Проверка на невозгорание кабеля: Пример проверки кабеля на невозгорание

Содержание

Пример проверки кабеля на невозгорание

В данной статье я буду рассматривать пример проверки кабеля на невозгорание при воздействии тока к.з согласно рекомендаций №Ц-02-98(Э). В ПУЭ о данной проверке кабеля на невозгорание ничего не написано. Данный циркуляр носит рекомендательный характер.

Но как показала практика, в целях повышения надежности работы электроустановок и предотвращения пожаров в кабельных сооружениях энергетических объектов, следует выполнять проверку кабеля на невозгорание при воздействии тока к.з во избежание разрыва оболочек и разрушения концевых заделок с возгоранием кабелей.

Вот, что говорится в самом циркуляре №Ц-02-98(Э):

Пример

Ток к.з. на шинах питающей подстанции составляет 13250 А при напряжении 6,3 кВ. Время действия резервной защиты 3 сек. Требуется выполнить проверку на невозгорание при воздействии тока к.з. для кабеля марки АСБ 3х185 мм2, длиной 2 км, кабель прокладывается в земле по территории металлургического комбината в г. Выкса Нижегородская область.

Решение

1. Определяем значение температуры жилы до к.з. по выражению (3) №Ц-02-98(Э):

где: Qo — фактическая температура окружающей среды, определяем по СНиПу 23-01-99 таблица 3, принимаем для наиболее тяжелого режима питания, а именно июль – 18,9 °С;

  • Qдд — длительно допустимая температура токопроводящих жил кабеля равна — 70°С, согласно каталога ОАО «Севкабель — Холдинг».

Если же данную информацию вы не нашли у производителя кабелей, можно воспользоваться ПУЭ. Например для данного кабеля, согласно ПУЭ 7-изд. п.1.3.12 температура жил равна +65°С для кабелей с бумажной пропитанной изоляцией;

  • Qокр — температура окружающей среды: для кабелей в земле 15°С, для кабелей на воздухе 25°С;
  • Iраб — рабочий ток, составляет 220 А;
  • Iдд — длительно допустимый ток нагрузки кабеля, определяем по каталогу ОАО «Севкабель — Холдинг» таблица 2 и равный 307 А.

2. Определяем значение коэффициента K по выражению (2) №Ц-02-98(Э):

3. Определяем значение температуры жил в конце к.з. (Qк) используя номограмму для выбора силовых кабелей при токах к.з. (рис. 11.1).

На номограмме по шкале абсцисс, где отложены значения температуры жилы до к.з.(Qн), откладываем величину Qн = 47,17 °С и из этой точки восстанавливаем перпендикуляр до пересечения с кривой K. В моем случае это кривая K = 0,7, (значение K = 0,702 я округляю до 0,7). Точка пересечения с кривой K = 0,7, перенесенная на ось ординат дает Qк = 325 °С. Полученное значение Qк сравниваем с допустимой температурой жил, при которой не происходит возгорание кабеля, в соответствии с таблицей 2 №Ц-02-98(Э).

Для бронированных кабелей с пропитанной бумажной изоляцией на напряжение до 6 кв, температура жил кабеля составляет — 400 °С > Qк = 325 °С (условие выполняется).

Для упрощения расчетов я прикладываю не большую программку в Excel для проверки кабеля на невозгорание и сам циркуляр №Ц-02-98(Э) в двух форматах: doc и pdf.

Поделиться в социальных сетях

Циркуляр Ц-02-98(Э) О проверке кабелей на невозгорание при воздействии тока короткого замыкания

На главную | База 1 | База 2 | База 3
Поиск по реквизитамПоиск по номеру документаПоиск по названию документаПоиск по тексту документа
Искать все виды документовДокументы неопределённого видаISOАвиационные правилаАльбомАпелляционное определениеАТКАТК-РЭАТПЭАТРВИВМРВМУВНВНиРВНКРВНМДВНПВНПБВНТМ/МЧМ СССРВНТПВНТП/МПСВНЭВОМВПНРМВППБВРДВРДСВременное положениеВременное руководствоВременные методические рекомендацииВременные нормативыВременные рекомендацииВременные указанияВременный порядокВрТЕРВрТЕРрВрТЭСНВрТЭСНрВСНВСН АСВСН ВКВСН-АПКВСПВСТПВТУВТУ МММПВТУ НКММПВУП СНЭВУППВУТПВыпускГКИНПГКИНП (ОНТА)ГНГОСТГОСТ CEN/TRГОСТ CISPRГОСТ ENГОСТ EN ISOГОСТ EN/TSГОСТ IECГОСТ IEC/PASГОСТ IEC/TRГОСТ IEC/TSГОСТ ISOГОСТ ISO GuideГОСТ ISO/DISГОСТ ISO/HL7ГОСТ ISO/IECГОСТ ISO/IEC GuideГОСТ ISO/TRГОСТ ISO/TSГОСТ OIML RГОСТ ЕНГОСТ ИСОГОСТ ИСО/МЭКГОСТ ИСО/ТОГОСТ ИСО/ТСГОСТ МЭКГОСТ РГОСТ Р ЕНГОСТ Р ЕН ИСОГОСТ Р ИСОГОСТ Р ИСО/HL7ГОСТ Р ИСО/АСТМГОСТ Р ИСО/МЭКГОСТ Р ИСО/МЭК МФСГОСТ Р ИСО/МЭК ТОГОСТ Р ИСО/ТОГОСТ Р ИСО/ТСГОСТ Р ИСО/ТУГОСТ Р МЭКГОСТ Р МЭК/ТОГОСТ Р МЭК/ТСГОСТ ЭД1ГСНГСНрГСССДГЭСНГЭСНмГЭСНмрГЭСНмтГЭСНпГЭСНПиТЕРГЭСНПиТЕРрГЭСНрГЭСНсДИДиОРДирективное письмоДоговорДополнение к ВСНДополнение к РНиПДСЕКЕНВиРЕНВиР-ПЕНиРЕСДЗемЕТКСЖНМЗаключениеЗаконЗаконопроектЗональный типовой проектИИБТВИДИКИМИНИнструктивное письмоИнструкцияИнструкция НСАМИнформационно-методическое письмоИнформационно-технический сборникИнформационное письмоИнформацияИОТИРИСОИСО/TRИТНИТОсИТПИТСИЭСНИЭСНиЕР Республика КарелияККарта трудового процессаКарта-нарядКаталогКаталог-справочникККТКОКодексКОТКПОКСИКТКТПММ-МВИМВИМВНМВРМГСНМДМДКМДСМеждународные стандартыМетодикаМетодика НСАММетодические рекомендацииМетодические рекомендации к СПМетодические указанияМетодический документМетодическое пособиеМетодическое руководствоМИМИ БГЕИМИ УЯВИМИГКМММНМОДНМонтажные чертежиМос МУМосМРМосСанПинМППБМРМРДСМРОМРРМРТУМСанПиНМСНМСПМТМУМУ ОТ РММУКМЭКННАС ГАНБ ЖТНВННГЭАНДНДПНиТУНКНормыНормы времениНПНПБНПРМНРНРБНСПНТПНТП АПКНТП ЭППНТПДНТПСНТСНЦКРНЦСОДМОДНОЕРЖОЕРЖкрОЕРЖмОЕРЖмрОЕРЖпОЕРЖрОКОМТРМОНОНДОНКОНТПОПВОПКП АЭСОПНРМСОРДОСГиСППиНОСНОСН-АПКОСПОССПЖОССЦЖОСТОСТ 1ОСТ 2ОСТ 34ОСТ 4ОСТ 5ОСТ ВКСОСТ КЗ СНКОСТ НКЗагОСТ НКЛесОСТ НКМОСТ НКММПОСТ НКППОСТ НКПП и НКВТОСТ НКСМОСТ НКТПОСТ5ОСТНОСЭМЖОТРОТТПП ССФЖТПБПБПРВПБЭ НППБЯПВ НППВКМПВСРПГВУПереченьПиН АЭПисьмоПМГПНАЭПНД ФПНД Ф СБПНД Ф ТПНСТПОПоложениеПорядокПособиеПособие в развитие СНиППособие к ВНТППособие к ВСНПособие к МГСНПособие к МРПособие к РДПособие к РТМПособие к СНПособие к СНиППособие к СППособие к СТОПособие по применению СППостановлениеПОТ РПОЭСНрППБППБ-АСППБ-СППБВППБОППРПРПР РСКПР СМНПравилаПрактическое пособие к СППРБ АСПрейскурантПриказПротоколПСРр Калининградской областиПТБПТЭПУГПУЭПЦСНПЭУРР ГазпромР НОПРИЗР НОСТРОЙР НОСТРОЙ/НОПР РСКР СМНР-НП СРО ССКРазъяснениеРаспоряжениеРАФРБРГРДРД БГЕИРД БТРД ГМРД НИИКраностроенияРД РОСЭКРД РСКРД РТМРД СМАРД СМНРД ЭОРД-АПКРДИРДМРДМУРДПРДСРДТПРегламентРекомендацииРекомендацияРешениеРешение коллегииРКРМРМГРМДРМКРНДРНиПРПРРТОП ТЭРС ГАРСНРСТ РСФСРРСТ РСФСР ЭД1РТРТМРТПРУРуководствоРУЭСТОП ГАРЭГА РФРЭСНрСАСанитарные нормыСанитарные правилаСанПиНСборникСборник НТД к СНиПСборники ПВРСборники РСН МОСборники РСН ПНРСборники РСН ССРСборники ценСБЦПСДАСДАЭСДОССерияСЗКСНСН-РФСНиПСНиРСНККСНОРСНПСОСоглашениеСПСП АССП АЭССправочникСправочное пособие к ВСНСправочное пособие к СНиПСправочное пособие к СПСправочное пособие к ТЕРСправочное пособие к ТЕРрСРПССНССЦСТ ССФЖТСТ СЭВСТ ЦКБАСТ-НП СРОСТАСТКСТМСТНСТН ЦЭСТОСТО 030 НОСТРОЙСТО АСЧМСТО БДПСТО ВНИИСТСТО ГазпромСТО Газпром РДСТО ГГИСТО ГУ ГГИСТО ДД ХМАОСТО ДОКТОР БЕТОНСТО МАДИСТО МВИСТО МИСТО НААГСТО НАКССТО НКССТО НОПСТО НОСТРОЙСТО НОСТРОЙ/НОПСТО РЖДСТО РосГеоСТО РОСТЕХЭКСПЕРТИЗАСТО САСТО СМКСТО ФЦССТО ЦКТИСТО-ГК «Трансстрой»СТО-НСОПБСТПСТП ВНИИГСТП НИИЭССтП РМПСУПСССУРСУСНСЦНПРТВТЕТелеграммаТелетайпограммаТематическая подборкаТЕРТЕР Алтайский крайТЕР Белгородская областьТЕР Калининградской областиТЕР Карачаево-Черкесская РеспубликаТЕР Краснодарского краяТЕР Мурманская областьТЕР Новосибирской областиТЕР Орловской областиТЕР Республика ДагестанТЕР Республика КарелияТЕР Ростовской областиТЕР Самарской областиТЕР Смоленской обл.ТЕР Ямало-Ненецкий автономный округТЕР Ярославской областиТЕРмТЕРм Алтайский крайТЕРм Белгородская областьТЕРм Воронежской областиТЕРм Калининградской областиТЕРм Карачаево-Черкесская РеспубликаТЕРм Мурманская областьТЕРм Республика ДагестанТЕРм Республика КарелияТЕРм Ямало-Ненецкий автономный округТЕРмрТЕРмр Алтайский крайТЕРмр Белгородская областьТЕРмр Карачаево-Черкесская РеспубликаТЕРмр Краснодарского краяТЕРмр Республика ДагестанТЕРмр Республика КарелияТЕРмр Ямало-Ненецкий автономный округТЕРпТЕРп Алтайский крайТЕРп Белгородская областьТЕРп Калининградской областиТЕРп Карачаево-Черкесская РеспубликаТЕРп Краснодарского краяТЕРп Республика КарелияТЕРп Ямало-Ненецкий автономный округТЕРп Ярославской областиТЕРрТЕРр Алтайский крайТЕРр Белгородская областьТЕРр Калининградской областиТЕРр Карачаево-Черкесская РеспубликаТЕРр Краснодарского краяТЕРр Новосибирской областиТЕРр Омской областиТЕРр Орловской областиТЕРр Республика ДагестанТЕРр Республика КарелияТЕРр Ростовской областиТЕРр Рязанской областиТЕРр Самарской областиТЕРр Смоленской областиТЕРр Удмуртской РеспубликиТЕРр Ульяновской областиТЕРр Ямало-Ненецкий автономный округТЕРррТЕРрр Ямало-Ненецкий автономный округТЕРс Ямало-Ненецкий автономный округТЕРтр Ямало-Ненецкий автономный округТехнический каталогТехнический регламентТехнический регламент Таможенного союзаТехнический циркулярТехнологическая инструкцияТехнологическая картаТехнологические картыТехнологический регламентТИТИ РТИ РОТиповая инструкцияТиповая технологическая инструкцияТиповое положениеТиповой проектТиповые конструкцииТиповые материалы для проектированияТиповые проектные решенияТКТКБЯТМД Санкт-ПетербургТНПБТОИТОИ-РДТПТПРТРТР АВОКТР ЕАЭСТР ТСТРДТСНТСН МУТСН ПМСТСН РКТСН ЭКТСН ЭОТСНэ и ТЕРэТССЦТССЦ Алтайский крайТССЦ Белгородская областьТССЦ Воронежской областиТССЦ Карачаево-Черкесская РеспубликаТССЦ Ямало-Ненецкий автономный округТССЦпгТССЦпг Белгородская областьТСЦТСЦ Белгородская областьТСЦ Краснодарского краяТСЦ Орловской областиТСЦ Республика ДагестанТСЦ Республика КарелияТСЦ Ростовской областиТСЦ Ульяновской областиТСЦмТСЦО Ямало-Ненецкий автономный округТСЦп Калининградской областиТСЦПГ Ямало-Ненецкий автономный округТСЦэ Калининградской областиТСЭМТСЭМ Алтайский крайТСЭМ Белгородская областьТСЭМ Карачаево-Черкесская РеспубликаТСЭМ Ямало-Ненецкий автономный округТТТТКТТПТУТУ-газТУКТЭСНиЕР Воронежской областиТЭСНиЕРм Воронежской областиТЭСНиЕРрТЭСНиТЕРэУУ-СТУказУказаниеУказанияУКНУНУОУРврУРкрУРррУРСНУСНУТП БГЕИФАПФедеральный законФедеральный стандарт оценкиФЕРФЕРмФЕРмрФЕРпФЕРрФормаФорма ИГАСНФРФСНФССЦФССЦпгФСЭМФТС ЖТЦВЦенникЦИРВЦиркулярЦПИШифрЭксплуатационный циркулярЭРД
Показать все найденныеПоказать действующиеПоказать частично действующиеПоказать не действующиеПоказать проектыПоказать документы с неизвестным статусом
Упорядочить по номеру документаУпорядочить по дате введения

Проверка кабелей электроустановок напряжением до 1 кВ на термическую стойкость и невозгорание

При протекании тока короткого замыкания (КЗ) по кабелям, их токопроводящие жилы нагреваются, что в ряде случаев приводит к разрыву оболочек кабелей, разрушению концевых заделок, пожару в кабельных сооружениях и большим материальным потерям. Даже в тех случаях, когда пожар не возникает, физико-химические свойства изоляции кабелей существенно изменяются и возрастает вероятность их последующего электрического пробоя, что в конечном итоге также приводит к значительным материальным потерям. Для предотвращения пожаров и поддержания надежности электроустановок на приемлемом уровне необходимо, при выборе силовых кабелей, учитывать максимально возможные термические действия токов КЗ, а в процессе эксплуатации, после каждого КЗ, необходимо выполнять расчет температуры токопроводящих жил и заменять кабели с расчетными значениями температуры, превысившими предел термической стойкости. Указанные цели применительно к электроустановкам переменного тока напряжением до 1 кВ, в настоящее время, трудно достижимы из-за отсутствия четких и однозначных критериев для принятия решений, из-за недостаточной распространенности современных методик и средств расчета КЗ.

Неоднозначность критериев проявляется в расхождении требований по расчетным условиям проверки, сформулированных в государственном стандарте и в отраслевых научно-технических документах. Согласно действующему государственному стандарту [1], в качестве расчетной точки КЗ следует принимать такую точку на расчетной схеме, при КЗ в которой проводник подвергается наибольшему термическому воздействию. Очевидно, что наибольшее термическое воздействие будет при КЗ в начале кабельной линии. Однако отраслевая научно-техническая документация допускает проведение выбора и проверок силовых кабелей, в электроустановках напряжением до 1 кВ на не возгорание, по условиям КЗ, удаленного от начала кабельной линии на 20 метров. Государственный стандарт и отраслевые научно-технические документы не дают четкого ответа и на вопрос какое КЗ, металлическое или дуговое, следует рассматривать при выборе и проверке кабелей на термическую стойкость и не возгораемость.

С точки зрения практики и опыта эксплуатации электроустановок, критерием выбора и проверки кабелей по условиям термического действия токов КЗ должно быть расчетное максимальное значение температуры жил кабелей к моменту отключения дугового КЗ в начале кабельной линии или металлического КЗ в конце кабельной линии. КЗ, возникшее между головной и концевой разделками кабелей может быть только дуговым, т. к. металлическое соединение, с контактным давлением, превышающим электродинамические силы, раздвигающие замкнувшиеся проводники, по длине кабеля практически ничем не может быть обеспечено. Многочисленные эксперименты с КЗ в электроустановках напряжением до 1 кВ, показали, что металлическое КЗ возникает лишь при искусственно созданных условиях, например, при наложении термически стойкой штатной закоротки. Если закоротка наложена в начале кабельной линии, то ток КЗ от источника по кабелям протекать не будет и, следовательно, металлическое КЗ может рассматриваться в качестве расчетного вида лишь в конце кабельной линии.

Современная методика расчета КЗ в электроустановках переменного тока напряжением до 1 кВ, рекомендованная ГОСТ [2], на практике применяется редко. Обусловлено это сложностью комплексного учета всех факторов, влияющих на ток КЗ, особенно для продолжительных КЗ, отключаемым резервными защитами. При ручном расчете обычно получают лишь значение тока для начального момента КЗ, как это делается, например, в методических указаниях фирмы ОРГРЭС [3]. Для расчета токов и интегралов Джоуля КЗ длительностью более 0,1 с целесообразно использовать компьютерные программы. Примером такой программы может служить программа GUEXPERT, комплексно учитывающая нелинейное сопротивление электрической дуги, увеличение сопротивления кабелей, обусловленное нагревом их жил, и электромагнитный переходной процесс в асинхронных электродвигателях. Программа выполняет расчет токов и температур токопроводящих жил с учетом процессов теплообмена между жилами и изоляцией кабелей по ГОСТ [4]. Комплексный учет многих факторов влияющих на процесс КЗ, позволяет получить расчетные значения токов близкие к реальным значениям, что подтверждено многочисленными экспериментами. Программа имеет графический интерфейс и автоматизированную базу данных со всеми необходимыми для расчета параметрами элементов расчетных схем, включая внутренние сопротивления автоматических выключателей и плавких вставок предохранителей, переходные сопротивления разъемных и разборных контактов. Компьютерный расчет позволяет избежать выбора кабелей с чрезмерно завышенными сечениями. Более чем десятилетний опыт использования программы GUEXPERT на энергетических объектах и в ведущих проектных организациях России и СНГ подтвердил ее соответствие современным требованиям. Демонстрационную версию программы можно найти в интернете на сайте http://es.mpei.ac.ru или получить по электронной почте обратившись по адресу [email protected]

С помощью программы GUEXPERT выполнен расчетно-теоретический анализ различных расчетных условий выбора и проверки кабелей на не возгораемость на примере электроустановки, принципиальная схема которой приведена на рис. 1. Параметры основных элементов схемы соответствуют наиболее часто применяющимся на электростанциях электроустановкам с трансформаторами мощностью 1000 кВА и преимущественно двигательной нагрузкой. На рассматриваемой схеме двигательная нагрузка представлена эквивалентным асинхронным электродвигателем мощностью 420 кВт. Путем проведения вариантных расчетов определялась температура токопроводящих жил кабеля типа АВВГ при дуговых и металлических трехфазных КЗ в начале и в конце кабельных линий в зависимости от продолжительности КЗ. Расчеты проводились с полным комплексным учетом всех вышеперечисленных факторов, влияющих на процесс КЗ, в соответствии с рекомендациями ГОСТ и методических указаний ОРГРЭС [1-4].

На рис. 2 показаны результаты расчета металлических КЗ в начале кабельной линии. Из расчетов следует, что при продолжительности КЗ 0,5 с, складывающейся из времени действия резервной защиты и полного времени отключения автоматического выключателя, сечение токоведущих жил кабеля в линиях, отходящих от щита переменного тока, по условию не возгорания должно быть не менее 120 мм2. По типовым проектам, широко применявшимся в 80-е годы, на электроустановках напряжением 0,4 кВ собственных нужд электростанций допускалось использование кабелей с сечением жил 35 мм2. Таким образом, многие из действующих электроустановок имеют кабели, не отвечающие жестким требованиям государственного стандарта и отраслевых нормативно-технических документов.

Если опираясь на здравый смысл и опыт эксплуатации электроустановок считать, что КЗ в начале кабельной линии могут лишь дуговыми, то в присоединениях щита переменного тока могут использоваться кабели с сечением жил 70 мм2, рис. 3. Практически такой же результат получается, если принять в качестве расчетного металлическое КЗ удаленное от начала кабельной линии на 20 м, рис. 4. Именно такой подход к выбору расчетной точки предлагается в циркуляре РАО «ЕЭС РОССИИ» № Ц-02-98 (Э) от 16.03.98 года. Выбор и проверка кабелей по термическому действию тока дугового КЗ в начале кабеля фактически не противоречит ГОСТ, так как он допускает учет вероятностных характеристик КЗ при условии соответствующего обоснования их в ведомственных нормативно-технических документах [1, п. 1.1.4]. Обосновать выбор расчетной точки в 20 м от начала кабельной линии более трудно, чем утверждение о дуговом характере КЗ в кабеле.

Короткие кабельные линии следует проверять и по условию металлического КЗ в конце линии, т. к. тепловой режим их может оказаться более тяжелым нежели при дуговых КЗ в начале кабельной линии. Так, например, кабель сечением 70 мм2, при длине менее 13 метром не соответствует требованиям не возгораемости при металлическом КЗ продолжительностью 0,5 с в конце линии, хотя и соответствует требованиям не возгораемости по условию дугового КЗ в начале линии.

Выводы

1. В новом издании «Правил устройства электроустановок» необходимо однозначно и четко сформулировать расчетные условия для выбора и проверки кабелей электроустановок напряжением до 1 кВ по условиям термической стойкости и невозгораемости.

2. Проверку не возгораемости кабелей, по мнению авторов, следует проводить по температуре нагрева токопроводящих жил к моменту отключения резервной защитой дугового КЗ в начале кабельной линии и металлического КЗ в конце кабельной линии.

3. Для практического расчета термического действия тока КЗ на кабели электроустановок переменного тока напряжением до 1 кВ может быть использована компьютерная программа GUEXPERT, разработанная на кафедре Электрические станции МЭИ (ТУ).

Список литературы

1. ГОСТ 30323-95. Короткие замыкания в электроустановках. Методика расчета электродинамического и термического действия тока короткого замыкания.

2. ГОСТ 28249-93. Короткие замыкания в электроустановках. Методика расчета в электроустановках переменного тока напряжением до 1 кВ.

3. Методические указания по расчету токов короткого замыкания в сети напряжением до 1 кВ электростанций и подстанций с учетом влияния электрической дуги. — М.: Служба передового опыта ОРГРЭС, 1993.

4. ГОСТ 28895-91 (МЭК 949-88). Расчет термически допустимых токов короткого замыкания с учетом неадиабатического нагрева.

 Гусев, Шиша. Проверка кабелей.

Рис. 1. Расчетная схема рассматриваемой электроустановки (копия с экрана при работе с программой GUEXPERT)

 Гусев. Шиша. Проверка кабелей.

Рис. 2. Температура токопроводящих жил кабеля АВВГ к моменту отключения трехфазного металлического КЗ в начале кабельной линии в зависимости от продолжительности КЗ и от сечения жил

 Гусев. Шиша. Проверка кабелей.

Рис. 3. Температура токопроводящих жил кабеля АВВГ к моменту отключения трехфазного дугового КЗ в начале кабельной линии в зависимости от продолжительности КЗ и от сечения жил

 Гусев. Шиша. Проверка кабелей.

Рис. 4. Температура токопроводящих жил кабеля АВВГ к моменту отключения трехфазного металлического КЗ в конце кабельной линии в зависимости от продолжительности КЗ и от сечения жил

Гусев Ю.П., канд. техн. наук, МЭИ (ТУ).

Шиша М.А., канд. техн. наук, ООО КРУШ.

Проверка кабелей 0,4 кВ по циркуляру на невозгораемость? (Страница 1) — Расчёт сетей напряжением до 1000В — Советы бывалого релейщика

lik пишет:

Когда в начале – кабель и так уже поврежден

кабель конечно поврежден, что в конце, что в начале, но ведь не это главное, на мой взгляд. Главное чтобы не случилось воспламенения поврежденного кабеля и не выгорел весь кабельный канал и другое оборудование.

lik пишет:

Тем более, сейчас обычно кабель выбирают негорючий (нг)

Может я конечно ошибаюсь, но нг больше можно охарактеризовать как не поддерживающий горение и при больших токах КЗ он так же воспламеняется.

lik пишет:

При к.з. в конце защита сраб. с такой выдержкой времени, что у кабеля надо завышать сечение по сравн.  с к.з. в начале

это же увеличение сечения с целью «очувствления» защиты, разве это дает гарантию, что кабель не воспламенится. А как обосновать расчет в таком случае если в данном циркуляре не предусмотрена проверка при к.з. в конце линии?

lik пишет:

если выбрать сечение по максимуму, и удорожание – небольшое ( сечение на ступень больше), то почему бы делать наиболее надежно

когда мы первый раз выбрали сечения кабелей (цепи СН подстанции) по данному циркуляру то монтажники и наладчики нашей же организации смотрели на нас с очень злыми лицами, а некоторые смеялись. Честно говоря было не очень приятно, к тому же никто и слушать не хотел о какой-то «невозгораемости». К тому же это влечет за собой замену всех клемм во всех сборках и приводах (заводские не рассчитаны на такой выбор сечения).

На мой взгляд есть и еще минусы завышения сечения — это перенос большего тока КЗ к потребителю, т.е. автоматы стоящие в сборках (как правило модульные) должны быть рассчитаны на большую отключающую способность, а иногда вообще придется ставить и полноценный силовой автомат.

2. Я подразумевал под резервной защитой другой автоматический выключатель (или другое устройство РЗА) в зоне резервирования которого находится поврежденный кабель — например вводной автомат.

Выбор и проверка силовых кабелей на соответствие их параметров расчетным при коротких замыканиях

Силовые кабели выбирают по расчетному току, номинальному напряжению, способу прокладки, условиям окружающей среды и проверяют на термическую устойчивость при коротком замыкании путем расчета минимальной площади сечения токоведущей жилы по формуле:

где — ?т.у – минимальная площадь сечения токоведущей жилы кабеля; ?– установившейся ток короткого замыкания; ?пр – приведенное время короткого замыкания, сек, в течение которого установившейся ток ? выделяет такое же количество теплоты, что и изменяющийся ток короткого замыкания за действительное время; С – термический коэффициент, соответствующий разности значений теплоты, выделенной в проводнике после и до короткого замыкания, значения которого принимаются для кабелей с медными жилами С = 141, с алюминиевыми С = 85.

После расчета минимальной площади сечения токоведущей жилы по термической устойчивости уточняют сечение токоведущих жилы силовых кабелей с учетом установленной мощности электроприемников и проверяют его по допустимым потерям напряжения, термической стойкости к воздействию токов КЗ и на невозгорание при протекании токов КЗ.

Проверка силовых кабелей на невозгорание при протекании тока КЗ осуществляется из предположения, что максимальный ток, протекающий в кабеле, равен действующему значению тока короткого замыкания в начале линии.

Проверка силовых кабелей на нагрев при протекании тока КЗ производится в соответствии с циркуляром Ц02-98 (Э) «О проверке кабелей на невозгорание при протекании тока короткого замыкания». Проверка производится для каждого выбранного сечения кабелей, при этом для проверки выбирается кабельная линия с наиболее «тяжелыми» условиями, т.е. с максимальным значением тока КЗ в начале линии.

Температура жилы силового кабеля при протекании тока КЗ определятся по формуле:

где ϑн – максимальная температура жилы до КЗ; ? = 228 ℃ − величина, обратная температурному коэффициенту электрического сопротивления при 0 ℃;

где ϑн– фактическая температура окружающей среды, ℃ ; ϑдд– длительно допустимая температура токопроводящих жил кабеля, ℃ ; ϑокр – температура окружающей среды:

  • для кабелей в земле 15 ℃ ;
  • для кабелей на воздухе 25 ℃ ;

?раб – рабочий ток, А; ?дд – длительно допустимый ток нагрузки кабеля, А;

где b – постоянная, характеризующая теплофизические характеристики материала токопроводящей жилы:

(?к) ∙ ? – суммарный тепловой импульс;

?к –действующее значение тока КЗ, кА;

t – длительность тока КЗ (время срабатывания резервной защиты вышестоящего АВ), с;

S – сечение токоведущей жилы кабеля, мм2.

Термическая стойкость проводника обеспечивается, если площадь сечения S, мм2, удовлетворяет неравенству: ? ≥ ?тер ???, где ? ≥ ?тер ??? — минимальное сечение проводника по условию термической стойкости, мм2, которое следует определять по формуле:

?откл – время срабатывания защиты, зависящее от уровня напряжения (регламентированное время отключения тока КЗ), для сетей 220 кВ обычно принимается равным 0,1 с;

  – параметр, принимаемый по таблице 8 стандарта ГОСТ Р 52736-2007 «Короткие замыкания в электроустановках. Методы расчёта электродинамического и термического действия токов короткого замыкания» и значения которого равны:

  • для кабеля 220 кВ – 90;
  • для кабеля 10 кВ – 65.

Отметим, что температура жилы силового кабеля с изоляцией из сшитого полиэтилена не должна превышать 350 градусов Цельсия.

Термическая стойкость электропроводящего экрана силового кабеля обеспечивается, если обеспечивается следующее условие:

где – ?д.э – допустимый ток медного экрана, кА, значения которого:

  • для кабеля 220 кВ (сечение экрана 120 мм2) – 24,36 кА;
  • для кабеля 10 кВ (сечение экрана 25 мм2) – 19,2 кА.

– ток двухфазного короткого замыкания, кА.

Основным назначением экрана является обеспечение равномерности электрического поля, воздействующего на главную изоляцию кабеля (изоляцию «жила-экран»), что достигается только в случае заземления экрана. Поэтому электропроводящая оболочка кабеля (экран), как правило, заземлена на его концах и в ряде промежуточных точек (муфтах или транспозиционных узлах). При этом для токов нагрузки образуется путь в земле, параллельный проводнику. В этом отношении металлическая оболочка кабеля аналогична заземленным тросам у воздушной линии. На распределение тока между оболочкой и землей существенное влияние оказывает не только собственное сопротивление оболочки (экрана), но и сопротивление ее заземлений, значения которых зависят от характера прокладки кабеля (траншея, блоки, туннель, эстакада и т.д.) и ряда других факторов.

В однофазном режиме ток нагрузки протекает по экрану и земляному каналу, обладающего сопротивлением ?з (рис. 1).

Активное сопротивление линии «экран – земля» складывается из активного сопротивления экрана ?э и дополнительного сопротивления ?з, учитывающего потери активной мощности в земле от протекающего в ней тока:

На частоте ? = 50 Гц удельное сопротивление земли ?з = 0,05 Ом⁄км, что свидетельствует о практическом постоянстве потерь активной мощности в земле при заданной частоте.

Кабель с изоляцией из сшитого полиэтилена в однофазном включении

Кабель с изоляцией из сшитого полиэтилена в однофазном включении Кабель с изоляцией из сшитого полиэтилена - схема замещения Кабель с изоляцией из сшитого полиэтилена - схема замещения

а)                                                                                                                б)

Рис. 1. Кабель с изоляцией из сшитого полиэтилена: а) в однофазном включении; б) схема замещения

Сопротивление, обусловленное взаимоиндукцией между двумя параллельными линиями «провод-земля» с расстоянием ? ≪ ?з между осями их проводов:

Кабель с изоляцией из сшитого полиэтилена - схема замещения

Кабель с изоляцией из сшитого полиэтилена - схема замещения

где Кабель с изоляцией из сшитого полиэтилена - схема замещения

Кабель с изоляцией из сшитого полиэтилена - схема замещения , м, – эквивалентная глубина возврата тока через землю.

На промышленной частоте 50 Гц и среднем значении удельной проводимости земли ? = 10−4 (Ом ∙ см)−1, получим ?з = 935 м.

Заземление экранов с двух сторон

Заземление экранов с двух сторон

Рис. 2. Заземление экранов с двух сторон трех однофазных кабелей с изоляцией из сшитого полиэтилена

При отсутствии данных о проводимости земли обычно принимают

?з = 1000 м.

Отметим, что взаимоиндукция с другими фазами уменьшает сопротивление фазы для токов прямой (обратной) последовательности и увеличивает его для токов нулевой.

При расчете режима экранов однофазных кабелей с изоляцией из сшитого полиэтилена в трехфазном включении необходимо учитывать взаимоиндукцию с другими фазами (рис. 2) с учетом расстояния между центрами кабелей при выбранном способе прокладки.

 

Просмотров: 538

Проверка кабелей электроустановок напряжением до 1 кВ на термическую стойкость и невозгорание

При протекании тока короткого замыкания (КЗ) по кабелям, их токопроводящие жилы нагреваются, что в ряде случаев приводит к разрыву оболочек кабелей, разрушению концевых заделок, пожару в кабельных сооружениях и большим материальным потерям. Даже в тех случаях, когда пожар не возникает, физико-химические свойства изоляции кабелей существенно изменяются и возрастает вероятность их последующего электрического пробоя, что в конечном итоге также приводит к значительным материальным потерям. Для предотвращения пожаров и поддержания надежности электроустановок на приемлемом уровне необходимо, при выборе силовых кабелей, учитывать максимально возможные термические действия токов КЗ, а в процессе эксплуатации, после каждого КЗ, необходимо выполнять расчет температуры токопроводящих жил и заменять кабели с расчетными значениями температуры, превысившими предел термической стойкости. Указанные цели применительно к электроустановкам переменного тока напряжением до 1 кВ, в настоящее время, трудно достижимы из-за отсутствия четких и однозначных критериев для принятия решений, из-за недостаточной распространенности современных методик и средств расчета КЗ.

Неоднозначность критериев проявляется в расхождении требований по расчетным условиям проверки, сформулированных в государственном стандарте и в отраслевых научно-технических документах. Согласно действующему государственному стандарту [1], в качестве расчетной точки КЗ следует принимать такую точку на расчетной схеме, при КЗ в которой проводник подвергается наибольшему термическому воздействию. Очевидно, что наибольшее термическое воздействие будет при КЗ в начале кабельной линии. Однако отраслевая научно-техническая документация допускает проведение выбора и проверок силовых кабелей, в электроустановках напряжением до 1 кВ на не возгорание, по условиям КЗ, удаленного от начала кабельной линии на 20 метров. Государственный стандарт и отраслевые научно-технические документы не дают четкого ответа и на вопрос какое КЗ, металлическое или дуговое, следует рассматривать при выборе и проверке кабелей на термическую стойкость и не возгораемость.

С точки зрения практики и опыта эксплуатации электроустановок, критерием выбора и проверки кабелей по условиям термического действия токов КЗ должно быть расчетное максимальное значение температуры жил кабелей к моменту отключения дугового КЗ в начале кабельной линии или металлического КЗ в конце кабельной линии. КЗ, возникшее между головной и концевой разделками кабелей может быть только дуговым, т. к. металлическое соединение, с контактным давлением, превышающим электродинамические силы, раздвигающие замкнувшиеся проводники, по длине кабеля практически ничем не может быть обеспечено. Многочисленные эксперименты с КЗ в электроустановках напряжением до 1 кВ, показали, что металлическое КЗ возникает лишь при искусственно созданных условиях, например, при наложении термически стойкой штатной закоротки. Если закоротка наложена в начале кабельной линии, то ток КЗ от источника по кабелям протекать не будет и, следовательно, металлическое КЗ может рассматриваться в качестве расчетного вида лишь в конце кабельной линии.

Современная методика расчета КЗ в электроустановках переменного тока напряжением до 1 кВ, рекомендованная ГОСТ [2], на практике применяется редко. Обусловлено это сложностью комплексного учета всех факторов, влияющих на ток КЗ, особенно для продолжительных КЗ, отключаемым резервными защитами. При ручном расчете обычно получают лишь значение тока для начального момента КЗ, как это делается, например, в методических указаниях фирмы ОРГРЭС [3]. Для расчета токов и интегралов Джоуля КЗ длительностью более 0,1 с целесообразно использовать компьютерные программы. Примером такой программы может служить программа GUEXPERT, комплексно учитывающая нелинейное сопротивление электрической дуги, увеличение сопротивления кабелей, обусловленное нагревом их жил, и электромагнитный переходной процесс в асинхронных электродвигателях. Программа выполняет расчет токов и температур токопроводящих жил с учетом процессов теплообмена между жилами и изоляцией кабелей по ГОСТ [4]. Комплексный учет многих факторов влияющих на процесс КЗ, позволяет получить расчетные значения токов близкие к реальным значениям, что подтверждено многочисленными экспериментами. Программа имеет графический интерфейс и автоматизированную базу данных со всеми необходимыми для расчета параметрами элементов расчетных схем, включая внутренние сопротивления автоматических выключателей и плавких вставок предохранителей, переходные сопротивления разъемных и разборных контактов. Компьютерный расчет позволяет избежать выбора кабелей с чрезмерно завышенными сечениями. Более чем десятилетний опыт использования программы GUEXPERT на энергетических объектах и в ведущих проектных организациях России и СНГ подтвердил ее соответствие современным требованиям.

С помощью программы GUEXPERT выполнен расчетно-теоретический анализ различных расчетных условий выбора и проверки кабелей на не возгораемость на примере электроустановки, принципиальная схема которой приведена на рис. 1. Параметры основных элементов схемы соответствуют наиболее часто применяющимся на электростанциях электроустановкам с трансформаторами мощностью 1000 кВА и преимущественно двигательной нагрузкой. На рассматриваемой схеме двигательная нагрузка представлена эквивалентным асинхронным электродвигателем мощностью 420 кВт. Путем проведения вариантных расчетов определялась температура токопроводящих жил кабеля типа АВВГ при дуговых и металлических трехфазных КЗ в начале и в конце кабельных линий в зависимости от продолжительности КЗ. Расчеты проводились с полным комплексным учетом всех вышеперечисленных факторов, влияющих на процесс КЗ, в соответствии с рекомендациями ГОСТ и методических указаний ОРГРЭС [1-4].

На рис. 2 показаны результаты расчета металлических КЗ в начале кабельной линии. Из расчетов следует, что при продолжительности КЗ 0,5 с, складывающейся из времени действия резервной защиты и полного времени отключения автоматического выключателя, сечение токоведущих жил кабеля в линиях, отходящих от щита переменного тока, по условию не возгорания должно быть не менее 120 мм2. По типовым проектам, широко применявшимся в 80-е годы, на электроустановках напряжением 0,4 кВ собственных нужд электростанций допускалось использование кабелей с сечением жил 35 мм2. Таким образом, многие из действующих электроустановок имеют кабели, не отвечающие жестким требованиям государственного стандарта и отраслевых нормативно-технических документов.

Если опираясь на здравый смысл и опыт эксплуатации электроустановок считать, что КЗ в начале кабельной линии могут лишь дуговыми, то в присоединениях щита переменного тока могут использоваться кабели с сечением жил 70 мм2, рис. 3. Практически такой же результат получается, если принять в качестве расчетного металлическое КЗ удаленное от начала кабельной линии на 20 м, рис. 4. Именно такой подход к выбору расчетной точки предлагается в циркуляре РАО «ЕЭС РОССИИ» № Ц-02-98 (Э) от 16.03.98 года. Выбор и проверка кабелей по термическому действию тока дугового КЗ в начале кабеля фактически не противоречит ГОСТ, так как он допускает учет вероятностных характеристик КЗ при условии соответствующего обоснования их в ведомственных нормативно-технических документах [1, п. 1.1.4]. Обосновать выбор расчетной точки в 20 м от начала кабельной линии более трудно, чем утверждение о дуговом характере КЗ в кабеле.

Короткие кабельные линии следует проверять и по условию металлического КЗ в конце линии, т. к. тепловой режим их может оказаться более тяжелым нежели при дуговых КЗ в начале кабельной линии. Так, например, кабель сечением 70 мм2, при длине менее 13 метром не соответствует требованиям не возгораемости при металлическом КЗ продолжительностью 0,5 с в конце линии, хотя и соответствует требованиям не возгораемости по условию дугового КЗ в начале линии.

Выводы:

1. В новом издании «Правил устройства электроустановок» необходимо однозначно и четко сформулировать расчетные условия для выбора и проверки кабелей электроустановок напряжением до 1 кВ по условиям термической стойкости и невозгораемости;

2. Проверку не возгораемости кабелей, по мнению авторов, следует проводить по температуре нагрева токопроводящих жил к моменту отключения резервной защитой дугового КЗ в начале кабельной линии и металлического КЗ в конце кабельной линии;

3. Для практического расчета термического действия тока КЗ на кабели электроустановок переменного тока напряжением до 1 кВ может быть использована компьютерная программа GUEXPERT, разработанная на кафедре Электрические станции МЭИ (ТУ).

СПИСОК ЛИТЕРАТУРЫ:

1. ГОСТ 30323-95. Короткие замыкания в электроустановках. Методика расчета электродинамического и термического действия тока короткого замыкания;

2. ГОСТ 28249-93. Короткие замыкания в электроустановках. Методика расчета в электроустановках переменного тока напряжением до 1 кВ;

3. Методические указания по расчету токов короткого замыкания в сети напряжением до 1 кВ электростанций и подстанций с учетом влияния электрической дуги. — М.: Служба передового опыта ОРГРЭС, 1993;

4. ГОСТ 28895-91 (МЭК 949-88). Расчет термически допустимых токов короткого замыкания с учетом неадиабатического нагрева.

 рисунок 1

Рис. 1. Расчетная схема рассматриваемой электроустановки (копия с экрана при работе с программой GUEXPERT).

 рисунок 2

Рис. 2. Температура токопроводящих жил кабеля АВВГ к моменту отключения трехфазного металлического КЗ в начале кабельной линии в зависимости от продолжительности КЗ и от сечения жил.

 рисунок 3

Рис. 3. Температура токопроводящих жил кабеля АВВГ к моменту отключения трехфазного дугового КЗ в начале кабельной линии в зависимости от продолжительности КЗ и от сечения жил.

 рисунок 4

Рис. 4. Температура токопроводящих жил кабеля АВВГ к моменту отключения трехфазного металлического КЗ в конце кабельной линии в зависимости от продолжительности КЗ и от сечения жил.

Гусев Ю.П., Шиша М.А. Проверка кабелей электроустановок напряжением до 1 кВ на термическую стойкость и невозгораемость. — Электро, № 1, 2001, с. 36 – 38.

Справочник по командам кабеля Cisco CMTS — Кабельные команды: кабель o через кабель r [Поддержка]

Чтобы исключить
кабельный модем (CM) от предварительного выравнивания во время регистрации в Cisco CMTS
маршрутизатор, используйте
кабель
предварительное выравнивание
исключить команду в режиме глобальной конфигурации. к
удалить исключение для указанного кабельного модема или интерфейса, используйте
нет формы
эту команду.

кабель предварительное выравнивание исключить {модем mac-addr | oui id }

нет кабель предварительное выравнивание исключить {модем mac-addr | oui id }

Описание синтаксиса

модем
mac-адрес

Исключает кабельный модем с указанным MAC-адресом из предварительного выравнивания
во время регистрации кабельного модема.

уи
id

Исключает указанный уникальный организационный идентификатор (OUI) из
предварительное выравнивание во время регистрации кабельного модема.

Команда По умолчанию

Предварительное выравнивание
по умолчанию отключен на маршрутизаторе Cisco CMTS, а для кабельных модемов с
действующий и работоспособный файл конфигурации DOCSIS.

Командные режимы

Глобальная конфигурация (config)

История команд

Выпуск

модификация

12.3 (17а) до н.э.

Это
была представлена ​​на маршрутизаторах Cisco uBR10012 и Cisco uBR7246VXR.
маршрутизатор.

12.2 (33) SCA

Это
команда была интегрирована в Cisco IOS Release 12.2 (33) SCA. Поддержка
Добавлен маршрутизатор Cisco uBR7225VXR.

IOS-XE 3.15.0S

Эта команда не поддерживается на
Конвергентные широкополосные маршрутизаторы серии Cisco cBR.

Рекомендации по использованию

Используйте
кабель
предварительное выравнивание
исключить команду, чтобы отключить предварительное выравнивание для
ДОКСИС 1.1 CM, которые заявляют о поддержке предварительного выравнивания, но не
реализовать функции предварительного выравнивания.

Включить
предварительное выравнивание, используйте
кабель
вверх по течению
Конфигурация интерфейса с коэффициентом выравнивания
команда.Предварительное выравнивание начинается, когда кабельный модем, поддерживающий DOCSIS 1.1 или
выше отправляет маршрутизатору CMTS сообщение запроса ранжирования, указывающее, что
возможно предварительное выравнивание.

Следующие
пример вывода из
шоу
кабель
модем
команда verbose показывает, какие модемы указывают
поддержка предварительного эквалайзера во время процесса регистрации DOCSIS.В этом примере
первые два модема могут поддерживать предварительное выравнивание, а последние два
модемы поддерживают DOCSIS 1.0, который не поддерживает предварительное выравнивание. Ты не делай
нужно использовать
кабель
предварительное выравнивание
исключить команду для DOCSIS 1.0 CM.

 
Маршрутизатор №   подробное отображение кабельного модема | включить MAC-адрес | Эквалайзер  
MAC-адрес: 0019.474a.c4b0
Поддержка эквалайзера передачи: {Taps / Symbol = 1, Num of Taps = 24}
MAC-адрес: 0019.474a.c498
Поддержка эквалайзера передачи: {Taps / Symbol = 1, Num of Taps = 24}
MAC-адрес: 0020.40dc.4ce4
Поддержка эквалайзера передачи: {Taps / Symbol = 0, Num of Taps = 0}
MAC-адрес: 0020.4077.21a0
Поддержка эквалайзера передачи: {Taps / Symbol = 0, Num of Taps = 0}
  

Исключение
поддерживается для указанного DOCSIS 1.1 кабельный модем или для указанного значения OUI
для всего интерфейса. Удаление
кабель
предварительное выравнивание
исключать
конфигурация возвращает кабельный модем или интерфейс в нормальное состояние
процессы предварительной коррекции во время регистрации кабельного модема.

Примеры

Следующие
пример настраивает предварительное выравнивание для исключения для указанного кабеля
модем.Данные предварительного выравнивания не отправляются для соответствующего кабельного модема:

 
Маршрутизатор (конфигурация) #   предварительное выравнивание кабеля без модема 1111.2222.3333  
  

Следующие
пример настраивает предварительное выравнивание для исключения для указанного значения OUI
всего интерфейса.Данные предварительной коррекции не отправляются для
соответствующее значение OUI всего интерфейса:

 
Маршрутизатор (конфигурация) #   предварительное выравнивание кабеля исключить oui  
    00.09.    

.

Cisco CMTS Cable Command Reference — Кабельные команды: кабель o через кабель r [Поддержка]

Руководство по использованию

Используйте
кабель
предварительное выравнивание
исключить команду, чтобы отключить предварительное выравнивание для
КМ DOCSIS 1.1, которые заявляют о поддержке предварительного выравнивания, но не
реализовать функции предварительного выравнивания.

Включить
предварительное выравнивание, используйте
кабель
вверх по течению
Конфигурация интерфейса с коэффициентом выравнивания
команда.Предварительное выравнивание начинается, когда кабельный модем, поддерживающий DOCSIS 1.1 или
выше отправляет маршрутизатору CMTS сообщение запроса ранжирования, указывающее, что
возможно предварительное выравнивание.

Следующие
пример вывода из
шоу
кабель
модем
команда verbose показывает, какие модемы указывают
поддержка предварительного эквалайзера во время процесса регистрации DOCSIS. В этом примере
первые два модема могут поддерживать предварительное выравнивание, а последние два
модемы поддерживают DOCSIS 1.0, который не поддерживает предварительную коррекцию. Ты не делай
нужно использовать
кабель
предварительное выравнивание
исключить команду для DOCSIS 1.0 CM.

Router #   Показать подробный кабельный модем | включить MAC-адрес | Эквалайзер  
MAC-адрес: 0019.474a.c4b0
Поддержка эквалайзера передачи: {Taps / Symbol = 1, Num of Taps = 24}
MAC-адрес: 0019.474a.c498
Поддержка эквалайзера передачи: {Taps / Symbol = 1, Num of Taps = 24}
MAC-адрес: 0020.40dc.4ce4
Поддержка эквалайзера передачи: {Taps / Symbol = 0, Num of Taps = 0}
MAC-адрес: 0020.4077.21a0
Поддержка эквалайзера передачи: {Taps / Symbol = 0, Num of Taps = 0}
 

Исключение
поддерживается для указанного кабельного модема DOCSIS 1.1 или для указанного значения OUI
для всего интерфейса. Удаление
кабель
предварительное выравнивание
исключать
конфигурация возвращает кабельный модем или интерфейс в нормальное состояние
процессы предварительной коррекции во время регистрации кабельного модема.

Примеры

Следующие
пример настраивает предварительное выравнивание для исключения для указанного кабеля
модем. Данные предварительного выравнивания не отправляются для соответствующего кабельного модема:

Маршрутизатор (конфигурация) #   предварительное выравнивание кабеля исключить модем 1111.2222.3333  
 

Следующие
пример настраивает предварительное выравнивание для исключения для указанного значения OUI
всего интерфейса. Данные предварительной коррекции не отправляются для
соответствующее значение OUI всего интерфейса:

Маршрутизатор (конфигурация) #   предварительное выравнивание кабеля исключить oui  
    00.09.04  
 

Следующие
серия команд настраивает предварительную коррекцию на маршрутизаторе Cisco uBR10012
с БПЭ MC5X20U. На консоли PRE настройте следующие команды.

Маршрутизатор #   настроить терминал  
Введите команды конфигурации, по одной в каждой строке. Закончите CNTL / Z.
Маршрутизатор (конфигурация) #   предварительное выравнивание кабеля исключить oui 00.09.04  
Маршрутизатор (config) #   конец  
Маршрутизатор №  выставочный пробег  
Маршрутизатор №   show running-config | включить oui  
предварительное выравнивание кабеля исключить oui 00.09,04
Router #
 

На линии
карты для того же маршрутизатора Cisco uBR10012, проверьте конфигурацию с
следующая команда:

Линейная карта #   show running-config | включить oui  
предварительное выравнивание кабеля исключить oui 00.09.04
 

Следующие
серия команд настраивает предварительную коррекцию на маршрутизаторе Cisco uBR7246VXR
с линейными картами интерфейса кабеля MC28U. На ядре сетевой обработки (NPE)
console, настройте и проверьте с помощью следующих команд.

Маршрутизатор #   настроить терминал  
Введите команды конфигурации, по одной в каждой строке. Закончите CNTL / Z.
Маршрутизатор (конфигурация) #   кабель предварительного выравнивания исключить oui 00.09.24  
Маршрутизатор (config) #   конец  
Маршрутизатор # show run
02:58:10:% SYS-5-CONFIG_I: Настроено с консоли консолью
Маршрутизатор №   show running-config | включить oui  
предварительное выравнивание кабеля исключить oui 00.09.24
 

На линии
консоль карты для того же маршрутизатора Cisco uBR7246VXR, проверьте конфигурацию
с помощью следующей команды:

Линейная карта #   show running-config | включить oui  
предварительное выравнивание кабеля исключить oui 00.09,24
 

После любого из
эти методы исключения для предварительного выравнивания настроены, вы можете проверить
что все сообщения измерения дальности не включают данные предварительного выравнивания. Использовать
следующий
отлаживать
команды в режиме глобальной конфигурации:

  • отладка
    кабель
    ассортимент
  • отладка
    кабель
    интерфейс
    cx / x / x mac-адрес

Проверьте
сообщение ранжирования для неисключенных кабельных модемов включает предварительную коррекцию
данных, а для исключенных кабельных модемов сообщения о дальности не включают
такие данные.

Следующие
example удаляет исключение предварительной коррекции для указанного OUI и интерфейса.
Это приводит к тому, что кабельный модем или OUI возвращаются к нормальному предварительному выравниванию.
функции. Сообщения ранжирования возобновляют отправку данных предварительной коррекции.

Маршрутизатор (конфигурация) #   без предварительного выравнивания кабеля исключить   {  модем    mac-addr  |   oui    id }
 

Вы можете проверить
удаление этой функции с помощью
отлаживать
кабель
interfacecommand.

,

linux — Как определить физическое состояние подключения сетевого кабеля / разъема?

Переполнение стека

  1. Товары

  2. Клиенты
  3. Случаи использования
  1. Переполнение стека
    Общественные вопросы и ответы

  2. Команды
    Частные вопросы и ответы для вашей команды

  3. предприятие
    Частные вопросы и ответы для вашего предприятия

  4. работы
    Программирование и связанные с ним возможности технической карьеры

  5. Талант
    Нанять технических талантов

  6. реклама
    Обратитесь к разработчикам по всему миру

.

Пять ключевых факторов для правильного выбора кабеля и его применения

Выбор кабеля и применение

Важно знать конструкцию, характеристики и номиналы кабеля, чтобы понимать проблемы, связанные с кабельными системами. Однако для правильного выбора кабельной системы и обеспечения ее удовлетворительной работы требуются дополнительные знания. Эти сведения могут включать в себя условия эксплуатации, тип обслуживаемой нагрузки, режим работы и обслуживания и тому подобное.

5 key factors to the correct cable selection and application 5 ключевых факторов для правильного выбора и применения кабеля (фото предоставлено testguy.сеть)

Ключом к успешной эксплуатации кабельной системы является , чтобы выбрать наиболее подходящий кабель для приложения , выполнить правильную установку и выполнить необходимое обслуживание.

В этой технической статье обсуждение основано на правильном выборе кабеля и применении для распределения и использования энергии.

Выбор кабеля может основываться на следующих пяти ключевых факторах:

  1. Монтаж кабеля
  2. Кабельная конструкция
  3. Работа кабеля (напряжение и ток)
  4. Размер кабеля
  5. Требования к экранированию

1.Монтаж кабеля

Кабели

могут использоваться для наружной или внутренней установки в зависимости от распределительной системы и обслуживаемой нагрузки.

Хорошее понимание местных условий, монтажных бригад и обслуживающего персонала важно для обеспечения того, что выбранная кабельная система будет работать удовлетворительно. ! Изоляция кабеля часто повреждается или ослабляется во время установки из-за неправильного натяжения.

Проекты систем кабелепровода не только должны минимизировать количество изгибов кабелепровода и расстояния между люками, но также должны указывать растягивающие напряжения.

Инспекционный персонал должен гарантировать, что монтажные бригады не превышают эти значения во время установки. Также важно поддерживать правильный радиус изгиба, чтобы избежать ненужных точек напряжения. После правильной установки следует регулярно проводить плановый осмотр, испытания и техническое обслуживание, чтобы определить постепенное ухудшение состояния кабельной системы и ее техническое обслуживание.

Кабельные системы — это артерии системы распределения электроэнергии , по которым передается энергия, необходимая для успешной работы предприятия.Ниже приводится краткое обсуждение установки и обслуживания кабеля.

Существует несколько типов кабельных систем для передачи электроэнергии в данной распределительной системе. Выбор конкретной системы может зависеть от местных условий, существующей политики компании или прошлого опыта.

Не могут быть даны установленные стандарты или установленные руководящие принципы для выбора конкретной системы.

Вернуться к Факторы, влияющие на выбор кабеля ↑

2.Кабель строительный

Выбор и применение кабеля зависит от типа конструкции кабеля, необходимого для конкретной установки. Конструкция кабеля включает в себя жилы, расположение кабелей, изоляцию и финишное покрытие.

2.1 Проводники

Материалы проводников, такие как медь и алюминий, следует учитывать с точки зрения качества изготовления, условий окружающей среды и технического обслуживания. Требования к алюминиевым проводам в отношении этих факторов более критичны, чем к медным проводам.

Жилы кабеля следует выбирать в зависимости от класса скрутки, необходимого для конкретной установки .

2.2 Расположение кабелей

Проводники могут быть скомпонованы в виде одножильных или трехжильных кабелей . У обоих типов устройств есть определенные преимущества и недостатки. Одинарные жилы проще устанавливать, легче сращивать, и они позволяют формировать схемы из нескольких кабелей.

С другой стороны, их реактивное сопротивление на выше, чем у трехжильного кабеля . Экранированные одиночные проводники несут высокие экранирующие токи, поэтому необходимо принять меры для предотвращения перегрева кабеля.

Однопроводные кабели подвержены значительному перемещению из-за механических нагрузок, создаваемых токами короткого замыкания или высокими пусковыми токами. Трехжильный кабель с общей оболочкой имеет наименьшее реактивное сопротивление , а распределение напряжения напряжения сбалансировано за счет эквивалентного расстояния между проводниками.

Наличие заземляющего провода в трехжильном кабеле или отдельного заземляющего провода в одножильном кабеле является важным фактором. Поскольку заземляющий провод в конструкции трехжильного кабеля обеспечивает путь с наименьшим полным сопротивлением, он обеспечивает хорошее заземление системы.

Точно так же отдельное заземление в том же кабелепроводе, что и силовые провода, обеспечивает лучший путь заземления, чем путь заземления через оборудование или строительную сталь.

Выбор и применение кабельной системы должны основываться на правильном выборе типа кабельной прокладки, необходимого для .

2.3 Изоляция и финишное покрытие

Выбор изоляции кабеля и отделочного покрытия обычно основывается на типе установки, температуре окружающей среды, условиях эксплуатации, типе обслуживаемой нагрузки и других применимых критериях. Во многих установках могут преобладать необычные условия, такие как коррозионная атмосфера, высокая температура окружающей среды, опасность насекомых и грызунов, присутствие масла и растворителей, присутствие озона и экстремальный холод.

В некоторых приложениях могут присутствовать два или более из этих необычных условий, и в этом случае выбор подходящих кабелей становится намного сложнее.

Вернуться к Факторы, влияющие на выбор кабеля ↑

3. Кабельный ввод

Изоляция кабеля должна выдерживать напряжения напряжения, возникающие в нормальных и ненормальных условиях эксплуатации. Поэтому выбор изоляции кабеля должен производиться на основе применимого межфазного напряжения и общей категории системы, которые классифицируются как уровни изоляции 100%, 133% или 173%.

Эти уровни изоляции описаны ниже:

100% уровень:

Кабели этой категории могут применяться, если система оснащена релейной защитой , которая обычно устраняет замыкания на землю в течение 1 минуты. Эта категория обычно называется системами с заземлением.

133% уровень:

Кабели этой категории могут применяться, если в системе предусмотрена релейная защита , которая обычно устраняет замыкания на землю в течение 1 часа. Эту категорию обычно называют заземленными системами с низким сопротивлением или незаземленными системами.

173% уровень:

Кабели этой категории могут применяться. , где время, необходимое для обесточивания замыкания на землю, не определено. Этот уровень рекомендуется для незаземленных и резонансно заземленных систем.

Текущая пропускная способность кабеля определяется нагрузкой, которую он обслуживает.

NEC очень специфичен с точки зрения размеров проводов для систем, работающих ниже 600 В . Токопроводящая способность кабеля основана на рабочей температуре окружающей среды .Когда кабели устанавливаются в нескольких группах каналов, важно снизить допустимую нагрузку по току кабеля, чтобы не превысить его тепловой рейтинг.

В случаях, когда кабели могут подвергаться циклической нагрузке, допустимая нагрузка по току может быть рассчитана по следующей формуле:

Current carrying capacity

Current carrying capacity

где:

  • I eq — эквивалентная допустимая нагрузка по току
  • I — постоянный ток в течение определенного периода времени
  • т — период постоянного тока
  • T — общее время рабочего цикла
  • E — напряжение кабеля

Эквивалентную допустимую нагрузку по току следует использовать для выбора сечения проводника для термической стойкости.

Вернуться к Факторы, влияющие на выбор кабеля ↑

4. Размер кабеля

Выбор сечения кабеля основан на следующих факторах:

  1. Допустимая нагрузка по току
  2. Регулировка напряжения
  3. Рейтинг короткого замыкания

Эти факторы необходимо оценить перед выбором сечения кабеля! Во многих случаях упускаются из виду факторы регулирования напряжения и номинального тока короткого замыкания. Такой надзор может привести к опасности для имущества и персонала, а также к разрушению самого кабеля.

4,1 Допустимая нагрузка по току

Допустимая токовая нагрузка кабеля зависит от его теплового нагрева. NEC публикует таблицы с указанием текущей емкости для кабелей различных размеров. ICEA публикует текущие рейтинги для различных типов изоляции и условий установки.

Если требуется, чтобы выдерживал пропускную способность, превышающую 500 м3 , нормальным является параллельное соединение двух проводов меньшего размера.

Номинальный ток кабеля основан на определенном расстоянии, обеспечивающем рассеивание тепла.Если это расстояние меньше в месте прокладки кабеля, требуется снижение номинальных характеристик кабеля.

4.2 Регулировка напряжения

В правильно спроектированных электроэнергетических системах регулировка напряжения обычно не является проблемой . Падения напряжения при слишком длительной работе при низком напряжении следует проверять, чтобы гарантировать правильное напряжение нагрузки. При вращающихся нагрузках проверки должны выполняться как при установлении стабильного напряжения, так и при запуске.

NEC устанавливает предел падения напряжения 5% для систем распределения электроэнергии .


4,3 Рейтинг короткого замыкания

Выбранный размер кабеля должен быть проверен на устойчивость к короткому замыканию, которая должна основываться на времени размыкания цепи для условий короткого замыкания. Другими словами, кабель должен удерживаться без каких-либо тепловых повреждений до тех пор, пока неисправность не будет устранена переключающим устройством, например автоматическим выключателем или предохранителем.

Вернуться к Факторы, влияющие на выбор кабеля ↑

5.Экранирование

В при выборе и применении кабелей со средним напряжением основное внимание уделяется тому, должен ли кабель быть экранированным или неэкранированным. Условия, при которых должен быть выбран и применен экранированный кабель, объясняются ниже.

При использовании экранированного кабеля необходимо учитывать следующие факторы:

  1. Тип системы изоляции
  2. Является ли нейтраль системы заземленной или незаземленной
  3. Требования безопасности и надежности системы

В энергосистемах, где нет экрана или металлического покрытия, электрическое поле частично находится в воздухе, а частично в системе изоляции ! Если электрическое поле является интенсивным, например, в случае высокого и среднего напряжения, будут иметь место поверхностные разряды, вызывающие ионизацию частиц воздуха.Ионизация воздуха вызывает образование озона, который может повредить некоторые изоляционные материалы и отделочные покрытия.

При использовании неэкранированного кабеля в незаземленных системах повреждение изоляции или оболочки может быть вызвано током утечки, если поверхность кабеля влажная или покрыта копотью, жиром, грязью или другой проводящей пленкой.

В установках канального типа, где используется неэкранированный неметаллический кабель, внешнее электрическое поле может быть достаточно высоким, чтобы представлять угрозу безопасности персонала, работающего с одиночным кабелем в многоконтурных установках.

В случаях, когда используются переносные кабели, кабельные сборки или открытые воздушные кабельные установки, с которыми может работать персонал, может возникнуть серьезная угроза безопасности, если используется неэкранированный кабель !!

There are five fundamental constituents that make a cable: conductor, insulation, shield, filler and strength member. There are five fundamental constituents that make a cable: conductor, insulation, shield, filler and strength member. Кабель состоит из пяти основных составляющих: проводник, изоляция, экран, наполнитель и прочностный элемент (фото предоставлено plastics1.com) существует:

  1. Гидравлические трубы
  2. Подключение к антенным проводам
  3. Переход от проводящей среды к непроводящей (например, от влажной земли к сухой)
  4. Сухая почва
  5. Загрязненная среда, содержащая сажу, соль и другие загрязняющие вещества
  6. Там, где требуется безопасность персонала
  7. В местах ожидаемых радиопомех

ICEA установила пределы напряжения, при превышении которых требуется изоляционное экранирование для кабелей с резиновой и термопластической изоляцией.Эти значения показаны в таблице 1.

Изоляционный экран должен быть заземлен по крайней мере с одного конца, а лучше всего в двух или более точках. Экран кабеля должен быть заземлен также на всех концах, стыках и ответвлениях с конусами напряжения. Экран должен работать при потенциале земли.

Многократное заземление обеспечит безопасность и надежность кабельных цепей. Путь заземления от экрана должен иметь низкое сопротивление, чтобы экран не превышал потенциал земли.

ТАБЛИЦА 1 // Требования к изоляционному экранированию для кабелей с резиновой и термопластической изоляцией

Однопроволочный Трехпроводный
Тип кабеля Заземлен
[кВ]
Заземлен
[кВ]
Заземлен
[кВ]
Заземлен
[кВ]
1 Кабель в оболочке 5 5 5 5
2 Кабель с блокировкой 5 5 5 5
3 Кабель с волокнистым покрытием 2 2 2 2
4 Не озоностойкий 2 2 2 2
5 Озоностойкий
В металлических трубопроводах 5 3 5 5
Незаземленные кабелепроводы 3 3 5 5
Воздушно в галстуках 3 3 5 5
В воздухе с металлической связкой 5 5 5 5
Прямой заглубленный 3 3 5 5

Вернуться к Факторы, влияющие на выбор кабеля ↑

Ссылка // Техническое обслуживание и испытания электрического силового оборудования, Пол Гилл (приобретите печатную копию на Amazon)

,

Отправить ответ

avatar
  Подписаться  
Уведомление о