Резистор r: Резистор. Резисторы переменного сопротивления | Для дома, для семьи

Содержание

Резистор. Резисторы переменного сопротивления | Для дома, для семьи

Здравствуйте, уважаемые читатели сайта sesaga.ru. Продолжаем тему о резисторах. В первой части статьи мы познакомились с резисторами постоянного сопротивления (постоянными резисторами), а в этой части статьи поговорим о резисторах переменного сопротивления, или переменных резисторах.

Резисторы переменного сопротивления, или переменные резисторы являются радиокомпонентами, сопротивление которых можно изменять от нуля и до номинального значения. Они применяются в качестве регуляторов усиления, регуляторов громкости и тембра в звуковоспроизводящей радиоаппаратуре, используются для точной и плавной настройки различных напряжений и разделяются на потенциометры и подстроечные резисторы.

1. Потенциометры.

Потенциометры применяются в качестве плавных регуляторов усиления, регуляторов громкости и тембра, служат для плавной регулировки различных напряжений, а также используются в следящих системах, в вычислительных и измерительных устройствах и т.п.

Потенциометром называют регулируемый резистор, имеющий два постоянных вывода и один подвижный. Постоянные выводы расположены по краям резистора и соединены с началом и концом резистивного элемента, образующим общее сопротивление потенциометра. Средний вывод соединен с подвижным контактом, который перемещается по поверхности резистивного элемента и позволяет изменять величину сопротивления между средним и любым крайним выводом.

Потенциометр представляет собой цилиндрический или прямоугольный корпус, внутри которого расположен резистивный элемент, выполненный в виде незамкнутого кольца, и выступающая металлическая ось, являющаяся ручкой потенциометра. На конце оси закреплена пластина токосъемника (контактная щетка), имеющая надежный контакт с резистивным элементом. Надежность контакта щетки с поверхностью резистивного слоя обеспечивается давлением ползунка, выполненного из пружинных материалов, например, бронзы или стали.

При вращении ручки ползунок перемещается по поверхности резистивного элемента, в результате чего сопротивление изменяется между средним и крайними выводами. И если на крайние выводы подать напряжение, то между ними и средним выводом получают выходное напряжение.

Схематично потенциометр можно представить, как показано на рисунке ниже: крайние выводы обозначены номерами 1 и 3, средний обозначен номером 2.

В зависимости от резистивного элемента потенциометры разделяются на непроволочные и проволочные.

1.1 Непроволочные.

В непроволочных потенциометрах резистивный элемент выполнен в виде подковообразной или прямоугольной пластины из изоляционного материала, на поверхность которых нанесен резистивный слой, обладающий определенным омическим сопротивлением.

Резисторы с подковообразным резистивным элементом имеют круглую форму и вращательное перемещение ползунка с углом поворота 230 — 270°, а резисторы с прямоугольным резистивным элементом имеют прямоугольную форму и поступательное перемещение ползунка. Наиболее популярными являются резисторы типа СП, ОСП, СПЕ и СП3. На рисунке ниже показан потенциометр типа СП3-4 с подковообразным резистивным элементом.

Отечественной промышленностью выпускались потенциометры типа СПО, у которых резистивный элемент впрессован в дугообразную канавку. Корпус такого резистора выполнен из керамики, а для защиты от пыли, влаги и механических повреждений, а также в целях электрической экранировки весь резистор закрывается металлическим колпачком.

Потенциометры типа СПО обладают большой износостойкостью, нечувствительны к перегрузкам и имеют небольшие размеры, но у них есть недостаток – сложность получения нелинейных функциональных характеристик. Эти резисторы до сих пор еще можно встретить в старой отечественной радиоаппаратуре.

1.2. Проволочные.

В проволочных потенциометрах сопротивление создается высокоомным проводом, намотанным в один слой на кольцеобразном каркасе, по ребру которого перемещается подвижный контакт. Для получения надежного контакта между щеткой и обмоткой контактная дорожка зачищается, полируется, или шлифуется на глубину до 0,25d.

Устройство и материал каркаса определяется исходя из класса точности и закона изменения сопротивления резистора (о законе изменения сопротивления будет сказано ниже). Каркасы изготавливают из пластины, которую после намотки провода сворачивают в кольцо, или же берут готовое кольцо, на которое укладывают обмотку.

Для резисторов с точностью, не превышающей 10 – 15%, каркасы изготавливают из пластины, которую после намотки провода сворачивают в кольцо. Материалом для каркаса служат изоляционные материалы, такие как гетинакс, текстолит, стеклотекстолит, или металл – алюминий, латунь и т.п. Такие каркасы просты в изготовлении, но не обеспечивают точных геометрических размеров.

Каркасы из готового кольца изготавливают с высокой точностью и применяют в основном для изготовления потенциометров. Материалом для них служит пластмасса, керамика или металл, но недостатком таких каркасов является сложность выполнения обмотки, так как для ее намотки требуется специальное оборудование.

Обмотку выполняют проводами из сплавов с высоким удельным электрическим сопротивлением, например, константан, нихром или манганин в эмалевой изоляции. Для потенциометров применяют провода из специальных сплавов на основе благородных металлов, обладающих пониженной окисляемостью и высокой износостойкостью. Диаметр провода определяют исходя из допустимой плотности тока.

2. Основные параметры переменных резисторов.

Основными параметрами резисторов являются: полное (номинальное) сопротивление, форма функциональной характеристики, минимальное сопротивление, номинальная мощность, уровень шумов вращения, износоустойчивость, параметры, характеризующие поведение резистора при климатических воздействиях, а также размеры, стоимость и т.п. Однако при выборе резисторов чаще всего обращают внимание на номинальное сопротивление и реже на функциональную характеристику.

2.1. Номинальное сопротивление.

Номинальное сопротивление резистора указывается на его корпусе. Согласно ГОСТ 10318-74 предпочтительными числами являются 1,0; 2,2; 3,3; 4,7 Ом, килоом или мегаом.

У зарубежных резисторов предпочтительными числами являются 1,0; 2,0; 3,0; 5.0 Ом, килоом и мегаом.

Допускаемые отклонения сопротивлений от номинального значения установлены в пределах ±30%.

Полным сопротивлением резистора считается сопротивление между крайними выводами 1 и 3.

2.2. Форма функциональной характеристики.

Потенциометры одного и того же типа могут отличаться функциональной характеристикой, определяющей по какому закону изменяется сопротивление резистора между крайним и средним выводом при повороте ручки резистора. По форме функциональной характеристики потенциометры разделяются на линейные и нелинейные: у линейных величина сопротивления изменяется пропорционально движению токосъемника, у нелинейных она изменяется по определенному закону.

Существуют три основных закона: А — Линейный, Б – Логарифмический, В — Обратно Логарифмический (Показательный). Так, например, для регулирования громкости в звуковоспроизводящей аппаратуре необходимо, чтобы сопротивление между средним и крайним выводом резистивного элемента изменялось по обратному логарифмическому закону (В). Только в этом случае наше ухо способно воспринимать равномерное увеличение или уменьшение громкости.

Или в измерительных приборах, например, генераторах звуковой частоты, где в качестве частотозадающих элементов используются переменные резисторы, также требуется, чтобы их сопротивление изменялось по логарифмическому (Б) или обратному логарифмическому закону. И если это условие не выполнить, то шкала генератора получится неравномерной, что затруднит точную установку частоты.

Резисторы с линейной характеристикой (А) применяются в основном в делителях напряжения в качестве регулировочных или подстроечных.

Зависимость изменения сопротивления от угла поворота ручки резистора для каждого закона показано на графике ниже.

Для получения нужной функциональной характеристики большие изменения в конструкцию потенциометров не вносятся. Так, например, в проволочных резисторах намотку провода ведут с изменяющимся шагом или сам каркас делают изменяющейся ширины. В непроволочных потенциометрах меняют толщину или состав резистивного слоя.

К сожалению, регулируемые резисторы имеют относительно невысокую надежность и ограниченный срок службы. Часто владельцам аудиоаппаратуры, эксплуатируемой длительное время, приходится слышать шорохи и треск из громкоговорителя при вращении регулятора громкости. Причиной этого неприятного момента является нарушение контакта щетки с токопроводящим слоем резистивного элемента или износ последнего. Скользящий контакт является наиболее ненадежным и уязвимым местом переменного резистора и является одной из главной причиной выхода детали из строя.

3. Обозначение переменных резисторов на схемах.

На принципиальных схемах переменные резисторы обозначаются также как и постоянные, только к основному символу добавляется стрелка, направленная в середину корпуса. Стрелка обозначает регулирование и одновременно указывает, что это средний вывод.

Иногда возникают ситуации, когда к переменному резистору предъявляются требования надежности и длительности эксплуатации. В этом случае плавное регулирование заменяют ступенчатым, а переменный резистор строят на базе переключателя с несколькими положениями. К контактам переключателя подключают резисторы постоянного сопротивления, которые будут включаться в цепь при повороте ручки переключателя. И чтобы не загромождать схему изображением переключателя с набором резисторов, указывают только символ переменного резистора со знаком ступенчатого регулирования. А если есть необходимость, то дополнительно указывают и число ступеней.

Для регулирования громкости и тембра, уровня записи в звуковоспроизводящей стереофонической аппаратуре, для регулирования частоты в генераторах сигналов и т.д. применяются сдвоенные потенциометры, сопротивления которых изменяется одновременно при повороте общей оси (движка). На схемах символы входящих в них резисторов располагают как можно ближе друг к другу, а механическую связь, обеспечивающую одновременное перемещение движков, показывают либо двумя сплошными линиями, либо одной пунктирной линией.

Принадлежность резисторов к одному сдвоенному блоку указывается согласно их позиционному обозначению в электрической схеме, где R1.1 является первым по схеме резистором сдвоенного переменного резистора R1, а R1.2 — вторым. Если же символы резисторов окажутся на большом удалении друг от друга, то механическую связь обозначают отрезками пунктирной линии.

Промышленностью выпускаются сдвоенные переменные резисторы, у которых каждым резистором можно управлять отдельно, потому что ось одного проходит внутри трубчатой оси другого. У таких резисторов механическая связь, обеспечивающая одновременное перемещение, отсутствует, поэтому на схемах ее не показывают, а принадлежность к сдвоенному резистору указывают согласно позиционному обозначению в электрической схеме.

В переносной бытовой аудиоаппаратуре, например, в приемниках, плеерах и т.д., часто используют переменные резисторы со встроенным выключателем, контакты которого задействуют для подачи питания в схему устройства. У таких резисторов переключающий механизм совмещен с осью (ручкой) переменного резистора и при достижении ручкой крайнего положения воздействует на контакты.

Как правило, на схемах контакты включателя располагают возле источника питания в разрыв питающего провода, а связь выключателя с резистором обозначают пунктирной линией и точкой, которую располагают у одной из сторон прямоугольника. При этом имеется в виду, что контакты замыкаются при движении от точки, а размыкаются при движении к ней.

4. Подстроечные резисторы.

Подстроечные резисторы являются разновидностью переменных и служат для разовой и точной настройки радиоэлектронной аппаратуры в процессе ее монтажа, наладки или ремонта. В качестве подстроечных используют как переменные резисторы обычного типа с линейной функциональной характеристикой, ось которых выполнена «под шлиц» и снабжена стопорным устройством, так и резисторы специальной конструкции с повышенной точностью установки величины сопротивления.

В основной своей массе подстроечные резисторы специальной конструкции изготавливают прямоугольной формы с плоским или кольцевым резистивным элементом. Резисторы с плоским резистивным элементом (а) имеют поступательное перемещение контактной щетки, осуществляемое микрометрическим винтом. У резисторов с кольцевым резистивным элементом (б) перемещение контактной щетки осуществляется червячной передачей.

При больших нагрузках используются открытые цилиндрические конструкции резисторов, например, ПЭВР.

На принципиальных схемах подстроечные резисторы обозначаются также как и переменные, только вместо знака регулирования используется знак подстроечного регулирования.

5. Включение переменных резисторов в электрическую цепь.

В электрических схемах переменные резисторы могут применяться в качестве реостата (регулируемого резистора) или в качестве потенциометра (делителя напряжения). Если в электрической цепи необходимо регулировать ток, то резистор включают реостатом, если напряжение, то включают потенциометром.

При включении резистора реостатом задействуют средний и один крайний вывод. Однако такое включение не всегда предпочтительно, так как в процессе регулирования возможна случайная потеря средним выводом контакта с резистивным элементом, что повлечет за собой нежелательный разрыв электрической цепи и, как следствие, возможный выход из строя детали или электронного устройства в целом.

Чтобы исключить случайный разрыв цепи свободный вывод резистивного элемента соединяют с подвижным контактом, чтобы при нарушении контакта электрическая цепь всегда оставалась замкнута.

На практике включение реостатом применяют тогда, когда хотят переменный резистор использовать в качестве добавочного или токоограничивающего сопротивления.

При включении резистора потенциометром задействуются все три вывода, что позволяет его использовать делителем напряжения. Возьмем, к примеру, переменный резистор R1 с таким номинальным сопротивлением, которое будет гасить практически все напряжение источника питания, приходящее на лампу HL1. Когда ручка резистора выкручена в крайнее верхнее по схеме положение, то сопротивление резистора между верхним и средним выводами минимально и все напряжение источника питания поступает на лампу, и она светится полным накалом.

По мере перемещения ручки резистора вниз сопротивление между верхним и средним выводом будет увеличиваться, а напряжение на лампе постепенно уменьшаться, отчего она станет светить не в полный накал. А когда сопротивление резистора достигнет максимального значения, напряжение на лампе упадет практически до нуля, и она погаснет. Именно по такому принципу происходит регулирование громкости в звуковоспроизводящей аппаратуре.

Эту же схему делителя напряжения можно изобразить немного по-другому, где переменный резистор заменяется двумя постоянными R1 и R2.

Ну вот, в принципе и все, что хотел сказать о резисторах переменного сопротивления. В заключительной части рассмотрим особый тип резисторов, сопротивление которых изменяется под воздействием внешних электрических и неэлектрических факторов — нелинейные резисторы.
Удачи!

Литература:
В. А. Волгов — «Детали и узлы радиоэлектронной аппаратуры», 1977 г.
В. В. Фролов — «Язык радиосхем», 1988 г.
М. А. Згут — «Условные обозначения и радиосхемы», 1964 г.

Маркировка резисторов — radiohlam.ru

1. Маркировка буквенно-цифровая.

При такой маркировке буква указывает на десятичную запятую и обозначение (К — килоомы, М — мегаомы, R — омы), а цифры — на значение сопротивления. Для сопротивлений меньше 1 КОм буква может отсутствовать. Примеры:

3К6 = 3,6 КОм , М68 = 0,68 МОм = 680 КОм , 820 = 820 Ом , 200 = 200 Ом , 4R7 = 4,7 Ом

2. Планарные резисторы.

Планарные резисторы маркируются в зависимости от типоразмера и допуска:

Резисторы типоразмера 0402 не маркируются.

Резисторы с допуском 2%, 5%, 10% всех типоразмеров маркируются тремя цифрами, первые две из которых определяют мантиссу, а последняя — показатель степени по основанию 10, для определения номинала резистора в Омах. Для обозначения десятичной точки может использоваться буква R.

Пример:

маркировка «203» = 20*103 = 20 кОм

Резисторы с допуском 1%, типоразмеров от 0805 и выше маркируются четырьмя цифрами, первые 3 из которых определяют мантиссу, а последняя — показатель степени по основанию 10, для определения номинала резистора в Омах. Для обозначения десятичной точки также может использоваться буква R.

Резисторы с допуском 1%, типоразмера 0603 маркируются двумя цифрами и буквой. Цифры определяют мантиссу, в соответствии с приведенной ниже таблицей, а буква определяет показатель степени по основанию 10, для определения номинала резистора в Омах, в соответствии с этой же таблицей. Например:

18B = / коду 18 соответствует мантисса 150, букве B — степень 101, получаем/ = 150*101=1500 Ом = 1,5 кОм

код значение код значение код значение код значение код значение код значение буква степень
01 100 17 147 33 215 49 316 65 464 81 681 S 10-2
02 102 18 150 34 221 50 324 66 475 82 698 R 10-1
03 105 19 154 35 226 51 332 67 487 83 715 A 100
04 107 20 158 36 232 52 340 68 499 84 732 B 101
05 110 21 162 37 237 53 348 69 511 85 750 C 102
06 113 22 165 38 243 54 357 70 523 86 768 D 103
07 115 23 169 39 249 55 365 71 536 87 787 E 104
08 118 24 174 40 255 56 374 72 549 88 806 F 105
09 121 25 178 41 261 57 383 73 562 89 825    
10 124 26 182 42 267 58 392 74 576 90 845    
11 127 27 187 43 274 59 402 75 590 91 866    
12 130 28 191 44 280 60 412 76 604 92 887    
13 133 29 196 45 287 61 422 77 619 93 909    
14 137 30 200 46 294 62 432 78 634 94 931    
15 140 31 205 47 301 63 442 79 649 95 953    
16 143 32 210 48 309 64 453 80 665 96 976    

Существует также цветовая маркировка резисторов, но чем с ней мучиться — проще мультиметром померить.

Резистор — Википедия

Материал из Википедии — свободной энциклопедии

Шесть резисторов разных номиналов и точности, промаркированные с помощью цветовой схемы

Рези́стор или сопротивление (англ. resistor, от лат. resisto — сопротивляюсь) — пассивный элемент электрических цепей, обладающий определённым или переменным значением электрического сопротивления[1], предназначенный для линейного преобразования силы тока в напряжение и напряжения в силу тока, ограничения тока, поглощения электрической энергии и др.[2]. Весьма широко используемый компонент практически всех электрических и электронных устройств.

Схема замещения резистора чаще всего имеет вид параллельно соединенных сопротивления и емкости. Иногда на высоких частотах последовательно с этой цепью включают индуктивность. В схеме замещения сопротивление — основной параметр резистора, емкость и индуктивность — паразитные параметры.

Закон Ома для мгновенных значений тока и напряжения справедлив только в резистивных цепях.

Линейные и нелинейные резисторы

Все резисторы делятся на линейные и нелинейные.

Сопротивления линейных резисторов не зависят от приложенного напряжения или протекающего тока.

Сопротивления нелинейных резисторов изменяются в зависимости от значения приложенного напряжения или протекающего тока. Например, сопротивление осветительной лампы накаливания при отсутствии тока в 10-15 раз меньше, чем в режиме освещения. В линейных резистивных цепях форма тока совпадает с формой напряжения, вызвавшего этот ток.

Основные характеристики и параметры резисторов

  • Номинальное сопротивление — основной параметр.
  • Предельная рассеиваемая мощность.
  • Температурный коэффициент сопротивления.
  • Допустимое отклонение сопротивления от номинального значения (технологический разброс в процессе изготовления).
  • Предельное рабочее напряжение.
  • Избыточный шум.
  • Максимальная температура окружающей среды для номинальной мощности рассеивания.
  • Влагоустойчивость и термостойкость.
  • Коэффициент напряжения. Учитывает явление зависимости сопротивления некоторых видов резисторов от приложенного напряжения.

Определяется по формуле: KU=

Резистор, для чего он нужен, где применяется в автомобилях

Сегодня мы поговорим про резистор, как основной элемент любой электрической цепи автомобиля. Для чего он нужен, какие бывают резисторы, принципы их работы, какие подходят для той или иной электрической цепи.

Эти знания могут пригодиться при ремонте автомобиля.

Три основные составляющие электрического тока

Электроэнергия достаточно плотно вошла в нашу жизнь. Используется она практически везде, и в автотранспорте в том числе.

Данный вид энергии имеет три основных составляющих – напряжение, сила тока и сопротивление.

Что касается последнего параметра, то благодаря возможности создания дополнительного сопротивления в любой точке электрической цепи можно влиять на первые два параметра.

Основным элементом для создания сопротивления является резистор. Данный элемент относится к самым востребованным, и ни одна электрическая цепь без него не обходится, и заменить его чем-либо другим не получится. А в любом автомобиле электрических цепей предостаточно.

Назначение

Основное назначение резистора – создание сопротивления для возможности контроля и регулировки силы тока и сопротивления. По сути, он является своеобразным фильтром, позволяющим на выходе из него получить электроэнергию с определенными параметрами.

Обеспечивает он все это за счет удержания тока, деления и уменьшения напряжения.

Основным параметром резистора является сопротивление, которое он создает в цепи, и измеряется оно в Омах.

Резисторы в электрической цепи автомобиля.

Именно благодаря своей функции этот элемент так часто используется в автомобилях. Ниже мы рассмотрим одни из основных составляющих авто, где используется резистор и какую конкретно функцию он там выполняет.

Система охлаждения

Итак, нагрузочный резистор используется в системе охлаждения автомобиля, а точнее, – в цепи питания вентилятора радиатора.

Стоит отметить, что раньше этот электрический элемент не использовался в данной цепи, и все работало очень просто – при достижении определенной температуры охлаждающей жидкости, температурный датчик замыкал контакты цепи питания вентилятора, и он включался в работу.

Использование же резистора позволило сделать работу электродвигателя вентилятора двух — и даже трехрежимной.

Процесс подачи питания на вентилятор при этом несколько изменился. В систему добавились также реле, а за включение вентилятора у современных авто уже отвечает электронный блок управления.

То есть, электронный блок анализирует температурные показатели датчика, и подает сигнал на реле.

В зависимости от температуры реле направляет электроэнергию по определенной цепи. Если температура охлаждающей жидкости превышена незначительно, но уже требуется ее снижение, и сигнал от ЭБУ поступил, реле направляет электроэнергию через нагрузочный резистор, который создает сопротивление, и вентилятор начинает вращаться с небольшой скоростью.

Если температура будет дальше повышаться и достигнет критической точки, реле перенаправит электроэнергию по другой цепи – в обход резистора, напрямую к вентилятору, что обеспечит его работу на полную мощность, с большой скоростью вращения.

Это схема двухрежимной работы вентилятора, которая обеспечивается наличием нагрузочного резистора в цепи. Причем она упрощенная, чтобы было более понятно.

В авто с трехрежимной работой вентилятора, принцип остается тот же, но у него уже используется два резистора – один отвечает за малые обороты вращения вентилятора, второй – за средние.

Третий же режим – аварийный, при котором вентилятор вращается с максимальной скоростью, обеспечивается за счет подачи питания на него напрямую.

Система зажигания

Второй элемент автомобиля, где можно встретить резистор – это свечи зажигания. Но далеко не все свечи оснащены им.

В конструкции данных элементов он начал появляться не так давно, и задача его заключается в подавлении радиопомех.

Кстати, сейчас ведется очень много споров, нужен ли он в свечах. Ведь резистор создает сопротивление, которое в конечном итоге влияет и на искру. А ведь чем сильнее последняя, тем лучше воспламеняется горючая смесь.

Но на самом деле на качестве искры наличие резистора сказывается незначительно, а вот на свечу – только положительно. Очень сильный искровой заряд приводит к разрушению электродов, а сопротивление снижает напряжение искры.

Но не в этом его главное назначение. Мощный искровой разряд создает достаточно сильные помехи в радиочастотном диапазоне, которые могут повлиять на работу аудиосистемы автомобиля, мобильного телефона и любого другого оборудования, чувствительного к помехам данного типа.

Интересно, что необязательно устанавливать на автомобиль свечи зажигания, оснащенные резисторами.

Дело в том, что во многих моделях шумоподавляющий элемент устанавливается в наконечники проводов высокого напряжения. Также некоторые виды самих проводов обладают достаточно неплохим сопротивлением, которого хватает для подавления радиопомех.

Резистор также может быть установлен и в бегунок трамблера, причем встречается он там на многих моделях. Его задача – та же, что и в свече зажигания или наконечнике.

Важно понимать, что во всех перечисленных элементах зажигания одновременно использоваться резисторы не могут.

При последовательном подключении этих элементов все сопротивление, которое они создают, суммируется.

То есть, если резистор будет установлен в бегунке трамблера, наконечнике, свече, то они будут создавать настолько сильное сопротивление, что значительно послабят искровой заряд, и он уже не сможет качественно воспламенять смесь. А это приведет к перебоям в работе двигателя, потере мощности, увеличению расхода топлива.

Поэтому принимать решение, стоит ли устанавливать на автомобиль свечи зажигания с резистором необходимо, тщательно ознакомившись с техдокументацией, идущей к авто.

Если изготовитель указывает, что необходимо использование таких свечей, то ими лучше пользоваться.

Система обогрева салона

Еще один элемент в конструкции автомобиля, где используется резистор – система отопления салона, а точнее, – управление работой электродвигателя печки.

В любом автомобиле используется переменный резистор для изменения скорости работы электромотора обогревателя.

В нем при помощи вращающегося элемента обеспечивается возможность изменения значения сопротивления.

При включении электродвигателя на 1-ю скорость вращения, резистор обеспечивает максимальное сопротивление, при переключении на 2-ю – оно уменьшается, а при переходе на 3-ю скорость — практически полностью убирается.

 

Осветительные приборы

В последнее время резисторы стали использоваться вместе со светодиодными лампами. Данный вид ламп все больше начал применяться на авто.

Но далеко не все машины пока идут с завода, укомплектованные светодиодными осветительными приборами, а вот отдельно их купить и установить вместо штатных ламп накаливания тех же поворотников или стоп-сигналов вполне можно и многие так делают.

Но здесь возникает проблема, которая обязывает использовать резисторы.

Дело в том, что потребление электроэнергии этими лампами очень малое, из-за чего электронный блок расценивает работу светодиодов как неисправность штатной лампы.

Чтобы исправить ситуацию, используются резисторы, создающие нагрузку на линии проводки, запитывающей те осветительные приборы, в которых установлены светодиодные лампы.

В результате ЭБУ воспринимает сопротивление элемента, как работу лампы накаливания, поэтому кода ошибки не возникает.

Интересно, что при использовании таких обманок основное достоинство светодиодных ламп – малое потребление энергии, сводится к нулю, и у них остается только одно преимущество перед обычными лампами накаливания – длительный срок эксплуатации.

Виды резисторов, их особенности

Из описанных выше резисторов, которые используются в конструкции автомобиля, можно отметить два типа – нагрузочные, они же постоянные и переменные. В целом – это и есть два основных вида, которые имеют достаточно широкое применение в разных сферах.

Конечно, есть еще целый ряд всевозможных резисторов, которые отличаются по своим конструктивным особенностям. К примеру, терморезисторы, в которых сопротивление меняется от температуры, или фоторезисторы, меняющие свои параметры от освещенности. Но их мы пока касаться не будем, а рассмотрим лишь указанные два вида.

Постоянные резисторы называются так потому, что сопротивление, которое они создают – неизменное.

К примеру, если указано, что основной параметр данного элемента составляет 30 Ом, то сопротивление именно этого значения он обеспечивает и поменять его невозможно.

В переменных же резисторах сопротивление можно менять, притом вручную. Примером тому является уже упомянутое управление электродвигателем системы отопления.

К переменным резисторам относятся также подстроечные.

В таких резисторах тоже можно изменять параметр вручную, но регулировка его выполняется не в любой момент, как это делается в переменном, а лишь когда требуется перенастроить работу всей схемы, куда он включен, на длительный срок.

В автотранспорте подстроечные элементы не используются, хотя их часто можно встретить в бытовой технике.

Подбор резистора по сопротивлению

Большинство людей при выходе из строя какого-то электроприбора сдают его в ремонт или заменяют, хотя во многих случаях виноват именно резистор, тем более что он – один из самых распространенных элементов в любой схеме. Но находятся и такие, кто самостоятельно берется за ремонт.

И часто у любителей самостоятельного ремонта возникает вопрос, как правильно подобрать резистор для той или иной схемы.

Для этого возьмем простейшую схему, включающую источник питания и один потребитель.

Еще вначале было указано, что электроэнергия имеет три основные характеристики – напряжение, сила тока и сопротивление. Именно по этим параметрам и производятся все необходимые расчеты, используя для этого закон Ома.

Согласно этого закона, поскольку нам необходимо определение сопротивления, следует напряжение поделить на силу тока.

К примеру, наш источник питания обеспечивает цепь напряжением 12 В, с силой тока 0,02 А.

Чтобы определить сопротивление проводим математические расчеты – 12/0,02 и получаем сопротивление цепи 600 Ом.

Теперь непосредственно о том, как высчитать сопротивление резистора для использования в той или иной схеме. Для примера возьмем источник питания на 12 В и потребитель (лампу накаливания 3,5 В, 0,28 А).

Вначале рассчитывается сопротивление лампы – 3,5/0,28 = 12,5 Ом. Теперь узнаем, какая сила тока потечет через имеющуюся лампу – для этого берем напряжение источника питания и делим на сопротивление: 12/12,5 = 0,96 А, что в 3,5 раза превышает необходимую для работы потребителя силу тока, и если подключить потребитель, то нить лампы попросту перегорит.

Чтобы перегорания не произошло, необходимо сопротивление в цепи, равное 43,75 Ом (12,5 * 3,5). А поскольку лампа сама создает сопротивление, то в схему необходимо подключить добавочный резистор на 30 Ом. В ходе расчетов получаем – 12 В/ 42,5 Ом (сопротивление лампы и резистора) = 0,28 А.

То есть получили силу тока, необходимую для нормальной работы потребителя. В данном случае включенный в схему элемент выступил в качестве ограничителя силы тока.

Мощность рассеивания

Помимо сопротивления у резистора есть еще один немаловажный параметр – мощность рассеивания.

Любой резистор выступает своего рода ограничителем и благодаря своему сопротивлению проводит через себя только определенное напряжение и силу тока. При этом излишки, которые он не пропустил в себе не накапливает, а преобразует их в тепловую энергию и рассеивает.

Поэтому предусмотрены обозначения резисторов по мощности рассеивания.

Несоответствие данного элемента по мощности рассеивания приведет к его перегреву и разрушению. Мощность рассеивания измеряется в Ваттах.

Определить мощность рассеивания можно как по напряжению, проходящему через него, так и по силе тока.

Что касается напряжения, то формула для расчета выглядит так:

Где:

  1. Р – мощность;
  2. U – напряжение в цепи;
  3. R – сопротивление резистора.

Для расчета по силе тока формула имеет такой вид:

Где:

  1. P – мощность;
  2. I – сила тока, проходящая через резистор;
  3. R – сопротивление.

Важным условием при выборе резистора по данному параметру является то, что мощность рассеивания у него должна быть вдвое больше, чем полученная при расчетах.

К примеру, мы имеем силу тока в 0,1 А и сопротивление резистора в 100 Ом.

Исходя из формулы, получаем мощность рассеиваний в 1 Ватт (0,12 * 100 = 1), но для нормальной работы элемента выбираем резистор с мощностью рассеивания в 2 Ватт.

Отметим, что все изготавливаемые резисторы имеют строго определенное значение мощности рассеивания, что облегчает их выбор.

К тому же можно даже визуально определить, какая у резистора мощность рассеивания. Здесь все просто, чем больше по размерам элемент, тем выше значение.

Здесь мы рассмотрели резисторы – одни из самых распространенных элементов в любой электрической схеме автомобиля. Ведь они позволяют контролировать основные параметры электрической энергии благодаря воздействию всего лишь на одну из ее характеристик.

Напоследок отметим, что при расчетах необходимо следить за размерностью параметров. То есть, использовать только амперы, вольты и омы, и если указано, что сила тока составляет 20 мА, то следует перевести это значение в амперы, получив для расчетов значение в 0,02 А.

Резисторы Р1-32 | РЕОМ

Резисторы постоянные непроволочные высокоомные высоковольтные Р1-32.

Постоянные непроволочные высокоомные высоковольтные резисторы Р1-32 предназначены для работы в цепях постоянного, переменного тока. Вид климатического исполнения резисторов Р1-32 В.3 по ГОСТ 15150.

Габаритные размеры:







Тип резистора

L, мм

D, мм

l, мм

d, мм

Масса, не более, г

Р1-32-0,125

6,0-0,5

2,2-0,4

20+5

0,6±0,1

0,15

Р1-32-0,25

10,8-1,3

4,2-0,8

25+5

0,8±0,1

0,8

Р1-32-0,5

10,8-1,3

4,2-0,8

25+5

0,8±0,1

0,8

Р1-32-1

28-2,3

8,6-1,3

25+5

0,8±0,1

4,5

Р1-32-1М

20-2,3

8,6-1,3

25+5

0,8±0,1

3,5

Резисторы Р1-32 выпускаются в соответствии с ГОСТ 24238 и техническими условиями АБШК.434110.018 ТУ. Виды климатического исполнения В З по ГОСТ 15150-65.

Резисторы Р1-32 изготовляют в пожаробезопасном исполнении.

Пример условного обозначения резистора Р1-32:

Резистор Р1-32-0,125 — 5,6 мОм ±0,005% АБШК 434110.018 ТУ

Основные технические данные:


Верхняя частота диапазона отсутствия резонансных частот, Гц

600







Тип резистора

Номинальная мощность, Вт

Диапазон номинальных сопротивлений, мОм

Допускаемое отклонение сопротивлений, %

Предельное рабочее напряжение постоянного тока или ампл. значение переменного тока, В

Р1-32-0,125

0,125

1 – 1000

±5; ±10

200

Р1-32-0,25

0,25

1 – 3900

±5; ±10

1000

Р1-32-0,5

0,5

1 – 3900

±5; ±10

2500

Р1-32-1

1,0

0,47 – 2400

±5; ±10

10 000

Р1-32-1М

1,0

0,1 – 100

±5; ±10

10 000

Примечание. Резисторы Р1-32 с номинальным сопротивлением более 200 мОм поставляются при условии дополнительного согласования. Промежуточные значения номинального сопротивления резисторов Р1-32 соответствуют ряду Е12 и Е24 ГОСТ 28884. По согласованию возможно изготовление номинальных сопротивлений из других стандартных рядов.








Тип резистора

Предельное рабочее напряжение постоянного тока (В) эффективное значение переменного тока при атмосферном давлении, Па (мм рт. ст.)

Свыше 53333,33 (400)

От 53333,33 до 3599 (от 400 до 27)

От 3599,1 до 1333 (от 27 до 10)

От 1333 до 133,3

(от 10 до 1)

Р1-32-0,125

200

200

200

200

Р1-32-0,25

1000

1000

750

500

Р1-32-0,5

1000

1000

750

500

Р1-32-1

10 000

1500

1500

500

Р1-32-1М

10 000

1500

1500

500

 

Температурный коэффициент сопротивления резисторов в интервале рабочих температур:











Тип резистора

Диапазон номинальных сопротивлений, мОм

Значение ТКС, не более, ppm/°С

Р1-32-0,125

1 – 200

±1000

Свыше 200

±2000

Р1-32-0,25

1 – 100

±1000

Свыше 100

±2000

Р1-32-0,5

1 – 100

±1000

Свыше 100

±2000

Р1-32-1

0,47 – 200

±1000

Свыше 200

±2000

Р1-32-1М

0,1 – 10

±250

Правила хранени:

Резисторы следует хранить в складских условиях при температуре +5. ..+30 °С, при относительной влажности воздуха не более 85% и при отсутствии в воздухе агрессивных примесей.

Типовые характеристики:

Допустимая мощность рассеяния резисторов Р1-32 в интервале рабочих температур при нормальном давлении

1 — Р1-32; 2— Р1-32-1М.

Допустимая мощность рассеяния резисторов Р1-32 в интервале рабочих давлений от 1330000 до 294110 Па (от 10-3 до 2228 мм рт. ст.) в интервале рабочих температур.

Внешние воздействующие факторы:












Стой кость к воздействию механических факторов у резисторов Р1-32по группе испытаний М-6 ГОСТ 24238

Невоспламеняемость в диапазоне от 1,1 Рном до 5 Рном, но не более 4Uпред.


Атмосферное пониженное рабочее давление, Па (мм рт. ст.)


рабочее

133,32 (1)

предельное

1,2 104 (90)

Атмосферное повышенное рабочее давление, кПа (ата)

294 (3)

Повышенная температура среды, °С:


рабочая при номинальной мощности рассеяния резисторов с допускаемым отклонением сопротивления:


для резисторов Р1-32

55

70

для резисторов Р1-32-1М

70

максимально допустимая рабочая при снижении номинальной мощности рассеяния резисторов с допускаемым отклонением сопротивления:


для  резисторов Р1-32

125

для  резисторов Р1-32-1М

155

Пониженная рабочая и предельная температура среды, °С

минус 60

Повышенная относительная влажность при 35 °С, %

98

Степень жесткости по ГОСТ 20.57.406

VIII

Соляной (морской) туман.


Атмосферные конденсированные осадки (иней и роса).


Биологические факторы.


Плесневые грибы.


Надёжность резисторов:







Гарантийная наработка, ч


в предельно-допустимом режиме при нормальной электрической нагрузке

15000

в облегченном режиме

60000

Гарантийный срок хранения, лет

12

Изменение сопротивления, %, не более:


от изменения напряжения

+5–10

в течение гарантийной наработки:


Резисторы Р1-32

+15–30

Резисторы Р1-32-1М

10

Указания по применению и эксплуатации:

При применении, монтаже и эксплуатации резисторов Р1-32  руководствоваться Указаниями РД 11 0636 и приведенными ниже дополнениями.

Пайку выводов следует производить на расстоянии не менее 5 мм от корпуса резистора Р1-32.

При работе с резисторами Р1-32 допускается проводить до 3 изгибов выводов в противоположных направлениях, угол поворота 180±2 градуса.

Температура припоя не более 265°С. Температура жала паяльника не более 360°С.

Флюс должен состоять из 25%, по массе, канифоли (ГОСТ 9805) или этилового спирта (ГОСТ 18300) и диэтиламина гидрохлорида (ГОСТ 13279) в количестве 0,5% содержания канифоли (в пересчете на свободный хлор).

Время пайки не более 4 с.

Для резисторов Р1-32 допускается трех кратное воздействие групповой пайки без применения теплоотвода при температуре групповой пайки не более 265°С, не более 4 с., с интервалом между погружениями не менее 10 с.

Напряжение, которое может быть подано на резистор Р1-32, не должно превышать значения, рассчитанного исходя из номинальной (или допустимой для рабочих интервалов рабочих температур и давлений) мощности рассеяния и номинального сопротивления по формуле:

или значения предельного рабочего напряжения, в зависимости от того, какое значение меньше.

Для резисторов Р1-32-1М с номинальным сопротивлением 4,7 мОм и более допускается кратковремнное, не более 10 мин., приложение напряжения до 5000 В.

Допускается использование резисторов Р1-32 с номинальным сопротивлением более 10 мОм и предельным напряжением 1600 В и выше в условиях воздействия инея и росы только при защите всей поверхности (корпуса и выводов резисторов), обеспечивающей работоспособность резисторов Р1-32  в этих условиях.

Резистор — Карта знаний

  • Рези́стор (англ. resistor, от лат. resisto — сопротивляюсь) — пассивный элемент электрических цепей, обладающий определённым или переменным значением электрического сопротивления, предназначенный для линейного преобразования силы тока в напряжение и напряжения в силу тока, ограничения тока, поглощения электрической энергии и др.. Весьма широко используемый компонент практически всех электрических и электронных устройств.

    Схема замещения резистора чаще всего имеет вид параллельно соединенных сопротивления и емкости. Иногда на высоких частотах последовательно с этой цепью включают индуктивность. В схеме замещения сопротивление — основной параметр резистора, емкость и индуктивность — паразитные параметры.

    Закон Ома для мгновенных значений тока и напряжения справедлив только в резистивных цепях.

Источник: Википедия

Связанные понятия

Бандга́п (англ. bandgap, запрещённая зона) — стабильный транзисторный источник опорного напряжения (ИОН), величина которого определяется шириной запрещённой зоны используемого полупроводника. Для легированного монокристаллического кремния, имеющего при Т=0 К ширину запрещённой зоны Eg=1,143 эВ, напряжение VREF на выходе бандгапа обычно составляет от 1,18 до 1,25 В или кратно этой величине, а его предельное отклонение от нормы во всём диапазоне рабочих температур и токов составляет не более 3 %. Бандгапы…

Токовое зеркало — элемент транзисторной схемотехники, представляющий собой генератор тока, управляемый входным током, в котором входной и выходной токи имеют разное направление и один общий вывод источника питания, причем соотношение токов (коэффициент отражения) сохраняется постоянным в широком диапазоне и мало зависит от напряжения и температуры. Классическая схема токового зеркала содержит два транзистора одинаковой проводимости с резисторами в коллекторных цепях. Соотношение номиналов резисторов…

Яче́йка Блэ́кмера (англ. Blackmer cell) — схема электронного управляемого напряжением усилителя (УНУ, амплитудный модулятор) с экспоненциальной характеристикой управления, предложенная и доведённая до серийного выпуска Дэвидом Блэкмером в 1970—1973 годы. Четырёхтранзисторное ядро схемы образовано двумя встречно включёнными токовыми зеркалами на комплементарных биполярных транзисторах. Входной транзистор каждого из зеркал логарифмирует входной ток, а выходной транзистор антилогарифмирует сумму логарифма…

Вну́треннее сопротивле́ние двухполюсника — импеданс в эквивалентной схеме двухполюсника, состоящей из последовательно включённых генератора напряжения и импеданса (см. рисунок). Понятие применяется в теории цепей при замене реального источника идеальными элементами, то есть при переходе к эквивалентной схеме.

Упоминания в литературе

Значение остальных коэффициентов аналогично приведенным для выражения (1.7), только их значения должны соответствовать параметрам магнитопровода трансформатора TV2. Величина резистора Rос влияет на значение напряжения U1 обмотки W1 переключающего трансформатора TV2, поэтому изменением номинала резистора Rос в небольших пределах можно корректировать рабочую частоту преобразователя. Номинал резистора Rос определяется из следующего соотношения:

При отсутствии входного сигнала через транзистор VТ1 протекает ток стока, называемый током покоя. Этот ток обеспечивает формирование на резисторе R4 определенной разности потенциалов, то есть на верхнем по схеме выводе этого резистора будет положительное напряжение небольшой величины. Между затвором и шиной корпуса, имеющей нулевой потенциал, включен резистор R2, общее сопротивление которого несоизмеримо больше сопротивления резистора R4. В результате на затворе транзистора VТ1 формируется потенциал, который по сравнению с малым положительным потенциалом истока будет более отрицательным. Это небольшое отрицательное напряжение на затворе обеспечивает частичное закрытие транзистора, при этом устанавливается меньшая величина тока стока. Таким образом, величина тока покоя транзистора VТ1 зависит от сопротивления резистора, включенного в его цепь истока, то есть в данном случае от сопротивления резистора R4. Чем больше величина сопротивления резистора R4, тем большее отрицательное напряжение смещения подается на затвор транзистора VТ1. Поэтому изменением сопротивления резистора R4 подбирается такое напряжение смещения, при котором обеспечивается работа транзистора на линейном участке характеристики.

Резистор R1 подключен к источнику опорного напряжения микросхемы TL494 с уровнем +5 В. Нижний по схеме вывод резистора R2 через резистор R3 соединен с цепью -12 В и через диод D1 – с цепью -5 В. Номиналы сопротивлений резисторов R1 и R2 равны, поэтому напряжение на базе транзистора Q1 будет имеет небольшое отрицательное значение. Эмиттер этого транзистора соединен с общим проводом, и, следовательно, переход база-эмиттер находится под напряжением обратного смещения. Транзистор закрыт, напряжение на коллекторе Q1 имеет высокий уровень. Поддерживание напряжения на базе, закрывающего транзистор Q1, возможно только в том случае, когда выдерживается расчетное соотношение напряжений -5 В и -12 В.

Радиолюбительский калькулятор, позволяющий быстро сделать большинство нужных расчетов: подобрать номиналы резисторов или конденсаторов (до 10 для параллельного и последовательного соединения), определить время работы аккумулятора, рассчитать коэффициент усиления и силу тока транзистора, емкостное сопротивление в цепи переменного тока. Вычисления делаются автоматически (с возможностью отключения) при вводе номиналов.

ДЕЛИ́ТЕЛЬ НАПРЯЖ?НИЯ, электротехническое устройство, позволяющее снимать (использовать) только часть имеющегося постоянного или переменного напряжения посредством элементов электрической цепи, состоящей из резисторов, конденсаторов или катушек индуктивности. При низких напряжениях в качестве делителя часто применяют переменные резисторы (потенциометры). В цепях переменного тока пользуются также ёмкостными или индуктивными делителями. В цепях высокого напряжения на переменном токе применяют ёмкостные делители напряжения, а на постоянном токе – резистивные. Делители напряжения используют в радиотехнике, электронике, вычислительной и измерительной технике и др.

Добавочный резистор 3 состоит из спирали, керамических гнезд и двух шин, подсоединен к зажимам ВК и ВКБ. Добавочный резистор улучшает работу катушки зажигания при больших числах оборотов коленчатого вала двигателя, облегчает пуск двигателя стартером, предохраняет катушку зажигания от перегрева при малой частоте вращения коленчатого вала..В этом случае контакты прерывателя остаются замкнутыми сравнительно длительное время, в течение которого сила тока в первичной цепи возрастает и успевает достигнуть максимальной величины, что приводит к возрастанию сопротивления резистора и его нагреву. При работе на большой частоте вращения коленчатого вала, время замкнутого состояния уменьшается, сила тока в первичной обмотке не успевает возрасти до предельного значения, нагрев резистора и сопротивление уменьшаются. Напряжение вторичного тока остается достаточно высоким.

Микросхема, исполненная на пленке, напоминает слоеный пирог. На основание схемы – германиевую или кремниевую пластину толщиной не более 0,5 мм – наносят, слой за слоем, различные материалы: алюминий играет роль проводника, нихром – сопротивления, окись кремния – диэлектрика. При этом каждый слой получает рисунок от фотошаблона, созданного на этапе схемотехнического проектирования. В результате образуются компоненты ИС – участки, эквивалентные по своим свойствам транзисторам, конденсаторам и резисторам.

Чтобы исправить такое повреждение, нужно иметь аналогичные по параметрам резисторы и конденсаторы. Однако беда в том, что многие производители просто не маркируют такие детали, так как они слишком малы. Итак, в большинстве случаев, чтобы устранить такую неисправность, нужно выпаять необходимые детали из нерабочей материнской платы, аналогичной вашей.

Чтобы исправить такое повреждение, нужно иметь аналогичные по параметрам резисторы и конденсаторы. Однако беда в том, что многие производители просто не маркируют такие детали, так как они слишком малы. Поэтому в большинстве случаев, чтобы устранить такую неисправность, нужно выпаять необходимые детали из нерабочей материнской платы, такой же, как у вас.

Связанные понятия (продолжение)

Исто́чник, или генера́тор, опо́рного напряже́ния (ИОН) — базовый электронный узел, поддерживающий на своём выходе высокостабильное постоянное электрическое напряжение. ИОН применяются для задания величины выходного напряжения стабилизированных источников электропитания, шкал цифро-аналоговых и аналого-цифровых преобразователей, режимов работы аналоговых и цифровых интегральных схем и систем, и как эталоны напряжения в составе измерительных приборов. Точности измерения, преобразования и стабильность…

Потенцио́метр (от лат. potentia — «сила» и греч. μετρεω — «измеряю») — измерительный прибор, предназначенный для определения напряжения путём сравнения двух, в общем случае, различных напряжений или ЭДС с помощью компенсационного метода. При известном одном из напряжений позволяет определять второе напряжение.

Мост Ше́ринга — электрическая схема, измерительный мост переменного тока, предназначенный для измерения электрической ёмкости и тангенса угла диэлектрических потерь в диэлектриках конденсаторов, также, в электрических кабелях.

Дио́д (от др.-греч. δις — два и -од — от окончания -од термина электрод; букв. «двухэлектродный»; корень -од происходит от др.-греч. ὁδός «путь») — электронный элемент, обладающий различной проводимостью в зависимости от направления электрического тока.

Коэффициент трансформации трансформатора — это величина, выражающая масштабирующую (преобразовательную) характеристику трансформатора относительно какого-нибудь параметра электрической цепи (напряжения, силы тока, сопротивления и т. д.).Для силовых трансформаторов ГОСТ 16110-82 определяет коэффициент трансформации как «отношение напряжений на зажимах двух обмоток в режиме холостого хода» и «принимается равным отношению чисел их витков»:п. 9.1.7.

Выпрями́тель (электрического тока) — преобразователь электрической энергии; механическое, электровакуумное, полупроводниковое или другое устройство, предназначенное для преобразования входного электрического тока переменного направления в ток постоянного направления (то есть однонаправленный ток), в частном случае — в постоянный выходной электрический ток.

Яче́йка Ги́лберта (англ. Gilbert cell) в электронике — схема четырёхквадрантного аналогового умножителя, предложенная Барри Гилбертом в 1968 году. Она представляет собой ядро умножителя на трёх дифференциальных каскадах, дополненное диодными преобразователями входных напряжений — в токи (V1, V2 на схемах). Ячейка Гилберта, в модифицированной бета-зависимой форме, выполняет функцию смесителя или балансного модулятора в большинстве современных радиоприёмников и сотовых телефонов.

Принцип транслинейности (англ. translinear principle, от англ. transconductance — крутизна передаточной характеристики) в анализе и проектировании аналоговых интегральных схем — правило (уравнение), определяющее соотношения токов, протекающих через активные элементы схемы (эмиттерные переходы биполярных транзисторов или каналы МДП-транзисторов). Сформулирован Барри Гилбертом в 1975 году. Принцип транслинейности — прямое следствие из второго закона Кирхгофа и формулы Шокли, описывающей вольт-амперную…

Трёхфазная система электроснабжения — частный случай многофазных систем электрических цепей переменного тока, в которых действуют созданные общим источником синусоидальные ЭДС одинаковой частоты, сдвинутые друг относительно друга во времени на определённый фазовый угол. В трёхфазной системе этот угол равен 2π/3 (120°).

Электромехани́ческий фильтр (ЭМФ) — это фильтр, обычно используемый вместо электронного фильтра радиочастот, основное назначение которого: пропускать колебания в определенной полосе частот и подавлять остальные. В фильтре используются механические колебания, аналогичные подаваемому электрическому сигналу (это один из типов аналоговых фильтров). На входе и на выходе фильтра стоят электромеханические преобразователи, которые преобразуют электрические колебания сигнала в механические колебания рабочего…

Тензорези́стор (от лат. tensus — напряжённый и лат. resisto — сопротивляюсь) — резистор, сопротивление которого изменяется в зависимости от его деформации. Тензорезисторы используются в тензометрии. С помощью тензорезисторов можно измерять деформации механически связанных с ними элементов. Тензорезистор является основной составной частью тензодатчиков, применяющихся для косвенного измерения силы, давления, веса, механических напряжений, крутящих моментов и пр.

Классы электронных усилителей и режимы работы активных усилительных приборов (ламп или транзисторов) традиционно обозначаются буквами латинского алфавита. Буквенные обозначения классов усиления могут дополнительно уточняться суффиксом, указывающим на режим согласования мощного каскада с источником сигнала (AB1, AB2 и т. п.) и с нагрузкой (F1, F2, F3). Устройства, совмещающие свойства двух «однобуквенных» классов, могут выделяться в особые классы, обозначаемые сочетанием двух букв (AB, BD, DE и устаревший…

Трёхфазный выпрямитель — устройство применяемое для получения постоянного тока из трёхфазного переменного тока системы Доливо-Добровольского.

Предусили́тель-корре́ктор, или усилитель-корректор (УК), или фо́нокорре́ктор — специализированный электронный усилитель тракта воспроизведения граммофонной записи, восстанавливающий исходный спектр записанного на пластинке звукового сигнала и усиливающий выходное напряжение головки звукоснимателя до типичного уровня линейного выхода — от 0,775 В (0 dBu) в бытовой аналоговой аппаратуре до 2 В (8 dBu) в цифровой и радиотрансляционной аппаратуре). Исторически звукозаписывающая промышленность использовала…

Подробнее: Фонокорректор

Полупроводнико́вый стабилитро́н, или диод Зенера — полупроводниковый диод, работающий при обратном смещении в режиме пробоя. До наступления пробоя через стабилитрон протекают незначительные токи утечки, а его сопротивление весьма высоко. При наступлении пробоя ток через стабилитрон резко возрастает, а его дифференциальное сопротивление падает до величины, составляющей для различных приборов от долей oма до сотен oм. Поэтому в режиме пробоя напряжение на стабилитроне поддерживается с заданной точностью…

Подробнее: Стабилитрон

Диодно-транзисторная логика (ДТЛ), англ. Diode–transistor logic (DTL) — технология построения цифровых схем на основе биполярных транзисторов, диодов и резисторов. Своё название технология получила благодаря реализации логических функций (например, 2И) с помощью диодных цепей, а усиления и инверсии сигнала — с помощью транзистора (для сравнения см. резисторно-транзисторная логика и транзисторно-транзисторная логика).

Измери́тельный мост (мост Уи́тстона, мо́стик Ви́тстона, англ. Wheatstone bridge) — электрическая схема или устройство для измерения электрического сопротивления. Предложен в 1833 году Самуэлем Хантером Кристи (англ. Samuel Hunter Christie) и в 1843 году усовершенствован Чарльзом Уитстоном (англ. Charles Wheatstone). Мост Уитстона относится к одинарным мостам в отличие от двойных мостов Томсона. Мост Уитстона — электрическое устройство, механическим аналогом которого являются аптекарские рычажные…

Одноперехо́дный транзи́стор (двухбазовый диод, ОПТ) — полупроводниковый прибор с тремя электродами и одним p-n переходом. Однопереходный транзистор принадлежит к семейству полупроводниковых приборов с вольт-амперной характеристикой, имеющей участок с отрицательным дифференциальным сопротивлением.

Це́лостность сигна́лов (англ. Signal Integrity) — наличие достаточных для безошибочной передачи качественных характеристик электрического сигнала.

Биполя́рный транзи́стор — трёхэлектродный полупроводниковый прибор, один из типов транзисторов. В полупроводниковой структуре сформированы два p-n-перехода, перенос заряда через которые осуществляется носителями двух полярностей — электронами и дырками. Именно поэтому прибор получил название «биполярный» (от англ. bipolar), в отличие от полевого (униполярного) транзистора.

Гиратор (англ. gyrator, от греч. γύρος — круг) — электрическая цепь, которая осуществляет преобразование импеданса. Другими словами, эта схема заставляет ёмкостные цепи проявлять индуктивные свойства, полосовой фильтр будет вести себя как режекторный фильтр и т. п.

Интегра́тор, блок интегри́рования — техническое устройство, выходной сигнал (выходная величина, выходной параметр) которого пропорционален интегралу, обычно по времени, от входного сигнала.

Коэффициент стоячей волны (КСВ, от англ. standing wave ratio, SWR) — отношение наибольшего значения амплитуды напряжённости электрического или магнитного поля стоячей волны в линии передачи к наименьшему.

Конденса́тор (от лат. condensare — «уплотнять», «сгущать» или от лат. condensatio — «накопление») — двухполюсник с постоянным или переменным значением ёмкости и малой проводимостью; устройство для накопления заряда и энергии электрического поля.

И́мпульсный стабилиза́тор напряже́ния (ключево́й стабилизатор напряжения, используются также названия импульсный преобразователь, импульсный источник питания) — стабилизатор напряжения, в котором регулирующий элемент (ключ) работает в импульсном режиме, то есть регулирующий элемент периодически открывается и закрывается.

Омме́тр (Ом + др.-греч. μετρεω «измеряю») — измерительный прибор непосредственного отсчёта для определения электрических активных (омических) сопротивлений. Обычно измерение производится по постоянному току, однако, в некоторых электронных омметрах возможно использование переменного тока. Разновидности омметров: мегаомметры, гигаомметры, тераомметры, миллиомметры, микроомметры, различающиеся диапазонами измеряемых сопротивлений.

При включении биполярного транзистора по схеме с общим эмиттером (ОЭ) входной сигнал подаётся на базу относительно эмиттера, а выходной сигнал снимается с коллектора относительно эмиттера. При этом выходной сигнал инвертируется относительно входного (для гармонического сигнала фаза выходного сигнала отличается от входного на 180°). Данное включение транзистора позволяет получить наибольшее усиление по мощности, потому что усиливается и ток, и напряжение.

Подробнее: Каскад с общим эмиттером

Трансформа́тор (от лат. transformare — «превращать, преобразовывать») — статическое электромагнитное устройство, имеющее две или более индуктивно связанные обмотки на каком-либо магнитопроводе и предназначенное для преобразования посредством электромагнитной индукции одной или нескольких систем (напряжений) переменного тока в одну или несколько других систем (напряжений), без изменения частоты.

Электри́ческий импеда́нс (ко́мплексное электри́ческое сопротивле́ние) (англ. impedance от лат. impedio «препятствовать») — комплексное сопротивление между двумя узлами цепи или двухполюсника для гармонического сигнала.

Измеритель ёмкости — это прибор для измерения электрической ёмкости, в основном применяется для измерения ёмкости дискретных конденсаторов. В зависимости от сложности измерительного прибора он может измерять только ёмкость или же измерять ряд других параметров, таких как утечки, эквивалентное последовательное сопротивление (ЭПС) и индуктивность. При измерениях, в большинстве случаев, конденсатор должен быть отключён от электрической цепи, ЭПС обычно измеряется не отключая от цепи.

Аттенюа́тор (фр. attenuer — смягчить, ослабить) — устройство для плавного, ступенчатого или фиксированного понижения интенсивности электрических или электромагнитных колебаний, как средство измерений является мерой ослабления электромагнитного сигнала, но также его можно рассматривать и как измерительный преобразователь. ГОСТ 28324-89 определяет аттенюатор как элемент для снижения уровня сигналов, обеспечивающий фиксированное или регулируемое затухание.

Стаби́стор (ранее нормистор) — полупроводниковый диод, в котором для стабилизации напряжения используется прямая ветвь вольт-амперной характеристики (то есть в области прямого смещения напряжение на стабисторе слабо зависит от тока). Отличительной особенностью стабисторов по сравнению со стабилитронами является меньшее напряжение стабилизации, которое составляет примерно 0,7 В. Последовательное соединение двух или трёх стабисторов даёт возможность получить удвоенное или утроенное значение напряжения…

Блок ограничителя тока — практика в электрических или электронных схемах, устанавливающая верхний предел тока, который может быть доставлен на нагрузку, с целью защиты цепи, генерирующей или передающей ток, от вредного воздействия короткого замыкания или аналогичной проблемы.

Система относительных единиц (англ. per-unit system) — способ расчета параметров в системах передачи электроэнергии, при котором значения системных величин (напряжений, токов, сопротивлений, мощностей и т. п.) выражаются как множители определенной базовой величины, принятой за единицу. Это упрощает вычисления, так как величины, выраженные в относительных единицах, не зависят от уровня напряжения. Так, для устройств (например, трансформаторов) одного типа, импеданс, падение напряжения и потери мощности…

Составно́й транзи́стор — электрическое соединение двух (или более) биполярных транзисторов, полевых транзисторов или IGBT-транзисторов, с целью улучшения их электрических характеристик. К этим схемам относят так называемую пару Дарлингтона, пару Шиклаи, каскодную схему включения транзисторов, схему так называемого токового зеркала и др.

Стабилитрон со скрытой структурой (ССС, англ. buried zener) — интегральный кремниевый стабилитрон в котором, в отличие от обычных стабилитронов, под p-n-переходом создана скрытая область (островок) с высокой концентрацией акцепторных примесей. Благодаря тому, что ток пробоя такого стабилитрона концентрируется не в приповерхностных, а в скрытых слоях, его характеристики стабильны и предсказуемы. Прецизионные интегральные источники опорного напряжения (ИОН) на ССС — наиболее точные и стабильные из…

Делитель мощности — общее название группы многополюсников СВЧ, осуществляющих разделение потока мощности электрического колебания, поступающего на вход (входной порт, входное плечо), между несколькими выходами (портами, плечами) и (или) объединяющего такие потоки мощности с нескольких входов в одном выходе.

Длинная линия — модель линии передачи, продольный размер (длина) которой превышает длину волны, распространяющейся в ней (либо сравнима с длиной волны), а поперечные размеры (например, расстояние между проводниками, образующими линию) значительно меньше длины волны.

Диод Шоттки — полупроводниковый диод с малым падением напряжения при прямом включении. Назван в честь немецкого физика Вальтера Шоттки. В специальной литературе часто используется более полное название — Диод с барьером Шоттки.

Исто́чник то́ка (в теории электрических цепей) — элемент, двухполюсник, сила тока через который не зависит от напряжения на его зажимах (полюсах). Используются также термины генератор тока и идеальный источник тока.

Фазовращатель (электротехника) — электрическое устройство в виде четырехполюсника, в котором обеспечивается постоянный заданный сдвиг фаз между переменными напряжениями на его входе и выходе.

«Мальчи́ш» — радиоконструктор, разработанный и производившийся опытно-экспериментальным школьным заводом «Чайка» c 1973 по начало 1990-х годов. В комплект набора входили корпус радиоприёмника, гетинаксовая или текстолитовая плата для навесного монтажа с отверстиями для столбиков из медной проволоки, набор радиоэлементов, инструкция по сборке.

Высокая частота | Резисторы фиксированные

  • Продукты

    Полупроводники

    Штамп и вафля

    Диоды и выпрямители

    Дискретные тиристоры

    IC — силовая и линейная

    МОП-транзисторы

    Оптоэлектроника

    Силовые модули

    Пассивные компоненты

    Magnetics

    Датчики

    Прочие компоненты

    Продукция на заказ

    Полупроводники

    Пассивные компоненты

  • Приложения
  • Ресурсы
  • Инструменты

Глоссарий электронных резисторных сетей

Технические термины:
«A»
«B»
«C»,
«D»,
«E»,
«F»,
«ГРАММ»,
«ЧАС»,
«Я»,
«J»,
«К»,
«L»,
«М»,
«Н»,
«О»,
«П»,
«Q»,
«Р»,
«S»,
«Т»,
«U»,
«V»,
«W»,
«ИКС»,
«Y»,
«Z»

Термины резистора:
‘A’, ‘B’, ‘C’, ‘D / E’, ‘F-L’, ‘M’, ‘N’, ‘O’, ‘P’, ‘R’ , ‘S’, ‘T’, ‘VZ’

Резисторные сети

Отдельные резисторы [Матрица резисторов]
Хотя ниже показан 16-контактный DIP, возможны и другие комплекты компонентов.Этот стиль упаковки [стиль соединения] используется, когда нет общей точки подключения для отдельных резисторов. Используйте таблицу внизу справа, чтобы определить возможные значения резистора R.

Индивидуальный массив резисторов

Отдельные резисторы, общее соединение
Матрица резисторов, показанная ниже, имеет 16-контактную схему DIP. Каждый из восьми отдельных резисторов имеет узел, который подключается только к одному выводу устройства, при этом резисторы не подключены к любому другому резистору в корпусе.
Обычное использование; привяжите контакт 16 к Vcc и используйте каждый резистор в качестве подтягивающего. Свяжите контакт 16 с землей и используйте каждый резистор в качестве оконечной нагрузки.

Сеть резисторов общего подключения

Сети общего подключения используются, когда многие резисторы одного номинала подключаются к одной и той же точке, обычно к узлу напряжения [Vcc или заземлению]. Эти резисторы в корпусе обычно всегда будут одного номинала.

Резисторная сеть, параллельное соединение [Thevenin]
Обычное применение; окончание шины.Обычно контакт 16 подключается к Vcc, а контакт 8 подключается к земле.

Терминал параллельного резистора

Сеть параллельного соединения будет одним из немногих сетевых пакетов, которые будут содержать два резистора разного номинала. Как показано на изображении пакета выше; Резистор R1 будет иметь одно значение, а резистор R2 — другое значение. Есть много различных комбинаций значений, которые относятся к стандартным схемам оконечной нагрузки шины.

См. Таблицу справа, чтобы увидеть стандартные значения для R1 и R2.Другие возможные общие значения не показаны. Также обратитесь к определению терминатора резистора, которое является частью раздела терминов резистора.

Литой 16-контактный DIP

Показанные выше сети производятся в изображенном DIP-корпусе; однако существует более общее определение стилей пакетов DIP.

Связанные компоненты ;
16-контактный DIP [вверху]
14-контактная схема сети DIP, двухрядный корпус.
20-контактная сетевая схема DIP, двухрядный корпус.

36-контактная сетевая схема BGA, шаровая сетка.
20-контактная схема сети LLCC, бессвинцовый держатель микросхемы.
16-контактная схема сети LLCC, бессвинцовый держатель микросхемы.
6-контактная сетевая схема LLCC, несущая панель с двумя безвыводными микросхемами.

Схема сети с шинными резисторами

, SIP, однопроводной блок. Схема сети с изолированным резистором
, SIP, однорядный корпус
Схема сети с двумя оконечными резисторами, SIP, одинарный линейный блок
Схема сети нестандартных резисторов, 6-контактный SIP

Dual Passive; Схема сети RC.

% PDF-1.4
%
133 0 объект
>
endobj

xref
133 123
0000000016 00000 н.
0000003500 00000 н.
0000003602 00000 н.
0000004377 00000 п.
0000004491 00000 н.
0000004603 00000 п.
0000004735 00000 н.
0000004786 00000 н.
0000005184 00000 п.
0000005596 00000 н.
0000005853 00000 п.
0000009862 00000 н.
0000009994 00000 н.
0000010376 00000 п.
0000010763 00000 п.
0000011324 00000 п.
0000011783 00000 п.
0000012167 00000 п.
0000012377 00000 п.
0000012746 00000 п.
0000013230 00000 п.
0000013628 00000 п.
0000013932 00000 п.
0000013959 00000 п.
0000014400 00000 п.
0000014586 00000 п.
0000014767 00000 п.
0000014879 00000 п.
0000015224 00000 п.
0000015551 00000 п.
0000015812 00000 п.
0000015953 00000 п.
0000016092 00000 п.
0000016591 00000 п.
0000016959 00000 п.
0000017228 00000 п.
0000021371 00000 п.
0000023467 00000 п.
0000024282 00000 п.
0000024847 00000 п.
0000025185 00000 п.
0000025318 00000 п.
0000025452 00000 п.
0000027393 00000 п.
0000030046 00000 п.
0000030254 00000 п.
0000030623 00000 п.
0000031107 00000 п.
0000031375 00000 п.
0000031496 00000 п.
0000033503 00000 п.
0000033815 00000 п.
0000034072 00000 п.
0000034329 00000 п.
0000034468 00000 п.
0000034702 00000 п.
0000038810 00000 п.
0000043051 00000 п.
0000043323 00000 п.
0000043898 00000 п.
0000045905 00000 п.
0000046229 00000 п.
0000046500 00000 п.
0000049307 00000 п.
0000054996 00000 п.
0000059292 00000 п.
0000059389 00000 п.
0000064087 00000 п.
0000064157 00000 п.
0000064245 00000 п.
0000068356 00000 п.
0000068627 00000 н.
0000095652 00000 п.
0000095987 00000 п.
0000096282 00000 п.
0000118079 00000 п.
0000121314 00000 н.
0000121410 00000 н.
0000121480 00000 н.
0000121650 00000 н.
0000121720 00000 н.
0000126049 00000 н.
0000126119 00000 н.
0000126262 00000 н.
0000152706 00000 н.
0000184151 00000 н.
0000205193 00000 н.
0000209170 00000 н.
0000209642 00000 н.
0000209669 00000 н.
0000210097 00000 н.
0000210167 00000 н.
0000210269 00000 н.
0000214238 00000 п.
0000214512 00000 н.
0000214905 00000 н.
0000214932 00000 н.
0000215463 00000 п.
0000215533 00000 н.
0000215673 00000 н.
0000245862 00000 н.
0000246127 00000 н.
0000246648 00000 н.
0000246675 00000 н.
0000247231 00000 н.
0000247258 00000 н.
0000247814 00000 н.
0000247841 00000 н.
0000248150 00000 н.
0000248177 00000 н.
0000248626 00000 н.
0000248710 00000 н.
0000249097 00000 н.
0000249509 00000 н.
0000249836 00000 н.
0000250181 00000 н.
0000250549 00000 н.
0000253131 00000 н.
0000253170 00000 н.
0000254385 00000 н.
0000254450 00000 н.
0000316143 00000 н.
0000002756 00000 н.
трейлер
] / Назад 747504 >>
startxref
0
%% EOF

255 0 объект
> поток
h ެ KLSQ
-PiL] B) Z ݹ @ EP * b4bbtFM + Hd! Hi5! 97sfw; s =

Резисторы — компоненты токена

Высоковольтные резисторы

Token имеют прочную и надежную конструкцию из стекла с керамической глазурью и имеют индивидуальную конструкцию — для удовлетворения требований экстремального энергопотребления в самых требовательных приложениях.Продукты расширяют линейку продуктов как для военных, так и для коммерческих целей.

Прецизионные резисторы

Token предназначены в первую очередь для точного оборудования и соответствуют директиве RoHS и не содержат свинца. Эти устройства могут иметь индивидуальную конструкцию и более жесткие допуски по запросу. Также возможно применение специальных конструкций, включая различные характеристики мощности и мощности в миллионных долях, адаптированные к требованиям сопротивления. Использует новейшую тонкопленочную технологию, позволяющую создавать наиболее экономичные конструкции с низким автономным температурным коэффициентом и допуском по сопротивлению.Token Passive Electronics предлагает сверхточные формовочные, сетевые, покрытые и мелкие резисторы с большей стабильностью, влагозащищенностью, низким TCR, компактными размерами, соответствующими стандартам MIL-R-10509, MIL-R-55182 и другим военным классам.

Резистор для измерения тока разряда (низкоомный), который обеспечивает сверхнизкое сопротивление и подходит для обнаружения цепей питания переменного / постоянного тока большой мощности. Все типы с низким омическим сопротивлением относятся к неиндуктивным и изготавливаются на заказ.

Token Passive Electronics предлагает резисторы MELF с большей стабильностью, влагозащищенностью, низким TCR, компактными размерами, соответствующими стандартам MIL-R-10509, MIL-R-55182 и другим военным классом.

TO-220, TO-247 Resistors (RMG) — это прецизионные силовые резистивные элементы, заключенные в корпус TO-220, TO-247. Эти устройства производятся мощностью 20 Вт, 30 Вт, 35 Вт, 50 Вт и 100 Вт.Резистивный элемент электрически изолирован от металлической планки крепления радиатора. При правильной установке корпус Token RMG ** TO220 / TO247 обеспечивает до 50/100 Вт постоянной мощности. Эти резисторы с очень низкой индуктивностью идеально подходят для многих промышленных применений: источники питания, регуляторы мощности и резисторы бросков тока / утечки.

Тонкопленочные чип-резисторы

(AR), (PR) изготавливаются путем вакуумного напыления резистивного сплава на обычно плоскую керамическую подложку.Фотолитографические или аналогичные методы используются для определения окончательной геометрии и соединительных следов. Тонкопленочная технология обеспечивает точное согласование и отслеживание в сети, а также низкий автономный температурный коэффициент и допуск сопротивления. Толстопленочный тип включает в себя импульсный выдерживающий чип (PWR), высоковольтные микросхемы (HVR), прецизионный (FCR), массив (RCA), сети (RCN) и токочувствительный чип-резистор (CS).

Токен с проволочной обмоткой силовые резисторы для электротехнической промышленности варьируются от большой емкости с металлической оболочкой, негорючих с фиксированной проволочной обмоткой, негорючей ленты с волновой формой, скользящего типа с проволочной обмоткой, коробчатого типа, пусковых устройств с проволочной обмоткой до негорючих плоских проволочных устройств.Token расширяет полную линейку как для военных, так и для коммерческих приложений.

Резисторы общего назначения

Token изготавливаются с использованием фиксированных линейных технологий, включая плавкие предохранители, защиту от скачков напряжения, проволочную обмотку, металлическую пленку, оксид металла, углеродную пленку, неиндуктивную проволочную обмотку, цементного типа и толстопленочного типа. Token также расширяет полную линейку как для военных, так и для коммерческих приложений.

Замечания по применению резисторов

MELF резисторы — Общая информация

Token теперь предлагает полный ассортимент продукции MELF, включая DIN-0411, DIN-0309, DIN-0207, DIN-0204 и DIN-0102.Эти высокостабильные MELF-резисторы с малым допуском имеют площадь основания, очень близкую к аналогичным чип-резисторам, но сохраняют свои допуски и обеспечивают более высокую стабильность в более широком диапазоне температур.

Информация о резисторах MELF — PDF

Силовые резисторы — Общая информация

Token предоставляет клеммные блоки, термовыключатели, предохранители, вентиляторы, распределительные коробки, экранированные или сплошные нижние пластины, заглушки для кабелепровода и требования, указанные заказчиком.
Для больших приложений используется сварная конструкция рамы, обеспечивающая прочную конструкцию для установки силового резистора как в помещении, так и на открытом воздухе.

Информация о силовых резисторах — PDF

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *