Расчет мощности кабеля по сечению: Калькулятор расчета сечения кабеля

Содержание

Расчёт сечения провода. Теория

При монтаже электроустановок различного назначения, в том числе и солнечных электростанций особое внимание следует уделить выбору сечения проводников. Заниженное сечение кабеля приводит к потерям энергии из — за нагрева и зачастую становится причиной возгорания. Завышенное сечение провода влечет необоснованное удорожание системы.

Площадь сечения проводника должна соответствовать величине протекаемого тока

В бытовых сетях переменного тока 220 Вольт сечение проводов очень редко превышает 6 мм², так как ток обычно не больше 50 Ампер. Мощные нагрузки обычно стараются распределить по нескольким фазам. 

В солнечных электростанциях имеется низковольтная часть постоянного тока, которая может быть выполнена проводом  25, 50, или даже 100 мм², в зависимости от мощности и напряжения системы. Самый большой ток протекает в цепи аккумуляторной батареи и преобразователя напряжения (инвертора).

Чтобы рассчитать сечение кабеля, нужно получить ток, разделив мощность на напряжение системы, и подобрать сечение токопроводящей жилы. Поможет Вам в этом таблица, расположенная ниже. 

Приведем пример: Если мощность инвертора 3кВт и напряжение системы 12 Вольт, ток в низковольтной цепи составит 3000/12=250 Ампер, и если провод проложен открыто, то его сечение должно составлять не менее 70 мм2. Если использовать инвертор той же мощности, но уже на 24 Вольт, ток получим в два раза меньше, 125 Ампер и, соответственно, сечение провода 25 мм².

Поэтому преобразователи напряжения высокой мощности, как правило, рассчитаны на входное напряжение 24 или 48 Вольт. Не сложно определить максимальный ток в контуре солнечных панелей. Если фотоэлектрические модули соединены последовательно, то следует взять ток короткого замыкания для одного модуля. Если же солнечные батареи соединены параллельно, ток короткого замыкания одной панели нужно умножить на количество солнечных модулей. Руководствуясь данным принципом можно рассчитать ток для любой системы солнечных модулей. 

Предельный ток в контуре «контроллеры заряда – аккумуляторы» следует принять равным номиналу контроллера.

Табл.1 Допустимый ток для кабелей с резиновой и поливинилхлоридной изоляцией и медными жилами

Данные приведены из ПУЭ7, «Правила устройства электроустановок», Издание 7. Все значения приняты для:

  • температуры жил +65 °С;
  • температуры окружающего воздуха +25 °С;
  • температуры земли +15°С.

Их следует применять независимо от количества используемых труб, места их прокладки (в воздухе, в перекрытиях или фундаментах). Допустимые длительные токи для кабелей, проложенных в коробах и в лотках пучками, должны быть рассчитаны как для кабелей, проложенных в трубах.

 

Калькулятор расчета сечения силового провода – Ученик – общение музыкой

Проводом какого сечения нужно подключать те или иные устройства в бортовую сеть автомобиля? Как сечение провода влияет на падение напряжения на нагрузке?

Чтобы рассчитать это и был создан этот калькулятор. Он позволяет рассчитать необходимое сечение провода в зависимости от материала из которого изготовлены провода, напряжения бортовой сети, мощности нагрузки, длины проводов и допустимого (по Вашему мнению) падения напряжения в проводах.

 

 

 

Для простоты расчетов сечения провода приводим следующую таблицу перевода AWG (American Wire Gauge – обозначения сечения провода по американскому стандарту) в метрические характеристики провода. Сила максимального тока, указанная в правом столбце, дана для долговременной нагрузки с запасом по возможности увеличения плотности тока до 25-50%. Однако, результатом такого увеличения плотности тока будет большее падение напряжения на подключенном потребителе.

 

Номер
AWG
 
Диаметр,
мм 
Площадь
сечения, кв. мм 
Maкс. ток, при
5 А/кв.мм 
0000 11.70 107.459 537.3
000 10.40 84.906 424.5
00 9.30 67.895 339.5
0 8.30 54.079 270.4
1 7.35 42.385 211.9
2 6.54 33. 617 168.1
3 5.83 26.654 133.3
4 5.19 21.137 105.7
5 4.62 16.763 83.8
6 4.12 13.293 66.5
7 3.67 10.544 52.7
8 3.26 8.363 41.8
9 2.91 6. 629 33.1
10 2.59 5.258 26.3
11 2.31 4.171 20.9
12 2.05 3.309 16.5
13 1.83 2.623 13.1
14 1.63 2.081 10.4
15 1.45 1.650 8.3
16 1.29 1. 308 6.5
17 1.15 1.038 5.2
18 1.02 0.823 4.1
19 0.91 0.653 3.3
20 0.81 0.517 2.6
21 0.72 0.410 2.1
22 0.64 0.326 1.6
23 0.57 0.258 1. 3
24 0.51 0.205 1.0
25 0.46 0.163 0.8
26 0.41 0.129 0.6
27 0.36 0.102 0.5
28 0.32 0.081 0.4
29 0.29 0.064 0.3
30 0.26 0.0510 0.3
31 0. 23 0.040 0.2
32 0.20 0.032 0.2
33 0.18 0.025 0.1
34 0.16 0.020 0.1
35 0.14 0.016 0.1
36 0.13 0.013 0.1
37 0.11 0.010 0.1
38 0. 10 0.008 0.0

 

Как рассчитать сечение кабеля по току

Расчет сечения кабеля по току, как правило, встречается на порядок реже, чем тот же расчет сечения кабеля по мощности или такой метод, как расчет сечения кабеля по планируемой нагрузке. Несмотря на это, стоит уделить особое внимание данному методу, так как иногда появляются ситуации, когда осуществить расчет сечения кабеля по току – это единственная возможность избежать проблем, которые могут возникнуть с электропроводкой в будущем. Итак, какие могут возникнуть ситуации?

Например, есть электроприбор, но нет соответствующей документации, а также нет специальной таблички по мощности или она не читается. Кроме того, очень часто бывает ситуация, когда среди большого количества цифр, которые стерлись, хорошо видно только показатель тока. Вот именно тут и придет на помощь данный метод расчета.

Еще одной ситуацией, когда может потребоваться подобный метод, является случай, когда нет ничего, кроме такого устройства, как предохранитель, расположенный в специальном гнезде. Как правило, около него есть надпись значения номинального или максимального тока. Также значение силы тока можно прочитать на самом предохранителе. Возможны и иные, не менее сложные ситуации, когда из всех требуемых для вычисления показателей имеется только сила тока и параметры мощности прибора. Что можно сделать в каждой из ситуаций, будет написано ниже.

При выяснении точных показателей силы тока, достаточно просто следовать таблице выбора кабеля по сечению. При этом стоит опираться на ближайшее подходящее значение алюминиевого или медного кабеля. В случае, если известны показатели мощности, но нет больше ничего, прежде чем произвести вычисление по формуле, требуется удостовериться в точности показателей этого значения или потребляемого тока. Для осуществления расчетов следует пользоваться формулой I = P/U·cosφ. Здесь под буквенными значения подразумеваются такие показатели, как P — это общая суммарная мощность, (Вт), I — сила тока, (А), cosφ – представляет собой  коэффициент, который равен 1, то только если сети относятся к бытовым. И последний параметр U – показывает напряжение в сети, (В).

Подводя итог, можно отметить, что для включения особого однофазного двигателя с показателями мощности в 2 кВт, потребуется подобрать кабель или провод, которые в состоянии долгое время, при этом без перегрева поддерживать нагрузку в 2000 Вт / 220 В = 9,1 А. Как правило, это может быть медный кабель из качественной меди, с сечением от 1 мм. или алюминиевый кабель, у которого сечение составляет 1,5 мм.

Данный метод считается упрощенной схемой расчета, так как в обязательном порядке должна быть учтена длина линии и иные многочисленные факторы, которые более-менее подробно описаны в специальном разделе «Выбор сечения кабеля». Кроме того, очень часто проведение расчета требуется проводить не для одного только прибора, но для целой определенной группы. Именно по этой причине, прежде чем сделать выбор в том или ином отдельном случае, необходимо учесть все требования ПУЭ, то есть установленные на международном уровне прокладки и коммутации проводов и кабелей, а также не мене важно учесть возможность наращивания показателей нагрузки.

Расчет максимальной мощности по сечению кабеля

В данной статье будет рассказано о том, как провести расчет сечения провода по потребляемой мощности самостоятельно. Знать это нужно не только при монтаже электропроводки в доме, но и при проведении работ в автомобилях, например. Если сечение провода окажется недостаточным, то он начнет нагреваться очень сильно, что приведет к существенной потере уровня безопасности. Учитывая все рекомендации, которые будут изложены ниже, вы сможете самостоятельно рассчитать параметры проводов для монтажа электроснабжения в доме. Но если не уверены в своих силах, лучше обратитесь к специалистам в этой области. Причем нужно отметить, что расчет сечения провода по потребляемой мощности (12В и 220В) производится аналогично.

Проведение расчета длины электропроводки

Для любого типа электронной системы самым главным условием стабильной и безаварийной работы является грамотный расчет сечений всех проводов по току и мощности. Первым делом следует вычислить максимальную длину всей электропроводки. Существует несколько способов это сделать:

  1. Измерение расстояния от щитков до розеток, выключателей согласно схеме монтажа. Причем сделать это можно линейкой на заранее приготовленном плане электропроводки – достаточно полученные значения длин умножить на масштаб.
  2. И второй, более точный способ – это вооружиться линейкой и пройтись по всем комнатам, проводя замеры. Причем нужно учитывать, что провода должны как-то соединяться, поэтому всегда должен присутствовать запас – хотя бы по одному-два сантиметра с каждого края проводки.

Теперь можно приступить к следующему шагу.

Расчет нагрузки на проводку

Чтобы вычислить суммарную нагрузку, нужно сложить все минимальные мощности потребителей по дому. Допустим, вы проводите расчет для кухни, в ней установлены светильники, микроволновая печь, электрические чайник и плита, посудомоечная машина и так далее. Все мощности необходимо суммировать (смотрите на задних крышках потребляемую мощность, но придется вычислить самостоятельно по этому параметру еще ток). После умножаете на поправочный коэффициент 0,75. Он еще называется коэффициентом одновременности. Суть его ясна из самого названия. Эта цифра, которая получится в результате вычислений, вам необходима будет в дальнейшем для проведения расчетов параметров проводов. Обратите внимание на то, что вся система электроснабжения должна быть безопасной, надежной и прочной. Это основные требования, которые необходимо учитывать, когда производится расчет сечения провода по потребляемой мощности 12В и 220В.

Ток потребления электроустановок

Теперь о том, как произвести расчет потребляемого тока электрического прибора. Можно сделать это в уме, а можно и на калькуляторе. Смотрите инструкцию к прибору, какое значение потребляемой мощности у него. Само собой, в бытовой электросети течет переменный ток с напряжением 220 вольт. Следовательно, воспользовавшись простой формулой (потребляемую мощность разделить на напряжение питания), можно вычислить ток. Например, электрочайник имеет мощность 1000 Вт. Значит, если разделить 1000 на 220, получим значение, примерно равное 4,55 ампера. Производится очень просто расчет сечения провода по потребляемой мощности. Как осуществить это, рассказано в статье. В режиме работы чайник потребляет из сети 4,55 ампера (для защиты необходимо устанавливать автоматический выключатель большего номинала). Но обратите внимание на то, что не всегда это точное значение. Например, если в конструкции электроприбора имеется двигатель, можно увеличить примерно на 25 % полученное значение – ток потребления мотора в режиме запуска значительно больше, нежели во время работы на холостом ходу.

Рекомендации ПУЭ

Но можно воспользоваться сводом правил и стандартов. Имеется такой документ, как Правила устройства электроустановок, именно он регламентирует все нормы проведения монтажа проводки не только в частных владениях, но и на заводах, фабриках и т. д. По этим правилам стандарт электропроводки – это способность выдержать нагрузку в 25 ампер длительное время. Поэтому в квартирах вся электропроводка должна выполняться только с использованием медного провода, сечение его – не меньше 5 кв. мм. Каждая жила должна иметь сечение свыше 2,5 кв. мм. Диаметр проводника должен быть 1,8 мм.

Чтобы вся электропроводка работала максимально безопасно, на вводе производится монтаж автоматического выключателя. Он обезопасит квартиру от коротких замыканий. Также в последнее время большинством владельцев жилплощадей производится монтаж устройств защитного отключения, которые моментально действуют на изменение сопротивления в цепи. Другими словами, если вы случайно коснетесь оголенных проводов под напряжением, они моментально обесточатся и вы не получите удар. Автоматические выключатели необходимо рассчитывать по току, причем выбирать обязательно с запасом, чтобы всегда имелась возможность установить в доме какой-либо электроприбор. Грамотный расчет сечения провода по потребляемой мощности (как осуществить правильный выбор проводов, вы узнаете из данного материала) – это залог того, что функционировать электроснабжение будет правильно и эффективно.

Материалы для изготовления проводов

Как правило, монтаж электропроводки в частном доме или квартире делают с использованием трехжильных проводов. Причем у каждой жилы – отдельная изоляция, все они имеют различную расцветку – коричневый, синий, желто-зеленый (стандарт). Жила – это именно та часть провода, по которой протекает ток. Она может быть как однопроволочной, так и многопроволочной. В некоторых марках провода используется хлопчатобумажная оплетка поверх жил. Материалы для изготовления жил проводов:

  1. Сталь.
  2. Медь.
  3. Алюминий.

Иногда можно встретить комбинированные, например, медный провод многопроволочный с несколькими стальными проводниками. Но такие использовались для осуществления полевой телефонной связи – по медным передавался сигнал, а стальные использовались по большей части для проведения крепления к опорам. Поэтому в этой статье о таких проводах разговор идти не будет. Для квартир и частных домов идеальным оказывается медный провод. Он долговечный, надежный, характеристики намного выше, нежели у дешевого алюминия. Конечно, цена медного провода кусается, но стоит упомянуть о том, что его срок службы (гарантированный) – 50 лет.

Марки проводов

Для прокладки электропроводки лучше всего использовать две марки проводов – ВВГнг и ВВГ. Первый имеет окончание «-нг», что говорит о том, что изоляция не горит. Используется он для осуществления электропроводки внутри сооружений и зданий, а также в земле, на открытом воздухе. Стабильно работает в диапазоне температур -50. +50. Гарантированный срок службы – не менее 30 лет. Кабель может быть с двумя, тремя или четырьмя жилами, сечение каждой – в диапазоне 1,5. 35 кв. мм. Обратите также внимание на то, что необходимо проводить расчет сечения провода по потребляемой мощности и длине (в случае с воздушной длинной линией).

Внимательно смотрите на то, чтобы перед названием провода не было буквы «А» (например, АВВГ). Это говорит о том, что внутри жилы изготовлены из алюминия. Имеются также зарубежные аналоги – кабель марки NYM, имеющий круглую форму, соответствует стандартам, принятым в Германии (VDE0250). Жилы медные, изоляция не подвержена горению. Круглая форма провода намного удобнее в том случае, если необходимо проводить монтаж сквозь стену. А вот для проведения проводки внутри помещений оказывается удобнее плоский отечественный.

Провода из алюминия

Они имеют маленький вес, а самое главное, низкую стоимость. Поэтому пригодятся для тех случаев, когда нужно прокладывать длинные линии по воздуху. Если все работы проводить грамотно и правильно, вы получите идеальную воздушную линию, так как у алюминия имеется одно огромное преимущество – он не подвержен окислению (в отличие от меди). Но часто проводка из алюминия использовалась и в домах (как правило, в старых). Провод раньше было проще достать, и стоил он копейки. Необходимо отметить, что расчет сечения провода по потребляемой мощности (особенности этого процесса известны каждому электрику) является главным этапом в создании проекта электроснабжения дома. Но нужно обращать внимание на одну особенность – сечение алюминиевого провода должно быть больше, нежели медного, чтобы выдержать одинаковую нагрузку.

Таблица для расчета сечения по мощности

Также нужно упомянуть и о том, что на алюминиевые провода предельно допустимая токовая нагрузка намного меньше, нежели для медных. Таблица ниже поможет рассчитать сечение жил алюминиевой проводки.

Любой специалист, который часто работает с установкой электрических кабелей, должен знать основные правила расчета их сечения. В бытовых условиях не каждый мужчина обладает такими знаниями, поэтому во время проведения домашнего ремонта или замены старой проводки на новой на различных электроприборах нужно следовать определенным условиям. Далее мы расскажем вам всё о правилах выбора того или иного сечения, а также подробный расчёт его по мощности и току, а также по длине.

Виды проводки

Перед процедурой расчета сечения кабеля, необходимо определиться с материалом, из которого он будет изготовлен. Это может быть алюминий медь или гибрид — алюмомедь. Мы подробно расскажем и характеристики каждого изделия, а также их достоинствах и основных недостатках:

  • Алюминиевая проводка. В сравнении с медной, ее приобрести можно по более низкой цене. Она значительно легче. Также ее проводимость практически в 2 раза меньше, чем у проводки из меди. Причиной этому является возможностью окисления в течение некоторого времени. Стоит отметить, что такой тип проводки требуется через какое-то время заменять, так как она постепенно будет терять свою форму. Запаивание алюминиевого кабеля можно проводить самостоятельно без помощи специалиста;
  • Медная проводка. Стоимость такого изделия в несколько раз превышает алюминиевый кабель. При этом, по мнению экспертов, ее отличительной чертой является эластичность, а также существенная прочность. Электрическое сопротивление в ней достаточно небольшое. Запаивать такое изделие достаточно легко;
  • Алюмомедная проводка. В ее составе большая часть отведена алюминию, и только 10–30 % составляет медь, которая покрыта снаружи термомеханическим методом. Именно по этой причине проводимость изделия чуть меньше медного, но при этом больше алюминия. Его можно приобрести меньшей стоимость, чем медный провод. В течение всего периода эксплуатации, проводка не будет терять форму и окисляться.

Именно такой тип проводки рекомендуют использовать взамен алюминиевой. При этом неё диаметр должен быть точно такой же. В том случае, если вы меняете на медь, то такое соотношение должно быть 5:6.

Если выбор сечения проводов необходимо для прокладывания в бытовых условиях, то эксперты рекомендуют использовать многожильные провода. В таком случае они гарантируют вам гибкость.

Как правильно выбрать сечение кабеля по мощности

Выбор сечения кабеля по мощности осуществляется очень аккуратно. Для начала необходимо найти технические характеристики устройства, к которому требуется подобрать кабель. Их можно найти:

  • На самом приборе. Чаще всего характеристики прописаны на специальных наклейках или штильдиках, которые прикрепляются на аппарат;
  • В инструкции по применению. На главной странице производитель нередко расписывает его параметры;
  • В специальном паспорте.

Как такового слова «Мощность» на нём найти можно редко, поэтому определить ее можно по обозначению единицы измерения. Для этого также существуют определенные правила:

  • Если устройство было произведено в российской, белорусской или украинской компании, то после значения будет обязательно стоять «Вт» или «кВт», так как мощность измеряется в ваттах или киловаттах;
  • На оборудовании, которое производится на территории европейских, азиатских или американских организациях , обозначение мощности — W. В том случае если вам необходимо определить потребляемую мощность, а в большинстве случаях требуется именно она, то нужно искать слова TOT, реже TOT MAX.

Только после того, как вы определили мощность вашего устройства, можно начинать выбор сечения проводки. Стоит отметить, что для удобства необходимо, чтобы все единицы измерения мощности были одинаковыми, то есть если вы планируете рассчитывать в ваттах, то и все остальные параметры мощности должны быть переведены в них.

Для того чтобы подобрать сечение, нужно воспользоваться специальной таблицей.

Пользоваться ей нужно следующим образом:

  • Соотнесите значение найденной мощности аппарата со значением в соответствующем столбике. Она может быть чуть больше или совпадать с мощностью вашего устройства. При этом не забывайте определить, сколько фаз в вашей сети, так как она может быть:
    1. Однофазной, в таком случае стандартом является 220 В;
    2. Для трехфазной норма является 380 В.
    3. После этого нужно смотреть соответствующее ей определение в самом первом столбике. Здесь обозначается необходимые сечения проводки для мощности вашего устройства.

Для правильного расчета используется таблица подбора сечения кабеля.

Последствия неправильного выбора сечения кабеля

Многие не понимают, для чего необходимо выбирать сечение кабеля для будущих операций. В случае неправильного подбора по мощности, ваше устройство и кабель будут сильно перегреваться. Первое время это заметно не будет, но как только это достигнет максимального значения, кабель начнёт плавиться, что в последствие приведет к возгоранию:

  • Как отмечают специалисты, пожары, источником которых является электрический прибор, являются самыми распространёнными;
  • Это может привести не только к выходу из строя одного вашего бытового устройства, но и всех остальных, которые были подключены к источнику электричества;
  • В редком случае устройство будет работать после замены кабеля. Даже на это вам придется выложить большую сумму денег. Чаще всего с самым рациональным методом является полная замена вашего устройства.

Расчет сечения электрического кабеля по мощности и току

Расчёт сечения электрического кабеля по мощности и току является первым способом, который мы рассмотрим. Для начала необходимо узнать все необходимые параметры и характеристики. В первую очередь — это поиск максимально потребляемого тока устройством. Все значения после этого нам необходимо сложить.

После это полученный результат необходимо произвести расчет сечения электрического кабеля по мощности и току по таблице, приведенной ниже:

В этом случае нам нужно найти приближённое значение в столбце, в котором прописан ток. В ней же можно узнать необходимое сечение кабеля.

В том случае, если в таблице нет равного значения, необходимо использовать близкое к нему по значению в большей степени.

Например, если максимальный ток вашего аппарата составляет 18 Вт, а в таблице только значения 16 Вт и 25 Вт, предпочтение необходимо отдать 25 Вт. В противном случае ваше устройство будет очень сильно перегреваться, что приведет к последствиям, описанным выше.

Обратите внимание! Согласно требованиям 7-ого издания Правил устройства электроустановок, провода из алюминия, сечение которых менее 16 мм², при монтаже использовать строго запрещено.

Расчет по мощности и длине

Расчет сечения кабеля по мощности и длине идеально подходит в том случае, если вы планируете использовать очень длинный кабель. Тогда значение его мощности, а также потребляемого максимального тока будет недостаточно для расчета.

Стоит отметить, что длинные кабели используют только в одном случае — для ввода электричества от электрического столба в жилое или нежилое помещение.

Для того чтобы наши расчёты были правильные, Вам необходимо узнать мощность, которая выделяется на само здание, а также точное расстояние от электрического столба до него. После этого для данных, определяющих сечение кабеля по мощности, используется таблица:

Как отмечают специалисты, даже при прокладке кабеля необходимо учитывать ее с некоторым запасом. Это необходимо сделать по некоторым причинам:

  • Случаи сечения кабеля будет чуть меньше, что будет спасать устройство и изоляцию кабеля от перегревания;
  • Если вам потребуется к устройству подключить дополнительные аппараты, то кабель, который был выбран запасом, может это позволить. В противном случае вам придется вкладывать дополнительных усилий, например, заменять полностью проводку.

Видео по теме

В современном технологическом мире электричество практически стало на один уровень по значимости с водой и воздухом. Применяется оно в практически любой сфере человеческой деятельности. Появилось такое понятие, как электричество еще в далеком 1600 году, до этого мы знали об электричестве не больше древних греков. Но со временем оно начало более широко распространяться, и только в 1920 году оно начало вытеснять керосиновые лампы с освещения улиц. С тех пор электрический ток начал стремительно распространяться, и сейчас он есть даже в самой глухой деревушке как минимум освещая дом и для коммуникаций по телефону.

Само электричество представляет из себя поток направленных зарядов, движущихся по проводнику. Проводником является вещество способное пропускать через себя эти сами электрические заряды, но у каждого проводника есть сопротивление (кроме так называемых сверхпроводников, сопротивление у сверхпроводников равняется нулю, такое состояние достижимо за счет понижения температуры до -273,4 градуса по Цельсию).

Но в быту сверхпроводников, конечно же, еще нету, да и появиться в промышленных масштабах еще нескоро. В повседневности, как правило, ток пропускается через провода, а в качестве жилы используется в основном медные или алюминиевые провода. Медь и алюминий популярны прежде всего, за счет своих свойств проводимости, которая обратно электрическому сопротивлению, а также из-за дешевизны, по сравнению, например, с золотом или серебром.

Как разобраться в сечениях медных и алюминиевых кабелей, для прокладки проводки?

Данная статья предназначена научить вас как рассчитать сечение провода. Это как чем больше воды вы хотите подать, тем большего диаметра труба вам нужна. Так и здесь, чем больше потребление электрического тока, тем больше должно быть сечение кабелей и проводов. Вкратце опишу что это такое: если вы перекусите кабель или провод, и посмотреть на него с торца, то вы как раз и увидите его сечение, то есть толщину провода, которая определяет мощность которую данный провод способен пропустить, разогреваясь до допустимой температуры.

Для того чтобы правильно подобрать сечение силового провода нам нужно учитывать максимальную величину потребляемой нагрузки тока. Определить значения токов можно, зная паспортную мощность потребителя, определяется по такой формуле: I=P/220, где P — это мощность потребителя тока, а 220 — это количество вольт в вашей розетке. Соответственно если розетка на 110 или 380 вольт, то подставляем данное значение.

Важно знать, что расчет значения для однофазных, и трехфазных сетей различается. Для того чтобы узнать на сколько фаз сеть вам нужно, требуется подсчитать общую сумму потребления тока в вашем жилище. Приведем пример среднестатистического набора техники, которая может быть у вас дома.

Простой пример расчета сечения кабеля по потребляемому току, сейчас мы вычислим сумму мощностей подключаемых электроприборов. Основными потребителями в среднестатистической квартире являются такие приборы:

  • Телевизор — 160 Вт
  • Холодильник — 300 Вт
  • Освещение — 500 Вт
  • Персональный компьютер — 550 Вт
  • Пылесос — 600 Вт
  • СВЧ-печь — 700 Вт
  • Электрочайник — 1150 Вт
  • Утюг — 1750 Вт
  • Бойлер (водонагреватель) — 1950 Вт
  • Стиральная машина — 2650 Вт
  • Всего 10310 Вт = 10,3 кВт.

Когда мы узнали общее потребление электричества, мы можем по формуле рассчитать сечение провода, для нормального функционирования проводки. Важно помнить что для однофазных и трехфазных сетей формулы будут разные.

Расчет сечения провода для сети с одной фазой (однофазной)

Расчет сечения провода осуществляется с помощью следующей формулы:

I — сила тока;

  • P — мощность всех потребителей энергии в сумме
  • K и — коэффициент одновременности, как правило, для расчетов принимается общепринятое значение 0,75
  • U — фазное напряжение, которое составляет 220V но может колебаться в пределах от 210V до 240V.
  • cos(φ) — для бытовых однофазных приборов эта величина сталая, и равняется 1.
  • Если есть необходимость рассчитать ток быстрее, то можно опустить значение cos(φ) и значение K и . Результат в таком случае отличается в меньшую сторону на 15%, если мы применим формулу:

    Когда мы нашли мощность потребления тока по формуле, можно начать выбирать кабель, который подходит нам по мощности. Вернее, его площади сечения. Ниже приведена специальная таблица в которой предоставлены данные, где сопоставляется величина тока, сечение кабеля и потребляемая мощность.

    Данные могут различаться для проводов изготовленных из разных металлов. Сегодня для применения в жилых помещениях, как правило, используется медный, жесткий кабель. Алюминиевый кабель практически не применяется. Но все же во многих старых домах, алюминиевый кабель все еще присутствует.

    Таблица расчетной мощности кабеля по току. Выбор сечения медного кабеля, производится по следующим параметрам:

    Также приведем таблицу для расчета потребляемого тока алюминиевого кабеля:

    Если значение мощности получилось среднее между двумя показателями, то необходимо выбрать значение сечения провода в большую сторону. Так как запас мощности должен присутствовать.

    Расчет сечения провода сети с тремя фазами (трехфазной)

    А теперь разберем формулу подсчета сечения провода для трехфазных сетей.

    Для рассчета сечения питающего кабеля воспользуемся следующей формулой:

    • I — сила тока, по которой выбирается площадь сечения кабеля
    • U — фазовое напряжение, 220V
    • Cos φ — угол сдвига фаз
    • P — показывает общее потребление всех электроприборов

    Cos φ — в приведенной формуле крайне важен, так как самолично влияет на силу тока. Он различается для разного оборудования, с этим параметром чаще всего можно ознакомиться в технической документации, или соответствующей маркировкой на корпусе.

    Общая мощность находится очень просто, мы суммируем значение всех показателей мощности, и используем получившееся число в расчетах.

    Отличительной особенностью в трехфазной сети, является то, что более тонкий провод способен выдержать большую нагрузку. Подбирается необходимое нам сечение провода, по нижеприведенной таблице.

    Расчет сечения провода по потребляемому току применяемый в трехфазной сети, используется с применением такой величины как √3. Это значение нужно для упрощения внешнего вида самой формулы:

    U линейное = √3 × U фазное

    Данным образом при возникновении необходимости заменяется произведение корня и фазного напряжения на линейное напряжение. Эта величина равняется 380V (U линейное = 380V).

    Понятие длительного тока

    Также один не менее важный момент при выборе кабеля для трехфазной и однофазной сети состоит в том, что необходимо учитывать такое понятие, которое звучит как допустимый длительный ток. Этот параметр показывает нам силу тока в кабеле, которую может выдержать провод в течение неограниченного количества времени. Определить эго можно в специальной таблице. Также для алюминиевых и медных проводников они существенно различаются.

    В случае когда данный параметр превышает допустимые значения, начинается перегрев проводника. Температура нагрева является обратно пропорциональной силе тока.

    Температура на некоторых участках может увеличиваться не только из-за неверно подобранного сечения провода, а и при плохом контакте. К примеру, в месте скрутки проводов. Такое довольно часто происходит в месте контакта медных кабелей и алюминиевых. В связи с этим поверхность металлов подвергается окислению, покрываясь оксидной пленкой, что весьма сильно ухудшает контакт. В таком месте кабель будет нагреваться выше допустимой температуры.

    Когда мы провели все расчеты, и сверились с данными из таблиц, можно смело идти в специализированный магазин и покупать необходимые Вам кабели для прокладки сети у себя дома или на даче. Главное ваше преимущество перед, например, вашим соседом будет в том что вы полностью разобрались в данном вопросе с помощью нашей статьи, и сэкономите кучу денег, не переплачивая за то, что вам хотел продать магазин. Да и знать о том, как рассчитать сечение тока для медных или алюминиевых проводов никогда не будет лишним, и мы уверены что знания полученные у нас, неоднократно пригодятся на вашем жизненном пути.

    Как самостоятельно рассчитать сечение кабеля по мощности?

    Во всех странах Европы и СНГ принята стандартизация кабелей по площади поперечного сечения. Регуляция этих параметров выполняется согласно соответствующего ПЭУ, или, как называют еще этот норматив, «Правила устройства электроустановок». Выбор нужного сечения кабеля по допустимым параметрам тока осуществляется посредством специальных таблиц.

    Расчеты «на глаз» являются неправильными и грозят нарушением техники безопасности, что может спровоцировать КЗ, пробои в проводке и т.п. Данный показатель может существенно отличаться для каждого отдельного жилья, в зависимости от количества установленных там потребителей электропитания, их мощности. Отсутствие правильного предварительного расчета перед монтажом проводки может обернуться дорогостоящим ремонтом квартиры или электросети, угрозой жизни людям.

    Для чего нужен расчет сечения кабеля?

    Правильный выбор сечения электрического кабеля позволит смонтировать проводку таким образом, чтобы жители квартиры были в безопасности, как и их имущество. В погоне за экономией многие выбираются для разводки по квартире кабеля меньшей толщины или нужной, только вместо медной сердцевины останавливаются на алюминиевой.

    Это приводит к таким последствиям:

    • Прохождение токов большой мощности по несоответствующему кабелю приводит к его нагреванию, что разрушает изоляцию или просто перегорает, оставляя слабую цепь без питания.
    • В некоторых случаях резкие скачки электричества способны настолько разогреть металл проводов, что возникает возгорание за счет термического воздействия на окружающие воспламеняющиеся объекты, например, обои, вагонку или другие покрытия стены.
    • С повышением температуры кабеля в цепи растет сопротивление, что провоцирует изменения вольтамперных характеристик участка электропитания, для многих приборов такое «соседство» чревато поломками.
    • Разрушенная изоляция оголяет провод, который для человека может быть опасным при контакте с ним, уберечься достаточно сложно, если место дефекта неизвестно.
    • Найти проблемный сегмент проводки, вмурованной в стену, достаточно сложно, что в некоторых случаях требует замены проводки по всей длине от источника к проблемному месту. В конечном итоге выливается в крупную сумму, поскольку необходимо заплатить за работу электрика, купить новый, но уже с нормальными характеристиками, кабель, произвести ремонтные работы по ходу залегания провода.

    Очевидно, что экономия на организации электросети в доме – это не лучший вариант сохранения своих средств. Тем более, что помимо финансовых затрат на ремонт проводки и квартиры в местах ее демонтажа, есть риск здоровью и всему имуществу. Пожаро- и электробезопасность является приоритетным правилом.

    Чтобы правильно подобрать нужный кабель, необходимо выполнить следующие предварительные расчеты:

    • Посчитать, для каждого помещения общее число установленных электроприборов.
    • Для каждой точки подключения к электросети рассчитать рабочую суммарную нагрузку.

    ПРИМЕР: К первой розетке будет подключаться вытяжка мощностью 500 Вт, электроплита на 5 кВт и посудомоечная машина 2 кВт. От второй розетки питается холодильник 800 Вт, микроволновая печь на 1,5 кВт и электрочайник на 2 кВт. Тогда суммарная нагрузка на первую точку составит 7,5 кВт, а на другую – 4,3 кВт, таким образом, на кухню будет идти нагрузка на 11,8 кВт. Это без учета светильника, поэтому всегда необходимо делать запас минимум на 20-30%, чтобы не только обезопасить себя, но и иметь возможность в будущем добавить какой-то электроприбор и не заставлять работать проводку на своем экстремальном пороге.

    Выбрав материал проводника (алюминий или медь), необходимо произвести расчет нужного сечения в соответствии с полученной величиной нагрузки на отдельное помещение.

    Все зависит от того, как будет организовываться сеть, предусмотрен электрораспределительный считок с разводкой по потребителям, точки планируется соединять параллельно или последовательно.

    ВАЖНО: Электропроводимость меди больше, чем алюминия, поэтому провода из этих материалов одинакового сечения не будут давать равный результат при расчете по мощности, что необходимо учитывать.

    Что влияет на нагрев проводов?

    Причина перегрева проводки может крыться в разных проблемах сети, поэтому для правильного расчета необходимо знать основные «слабые места» кабелей, из-за которых у них поднимается температура. При прохождении тока по металлу, материал нагревается всегда, однако снижение этого параметра достигается разными методами.

    Провода греются, в зависимости от:

    • Качество и материал изоляционного покрытия не соответствуют требуемым параметрам. Низкокачественный диэлектрический материал оболочек кабелей легко подвергается разрушению от термического воздействия при прямом контакте, проводя тепло лучше.
    • Какой способ укладки проводки использовался. Для открытых проводов показатель нагрева гораздо ниже, чем для плотно «упакованных» в закрытую пластиковую трубу.
    • Тип жил в кабеле. Различают многожильные и одножильные. Разница заключается в том, что одинакового сечения моножильная проводка способна выдержать большую силу тока, чем несколько более тонких проводков, хотя многожильный кабель более гибкий и удобный для монтажа.
    • Материал сердцевины. Величина нагрева зависит от физических качеств металла. Медь обладает более низким сопротивлением, чем алюминий, поэтому меньше греется и может передавать токи более высокого напряжения и силы при одинаковом сечении.
    • Площадь поперечного сечения кабеля. Все изучали в школе скин-эффект – течение электрического тока по поверхности проводника. Чем больше площадь сечения – тем больше площадь поверхности, по которой передается электричество, поэтому толстые провода способны передавать значительные нагрузки, а тонкие при таких показателях просто перегорают.

    Устройство кабеля

    Для лучшего понимания процесса расчета проводника по сечению в зависимости от мощности потребляемого тока, необходимо понимать суть процесса передачи электричества. Для наглядности лучше представить несколько тонких водопроводных труб, которые необходимо располагать по окружности параллельно друг другу.

    Чем шире эта окружность, тем большее количество таких труб поместится при плотном расположении. Напор на выходе крупной систем будет гораздо больше, чем у маленькой. С электричеством также, в силу того, что ток течет по поверхности проводника, толстые кабели смогут поддерживать большие нагрузки.

    Неправильное вычисление сечения по мощности выполняется, когда:

    • Токоведущая жила слишком широкая. Затраты на проводку возрастают существенно, нерационально используется ресурс кабеля.
    • Ширина токоведущего канала меньше необходимой. Плотность тока возрастает, нагревая проводник и изоляцию, что приводит к утечке электричества и образованию «слабых мест» на кабеле, повышая пожароопасность проводки.

    В первом случае для жизни опасности нет, но неоправданно высокие затраты на материал.

    Простой способ

    Формула мощности заключается в вычислении посредством умножения напряжения в проводнике на силу протекающего тока. Бытовая сеть рассчитана на напряжение 220 В, поэтому для определения сечения кабеля необходимо знать мощность и силу тока в цепи. После расчета предполагаемой нагрузки и силы тока по таблицам ПЭУ находится размер кабеля. Этот расчет подходит для розеток.

    Для питания осветительных приборов, которые подключаются к отдельному выходу с распределителя, традиционно берется кабель сечением 1,5 кв. мм. Если розетки будут использоваться для питания нескольких мощных приборов, например, телевизора или фена, то нужно правильно распределять нагрузку, соотнося ее с диаметром провода согласно показателям мощности потребителей. При отсутствии возможности разбития розеточных групп рекомендуется приобретать медный кабель с сечением 6 кв. мм.

    Площадь сечения и диаметр

    Определить площадь сечения кабеля проще всего по диаметру сердцевины. Диаметр измеряется в мм, а площадь – в кв. мм. Согласно этим показателям можно найти в таблице допустимую мощность по типу и размеру провода. При отсутствии данных о диаметре проводки, площадь находится по такой формуле:

    S = 3,14 * D2 / 4 = 0,785D2,
    где:
    S – площадь поперечного сечения кабеля;
    D – значение диаметра.

    Если форма сердцевины проводника квадратная или прямоугольная, то сечение вычисляется умножением ширины на длину, как площадь прямоугольника.

    Выбор сечения проводника

    Критерии соответствия сечения выбранных проводников:

    1. Конфигурация электрощита. Питание всех имеющихся потребителей от одного автоматического выключателя создаст непосильную нагрузку на него, что провоцирует нагрев клемм и регулярное срабатывание. Для устранения проблемы рекомендуется разделить на несколько групп электропроводку с отдельным выключателем в щитке.
    2. Тип используемого кабеля. Медный провод более дорогой и качественный, но правильный расчет алюминиевой проводки позволит собрать нужную конфигурацию с меньшими затратами.
    3. Длина проводника. Является главным критерием для кабелей из алюминия. При большом метраже наблюдаются существенные потери электричества в сети, поэтому следует делать большую прибавку запаса. Для меди при скрытом монтаже достаточно прибавки в размере 20-30 %.

    Точный расчет сечения кабеля должен производиться с учетом таких показателей:

    • Тип и вид изоляции.
    • Длина участков и их конфигурация.
    • Вариант и способ прокладки (наружная или скрытая).
    • Температурный режим помещения.
    • Процент и уровень влажности в комнате.
    • Максимально допустимый перегрев.
    • Разница показателей мощности потребителей, подключаемых к одной розетке.

    Существуют нижние границы размера сечения кабеля для разных участков бытовой электросети:

    • Для розеток нужен провод с сечением не меньше 3,5 кв. мм.
    • Подключение элементов освещения питаются от проводки не тоньше 1,5 кв. мм.
    • Питание оборудования с повышенной мощностью требует кабеля с сечением от 4-6 кв. мм.

    Это правило действует при разграничении групп потребителей по мощности в электрощите для повышения защиты оборудования, безопасности всей системы.

    Расчет на основе нагрузки

    Процесс расчета примерного сечения нужной проводки для квартиры можно произвести самостоятельно, сделать это не сложно. Однако все работы по устройству электросети в помещении следует доверять опытным специалистам.

    Расчет поперечного сечения проводника производится в следующем порядке:

    1. Все приборы, которые находятся в помещении и питаются от электросети, подсчитываются и заносятся в список.
    2. Согласно имеющимся у приборов паспортам, записывается напротив каждого устройства значение номинальной мощности.
    3. Определяется продолжительность подключения каждого прибора при одновременной работе, также вносится в список.
    4. Рассчитывается поправочный коэффициент, который зависит от времени работы в сутки и вычисляется в процентном соотношении к 24 часам, записывается напротив каждого прибора.
    5. После умножения номинальной мощности оборудования на поправочный коэффициент, производится суммирование всех полученных значений приборов списка.
    6. Полученное значение необходимо найти в специальной таблице, в зависимости от выбранного материала проводки, прибавить к нему примерно 15 % «про запас».

    ВАЖНО: Полученные цифры, как и указанные в паспорте устройств данные по номинальной мощности, являются усредненными показателями, поэтому следует прибавить еще 5 % к этим значениям.

    Существует очень распространенное заблуждение о возможности монтажа проводки с различным диаметром сердцевины, в зависимости от потребителя. Это может привести к возгоранию (редко, но случается), разрушению изоляционного слоя, короткому замыканию, поскольку в одном помещении пущенная от одного распределителя электрика будет разрушительно действовать на несоответствующие по мощности светильники или другие мелкие потребители, запитанные на тонкие кабели. Такая ситуация не редкая для подключения нескольких электроприборов к одной точке, например, стиральной машины, кофеварки и мультиварки.

    Особенности расчета мощности скрытой проводки

    После произведения подсчета мощности для отдельного помещения или группы потребителей, следует провести вычисление силы тока в бытовой сети с напряжением 220 В. Для этого существует формула:

    I = (P1 + P2 + … + Pn) / U220,
    где:
    I – искомая сила тока;
    P1 … Pn – мощность каждого потребителя по списку – от первого до n-ого;
    U220 – напряжение в сети, в нашем случае это 220 В.

    Формула расчета для трехфазной сети с напряжением 380 В выглядит так:

    I = (P1 + P2 + …. + Pn) / √3 / U380
    где:
    U380 – напряжение в трехфазной сети, равное 380 В.

    Сила тока I, полученная в расчетах измеряется в Амперах, обозначается А.

    Таблицы составляются согласно показателю пропускной способности металла в проводнике. Для меди это значение равно 10 А на 1 мм, для алюминия – 8 А на 1 мм.

    Определить сечение согласно пропускной способности следует по такой формуле:

    S = I / Z,
    где:
    Z – пропускная способность кабеля.

    ПРИМЕР: Сеть бытовая с напряжением 220 В. Для кухни требуется рассчитать сечение проводника при учете подключения потребителей с общей мощностью 5 кВт.
    I = (P1 + P2 + …. + Pn) / U220 = Pобщ / U220 = 5 000 / 220 = 22,73 ≈ 23 (А)
    Для расчета запаса следует воспользоваться правилом «5 А», что означает к полученному значению прибавить еще 5 Ампер:
    I = 23 + 5 = 28 (А)
    Учитывая монтаж проводки с использованием трехжильных кабелей, по таблице для полученного значения тока минимальная площадь сечения провода будет равной 3 кв. мм.

    Таблица соотношения величины тока и минимального сечения кабеля

    Сечение сердцевины проводника, кв. мм

    Сила тока в проводниках, положенных в одной трубе, А

    Сила тока в кабеле, положенном открытым способом, А
    один 3-жильный один 2-жильный четыре 1-жильных три 1-жильных два 1-жильных
    0,5 11
    0,75 15
    1 14 15 14 15 16 17
    1,2 14,5 16 15 16 18 20
    1,5 15 18 16 17 19 23
    2 19 23 20 22 24 26
    2,5 21 25 25 25 27 30
    3 24 28 26 28 32 34
    4 27 32 30 35 38 41
    5 31 37 34 39 42 46
    6 34 40 40 42 46 50
    8 43 48 46 51 54 62
    10 50 55 50 60 70 80
    16 70 80 75 80 85 100
    25 85 100 90 100 115 140
    35 100 125 115 125 135 170
    50 135 160 150 170 185 215
    70 175 195 185 210 225 270
    95 215 245 225 255 275 330
    120 250 295 260 290 315 385
    150 330 360 440
    185 510
    240 605
    300 695
    400 830

    Таблица мощности, тока и сечения медных проводов

    Согласно ПЭУ, допускается расчет сечения проводника в зависимости мощности потребителей. Для медного сердечника кабеля приведены в таблице вычисления для сети с напряжением 380 В и 220 В.

    Сечение сердцевины проводника, кв. мм

    Медные сердцевины кабелей

    Напряжение сети 380 В Напряжение сети 220 В
    Мощность, Вт Сила тока, А Мощность, Вт Сила тока, А
    1,5 10,5 16 4,1 19
    2,5 16,5 25 5,9 27
    4 19,8 30 8,3 38
    6 26,4 40 10,1 46
    10 33 50 15,4 70
    16 49,5 75 18,7 80
    25 59,4 90 25,3 115
    35 75,9 115 29,7 135
    50 95,7 145 38,5 175
    70 118,8 180 47,3 215
    95 145,2 220 57,2 265
    120 171,6 260 66 300

    Согласно данному документу, в жилых зданиях рекомендуется прокладывать кабеля с медными жилами. Для обеспечения питания инженерного оборудования некоторых типов допускается посредством алюминиевой проводки с минимальным сечением не менее 2,5 кв. мм.

    Таблица мощности, тока и сечения алюминиевых проводов

    Согласно данным таблицы, для определения сечения алюминиевой сердцевины проводки следует учитывать такие поправочные коэффициенты: согласно расположению (в земле, скрыто, открыто), по температурному режиму, в зависимости от влажности и т.п. В приведенной ниже таблицы расчеты верны для проводов с резиновой или пластмассовой изоляцией марок АППВ, ВВГ, АВВГ, ВПП, ППВ, ПВС, ВВП и др. Кабели с бумажным экранированием или без изоляции должны рассчитываться по соответствующим их типу таблицам.

    Сечение сердцевины проводника, кв. мм

    Медные сердцевины кабелей

    Напряжение сети 380 В Напряжение сети 220 В
    Мощность, Вт Сила тока, А Мощность, Вт Сила тока, А
    2,5 12,5 19 4,4 22
    4 15,1 23 6,1 28
    6 19,8 30 7,9 36
    10 25,7 39 11 50
    16 36,3 55 13,2 60
    25 46,2 70 18,7 85
    35 56,1 85 22 100
    50 72,6 110 29,7 135
    70 92,4 140 36,3 165
    95 112,2 170 44 200
    120 132 200 50,6 230

    Длина и сечение

    Из полученного значения расчетов по сечению кабеля нужно определять допустимую длину электропроводки. Это особенно актуально при создании удлинителей. Точные значения, которые получаются в расчетах, дополнительно следует увеличивать на 15 см (коммутационный запас для обжима, сварки или пайки). Эта операция особенно важна для участков с большими дополнительными нагрузками при эксплуатации электросети.

    Для бытового вычисления используется следующая формула:

    I = P / U * cosφ,
    где:
    Р – мощность потребителей, Вт;
    I – сила тока, А;
    U – напряжение электросети, В;
    сosφ = 1 – поправочный коэффициент поправки по фазе.

    Плотность тока

    Для медного кабеля с сечением сердечника 1 кв. мм среднее значение этого показателя варьируется в пределах от 6 до 10 А. По медной проводке с сечением 1 кв. мм может протекать ток, силой 6-10 А без перегрева или оплавления изоляционного покрытия. По стандартам ПЭУ, прибавляется 40 % запаса для защиты от возможного перегрева оболочек.

    Нижняя граница в 6 А позволяет использовать проводку без ограничений по времени, верхняя, в 10 А – это допустимые значения кратковременных нагрузок на сеть. Возрастание силы тока до значения 12 А (большего за верхнюю границу для выбранного сечения) ведет к увеличению плотности тока, ее перегреву с последующим оплавлением защитной оболочки.

    Заключение

    Самостоятельный расчет толщины требуемого для проводки кабеля легко осуществляется без посторонней помощи. Если в помещении есть распределительных щиток с разведением потребителей по группам мощности, а также нет каких-то особых сложных систем в монтаже, то ремонтные работы можно произвести без привлечения специалистов. Однако наличие повышенных показателей температурного режима, влажности или подведения электричества от одного автоматического выключателя требует помощи профессионалов.

    Расчет сечения кабеля по мощности, материалу проводника и длине кабеля

        Проектируя монтаж электропроводки часто и обоснованно возникает вопрос, какое сечение кабеля нужно использовать для подключения потребителя? Обычно для монтажа электропроводки используют кабель ВВГ либо провода ПВС или ШВВП. Но по сути тип кабеля не имеет принципиального значения, важнее всего определить какую максимальную мощность потребления будет поддерживать построенная сеть.

        Правильно сделать расчет сечения кабеля очень важно по двум причинам. Первая – безопасность, при заниженном сечения кабель перегревается, что может привести даже к возгоранию, вторая – экономия, исключение лишних затрат при выборе слишком большого сечения без надобности.

        Кажется, что подобный расчет, эта задача сложная и решение ее под силу только «профи», хотим Вас заверить нет! Все просто, если придерживаться методики расчета, которую ниже мы приведем.

        В начале проводится расчет суммарного потребления в доме, квартире, помещении. Все электроприборы потребляют определенное количество электричества (эквивалент мощности), измеряемого в Ваттах.

        Ниже в таблице доступно представлены основные бытовые приборы и их средняя потребляемая мощность.

        Теперь дело за малым, просуммировать величину потребления всех приборов на объекте и получить общее потребление для сечения основного подающего кабеля:

                Pобщ = (Р1 + Р2 + Р3+ Pn) * 0. 8

        Коэффициент 0.8 учитывает, что обычно не более 80% приборов одновременно будут включаться на длительное время. Но при расчете максимальных нагрузок конечно лучше брать все 100% мощности.

        Далее следует понимать, что кабель определенного сечения может «прокачать» только ту мощность, на которую он рассчитан. В противном случае кабель будет греться и беда, как говорится, не заставит себя ждать. Чтобы такого не случилось, сечение кабеля выбирают из таблицы в соответствии с подключаемой мощностью потребителей.

        Значения сечений кабеля приведены в таблице:
















    Сечение жилы, кв.мм. Медные провода Алюминиевые провода
    Напряжение, 220В Напряжение, 380В Напряжение, 220В Напряжение, 380В
    ток, А мощность, кВт ток, А мощность, кВт ток, А мощность, кВт ток, А мощность, кВт
    1. 5 19 4.1 16 10.5
    2.5 27 5.9 25 16.5 20 4.4 19 12.5
    4 38 8.3 30 19.8 28 6.1 23 15.1
    6 46 10.1 40 26.4 36 7.9 30 19.8
    10 70 15.4 50 33.0 50 11.0 39 25.7
    16 85 18.7 75 49.5 60 13.2 55 36.3
    25 115 25. 3 90 59.4 85 18.7 70 46.2
    35 135 29.7 115 75.9 100 22.0 85 56.1
    50 175 38.5 145 95.7 135 29.7 110 72.6
    70 215 47.3 180 118.8 165 36.3 140 92.4
    95 260 57.2 220 145.2 200 44.0 170 112.2
    120 300 66.0 260 171.6 230 50.6 200 132.0

        Для простоты понимания вопроса приведем пример расчета сечения кабеля ввода в дачный домик.

        Все электроприборы потянут на себя потребление порядка 11,6 кВт. Учитывая коэффициент 0,8 – получаем суммарную действительную нагрузку по дому — 9,28кВт. Ближайшее значение из таблицы — 10,1кВт, что соответствует сечению 6 мм2 медного кабеля и 10 мм2 алюминиевого.

        Как видно, приближенное вычисление сечения основного кабеля нагрузки по общей мощности вычисляется довольно просто.

        Аналогичным, но более точным и глубоким для понимания является метод вычисления расчетного сечения по токовой нагрузке. Определив общую мощность потребления переходим к вычислению силы тока потребителей по нижеприведенной формуле:

        Для сети 220В: I = P / U * cosφ , для трехфазной сети 380В: I = P / U * cosφ * 1.73

        где, Р – наша мощность потребления

        cosφ – коэффициент мощности. Точное значение коэффициента, это предмет отдельного детального рассмотрения, но в современных реалиях, в подавляющем количестве случаев, за основу можно смело брать 0. 95. Подставив все значения и рассчитав силу тока потребления, снова обращаемся к таблице, и определяем соответствующее сечение, заодно перепроверив предыдущие расчеты по мощности.

        Этот алгоритм более точное и надежное решением при выборе сечения кабеля. Полученное значение нужно снова светить с данными из таблицы:

        На внутренней разводке электропроводки после основного несущего кабеля конечно можно и нужно сэкономить. Расчет по отдельным потребительским (розеточным) группам не отличается от общего, с той лишь разницей, что потребительская мощность на отдельную группу скорее всего будет значительно ниже, а значит и необходимое сечение кабеля тоже будет меньше. Главное, чтоб сумма отдельных потребительских мощностей не превышала расчетную общую мощность для основного подающего кабеля.

        В отдельных случаях надо рассчитать сечения кабеля по длине.

        Важность этого вопроса объясняется тем, что с увеличением расстояния в кабеле будут нарастать неизбежные потери, связанные с сопротивлением материала токопроводящей жилы. И на больших расстояниях потери настолько значительные, что стандартный расчет соотношения сечения кабеля к токовым нагрузкам уже не подходит.

        Правило выбора сечения в этом случае дополняется условием – если потери превышают 5%, то следует увеличить сечение кабеля.

        Метод расчета частично использует формулы, приведенные выше.

        Используем уже рассчитанные — суммарную мощность всех потребителей и токовую нагрузку в Амперах. После чего рассчитываем сопротивление электропроводки по формуле:

                R = (p * L) / S

        где, p – удельное сопротивление проводника, берется из соответствующей таблицы:

        После чего рассчитываем потери напряжения:

                Uпотерь = Iнагрузки * Rкабеля

                Fпотерь = ( Uпотерь / Uном ) * 100%

        Полученное значение анализируется, если оно меньше 5% — сечение выбрано правильно. Иначе берем кабель на размер больше.

        Расчет сечения кабеля по длине в обязательном порядке проводится при подключении потребителей на большом расстоянии. Иначе можно подключить кабель, а на выходе из-за высоких потерь оборудование просто может не запуститься, по причине низкого уровня напряжения.

        Пока мы описывали все нюансы расчетов определения сечения кабеля по мощности, токовой нагрузке, материалу проводника и длине, пришло осознание, что хоть расчет и не очень сложен, но в процессе нужно просмотреть и перепроверить много таблиц для получения правильного результата. И что было бы удобно иметь под рукой быстрый инструмент подобных расчетов. Поэтому мы решили разработать специальный калькулятор расчета сечения кабеля, который принимает и учитывает в расчетах все вышеперечисленные нюансы. Теперь есть выбор, просчитать с помощью калькулятора либо чуть медленнее самостоятельно. В любом случае вы точно знаете как это работает.

    Расчет сечения кабеля, автоматов защиты

     

    Вступление

    В электрике любого помещения важное значение имеет правильный расчет сечения кабеля, автоматов защиты. Зависит расчет от электропотребителей, которые будут работать в электросети и как следствие от планируемой нагрузки в сети. Как правильно рассчитать нагрузку и номинальные значения тока нагрузки в электрической сети и по результатам выбрать сечение кабеля и автоматы защиты пойдет речь в этой статье.

    Нагрузка электросети

    Любая электропроводка разделена на так называемые группы. Электропроводка каждой группы выполняется электрическим кабелем определенного сечения и защищается автоматом защиты с заранее рассчитанным номиналом. Для того чтобы выбрать сечение кабеля и номинал автомата защиты необходимо рассчитать предполагаемую нагрузку этой электросети.

    При расчете нагрузки электросети нужно помнить, что расчет токовой нагрузки (величина силы тока в сети, при работе электроприбора) отдельного бытового прибора (потребителя) и группы из нескольких потребителей отличаются друг от друга.

    Кроме этого расчет нагрузки при однофазном электропитании (220 вольт) отличается от расчета трехфазного электропитания (380 вольт). Начнем разбирать расчет нагрузки электросети в однофазной сети с рабочим напряжением 220 Вольт.

    Расчет токовой нагрузки и выбор автомата защиты в однофазной электросети,220 вольт для одиночного потребителя

    Расчет электросети для одного бытового прибора достаточно прост. Для этого нужно вспомнить основной закон электротехники (закон Ома), посмотреть в паспорте на прибор его потребляемую мощность и рассчитать токовую нагрузку.

    Приведу пример:

    • Бытовая электроплита на 220 вольт. Потребляемая мощность 5000 ватт (5 КВатт).
    • Ток нагрузки можно рассчитать по закону Ома.
    • Iнагрузки=5000Вт÷220 вольт=22,7 Ампера.

    Вывод: На линию для электропитания этой электроплиты нужно установить автомат защиты не менее 23 Ампер. Таких автоматов в продаже нет, поэтому выбираем автомат с большим ближайшим номиналом в 25 Ампер.

    Расчет токовой нагрузки и выбор автомата защиты в однофазной электросети,220 вольт для группы электропроводки

    Под группой электропроводки понимается несколько потребителей подключенных параллельно к одному питающему кабелю от электрощитка. Для группы электропроводки устанавливается общий автомат защиты. Автомат защиты устанавливается в квартирном электрощитке или этажном щитке. Расчет сети группы потребителей отличается от расчета сети одиночного потребителя.

    Для расчета токовой нагрузки группы потребителей вводится так называемый коэффициент спроса. Коэффициент спроса (Кс) определяет вероятность одновременного включения всех потребителей в группе в течение длительного промежутка времени. Кс=1 соответствует одновременной работе всех электроприборов группы. Понятно, что включение и работа всех электроприборов в квартире практически не бывает. Есть целые системы расчета коэффициента спроса для домов, подьездов. Для каждой квартиры коэффициент спроса различается для отдельных комнат, отдельных потребителей и даже для различного стиля жизни жильцов. Например, коэффициент спроса для телевизора обычно равен 1,а коэффициент спроса пылесоса равен 0,1.

    Поэтому для расчета токовой нагрузки и выбора автомата защиты в группе электропроводки коэффициент спроса влияет на результат. Расчетная мощность группы электропроводки рассчитывается по формуле:

    • P(расчетная)=К(спроса)×P(мощность установочная).
    • I (ток нагрузки)=Р (мощность расчетная)÷220 вольт.

    Пример: В таблице ниже рассмотрим электроприборы, входящие в одну группу. Рассчитаем токовую нагрузку для этой группы и выберем автомат защиты с учетом коэффициента спроса.Коэффицмент спроса в примере выбирается индивидуально:











    Электроприборы

    Мощность

    Р, Вт

    Коэффициент спроса

    Кс

    Освещение

    480

    0,7

    Радиоприемник

    75

    0

    Телевизор

    160

    1

    Холодильник

    150

    1

    Стиральная машина

    380

    0

    Утюг

    1000

    0

    Пылесос

    400

    0

    Другие

    700

    0,3

    Итого:

    3345, Вт

     
    • Расчетная Мощность в сети расчитавается следующим образом:
    • 480×0,7+75+160+150+380+1000+400+700×0,3=2711,ВТ
    • К(спроса) квартиры=2711÷3345=0,8
    • Ток нагрузки:
    • 3345÷220×0,8=12Ампер.
    • Соответственно выбираем автомат защиты на шаг больше:16Ампер.

    В общих, а не индивидуальных расчетах, для жилых помещений, коэффициент спроса принимается в зависимости от количества потребителей, таблица ниже: 



    Количество приемников в помещении

    2

    3

    5-200

    К(коэффициент спроса)помещения

    0,8

    0,75

    0,7

    Теперь опредилемся,как выбрать сечения кабеля для электропроводки

    По приведенным выше формулам можно рассчитать мощность электросети и значение рабочего тока в сети. Остаяется по полученным значениям выбрать сечение электрического кабеля, который можно использовать для рассчитываемой проводки в квартире.

    Это совсем просто. В настольной книги электрика, ПУЭ-правила устройства электрустановок, все сделано за нас. По таблице ниже ищете значение расчитаного тока нагрузки или расчетную мощность сети и выбираете сечение электрического кабеля.Таблица приводится для медных жил кабелей или проще, медного кабеля ,потому что использование аллюминевых кабелей в электропроводке жилых помещений запрещено.(читайте ПУЭ изд.7) 

































    Проложенные открыто

         

    Сечение жил кабеля

    Медные жилы

       

    мм2

    Ток нагрузки

    Мощн.кВт

     
     

    А

    220 В

    380 В

    0,5

    11

    2,4

     

    0,75

    15

    3,3

     

    1

    17

    3,7

    6,4

    1,5

    23

    5

    8,7

    2

    26

    5,7

    9,8

    2,5

    30

    6,6

    11

    4

    41

    9

    15

    5

    50

    11

    19

    10

    80

    17

    30

    16

    100

    22

    38

    25

    140

    30

    53

    35

    170

    37

    64

    Проложенные в трубе

         

    Сечение жил кабеля

    Медные жилы

       

    мм2

    Ток накрузки

    Мощн. кВт

     
     

    А

    220 В

    380 В

    0,5

         

    0,75

         

    1

    14

    3

    5,3

    1,5

    15

    3,3

    5,7

    2

    19

    4,1

    7,2

    2,5

    21

    4,6

    7,9

    4

    27

    5,9

    10

    5

    34

    7,4

    12

    10

    50

    11

    19

    16

    80

    17

    30

    25

    100

    22

    38

    35

    135

    29

    51

    Две расчетные таблицы для расчета и правильного выбора сечения кабеля и автоматов защиты 

    ТАБЛИЦА 1.

    Номенклатура мощностей электробытовых приборов и машин для расчета в электросетях жилых помещений

    из нормативов для определения расчетных электрических нагрузок зданий (квартир), коттеджей, микрорайонов (кварталов) застройки и элементов городской распределительной сети


























    NN пп

    Наименование

    Установленная мощность, Вт

    1

    Осветительные приборы

    1800-3700

    2

    Телевизоры

    120-140

    3

    Радио и пр. аппаратура

    70-100

    4

    Холодильники

    165-300

    5

    Морозильники

    140

    6

    Стиральные машины без подогрева воды

    600

     

    с подогревом воды

    2000-2500

    7

    Джакузи

    2000-2500

    8

    Электропылесосы

    650-1400

    9

    Электроутюги

    900-1700

    10

    Электрочайники

    1850-2000

    11

    Посудомоечная машина с подогревом воды

    2200-2500

    12

    Электрокофеварки

    650-1000

    13

    Электромясорубки

    1100

    14

    Соковыжималки

    200-300

    15

    Тостеры

    650-1050

    16

    Миксеры

    250-400

    17

    Электрофены

    400-1600

    18

    СВЧ

    900-1300

    19

    Надплитные фильтры

    250

    20

    Вентиляторы

    1000-2000

    21

    Печи-гриль

    650-1350

    22

    Стационарные электрические плиты

    8500-10500

    23

    Электрические сауны

    12000

    ТАБЛИЦА2.

    2. ИСХОДНЫЕ ДАННЫЕ для расчетов электрических нагрузок жилых зданий (квартир) и коттеджей на перспективу 














    1. Средняя площадь квартиры (общая), м:

     

    — типовых зданий массовой застройки

    — 70

    — здания с квартирами повышенной комфортности (элитные) по индивидуальным проектам

    — 150

    2. Площадь (общая) коттеджа, м

    — 150-600

    3. Средняя семья

    — 3,1 чел.

    4. Установленная мощность, кВт:

     

    — квартир с газовыми плитами

    — 21,4

    — квартир с электрическими плитами в типовых зданиях

    — 32,6

    — квартир с электрическими плитами в элитных зданиях

    — 39,6

    — коттеджей с газовыми плитами

    -35,7

    — коттеджей с газовыми плитами и электрическими саунами

    -48,7

    — коттеджей с электрическими плитами

    — 47,9

    — коттеджей с электрическими плитами и электрическими саунами

    — 59,9

    ©Elesant. ru

    Еще статьи

     

     

    {2} \ $ и длиной \ $ l = 200m \ $. Нагреватель имеет сетевое напряжение и полезную мощность \ $ U_ {n} = 230 В, P_ {n} = 2200 Вт \ $.
    Рассчитайте фактическую полезную мощность нагревателя и потери мощности из-за кабеля. Также рассчитайте общую мощность, потребляемую от сети. Сопоставьте чистую мощность и мощность потерь с общей мощностью.

    Это наш путь к нашему решению:
    Мы рассматривали кабель как отдельное сопротивление, которое последовательно подключается к нагревателю. С данными кабеля и удельной проводимостью \ 58 $.11 \ $ получаем сопротивление кабеля \ $ 2.29 \ Omega \ $.

    Большой вопрос для нас — как теперь ведет себя нагреватель, когда он не получает напряжения \ $ 230 В \ $. В лекции не объяснялось, как он себя ведет в таком случае. Мы предполагаем, что он имеет постоянное сопротивление. Предполагая \ $ 230 В \ $ и принимая чистую потребляемую мощность нагревателя, получаем потребляемый ток \ $ \ frac {2200 Вт} {230 В} = 9,57 А \ $. Это дает сопротивление \ $ R_ {Heater} = \ frac {230V} {9.57A} = 24.03 \ Omega \ $.

    Следовательно, полное сопротивление в цепи \ $ R_ {total} = 24.03 \ Омега + 2.29 \ Омега = 26.32 \ Омега \ $. Таким образом, мы можем рассчитать общий потребляемый ток: \ $ I_ {total} = \ frac {230V} {26.32 \ Omega} = 8.74A \ $

    .

    Расчет напряжений на отдельных компонентах дает:
    \ $ U_ {Нагреватель} = 24.03 \ Omega * 8.74A = 210.02V, U_ {кабель} = 20.01V \ $

    Фактическая потребляемая мощность нагревателя, таким образом, равна \ $ P_ {Heater} = 210,02 В * 8,74 А = 1835,57 Вт \ $; и для кабеля (потеря мощности): \ $ P_ {cable} = 20.01V * 8.74A = 174.93W \ $ Общая потребляемая мощность должна быть: \ $ P_ {total} = 2010,5W \ $

    Решение говорит, что у нас общая мощность \ $ P_ {total} = 1835.57 Вт \ $ — это именно та мощность, которую обогреватель использует в нашем решении. Затем это было разделено на фактическую полезную мощность около 1500 и потерю мощности около 335 (поэтому они складываются). Это намекает на то, что мы не совсем ошиблись, но где-то в процессе мышления сделали ошибку. Мы запутались, потому что не знаем, как ведет себя обогреватель. Обратный инжиниринг предоставленного решения не дал понять, что могло быть не так.

    Надеюсь, кто-то поможет нам решить эту проблему.

    Спасибо.

    онлайн-курсов PDH.PDH для профессиональных инженеров. PDH Engineering.

    «Мне нравится широта ваших курсов по HVAC; не только экология или экономия энергии

    курсов. «

    Russell Bailey, P.E.

    Нью-Йорк

    «Это укрепило мои текущие знания и научило меня еще нескольким новым вещам.

    , чтобы познакомить меня с новыми источниками

    информации.»

    Стивен Дедак, P.E.

    Нью-Джерси

    «Материал был очень информативным и организованным. Я многому научился, и они были

    .

    очень быстро отвечает на вопросы.

    Это было на высшем уровне. Будет использовать

    снова. Спасибо. «

    Blair Hayward, P.E.

    Альберта, Канада

    «Простой в использовании сайт.Хорошо организовано. Я действительно буду снова пользоваться вашими услугами.

    проеду по вашей компании

    имя другим на работе «

    Roy Pfleiderer, P.E.

    Нью-Йорк

    «Справочные материалы были превосходными, и курс был очень информативным, особенно потому, что я думал, что я уже знаком.

    с деталями Канзас

    Городская авария Хаятт.»

    Майкл Морган, P.E.

    Техас

    «Мне очень нравится ваша бизнес-модель. Мне нравится просматривать текст перед покупкой. Я нашел класс

    .

    информативно и полезно

    в моей работе ».

    Вильям Сенкевич, П.Е.

    Флорида

    «У вас большой выбор курсов, а статьи очень информативны.Вы

    — лучшее, что я нашел ».

    Russell Smith, P.E.

    Пенсильвания

    «Я считаю, что такой подход позволяет работающему инженеру легко зарабатывать PDH, давая время на просмотр

    материал «

    Jesus Sierra, P.E.

    Калифорния

    «Спасибо, что позволили мне просмотреть неправильные ответы.На самом деле

    человек узнает больше

    от отказов »

    John Scondras, P.E.

    Пенсильвания

    «Курс составлен хорошо, и использование тематических исследований является эффективным.

    способ обучения »

    Джек Лундберг, P.E.

    Висконсин

    «Я очень впечатлен тем, как вы представляете курсы; i.е., позволяя

    студент для ознакомления с курсом

    материалов до оплаты и

    получает викторину «

    Арвин Свангер, П.Е.

    Вирджиния

    «Спасибо за то, что вы предложили все эти замечательные курсы. Я определенно выучил и

    получил огромное удовольствие «.

    Мехди Рахими, П.Е.

    Нью-Йорк

    «Я очень доволен предлагаемыми курсами, качеством материалов и простотой поиска.

    на связи

    курсов.»

    Уильям Валериоти, P.E.

    Техас

    «Этот материал во многом оправдал мои ожидания. По курсу было легко следовать. Фотографии в основном обеспечивали хорошее наглядное представление о

    обсуждаемых тем ».

    Майкл Райан, P.E.

    Пенсильвания

    «Именно то, что я искал. Потребовался 1 балл по этике, и я нашел его здесь.»

    Джеральд Нотт, П.Е.

    Нью-Джерси

    «Это был мой первый онлайн-опыт получения необходимых мне кредитов PDH. Это было

    информативно, выгодно и экономично.

    Я очень рекомендую

    всем инженерам. »

    Джеймс Шурелл, P.E.

    Огайо

    «Я понимаю, что вопросы относятся к« реальному миру »и имеют отношение к моей практике, и

    не на основе какой-то неясной секции

    законов, которые не применяются

    «нормальная» практика.»

    Марк Каноник, П.Е.

    Нью-Йорк

    «Отличный опыт! Я многому научился, чтобы перенести его на свой медицинский прибор.

    организация «

    Иван Харлан, П.Е.

    Теннесси

    «Материалы курса содержали хорошее, не слишком математическое, с хорошим акцентом на практическое применение технологий».

    Юджин Бойл, П.E.

    Калифорния

    «Это был очень приятный опыт. Тема была интересной и хорошо изложенной,

    а онлайн-формат был очень

    Доступно и просто

    использовать. Большое спасибо. «

    Патрисия Адамс, P.E.

    Канзас

    «Отличный способ добиться соответствия требованиям PE Continuing Education в рамках ограничений по времени лицензиата.»

    Joseph Frissora, P.E.

    Нью-Джерси

    «Должен признаться, я действительно многому научился. Помогает иметь распечатанный тест во время

    обзор текстового материала. Я

    также оценил просмотр

    фактических случаев предоставлено.

    Жаклин Брукс, П.Е.

    Флорида

    «Документ» Общие ошибки ADA при проектировании объектов «очень полезен.

    испытание потребовало исследования в

    документ но ответы были

    в наличии «

    Гарольд Катлер, П.Е.

    Массачусетс

    «Я эффективно использовал свое время. Спасибо за широкий выбор вариантов.

    в транспортной инженерии, что мне нужно

    для выполнения требований

    Сертификат ВОМ.»

    Джозеф Гилрой, P.E.

    Иллинойс

    «Очень удобный и доступный способ заработать CEU для моих требований PG в Делавэре».

    Ричард Роадс, P.E.

    Мэриленд

    «Я многому научился с защитным заземлением. Пока все курсы, которые я прошел, были отличными.

    Надеюсь увидеть больше 40%

    курсов со скидкой.»

    Кристина Николас, П.Е.

    Нью-Йорк

    «Только что сдал экзамен по радиологическим стандартам и с нетерпением жду возможности сдать дополнительный

    курсов. Процесс прост, и

    намного эффективнее, чем

    в пути «.

    Деннис Мейер, P.E.

    Айдахо

    «Услуги, предоставляемые CEDengineering, очень полезны для Professional

    Инженеры получат блоки PDH

    в любое время.Очень удобно ».

    Пол Абелла, P.E.

    Аризона

    «Пока все отлично! Поскольку я постоянно работаю матерью двоих детей, у меня мало

    пора искать где

    получить мои кредиты от. «

    Кристен Фаррелл, P.E.

    Висконсин

    «Это было очень познавательно и познавательно.Легко для понимания с иллюстрациями

    и графики; определенно делает это

    проще поглотить все

    теорий. «

    Виктор Окампо, P.Eng.

    Альберта, Канада

    «Хороший обзор принципов работы с полупроводниками. Мне понравилось пройти курс по

    .

    мой собственный темп во время моего утро

    до метро

    на работу.»

    Клиффорд Гринблатт, П.Е.

    Мэриленд

    «Просто найти интересные курсы, скачать документы и взять

    викторина. Я бы очень рекомендовал

    вам на любой PE нужно

    CE единиц. «

    Марк Хардкасл, П.Е.

    Миссури

    «Очень хороший выбор тем из многих областей техники.»

    Randall Dreiling, P.E.

    Миссури

    «Я заново узнал то, что забыл. Я также рад помочь материально

    по ваш промо-адрес который

    сниженная цена

    на 40% «

    Конрадо Казем, П.E.

    Теннесси

    «Отличный курс по разумной цене. Воспользуюсь вашими услугами в будущем».

    Charles Fleischer, P.E.

    Нью-Йорк

    «Это был хороший тест и фактически подтвердил, что я прочитал профессиональную этику

    коды и Нью-Мексико

    правил. «

    Брун Гильберт, П.E.

    Калифорния

    «Мне очень понравились занятия. Они стоили потраченного времени и усилий».

    Дэвид Рейнольдс, P.E.

    Канзас

    «Очень доволен качеством тестовых документов. Буду использовать CEDengineerng

    при необходимости дополнительно

    сертификация. «

    Томас Каппеллин, П.E.

    Иллинойс

    «У меня истек срок действия курса, но вы все же выполнили свое обязательство и дали

    мне то, за что я заплатил — много

    оценено! «

    Джефф Ханслик, P.E.

    Оклахома

    «CEDengineering предлагает удобные, экономичные и актуальные курсы.

    для инженера »

    Майк Зайдл, П.E.

    Небраска

    «Курс был по разумной цене, материал был кратким, а

    в хорошем состоянии »

    Glen Schwartz, P.E.

    Нью-Джерси

    «Вопросы подходили для уроков, а материал урока —

    .

    хороший справочный материал

    для деревянного дизайна. «

    Брайан Адамс, П.E.

    Миннесота

    «Отлично, я смог получить полезные рекомендации по простому телефону.»

    Роберт Велнер, P.E.

    Нью-Йорк

    «У меня был большой опыт работы в прибрежном строительстве — проектирование

    Building курс и

    очень рекомендую

    Денис Солано, P.E.

    Флорида

    «Очень понятный, хорошо организованный веб-сайт. Материалы курса по этике в Нью-Джерси были очень хорошими

    хорошо подготовлены. »

    Юджин Брэкбилл, P.E.

    Коннектикут

    «Очень хороший опыт. Мне нравится возможность загружать учебные материалы на

    обзор везде и

    всякий раз, когда.»

    Тим Чиддикс, P.E.

    Колорадо

    «Отлично! Поддерживаю широкий выбор тем на выбор».

    Уильям Бараттино, P.E.

    Вирджиния

    «Процесс прямой, без глупостей. Хороший опыт».

    Тайрон Бааш, П.E.

    Иллинойс

    «Вопросы на экзамене были зондирующими и демонстрировали понимание

    материала. Полная

    и комплексное ».

    Майкл Тобин, P.E.

    Аризона

    «Это мой второй курс, и мне понравилось то, что мне предложили курс

    поможет по моей линии

    работ.»

    Рики Хефлин, P.E.

    Оклахома

    «Очень быстро и легко ориентироваться. Я определенно буду использовать этот сайт снова».

    Анджела Уотсон, P.E.

    Монтана

    «Легко выполнить. Никакой путаницы при прохождении теста или записи сертификата».

    Кеннет Пейдж, П.E.

    Мэриленд

    «Это был отличный источник информации о солнечном нагреве воды. Информативный

    и отличный освежитель ».

    Luan Mane, P.E.

    Conneticut

    «Мне нравится подход к регистрации и возможность читать материалы в автономном режиме, а затем

    Вернись, чтобы пройти викторину «

    Алекс Млсна, П.E.

    Индиана

    «Я оценил объем информации, предоставленной для класса. Я знаю

    это вся информация, которую я могу

    использование в реальных жизненных ситуациях »

    Натали Дерингер, P.E.

    Южная Дакота

    «Обзорные материалы и образец теста были достаточно подробными, чтобы позволить мне

    успешно завершено

    курс.»

    Ира Бродский, П.Е.

    Нью-Джерси

    «Веб-сайт прост в использовании, вы можете скачать материал для изучения, а потом вернуться

    и пройдите викторину. Очень

    удобно а на моем

    собственный график «

    Майкл Гладд, P.E.

    Грузия

    «Спасибо за хорошие курсы на протяжении многих лет.»

    Деннис Фундзак, П.Е.

    Огайо

    «Очень легко зарегистрироваться, получить доступ к курсу, пройти тест и распечатать PDH

    сертификат. Спасибо за создание

    процесс простой. »

    Фред Шейбе, P.E.

    Висконсин

    «Положительный опыт.Быстро нашел курс, который соответствовал моим потребностям, и прошел

    один час PDH в

    один час. «

    Стив Торкильдсон, P.E.

    Южная Каролина

    «Мне понравилась возможность скачать документы для проверки содержания

    и пригодность, до

    имея заплатить за

    материал

    Ричард Вимеленберг, P.E.

    Мэриленд

    «Это хорошее напоминание об ЭЭ для инженеров, не занимающихся электричеством».

    Дуглас Стаффорд, П.Е.

    Техас

    «Всегда есть возможности для улучшения, но я ничего не могу придумать в вашем

    .

    процесс, который требует

    улучшение.»

    Thomas Stalcup, P.E.

    Арканзас

    «Мне очень нравится удобство участия в онлайн-викторине и получение сразу

    сертификат. «

    Марлен Делейни, П.Е.

    Иллинойс

    «Учебные модули CEDengineering — очень удобный способ доступа к информации по номеру

    .

    много разные технические зоны за пределами

    своя специализация без

    надо ехать.»

    Гектор Герреро, P.E.

    Грузия

    ▷ Выбор силовых кабелей

    Выбор силовых кабелей для данной цели зависит от ряда факторов. Следовательно, его выбор никогда не бывает простой задачей. Выбор также затруднен, поскольку на рынке доступно большое разнообразие кабелей.

    В этой статье мы увидим некоторые важные факторы, определяющие выбор силовых кабелей.

    Номинальное напряжение

    Необходимо выбрать силовой кабель, способный поддерживать определенное системное напряжение.

    В случае системы переменного тока номинальное напряжение силового кабеля всегда должно быть равно или превышать напряжение системы.

    Для определения номинального напряжения используйте следующую формулу:

    Если V0 — номинальное напряжение кабеля между каждым проводником и землей,

    Тогда V — номинальное напряжение кабеля между фазными проводниками, выраженное как:

    V = √3 V0

    Точный выбор номинального напряжения силового кабеля зависит от пределов устойчивости к замыканиям на землю и технических характеристик, сделанных проектировщиками энергосистемы.

    Согласно стандартам IEC существуют следующие три классификации:

    • Категория A: замыкание на землю должно быть устранено в течение 1 секунды
    • Категория B: КЗ на землю устраняется в течение 1 часа для кабелей типа IEC-183 и устраняется в течение 8 часов для кабелей типа IEC-502
    • Категория C: Все системы, не подпадающие под действие A и B

    Для категорий A и B можно выбрать кабели с таким же номинальным напряжением, что и напряжение системы. Однако для категории C номинальное напряжение кабеля должно быть выше напряжения системы.

    например для системного напряжения 3,3 кВ следует выбирать кабель номинального напряжения 6,6 кВ.

    Текущая пропускная способность

    Каждый силовой кабель предназначен для работы в определенных температурных условиях.

    Допустимая нагрузка по току силового кабеля также зависит от материала проводника (медь / алюминий) и типа изоляции.
    Таким образом, кабель с медным проводом имеет большую пропускную способность по току, чем алюминиевый.

    Изоляция из сшитого полиэтилена

    лучше, чем из ПВХ, следовательно, допустимая нагрузка по току кабеля с изоляцией из сшитого полиэтилена больше, чем у кабеля с изоляцией из ПВХ.

    Продолжительная эксплуатация кабеля сверх его номинальной допустимой нагрузки сокращает срок его службы, так как изоляция становится склонной к выходу из строя.

    Допустимая токовая нагрузка также зависит от рабочей температуры. Чем выше температура, тем ниже допустимая нагрузка на кабель и наоборот.

    Коэффициент снижения

    Кабель питания, разработанный для стандартных условий эксплуатации, на практике может не работать.

    Следовательно, это может повлиять на допустимую нагрузку по току.

    Некоторые примеры этого: Кабели, проложенные глубоко под землей, будут иметь меньшую допустимую нагрузку по току, чем кабели, проложенные в воздухе. На это влияет множество факторов, таких как температура почвы, тепловое сопротивление почвы и т. Д.

    Чтобы справиться с этим, с кабелями связан коэффициент снижения номинальных характеристик, позволяющий получить фактическое значение допустимой нагрузки по току.

    Фактическая пропускная способность по току = коэффициент снижения x допустимая токовая нагрузка кабеля ниже стандартного. условия.

    Таким образом, для кабеля на 100 А с коэффициентом снижения 0,8 фактическая допустимая нагрузка по току будет: 0,8 x 100 = 80 A

    Падение напряжения

    Производитель силового кабеля указывает это как часть своего технического описания. Падение напряжения на длине кабеля питания очень важно. Выражается как: мВ / А-м.

    Падение напряжения на единицу длины кабеля должно быть как можно меньше, чтобы напряжение на стороне подачи было примерно таким же, как на стороне питания.

    Устойчивость к короткому замыканию

    Силовой кабель в случае короткого замыкания должен выдерживать высокие значения тока без повреждения кабеля и изоляции.

    Выбор выдерживаемой силы тока короткого замыкания силового кабеля напрямую зависит от технических характеристик подключенного защитного устройства.

    Например, если выключатель, подключенный к силовому кабелю, настроен на срабатывание при 1000 А за 1 секунду, то нам нужно выбрать соответствующий кабель, который может выдерживать высокий ток 1000 А в течение 1 секунды.

    Наличие кабелей

    Это необходимо уточнить у производителя или продавца конкретного кабеля. Кабели производятся отдельными сегментами минимальной длины, поэтому будет сложно приобрести 30-метровый кабель площадью 300 кв. Мм, а не 300-метровый такой же кабель.

    Кроме того, стоимость этих двух количеств может сильно различаться.

    Радиус изгиба

    Это может быть практической проблемой во время установки. Многожильные кабели большого размера имеют больший радиус изгиба, чем малогабаритные.Следовательно, многожильный кабель из сшитого полиэтилена того же размера имеет больший радиус изгиба, чем ПВХ.

    Чтобы избежать этого, подрядчику, возможно, придется выбрать отдельные одножильные кабели.

    Прочие факторы

    Следует проявлять осторожность при работе с кабелями с алюминиевыми проводниками, так как металл имеет тенденцию к очень быстрому окислению под воздействием воздуха и образует тонкую пленку диэлектрического покрытия. Кабели с алюминиевыми жилами не используются при установке подстанций, подстанций.

    Алюминий предпочтительнее для других областей применения из-за его высокого отношения проводимости к массе.

    Кабели большого размера довольно жесткие, их сложно сгибать, устанавливать и заделывать.

    Калькулятор потерь кабеля от Electro-voice

    Вот руководство по использованию этого бесплатного программного инструмента. Сначала введите информацию о своих кабелях, усилителе и громкоговорителях в левой части калькулятора. Вам нужно будет узнать, какой калибр (или диаметр) проводов в вашем кабеле динамика.Вы можете найти калибр провода на упаковке, на этикетке на катушке с проволокой или, в некоторых случаях, на изоляции. Если вы видите аббревиатуру AWG, это означает American Wire Gauge, и вам следует выбрать «Имперскую» систему единиц из раскрывающегося списка в верхнем левом углу интерфейса. Если калибр провода имеет цифры после десятичной точки, например 2,08, выберите «Метрическая» в качестве системы единиц. Если размер провода указан как IEC Gage, установите флажок IEC, который заменяет раскрывающийся переключатель.

    Затем введите информацию о вашем усилителе. Эти характеристики должны быть напечатаны в руководстве пользователя или на листе данных. Убедитесь, что вы ввели правильную выходную мощность и сопротивление нагрузки (выходная мощность…). Эти два значения всегда указываются парами. Затем введите коэффициент демпфирования усилителя. Затем введите номинальный импеданс вашего громкоговорителя. Наконец, выберите калибр провода в раскрывающемся переключателе, введите длину кабеля между усилителем и громкоговорителем и введите емкость на единицу длины в пикофарадах.Вы должны найти характеристическую емкость кабеля в документации производителя.

    Самая важная информация на правой стороне калькулятора — это чистые потери мощности в кабеле. Это показатель того, какая часть мощности усилителя рассеивается в кабеле, прежде чем она попадет в громкоговоритель. Чем меньше потери мощности, тем больше мощности уходит на создание звука. Для громкоговорителя с сопротивлением 8 Ом, подключенного к 40-футовому кабелю с застежкой-молнией 18 калибра, потеря мощности составляет около ½ дБ, что не является ни слышимым, ни значительным, особенно для усилителя с высокой выходной мощностью.Таким образом, с точки зрения передачи энергии провод 18 калибра подходит для многих домашних применений. Но для более длинных кабелей потери могут быть больше, и вам следует подумать о переходе на кабель большего диаметра.

    Еще один результат, который следует отметить, заключается в том, что для многих кабелей частота спада значительно превышает 20 кГц, верхний предел слышимого диапазона частот. Если частота спада ниже 80 кГц, вы можете подумать о замене кабеля на кабель большего диаметра.

    Микроволны101 | Управление мощностью коаксиального кабеля

    Щелкните здесь, чтобы перейти на нашу главную страницу, посвященную коаксиальному кабелю

    Щелкните здесь, чтобы перейти на нашу главную страницу, посвященную управлению мощностью

    Управление питанием по коаксиальному кабелю — сложная тема, но ее можно разделить на два явления. Высокая пиковая мощность может вызвать сбои из-за дуги, в то время как высокая средняя мощность может вызвать отказ из-за нагрева.

    Пиковая мощность

    Этот раздел был значительно улучшен за август 2017 года.

    Управление мощностью воздушного коаксиального кабеля — это тема, связанная с атмосферными пробоями.

    Как только происходит пробой, через коаксиальный кабель замыкается короткое замыкание, и Hell вырывается.

    Дуга возникает, когда электрическое поле E превышает критическое значение, которое мы обозначим E d для электрического поля при разряде. В воздухе критическое поле составляет около 1000000 вольт / метр, в ПТФЭ оно повышается примерно до 100000000. Эти цифры приблизительны, нет смысла пытаться быть точным при расчете поломки, просто убедитесь, что вы избегаете этого на порядок или больше, и вам не о чем будет беспокоиться.

    Электрическое поле коаксиальной линии передачи изменяется в зависимости от положения вдоль радиальной линии от внешнего проводника к внутреннему проводнику (обозначается «ρ» в радиальной системе координат). Чтобы получить это, вам придется использовать вычисления, но мы только что нашли это в книге Pozar’s Microwave Engineering.

    Здесь «b» — это D / 2, а «a» — это d / 2, радиусы внешнего и внутреннего проводников. Пиковое значение E-поля, очевидно, возникает прямо на поверхности центрального проводника.Если для вас это не очевидно, подумайте о том, чтобы стать менеджером программы!

    Преобразование уравнения для максимального пикового напряжения при пробое,

    Для фиксированного «b» магическое соотношение b / a для обработки наивысшего напряжения оказывается в точности «e», или 2,718 … вы можете легко доказать это, взяв производную приведенного выше уравнения и установив ее на ноль ( ewww, Calculus! ) Обратите внимание, что магическое соотношение b / a = e для максимального напряжения не меняется, когда в коаксиальный кабель вводится диэлектрик.

    Теперь давайте вспомним сокращенное уравнение для коаксиального импеданса … «60» в уравнении является близким приближением η 0 (импеданс свободного пространства, ~ 377 Ом), деленного на пи. Уравнение имеет точность как минимум до трех десятичных знаков.

    В условиях максимального напряжения ln (b / a) = ln (e) = 1. Таким образом, сопротивление воздушного коаксиального кабеля, способного выдерживать максимальное напряжение, составляет 60 Ом, а полное сопротивление любого коаксиального кабеля с любым диэлектриком, способным выдерживать наибольшее напряжение, составляет 60 / SQRT (ER).

    Пиковая мощность, которую вы можете вложить в коаксиальный кабель в хорошо согласованных условиях (низкий КСВН), рассчитывается по пиковому напряжению, которое он может выдержать:

    2 в знаменателе необходимо, потому что мы рассматривали пиковое напряжение, а не среднеквадратичное значение.

    Подстановка уравнения Z0 в уравнение Pmax дает:

    Взяв производную по отношению к «a» и установив ее на ноль, мы получим другое магическое отношение для максимальной мощности: (b / a) для максимальной мощности = e ^ 0.1 для максимального напряжения. Используя соотношение максимальной мощности b / a, вы обнаружите, что полное сопротивление для максимальной мощности составляет 30 / SQRT (ER). Таким образом, для воздушного коаксиального кабеля Z0 = 30 Ом оптимально для мощности. Для кабелей с ПТФЭ (ER = 2.2) Z0 составляет 20,2 Ом для максимальной мощности.

    Теперь, когда у нас есть окончательное уравнение для максимальной пиковой мощности коаксиального кабеля, мы готовы провести некоторый анализ. Помните, что этот результат верен только для согласованной нагрузки. Если вы случайно разорвали соединение с передатчиком большой мощности, вы бы увидели очень высокий КСВН, в этом случае пиковое напряжение могло удвоиться.Если вам нужно учитывать этот тип неудач, вы хотите еще больше снизить мощность на 6 дБ.

    Теперь давайте рассмотрим несколько примеров коаксиального кабеля … как насчет 50-омных разъемов с воздушным диэлектриком? По данным Википедии, сопротивление воздуха составляет 3300000 вольт / метр, но это «сухой воздух» при стандартной температуре и давлении между сферическими электродами. Давайте возьмем 1000000 вольт / метр.

    Вид разъема (внешний диаметр) Внутренний диаметр Напряжение при пробое Макс мощность (низкая нагрузка по КСВ) Максимальная мощность (высокая нагрузка по КСВН)
    3.5 мм 1,52 мм 634 В 4023 Вт 1005 Вт
    2,92 мм 1,27 мм 529 В 2098 Вт 524 Вт
    2,4 мм 1.04 мм 435 В 1886 Вт 471 Вт
    1,85 мм 0,80 мм 335 В 1118 Вт 279 Вт
    1 мм 0.43 мм 181 В 325 Вт 81 Вт

    Как насчет коаксиального кабеля с ПТФЭ? Напряженность поля пробоя ПТФЭ составляет около 10 000 000 вольт на метр! Таким образом, кабель «049» (0,049 дюйма «D», 0,015 дюйма «d») может выдерживать 2260 вольт и пропускать почти 50 000 Вт пиковой мощности. Кажется, это хорошо, правда? Это. Проблема в том, что при пробое напряжения нужно сосредоточить внимание на ограничении самого слабого звена в цепи. Ваш полужесткий кабель может пропускать тысячи ватт, но как только этот сигнал пересекает путь, где диэлектрический наполнитель из ПТФЭ прерывается воздухом, возникает искра.На конце кабеля, куда припаивается разъем, обязательно будет разрыв в диэлектрике. Вам нужно пересмотреть расчет для воздушного диэлектрика, и в этом случае вы увидите, что 256 вольт — это максимальное напряжение, 358 ватт — максимальная мощность при хорошей нагрузке и 89 ватт — максимальная мощность при несравнимой нагрузке. Обратите внимание, что на этом интерфейсе коаксиальный кабель имеет сопротивление 71 Ом.

    Прежде чем мы перейдем к средней мощности коаксиального кабеля, давайте посмотрим на передачу мощности как функцию полного сопротивления линии для воздушного коаксиального кабеля, что является частью «компромисса коаксиального кабеля», который привел к стандарту 50 Ом.Если вы позволите свободе центрального диаметра сместиться с 50 Ом, вы увидите, что максимальная пиковая мощность достигается при ~ 30 Ом.

    Между прочим, если кто-то захочет скопировать электронную таблицу, которая сгенерировала эту кривую, просто спросите. В конце концов, мы поместим его в нашу область загрузки, он все еще нуждается в некоторой очистке и комментариях …

    Новое за август 2017 г .: дополнительные мысли по этому поводу. Пиковая мощность воздушного коаксиального кабеля не может быть 30 Ом, если учесть еще одно ограничение.Предположим, вы работаете очень близко к отключению нежелательного режима TE11. Черт возьми, давайте предположим, что вы хотите задействовать точно при отключении TE11. TE11 отключается, когда (b + a) * pi равно рабочей длине волны. Чтобы перейти к изюминке, на отрезке TE11 наибольшая мощность передается на 44 Ом. Вы можете найти этот забавный факт в книге Introduction to Microwaves Гершона Дж. Уиллера, датируемой 1963 годом.

    На сентябрь 2017 года мы создали новую страницу и разместили математические расчеты для расчета максимальной пиковой мощности 44 Ом, она включала два решения: одно — грубая сила, другое — элегантное.По крайней мере, они согласны!

    Средняя мощность

    Средняя мощность вызывает отказ из-за нагрева, а не из-за дуги. Поставщики кабелей дают некоторые рекомендации по средней мощности, но здесь много вуду. По сути, вы не хотите, чтобы центральный проводник нагревался так сильно, что это может нарушить целостность кабеля. Раньше продавцы кабелей могли определять номинальную мощность экспериментальным путем.

    Рассеиваемая мощность на длину — это переменная, которую необходимо учитывать, и вам необходимо отметить, что рассеиваемая мощность является функцией частоты, а коэффициент потерь в металле пропорционален SQRT (f).Таким образом, кабель, который может обрабатывать 100 Вт на частоте 4 ГГц, подходит только для 50 Вт на частоте 16 ГГц.

    Вы должны учитывать, как охлаждается кабель, т.е. есть ли принудительный воздух, конвекция, теплопроводность и / или излучение? Какая температура воздуха? (Она может быть намного выше комнатной температуры, если она находится внутри корпуса или шасси).

    Если средняя мощность вызывает беспокойство, мы порекомендуем вам (или кому-то, кто знает, что они делают) выполнить термический анализ с использованием методов конечных элементов.Если у кого-нибудь есть пример исследования средней мощности, пришлите его!

    Падение напряжения

    : выбор правильного кабеля для длительного использования

    Надежность не может быть осязаемым элементом, который устанавливается рядом с новой печью или подключается к док-крану, но, тем не менее, это важный «аксессуар», который может означать разницу между сверхурочной работой и потерей времени; на складе и на складе; идеально подходят и подходят. Наклейка «ненадежный» может означать крах для бизнеса, независимо от того, что вы делаете, устанавливаете или обслуживаете.Вот почему так важно понимать простые, но часто упускаемые из виду проблемы, такие как падение напряжения в устройствах.

    Что такое падение напряжения?

    Падение напряжения — это снижение напряжения в электрической цепи между источником и нагрузкой. Провода, по которым проходит электричество, обладают внутренним сопротивлением или импедансом току. Падение напряжения — это величина потери напряжения, которая возникает в цепи из-за этого импеданса.

    Для того, чтобы оборудование работало должным образом, оно должно быть снабжено нужной мощностью, которая измеряется в ваттах и ​​рассчитывается путем умножения силы тока (амперы) на напряжение (вольт).Двигатели, генераторы, инструменты — все, что работает на электричестве — рассчитано на мощность. Правильная мощность позволяет оборудованию соответствовать проектной мощности и работать эффективно. Слишком большое или недостаточное количество энергии может привести к неэффективной работе, неэффективному использованию энергии и даже к повреждению оборудования. Вот почему так важно понимать расчет падения напряжения и выбирать правильный кабель для каждого приложения.

    Национальный электротехнический кодекс (NEC) каталогизирует требования к безопасному электрическому оборудованию и представляет собой основной руководящий документ в США.Эти правила служат руководством как для обученных профессионалов, так и для конечных пользователей, они закладывают основу для проектирования и проверки электрических установок. Итак, как Кодекс решает проблемы падения напряжения? Для ответвлений см. NEC (NFPA 70) Раздел 215.2 (A) (3) сноска 2 и Раздел 210.19 (A) (1) сноска 4. Оба советуют, что проводники для фидеров, ведущих к жилым домам, должны быть такого размера, чтобы предотвратить превышение падения напряжения. 3%, а максимальное общее падение напряжения как на фидерах, так и в ответвленных цепях не должно превышать 5% для «разумной эффективности работы».”

    Кроме того, обращайтесь к разделу 647.4 (D) NEC (NFPA 70) при работе с чувствительным электронным оборудованием. В нем указано, что падение напряжения в любой ответвленной цепи не должно превышать 1,5%, а общее падение напряжения на проводниках ответвления и фидера не должно превышать 2,5%. Важно отметить, что большая часть производимого сегодня оборудования содержит электронику, которая особенно чувствительна к чрезмерному падению напряжения.

    Ampacity, допустимая электрическая нагрузка кабеля, также связана с падением напряжения.В Кодексе подчеркивается важность учета падения напряжения при рассмотрении номинальной допустимой нагрузки кабеля и необходимость удовлетворения обоих требований. Раздел 310.15 (A) (1) NEC гласит, что в таблицах допустимой нагрузки не учитывается падение напряжения.

    Как рассчитывается падение напряжения?

    Для постоянного тока падение напряжения пропорционально величине протекающего тока и сопротивлению провода. В цепях переменного тока также необходимо учитывать общий импеданс и коэффициент мощности (коэффициент потерь мощности).Поскольку сопротивление провода зависит от размера провода, материала и длины участка, важно выбрать правильный размер провода для длины участка, чтобы поддерживать падение напряжения на желаемом уровне.

    Воспользуйтесь следующей историей расчета падения напряжения, чтобы упростить расчет падения напряжения.

    Эта таблица упрощает и упрощает расчет падения напряжения в проекте. Например, предположим, что ваш проект включает 100-футовый участок 12/3 кабеля SOOW, линейный ток 12 А для оборудования, линейную цепь 120 В переменного тока, 3 фазы, коэффициент мощности 100%.Согласно расчетной таблице коэффициент равен 3190. Затем умножьте текущее значение на расстояние (футы) на коэффициент: 12 x 100 x 3190 = 3 828 000. Наконец, поместите десятичную дробь перед шестью последними цифрами, и результатом будет потеря напряжения или падение напряжения, которое в этом примере равно 3,8 вольт (3,2% от общего напряжения).

    Поэтому, чтобы гарантировать надежность ваших продуктов, установок или обращений в службу поддержки, обязательно учитывайте падение напряжения при выборе кабеля. Хотя это в первую очередь неприятная проблема, падение напряжения может повлиять на эффективность оборудования, энергопотребление и вызвать потенциальный ущерб чувствительной электронике и другим системам.К счастью, этих проблем легко избежать, особенно если вы полагаетесь на коды и стандарты NEC, касающиеся падения напряжения: каждый из них предоставляет полезные рекомендации для обеспечения успеха вашего приложения.

    Выбрав кабель с правильными характеристиками падения напряжения, вы оптимизируете работу подключенного оборудования, повысите эффективность и предотвратите повреждение оборудования. И это неплохая расплата как в краткосрочной, так и в долгосрочной перспективе.

    Размер провода Коэффициент мощности,% 90AC, однофазный 80 Трехфазный переменный ток постоянного тока
    14 AWG 100 5880 5090 5880
    90 5360 4640
    80 4790 4150
    70 4230 3660
    60 3650 3160
    12 AWG 100 3690 3190 3690
    90 3380 2930
    80 3030 2620
    70 2680 2320
    60 2320 2010
    10 AWG 100 2320 2010 2820
    90 2150 1861
    80 1935 1675
    70 1718 1487
    60 1497 1296
    8 AWG 100 1462 1265 1462
    90 1373 1189
    80 1248 1081
    70 1117 969
    60 981 849
    6 AWG 100 918 795 918
    90 882 764
    80 812 703
    70 734 636
    60 653 565
    4 AWG 100 578 501 578
    90 571 494
    80 533 462
    70 489 423
    60 440 381
    2 AWG 100 367 318 363
    90 379 328
    80 361 313
    70 337 292
    60 309 268
    1 AWG 100 291 252 288
    90 311 269
    80 299 259
    70 284 246
    60 264 229
    1/0 AWG 100 233 202 229
    90 257 222
    80 252 218
    70 241 209
    60 227 106
    2/0 AWG 100 187 162 181
    90 213 184
    80 212 183
    70 206 178
    60 196 169
    3/0 AWG 100 149 129 144
    90 179 155
    80 181 156
    70 177 153
    60 171 148
    4/0 AWG 100 121 104 114
    90 152 131
    80 156 135
    70 155 134
    60 151 131
    250 тыс. Кг 100 102 89 97
    90 136 117
    80 143 123
    70 143 124
    60 141 122
    300 тыс. Килограмм 100 86 75 81
    90 121 104
    80 128 111
    70 131 113
    60 130 113
    350 тыс. Кг 100 74 64 69
    90 109 95
    80 118 102
    70 122 105
    60 122 106
    400 тыс. Килограмм 100 66 57 60
    90 101 88
    80 111 96
    70 115 99
    60 116 101
    500 тыс. Килограмм 100 54 47 48
    90 89 78
    80 99 86
    70 105 91
    60 108 93
    600 тыс. Килограмм 100 47 41 40
    90 83 72
    80 93 81
    70 99 86
    60 103 89
    750 тыс. Килограмм 100 39 34 32
    90 75 65
    80 86 75
    70 93 81
    60 97 84
    1000 тыс. Килограмм 100 31 27 24
    90 67 58
    80 79 68
    70 86 75
    60 91 78

    Расчет падения напряжения

    Падение напряжения любого изолированного кабеля зависит от рассматриваемой длины трассы (в метрах), требуемого номинального тока (в амперах) и соответствующего полного сопротивления на единицу длины кабеля.Максимальный импеданс и падение напряжения, применимые к каждому кабелю при максимальной температуре проводника и ниже переменного тока. условия приведены в таблицах. Для кабелей, работающих в условиях постоянного тока, соответствующие падения напряжения можно рассчитать по формуле.

    2 x длина маршрута x ток x сопротивление x 10¯³ .

    Значения, указанные в таблицах, даны в м / В / Ам (вольт / 100 на ампер на метр), а номинальное максимальное допустимое падение напряжения
    , указанное в правилах IEE, равно 2.5% от напряжения системы, т.е. 0,025 x 415
    = 10,5 вольт для 3-фазной работы или 0,025 x 240 = 6,0 вольт для однофазной работы.

    Рассмотрим трехфазную систему
    Требование может заключаться в том, чтобы нагрузка в 1000 А передавалась по длине маршрута 150 м, кабель
    должен быть прикреплен к стене и обеспечена тесная защита. Таблицы номинальных характеристик в правилах IEE показывают, что кабель PVC SWA PVC с медным проводником
    35 мм подойдет для требуемой нагрузки, но падение напряжения
    необходимо проверить.

    Падение напряжения = Y x ток x длина
    = 1,1 x 100 x 150 милливольт
    = 1,1 x 100 x 150 вольт / 1000
    = 16,5 вольт
    где Y = значение из таблиц в мВ / А / м Если не указано конкретное значение напряжения допустимое для пользователя падение составляет
    , необходимо соблюдать значение 10,5 вольт согласно нормативам IEE.

    Таким образом: общее падение напряжения = 10,5 вольт
    10,5 = Y x 100 x 150
    Следовательно, Y = 10,5 / 100 x 150
    = 0,7 / 1000 вольт / ампер / метр

    Ссылка на таблицы падения напряжения указывает, что размер кабеля с падением напряжения 0.7/1000 В / А / м
    (0,7 мВ / А / м) ИЛИ МЕНЬШЕ — медный проводник диаметром 70 мм.

    Следовательно, для передачи 3-фазного тока 100 А на фазу по длине маршрута 150 м с общим падением напряжения
    , равным или меньшим установленного законом максимального значения 10,5 вольт, потребуется
    70 мм (куб. многожильный ПВХ.

    И наоборот
    У пользователя может быть 150 м многожильного кабеля из ПВХ диаметром 35 мм (медь), и ему необходимо знать, какой максимальный ток
    может применяться без превышения допустимого падения напряжения.Метод точно такой же, как и выше,
    , а именно: общее падение = 16,6

    .

    = YxAxM
    = 1,1 x A x 150/1000
    из таблиц Y = 1,1 мВ / A / м
    = 1,1 / 1000 В / A / м
    , следовательно, A = 10,5 x 1000 / 1,1.x 150
    = 64 ампера

    Из вышеизложенного очевидно, что зная любые два значения Y, A или m, можно
    легко вычислить оставшееся неизвестное значение.

    Консультации всегда доступны для проверки, уточнения или предложения наиболее подходящего размера и типа кабеля для любых конкретных требований.

    Падение напряжения для одножильных низковольтных кабелей (мВ / ампер / метр)

    Медный провод > Плоское расположение Трилистник Алюминиевый проводник Плоское расположение Трилистник
    4 7,83 7,770 16 3,343 3,283
    6 5.287 5,226 25 2,161 2,100
    10 3,184 3,124 35 1,602 1,542
    16 2,086 2,008 50 1,222 1,162
    25 1,357 1,297 70 0,890 0,830
    35 1.034 0,971 95 0,686 0,623
    50 0,793 0,732 120 0,569 0,509
    70 0,595 0,534 150 0,490 0,430
    95 0,469 0,408 185 0,420 0,360
    120 0.410 0,349 240 0,353 0,293
    150 0,354 0,294 300 0,312 0,252
    185 0,312 0,252 400 0,274 0,214
    240 0,272 0,211 400 0,245 0,185
    300 0.247 0,187 630 0,222 0,162
    400 0,224 0,164
    500 0,208 0,148
    630 0,194 0,134

    ПАДЕНИЕ НАПРЯЖЕНИЯ НА АМПЕР НА МЕТР (мВ). Рабочая температура проводника: 70ºC

    Площадь поперечного сечения проводника Двухжильный кабель D.С. Двухжильный одножильный кабель переменного тока Трех- или четырехжильный кабель Трехфазный переменный ток
    мм мВ мВ мВ
    1,5 29 29 25
    2,5 18 18 15
    4 11 11 9,05
    6 7,3 7.3 6,04
    10 4,4 4,4 3,08
    16 2,8 2,8 2,04
    r х z r х z
    25 1,75 1,75 0,170 1,75 1,50 0,145 1,50
    35 1.25 1,25 0,165 1,25 1,10 0,145 1,10
    50 0,93 0,93 0,165 0,94 0,80 0,140 0,81
    70 0,63 0,63 0,160 0,65 0,55 0,140 0,57
    95 0,46 0.47 0,155 0,50 0,41 0,135 0,43
    120 0,36 0,38 0,155 0,41 0,33 0,135 0,35
    150 0,29 0,30 0,155 0,34 0,26 0,130 0,29
    185 0,23 0.28 0,150 0,29 0,21 0,130 0,25
    240 0,180 0,190 0,150 0,24 0,165 0,130 0,21
    300 0,145 0,155 0,145 0,21 0,136 0,130 0,185
    400 0,105 0.115 0,145 0,185 0,100 0,125 0,160

    ПАДЕНИЕ НАПРЯЖЕНИЯ НА АМПЕР НА МЕТР (мВ). Рабочая температура проводника: 70 ° C

    Площадь поперечного сечения проводника Двухжильный кабель постоянного тока Двухжильный однофазный кабель переменного тока Трех- или четырехжильный кабель Трехфазный переменный ток
    1 2 3 4
    мм Mv МВ МВ
    16 4.5 45 3,9
    25 2,9 29 0,175 2,9 2,5 0,150 2,5
    35 2,1 2,1 0,170 2,1 1,80 0,150 1,80
    50 1,55 1,55 0,170 1,55 1,35 0.145 1,35
    70 1,05 1,05 0,165 1,05 0,90 0,140 0,92
    95 0,77 0,77 0,160 0,79 0,67 0,140 0,68
    120 0,53 0,135 0,55
    150 0.42 0,135 0,44
    185 0,34 0,135 0,37
    240 0,26 0,130 0,30
    300 0,21 0,130 0,25

    Таблицы взяты из информации об авторских правах IEE

    КАБЕЛИ НА 600/1000 В С ИЗОЛЯЦИЕЙ ПВХ С МЕДНЫМИ ПРОВОДНИКАМИ ПАРАМЕТРЫ УСТОЙЧИВОГО ТОКА (АМП) (50 Гц)

    Площадь нормального проводника 600/100 VOLT
    ТРЕХФАЗНЫЕ ОДНОЖИЛЬНЫЕ КАБЕЛИ В СОЕДИНЕНИИ TREFOIL
    мм Прямая броня Канальный бронированный Air без брони Пневматическая броня
    50 203 199 184 193
    70 248 241 233 249
    95 297 282 290 298
    120 337 311 338 347
    150 376 342 338 395
    185 423 375 450 452
    240 485 419 537 532
    300 542 459 620 607
    700 600 489 722 690
    500 660 523 832 776
    630 721 563 957 869
    800 758 587 1083 937
    1000 797 621 1260 1010

    ПРИБЛИЗИТЕЛЬНЫЙ ТОК НА ЛИНИЮ ИЛИ ФАЗУ, ЗАНИМАЕМЫЙ ПРИ ПОЛНОЙ НОМИНАЛЬНОЙ ВЕРСИИ ДВИГАТЕЛЯМИ СРЕДНЕЙ ЭФФЕКТИВНОСТИ И КОЭФФИЦИЕНТА МОЩНОСТИ

    Мощность двигателя Постоянный ток Переменный ток
    110 В 220 В 550 В 240 В 380В 415V 550 В
    л.с. усилитель усилитель усилитель усилитель усилитель усилитель усилитель
    0.5 5,7 2,8 1,1 3
    1 10 5 2 6 1,9 1,7 1,3
    2 18 9 3,6 10 3,6 3,3 2,5
    3 26 13 5,2 15 5.1 4,6 3,5
    5 42 21 8,4 24 8 7,3 5,5
    7,5 60 30 12 35 11,6 10,6 8
    10 80 40 16 46 15,1 13,8 10,4
    15 117 59 23 67 22 20 16
    20 154 77 31 88 29 27 21
    25 190 95 38 110 37 34 26
    30 227 114 46 130 43 40 30
    40 300 150 60 180 59 54 41
    50 375 187 75 210 73 67 50
    50 445 223 89 253 87 80 60
    60 520 260 104 291 102 94 70
    80 600 300 120 332 117 107 81
    100 740 370 148 412 145 133 100
    125 460 184 515 181 166 125
    150 220 217 199 150
    175 256 253 232 175
    200 292 288 264 199
    250 353 323 244
    300 421 385 291

    Полезные трехфазные формулы:

    1.кВт = кВА x коэффициент мощности

    2. кВт =

    Линейный ток x Линейное напряжение x 1,73 x п.ф.

    1000

    4. Линейный ток = кВт x 1000
    Линейное напряжение x 1,73 x п.ф.
    5. Линейный ток = кВА x 1000
    Линейное напряжение x 1.73
    6. Линейный ток = л.с. х 746
    Линейное напряжение x 1,73 x КПД x п.ф.
    7. кВА = Линейный ток x Линейное Вольт x 1,73
    1000
    8. кВт = л.с. х 746
    1000 x КПД
    9.кВА = Линейный ток x Линейное напряжение x 1,73 x КПД x п.ф.
    746
    10. л.с. = кВт x 1000 x КПД
    746
    11. л.с. = кВА x 1000 x КПД
    746

    ТЕКУЩИЕ НОМИНАЛЫ КАБЕЛЕЙ, ОБРЕЗАННЫХ ПРЯМО К ПОВЕРХНОСТИ ИЛИ ЛОТОК, СЛОЖЕННЫХ И НЕЗАКРЫТЫХ

    Размер проводника 2 Одноядерный D.К. 3 Одноядерный
    4 Одноядерный
    1 двухъядерный DV 1 три ядра
    1 четыре ядра
    Однофазный переменный ток Трехфазный переменный ток Однофазный переменного тока Трехфазный переменный ток
    р п. р п. р п. р п.
    мм 2 А амп амп амп амп амп амп амп
    1 16 13 15 12 14 12 12 10
    1.5 21 16 19 15 18 15 15 13
    2,5 29 23 26 20 24 21 21 18
    4 38 30 34 27 31 27 27 24
    6 49 38 45 34 40 35 35 30
    10 67 51 60 46 56 48 48 41
    16 90 38 81 61 72 64 64 54
    25 115 89 105 80 96 71 84 62
    35 145 109 130 98 115 87 100 72
    50 205 175 185 160 170 140 150 125
    70 260 220 235 200 210 175 185 155
    95 320 270 285 240 255 215 225 190
    120 370 310 335 280 300 250 260 215
    150 420 355 380 320 335 285 300 250
    185 480 405 435 365 385 325 345 280
    240 570 480 520 430 450 385 400 335
    300 660 560 600 500 520 445 460 390
    400 770 680 700 610
    500 890 800 800 710
    630 1050 910 950 820

    ТЕКУЩИЕ НОМИНАЛЬНЫЕ КАБЕЛИ КАБЕЛЕЙ, СОЕДИНЕННЫХ И ЗАКРЫТЫХ КАБЕЛЕЙ

    Размер проводника 2 Одно ядро ​​D.К. 4 Одно ядро ​​ округ Колумбия Трехфазный переменный ток
    Однофазный переменный ток Трехфазный переменный ток Однофазный переменный ток
    R -P R -P R -P R -P
    мм 2 амп амп амп амп амп амп амп амп
    1 14 11 11 9 12 11 10 9
    1.5 17 13 14 11 15 13 13 12
    2,5 24 18 20 16 20 18 17 16
    4 31 24 27 22 27 24 23 22
    6 40 31 35 28 34 30 30 27
    10 55 42 49 39 47 40 41 37
    16 73 56 66 53 61 53 54 47
    25 94 73 89 71 80 60 70 53
    35 115 90 110 88 97 74 86 65
    50 170 145 145 125
    70 215 185 185 160
    95 265 230 225 195
    120 310 260 260 220
    150 350 300

    R = изоляция из жаропрочной резины
    P ​​= изоляция из ПВХ

    МИНИМАЛЬНЫЙ РАЗМЕР ПРОВОДНИКА ЗАЗЕМЛЕНИЯ (ЕСЛИ НЕ НАХОДИТСЯ В КАБЕЛЕ)

    Размер наибольшего присоединенного медного проводника цепи Размер заземляющего проводника Размер непрерывного проводника заземления Размер связующего провода
    1 6 1 * 1 # *
    1.5 6 1 * 1 # *
    2,5 6 1 * 1 # *
    4 6 2,5 1 # *
    6 6 2,5 1 # *
    10 6 6 2,5
    16 6 6 2,5
    25 16 16 6
    35 16 16 6
    50 16 16 6
    70 50 50 16
    95 50 50 16
    120 50 50 16
    150 50 50 16
    185 70 70 50
    240 70 70 50
    300 70 70 50
    400 70 70 50
    500 70 70 50
    630 70 70 50

    * 1.5 кв. Мм, где заземляющий провод в незакрытом корпусе
    № 2,5 кв. Мм для подключения других услуг при входе в помещения.

    ДИАМЕТРЫ И РАЗМЕРЫ ВВОДОВ АРМИРОВАННЫХ КАБЕЛЕЙ ИЗ ПВХ

    Размер проводника Макс. Диаметр сердечника Кол-во ядер Приблизительные диаметры Провод Рекомендуемый размер сальника #
    Постельное белье Броня Оболочка
    кв.мм мм Кол-во ядер мм мм мм мм BS4121
    14/8 26/8 2 7 9 11 6/8 7/8 5/8
    3 73/8 9 3/8 12 2/8 7/8 5/8
    4 8.1 10,1 13 0,9 3/4 S *
    5 8,9 10,9 13,8 0,9 3/4 ю.ш.
    7 9,7 11,7 14,5 0,9 3/4 ю.ш.
    10 12 2/4 15 18 1 1/4 3/4
    12 12 3/4 15 2/4 18 2/4 1 1/4 3/4
    19 15.1 17,8 21,1 1,25 1
    27 18,5 22 25,4 1,6 1
    37 21 24 2/4 17 3/4 1 2/4 1 3/4
    48 23 3/4 27 1/4 30 3/4 1 2/4 1 3/4
    2.5 3,3 2 8,2 10,2 13,1 0,9 3 3/4 S *
    3 8,7 10,7 13,6 0,9 3 3/4 ю.ш.
    4 9,6 11,6 14,5 0,9 3 3/4 ю.ш.
    5 10,5 12,5 15.4 0,9 3 3/4
    7 11 2/4 12 2/4 16 2/4 1 3/4
    10 14,8 17,5 20,9 1,25 1
    12 15,3 18 21,4 1,25 1
    19 18.5 22 25,4 1,6 1
    27 22 25 2/4 29 1/4 1 2/4 1 3/4
    37 25 28 2/4 32 2/4 1 2/4 1 3/4
    48 29 33 1/2 37 1/2 2 1 1/2
    4 4.3 2 10,2 12,2 15,1 0,9 3 3/4 ю.ш.
    3 11 13 16 1 3/4
    4 12 14 3/4 17 3/4 1 1/4 3/4
    5 12 1/4 16 19 1 1/4 3/4
    7 14 2/4 17 1/4 20 2/4 1 1/4 1
    10 19 1/4 22 3/4 26 1 2/4 1
    12 19.8 23,3 26,8 1,6 1 3/4
    19 12 2/4 27 30 2/4 1 2/4 1 1/4
    27 28 1/2 33 37 2 1 1/2
    6 5 2 11 2/4 13 2/4 16 2/4 1 3/4
    3 12 1/4 12 1/4 18 1 1/4 3/4
    4 13 2/4 13 2/4 19 1/4 1 1/4 3/4
    10 61/4 2 14 16 3/4 20 1 1/4 3/4
    3 15 17 3/4 21 1/4 1 1/4 1
    4 16 2/4 19 1/4 22 3/4 1 1/4 1
    16 Фасонные проводники 2 13 15 2/4 19 1 1/4 3/4
    3 14 2/4 14 2/4 20 2/4 1 1/4 1
    4 19 3/4 16 3/4 24 1 1/4 1

    # Сальники типа BW, CW, D1W, D2W, E1W, E2W.
    • Кабель, изготовленный с минимальным допуском, может быть помещен в сальник на один размер меньше.

    ТАБЛИЦА РАЗМЕРОВ ВВОДОВ PVC / SWA / PVC КАБЕЛИ

    Размер, мм кв. Ядра
    1
    2 3 4 5 7 10 12 19 27 37 48
    1.5 16/20 16/20 20S 20S 20S 20 л 20 л 25S 25L 32 32
    2,5 20S 20S 20S 20S 20 л 25S 25S 25L 32 32 40S
    4.0 20S 20 л 20 л 20 л 20 л 25L 32 32 40S
    6,0 20 л 20 л 20 л
    10,0 25S 25S 25S
    16.0 25S 25L 25L
    25,0 25S 32 32
    35,0 25L 32 32
    50.0 32 32 40S
    70,0 32 40S 40L
    95,0 25S 40S 40S 50S
    120.0 25L 40S 40L 50S
    150,0 32 40L 50S 63S
    185,0 32 50S 50 л 63S
    240.0 40S 50 л 63S 63S
    300,0 40L 63S 63L 75L
    400,0 50S 63L 75S 75L
    500.0 50S
    630,0 50 л

    Приведенные в таблице размеры сальника предназначены только для справки и основаны на приблизительном диаметре под броней и
    общих диаметрах.

    Кабели с алюминиевым проводом должны иметь алюминиевые вводы.

    КОЭФФИЦИЕНТЫ ИЗМЕНЕНИЯ

    КОЭФФИЦИЕНТЫ СНИЖЕНИЯ ТЕМПЕРАТУРЫ ЗАЗЕМЛЕНИЯ

    КОЭФФИЦИЕНТ СНИЖЕНИЯ ТЕМПЕРАТУРЫ ВОЗДУХА

    Температура воздуха o C 25 30 35 40 45 50 55
    Кабели ПВХ с номиналом 70 o C 1,22 1,15 1,08 1,00 0.95 0,82 0,71

    Коэффициент уменьшения глубины залегания

    Температура грунта o C 25 30 35 40 45 50 55
    Кабели ПВХ с номиналом 70 o C 1,13 1,07 1,00 0,93 0,85 0.76 0,65
    Поперечное сечение кабелей
    Глубина залегания м до 70 мм кв. 95 мм квадрат — 240 мм квадрат 300 мм кв. И более
    0,5 1,00 1,00 1,00
    0,60 0,99 0,98 0,97
    0.80 0,97 0,96 0,94
    1,00 0,95 0,93 0,92
    1,25 0,94 0,92 0,89
    1,5 0,93 0,90 0,87
    1,75 0,92 0,89 0,86
    2,00 0,91 0,88 0.85

    КОЭФФИЦИЕНТ ИЗМЕНЕНИЯ ТЕПЛОВОЙ СОПРОТИВЛЕНИЯ ПОЧВЫ

    Тепловое сопротивление почвы в ° C см / ватт 80 90 100 120 150 200 250
    Коэффициент мощности 1,17 1,12 1,07 1,0 0,91 0,80 0,73

    Коэффициент снижения номинальной температуры ПВХ

    Тип ПВХ номинальная температура o C 70 85 95 105
    Коэффициент рейтинга 1.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *

    2021 © Все права защищены.