высвобождено, если воде позволить снова течь по трубе обратно вниз:

Электроны мало чем отличаются.Если мы протираем воск и шерсть вместе, мы «откачиваем» электроны от их нормальных «уровней», создавая условия, при которых существует сила между парафином и шерстью, поскольку электроны стремятся восстановить свои прежние положения (и балансировать в своих соответствующие атомы). Сила, притягивающая электроны обратно в исходное положение вокруг положительных ядер их атомов, аналогична силе гравитации, действующей на воду в резервуаре, пытаясь вернуть ее к прежнему уровню. Подобно тому, как перекачка воды на более высокий уровень приводит к накоплению энергии, «перекачка» электронов для создания дисбаланса электрического заряда приводит к накоплению определенного количества энергии в этом дисбалансе.И точно так же, как обеспечение возможности для воды стекать обратно с высоты резервуара приводит к высвобождению этой накопленной энергии, предоставление возможности электронам течь обратно к их первоначальным «уровням» приводит к высвобождению накопленной энергии. Когда носители заряда находятся в этом статическом состоянии (точно так же, как вода неподвижно сидит высоко в резервуаре), запасенная там энергия называется потенциальной энергией , потому что у нее есть возможность (потенциал) высвобождения, которая не была полностью реализована. еще.

Понимание концепции напряжения

Когда носители заряда находятся в статическом состоянии (как вода, неподвижная, высоко в резервуаре), энергия, хранящаяся там, называется потенциальной энергией, потому что у нее есть возможность (потенциал) высвобождения, которая еще не полностью реализована. . Когда вы терзаете обувь с резиновой подошвой о тканевый ковер в сухой день, вы создаете дисбаланс электрического заряда между вами и ковром. При царапании ногами накапливается энергия в виде дисбаланса зарядов, вытесняемых из их первоначальных мест.Этот заряд (статическое электричество) является стационарным, и вы не заметите, что энергия вообще сохраняется. Однако как только вы положите руку на металлическую дверную ручку (с большой подвижностью электронов для нейтрализации вашего электрического заряда), эта накопленная энергия будет высвобождена в виде внезапного потока заряда через вашу руку, и вы будете воспринимать ее как поражение электрическим током! Эта потенциальная энергия, хранящаяся в виде дисбаланса электрического заряда и способная вызывать прохождение носителей заряда через проводник, может быть выражена термином, называемым напряжением, которое технически является мерой потенциальной энергии на единицу заряда или чем-то, что физик мог бы называют удельной потенциальной энергией.

Определение напряжения

Определяемое в контексте статического электричества, напряжение — это мера работы, необходимой для перемещения единичного заряда из одного места в другое, против силы, которая пытается сохранить баланс электрических зарядов. В контексте источников электроэнергии напряжение — это количество доступной потенциальной энергии (работа, которую необходимо выполнить) на единицу заряда для перемещения зарядов через проводник, поскольку напряжение — это выражение потенциальной энергии, представляющее возможность или потенциал для выделения энергии когда заряд перемещается с одного «уровня» на другой, он всегда находится между двумя точками.Рассмотрим аналогию с водоемом:

.

Из-за разницы в высоте падения существует вероятность того, что гораздо больше энергии будет выпущено из резервуара через трубопровод в точку 2, чем в точку 1. Принцип интуитивно понятен при падении камня: что приводит к более сильный удар, камень упал с высоты одного фута или тот же камень упал с высоты одной мили? Очевидно, что падение с большей высоты приводит к высвобождению большей энергии (более сильному удару).Мы не можем оценить количество накопленной энергии в водном резервуаре, просто измерив объем воды, точно так же, как мы не можем предсказать серьезность удара падающей породы, просто зная вес камня: в обоих случаях мы также должны учитывать, как далеко эти массы упадут с их начальной высоты. Количество энергии, высвобождаемой при падении массы, зависит от расстояния между его начальной и конечной точками. Точно так же потенциальная энергия, доступная для перемещения носителей заряда из одной точки в другую, зависит от этих двух точек.Следовательно, напряжение всегда выражается как величина между двумя точками. Интересно, что аналогия с массой, потенциально «падающей» с одной высоты на другую, является настолько удачной моделью, что напряжение между двумя точками иногда называют падением напряжения .

Генерирующее напряжение

Напряжение можно генерировать другими способами, кроме трения материалов определенных типов друг о друга. Химические реакции, лучистая энергия и влияние магнетизма на проводники — вот несколько способов, которыми может создаваться напряжение.Соответствующими примерами этих трех источников напряжения являются батареи, солнечные элементы и генераторы (например, «генератор переменного тока» под капотом вашего автомобиля). На данный момент мы не будем вдаваться в подробности того, как работает каждый из этих источников напряжения — более важно то, что мы понимаем, как источники напряжения могут применяться для создания потока заряда в электрической цепи. Давайте возьмем символ химической батареи и шаг за шагом построим схему:

Как работают источники напряжения?

Любой источник напряжения, включая аккумуляторные батареи, имеет две точки электрического контакта.В этом случае у нас есть точка 1 и точка 2 на приведенной выше диаграмме. Горизонтальные линии разной длины указывают на то, что это батарея, и дополнительно указывают направление, в котором напряжение этой батареи будет пытаться протолкнуть носители заряда по цепи. Тот факт, что горизонтальные линии в символе батареи кажутся разделенными (и, таким образом, не могут служить путем для потока заряда), не вызывает беспокойства: в реальной жизни эти горизонтальные линии представляют собой металлические пластины, погруженные в жидкий или полутвердый материал. который не только проводит заряды, но и генерирует напряжение, которое толкает их, взаимодействуя с пластинами.Обратите внимание на маленькие значки «+» и «-» непосредственно слева от символа батареи. Отрицательный (-) конец батареи всегда является концом с самым коротким тире, а положительный (+) конец батареи всегда является концом с самым длинным тире. Положительный конец батареи — это конец, который пытается вытолкнуть из нее носители заряда (помните, что по традиции мы думаем, что носители заряда заряжены положительно, даже если электроны заряжены отрицательно). Точно так же отрицательный конец — это конец, который пытается привлечь носители заряда.Когда «+» и «-» концы батареи ни к чему не подключены, между этими двумя точками будет напряжение, но не будет потока заряда через батарею, потому что нет непрерывного пути, по которому могут перемещаться носители заряда.

Тот же принцип справедлив и для аналогии с резервуаром для воды и насосом: без возвратной трубы обратно в пруд накопленная энергия в резервуаре не может быть выпущена в виде потока воды. После того, как резервуар полностью заполнен, поток не может возникнуть, независимо от того, какое давление может создать насос.Должен существовать полный путь (контур), по которому вода течет из пруда в резервуар и обратно в пруд, чтобы иметь место непрерывный поток. Мы можем обеспечить такой путь для батареи, подключив кусок провода от одного конца батареи к другому. Образуя цепь с петлей из проволоки, мы инициируем непрерывный поток заряда по часовой стрелке:

Понимание концепции электрического тока

Пока батарея продолжает вырабатывать напряжение и непрерывность электрического пути не нарушена, носители заряда будут продолжать течь в цепи.Следуя метафоре воды, движущейся по трубе, этот непрерывный, равномерный поток заряда через цепь называется током . Пока источник напряжения продолжает «толкать» в одном направлении, носители заряда будут продолжать двигаться в том же направлении в цепи. Этот однонаправленный поток тока называется , постоянный ток, или постоянный ток. Во втором томе этой серии книг исследуются электрические цепи, в которых направление тока переключается взад и вперед: переменный ток, или переменный ток.Но пока мы просто займемся цепями постоянного тока. Поскольку электрический ток состоит из отдельных носителей заряда, протекающих в унисон через проводник, перемещаясь и толкая носители заряда впереди, точно так же, как шарики через трубу или вода через трубу, величина потока в одной цепи будет одинаковой. в любой момент. Если бы мы отслеживали поперечное сечение провода в одной цепи, подсчитывая протекающие носители заряда, мы бы заметили точно такое же количество в единицу времени, что и в любой другой части цепи, независимо от длины проводника или проводника. диаметр.Если мы нарушим непрерывность цепи в любой точке , электрический ток прекратится во всей петле, и полное напряжение, произведенное батареей, будет проявляться через разрыв между концами проводов, которые раньше были соединены:

Что такое полярность падения напряжения?

Обратите внимание на знаки «+» и «-», нарисованные на концах разрыва цепи, и на то, как они соответствуют знакам «+» и «-» рядом с выводами аккумулятора. Эти маркеры указывают направление, в котором напряжение пытается протолкнуть ток, это направление потенциала, обычно называемое полярностью , .Помните, что напряжение всегда относительно между двумя точками. По этой причине полярность падения напряжения также является относительной между двумя точками: будет ли точка в цепи помечена знаком «+» или «-», зависит от другой точки, к которой она относится. Взгляните на следующую схему, где каждый угол петли отмечен номером для справки:

При нарушении целостности цепи между точками 2 и 3 полярность падения напряжения между точками 2 и 3 будет «+» для точки 2 и «-» для точки 3.Полярность батареи (1 «+» и 4 «-») пытается протолкнуть ток через петлю по часовой стрелке от 1 до 2, от 3 до 4 и снова обратно к 1. Теперь давайте посмотрим, что произойдет, если мы снова соединим точки 2 и 3 вместе, но сделаем разрыв цепи между точками 3 и 4:

При разрыве между 3 и 4 полярность падения напряжения между этими двумя точками равна «-» для 4 и «+» для 3. Обратите особое внимание на тот факт, что «знак» точки 3 противоположен знаку в Первый пример, где разрыв был между точками 2 и 3 (где точка 3 была помечена «-»).Мы не можем сказать, что точка 3 в этой цепи всегда будет либо «+», либо «-», потому что полярность, как и само напряжение, не зависит от одной точки, но всегда относительна между двумя точками!

ОБЗОР:

  • Носители заряда могут быть побуждены течь через проводник той же силой, что проявляется в статическом электричестве.
  • Напряжение — это мера удельной потенциальной энергии (потенциальной энергии на единицу заряда) между двумя точками.С точки зрения непрофессионала, это мера «толчка», позволяющая мотивировать обвинение.
  • Напряжение, как выражение потенциальной энергии, всегда относительно между двумя местоположениями или точками. Иногда это называют «падением напряжения».
  • Когда источник напряжения подключен к цепи, напряжение вызывает однородный поток носителей заряда через эту цепь, называемый током .
  • В одиночной (однопетлевой) схеме величина тока в любой точке такая же, как и величина тока в любой другой точке.
  • Если цепь, содержащая источник напряжения, сломана, полное напряжение этого источника появится в точках разрыва.
  • +/- ориентация падения напряжения называется полярностью . Он также является относительным между двумя точками.

СВЯЗАННЫЕ РАБОЧИЕ ЛИСТЫ:

трансформаторов | Физика

Цели обучения

К концу этого раздела вы сможете:

  • Объясните, как работает трансформатор.
  • Рассчитайте напряжение, ток и / или количество витков с учетом других величин.

Трансформаторы делают то, что подразумевает их название — они преобразуют напряжения из одного значения в другое (термин «напряжение» используется, а не ЭДС, поскольку трансформаторы имеют внутреннее сопротивление). Например, многие сотовые телефоны, ноутбуки, видеоигры, электроинструменты и небольшие приборы имеют встроенный трансформатор (как на рис. 1), который преобразует 120 В или 240 В переменного тока в любое напряжение, используемое устройством.Трансформаторы также используются в нескольких точках систем распределения электроэнергии, например, как показано на рисунке 2. Мощность передается на большие расстояния при высоком напряжении, поскольку для данного количества мощности требуется меньший ток, а это означает меньшие потери в линии, как это было раньше. обсуждалось ранее. Но высокое напряжение представляет большую опасность, поэтому трансформаторы используются для получения более низкого напряжения в месте нахождения пользователя.

Рис. 1. Подключаемый трансформатор становится все более популярным в связи с увеличением количества электронных устройств, которые работают с напряжениями, отличными от обычных 120 В переменного тока.Большинство из них находятся в диапазоне от 3 до 12 В. (кредит: Shop Xtreme)

Рис. 2. Трансформаторы изменяют напряжение в нескольких точках системы распределения электроэнергии. Электроэнергия обычно вырабатывается при напряжении более 10 кВ и передается на большие расстояния при напряжениях более 200 кВ, иногда даже до 700 кВ, для ограничения потерь энергии. Распределение электроэнергии по районам или промышленным предприятиям осуществляется через подстанцию ​​и передается на короткие расстояния с напряжением от 5 до 13 кВ. Оно снижено до 120, 240 или 480 В для безопасности на месте отдельного пользователя.

Тип трансформатора, рассматриваемый в этом тексте (см. Рисунок 3), основан на законе индукции Фарадея и очень похож по конструкции на устройство Фарадея, которое использовалось для демонстрации того, что магнитные поля могут вызывать токи. Две катушки называются первичной и вторичной катушками . При нормальном использовании входное напряжение подается на первичную обмотку, а вторичная обмотка создает преобразованное выходное напряжение. Железный сердечник не только улавливает магнитное поле, создаваемое первичной катушкой, но и его намагничивание увеличивает напряженность поля.Поскольку входное напряжение переменного тока, изменяющийся во времени магнитный поток направляется во вторичную обмотку, вызывая ее выходное переменное напряжение.

Рис. 3. Типичная конструкция простого трансформатора имеет две катушки, намотанные на ферромагнитный сердечник, ламинированный для минимизации вихревых токов. Магнитное поле, создаваемое первичной обмоткой, в основном ограничивается и увеличивается сердечником, который передает его вторичной обмотке. Любое изменение тока в первичной обмотке вызывает ток во вторичной обмотке.

Для простого трансформатора, показанного на рисунке 3, выходное напряжение В с почти полностью зависит от входного напряжения В p и соотношения количества петель в первичной и вторичной обмотках.Закон индукции Фарадея для вторичной обмотки дает наведенное выходное напряжение В с равным

.

[латекс] {V} _ {\ text {s}} = — {N} _ {\ text {s}} \ frac {\ Delta \ Phi} {\ Delta t} \\ [/ latex],

, где N s — количество витков во вторичной обмотке, а Δ Φ / Δ t — скорость изменения магнитного потока. Обратите внимание, что выходное напряжение равно индуцированной ЭДС ( В с = ЭДС с ), при условии, что сопротивление катушки невелико (разумное предположение для трансформаторов).Площадь поперечного сечения катушек одинакова с обеих сторон, как и напряженность магнитного поля, поэтому Δ Φ / Δ t одинаковы с обеих сторон. Входное первичное напряжение В p также связано с изменением магнитного потока на

[латекс] {V} _ {p} = — {N} _ {\ text {p}} \ frac {\ Delta \ Phi} {\ Delta t} \\ [/ latex].

Причина этого немного более тонкая. Закон Ленца говорит нам, что первичная катушка противодействует изменению магнитного потока, вызванному входным напряжением В p , отсюда знак минус (это пример самоиндукции , тема, которая будет исследована подробнее в следующих разделах).Предполагая пренебрежимо малое сопротивление катушки, правило петли Кирхгофа говорит нам, что наведенная ЭДС в точности равна входному напряжению. Соотношение этих двух последних уравнений дает полезное соотношение:

[латекс] \ frac {{V} _ {\ text {s}}} {{V} _ {\ text {p}}} = \ frac {{N} _ {\ text {s}}} {{ N} _ {\ text {p}}} \\ [/ latex]

Это известно как уравнение трансформатора , и оно просто утверждает, что отношение вторичного напряжения к первичному в трансформаторе равно отношению количества контуров в их катушках.Выходное напряжение трансформатора может быть меньше, больше или равно входному напряжению, в зависимости от соотношения количества витков в их катушках. Некоторые трансформаторы даже обеспечивают регулируемый выходной сигнал, позволяя выполнять подключение в разных точках вторичной обмотки. Повышающий трансформатор — это тот, который увеличивает напряжение, тогда как понижающий трансформатор снижает напряжение. Если предположить, что сопротивление незначительно, выходная электрическая мощность трансформатора равна его входной.На практике это почти верно — КПД трансформатора часто превышает 99%. Уравнивание входной и выходной мощности,

P p = I p V p = I s V s = P s .

Перестановка терминов дает

[латекс] \ frac {{V} _ {\ text {s}}} {{V} _ {\ text {p}}} = \ frac {{I} _ {\ text {p}}} {{ I} _ {\ text {s}}} \\ [/ latex].

В сочетании с [латексом] \ frac {{V} _ {\ text {s}}} {{V} _ {\ text {p}}} = \ frac {{N} _ {\ text {s}} } {{N} _ {\ text {p}}} \\ [/ latex], мы находим, что

[латекс] \ frac {{I} _ {\ text {s}}} {{I} _ {\ text {p}}} = \ frac {{N} _ {\ text {p}}} {{ N} _ {\ text {s}}} \\ [/ latex]

— это соотношение между выходным и входным токами трансформатора.Таким образом, если напряжение увеличивается, ток уменьшается. И наоборот, если напряжение уменьшается, ток увеличивается.

Пример 1. Расчет характеристик повышающего трансформатора

Портативный рентгеновский аппарат имеет повышающий трансформатор, входное напряжение которого 120 В преобразуется в выходное напряжение 100 кВ, необходимое для рентгеновской трубки. Первичная обмотка имеет 50 петель и потребляет ток 10,00 А. а) Какое количество петель во вторичной обмотке? (b) Найдите текущий выход вторичной обмотки.

Стратегия и решение для (а)

Решаем [латекс] \ frac {{V} _ {\ text {s}}} {{V} _ {\ text {p}}} = \ frac {{N} _ {\ text {s}}} {{N} _ {\ text {p}}} \\ [/ latex] для [latex] {N} _ {\ text {s}} \\ [/ latex] для N s , число петель во вторичной обмотке и введите известные значения.{4} \ end {array} \\ [/ latex].

Обсуждение для (а)

Для создания такого большого напряжения требуется большое количество витков во вторичной обмотке (по сравнению с первичной). Это справедливо для трансформаторов с неоновой вывеской и трансформаторов, подающих высокое напряжение внутри телевизоров и ЭЛТ.

Стратегия и решение для (b)

Аналогичным образом мы можем найти выходной ток вторичной обмотки, решив [latex] \ frac {{I} _ {\ text {s}}} {{I} _ {\ text {p}}} = \ frac {{N } _ {\ text {p}}} {{N} _ {\ text {s}}} \\ [/ latex] для [латекса] {I} _ {\ text {s}} \\ [/ latex] для I s и ввод известных значений.{4}} = 12,0 \ text {mA} \ end {array} \\ [/ latex].

Обсуждение для (б)

Как и ожидалось, текущий выход значительно меньше входного. В некоторых зрелищных демонстрациях используются очень большие напряжения для получения длинных дуг, но они относительно безопасны, поскольку выход трансформатора не обеспечивает большой ток. Обратите внимание, что потребляемая мощность здесь составляет P p = I p V p = (10,00 A) (120 В) = 1.20 кВт. Это равняется выходной мощности P p = I с V с = (12,0 мА) (100 кВ) = 1,20 кВт, как мы предполагали при выводе используемых уравнений.

Тот факт, что трансформаторы основаны на законе индукции Фарадея, проясняет, почему мы не можем использовать трансформаторы для изменения постоянного напряжения. Если нет изменений в первичном напряжении, то во вторичной обмотке нет индуцированного напряжения. Одна из возможностей — подключить постоянный ток к первичной катушке через переключатель.Когда переключатель размыкается и замыкается, вторичная обмотка вырабатывает напряжение, подобное показанному на рисунке 4. На самом деле это не практичная альтернатива, и переменный ток обычно используется везде, где необходимо увеличить или уменьшить напряжение.

Рис. 4. Трансформаторы не работают для чистого входа постоянного напряжения, но если он включается и выключается, как показано на верхнем графике, выход будет выглядеть примерно так, как показано на нижнем графике. Это не тот синусоидальный переменный ток, который нужен большинству устройств переменного тока.

Пример 2. Расчет характеристик понижающего трансформатора

Зарядное устройство, предназначенное для последовательного подключения десяти никель-кадмиевых аккумуляторов (суммарная ЭДС 12.5 В постоянного тока) должен иметь выход 15,0 В для зарядки аккумуляторов. В нем используется понижающий трансформатор с первичной обмоткой на 200 контуров и входом 120 В. а) Сколько витков должно быть во вторичной катушке? (б) Если ток зарядки составляет 16,0 А, каков ток на входе?

Стратегия и решение для (а)

Можно ожидать, что на вторичной стороне будет небольшое количество петель. Решение [латекс] \ frac {{V} _ {\ text {s}}} {{V} _ {\ text {p}}} = \ frac {{N} _ {\ text {s}}} {{ N} _ {\ text {p}}} \\ [/ latex] для [latex] {N} _ {\ text {s}} \\ [/ latex] для N s и ввод известных значений дает

[латекс] \ begin {array} {lll} {N} _ {\ text {s}} & = & {N} _ {\ text {p}} \ frac {{V} _ {\ text {s} }} {{V} _ {\ text {p}}} \\ & = & \ left (\ text {200} \ right) \ frac {15.0 \ text {V}} {120 \ text {V}} = 25 \ end {array} \\ [/ latex]

Стратегия и решение для (b)

Текущие входные данные могут быть получены путем решения [latex] \ frac {{I} _ {\ text {s}}} {{I} _ {\ text {p}}} = \ frac {{N} _ {\ text {p}}} {{N} _ {\ text {s}}} \\ [/ latex] для I p и ввод известных значений. Это дает

[латекс] \ begin {array} {lll} {I} _ {\ text {p}} & = & {I} _ {\ text {s}} \ frac {{N} _ {\ text {s} }} {{N} _ {\ text {p}}} \\ & = & \ left (16.0 \ text {A} \ right) \ frac {25} {200} = 2.00 \ text {A} \ end {array} \\ [/ latex]

Обсуждение

Число петель во вторичной обмотке невелико, как и ожидалось для понижающего трансформатора. Мы также видим, что небольшой входной ток дает больший выходной ток в понижающем трансформаторе. Когда трансформаторы используются для управления большими магнитами, они иногда имеют небольшое количество очень тяжелых петель во вторичной обмотке. Это позволяет вторичной обмотке иметь низкое внутреннее сопротивление и производить большие токи. Заметим еще раз, что это решение основано на предположении о 100% эффективности — или выходная мощность равна мощности ( P p = P s ), что является разумным для хороших трансформаторов.В этом случае первичная и вторичная мощность составляют 240 Вт. (Убедитесь в этом сами для проверки согласованности.) Обратите внимание, что никель-кадмиевые батареи необходимо заряжать от источника постоянного тока (как и аккумулятор на 12 В). Поэтому выход переменного тока вторичной катушки необходимо преобразовать в постоянный ток. Это делается с помощью так называемого выпрямителя, в котором используются устройства, называемые диодами, которые пропускают только односторонний ток.

Трансформаторы

находят множество применений в системах электрической безопасности, которые обсуждаются в документе «Электробезопасность: системы и устройства».

Исследования PhET: Генератор

Генерируйте электричество с помощью стержневого магнита! Откройте для себя физику этих явлений, исследуя магниты и узнавая, как с их помощью можно зажечь лампочку.

Щелкните, чтобы загрузить симуляцию. Запускать на Java.

Сводка раздела

  • Трансформаторы используют индукцию для преобразования напряжения из одного значения в другое.
  • Для трансформатора напряжения на первичной и вторичной обмотках связаны соотношением

    [латекс] \ frac {{V} _ {\ text {s}}} {{V} _ {\ text {p}}} = \ frac {{N} _ {\ text {s}}} {{ N} _ {\ text {p}}} \\ [/ latex],

    , где V p и V s — напряжения на первичной и вторичной обмотках, имеющих N p и N s витков.

  • Токи I p и I s в первичной и вторичной обмотках связаны соотношением [латекс] \ frac {{I} _ {\ text {s}}} {{I} _ {\ текст {p}}} = \ frac {{N} _ {\ text {p}}} {{N} _ {\ text {s}}} \\ [/ latex].
  • Повышающий трансформатор увеличивает напряжение и снижает ток, тогда как понижающий трансформатор снижает напряжение и увеличивает ток.

Концептуальные вопросы

1. Объясните, что вызывает физические вибрации трансформаторов с частотой, вдвое превышающей используемую мощность переменного тока.

Задачи и упражнения

1. Подключаемый трансформатор, показанный на рисунке 4, подает 9,00 В в систему видеоигр. (a) Сколько витков во вторичной обмотке, если ее входное напряжение составляет 120 В, а первичная обмотка имеет 400 витков? (б) Какой у него входной ток, когда его выход 1,30 А?

2. Американская путешественница в Новой Зеландии несет с собой трансформатор для преобразования стандартных 240 В в Новой Зеландии в 120 В, чтобы она могла использовать в поездке небольшие электроприборы.а) Каково соотношение витков первичной и вторичной обмоток ее трансформатора? (б) Каково отношение входного тока к выходному? (c) Как новозеландец, путешествующий по США, мог использовать этот же трансформатор для питания своих устройств на 240 В от 120 В?

3. В кассетном магнитофоне используется подключаемый трансформатор для преобразования 120 В в 12,0 В с максимальным выходным током 200 мА. (а) Каков текущий ввод? б) Какая потребляемая мощность? (c) Является ли такое количество мощности приемлемым для небольшого прибора?

4.(а) Каково выходное напряжение трансформатора, используемого для аккумуляторных батарей фонарика, если его первичная обмотка имеет 500 витков, вторичная — 4 витка, а входное напряжение составляет 120 В? (b) Какой входной ток требуется для получения выходного сигнала 4,00 А? (c) Какая потребляемая мощность?

5. (a) Подключаемый трансформатор для портативного компьютера выдает 7,50 В и может обеспечивать максимальный ток 2,00 А. Каков максимальный входной ток, если входное напряжение составляет 240 В? Предположим 100% эффективность. (b) Если фактический КПД меньше 100%, потребуется ли входной ток больше или меньше? Объясни.

6. Многоцелевой трансформатор имеет вторичную катушку с несколькими точками, в которых может быть снято напряжение, давая на выходе 5,60, 12,0 и 480 В. (a) Входное напряжение составляет 240 В на первичную катушку с 280 витками. Какое количество витков в частях вторичной обмотки используется для создания выходного напряжения? (b) Если максимальный входной ток составляет 5,00 А, каковы максимальные выходные токи (каждый из которых используется отдельно)?

7. Крупная электростанция вырабатывает электроэнергию напряжением 12,0 кВ.Его старый трансформатор когда-то преобразовывал напряжение до 335 кВ. Вторичная обмотка этого трансформатора заменяется, так что его выходная мощность может составлять 750 кВ для более эффективной передачи по стране на модернизированных линиях электропередачи. (а) Каково соотношение оборотов в новой вторичной системе по сравнению со старой? (b) Каково отношение нового текущего выхода к старому выходу (при 335 кВ) для той же мощности? (c) Если модернизированные линии электропередачи имеют такое же сопротивление, каково отношение потерь мощности в новых линиях к старым?

8.Если выходная мощность в предыдущей задаче составляет 1000 МВт, а сопротивление линии составляет 2,00 Ом, каковы были потери в старой и новой линии?

9. Неоправданные результаты Электроэнергия на 335 кВ переменного тока от линии электропередачи подается в первичную обмотку трансформатора. Отношение количества витков вторичной обмотки к количеству витков первичной обмотки составляет N s / N p = 1000. (a) Какое напряжение индуцируется во вторичной обмотке? б) Что неразумного в этом результате? (c) Какое предположение или предпосылка ответственны?

10. Создайте свою проблему Рассмотрим двойной трансформатор, который будет использоваться для создания очень больших напряжений. Устройство состоит из двух этапов. Первый — это трансформатор, который выдает намного большее выходное напряжение, чем его входное. Выход первого трансформатора используется как вход для второго трансформатора, который дополнительно увеличивает напряжение. Постройте задачу, в которой вы вычисляете выходное напряжение последней ступени на основе входного напряжения первой ступени и количества витков или петель в обеих частях обоих трансформаторов (всего четыре катушки).Также рассчитайте максимальный выходной ток конечной ступени на основе входного тока. Обсудите возможность потерь мощности в устройствах и их влияние на выходной ток и мощность.

Глоссарий

трансформатор:
устройство, преобразующее напряжение из одного значения в другое с помощью индукции
уравнение трансформатора:
уравнение, показывающее, что отношение вторичного напряжения к первичному в трансформаторе равно отношению количества витков в их катушках; [латекс] \ frac {{V} _ {\ text {s}}} {{V} _ {\ text {p}}} = \ frac {{N} _ {\ text {s}}} {{N} _ {\ text {p}}} \\ [/ latex]
повышающий трансформатор:
трансформатор повышающий напряжение
понижающий трансформатор:
трансформатор, понижающий напряжение

Избранные решения проблем и упражнения

1.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *