Реактивная и активная мощности: Реактивная мощность кратко и понятно: что такое, формулы

Содержание

Что такое активная и реактивная электроэнергия?

Расчет электрической энергии, используемой бытовым или промышленным электротехническим прибором, производится обычно с учетом полной мощности электрического тока, проходящего через измеряемую электрическую цепь. При этом выделяются два показателя, отражающие затраты полной мощности при обслуживании потребителя. Эти показатели называются активная и реактивная энергия. Полная мощность представляет собой сумму этих двух показателей. О том, что такое активная и реактивная электроэнергия и как проверить сумму начисленных оплат, попытаемся рассказать в этой статье.

Полная мощность

По сложившейся практике потребители оплачивают не полезную мощность, которая непосредственно используется в хозяйстве, а полную, которую отпускает предприятие-поставщик. Различают эти показатели по единицам измерения – полная мощность измеряется в вольт-амперах (ВА), а полезная – в киловаттах. Активная и реактивная электроэнергия используется всеми запитанными от сети электроприборами.

активная и реактивная электроэнергия

Активная электроэнергия

Активная составляющая полной мощности совершает полезную работу и преобразовывается в те виды энергии, которые нужны потребителю. У части бытовых и промышленных электроприборов в расчетах активная и полная мощность совпадают. Среди таких устройств – электроплиты, лампы накаливания, электропечи, обогреватели, утюги и гладильные прессы и прочее.

Если в паспорте указана активная мощность 1 кВт, то полная мощность такого прибора будет составлять 1 кВА.

реактивная электроэнергия

Понятие реактивной электроэнергии

Этот вид электроэнергии присущ цепям, в составе которых имеются реактивные элементы. Реактивная электроэнергия — это часть полной поступаемой мощности, которая не расходуется на полезную работу.

В электроцепях постоянного тока понятие реактивной мощности отсутствует. В цепях переменного тока реактивная составляющая возникает только в том случае, когда присутствует индуктивная или емкостная нагрузка. В таком случае наблюдается несоответствие фазы тока с фазой напряжения. Данный сдвиг фаз между напряжением и током обозначается символом «φ».

При индуктивной нагрузке в цепи наблюдается отставание фазы, при емкостной – ее опережение. Поэтому потребителю приходит только часть полной мощности, а основные потери происходят из-за бесполезного нагревания устройств и приборов в процессе эксплуатации.

Потери мощности происходят из-за наличия в электрических устройствах индуктивных катушек и конденсаторов. Из-за них в цепи в течение некоторого времени происходит накопление электроэнергии. После этого запасенная энергия поступает обратно в цепь. К приборам, в составе потребляемой мощности которых имеется реактивная составляющая электроэнергии, относятся переносные электроинструменты, электродвигатели и различная бытовая техника. Эта величина рассчитывается с учетом особого коэффициента мощности, который обозначается как cos φ.

учет реактивной электроэнергии

Расчет реактивной электроэнергии

Коэффициент мощности лежит в пределах от 0,5 до 0,9; точное значение этого параметра можно узнать из паспорта электроприбора. Полная мощность должна быть определена как частное от деления активной мощности на коэффициент.

Например, если в паспорте электрической дрели указана мощность в 600 Вт и значение 0,6, тогда потребляемая устройством полная мощность будет равна 600/06, то есть 1000 ВА. При отсутствии паспортов для вычисления полной мощности прибора коэффициент можно брать равным 0,7.

Поскольку одной из основных задач действующих систем электроснабжения является доставка полезной мощности конечному потребителю, реактивные потери электроэнергии считаются негативным фактором, и возрастание этого показателя ставит под сомнение эффективность электроцепи в целом. Баланс активной и реактивной мощности в цепи может быть наглядно представлен в виде этого забавного рисунка:

реактивная составляющая электроэнергии

Значение коэффициента при учете потерь

Чем выше значение коэффициента мощности, тем меньше будут потери активной электроэнергии – а значит конечному потребителю потребляемая электрическая энергия обойдется немного дешевле. Для того чтобы повысить значение этого коэффициента, в электротехнике используются различные приемы компенсации нецелевых потерь электроэнергии. Компенсирующие устройства представляют собой генераторы опережающего тока, сглаживающие угол сдвига фаз между током и напряжением. Для этой же цели иногда используются батареи конденсаторов. Они подключаются параллельно к рабочей цепи и используются как синхронные компенсаторы.

реактивная электроэнергия

Расчет стоимости электроэнергии для частных клиентов

Для индивидуального пользования активная и реактивная электроэнергия в счетах не разделяется – в масштабах потребления доля реактивной энергии невелика. Поэтому частные клиенты при потреблении мощности до 63 А оплачивают один счет, в котором вся потребляемая электроэнергия считается активной. Дополнительные потери в цепи на реактивную электроэнергию отдельно не выделяются и не оплачиваются.

Учет реактивной электроэнергии для предприятий

Другое дело – предприятия и организации. В производственных помещениях и промышленных цехах установлено огромное число электрооборудования, и в общей поступаемой электроэнергии имеется значительная часть энергии реактивной, которая необходима для работы блоков питания и электродвигателей. Активная и реактивная электроэнергия, поставляемая предприятиям и организациям, нуждается в четком разделении и ином способе оплаты за нее. Основанием для регуляции отношений предприятия-поставщика электроэнергии и конечных потребителей в этом случае выступает типовой договор. Согласно правилам, установленным в этом документе, организации, потребляющие электроэнергию свыше 63 А, нуждаются в особом устройстве, предоставляющем показания реактивной энергии для учета и оплаты.
Сетевое предприятие устанавливает счетчик реактивной электроэнергии и начисляет оплату согласно его показаниям.

счетчик реактивной электроэнергии

Коэффициент реактивной энергии

Как говорилось ранее, активная и реактивная электроэнергия в счетах на оплату выделяются отдельными строками. Если соотношение объемов реактивной и потребленной электроэнергии не превышает установленной нормы, то плата за реактивную энергию не начисляется. Коэффициент соотношения бывает прописан по-разному, его среднее значение составляет 0,15. При превышении данного порогового значения предприятию-потребителю рекомендуют установить компенсаторные устройства.

Реактивная энергия в многоквартирных домах

Типичным потребителем электроэнергии является многоквартирный дом с главным предохранителем, потребляющий электроэнергию свыше 63 А. Если в таком доме имеются исключительно жилые помещения, плата за реактивную электроэнергию не взимается. Таким образом, жильцы многоквартирного дома видят в начислениях оплату только за полную электроэнергию, поставленную в дом предприятием-поставщиком. Та же норма касается жилищных кооперативов.

Частные случаи учета реактивной мощности

Бывают случаи, когда в многоэтажном здании имеются и коммерческие организации, и квартиры. Поставка электроэнергии в такие дома регулируется отдельными Актами. Например, разделением могут служить размеры полезной площади. Если в многоквартирном доме коммерческие организации занимают менее половины полезной площади, то оплата за реактивную энергию не начисляется. Если пороговый процент был превышен, то возникают обязательства оплаты за реактивную электроэнергию.

В ряде случаев жилые дома не освобождаются от оплаты за реактивную энергию. Например, если в доме установлены пункты подключения лифтов для квартир, начисление за использование реактивной электроэнергии происходит отдельно, лишь для этого оборудования. Владельцы квартир по-прежнему оплачивают лишь активную электроэнергию.

что такое активная и реактивная электроэнергия

Понимание сущности активной и реактивной энергии дает возможность грамотно рассчитать экономический эффект от установки различных компенсационных устройств, снижающих потери от реактивной нагрузки. Согласно статистике, такие устройства позволяют поднимать значение cos φ от 0.6 до 0.97. Тем самым автоматические компенсаторные устройства помогают сэкономить до трети предоставляемой потребителю электроэнергии. Значительное уменьшение тепловых потерь увеличивает срок эксплуатации приборов и механизмов на производственных участках и снижает себестоимость готовой продукции.

формула, как определить — Asutpp

Мощностные характеристики установки или сети являются основными для большинства известных электрических приборов. Активная мощность (проходящая, потребляема) характеризует часть полной мощности, которая передается за определенный период частоты переменного тока.

Определение

Активная и реактивная мощность может быть только у переменного тока, т. к. характеристики сети (силы тока и напряжения) у постоянного всегда равны. Единица измерений активной мощности  Ватт, в то время, как реактивной – реактивный вольтампер и килоВАР (кВАР). Стоит отметить, что как полная, так и активная характеристики могут измеряться в кВт и кВА, это зависит от параметров конкретного устройства и сети. В промышленных цепях чаще всего измеряется в килоВаттах.

Соотношение энергийСоотношение энергий

Электротехника используется активную составляющую в качестве измерения передачи энергии отдельными электрическими приборами. Рассмотрим, сколько мощности потребляют некоторые из них:

ПриборМощность бытовых приборов, Вт/час
Зарядное устройство2
Люминесцентная лампа ДРЛОт 50
Акустическая система30
Электрический чайник1500
Стиральной машины2500
Полуавтоматический инвертор3500
Мойка высокого давления3500

 

Исходя из всего, сказанного выше, активная мощность – это положительная характеристика конкретной электрической цепи, которая является одним из основных параметров для выбора электрических приборов и контроля расхода электричества.

Генерация активной составляющейГенерация активной составляющей

Обозначение реактивной составляющей:

Это  номинальная величина, которая характеризует нагрузки в электрических устройствах при помощи колебаний ЭМП и потери при работе прибора. Иными словами, передаваемая энергия переходит на определенный реактивный преобразователь (это конденсатор, диодный мост и т. д.) и проявляется только в том случае, если система включает в себя эту составляющую.

Расчет

Для выяснения показателя активной мощности, необходимо знать полную мощность, для её вычисления используется следующая формула:

S = U \ I, где U – это напряжение сети, а I – это сила тока сети.

Этот же расчет выполняется при вычислении уровня передачи энергии катушки при симметричном подключении. Схема имеет следующий вид:

Схема симметричной нагрузкиСхема симметричной нагрузки

Расчет активной мощности учитывает угол сдвига фаз или коэффициент (cos φ), тогда:

S = U * I * cos φ.

Очень важным фактором является то, что эта электрическая величина может быть как положительной, так и отрицательной. Это зависит от того, какие характеристики имеет cos φ. Если у синусоидального тока угол сдвига фаз находится в пределах от 0 до 90 градусов, то активная мощность положительная, если от 0 до -90 – то отрицательная. Правило действительно только для синхронного (синусоидального) тока (применяемого для работы асинхронного двигателя, станочного оборудования).

Также одной из характерных особенностей этой характеристики является то, что в трехфазной цепи (к примеру, трансформатора или генератора), на выходе активный показатель полностью вырабатывается.

Расчет трехфазной сетиРасчет трехфазной сети

Максимальная и активная обозначается P, реактивная мощность – Q.

Из-за того, что реактивная обуславливается движением и энергией магнитного поля, её формула (с учетом угла сдвига фаз) имеет следующий вид:

QL = ULI = I2xL

Для несинусоидального тока очень сложно подобрать стандартные параметры сети. Для определения нужных характеристик с целью вычисления активной и реактивной мощности используются различные измерительные устройства. Это вольтметр, амперметр и прочие. Исходя от уровня нагрузки, подбирается нужная формула.

Из-за того, что реактивная и активная характеристики связаны с полной мощностью, их соотношение (баланс) имеет следующий вид:

S = √P2 + Q2, и все это равняется U*I .

Но если ток проходит непосредственно по реактивному сопротивлению. То потерь в сети не возникает. Это обуславливает индуктивная индуктивная составляющая – С и сопротивление – L. Эти показатели рассчитываются по формулам:

Сопротивление индуктивности: xL = ωL = 2πfL,

Сопротивление емкости: хc = 1/(ωC) = 1/(2πfC).

Для определения соотношения активной и реактивной мощности используется специальный коэффициент. Это очень важный параметр, по которому можно определить, какая часть энергии используется не по назначению или «теряется» при работе устройства.

При наличии в сети активной реактивной составляющей обязательно должен рассчитываться коэффициент мощности. Эта величина не имеет единиц измерения, она характеризует конкретного потребителя тока, если электрическая система содержит реактивные элементы. С помощью этого показателя становится понятным, в каком направлении и как сдвигается энергия относительно напряжения сети. Для этого понадобится диаграмма треугольников напряжений:

Диаграмма треугольников напряженийДиаграмма треугольников напряжений

К примеру, при наличии конденсатора формула коэффициента имеет следующий вид:

cos φ = r/z = P/S

Для получения максимально точных результатов рекомендуется не округлять полученные данные.

Компенсация

Учитывая, что при резонансе токов реактивная мощность равняется 0:

Q = QL — QC = ULI – UCI

Для того чтобы улучшить качество работы определенного устройства применяются специальные приборы, минимизирующие воздействие потерь на сеть. В частности, это ИБП. В данном приборе не нуждаются электрические потребители со встроенным аккумулятором (к примеру, ноутбуки или портативные устройства), но для большинства остальных источник бесперебойного питания является необходимым.

При установке такого источника можно не только установить негативные последствия потерь, но и уменьшить траты на оплату электричества. Специалисты доказали, что в среднем, ИБП поможет экономить от 20 % до 50 %. Почему это происходит:

  1. Значительно уменьшается нагрузка силовых трансформаторов;
  2. Провода меньше нагреваются, это не только положительно влияет на их работу, но и повышает безопасность;
  3. У сигнальных и радиоустройств уменьшаются помехи;
  4. На порядок уменьшаются гармоники в электрической сети.

В некоторых случаях специалисты используют не полноценные ИБП, а специальные компенсирующие конденсаторы. Они подходят для бытового использования, доступны и продаются в каждом электротехническом магазине. Для расчета планируемой и полученной экономии можно использовать все вышеперечисленные формулы.

Что такое активная, реактивная и полная мощность нагрузки стабилизатора?


В отличии от вычисления мощности при постоянном токе, формулы для вычисления мощности в цепях переменного тока достаточно сложны. В общем случае электрическая мощность в этом случае имеет интегральные зависимости.


Для определения полной мощности нагрузки необходимо вычислить активную и реактивную мощность. Полная мощность определяется как векторное сложение этих величин.


Активная мощность — это полезная часть мощности, та часть, которая определяет прямое преобразования электрической энергии в другие необходимые виды энергии. Для каждого электрического прибора вид преобразования энергии свой: в электрической лампочке электроэнергия преобразуется в свет и тепло, в утюге электроэнергия преобразуется в тепло, в электродвигателе электроэнергия преобразуется в механическую энергию. Фактически, активная мощность определяет скорость полезного потребления энергии.


Реактивная мощность — мощность определяемая электромагнитными полями, образующимися в процессе работы приборов. Реактивная мощность, как правило, является «вредной» или «паразитной». Реактивная мощность определяется характером нагрузки. Для такого прибора как лампочка она равна нулю, в процессе горения лампы электромагнитные поля практически не образуются. В процессе работы электродвигателя реактивная мощность может достигать больших значений. Понятие реактивной мощности тесно связано с понятием «пусковые токи».


При выборе стабилизатора напряжения необходимо определять полную мощность потребителей. Самый точный способ — найти значение полной мощности прибора в его паспорте. Если такой возможности нет, то для определения полной мощности приборов с большими «пусковыми токами» принято использовать повышающий коэффициент «4».


Следует также учитывать, что номинальная мощность стабилизатора напряжения может указываться разными производителями стабилизаторов и ИБП в различных диапазонах входных параметров тока. Китайские производители часто завышают реальную мощность устройства в два и более раз.


Особое внимание при выборе подходящего стабилизатора напряжения или источника бесперебойного питания следует обратить на возможность использования стабилизатора при реактивной нагрузке. Часто производители указывают, что номинальная мощность стабилизатора или ИБП указана без учета реактивной нагрузки. В паспортных данных стабилизаторов и источников питания можно найти фразу «устройство не может использоваться для реактивной нагрузки».


Для работы с приборами, имеющими большую реактивную мощность мы рекомендуем использовать специальные стабилизаторы напряжения и ИБП компании «Бастион». Эти приборы характеризуются большой перегрузочной мощностью и хорошей защитой от помех в сети по нагрузке.


Подробные ответы вы можете найти в следующих статьях:



Сравнение реальных мощностей стабилизаторов напряжения разных марок


Сравнение стабилизаторов напряжения Ресанта, APC, Voltron, Калибри, Teplocom


Стабилизаторы напряжения для котлов отопления


Преимущества релейных стабилизаторов напряжения «Бастион»


Стабилизатор напряжения для холодильника


Стабилизаторы напряжения для насосов


Стабилизатор напряжения для кондиционера и сплит-системы

О природе реактивной энергии / Хабр

Вокруг реактивной энергии сложилось немало легенд, активно способствовала развитию околонаучного фольклора любовь нашего человека к халяве и разнообразным теориям глобального заговора.

В рунете можно найти множество success story о том как простой мужичок из глубинки годами эксплуатирует халявную реактивную энергию (которую бытовой счетчик электроэнергии не регистрирует) и живет себе, не зная бед. Так же можно найти заметки людей, призывающих бросить бесполезное занятие поиска источника халявы в халявной реактивной энергии. Для того чтобы окончательно раставить точки над ‘i’ в этом вопросе, я решил написать этот пост, не мудрствуя лукаво.

Как известно, потребляемая от источника переменного тока энергия складывается из двух составляющих:

  1. Активной энергии
  2. Реактивной энергии

1. Активная энергия — та часть потребляемой энергии, которая целиком и безвозвратно преобразуется приемником в другие виды энергии.

Пример: Протекая через резистор, ток совершает активную работу, что выражается в увеличении тепловой энергии резистора. Вне зависимости от фазы протекающего тока, резистор преобразует его энергию в тепловую. Резистору не важно в каком направлении течет по нему ток, важна лишь его величина: чем он больше, тем больше тепла высвободится на резисторе (количество выделенного тепла равно произведению квадрата тока и сопротивления резистора).

2. Реактивная энергия — та часть потребляемой энергии, которая в следующую четверть периода будет целиком отдана обратно источнику.

Пример: Представим себе, что к источнику переменного тока подключен конденсатор. Начальный заряд на обкладках конденсатора равен нулю, начальная фаза напряжения источника так же равна нулю. Одно полное колебание состоит из четырех четвертьпериодов:

  1. Напряжение источника растет от 0 до максимального мгновенного значения (при действующем значении U источника 230V оно равно 230 * 1,4142 = 325V) При этом конденсатор потребляет ток, необходимый для его полного заряда
  2. Напряжение источника стремительно уменьшается (движется к нулю), при этом, напряжение на заряженном конденсаторе оказывается выше чем на источнике, что вызывает течение тока в обратную сторону (ведь ток течет от большего потенциала к меньшему), то есть конденсатор разряжается, отдавая накопленную энергию обратно источнику!
  3. Для следующих двух четвертьпериодов вышеописанная история повторяется с тем лишь различием, что токи заряда и разряда емкости потекут в противоположных направлениях.

    В случае включения вместо конденсатора катушки индуктивности, суть процесса не изменится.

    В этом и состоит главный фокус реактивной энергии — в момент ‘прилива’ мы заполняем свои цистерны, в момент отлива же, мы сливаем их содержимое обратно. Как можно заметить из этой простой аналогии, мы просто туда-сюда переливаем жидкость (или ток в электроцепях). Если же мы соблазнимся слить хоть немного жидкости ‘налево’ (включить последовательно с реактивным конденсатором активный резистор), то мы станем брать ‘несколько больше’ чем возвращать, а это ‘несколько больше’ уже является активной энергией по определению (ведь мы эту часть не возвращаем обратно, не так ли?), за которую как известно, приходится платить.

    Или иной пример: предположим, что мы берем у кредитора некоторую сумму денег взаймы и сразу же возвращаем ему взятый только что кредит. Если мы отдадим ровно столько, сколько взяли (чистая реактивность) — мы придем к исходному состоянию и никто никому не будет ничего должен. В случае же, если мы потратим часть кредита на какую ни будь покупку и вернем то, что осталось от кредита после совершения покупки (добавим в цепь активную нагрузку и часть энергии уйдет из системы) — мы будем все еще должны. Эта потраченная часть является активной составляющей взятого нами кредита.

    Теперь у вас может возникнуть один весьма резонный вопрос — если все так просто, и для того чтобы энергия считалась реактивной, ее просто нужно полностью вернуть обратно источнику, почему предприятия вынуждены платить за потребляемую (и полностью возвращаемую) реактивную энергию?

    Все дело в том, что в случае чисто реактивной нагрузки, момент максимально потребляемого тока (реактивного) приходится на момент минимального значения напряжения, и наоборот, в момент максимума напряжения на клеммах нагрузки, протекающий через нее ток равен нулю.

    Протекающий реактивный ток греет питающие проводники — но это активные потери, вызванные протеканием реактивного тока по проводникам с ограниченной проводимостью, что эквивалентно последовательно включенным с реактивной нагрузкой активным резистором. Так же, поскольку в момент максимума реактивного тока напряжение на полюсах реактивного элемента переходит через ноль, активная мощность подводимая к нему в этот момент (произведение тока и напряжения) равна нулю. Вывод — реактивный ток вызывает нагрев проводов, не совершая при этом никакой полезной работы. Следует заметить, что эти потери так-же является активными и будут засчитываться бытовым счетчиком активной энергии.

    Большие предприятия сопсобны генерировать достаточно большие реактивные токи, которые отрицательно сказываются на функционировании энергосистемы. По этой причине, для них проводится учет как активной, так и реактивной составляющей потребленной энергии. Для уменьшения генерации реактивных токов (вызывающих вполне реальные активные потери), на предприятиях размещают установки компенсации реактивной мощности.

Реактивная мощность — это… Что такое Реактивная мощность?

Электри́ческая мо́щность — физическая величина, характеризующая скорость передачи или преобразования электрической энергии.

Мгновенная электрическая мощность

Мгновенная электрическая мощность P (t), выделяющаяся на элементе электрической цепи — произведение мгновенных значений напряжения U (t) и силы тока I (t) на этом элементе:

 P = I \cdot U

Если элемент цепи — резистор c электрическим сопротивлением R, то

 P = I^2 \cdot R = \frac{U^2}{R}

Мощность постоянного тока

Так как значения силы тока и напряжения постоянны и равны мгновенным значениям в любой момент времени, то среднюю мощность можно вычислить по формулам:

 P = I \cdot U = I^2 \cdot R = \frac{U^2}{R}

Мощность переменного тока

Активная мощность

Среднее за период Т значение мгновенной мощности называется активной мощностью: ~ P = \frac{1}{T} \int\limits_0^T p(t)dt . В цепях однофазного синусоидального тока P = U \cdot I \cdot cos \varphi , где U и I — действующие значения напряжения и тока, φ — угол сдвига фаз между ними. Для цепей несинусоидального тока электрическая мощность равна сумме соответствующих средних мощностей отдельных гармоник. Активная мощность характеризует скорость необратимого превращения электрической энергии в другие виды энергии (тепловую и электромагнитную). Активная мощность может быть также выражена через силу тока, напряжение и активную составляющую сопротивления цепи r или её проводимость g по формуле P = I^2 \cdot r =V^2 \cdot g. В любой электрической цепи как синусоидального, так и несинусоидального тока активная мощность всей цепи равна сумме активных мощностей отдельных частей цепи, для трёхфазных цепей электрическая мощность определяется как сумма мощностей отдельных фаз. С полной мощностью S активная связана соотношением P = S \cdot cos \varphi . Единица активной мощности — ватт (W, Вт). Для СВЧ электромагнитного сигнала, в линиях передачи, аналогом активной мощности является мощность, поглощаемая нагрузкой.

Реактивная мощность

Реактивная мощность — величина, характеризующая нагрузки, создаваемые в электротехнических устройствах колебаниями энергии электромагнитного поля в цепи переменного тока, равна произведению действующих значений напряжения U и тока I, умноженному на синус угла сдвига фаз φ между ними: Q = UI sin φ. Единица реактивной мощности — вольт-ампер реактивный (var, вар). Реактивная мощность связана с полной мощностью S и активной мощностью Р соотношением: ~ Q = \sqrt{S^2 - P^2} . Реактивная мощность в электрических сетях вызывает дополнительные активные потери (на покрытие которых расходуется энергия на электростанциях) и потери напряжения (ухудшающие условия регулирования напряжения). В некоторых электрических установках реактивная мощность может быть значительно больше активной. Это приводит к появлению больших реактивных токов и вызывает перегрузку источников тока. Для устранения перегрузок и повышения коэффициента мощности электрических установок осуществляется компенсация реактивной мощности. Для СВЧ электромагнитного сигнала, в линиях передачи, аналогом реактивной мощности является мощность, отраженная от нагрузки.

Необходимо отметить, что величина sinφ для значений φ от 0 до плюс 90 ° является положительной величиной. Величина sinφ для значений φ от 0 до минус 90 ° является отрицательной величиной. В соответствии с формулой Q = UI sinφ реактивная мощность может быть отрицательной величиной. Но отрицательное значение мощности нагрузки характеризует нагрузку как генератор энергии. Активное, индуктивное, емкостное сопротивление не могут быть источниками постоянной энергии. Модуль величины Q = UI sinφ приблизительно описывает реальные процессы преобразования энергии в магнитных полях индуктивностей и в электрических полях емкостей. Применение современных электрических измерительных преобразователей на микропроцессорной технике позволяет производить более точную оценку величины энергии возвращаемой от индуктивной и емкостной нагрузки в источник переменного напряжения. Измерительные преобразователи реактивной мощности, использующие формулу Q = UI sinφ, более просты и значительно дешевле измерительных преобразователей на микропроцессорной технике.

Полная мощность

Полная мощность — величина, равная произведению действующих значений периодического электрического тока в цепи I и напряжения U на её зажимах: S = U×I; связана с активной и реактивной мощностями соотношением: S = \sqrt{(P^2 + Q^2)}, где Р — активная мощность, Q — реактивная мощность (при индуктивной нагрузке Q > 0, а при ёмкостной Q < 0). Единица полной электрической мощности — вольт-ампер (VA, ВА).

Векторная зависимость между полной, активной и реактивной мощностью выражается формулой: \stackrel{\longrightarrow}{S}=\stackrel{\longrightarrow}{P}+\stackrel{\longrightarrow}{Q}

Измерения

Литература

  • Бессонов Л. А. — Теоретические основы электротехники: Электрические цепи — М.: Высш. школа, 1978

Ссылки

См. также

Wikimedia Foundation.
2010.

Что такое активная и реактивная электроэнергия?

Расчет электрической энергии, используемой бытовым или промышленным электротехническим прибором, производится обычно с учетом полной мощности электрического тока, проходящего через измеряемую электрическую цепь.

При этом выделяются два показателя, отражающие затраты полной мощности при обслуживании потребителя. Эти показатели называются активная и реактивная энергия. Полная мощность представляет собой сумму этих двух показателей.

Полная мощность.

По сложившейся практике потребители оплачивают не полезную мощность, которая непосредственно используется в хозяйстве, а полную, которую отпускает предприятие-поставщик. Различают эти показатели по единицам измерения – полная мощность измеряется в вольт-амперах (ВА), а полезная – в киловаттах. Активная и реактивная электроэнергия используется всеми запитанными от сети электроприборами.

Активная электроэнергия.

Активная составляющая полной мощности совершает полезную работу и преобразовывается в те виды энергии, которые нужны потребителю. У части бытовых и промышленных электроприборов в расчетах активная и полная мощность совпадают. Среди таких устройств – электроплиты, лампы накаливания, электропечи, обогреватели, утюги и гладильные прессы и прочее. Если в паспорте указана активная мощность 1 кВт, то полная мощность такого прибора будет составлять 1 кВА.

Понятие реактивной электроэнергии.

Этот вид электроэнергии присущ цепям, в составе которых имеются реактивные элементы. Реактивная электроэнергия — это часть полной поступаемой мощности, которая не расходуется на полезную работу. В электроцепях постоянного тока понятие реактивной мощности отсутствует. В цепях переменного тока реактивная составляющая возникает только в том случае, когда присутствует индуктивная или емкостная нагрузка. В таком случае наблюдается несоответствие фазы тока с фазой напряжения. Данный сдвиг фаз между напряжением и током обозначается символом «φ». При индуктивной нагрузке в цепи наблюдается отставание фазы, при емкостной – ее опережение. Поэтому потребителю приходит только часть полной мощности, а основные потери происходят из-за бесполезного нагревания устройств и приборов в процессе эксплуатации. Потери мощности происходят из-за наличия в электрических устройствах индуктивных катушек и конденсаторов. Из-за них в цепи в течение некоторого времени происходит накопление электроэнергии. После этого запасенная энергия поступает обратно в цепь. К приборам, в составе потребляемой мощности которых имеется реактивная составляющая электроэнергии, относятся переносные электроинструменты, электродвигатели и различная бытовая техника. Эта величина рассчитывается с учетом особого коэффициента мощности, который обозначается как cos φ.

Расчет реактивной электроэнергии.

Коэффициент мощности лежит в пределах от 0,5 до 0,9; точное значение этого параметра можно узнать из паспорта электроприбора. Полная мощность должна быть определена как частное от деления активной мощности на коэффициент. Например, если в паспорте электрической дрели указана мощность в 600 Вт и значение 0,6, тогда потребляемая устройством полная мощность будет равна 600/06, то есть 1000 ВА. При отсутствии паспортов для вычисления полной мощности прибора коэффициент можно брать равным 0,7. Поскольку одной из основных задач действующих систем электроснабжения является доставка полезной мощности конечному потребителю, реактивные потери электроэнергии считаются негативным фактором, и возрастание этого показателя ставит под сомнение эффективность электроцепи в целом.

Значение коэффициента при учете потерь.

Чем выше значение коэффициента мощности, тем меньше будут потери активной электроэнергии – а значит конечному потребителю потребляемая электрическая энергия обойдется немного дешевле. Для того чтобы повысить значение этого коэффициента, в электротехнике используются различные приемы компенсации нецелевых потерь электроэнергии. Компенсирующие устройства представляют собой генераторы опережающего тока, сглаживающие угол сдвига фаз между током и напряжением. Для этой же цели иногда используются батареи конденсаторов. Они подключаются параллельно к рабочей цепи и используются как синхронные компенсаторы.

Расчет стоимости электроэнергии для частных клиентов.

Для индивидуального пользования активная и реактивная электроэнергия в счетах не разделяется – в масштабах потребления доля реактивной энергии невелика. Поэтому частные клиенты при потреблении мощности до 63 А оплачивают один счет, в котором вся потребляемая электроэнергия считается активной. Дополнительные потери в цепи на реактивную электроэнергию отдельно не выделяются и не оплачиваются. Учет реактивной электроэнергии для предприятий Другое дело – предприятия и организации. В производственных помещениях и промышленных цехах установлено огромное число электрооборудования, и в общей поступаемой электроэнергии имеется значительная часть энергии реактивной, которая необходима для работы блоков питания и электродвигателей. Активная и реактивная электроэнергия, поставляемая предприятиям и организациям, нуждается в четком разделении и ином способе оплаты за нее. Основанием для регуляции отношений предприятия-поставщика электроэнергии и конечных потребителей в этом случае выступает типовой договор. Согласно правилам, установленным в этом документе, организации, потребляющие электроэнергию свыше 63 А, нуждаются в особом устройстве, предоставляющем показания реактивной энергии для учета и оплаты. Сетевое предприятие устанавливает счетчик реактивной электроэнергии и начисляет оплату согласно его показаниям.

Коэффициент реактивной энергии.

Как говорилось ранее, активная и реактивная электроэнергия в счетах на оплату выделяются отдельными строками. Если соотношение объемов реактивной и потребленной электроэнергии не превышает установленной нормы, то плата за реактивную энергию не начисляется. Коэффициент соотношения бывает прописан по-разному, его среднее значение составляет 0,15. При превышении данного порогового значения предприятию-потребителю рекомендуют установить компенсаторные устройства.

Реактивная энергия в многоквартирных домах.

Типичным потребителем электроэнергии является многоквартирный дом с главным предохранителем, потребляющий электроэнергию свыше 63 А. Если в таком доме имеются исключительно жилые помещения, плата за реактивную электроэнергию не взимается. Таким образом, жильцы многоквартирного дома видят в начислениях оплату только за полную электроэнергию, поставленную в дом предприятием-поставщиком. Та же норма касается жилищных кооперативов.

Частные случаи учета реактивной мощности.

Бывают случаи, когда в многоэтажном здании имеются и коммерческие организации, и квартиры. Поставка электроэнергии в такие дома регулируется отдельными Актами. Например, разделением могут служить размеры полезной площади. Если в многоквартирном доме коммерческие организации занимают менее половины полезной площади, то оплата за реактивную энергию не начисляется. Если пороговый процент был превышен, то возникают обязательства оплаты за реактивную электроэнергию. В ряде случаев жилые дома не освобождаются от оплаты за реактивную энергию. Например, если в доме установлены пункты подключения лифтов для квартир, начисление за использование реактивной электроэнергии происходит отдельно, лишь для этого оборудования. Владельцы квартир по-прежнему оплачивают лишь активную электроэнергию.

Реактивная мощность. Расчёт

Реактивная мощность обусловлена способностью реактивных элементов накапливать и отдавать электрическую или магнитную энергию.

Eмкостная нагрузка в цепи переменного тока за время половины периода накапливает заряд в обкладках конденсаторов и отдаёт его обратно в источник.
Индуктивная нагрузка накапливает магнитную энергию в катушках и возвращает её в источник питания в виде электрической энергии.

Напряжение на выводах реактивного элемента будет достигать максимального значения во время смены направления тока, следовательно,
расхождение во времени между напряжением и током в пределах элемента составит четверть периода (сдвиг фаз 90°).

Угол сдвига фаз φ в цепи нагрузки определяется соотношением активного и реактивного сопротивлений нагрузки.

Реактивная мощность характеризует потери, созданные реактивными элементами в цепи переменного тока, и выражается формулой
Q = UIsinφ.

Природу потерь в цепи с реактивными элементами можно рассмотреть с помощью графиков на рисунках.


φ = 90°     sin90° = 1     cos90° = 0

При отсутствии активной составляющей в нагрузке, сдвиг фаз между напряжением и током составит 90°.
В начале периода, когда напряжение максимально – ток будет равен нулю, следовательно, мгновенное значение мощности UI в это время будет равно нулю.
В течении первой четверти периода, мощность можно видеть на графике, как произведение UI,
которое станет равным нулю при максимуме тока и нулевом значении напряжения.

В следующую четверть периода на графике UI принимает отрицательное значение, следовательно, мощность возвращается обратно в источник питания.
То же самое произойдёт и в отрицательном полупериоде тока. В результате средняя (активная) потребляемая мощность P avg за период будет равна нулю.

В таком случае:
Реактивная мощность Q = UIsin90° = UI
Потребляемая мощность P = UIcos90° = 0
Полная мощность S = UI = √(P² + Q²) будет равна реактивной мощности
Коэффициент мощности P/S = 0


При отсутствии реактивных элементов и сдвига фаз в нагрузках, мгновенная мощность в полупериоде Umax*Imax будет максимальной,
и в следующем полупериоде произведение отрицательного напряжения с отрицательным током дадут положительный результат – полезную мощность в нагрузке.


φ = 0°     sin90° = 0     cos90° = 1

В этом случае:
Реактивная мощность Q = UIsin0 = 0
Потребляемая мощность P = UIcos0 = UI
Полная мощность S = UI = √(P² + Q²) будет равна потребляемой мощности
Коэффициент мощности P/S = 1


Ниже представлен рисунок графиков со сдвигом фаз 45°, для случая равенства активного и реактивного сопротивлений в нагрузке.


φ = 45°     sin45° = cos45° = √2/2 ≈ 0.71

Здесь:
Реактивная мощность Q = UIsin45° = 0.71UI
Потребляемая мощность P = UIcos45° = 0.71UI
Полная мощность S = √(P² + Q²) = UI
Коэффициент мощности P/S = 0.71

В примерах рассмотрены случаи с индуктивной нагрузкой, когда ток отстаёт от напряжения (положительный сдвиг фаз).
В случаях с ёмкостной нагрузкой, процессы и расчёты аналогичны,
только напряжение будет отставать от тока (отрицательный сдвиг фаз).
Угол сдвига фаз в сети определится соотношением активного и реактивного сопротивлений нагрузок в
параллельном соединении следующим образом:

XL и XС соответственно индуктивное и ёмкостное сопротивление нагрузок.
Преобладание индуктивных нагрузок будет уменьшать общее индуктивное сопротивление.
Из выражения видно, что угол в этом случае будет принимать положительный знак,
а преобладание ёмкостных нагрузок будет уменьшать ёмкостное сопротивление и вызывать отрицательный сдвиг.
При равенстве индуктивного и ёмкостного сопротивлений, угол сдвига будет равен нулю.
В бытовых и производственных потребителях индуктивное сопротивление обычно существенно преобладает над ёмкостным.

Подробнее о вычислениях общего угла сдвига φ для вариантов соединений активного и
реактивного сопротивлений в нагрузках можно ознакомиться на страничке электрический импеданс.


Компенсация реактивной мощности

Огромное количество индуктивных нагрузок в сети суммарно обладает колоссальной реактивной мощностью,
которая возвращается в генераторы и не совершает никакой полезной работы, расходуя энергию на нагрев кабелей и проводов ЛЭП,
перегружает трансформаторы, снижая их КПД, тем самым уменьшая пропускную способность активных токов.

Если параллельно индуктивной нагрузке подключить конденсатор,
фаза тока в цепи источника будет смещаться в противоположную сторону, компенсируя угол, созданный индуктивностью нагрузки.
При определённом соотношении номиналов,
можно добиться отсутствия сдвига фаз, следовательно, и отсутствия реактивных токов в цепи источника питания.
Ёмкость конденсатора определяется реактивным (индуктивным) сопротивлением нагрузки, которое необходимо компенсировать:
C = 1/(2πƒX),
X = U²/Q — реактивное сопротивление нагрузки,
Q — реактивная мощность нагрузки.

Компенсация реактивных токов в сети позволяет значительно уменьшить потери на активном сопротивлении проводов ЛЭП, кабелей и обмоток трансформаторов питающей сети.
В целях компенсации реактивной мощности на производственных предприятиях, где основными потребителями энергии являются асинхронные электродвигатели,
индукционные печи, люминесцентное освещение, которые обладают индуктивным сопротивлением, часто применяют специальные конденсаторные
установки, способные в ручном или автоматическом режиме поддерживать нулевой сдвиг фаз, тем самым минимизировать реактивные потери.

В масштабах энергосистемы компенсация происходит непосредственно на электростанциях путём контроля сдвига фаз и обеспечения соответствующего тока
подмагничивания роторных обмоток синхронных генераторов станций.

Компенсация реактивной мощности — одна из составляющих комплекса мер по Коррекции Коэффициента Мощности (ККМ) в электросети
(Power Factor Correction — PFC в англоязычной литературе). Применяется в целях уменьшения потерь электроэнергии, как на паразитную реактивную, так и нелинейную составляющую искажений тока в энергосистеме. Более подробно с материалом о ККМ (PFC) можно ознакомиться на странице — коэффициент мощности.


Онлайн-калькулятор расчёта реактивной мощности и её компенсации.

Достаточно вписать значения и кликнуть мышкой в таблице.

Реактивная мощность Q = √((UI)²-P²)
Реактивное сопротивление X = U²/Q
Компенсирующая ёмкость C = 1/(2πƒX)



Похожие страницы с расчётами:

Рассчитать импеданс.
Рассчитать частоту резонанса колебательного контура LC.
Рассчитать реактивное сопротивление катушки индуктивности L и конденсатора C.
Альтернативные статьи: Дизель-генератор

Разница между активной и реактивной мощностью

Мощность — это сочетание напряжения и тока в электрических цепях. С технической точки зрения, это скорость, с которой электрическая энергия передается электрическими цепями, то есть скорость, с которой передается энергия. Сокращения AC и DC часто используются в электроэнергетических системах как переменный ток и постоянный ток соответственно. Оба типа тока используются для передачи электроэнергии. Активная мощность и реактивная мощность — два наиболее распространенных термина, используемых для описания потока энергии в электроэнергетических системах.Активная мощность — это реальная мощность, тогда как реактивная мощность используется для передачи реальной мощности. В этой статье освещаются некоторые ключевые различия между ними.

Что такое активная мощность?

В простых цепях переменного тока напряжение и ток являются синусоидальными, что означает, что форма волны очень похожа на идеальную синусоидальную волну. В случае чисто резистивной нагрузки напряжение и ток меняют полярность одновременно и в каждый момент, значение положительное, что означает, что направление тока не меняется периодически.В этом случае передается только активная мощность. Активная мощность или реальная мощность — это количество мощности, которое фактически потребляется в цепи переменного тока. Проще говоря, рассеиваемая мощность называется активной мощностью. Он обозначается заглавной буквой «P» и измеряется в ваттах (Вт), чаще всего в киловаттах (кВт) и мегаваттах (МВт).

Что такое реактивная мощность?

В случае чисто реактивной нагрузки напряжение не в фазе с током. Произведение напряжения и тока положительно для половины каждого цикла, тогда как оно отрицательно для другой половины цикла, что означает, что мощность непрерывно течет вперед и назад между источником и нагрузкой.Это приводит к передаче реактивной мощности на нагрузку. Проще говоря, реактивная мощность — это неиспользованная мощность или воображаемая мощность, которая не используется для какой-либо полезной работы и существует, когда напряжение и ток не совпадают по фазе. Он обозначается заглавной буквой «Q» и измеряется в реактивных вольт-амперах (вар), в отличие от единицы мощности в системе СИ, которая является ваттами.

Разница между активной и реактивной мощностью

  1. Определение

В электрических системах переменного тока количество мощности, используемой для обеспечения эффективной работы, означающее количество мощности, которое фактически передается нагрузке, такой как трансформатор, называется «активной мощностью», «реальной мощностью» или «истинной мощностью».Это полезная мощность, которая фактически потребляется нагрузкой в ​​результате рассеивания энергии в виде тепла. С другой стороны, реактивная мощность — это мощность, которая непрерывно колеблется между источником и нагрузкой, что означает мощность, которая не может быть использована для эффективной работы в цепи или системе переменного тока.

  1. Блок

Ватт — это общая единица для всех форм мощности, которая обозначается как «Вт», но обычно эта единица резервируется для активной мощности.Практически он измеряется в киловаттах (кВт) и мегаваттах (МВт) в электроэнергетических системах. Реактивная мощность — это форма мощности, но она не выражается в ваттах. Вместо этого он выражается реактивной единицей вольт-ампер (вар) в электроэнергетических системах переменного тока. Обычно это происходит, когда форма волны тока и форма волны напряжения не совпадают по фазе, обычно на 90 градусов. Термин «вар» широко используется в электроэнергетике.

  1. Символ и формула

Активная мощность или активная мощность обозначается заглавной буквой «P», тогда как реактивная мощность обозначается заглавной буквой «Q».Активная мощность — это реальная мощность, рассеиваемая нагрузкам, которая позже преобразуется в другие формы энергии. В цепи переменного тока, если приложенное напряжение равно «V», а циркулирующий ток равен «I», то среднее значение активной мощности равно P = VI cos ϕ, где ϕ — фазовый угол между током и напряжением. Формула для определения реактивной мощности: Q = VI sin ϕ, где «I sin ϕ» здесь означает, что ток не в фазе с напряжением.

  1. Значение

Активная мощность — это мощность, проявляющаяся в различных физических формах, таких как электромагнитное излучение или механическая форма или акустические волны, если на то пошло.Рассмотрим пример тачки, небольшой тележки с ручным приводом и одним колесом, которую может толкать один человек. Активная мощность здесь — это работа, проделанная с колесами для переноса вещей из одного места в другое, и есть настоящая работа. Реактивная мощность здесь — это воображаемая мощность, которая сама по себе не выполняет никакой полезной работы, но именно она удерживает тележку в поднятом положении. Реактивная мощность используется для управления напряжением во многих промышленных средах для преодоления колебаний уровня напряжения.

Активная и реактивная мощность: сравнительная таблица

Сводка активной и реактивной мощности

В цепях переменного тока активная мощность — это реальная мощность, потребляемая оборудованием для выполнения полезной работы, то есть мощность, рассеиваемая нагрузкой, тогда как реактивная мощность — это мнимая мощность, которая не используется непосредственно для работы. Вместо этого он непрерывно отскакивает вперед и назад, что приводит к рассеиванию тока, а ток, который возвращается обратно, никогда не используется для какой-либо полезной работы и называется реактивной мощностью.Активная мощность измеряется в киловаттах (кВт) или мегаваттах (МВт), тогда как реактивная мощность измеряется в вольт-амперных реактивных (вар). Активная мощность синфазна с нагрузкой, тогда как реактивная мощность не совпадает по фазе с нагрузкой.

Сагар Хиллар — плодовитый автор контента / статей / блогов, работающий старшим разработчиком / писателем контента в известной фирме по обслуживанию клиентов, базирующейся в Индии. У него есть желание исследовать самые разные темы и разрабатывать высококачественный контент, чтобы его можно было лучше всего читать.Благодаря своей страсти к писательству, он имеет более 7 лет профессионального опыта в написании и редактировании услуг на самых разных печатных и электронных платформах.

Вне своей профессиональной жизни Сагар любит общаться с людьми из разных культур и происхождения. Можно сказать, что он любопытен по натуре. Он считает, что каждый — это опыт обучения, и это приносит определенное волнение, своего рода любопытство, чтобы продолжать работать. Поначалу это может показаться глупым, но через некоторое время это расслабляет вас и облегчает начало разговора с совершенно незнакомыми людьми — вот что он сказал.»

Последние сообщения Sagar Khillar (посмотреть все)

: Если вам понравилась эта статья или наш сайт. Пожалуйста, расскажите об этом. Поделитесь им с друзьями / семьей.

Укажите
Сагар Хиллар. «Разница между активной и реактивной мощностью». DifferenceBetween.net. 8 мая 2018.

.

Разница между активной и реактивной мощностью (со сравнительной таблицей)

Наиболее существенное различие между активной и реактивной мощностью состоит в том, что активная мощность — это фактическая мощность, которая рассеивается в цепи. В то время как реактивная мощность — это бесполезная мощность, которая течет только между источником и нагрузкой. Другие различия между активной и реактивной мощностью поясняются ниже в сравнительной таблице.

Активная, полная и активная мощность индуцируется в цепи только тогда, когда их ток отстает от приложенного напряжения на угол Φ.Прямоугольный треугольник, показанный ниже, показывает соотношение между активной, реактивной и полной мощностью.

active-power

power-factor

Где, S — полная мощность
Q — реактивная мощность
P — Активная мощность

Таблица сравнения

Основа для сравнения Активная мощность Реактивная мощность
Определение Активная мощность — это реальная мощность, которая рассеивается в цепи. Мощность, которая движется назад и образует пену между нагрузкой и источником такого типа мощности, известна как реактивная мощность
Формула reactive-power active-power-1
Измерительный блок Ватт VAR
Представлено P Q
Причины Вырабатывает тепло в нагревателе, светится в лампах и вызывает крутящий момент в двигателе. Измеряет коэффициент мощности цепи.
Измерительный прибор Ваттметр VAR-метр

Определение активной мощности

Мощность, которая рассеивается или выполняет полезную работу в цепи, известна как активная мощность. Он измеряется в ваттах или мегаваттах. Активная мощность обозначается заглавным алфавитом P. Среднее значение мощности в цепи дается выражением.

difference-between-active-and-reactive-power-equation-1

Активная мощность формирует цепь и нагрузку.

Определение реактивной мощности

Реактивная мощность перемещается между источником и нагрузкой цепи. Эта мощность не выполняет с нагрузкой никакой полезной работы. Q представляет собой реактивную мощность и измеряется в ВАр. Реактивная мощность сохраняется в цепи и разряжается асинхронным двигателем, трансформатором или соленоидами.

difference-between-active-and-reactive-power-equation-2

Ключевые различия между активной и реактивной мощностью

  • Активная мощность — это реальная мощность, потребляемая нагрузкой.А реактивная мощность — это бесполезная мощность.
  • Активная мощность — это произведение напряжения, тока и косинуса угла между ними. В то время как реактивная мощность — это произведение напряжения и тока и синуса угла между ними.
  • Активная мощность — это активная мощность, измеряемая в ваттах. Пока реактивная мощность измеряется в ВАР.
  • Буква P представляет активную мощность, а Q — реактивную мощность.
  • Крутящий момент, развиваемый в двигателе, тепло, рассеиваемое нагревателем, и свет, излучаемый лампами, — все это из-за активной мощности.Реактивная мощность определяет коэффициент мощности схемы.
  • Ваттметр измеряет активную мощность, а VAR-метр используется для измерения полной мощности.

Заключение

Активная мощность выполняет полезную работу в цепи. И реактивная мощность просто течет в цепи, не выполняя никакой полезной работы.

,

Что такое активная, реактивная и полная мощность — определение и объяснение

Активная мощность

Определение: Мощность, которая фактически потребляется или используется в цепи переменного тока, называется Истинная мощность или Активная мощность или Реальная мощность . Он измеряется в киловаттах (кВт) или МВт. Это фактические результаты работы электрической системы, которая управляет электрическими цепями или нагрузкой.

Реактивная мощность

Определение: Мощность, которая течет вперед и назад, что означает, что она движется в обоих направлениях в цепи или реагирует на себя, называется Реактивная мощность .Реактивная мощность измеряется в киловольт-амперах, реактивная (кВАр) или мвар.

Полная мощность

Определение: Произведение среднеквадратичного значения напряжения и тока известно как Полная мощность . Эта мощность измеряется в кВА или МВА.

Было замечено, что мощность потребляется только в сопротивлении. Чистая катушка индуктивности и чистый конденсатор не потребляют никакой энергии, поскольку в течение полупериода любая мощность, полученная от источника этими компонентами, такая же мощность возвращается к источнику.Эта мощность, которая возвращается и течет в обоих направлениях цепи, называется реактивной мощностью. Эта реактивная мощность не выполняет никакой полезной работы в цепи.

В чисто резистивной цепи ток находится в фазе с приложенным напряжением, тогда как в чисто индуктивной и емкостной цепи ток сдвинут по фазе на 90 градусов, т. Е. Если индуктивная нагрузка подключена к цепи, ток отстает от напряжения на 90 градусов, и если подключена емкостная нагрузка, ток опережает напряжение на 90 градусов.

Следовательно, из всего вышеизложенного можно сделать вывод, что ток , синфазный с напряжением, дает истинную или активную мощность , тогда как ток , сдвинутый по фазе на 90 градусов с напряжением, способствует реактивной мощности в цепи.

Следовательно,

  • Истинная мощность = напряжение x ток в фазе с напряжением
  • Реактивная мощность = напряжение x ток не в фазе с напряжением

Векторная диаграмма индуктивной цепи приведена ниже:

active-reactive-phasor-diagram Если взять за эталон напряжение V, то ток I отстает от напряжения V на угол ϕ.Ток I делится на две составляющие:

  • I Cos ϕ в фазе с напряжением В
  • I Sin ϕ, который сдвинут по фазе на 90 градусов с напряжением V

Следовательно, следующее выражение, показанное ниже, дает активную, реактивную и полную мощность соответственно.

  • Активная мощность P = V x I cosϕ = V I cosϕ
  • Реактивная мощность P r или Q = V x I sinϕ = V I sinϕ
  • Полная мощность P a или S = ​​V x I = VI

Активная составляющая текущей

Составляющая тока, которая находится в фазе с напряжением схемы и вносит вклад в активную или истинную мощность схемы, называется активной составляющей или составляющей полной ватт или синфазной составляющей тока.

Реактивная составляющая тока

Составляющая тока, которая находится в квадратуре или на 90 градусов по фазе относительно напряжения цепи и вносит вклад в реактивную мощность схемы, называется реактивной составляющей тока.

,

Разница между активной и реактивной мощностью

Основная разница между активной и реактивной мощностью

Основное различие между активной и реактивной мощностью состоит в том, что активная мощность — это фактическая или реальная мощность, которая используется в цепи, в то время как реактивная мощность отражается взад и вперед между загрузкой и источником, что теоретически бесполезно.

Следующий треугольник мощности показывает соотношение между активной, реактивной и полной мощностью. Все эти мощности индуцируются только в цепях переменного тока, когда ток опережает или отстает от напряжения i.е. существует разность фаз (фазовый угол (Φ) между напряжением и током.

Power Triangle - Active Reactive Apparent and Complex Power Power Triangle - Active Reactive Apparent and Complex Power

Что такое активная мощность?

Мощность, которая действительно используется и потребляется для полезных работ в цепи переменного или постоянного тока, известна как Активная мощность. Ее также называют истинной мощностью, реальной мощностью, полезной мощностью или полной мощностью в ваттах. Обозначается буквой «P» и измеряется в ваттах, кВт или МВт. Среднее значение активной мощности можно рассчитать по следующим формулам

Формулы для активной мощности
  • P = V x I … (цепи постоянного тока)
  • P = V x I x Cosθ … (однофазные цепи переменного тока)
  • P = √3 x В L x I L x Cosθ … (трехфазные цепи переменного тока)
  • кВт = √ (кВА 2 — кВАр 2 )

Связанное сообщение: Разница между аналогом и d Цифровой мультиметр

Что такое реактивная мощность

Мощность, которая движется и возвращается (колеблется назад и вперед) между источником и нагрузкой в ​​цепи, известна как реактивная мощность.Его также называют бесполезной мощностью или мощностью без ватта. Реактивная мощность обозначается буквой «Q» и измеряется в ВАР (вольт-ампер реактивной мощности), кВАр или МВАр.

Реактивная мощность тоже полезна, т. Е. Помогает создавать магнитное и электрическое поле и накапливать в цепях и разряжать трансформаторы, соленоиды, асинхронные двигатели и т. Д.

Формулы для реактивной мощности
  • Q = V x I x Sinθ
  • VAR = √ (VA 2 — P 2 )
  • kVAR3 √ (

    0 кВАр =

    0 кВАр = 955 2 900 кВА — кВт 2 )

  • Реактивная мощность = √ (Полная мощность 2 Истинная мощность 2 )

Разница между сообщениями Конденсатор и суперконденсатор

Сравнение активной и реактивной мощности.

В следующей таблице показаны основные различия между активной и реактивной мощностями.

кВт

Характеристики Активная мощность Реактивная мощность
Определение Цепь True или Реальная или рассеиваемая мощность Фактическая мощность Активная мощность , которая фактически используется или потребляется. Мощность, которая непрерывно колеблется между источником и нагрузкой, известна как Реактивная мощность .(Также известен как бесполезный или Вт без Мощность)
Обозначается P Q
Единицы Вт, МВт, МВт, мВт, кВт, мВт,
Формулы
  • P = V x I (цепи постоянного тока)
  • P = V x I x Cosθ (однофазные цепи переменного тока)
  • P = √3 x В L x I L x Cosθ (трехфазные цепи переменного тока)
  • P = 3 x В Ph x I x Cosθ
  • P = √ (S 2 — Q 2 ) или
  • P = √ (VA — VAR 2 ) или
  • Q = V x I x Sinθ
  • Реактивная мощность = √ (Полная мощность 2 2 мощность 2 )
  • VAR = √ (VA 2 — P 2 )
  • kVAR = √ (00040002 — кВт 2 )
Измерительный прибор Ваттметр VAr метр
Роль в цепях постоянного тока Активная мощность i равна реактивной мощности.е. в цепях постоянного тока нет VAr. Существует только активная мощность. В цепях постоянного тока отсутствует реактивная мощность из-за нулевого фазового угла (Φ) между током и напряжением.
Роль в цепях переменного тока Активная мощность важна для производства тепла и использования электрического и магнитного поля, создаваемого реактивной мощностью. Реактивная мощность играет важную роль в цепях переменного тока для создания магнитных и электрических полей.
Поведение в чисто резистивной цепи Вся мощность в цепи рассеивается резисторами, что составляет активную мощность Нет реактивной мощности в чисто резистивной цепи.
Поведение в чисто емкостной цепи Активная мощность равна нулю (0), то есть вся мощность поочередно поглощается от источника переменного тока и непрерывно возвращается обратно. Ведущие вариации. В цепи чисто емкостной нагрузки напряжение и ток не совпадают по фазе на 90 ° друг с другом (ток опережает напряжение на 90 ° (другими словами, напряжение отстает на 90 ° от тока). Т.е. опережающая реактивная мощность.
Поведение в чисто индуктивной цепи Активная мощность равна нулю (0)

P = VI Cos φ

Когда: Cos (90 °) = 0

Мощность P = VI (0) = 0

Тогда общая активная мощность = 0 Вт.

Отстающие Вар. В чисто индуктивной или реактивной цепи нагрузки напряжение и ток не совпадают по фазе на 90 ° друг с другом (ток отстает на 90 ° от напряжения (другими словами, напряжение опережает на 90 ° от тока). Т.е. опережающая реактивная мощность.
Приложения Активная мощность используется для производства тепла, света, крутящего момента и т. Д. В электрических приборах и машинах. Реактивная мощность также полезна, которая используется для измерения коэффициента мощности и генерации магнитного потока, электрического потока, электрического и магнитное поле в двигателях, трансформаторах, балластах, оборудовании индукционного нагрева и т. д.

Похожие сообщения:

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *