Расчет системы отопления частного дома своими руками: Расчет системы отопления частного дома: формулы и примеры

Содержание

Расчет системы отопления частного дома: формулы и примеры

Отопление частного дома – необходимый элемент комфортабельного жилья. Согласитесь, что к обустройству отопительного комплекса следует подходить внимательно, т.к. ошибки обойдутся недешево. Но вы никогда не занимались подобными вычислениями и не знаете как правильно их выполнять?

Мы поможем вам – в нашей статье подробно рассмотрим, как делается расчет системы отопления частного дома для эффективного восполнения потерь тепла в зимние месяцы.

Приведем конкретные примеры, дополнив материал статьи наглядными фото и полезными видеосоветами, а также актуальными таблицами с показателями и коэффициентами, необходимыми для вычислений.

Содержание статьи:

Теплопотери частного дома

Здание теряет тепло из-за разности температур воздуха внутри и вне дома. Теплопотери тем выше, чем более значительна площадь ограждающих конструкций здания (окон, кровли, стен, фундамента).

Также связаны с материалами ограждающих конструкций и их размерами. К примеру, теплопотери тонких стен больше, чем толстых.

Галерея изображений

Фото из

Система отопления частного дома с двумя агрегатами

Вариант отопления в бревенчатом доме

Поступление воздуха и утечки тепла через окна и двери

Система вентиляции с поставкой свежего воздуха

Схема устройства ГВС и отопления

Подбор котла по типу топлива

Варианты прокладки контуров отопления

Открытый вариант отопления

Эффективный для частного дома обязательно учитывает материалы, использованные при постройке ограждающих конструкций.

Например, при равной толщине стены из дерева и кирпича проводят тепло с разной интенсивностью – теплопотери через деревянные конструкции идут медленнее. Одни материалы пропускают тепло лучше (металл, кирпич, бетон), другие хуже (дерево, минвата, пенополистирол).

Атмосфера внутри жилой постройки косвенно связана с внешней воздушной средой. Стены, проемы окон и дверей, крыша и фундамент зимой передают тепло из дома наружу, поставляя взамен холод. На них приходится 70-90% от общих теплопотерь коттеджа.

Теплопотери для расчета системы отопления частного домаТеплопотери для расчета системы отопления частного дома

Стены, крыша, окна и двери – все пропускает тепло зимой наружу. Тепловизор наглядно покажет утечки тепла

Постоянная утечка тепловой энергии за отопительный сезон происходит также через вентиляцию и канализацию.

При расчете теплопотерь постройки ИЖС эти данные обычно не учитывают. Но включение в общий тепловой расчет дома потерь тепла через канализационную и вентиляционную системы – решение все же правильное.

Теплопотери загородного домаТеплопотери загородного дома

Существенно снизить утечки тепла, проходящие через строительные конструкции, дверные/оконные проемы сможет грамотно устроенная система теплоизоляции

Выполнить расчёт автономного контура отопления загородного дома без оценки теплопотерь его ограждающих конструкций невозможно. Точнее, не получится , достаточную для обогрева коттеджа в самые лютые заморозки.

Анализ реального расхода тепловой энергии через стены позволит сравнить затраты на котловое оборудование и топливо с расходами на теплоизоляцию ограждающих конструкций.

Ведь чем более энергоэффективен дом, т.е. чем меньше тепловой энергии он теряет в зимние месяцы, тем меньше расходы на приобретение топлива.

Для грамотного расчета системы отопления потребуется распространенных строительных материалов.

Теплопроводность конструкционных материалов Теплопроводность конструкционных материалов

Таблица значений коэффициента теплопроводности различных строительных материалов, наиболее часто применяемых при возведен

Расчет потерь тепла через стены

На примере условного двухэтажного коттеджа рассчитаем теплопотери через его стеновые конструкции.

Исходные данные:

  • квадратная «коробка» с фасадными стенами шириной 12 м и высотой 7 м;
  • в стенах 16 проемов, площадь каждого 2,5 м2;
  • материал фасадных стен – полнотелый кирпич керамический;
  • толщина стены – 2 кирпича.

Далее проведем вычисление группы показателей, из которых и складывается общее значение потерь тепла через стены.

Показатель сопротивления теплопередачи

Чтобы выяснить показатель сопротивления теплопередачи для фасадной стены, нужно разделить толщину стенового материала на его коэффициент теплопроводности.

Для ряда конструкционных материалов данные по коэффициенту теплопроводности представлены на изображениях выше и ниже.

Коэффициент теплопроводности утеплителейКоэффициент теплопроводности утеплителей

Для точных расчетов потребуется коэффициент теплопроводности указанных в таблице теплоизоляционных материалов, применяемых в строительстве

Наша условная стена выстроена из керамического полнотелого кирпича, коэффициент теплопроводности которого – 0,56 Вт/м·оС. Ее толщина с учетом кладки на ЦПР – 0,51 м. Разделив толщину стены на коэффициент теплопроводности кирпича, получаем сопротивление теплопередаче стены:

0,51 : 0,56 = 0,91 Вт/м2×оС

Результат деления округляем до двух знаков после запятой, в более точных данных по сопротивлению теплопередачи потребности нет.

Площадь внешних стен

Поскольку примером выбрано квадратное здание, площадь его стен определяется умножением ширины на высоту одной стены, затем на число внешних стен:

12 · 7 · 4 = 336 м2

Итак, нам известна площадь фасадных стен. Но как же проемы окон и дверей, занимающие вместе 40 м2 (2,5·16=40 м2) фасадной стены, нужно ли их учитывать?

Действительно, как же корректно рассчитать без учета сопротивления теплопередачи оконных и дверных конструкций.

Как рассчитать теплопотери через стеныКак рассчитать теплопотери через стены

Коэффициент теплопроводности теплоизоляционных материалов, применяемых для утепления несущих стен

Если необходимо обсчитать теплопотери здания крупной площади или теплого дома (энергоэффективного) – да, учет коэффициентов теплопередачи оконных рам и входных дверей при расчете будет правильным.

Однако для малоэтажных построек ИЖС, возводимых из традиционных материалов, дверными и оконными проемами допустимо пренебречь. Т.е. не отнимать их площадь из общей площади фасадных стен.

Общие теплопотери стен

Выясняем потери тепла стены с ее одного квадратного метра при разнице температуры воздуха внутри и снаружи дома в один градус.

Для этого делим единицу на сопротивление теплопередачи стены, вычисленное ранее:

1 : 0,91 = 1,09 Вт/м2·оС

Зная теплопотери с квадратного метра периметра внешних стен, можно определить потери тепла при определенных уличных температурах.

К примеру, если в помещениях коттеджа температура +20 оС, а на улице -17 оС, разница температур составит 20+17=37 оС. В такой ситуации общие теплопотери стен нашего условного дома будут:

0,91 · 336 · 37 = 11313 Вт,

Где: 0,91 – сопротивление теплопередачи квадратного метра стены; 336 – площадь фасадных стен; 37 – разница температур комнатной и уличной атмосферы.

Теплоизоляционные материалы – теплопроводность Теплоизоляционные материалы – теплопроводность

Коэффициент теплопроводности теплоизоляционных материалов, применяемых для утепления пола/стен, для устройства сухой стяжки пола и выравнивания стен

Пересчитаем полученную величину теплопотерь в киловатт-часы, они удобнее для восприятия и последующих расчетов мощности отопительной системы.

Теплопотери стен в киловатт-часах

Вначале выясним, столько тепловой энергии уйдет через стены за один час при разнице температур в 37 оС.

Напоминаем, что расчет ведется для дома с конструкционными характеристиками, условно выбранными для демонстрационно-показательных вычислений:

11313 · 1 : 1000 = 11,313 кВт·ч,

Где: 11313 – величина теплопотерь, полученная ранее; 1 – час; 1000 – количество ватт в киловатте.

Теплопроводность стройматериалов и теплоизоляцииТеплопроводность стройматериалов и теплоизоляции

Коэффициент теплопроводности стройматериалов, применяемых для утепления стен и перекрытий

Для вычисления потерь тепла за сутки полученное значение теплопотерь за час умножаем на 24 часа:

11,313 · 24 = 271,512 кВт·ч

Для наглядности выясним потери тепловой энергии за полный отопительный сезон:

7 · 30 · 271,512 = 57017,52 кВт·ч,

Где: 7 – число месяцев в отопительном сезоне; 30 – количество дней в месяце; 271,512 – суточные теплопотери стен.

Итак, расчетные теплопотери дома с выбранными выше характеристиками ограждающих конструкций составят 57017,52 кВт·ч за семь месяцев отопительного сезона.

Учет влияния вентиляции частного дома

Расчет вентиляционных потерь тепла в отопительный сезон в качестве примера проведем для условного коттеджа квадратной формы, со стеной 12-ти метровой ширины и 7-ми метровой высоты.

Без учета мебели и внутренних стен внутренний объем атмосферы в этом здании составит:

12 · 12 · 7 = 1008 м3

При температуре воздуха +20 оС (норма в сезон отопления) его плотность равна 1,2047 кг/м3, а удельная теплоемкость 1,005 кДж/(кг·оС).

Вычислим массу атмосферы в доме:

1008 · 1,2047 = 1214,34 кг,

Где: 1008 – объем домашней атмосферы; 1,2047 – плотность воздуха при t +20 оС .

Таблица коэффициента теплопроводности сопутствующих материаловТаблица коэффициента теплопроводности сопутствующих материалов

Таблица со значением коэффициента теплопроводности материалов, которые могут потребоваться при проведении точных расчетов

Предположим пятикратную смену воздушного объема в помещениях дома. Отметим, что точная свежего воздуха зависит от числа жильцов коттеджа.

При средней разнице температур между домом и улицей в отопительный сезон, равной 27 оС (20 оС домашняя, -7 оС внешняя атмосфера) за сутки на обогрев приточного холодного воздуха понадобиться тепловой энергии:

5 · 27 · 1214,34 · 1,005 = 164755,58 кДж,

Где: 5 – число смен воздуха в помещениях; 27 – разница температур комнатной и уличной атмосферы; 1214,34 – плотность воздуха при t +20 оС; 1,005 – удельная теплоемкость воздуха.

Переведем килоджоули в киловатт-часы, поделив значение на количество килоджоулей в одном киловатт-часе (3600):

164755,58 : 3600 = 45,76 кВт·ч

Выяснив затраты тепловой энергии на обогрев воздуха в доме при пятикратной его замене через приточную вентиляцию, можно рассчитать «воздушные» теплопотери за семимесячный отопительный сезон:

7 · 30 · 45,76 = 9609,6 кВт·ч,

Где: 7 – число «отапливаемых» месяцев; 30 – среднее число дней в месяце; 45,76 – суточные затраты тепловой энергии на нагрев приточного воздуха.

Вентиляционные (инфильтрационные) энергозатраты неизбежны, поскольку обновление воздуха в помещениях коттеджа жизненно необходимо.

Потребности нагрева сменяемой воздушной атмосферы в доме требуется вычислять, суммировать с теплопотерями через ограждающие конструкции и учитывать при выборе отопительного котла. Есть еще один вид тепловых энергозатрат, последний – канализационные теплопотери.

Затраты энергии на подготовку ГВС

Если в теплые месяцы из крана в коттедж поступает холодная вода, то в отопительный сезон она – ледяная, с температурой не выше +5 оС. Купание, мытье посуды и стирка невозможны без нагрева воды.

Набираемая в бачок унитаза вода контактирует через стенки с домашней атмосферой, забирая немного тепла. Что происходит с водой, нагретой путем сжигания не бесплатного топлива и потраченной на бытовые нужды? Ее сливают в канализацию.

Котел с бойлеромКотел с бойлером

Двухконтурный котел с бойлером косвенного нагрева, используемый как для нагрева теплоносителя, так и для поставки горячей воды в сооруженный для нее контур

Рассмотрим на примере. Семья из трех человек, предположим, расходует 17 м3 воды ежемесячно. 1000 кг/м3 – плотность воды, а 4,183 кДж/кг·оС – ее удельная теплоемкость.

Средняя температура нагрева воды, предназначенной для бытовых нужд, пусть будет +40 оС. Соответственно, разница средней температуры между поступающей в дом холодной водой (+5 оС) и нагретой в бойлере (+30 оС) получается 25 оС.

Для расчета канализационных теплопотерь считаем:

17 · 1000 · 25 · 4,183 = 1777775 кДж,

Где: 17 – месячный объем расхода воды; 1000 – плотность воды; 25 – разница температур холодной и нагретой воды; 4,183 – удельная теплоемкость воды;

Для пересчета килоджоулей в более понятные киловатт-часы:

1777775 : 3600 = 493,82 кВт·ч

Таким образом, за семимесячный период отопительного сезона в канализацию уходит тепловая энергия в объеме:

493,82 · 7 = 3456,74 кВт·ч

Расход тепловой энергии на нагрев воды для гигиенических нужд невелик, в сравнении с теплопотерями через стены и вентиляцию. Но это ведь тоже энергозатраты, нагружающие отопительный котел или бойлер и вызывающие расход топлива.

Расчет мощности отопительного котла

Котел в составе системы отопления предназначен для компенсации теплопотерь здания. А также, в случае или при оснащении котла бойлером косвенного нагрева, для согревания воды на гигиенические нужды.

Вычислив суточные потери тепла и расход теплой воды «на канализацию», можно точно определить необходимую мощность котла для коттеджа определенной площади и характеристик ограждающих конструкций.

Отопительный котелОтопительный котел

Одноконтурный котел производит только нагрев теплоносителя для отопительной системы

Для определения мощности котла отопления необходимо рассчитать затраты тепловой энергии дома через фасадные стены и на нагрев сменяемой воздушной атмосферы внутренних помещений.

Требуются данные по теплопотерям в киловатт-часах за сутки – в случае условного дома, обсчитанного в качестве примера, это:

271,512 + 45,76 = 317,272 кВт·ч,

Где: 271,512 – суточные потери тепла внешними стенами; 45,76 – суточные теплопотери на нагрев приточного воздуха.

Соответственно, необходимая отопительная мощность котла будет:

317,272 : 24 (часа) = 13,22 кВт

Однако такой котел окажется под постоянно высокой нагрузкой, снижающей его срок службы. И в особенно морозные дни расчетной мощности котла будет недостаточно, поскольку при высоком перепаде температур между комнатной и уличной атмосферами резко возрастут теплопотери здания.

Поэтому по усредненному расчету затрат тепловой энергии не стоит – он с сильными морозами может и не справиться.

Рациональным будет увеличить требуемую мощность котлового оборудования на 20%:

13,22 · 0,2 + 13,22 = 15,86 кВт

Для вычисления требуемой мощности второго контура котла, греющего воду для мытья посуды, купания и т.п., нужно разделить месячное потребление тепла «канализационных» теплопотерь на число дней в месяце и на 24 часа:

493,82 : 30 : 24 = 0,68 кВт

По итогам расчетов оптимальная мощность котла для коттеджа-примера равна 15,86 кВт для отопительного контура и 0,68 кВт для нагревательного контура.

Выбор радиаторов отопления

Традиционно рекомендовано выбирать по площади отапливаемой комнаты, причем с 15-20% завышением мощностных потребностей на всякий случай.

На примере рассмотрим, насколько корректна методика выбора радиатора «10 м2 площади – 1,2 кВт».

Способы подключения радиаторовСпособы подключения радиаторов

Тепловая мощность радиаторов зависит от способа их подключения, что необходимо учитывать при проведении расчетов системы отопления

Исходные данные: угловая комната на первом уровне двухэтажного дома ИЖС; внешняя стена из двухрядной кладки керамического кирпича; ширина комнаты 3 м, длина 4 м, высота потолка 3 м.

По упрощенной схеме выбора предлагается рассчитать площадь помещения, считаем:

3 (ширина) · 4 (длина) = 12 м2

Т.е. необходимая мощность радиатора отопления с 20% надбавкой получается 14,4 кВт. А теперь посчитаем мощностные параметры отопительного радиатора на основании теплопотерь комнаты.

Фактически площадь комнаты влияет на потери тепловой энергии меньше, чем площадь ее стен, выходящих одной стороной наружу здания (фасадных).

Поэтому считать будем именно площадь «уличных» стен, имеющихся в комнате:

3 (ширина) · 3 (высота) + 4 (длина) · 3 (высота) = 21 м2

Зная площадь стен, передающих тепло «на улицу», рассчитаем теплопотери при разнице комнатной и уличной температуры в 30о (в доме +18 оС, снаружи -12 оС), причем сразу в киловатт-часах:

0,91 · 21 · 30 : 1000 = 0,57 кВт,

Где: 0,91 – сопротивление теплопередачи м2 комнатных стен, выходящих «на улицу»; 21 – площадь «уличных» стен; 30 – разница температур внутри и снаружи дома; 1000 – число ватт в киловатте.

Установка радиаторов отопленияУстановка радиаторов отопления

Согласно строительным стандартам приборы отопления располагают в местах максимальных теплопотерь. Например, радиаторы устанавливаются под оконными проемами, тепловые пушки – над входом в дом. В угловых комнатах батареи устанавливаются на глухие стены, подверженные максимальному воздействию ветров

Выходит, что для компенсации потерь тепла через фасадные стены данной конструкции, при 30о разнице температур в доме и на улице достаточно отопления мощностью 0,57 кВт·ч. Увеличим необходимую мощность на 20, даже на 30% – получаем 0,74 кВт·ч.

Таким образом, реальные мощностные потребности отопления могут быть значительно ниже, чем торговая схема «1,2 кВт на квадратный метр площади помещения».

Причем корректное вычисление необходимых мощностей отопительных радиаторов позволит сократить объем , что уменьшит нагрузку на котел и расходы на топливо.

Выводы и полезное видео по теме

Куда уходит тепло из дома – ответы предоставляет наглядный видеоролик:

В видеоролике рассмотрен порядок расчета теплопотерь дома через ограждающие конструкции. Зная потери тепла, получится точно рассчитать мощности отопительной системы:

Подробное видео о принципах подбора мощностных характеристик котла отопления смотрите ниже:

Выработка тепла ежегодно дорожает – растут цены на топливо. А тепла постоянно не хватает. Относиться безразлично к энергозатратам коттеджа нельзя – это совершенно невыгодно.

С одной стороны каждый новый сезон отопления обходится домовладельцу дороже и дороже. С другой стороны утепление стен, фундамента и кровли загородного стоит хороших денег. Однако чем меньше тепла уйдет из здания, тем дешевле будет его отапливать.

Сохранение тепла в помещениях дома – основная задача отопительной системы в зимние месяцы. Выбор мощности отопительного котла зависит от состояния дома и от качества утепления его ограждающих конструкций. Принцип «киловатт на 10 квадратов площади» работает в коттедже среднего состояния фасадов, кровли и фундамента.

Вы самостоятельно рассчитывали систему отопления для своего дома? Или заметили несоответствие вычислений, приведенных в статье? Поделитесь своим практическим опытом или объемом теоретических знаний, оставив комментарий в блоке под этой статьей.

Как рассчитать отопление в частном доме

Как рассчитать отопление в частном доме

Как рассчитать отопление в частном доме

Теперь о том, что имеется в виду, когда говорится о расчёте отопления? Примеров обустройства таких систем – великое множество. Причём различия могут крыться как в использовании того или иного источника энергии (электричества или топлива) для преобразования в тепловую, так и в технологии подачи этого выработанного тепла в помещения. Но есть и абсолютно одинаковая, объединяющая сторона вопроса.

Речь идет о ключевых показателях — какое же количество этой тепловой энергии необходимо для каждого из помещений дома, чтобы гарантированно поддерживать в нем комфортные условия. И, соответственно, какое общее количество тепла необходимо выработать для всего жилья в целом.

То есть, несколько перефразируя внесенное в заголовок «как рассчитать отопление в частном доме», далее мы будем рассматривать вопрос «как определить тепловую мощность для каждой из комнат и в целом за весь дом».

В публикации будет предложена три метода. Первый – самый нехитрый, но и, понятно, наименее точный. Второй – самый точный, но одновременно с этим – наиболее сложный для неподготовленного человека. И, наконец, третий – в котором сочетаются достоинства и нивелируются недостатки двух первых. Он в достаточной мере точный, учитывающий специфику расположения дома и помещений в нем, и одновременно – вполне понятный даже новичку. Тем более что мы сопроводим этот метод еще и удобным онлайн-калькулятором.

Содержание статьи

Простейший способ расчета

Этот способ расчёта в интернете рекомендуют чаще других. Проще, надо полагать, действительно не придумать.

Исходят из того, что для полноценного отопления жилья с высотой потолков в пределах 2,5÷3,0 метра и достаточно качественной термоизоляцией всех основных конструкций, необходимо затратить 100 ватт тепловой энергии на каждый один квадратный метр площади помещения.

100 Вт на 1 м² — многие считают именно так, хотя получающийся результат порой очень далек от истинного

В качестве «производной» от подобного подхода можно рассматривать «норму» и исходя от объёма помещения.

— Так, в частном доме с качественным утеплением и современными окнами со стеклопакетами можно считать их соотношения 34 Вт тепловой энергии на каждый кубометр объёма.

— В панельном доме городской массовой застройки тепла потребуется больше – 41 ватт на кубометр.

Просто и быстро! Считаем по площади (или объему) необходимое количество тепла для каждого помещения. А затем суммирование всех результатов даст нам общую тепловую мощность, которая требуется для отопления дома. К ней можно добавить порядка 20 или 25% эксплуатационного запаса – и ответ готов!

Действительно, несложно. Но насколько это точно?

Даже человеку, весьма далекому от строительства и теплотехники, может показаться подозрительной уж слишком высокая «универсальность» подобного метода. Согласитесь, одно дело проводить расчет отопительной системы для дома, скажем, в Ханты-Мансийске, и другое – для такого же по площади, но на Кубани. Ни слова не говорится о количестве и качестве окон,  а ведь это – одна из основных «магистралей» утечки тепла из помещений. Не принимаются в расчет состояние системы утепления, тип перекрытий, то, с чем соседствует помещение по горизонтали и вертикали. И многое другое …

В результате таких расчетов вполне могут получиться две крайности:

  1. Одна очень неприятная, когда система отопления попросту не справляется со своими обязанностями.
  2. Другая – это избыточная мощность приобретённого и установленного оборудования, которая практически всегда остается невостребованной. А это – лишние затраты на более дорогие модели мощных котлов, на большее количество радиаторов. Да и не особо полезно для техники, когда она постоянно работает с очень большой «недогрузкой».

Выполненные с чрезмерно большими погрешностями расчеты могут привести с неэффективности создаваемой системы отопления

Выполненные с чрезмерно большими погрешностями расчеты могут привести с неэффективности создаваемой системы отопления

Одним словом, назвать такой подход рациональным – сложно. И рачительный хозяин все же предпочтет более точные вычисления.

Ознакомьтесь с дровяными печами длительного горения для отопления дома, а также с их техническим обслуживанием и эксплуатацией, в специальной статье на нашем портале.

Точный расчет теплопотерь дома

Какова основная задача системы отопления? Будет правильным сформулировать так – восполнение неизбежных потерь тепла из жилых помещений, вызванных разницей температур внутри и снаружи, на улице. Даже интуитивно понятно, что чем выше такая разница, тем потери значительнее. То есть, чем суровее климат, тем больше может потребоваться приток тепла для компенсации потерянного.

Значит, если получить возможность подсчитать объемы этих потерь, то можно с высокой степенью точности определить ту необходимую тепловую мощность системы отопления, которой будет достаточно для создания комфортных условий проживания. Так оно и есть! Именно по такому принципу и строится профессиональный расчет систем.

Основные пути теплопотерь в частном доме.

Тепловые потери вполне поддаются вычислению, так как довольно доступно описываются физическими формулами. И разница температур, безусловно, это далеко не единственная величина, предопределяющая объемы утечки тепла. Огромное значение имеют теплопроводность материалов ограждающих конструкций здания, их толщина, площадь поверхностей, через которую происходит теплообмен, объемы воздуха, пропускаемые через помещения с вентиляционными потоками, и другие факторы.

Если предоставляете такая возможность – полезно будет исследовать свой дом на утечки тепла тепловизором.

Различные участки здания характеризуются своими масштабами тепловых потерь. Основной их поток приходится на стены, окна, на холодные чердаки или недостаточно утеплённые крыши, перекрытия, полы. Очень много тепла покидает помещения через каналы вытяжной вентиляции. Дотошные исследователи нередко включают в расчеты и сантехнические теплопотери.

Давайте посмотрим, как можно при желании самостоятельно определить, какое же количество теряющегося тепла необходимо компенсировать за счет системы отопления.

Как рассчитывают теплопотери через ограждающие конструкции?

Прежде всего, давайте возьмём за аксиому то, что количество тепловой мощности, необходимое для компенсации теплопотерь, рассчитывается для каждого помещения отдельно, строго с учетом его специфики. И лишь потом можно будет просуммировать все показатели, чтобы общее значение за всю систему отопления.

Любой из материалов, из числа используемых в строительстве, способен становиться проводником тепла. Просто степень этой теплопроводности может очень сильно отличаться. Поэтому-то через одни материалы тепло буквально улетает (например, металл), а другие вполне могут служить термоизоляцией (минеральная вата, пенополиуретан и др).

Толщины материалов, необходимые для создания равного значения термического сопротивления – наглядно видна разница в коэффициентах теплопроводности.

Это качество материала характеризуется его коэффициентом теплопроводности. Обычно эта величина обозначается греческой буквой λ, а единицей измерения служит Вт / (м×К).

К – это Кельвин, то есть по сути — градус по шкале Кельвина, что для многих наших строителей является весьма непривычным. Поэтому очень часто можно встретить справочные таблицы, в который Кельвины заменены на градусы Цельсия – так понятнее (Вт / (м×℃)).

Коэффициент теплопроводности – это табличная величина, отражающая физические свойства материала. Значение указывается в справочных таблицах, которых немало опубликовано в интернете. Очень часто этот коэффициент указывается и в паспортных характеристиках приобретаемых строительных материалов.

(В приложении к этой статье есть таблица, в которой указаны коэффициенты теплопроводности для большинства из применяемых в индивидуальном строительстве материалов. Ее можно скопировать, например, в формате электронной таблицы Excel, и затем использовать в различных строительных расчетах).

А вот теплопроводные характеристики создаваемой конструкции уже описываются другой величиной – сопротивлением теплопередаче Rt (его еще частот называют термическим сопротивлением).

Между коэффициентом теплопроводности и сопротивлением теплопередаче имеется следующая взаимосвязь:

Rt = δ / λ, 

δ — это толщина слоя материала, выраженная в метрах.

Соответственно, единицей измерения является следующая величина — м²×℃/Вт

При строительстве очень часто конструкция включает в себя несколько слоев различных материалов. Это может быть обусловлено и технологией строительства, но чаще делается в интересах отделки и, что, пожалуй, главное – утепления. Суммарное сопротивление теплопередаче такой конструкции, состоящей из n-слоев, можно выразить следующим образом:

Rt общ = δ1 / λ1 + δ2 / λ2 + … + δn / λn

Формула, правда, несколько неточна, так как в ней должны фигурировать еще значения сопротивления тонких пристенных слоев воздуха снаружи и внутри. И хотя они довольно незначительны, и каких-то серьёзных изменений в общую картину не вносят, лучше не забыть и о них.

Rt общ = 1 / αв + δ1 / λ1 + δ2 / λ2 + … + δn / λn + 1 / αн

Схема показывает, из чего слагается общее сопротивление теплопередаче многослойной строительной ограждающей конструкции

Как видите, добавились еще две величины.

— αв – коэффициент тепловосприятия у внутренних поверхностей. Для ровных, не имеющих ребристости внутренних поверхностей стен, полов и потолков его можно взять равным 8,7 Вт/(м×℃)

αн – коэффициент теплоотдачи а наружной поверхности стены. Здесь он в больше мере зависит от скорости воздуха (ветра).

Для обычных инженерных расчетов, когда принято среднюю скорость ветра считать равной 5 м/с, этот коэффициент примет значение 23 Вт/(м×℃).

Более точные значения можно взять из следующей таблицы. Например, рассчитывается сопротивление стены, выходящей внешней стороной в неотапливаемое помещение, но воздух в котором практически неподвижен.

Скорость воздуха (ветра) м/с 1 2 3 4 5 6 8 10
Значение αн, Вт/(м×℃) 3.3 11,0 15.2 19.1 22.9 26.4 33.3 39.8

Как видите, при желании и наличии информации о строении конструкций, можно определить ее сопротивление теплопередаче. Только вот зачем нам это надо?

А именно для того, чтобы рассчитать теплопотери. Дело в том, что термическое сопротивление как раз и показывает, какое количество тепла будет передано через эту конструкцию на площади 1 квадратный метр и при разнице температур в 1 градус.

Это можно выразить следующей формулой

Rt = Δt / q

Δt — разница температур с разных сторон ограждающей конструкции (например, в помещении и на улице).

q — количество тепла, которое уйдет в течение часа через ограждающую конструкцию на площади 1 м².

То есть удельные теплопотери с участка конструкции будут равны

q = Δt / Rt

А если умножить на общую площадь рассчитываемой конструкции, то можно определить и суммарные потери тепла через нее:

Qк = Sк × Δt / Rt

где

— теплопотери через определённую строительную конструкцию;

— площадь этой конструкции в квадратных метрах

Так, разбив рассматриваемое помещение на участки, можно довольно точно определить для каждого из них его теплопотери. Например, берутся в расчет внешние стены. Внутренние брать нет смысла, если в комнатах поддерживается одинаковая температура.

Для расчета обычно берут температуру воздуха на улице, свойственную самой холодной декаде зимы. Например, для региона самыми сильными (но при этом – нормальными!) морозами считаются – 35 ℃. А для комфортного проживания в доме в нем стараются поддерживать температуру не ниже +20 ℃. Значит, разница температур при расчетах должна закладываться в 55 градусов! Тем самым задаётся довольно неплохой эксплуатационный запас, так как такие морозы обычно стоят не слишком долго, и в остальное время система отопления будет трудиться в «щадящем» режиме.

Как быть с окнами? Иногда их наличие просто игнорируют, то есть включают в общую площадь стен. Это все же кажется не совсем правильным. Тем более что и площадь остекления бывает порой весьма значительна, и показатели термического сопротивления разных окон тоже могут весьма сильно отличаться.

Предлагается воспользоваться вот такой табличкой, в которой уже рассчитаны значения сопротивления теплопередаче для разных типов окон. То есть останется только закончить расчет, указав в формуле площадь окна и разницу температур.

Тип окна Rt (м ² × ℃ /Вт)
Обычное деревянное окно с двойными рамами 0.37
Однокамерный стеклопакет (толщина стекла 4 мм)
4-16-4 0.32
4-Ar16-4 0.34
4-16-4i 0.53
4-Ar16-4i 0.59
Двухкамерный стеклопакет
4-6-4-6-4 0.42
4-Ar6-4-Ar6-4 0.44
4-6-4-6-4i 0.53
4-Ar6-4-Ar6-4i 0.60
4-8-4-8-4 0.45
4-Ar8-4-Ar8-4 0.47
4-8-4-8-4i 0.55
4-Ar8-4-Ar8-4i 0.67
4-10-4-10-4 0.47
4-Ar10-4-Ar10-4 0.49
4-10-4-10-4i 0.58
4-Ar10-4-Ar10-4i 0.65
4-12-4-12-4 0.49
4-Ar12-4-Ar12-4 0.52
4-12-4-12-4i 0.61
4-Ar12-4-Ar12-4i 0.68
4-16-4-16-4 0.52
4-Ar16-4-Ar16-4 0.55
4-16-4-16-4i 0.65
4-Ar16-4-Ar16-4i 0.72

В таблице указано несколько типов стеклопакетов. Они описываются «формулами», в которых указывается толщина стекла (по умолчанию 4 мм) и расстояние между ними, то есть, по сути, толщина одной камеры. Если толщина стекла показана, как 4i — то это стекло со специальным покрытием, придающим окну дополнительные энергосберегающие качества. Если ширина камеры показана с буквенным символом Аr, то это означает ее заполнение аргоном или иным инертным газом, что также дает существенный выигрыш в сохранении тепла.

Грамотный выбор оконных систем с энергосберегающими стеклопакетами позволяет достичь немалой экономии в затратах на отопление.

При проведении расчетов следует помнить еще некоторые тонкости. Например, не принимаются во внимание те слои, которые со стороны улицы отделены от конструкции вентилируемым зазором. В частности, это касается вентилируемых фасадов. Да и практически всех типов кровельных покрытий, за исключением плоских крыш. Ведь по технологии между слоем утепления и кровельным покрытием в обязательном порядке должен оставаться зазор для вентиляции этого пространства.

Кстати, проведение таких расчетов теплопотерь помогают еще и правильно оценить, насколько эффективна созданная система термоизоляции дома. Дело в том, что суммарное сопротивление теплопередаче той или иной строительной конструкции должно быть не меньше нормированного значения, установленного для данного региона с учетом его климатических особенностей.

Причем эти нормы – различаются для стен, для перекрытий и покрытий.

Подобные справочные данные наверняка можно найти в любой местной строительной организации – к каким показателям термического сопротивления они стремятся при проектировании и возведении зданий.

А можно и воспользоваться предлагаемой картой-схемой – на ней наглядно показаны нужные значения. Главное только – не спутать их цветовую маркировку, расшифровка которой указана в сносках.

Карта-схема территории России с проставленными нормированными значениями сопротивления теплопередаче для разных строительных конструкций

Карта-схема территории России с проставленными нормированными значениями сопротивления теплопередаче для разных строительных конструкций

Например, расчет проводится для внешней стены дома, выстроенного в Пензенской области. Находим по карте, что для создания в доме комфортных условий суммарное термическое сопротивление ограждающей конструкции должно достигать 3,15 м²×℃/Вт. Но на деле после проведения вычислений получилось, что оно составляет всего 2,77. Этого явно недостаточно, то есть образовавшийся «дефицит» в 3,15 – 2,43 = 0,72 м²×℃/Вт желательно покрыть, несколько увеличив слой утеплителя.

Это тоже несложно вычислить:

hy = ΔRt × λy

hy — искомая толщина утеплительного слоя, которая доведет суммарное термическое сопротивление конструкции до нормативного значения;

ΔRt — разница между нормированным и реальным значением термического сопротивления;

λy — коэффициент теплопроводности выбранного утеплительного материала.

Например, в нашем примере утепление велось минеральной ватой с коэффициентом теплопроводности в 0.043 Вт/м×℃. Выясняется, что оно оказалось недостаточным. Подсчитываем, на сколько потребуется увеличить слой термоизоляции, чтобы выйти на норму.

hy = 0,72× 0,043 = 0,03096 м

То есть дополнительный слой минеральной ваты, толщиной в 30 мм, решит вопрос с полноценностью утепления стены.

По такому пути подсчета теплопотерь через ограждающие конструкции проходило очень много людей. Неудивительно, что в интернете можно отыскать немало таблиц, в котором указаны уже готовые удельные величины для популярных в частном строительстве конструкций. То есть проектировщики делятся своими наработками, и это может очень существенно упростить задачу для начинающего.

Например, вот такая таблица, в которой приведены рассчитанные значения термического сопротивления. Останется только внести в формулу разницу температур и площадь конструкции:

Материал и толщина стены или иной конструкции Сопротивление теплопередаче  Rt (м ² × ℃/Вт)
Кирпичная стена
    толщиной в 3 кирпича (790 мм) 0.592
    толщиной в 2.5 кирпича (670 мм) 0.502
    толщиной в 2 кирпича (540 мм) 0.405
    толщиной в 1 кирпича (250 мм) 0.187
Сруб из бревна Ø 250 мм 0.550
Ø 200 мм 0.440
Сруб из бруса
толщиной 200 мм 0.806
толщиной 100 мм 0.353
Каркасная стена (доска + минвата + доска) 200 мм 0.703
Стена из пенобетона   200 мм 0.476
300 мм 0.709
Штукатурка по кирпичу, бетону, пенобетону (20-30 мм) 0.035
Потолочное (чердачное) перекрытие 1.43
Деревянные полы 1.85
Двойные деревянные двери 0.21

Или даже вот такие, в которых сразу приводятся и удельные теплопотери в ваттах, который остается только умножить на площадь.

Характеристика Наружная Удельные теплопотери, Вт/м²
ограждения температура, 1 этаж 2 этаж
°С Угловая Неугловая Угловая Неугловая
комната комната комната комната
Стена в 2.5 кирпича (670 мм)  -24 76 75 70 66
с внутренней штукатуркой -26 83 81 75 71
-28 87 83 78 75
-30 89 85 80 76
Стена в 2 кирпича (54 см)  -24 91 90 82 79
с внутренней штукатуркой -26 97 96 87 87
-28 102 101 91 89
-30 104 102 94 91
Рубленая стена (25 см)  -24 61 60 55 52
с внутренней обшивкой -26 65 63 58 56
-28 67 66 61 58
-30 70 67 62 60
Рубленая стена (20 см)  -24 76 76 69 66
с внутренней обшивкой -26 83 81 75 72
-28 87 84 78 75
-30 89 87 80 77
Стена из бруса (18 см)  -24 76 76 69 66
с внутренней обшивкой -26 83 81 75 72
-28 87 84 78 75
-30 89 87 80 77
Стена из бруса (10 см)  -24 87 85 78 76
с внутренней обшивкой -26 94 91 83 82
-28 98 96 87 85
-30 101 98 89 87
Каркасная стена (20 см)  -24 62 60 55 54
с керамзитовым заполнением -26 65 63 58 56
-28 68 66 61 59
-30 71 69 63 62
Стена из пенобетона (20 см)  -24 92 89 87 80
с внутренней штукатуркой -26 97 94 87 84
-28 101 98 90 88
-30 105 102 94 91

Безусловно, всех «комбинаций» строительных материалов, да еще и дополненных термоизоляцией, предусмотреть невозможно. Значит – кропотливо, не торопясь, оценивая конструкцию каждой перегородки и каждого перекрытия в комнате, ведут подсчет суммарных теплопотерь.

Но это пока что – только через ограждающие конструкции дома. А ведь немалая доля потерь тепла приходится еще и на вентиляцию!

Как рассчитываются объемы теплопотерь через вентиляцию?

Надо сразу сказать, что здесь в плане расчетов – значительно проще.

Без вентиляции жизнь в доме невозможна. То есть постоянно в жилые помещения должен обеспечиваться приток свежего воздуха. А через вентиляционные каналы на кухне, в ванной, в санузле, в некоторых других технических помещениях – вытягиваться на улицу.

Разнообразие схем организации вентиляции в доме – очень велико. А  ее отсутствие или недостаточность – совершенно недопустимы!

Такой обмен воздуха тоже должен подчиняться определенным законам. Он, в зависимости от обстоятельств, от особенностей каждого помещения, рассчитывается или с позиций кратности, исходя из объема комнаты, или в абсолютных показателях, например, кубометров в час на каждого длительно пребывающего в комнате человека.

Эти требования перечислены в предлагаемой вниманию читателя таблице. Она содержит нормативы из различных документов, которые, на первый взгляд, иногда начинают противоречить друг другу. Ничего подобного – они никак не отменяют один другого. Просто подсчёт норм вентиляции обычно проводится со всех возможных позиций, а затем для дальнейших вычислений берется максимальное из полученных значение.

Кроме того, наверное, понятно, что приток должен быть равен вытяжке. То есть если приток получается выше, приходится «за уши подтягивать» вверх и вытяжку. Если вдруг выходит наоборот, то есть вытяжка получается объемнее – ничего не поделаешь, придется увеличивать и приток.

Таблица нормативов воздухообмена при вентиляции жилого дома.

Тип помещения Минимальные нормы воздухообмена (кратность в час или кубометров в час)
ПРИТОК ВЫТЯЖКА
Требования по Своду Правил СП 55.13330.2011 к СНиП 31-02-2001 «Одноквартирные жилые дома»
Жилые помещения с постоянным пребыванием людей Не менее однократного обмена объема в течение часа
Кухня 60 м³/час
Ванная, туалет 25 м³/час
Остальные помещения Не менее 0,2 объема в течение часа
Требования по Своду Правил СП 60.13330.2012 к СНиП 41-01-2003 «Отопление, вентиляция и кондиционирование воздуха»
Минимальный расход наружного воздуха на одного человека: жилые помещения с постоянным пребыванием людей, в условиях естественного проветривания:
При общей жилой площади более 20 м² на человека 30 м³/час, но при этом не менее 0,35 от общего объема воздухообмена квартиры в час
При общей жилой площади менее 20 м² на человека 3 м³/час на каждый 1 м² площади помещения
Требования по Своду Правил СП 54.13330.2011 к СНиП 31-01-2003 «Здания жилые многоквартирные»
Спальная, детская, гостиная Однократный обмен объема в час
Кабинет, библиотека 0,5 от объема в час
Бельевая, кладовка, гардеробная 0,2 от объема в час
Домашний спортзал, биллиардная 80 м³/час
Кухня с электрической плитой 60 м³/час
Помещения с газовым оборудованием Однократный обмен + 100 м³/час на газовую плиту
Помещение с твёрдотопливным котлом или печью Однократный обмен + 100 м³/час на котел или печь
Домашняя прачечная, сушилка, гладильная 90 м³/час
Душевая, ванная, туалет или совмещенный санузел 25 м³/час
Домашняя сауна 10 м³/час на каждого человека

Как видно, объемы получаются немалыми. Даже однократный обмен в течение часа (а это минимум!) заставляет оперировать многими десятками и даже сотнями кубометров!

Понятно, что с приходом зимы уходящий в вытяжные каналы воздух невольно будет «уводить» с собой немало тепла. Увы, это неизбежные издержки. С ними, правда стараются бороться, сводить их к минимуму, например, монтажом рекуператоров. Это такие установки, где «перекрещиваются» входящий и уходящий потоки воздуха, и при этом уходящий делится своим теплом со свежим, поступающим в комнаты.

Рекуперация тепла – один из способов свести к минимуму тепловые потери при вентиляции помещений.

Используют и системы геотермального подогрева воздуха. Но все равно пока что вентиляционные теплопотери рассматриваются в качестве одних из наиболее значительных.

А вот рассчитать их на деле – довольно просто. Если известен требуемый воздухообмен, то его необходимо сначала привести к весовому эквиваленту. Ну а затем – просчитать, сколько тепловой энергии потребуется, чтобы нагреть такую массу воздуха до определенной температуры.

Например, по таблице определено, что в течение часа будет достаточно однократного воздухообмена. Значит, объем притока во все жилые помещения должен соотвествовать их реальному геометрическому объему.

Допустим, имеется три комнаты: 6,3×4,0 м, 4,7×3,4 м и 2,8×3,3 м. Высота потолков везде одинаковая и составляет 2,8 м

Общая площадь жилых помещений – 50,42 м². Значит, общий объем, и он же – однократный обмен воздуха – 141,18 м³.

Плотность воздуха при средней температуре в 20 градусов – 1,2041 кг/м³.  В течение часа должно смениться почти 170 килограмм воздуха.

Удельная теплоёмкость воздуха – примерно 1005 Дж/(кг×℃). Это, если перевести в ватты, в которых мы уже начали расчет – 0,279 Втч/(кг×℃). Это столько нужно тепловой энергии, чтобы нагреть один килограмм воздуха на 1 градус.

Понятно, что при самых сильных морозах вентиляцию все же стараются как-то «придушить», свести к минимуму приток очень холодного воздуха. Но даже если рассматривать для, например, вполне скромных минус 10℃, то уже получаются внушительные величины.

Считаем:

Qвнт = 170 кг × 30 ℃ × 0,279 Втч/(кг×℃) = 1422 Вт или 1,42 кВт.

Кому-то может показаться, что и не сильно много. Но это – только на вентиляцию, и, извините, при самом лёгком морозце в доме (или квартире) ну очень скромной площади. Да и полтора почти киловатта в час – это не так уж и мало: в сутки набежит 34, в месяц — 1039, а за условные семь месяцев отопительного сезона потери могут составить 7270 киловатт!

А площадь частных домов может быть и значительно больше, и потолки выше, и помещения некоторые потребуют не однократного обмена, а двух-трех и более. Так что не зря вентиляцию ставят на одно из лидирующих мест в этом вопросе.

Расчет канализационных теплопотерь

Это расчет проводят нечасто, так как на деле такие теплопотери в наименьшей степени влияют на общий объем подлежащего компенсации утраченного тепла.

Сначала давайте разберемся, в чем они выражаются.

Зимой вода поступает из источника в дом очень холодной. Так, она может иметь температуру всего в 4 ÷ 6 ℃, что делает ее применение крайне некомфортной. Для бытового применения ее необходимо греть. И эта задача тоже чаще всего ложится на систему отопления.

Кроме того, даже просто контактируя с воздухом в помещениях (через поверхности труб, через стенки сливного бачка унитаза, при открытом кране и т.п.) холодная вода непроизвольно отбирает у него часть тепла.

Вся подогретая вода рано или поздно сливается в канализацию, унося с собой и отобранное тепло.

Бездомные кошки и собаки не зря зимой собираются на люках – с канализацией из жилых домов уходит немало тепла.

Давайте посмотрим в среднем, какой уровень теплопотерь это даст.

Допустим, семья из трех человек в течение месяца выходит на средний расход воды в 15 кубометров (данные взяты условно, так как вполне могут варьироваться и в большую, и в меньшую сторону). Остановимся на том, что  зимой температура воды из источника равна 6 ℃.

Часть воды будет нагреваться до высоких температур в бойлере, двухконтурном котле или проточном водонагревателе. Другая часть используется вообще без нагрева или идёт на подмес. Здесь довольно сложно правильно разделить эти объемы, поэтому давайте условно согласимся с тем, что вся вода нагревается тем или иным способом до +25 градусов.

Считаем, сколько энергии необходимо затратить на нагрев этого количества. Теплоёмкость воды 4183 Дж/(кг×℃) или 1,1619 Втч/(кг×℃) Плотность принимаем «классическую», то есть 1000 кг/м³.

Qкн = 15000 кг × 19 ℃ × 1,1619 Втч/(кг×℃) = 331 141 Вт — но это в течение месяца.

В сутки в среднем получается 10857 Вт, а в час, соответственно, 452 Вт, то есть 0,452 кВт.

Даже в сравнении с вентиляцией – слишком большими потерями не выглядит. Поэтому таким подсчетом чаще всего пренебрегают.

*  *  *  *  *  *  *

Понятно, что потери с вентиляцией и канализацией суммируются с потерями через строительные конструкции, взятыми уже в масштабе всего дома, то есть по всем отапливаемым помещениям. Общее значение может дать представление о той мощности, которую необходимо потратить на восполнение этих потерь. То есть – как раз о мощности системы отопления. Обычно к полученным показателям добавляют еще порядка 10% — на непредвиденные, аномальные похолодания.

Может проводиться и отдельный дополнительный расчет, если, скажем, именно на котельное оборудование возлагается задача подогрева воды для бытовых нужд. Но об

калькулятор, оптимальное количество теплообменников в системе

Для того чтобы дома всегда были комфортные условия, отопление должно обладать оптимальной мощностью, а этого невозможно достичь, без тщательного расчёта системы. На подбор параметров влияют характеристики не только оборудования, но и объёмно-планировочные решения самого здания.

Содержание статьи:

Расчет системы отопления в частных домах

Подробный расчет могут провести специализированные компании, которые занимаются проектированием и монтажом отопления. В случае, если обыватель проводит комплекс работ самостоятельно, ему потребуются определённые навыки в этой области.

Важно: Выполнить подбор наиболее подходящего для конкретного объекта оборудования поможет интерактивный калькулятор на любом из профессиональных интернет-порталов – он учтет все параметры и выдаст наиболее точный результат.

При проведении самостоятельного расчета нужно учесть несколько факторов:

  • Отапливаемая площадь дома.
  • Мощность котла.
  • Количество радиаторов, теплообменников и их теплоотдача.
  • Потери тепла.
  • Особенности дома – утепление стен, их количество, площадь, наличие и габариты окон и т.д. Кроме того, необходимо знать мощность циркуляционного насоса, так как каждый метр длины системы требует большей мощности устройства для принудительного движения теплоносителя.

Как рассчитать оптимальное количество и объем теплообменников

Как рассчитать отопление? При использовании упрощенной схемы расчета на 1 киловатт мощности приходится 10 м2 отапливаемого помещения (или 100 Вт на 1 м2). Мощность вычисляется по формуле: N = S*100*1,45, под буквой S подразумевается площадь пространства, которое предстоит отапливать, а 1,45 — это коэффициент потери тепловой энергии.

Важно: Изменить мощность излучателя можно, увеличив или уменьшив количество секций в батарее. Мощность одной секции в разных типах радиаторов может различаться.

Какие параметры следует учитывать при расчете

При расчете отопления нужно учитывать следующие характеристики здания:

  • Габариты в плане и высота потолков. Именно от этого зависит площадь и объём – чем они больше, тем выше мощность приборов для отопления (на каждые 10м2 требуется 1 кВт).
  • Количество этажей, так как расчёт необходимо повторять для каждого уровня здания.
  • Наличие / отсутствие дымоходного или вентиляционного каналов. Наличие вытяжных отверстий увеличивает потери тепла, что скажется на потреблении энергии.
  • Количество и размер окон. Если в комнате имеется два окна с двумя наружными стенами, то в формуле стоит использовать другой коэффициент (в таком случае на каждый квадратный метр котел должен выдавать не 100 Вт, а 130 Вт).
  • Система распределения тепла (может быть однотрубной, радиальной или иметь две параллельных трубы).
  • Толщина и качество утеплителя.

Расчет мощности оборудования

На данный момент производится четыре основных типа котлов: газовые, на жидком или твердом топливе, функционирующие от электричества.

Важно! Как и при расчете мощности батарей, в этом случае на каждые 10 квадратных метров площади помещения требуется 1 кВт мощности котла. Подбирать отопительное оборудование необходимо с запасом для того, чтобы оно не работало на пределе своих возможностей

Выбор радиатора

При покупке батареи следует обратить внимание:

  • На тепловые характеристики, материал и тип конструкции.
  • Наибольшее давление, при котором работа будет безопасной
  • Количество основных элементов (секций) в батарее, в зависимости от расхода тепла.

В специализированных магазинах можно найти батареи из чугуна, стали, алюминия и биметалла. Выбор зависит в первую очередь от условий эксплуатации и финансовых возможностей владельца здания.

Чугунные

Наиболее выгодными свойствами чугунных батарей являются долгий срок работы и низкая стоимость. Такие радиаторы не поддаются воздействию коррозии и служат до 50 лет. Кроме того, они не чувствительны к качеству циркулирующей жидкости и стабильно выполняют свою функцию даже при высоком давлении в системе – до 12 атмосфер.

Однако, несмотря на свои многочисленные положительные черты, радиаторы такого типа редко устанавливаются в загородных домах, так как они выглядят устаревшими. Из-за этого почти невозможно гармонично вписать их в современные интерьеры.

Важно: Эти батареи тяжелые и их можно устанавливать лишь в домах с очень прочными стенами.

Стальная модель

Данный тип радиатора имеет быстрый нагрев. Это делает его наиболее подходящим для систем с контролем температуры. Самое главное, что вес стальной батареи не будет слишком большим. Ее недостаток заключается в хрупкости, также радиатор плохо переносит большие нагрузки.

Важно: Использовать батарею из стали можно только в том случае, если давление в системе не превышает 7-8 атмосфер.

Нержавеющая сталь

Срок службы этого радиатора очень большой. Также он характеризуется высокой эффективностью и красивым внешним видом. Из недостатков данного типа оборудования отмечают высокую стоимость. Основным преимуществом прибора является его сочетаемость со многими дизайнерскими решениями интерьера.

Алюминий

Алюминиевый радиатор выглядит очень современно и легко вписывается практически в любой интерьер. Имеет невысокую стоимость, но редко используется в частных домах. Проблема в том, что эти радиаторы требовательны к качеству жидкости, циркулирующей в системе.

Такие модели выдерживают нагрузки до 15 атмосфер.

Биметаллическая батарея

В настоящее время биметаллические батареи являются наиболее популярными приборами отопления. Конструкция этого радиатора включает компоненты, изготовленные из двух металлов – алюминия и стали (либо меди). Преимущества биметаллического оборудования заключаются в следующем:

  • Способность выдерживать очень высокое давление охлаждающей жидкости (до 35 бар) и гидравлический удар.
  • Эффективность комбинированного состава достигается повышенной теплоотдачей материала – конвекционные потоки естественным образом циркулируют по помещению, что позволяет легко обогреть даже большие пространства.
  • Достойный внешний вид.
  • Маленький вес.
  • Долговечность (срок использования до 25 лет).

Важно! Биметаллический радиатор является наиболее подходящим прибором отопления для частного дома. Такое оборудование отличается высоким качеством сборки, простотой установки и удобством в эксплуатации.

Какая труба лучше всего подходит для обогрева магистрали

Чтобы приобрести подходящие трубы отопления, нужно:

  • Определить тепловую мощность системы и оптимальное давление охлаждающей жидкости, рассчитать отопление дома.
  • Тепловая мощность рассчитывается по формуле Q = (V * Δt * K) * 860, где V – объем помещения, Δt – разница температур воздуха между помещением и улицей, а K — поправочный коэффициент (в зависимости от степени утепления здания значение определяется по специальной таблице).
  • В среднем, скорость теплоносителя в системе составляет 0,36-0,7 м / с. Оптимальное давление выбирается самостоятельно.
  • Определить по полученным показателям необходимый диаметр трубы с помощью специализированных таблиц.

В качестве материала для труб отопления обычно используется металлопластик. Однако можно использовать стальные или даже дорогие и прочные медные трубы.

Советы и рекомендации по расчету систем отопления

Для успешного расчета и выбора отопительной системы нужно следовать рекомендациям:

  • Атмосферное давление в месте эксплуатации оборудования должно составлять приблизительно 760 мм рт. Для высокогорья необходимо ввести дополнительные поправки для более точных расчетов.
  • Водоснабжение оборудования не должно быть с нижней трубной разводкой. В противном случае теряется около 15…20% тепла.
  • Расстояние от нижней части устройства до пола и от верхней части устройства до подоконника или настенного крепления должно составлять не менее 100 мм, и только в таком случае система сможет обеспечить свободную циркуляцию тепловых потоков.

Расчет отопления – важный этап при обустройстве жилого дома или квартиры. При недостаточной мощности в доме будет холодно. В случае, если она будет слишком большой, дорогостоящее оборудование не будет окупаться, его износ будет высок, а счета за газ будут слишком высоки. Именно поэтому важно знать, как посчитать отопление дома. Если нет возможности сделать это самостоятельно, лучше обратиться к онлайн калькулятору системы отопления.

Водяное отопление частного дома своими руками: схемы

Ссылка на статью успешно отправлена!

Отправим материал вам на e-mail

Водяное отопления для частных домов – идеальное решение. Оно затратное в плане монтажа и использования большого количества различных материалов, но эффективное и экономичное в эксплуатации. Основная задача – это правильно выбрать схему разводки труб.  Многие пытаются собрать несложные разводки своими руками и натыкаются на проблемы, связанные с нюансами сборки, невыполнение которых приводит к неэффективной работе отопления в целом. Поэтому в этой статье мы разберем водяное отопление частного дома своими руками, схемы, фото и практические рекомендации.

Водяное отопление частного дома своими руками схемы

Отопительная система в частном доме

Содержание статьи

Преимущества и недостатки системы водяного отопления

Основной недостаток водяного отопления в частном доме – это необходимость приобретения большого количества различных материалов. А именно: трубы, запорная арматура, фитинги, радиаторы, котел и циркуляционный насос. Последний не во всех системах используется.

И другие недостатки, которые можно обозначить, как нонсенс, если хозяин дома относится к своему жилищу равнодушно:

  • Протечки воды в процессе эксплуатации. Сегодня эта ситуация встречается редко, потому что взамен стальным трубам стали использовать пластиковые. Но даже они иногда подтекают в местах стыковки с другими материалами. Это уже претензии к производителю монтажных работ.
  • Вода внутри системы может замерзнуть, если ее не слить на зиму. Эта ситуация для домов, которые не эксплуатируются в холодное время года.

Пластиковые трубы решили многие проблемы

Преимуществ у водяного отопления больше, именно поэтому его и выбирает основная часть застройщиков новых домов:

  • равномерное распределение тепла по всем комнатам;
  • установка одного нагревательного котла дает возможность контролировать процесс из одного места;
  • все оборудование, кроме радиаторов, и трубную разводку можно сделать скрытой. То есть, организовать в служебном помещении котельную, а трубы спрятать в штробы на стенах или в полу. Использование системы теплых полов вообще решает проблему скрытого монтажа. Даже радиаторов видно не будет;
  • температура теплоносителя не превышает +95°С. А поверхность батарей нагревается до +65°С. Обжечься о них нельзя, пыль на них не горит;
  • водяное отопление выдает мягкое тепло.

Система отопления со скрытой проводкой труб

Особенности системы водяного отопления

Из самого названия становится понятным, что теплоносителем в данном случае выступает вода. Это та среда, которая хорошо аккумулирует тепловую энергию и легко ее отдает. Она обладает высокой теплоемкостью, при нагревании расширяется, но плохо сжимается при увеличении давления. Плотность воды – 950 кг/м³. Сам принцип работы водяного отопления достаточно прост. Вода нагревается в котле, а затем по трубам движется к радиаторам, где отдает свое тепло, и возвращается по обратному контуру в котел.

Как движется теплоноситель по отопительной системе

Основная задача сборки отопления – это заставить теплоноситель двигаться по контуру. Поэтому существуют две разновидности отопительных систем: с естественной циркуляцией теплоносителя и с принудительной. В первом случае вода движется по трубам под действием физических законов, когда теплая среда поднимается вверх, а холодная опускается вниз. Во втором движение происходит за счет работы циркуляционного насоса. Но об этом чуть ниже, а сейчас рассмотрим, какие материалы и оборудование лучше выбрать для монтажа водяного отопления.

Основные элементы водяного отопления

В систему водяного отопления входят:

Полный комплект: котел, радиаторы, насос и расширительный бачок

Полный комплект: котел, радиаторы, насос и расширительный бачок

Котлы для отопления

Перед тем как приобрести и установить котел отопления в частном доме, надо рассчитать его мощность. Этот показатель отражает количество выдаваемой тепловой энергии. И чем больше площадь частного дома, тем мощнее оборудование надо устанавливать.

Газовый генератор для отопления частного дома

Газовый генератор для отопления частного дома

Подсчитать мощность агрегата несложно. Для этого надо знать одно соотношение – на 10 м² необходимо 1 кВт тепловой энергии. Это с учетом, что высота потолков в помещениях не больше 3 м. Но необходимо понимать, что это соотношение будет действовать по-разному в разных климатических регионах. Поэтому в СНиПах заложены климатические коэффициенты.

Регион Северный Средняя полоса Южный
Коэффициент 1,5-2,0 1,0-1,2 0,7-0,9

К примеру, общая площадь частного дома, который располагается в Мурманске – 100 м². Определяется мощность котла так:

  • 100 / 10 = 10 кВт;
  • 10 х 2 = 20 кВт, где «2» — это северный коэффициент.

Жидкотопливный котел в сборе

Жидкотопливный котел в сборе

Теперь, что касается классификации. В основном отопительные агрегаты делятся по типу используемого топлива: газовые, электрические, на твердом или жидком топливе. Если в дом проведен газ, то это самый лучший вариант. Все остальные виды рассматриваются с учетом – что выгодно. Если подача электроэнергии непостоянная или напряжение в сети слабое, то предпочтение лучше отдать твердотопливным котлам. Кстати, последние – это не только дровяные конструкции, это современны

правила и примеры расчёта 🚩 Ремонт дачи

Основными элементами любой обогревательной сети частного дома являются котел, радиаторы и циркуляционный насос. Расчеты мощности именно такого оборудования и необходимо производить прежде всего при проектировании отопительной системы. Также при обустройстве коммуникаций этого типа следует определиться с толщиной прокладываемых магистралей.

Профессиональные инженеры составляют чертежи отопительных систем загородных домов с учетом множества самых разных факторов. При выполнении расчетов специалисты принимают во внимание, к примеру, такие показатели, как теплопроводность материала стен дома, площадь окон и дверей, особенности конструкции вентиляционной системы и пр.

Самостоятельные расчеты выполняют чаще всего все же по упрощенной схеме. Использование такого метода, к сожалению, не исключает разного рода ошибок в проектировании. Погрешности при применении такой схемы расчетов критичными обычно не бывают. Но все же использовать такой способ проектирования можно только при обустройстве систем отопления не слишком больших по площади домов.

Для обогрева загородных жилых домов могут использоваться нагревательные агрегаты:

  • газовые;
  • дровяные;
  • электрические.

Вне зависимости от разновидности котла, расчеты мощности при использовании упрощенной схемы производится одним и тем же способом. В первую очередь нагревательное оборудование для системы отопления выбирают, конечно же, с учетом общей площади дома. Также в обязательном порядке учитывают климатические особенности той местности, в которой построено здание.

Выполняют расчеты мощности котла по такой формуле:

M — искомая мощность котла, П — отапливаемая площадь дома, МУД — удельная мощность котла.

Последний параметр определяется в зависимости от региона расположения дома. Удельная мощность котлов составляет:

  • для теплых регионов — 0.7-0.9 кВт;
  • для средней полосы — 1.0-1.2 кВт;
  • для Москвы и Подмосковья — 1.2-1.5 кВт;
  • для северных районов — 1.5-2 кВт.

Полученную при использовании такой формулы цифру в последующем желательно увеличить еще на 20%. Это позволит обеспечить качественный обогрев здания в случае, к примеру, кричного понижения температуры воздуха на улице или же при замедлении подачи топлива в нагревательный агрегат.

Для примера сделаем вычисления необходимого теплового потенциала нагревательного оборудования отопительной сети дома площадью в 50 м², построенного в Рязанской области.

Исходные данные в этом случае будут выглядеть так:

Производим собственно сам подсчет:

Далее добавляем поправочные 20% и получаем:

То есть для дома в 50 м², возведенного в средней полосе РФ, понадобиться котел мощностью примерно в 7 кВт.

В большинстве случаев в частных загородных зданиях сегодня монтируются отопительные системы принудительного типа. Теплоноситель в таких сетях движется по магистралям в результате работы циркуляционного насоса, установленного в большинстве случаев на обратке.

Производится расчет такого оборудования с учетом:

  • верхней точки системы;
  • сопротивления теплосети;
  • площади дома.

Сопротивление сети при выполнении самостоятельных расчетов определяют обычно в зависимости от типа используемых радиаторов. Так, к примеру, этот показатель будет составлять:

  • для чугунных батарей — 1 м;
  • для биметаллических — 2 м;
  • для алюминиевых — 1.2 м.

Верхней точкой системы называют обычно высоту расположения радиаторов на последнем этаже здания.

Допустим, наш дом в 50 м² метров имеет высоту в два этажа. Радиаторы на последнем этаже в этом случае будут располагаться на высоте примерно в 2.5 м. Исходя из этого, можно вычислить необходимый напор насоса. Если батареи в доме установлены биметаллические, этот показатель будет составлять:

По стандарту, на 10 м² помещения необходимо порядка 1 кВт мощности батареи. Согласно этому, определяем потребляемую электроэнергию:

Переводим киловатты в килокалории:

Теперь нужно вычислить собственно производительность насоса. Для этого необходимо, помимо всего прочего, знать рекомендованную разницу температур теплоносителя на входе и на выходе. В большинстве случаев при применении упрощенной схемы расчетов отопительных систем этот показатель принимают равным 20.

В этом случае искомая производительность насоса при напоре в 4.5 м будет составлять:

Этот параметр для каждого помещения придется рассчитывать отдельно. Для определения нужного количества батарей в конкретной комнате следует знать:

  • мощность секции радиатора;
  • площадь самого помещения.

Мощность секций батарей зависит от их габаритов и использованного для изготовления материала. Этот параметр производители указывают в технических паспортах радиаторов.

При выполнении расчетов сначала определяют общую требуемую мощность для эффективного отопления комнаты. При этом во внимание принимают то, что для обогрева 1 м² помещения необходимо порядка 100 Вт мощности радиатора.

Далее полученную цифру делят на показатель мощности одной секции. Таким образом определяют требуемое количество секций. По описанной выше схеме расчет радиаторов системы отопления выполняют для комнат:

  • с высотой потолков ниже 3 м;
  • количеством окон не более одного;
  • без контактирующих с улицей стен;
  • с хорошей теплоизоляцией.

В противном случае дополнительно используют поправочный коэффициент 1.1. Это позволяет сделать отопление помещения максимально эффективным.

Допустим, нужно узнать требуемое количество биметаллических радиаторов для комнаты в 20 м² с потолками высотой в 2.5 м, одним окном, не имеющей наружных ограждающих конструкций. Сначала узнаем общую требуемую мощность:

Теперь вычисляем нужное количество биметаллических секций, с учетом того, что мощность одной из них (стандартной на 500 мм) обычно составляет 200 Вт:

То есть в данном случае для эффективного обогрева помещения необходимо 10 биметаллических секций. Следовательно, в комнате придется установить, к примеру, два радиатора по пять секций или же один— на 10 секций.

Если в помещении предусмотрено больше одного окна, а его потолки имеют высоту, превосходящую 3 м, применяем поправочный коэффициент 1.1:

  • 2000*1.1=2200 — для второго окна;
  • 2200*1.1=2420 — поправка на потолок.

Далее по описанной выше схеме рассчитываем число секций:

То есть в данном случае в комнате на 20 м2, скорее всего, придется установить два радиатора по 6 секций.

Этот параметр также определяется с учетом того, что для эффективного обогрева 10 м² помещения необходима 1 кВт энергии. То есть для дома в 50 м² этот показатель будет составлять 5 кВт и с поправкой в 20% — 6 кВт или 6000 Вт.

Собственно сам диаметр труб вычисляется по специальным таблицам. Для двухтрубной системы отопления такая таблица будет выглядеть так:

В нашем примере, для того чтобы определить сечение труб, нужно найти в таблице в общем поле вычисленный нами показатель в 6000 Вт и посмотреть на указанное в правом столбце значение. Мощность теплового потока в данном случае будет находиться между цифрами 5748 и 7185. Следовательно, в доме необходимо будет протянуть магистрали сечением 15 мм.

Расчет системы отопления частного дома, схема, таблицы

расчет отопления частного дома

Отопление частного дома

Система водяного отопления все больше в последнее время пользуется популярностью как основной способ для обогрева частного дома. Водяное отопление может быть дополнено и такими устройствами, как обогреватели, работающие на электричестве. Некоторые устройства и отопительные системы появились на отечественном рынке совсем недавно, но уже сумели завоевать популярность. К таким можно отнести обогреватели инфракрасного типа, масляные радиаторы, систему теплого пола и другие. Для обогрева локального типа нередко применяется такое устройство, как камин.

Однако в последнее время камины выполняют больше декоративную функцию, чем обогревательную. От того, насколько правильно был осуществлен проект и расчет отопления частного дома, а также установлена система водяного отопления, зависит ее долговечность и эффективность во время эксплуатации. Во время работы такой отопительной системы необходимо придерживаться определенных правил для того чтобы она работала как можно более эффективно и качественно.

Отопительная система частного дома – это не только такие компоненты, как котел или радиаторы. Отопительная система водяного типа включает и такие элементы:

  • Насосы;
  • Средства автоматики;
  • Трубопровод;
  • Теплоноситель;
  • Устройства для регулировки.

Чтобы произвести расчет отопления частного дома, нужно руководствоваться такими параметрами, как мощность отопительного котла. Для каждой из комнат дома необходимо рассчитать также мощность радиаторов отопления.

расчет отопления частного дома калькулятор

Схема системы отопления

Выбор котла

Котел может быть нескольких типов:

  • Электрический котел;
  • Котел, работающий на жидком топливе;
  • Газовый котел;
  • Твердотопливный котел;
  • Комбинированный котел.

Выбор котла, который будет использовать схема отопления жилого дома, должен зависеть от того, какой тип топлива является наиболее доступным и недорогим.

Кроме затрат на топливо, потребуется не реже, чем раз в год проводить профилактический осмотр котла. Лучше всего для этих целей вызывать специалиста. Также потребуется выполнять профилактическую очистку фильтров. Наиболее простыми в эксплуатации считаются котлы, которые работают на газе. Также они довольно дешевые в обслуживании и ремонте. Газовый котел подойдет только в тех домах, которые имеют доступ к газовой магистрали.

Газ – это такой тип топлива, который не требует индивидуальной транспортировки или места для хранения. Помимо этого преимущества, многие газовые котлы современного типа могут похвастаться довольно высоким показателем КПД.

Котлы данного класса выделяются высокой степенью безопасности. Современные котлы устроены таким образом, что для них не требуется выделять специальное помещение для котельной. Современные котлы характеризуются красивым внешним видом и способны удачно вписаться в интерьер любой кухни.

расчет системы отопления частного дома

Газовый котел на кухне

На сегодняшний день особой популярностью пользуются полуавтоматические котлы, работающие на топливе твердого типа.  Правда, есть у таких котлов один недостаток, который заключается в том, что один раз в день необходимо загружать топливо. Многие производители выпускают такие котлы, которые являются полностью автоматизированными. В таких котлах загрузка твердого топлива происходит в автономном режиме.

Сделать расчет системы отопления частного дома можно и в случае с котлом, работающем на электричестве.

Однако такие котлы немного более проблематичные. Помимо основной проблемы, которая заключается в том, что сейчас электричество довольно дорогое, они еще могут перезагружать сеть. В небольших поселках на один дом выделяется в среднем до 3 кВт в час, а для котла этого мало, причем нужно учитывать, что сеть будет загружена не только работой котла.

как рассчитать отопление в доме

Электрический котел

Для организации отопительной системы частного дома можно установить и жидкотопливный тип котла. Недостатком таких котлов является то, что они могут вызывать нарекания с точки зрения экологии и безопасности.

Рекомендуем к прочтению:

Расчет мощности котла

Перед тем, как рассчитать отопление в доме, делать это необходимо с расчета мощности котла. От мощности котла, в первую очередь, будет зависеть эффективность всей отопительной системы. Главное в этом вопросе – не переусердствовать, так как слишком мощный котел будет потреблять больше топлива, чем необходимо. А если котел будет слишком слабый, то не получится обогреть дом должным образом, а это негативно повлияет на комфорт в доме. Поэтому расчет системы отопления загородного дома – это важно. Подобрать котел необходимой мощности можно, если параллельно высчитать удельные теплопотери здания за весь отопительный период. Расчет отопления дома – удельных теплопотерь можно следующим методом:

qдом=Qгод/Fh

Qгод – это расход теплоэнергии за весь период отопления;

Fh – площадь дома, которая отапливается;

схема отопление дома

Таблица выбора мощности котла в зависимости от отапливаемой площади

Для того чтобы осуществить расчет отопления загородного дома – расход  энергии, которая уйдет отопления частного дома, нужно воспользоваться следующей формулой и таким средством, как калькулятор:

Qгодh*[Qk-(Qвн б+Qs)*ν

βh – это коэффициент учета дополнительно потребления тепла, отопительной системой.

Qвн б – тепловые поступления бытового характера, которые характерны для всего отопительного периода.

Qk – это значение общих домовых теплопотерь.

Qs – это поступления тепла в виде солнечной радиации, которые попадают в дом через окна.

Перед тем, как рассчитать отопление частного дома, стоит учесть, что для различных типов помещений характерны разные температурные режимы и показатели влажности воздуха. Они представлены в следующей таблице:

Рекомендуем к прочтению:

расчет отопления дома

Далее представлена таблица, в которой показаны коэффициенты затенения прореза светового типа и относительного количества солнечной радиации, которая поступает через окна.

домашнее отопление схема

Если планируется установить водяное отопление, то площадь дома будет во многом определяющим фактором. Если дом имеет общую площадь не более чем 100 кв. метров, то подойдет и отопительная система с циркуляцией естественного типа. Если дом имеет площадь большего размера, то в обязательном порядке необходима система отопления с циркуляцией принудительного характера. Расчет системы отопления дома должен производиться точно и правильно.

Насос для циркуляции должен устанавливаться в обратку. Такой насос должен быть не только надежным и долговечным, но также экономным в плане потребления энергии и не производить неприятный шум. Нередко современные котлы уже оснащены циркуляционным насосом.

Трубопроводы отопительной системы

Для монтажа схема отопление дома может использовать такие типы трубопроводов:

  • Трубопроводы из полиэтилена, полипропилена или металлопластика;
  • Трубопроводы из меди;
  • Трубопроводы из стали.
расчет отопления загородного дома

Полиэтиленовые трубы

схема системы отопления дома

Полипропиленовые трубы

программа расчета отопления частного дома

Медные трубы

расчет системы отопления дома

Стальные трубы

Все из этих трубопроводов обладают как своими преимуществами, так и недостатками. Полимерные трубы более простые в монтаже и надежно защищены от воздействия коррозии. Медные трубы более устойчивые к высоким температурам и способны выдержать высокое давление. Стальные трубы выделяются таким недостатком, как потребность в проведении некоторых сварочных процессов. Программа расчета отопления частного дома должна учитывать абсолютно все детали, включая и это.

Выбор котлов для отопления частного дома

Отопительные приборы, которые использует схема системы отопления дома, могут быть следующих видов:

  • Ребристые или конвективные;
  • Радиационно-конвективные;
  • Радиационные. Радиационные отопительные приборы редко используются для организации отопительной системы в частном доме.

Современные котлы обладают характеристиками, которые приведены в следующей таблице:

как расчитать отопление частного дома

Когда осуществляется расчет отопления в деревянном доме, данная таблица может вам в некоторой степени помочь. При монтаже отопительных приборов нужно соблюдать некоторые требования:

  • Расстояние от отопительного прибора до пола должно составлять не меньше, чем 60 мм. Благодаря такому расстоянию домашнее отопление схема позволит провести уборку в труднодоступном месте.
  • Расстояние от прибора отопления до подоконника должно быть минимум в 50 мм, чтобы радиатор в случае чего можно было без проблем снять.
  • Ребра приборов отопления должны быть расположены в вертикальном положении.
  • Желательно отопительные приборы монтировать под окнами или возле окон.
  • Центр прибора отопления должен совпадать с центром окна.

Если в одной комнате находится несколько отопительных приборов, то они должны быть расположены на одном и том же уровне.

Онлайн калькуляторы для расчета системы отопления

Расчет системы отопления – это очень важный этап, от которого во многом зависит последующий комфорт и удобство проживания в доме. Мы подготовили для вас десятки бесплатных онлайн-калькуляторов, которые облегчат расчеты, и все они собраны в рубрике «Система отопления»! Но для начала выясним, как вообще рассчитывается отопительная система?

Этап №1. Вначале рассчитываются теплопотери здания – эти сведения необходимы для того, чтобы определить мощность отопительного котла и каждого из радиаторов в частности. В этом вам поможет наш калькулятор теплопотерь! Что характерно, их следует рассчитывать для каждого помещения, в котором имеется наружная стена.

Этап №2. Далее нужно выбрать температурный режим. В среднем, для расчетов используется значение 75/65/20, что полностью соответствует требованиям EN 442. Если выберите именно этот режим, то уж точно не ошибетесь, ведь на него настроена большая часть всех импортных отопительных котлов.

Этап №3. После этого подбирается мощность радиаторов с учетом полученных теплопотерь в помещении. Также вам может пригодиться бесплатный калькулятор расчета количества секций радиатора отопления.

Этап №4. Для подбора подходящего циркуляционного насоса и труб нужного диаметра производится гидравлический расчет. Чтобы выполнить его, нужны специальные знания и соответствующие таблицы. Также можно воспользоваться калькулятором расчета производительности циркуляционного насоса.

Этап №5. Теперь нужно выбрать котел. Детальнее о выборе отопительного котла можно узнать из статей данной рубрики нашего сайта.

Этап №6. В конце необходимо рассчитать объем системы отопления. Ведь именно от вместительности сети будет зависеть объем расширительного бака. Здесь вам поможет калькулятор расчета общего объема системы отопления.

На заметку! Эти, а также многие другие онлайн-калькуляторы можно найти в данной рубрике сайта. Воспользуйтесь ими, чтобы максимально облегчить рабочий процесс!

Создание отопления частного дома своими руками по инструкции с фото

Монтируем систему отопления в частном доме своими руками Печное отопление уже уходит в небытие, и большинство частных домов все чаще оснащаются системами отопления (обычно водяными). Знание и понимание принципов работы водяного отопления необходимо как для избежания кардинальных ошибок при установке и проектировании, так и для последующей диагностики неисправностей в его работе.Конструктивные элементы включены в систему водяного отопления. Этот вид отопления имеет разные названия: водяное, гидравлическое или жидкостное. Несложно догадаться, что все эти названия связаны с основным теплоносителем, который циркулирует по трубам между отопительным прибором (котлом) и радиаторами (конвекторами) — это жидкость (в основном вода). Важно понимать, что водяное отопление — это закрытая система. Котел, трубы и радиаторы — основные, но не единственные элементы. Кроме того, он оснащен кранами (или отсечных клапанов), уравнительный бак, блок безопасности и манометр.О них поговорим чуть позже. О принципе водяного отопления. В основном работа системы отопления довольно проста. Проходя обогрев в котле, теплоноситель (жидкость) за счет расширения (или принудительного) по трубам подается к радиаторам или конвекторам, которые, в свою очередь, отдают тепло помещению. В связи с тем, что все эти элементы представляют собой замкнутую систему, движение жидкости в ней происходит циклически. heating system of a private house with their own hands. Photo №1 Виды жидкостного отопления. Системы водяного отопления делятся по способу циркуляции на две категории: с принудительной (насосной) и естественной (конвективной) циркуляцией.Подробности работы обеих систем будут описаны ниже. heating system of a private house with their own hands. Photo # 2 Этот вариант довольно прост по составу, однако для установки требует квалификации. После нагрева в котле теплоноситель расширяется, а его плотность уменьшается, в результате чего вода поднимается по вертикальному стояку. Вверху системы размещается расширительный бак, в который отводится нагретая жидкость. После этого он стекает вниз и по обратным стоякам течет к конвекторам или радиаторам. Охлаждаясь, жидкость набирает плотность и возвращается к нагревательному устройству.Для системы водяного отопления есть несколько важных моментов. Во-первых, необходимо правильно выбрать диаметр подающих стояков. Чтобы была возможна естественная циркуляция воды, трубы должны быть достаточно большого диаметра. Во-вторых, нужно рассчитать правильный уклон подступенков. От подающего стояка он должен располагаться по направлению к радиаторам, а для обратного стояка — уклон в сторону ТЭНа, т.е. котла. Если эти условия не соблюдаются, естественное кровообращение будет нарушено.Отопление с принудительной циркуляцией. Жидкость здесь приводится в движение насосом (циркулирующим). Для разных систем отопления созданы насосы разной мощности. На иллюстрации представлена ​​схема работы данного вида отопления. Нагретая жидкость под давлением, создаваемым насосом, согласно работе поступает в подогреватели. Обратите внимание на клапаны, показанные на схеме. С их помощью регулируется температура на любом радиаторе. В свою очередь, клапаны производятся как автоматически, так и вручную.heating system of a private house with their own hands. Picture №3 Для удаления воздуха из радиаторов Кроме того, краны Мевского устанавливаются, по мере необходимости, с их помощью спускают воздух. Чтобы сделать правильный выбор между системой водяного отопления с естественной и принудительной циркуляцией, следует знать сильные и слабые стороны каждой. Преимущества отопления с естественной циркуляцией:

  • нет зависимости от наличия электричества, так как в системе отсутствует циркуляционный насос.

Преимущества отопления с принудительной циркуляцией:

  • внутренние помещения дома не пострадают от типов труб, так как они обычно аккуратно спрятаны;
  • из-за возможности регулирования, такая система более экономична в отношении расхода топлива;
  • наличие хорошего напора позволяет установить регулирующую арматуру на радиаторах, благодаря чему появляется возможность установить свою температуру для любого помещения;
  • Допускается использование пластика вместо стальных труб, что дополнительно снижает затраты на установку и материалы.

Недостатки отопления с естественной циркуляцией:

  • нет возможности одновременного использования с теплыми полами;
  • нет возможности регулировать температуру отдельных радиаторов или конвекторов;
  • невозможность оснащения системы бойлером косвенного нагрева;
  • больший расход топлива;
  • сложность установки;
  • при использовании металлических труб большого диаметра не только увеличивается стоимость, но и портится интерьер дома.

Отсутствие отопления с принудительной циркуляцией:

  • абсолютная зависимость от наличия электроэнергии, без которой невозможна работа системы.

Теперь вы можете самостоятельно смонтировать систему водяного отопления в собственном доме.

Комментарии

комментария

.

Расчет мощности центрального отопления

Расчет тепловой мощности вашего дома

Никто не хочет сталкиваться с недостатком тепла или тратить деньги на отопительное оборудование, которое не удовлетворяет потребности в тепле, особенно в разгар зимних морозов. Это небольшое руководство о том, как рассчитать мощность центрального отопления вашего дома, поэтому вы получите бойлер или тепловой насос, которые будут соответствовать вашим предпочтениям и потребностям, максимально эффективно используя устройство центрального отопления.Эта мера поможет вам более эффективно использовать энергию, как и другие меры по обеспечению устойчивости и зеленой энергии.

Что следует учитывать при оценке мощности центрального отопления?

Тепловая мощность источников тепла: котел, тепловой насос, газовая печь и др. Она должна при ограниченном расходе топлива (электричество, газ) обеспечивать минимально необходимый запас тепла в самые холодные зимние недели.

Количество и размер теплораспределительных устройств: количество конвекторов и радиаторов (а также количество радиаторных секций), площадь полов с подогревом и т. Д.

Диаметр труб , по которым теплоноситель системы центрального отопления будет транспортироваться и распределяться к отопительным приборам.

Источники топлива для центрального отопления

В контексте текущих эксплуатационных расходов, природный газ может оказаться наименее дорогим вариантом, когда дело доходит до источников топлива для центрального отопления, особенно если используется конденсационный котел, который способен преобразовывать почти 90% топлива, которое он потребляет, в обогрев.Тем не менее, уже не секрет, что цены на газ в ближайшем будущем вырастут из-за ограниченных запасов газа во всем мире и из-за постоянно растущего спроса на чистый природный газ.

После газа, уголь и древесина считаются оптимальными вариантами, когда речь идет о рентабельных источниках тепла. Помимо того, что котел на древесных гранулах или биомассе считается экологически чистым, он идеально подойдет тем домохозяйствам, которые используют биомассу в качестве источника тепла. Проблема с твердотопливными котлами состоит в том, что они нуждаются в постоянном обслуживании — котел необходимо топить ежедневно, желательно два раза в день, если вы хотите избежать перебоев в подаче центрального отопления.Однако, установив аккумулятор тепла, можно до минимума сократить объем работ, необходимых для эксплуатации котла на древесных гранулах. Обычно он входит в состав новейших систем отопления на биомассе, которые в настоящее время доступны на рынке (в зависимости от производителя).

Когда дело доходит до электроэнергии в качестве источника энергии для системы центрального отопления, наиболее разумным способом сделать это (учитывая, что основная цель — сэкономить на счетах за отопление) является использование теплового насоса.Это может быть тепловой насос воздух-воздух, воздух-вода или грунтовый тепловой насос. Их электрические и тепловые входы различаются от 3 до 6 раз, что позволяет тепловому насосу обеспечивать максимальный КПД 300%. Тем не менее, вы должны иметь в виду, что эффективность тепловых насосов воздух-воздух и воздух-вода снижается с понижением уровня наружной температуры.

Измерение теплопроизводительности

Первый и самый простой метод расчета теплопроизводительности вашего дома изложен в основах «Строительных норм»: для обогрева каждых 10 квадратных метров вашего дома потребуется один киловатт тепла.Следовательно, для отопления дома площадью 100 квадратных метров нужно будет искать тип котла на 10 кВтч. Однако использование этого метода приведет к несколько ненадежным данным, так как:

  • объем воздуха при высоте потолка 2,5 м и 4,5 м будет отличаться, мягко говоря. Более того, теплый воздух неизбежно будет собираться вплотную к потолку.
  • : потеря тепла через стены и потолок больше, когда разница между температурой внутри и снаружи большой.
  • по теплопроницаемости окна и двери значительно отличаются от стен и потолка.
  • на измерение теплоемкости сильно влияет тип измеряемого объекта — будь то частный дом или квартира. Положения строительных норм и правил одинаковы для всех типов недвижимости. При этом потери тепла в доме будут намного больше, чем в квартире.

Итак, как более точно рассчитать теплопроизводительность своего дома и ответить на вопрос «какой размер котла мне нужен?»

  • Для нагрева одного кубометра воздуха достаточно 40 Вт тепловой мощности.
  • Каждое окно добавляет дополнительные 100 Вт тепловой мощности. Каждая дверь по 200 Вт.
  • Для домов типовой коэффициент измерения теплопроизводительности составляет 1,5, а для 2-4-х комнатной квартиры — 1,2-1,3, в зависимости от толщины и материала стен.
  • Учитывается и погодный коэффициент региона. Он составляет около 0,9 для северной части Шотландии и 0,8 для остальной части Великобритании.
Пример

В качестве примера определения потребности в тепле для дома мы рассчитаем теплопроизводительность одного этажа (дома) со следующими размерами: длина: 12 м, ширина: 6.5 м, высота: 3,2 м, с 4 окнами и 2 дверями, расположен на юге Великобритании. Расчет выглядит следующим образом:

  1. Площадь этажа: 12 * 6,5 = 78 кв.м
  2. Объем: 78 * 3,2 = 249,6 м3
  3. Величина требуемой тепловой мощности: 249,6 * 40Вт = 9984 Вт
  4. Четыре окна добавят еще 400 Вт, а две двери добавят еще 400. 9984 + 400 + 400 = 10,784 Вт
  5. Так как это дом, мы используем коэффициент нагрева 1.5: 10,784 * 1,5 = 16,176 Вт
  6. Учитывая, что дом расположен на юге, мы применяем погодный коэффициент 0,8: 16,176 * 0,8 = 12 940,8 Вт.

Таким образом, чтобы обеспечить эффективное отопление площади этого дома (L-12 м, W-6,5 м) с высотой потолков 3,2 м, потребуется котел или тепловой насос с тепловой мощностью около 13 кВтч. .

* Это приблизительная оценка, поэтому данные цифры не следует принимать как должное. На конечные результаты может повлиять ряд факторов, таких как изоляция дома, материалы, из которых он сделан, устойчивый микроклимат и т. Д.Поэтому мы советуем обсудить эти детали с поставщиком котла / теплового насоса, прежде чем приобретать устройство центрального отопления, и использовать калькулятор размера котла.

Нагревательные приборы

Используя ту же методику расчета, следует определить тепловую мощность каждой комнаты в доме. По результатам можно выбрать наиболее подходящее устройство распределения тепла (т.е. радиатор, конвектор, фанкойл).

Чтобы узнать, сколько тепла может отдавать радиатор, следует проверить некоторые технические параметры радиатора:

  • Технический паспорт устройства (технический паспорт), который должен быть предоставлен производителем.
  • Мощность радиаторов отопления на сайте производителя.

Большинство производителей радиаторов и конвекторов отмечают, что разница между температурой в помещении и температурой нагревательного устройства составляет около 70 градусов Цельсия (C). Это означает, что при комнатной температуре 20 ° C температура радиатора должна быть около 90 ° C. Тем не менее, реальные значения могут отличаться от технических характеристик производителя.

Таким образом, если рассматривать технические характеристики (приблизительные оценки) различных типов радиаторов со стандартным расстоянием 50 см между центром радиатора и его шлангами, мы получим следующие числа:

  • Секция из чугуна дает около 140 Вт тепла при разнице температур 70 градусов Цельсия в помещении.
  • Тепловая мощность биметаллической секции составляет около 180 Вт.
  • Алюминиевый радиатор может обеспечить около 190-210 Вт для каждой своей секции. Учитывая относительно низкие цены на алюминиевые радиаторы и их надежность при интеграции в систему центрального отопления, неудивительно, почему так много владельцев недвижимости выбирают их.

Получите расценки на отопительные приборы!

Если вы решили приобрести бойлер или тепловой насос, но не уверены, какой тип вам нужен, мы готовы вам помочь.Заполните форму на этой странице, указав свои личные предпочтения и информацию, и мы предоставим вам до четырех различных поставщиков котлов / тепловых насосов. Вы можете выбрать предложение, которое наилучшим образом соответствует вашим потребностям. Услуга бесплатная, без обязательств и занимает всего несколько минут.

.

Как работает система кондиционирования воздуха?

Если вы живете в жарком климате, нет ничего лучше, чем сохранять прохладу с помощью системы кондиционирования воздуха. Но как именно они работают?

Здесь мы пытаемся ответить на этот самый вопрос и исследовать, какие типы систем переменного тока существуют. Поскольку отопление, вентиляция и кондиционирование воздуха (HVAC) — это очень сложная инженерная область, мы должны отметить, что это не является исчерпывающим руководством и должно рассматриваться как краткий обзор.

СВЯЗАННЫЙ: КАК ЛЮДИ СОХРАНЯЮТ ОХЛАЖДЕНИЕ ДО КОНДИЦИОНЕРА ВОЗДУХА

Как работает кондиционер?

Короче говоря, они работают как обычный кухонный холодильник. И в системах кондиционирования, и в холодильниках используется одна и та же технология — цикл охлаждения.

В системах, использующих преимущества этого цикла, используются специальные химические вещества, называемые хладагентами (в некоторых системах вода), для поглощения и / или выделения энергии для нагрева или охлаждения воздуха.Когда эти химические вещества сжимаются компрессором агрегата AC, хладагент меняет состояние с газового на жидкое и выделяет тепло в конденсаторе .

При охлаждении помещения этот процесс происходит за пределами рассматриваемого пространства. Этот холодный воздух под высоким давлением перекачивается во внутренний блок и возвращается обратно в газ с помощью расширительного клапана системы .

Это, как следует из названия, вызывает расширение жидкого хладагента обратно в газовую форму.По мере расширения хладагент «втягивает» тепло и вызывает охлаждение воздуха в рассматриваемом пространстве в испарителе системы кондиционирования воздуха .

Этот теперь расширенный и «горячий» газ далее транспортируется к компрессору системы, и цикл начинается снова.

Чтобы визуализировать это, представьте губку как хладагент, а воду как «тепло». Когда вы сжимаете промокшую губку (компрессор и конденсатор), вода выталкивается наружу и выделяется тепло в нашей аналогии. Когда вы отпускаете губку (расширительный клапан и испаритель), она расширяется и, по нашей аналогии, может поглотить больше воды или тепла.

В основе этого цикла лежат научные принципы термодинамики, закон Бойля, закон Шарля и законы Ги-Люссака.

В первую очередь факт «жидкость, расширяющаяся в газ, извлекает или забирает тепло из окружающей среды». — Система кондиционирования и отопления Goodman.

В этом смысле кондиционер и холодильники работают, «перемещая» или «перекачивая» энергию из одного места в другое. В большинстве случаев блоки переменного тока будут передавать «тепло» из вашей комнаты, офиса или дома и выбрасывать его в воздух за пределами вашего дома или офиса.

Источник: Pixabay

Этот цикл является обратимым и может использоваться также для обогрева вашей комнаты или всего вашего дома в более холодные месяцы, но эта функция обычно зарезервирована для систем, называемых тепловыми насосами .

Основное различие между холодильником и блоком переменного тока состоит в том, что блок имеет тенденцию разделяться на две отдельные части; внешний конденсатор (или чиллер) и внутренний блок.

Холодильники, с другой стороны, являются одним автономным блоком (хотя некоторые блоки переменного тока также могут быть).

Любое тепло, удаляемое из его внутренней части, сбрасывается в ту же комнату в задней части устройства. Это основная причина, по которой вы никогда не сможете использовать холодильник в качестве самостоятельного блока переменного тока; если, конечно, вы не проделаете дыру в стене позади него.

Вы можете проверить это, прикоснувшись (будьте осторожны, он может очень сильно нагреться) задней части холодильника во время его работы. Он должен быть теплым или горячим на ощупь.

Какие существуют типы систем кондиционирования воздуха?

Блоки переменного тока сегодня бывают разных форм и размеров, от массивных систем воздуховодов в офисах и промышленных зданиях до небольших домашних систем переменного тока, с которыми вы, вероятно, более знакомы.

Некоторые из более крупных установок имеют очень большие внешние холодильные агрегаты, которые могут иметь водяное или воздушное охлаждение или, в более старых системах, градирни. Они соединены изолированными трубами для перекачивания хладагента для кондиционирования воздуха внутри большого или набора больших агрегатов, называемых кондиционерами (AHU).

Эти системы могут быть очень сложными, включая нагревательные элементы, увлажнители и фильтры для очень точного контроля температуры и качества воздуха в помещениях в здании, которые они обслуживают.Они также, как правило, поставляются со сложными системами рекуперации тепла для уменьшения количества электричества (или газа), необходимого для нагрева / охлаждения воздуха в системе.

Они бывают двух основных форм; Постоянный объем воздуха (CAV) и переменный объем воздуха (VAV) , который определяет степень, в которой регулируется воздушный поток вокруг воздуховодов системы.

Им также можно управлять с помощью очень сложных систем программного обеспечения, датчиков и исполнительных механизмов, называемых системами управления зданием (BMS).

Эти большие системы отопления, вентиляции и кондиционирования воздуха «всасывают» свежий наружный воздух и при необходимости нагревают / охлаждают его перед транспортировкой по воздуховодам в требуемые зоны.Эти системы также могут иметь терминалы повторного нагрева или фанкойлы для дальнейшего улучшения темперирования подаваемого воздуха в зону.

Более современные установки отказываются от централизованных AHU в пользу систем фанкойлов или «внутренних блоков», которые напрямую связаны с одним или несколькими «наружными» блоками переменного тока. Они называются системами с регулируемым потоком охлаждения (VRF), которые регулируют воздух непосредственно в месте использования.

Но большинство людей привыкло к тепловым насосам с раздельным или многократным распределением воздуха (ASHP) или агрегатам кондиционирования воздуха для отдельных помещений.Они гораздо больше похожи на холодильники и чаще всего устанавливаются в домашних условиях.

Но следует также отметить, что существуют различные другие системы, использующие тот же принцип, например, геотермальные тепловые насосы (GSHP). Они используют землю в качестве «свалки» или источника тепла вместо воздуха или источника тепла. И ASHP, и GSHP также могут подключаться к обычным радиаторным системам или системам теплого пола вместо обычного газового котла с некоторыми изменениями.

Как работает кондиционер в автомобилях?

Проще говоря, кондиционер в автомобиле работает точно так же, как и любой другой блок переменного тока.С той лишь разницей, что они должны быть достаточно компактными, чтобы поместиться в автомобиле.

Чиллерная часть системы (с расширительным клапаном и испарителем) обычно устанавливается за приборной панелью автомобиля. Другой рабочий конец системы (компрессор и конденсатор), как правило, располагается рядом с решеткой радиатора автомобиля — сюда во время движения вдувается свежий воздух).

Обе части соединены цепью труб, по которым хладагент проходит между агрегатами во время работы.В отличие от более крупных агрегатов, используемых в зданиях, сам агрегат в автомобилях, как правило, приводится в действие коленчатым валом автомобиля, другими словами, он приводится в действие двигателем.

Эти системы обычно также поставляются с обогревателем и осушителями для кондиционирования воздуха по мере необходимости. Как и в случае создания систем переменного тока, автомобильный блок переменного тока преобразует хладагент между газом и жидкостью, высоким и низким давлением, а также высокой и низкой температурой по мере необходимости.

Дешевле оставить кондиционер на весь день?

Проще говоря, нет.Причина этого в том, что, оставив систему переменного тока на весь день, вы получите:

1. Не используйте энергию без необходимости, если вас нет дома или комнаты / зоны не используются.

2. Работа системы приводит к ее износу. Это сокращает срок его службы.

Также убедитесь, что окна закрыты или установлена ​​защита от сквозняков, когда кондиционер работает. В конце концов, вы же не хотите «кондиционировать» мир.

Вам также следует убедиться, что вы используете внешние устройства затенения (например, навес или стратегически посаженные деревья), чтобы уменьшить «солнечное излучение» или пассивное отопление вашего дома солнечным светом.

Другие меры включают улучшение теплоизоляции вашего дома, поддержание в хорошем состоянии систем кондиционирования (особенно фильтров) и использование потолочных вентиляторов для улучшения внутреннего перемешивания воздуха (т. Е. Предотвращения расслоения горячего воздуха около потолка или наоборот. ).

Если вас действительно беспокоят счета за электроэнергию, связанные с вашими системами переменного тока, вы можете сделать свою систему переменного тока «умнее». Используя бытовую BMS, интеллектуальные датчики (термостаты и погодную компенсацию), зональный контроль и другие энергоэффективные меры, вы можете значительно повысить эффективность и снизить стоимость ваших систем переменного тока.

Вам также следует использовать решения «бесплатного» охлаждения и обогрева, подумав об использовании природы, чтобы помочь вам. Правильное использование естественной вентиляции для охлаждения или обогрева вашего дома резко сократит затраты на использование энергии, связанной с отоплением / охлаждением, путем ее отключения.

Но это возможно только в том случае, если качество воздуха за пределами вашего дома позволяет это. Например, проживание в большом городе с «грязным воздухом» может ограничить вашу способность использовать эту бесплатную форму отопления и охлаждения.

Как работает кондиционер с обратным циклом?

Системы кондиционирования воздуха с обратным циклом, или тепловые насосы, как они более широко известны, работают так же, как и любые другие блоки переменного тока. Исключением является то, что они специально разработаны, чтобы иметь возможность по желанию полностью изменить цикл.

Как и другие системы переменного тока, они также могут фильтровать и осушать воздух по мере необходимости.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *