Поршневой насос принцип действия и устройство: Поршневые насосы — Студопедия

Содержание

Поршневые насосы — Студопедия

Поршневые насосы относятся к насосам объемного действия.В них создаются замкнутые объемы жидкости, на которые оказы­вает силовое воздействие рабочий орган — вытеснитель той или иной конструкции. В поршневых насосах таковым может быть пор­шень (тогда это собственно поршневой насос) или плунжер (плун­жерный насос).

При силовом воздействии поршня или плунжера на жидкость в ней создается давление. Поэтому в поршневых насосах, как и во


всех других насосах объемного действия, нет необходимости в преобразовании вида энергии. Несомненные достоинства объем­ных насосов состоят также в том, что их напор почти не зависит от подачи; насос может создать практически любой напор (давле­ние), если обеспечена соответствующая механическая прочность его деталей и к нему подведена определенная мощность.

При упомянутых достоинствах поршневые насосы имеют не­достатки, среди которых можно отметить большую массу и значи­тельные габариты. Это связано с его тихоходностью — малой ско­ростью вращения приводного вала, для движения которого необ­ходима громоздкая механическая передача. Кроме того, насосы имеют сложную конструкцию и требуют систематического обслу­живания, что связано, в частности, с наличием «капризных» де­талей — клапанов.



Существенным недостатком является также неравномерность подачи жидкости, что приводит к дополнительным затратам энер­гии: при переменной скорости движения жидкости в трубопрово­де возникают так называемые инерционные потери.

Поршневые насосы могут быть простого (одностороннего) и двойного (двустороннего) действия. Во втором случае обе сторо­ны поршня рабочие. По числу поршней (плунжеров) различают насосы одно-, двух-, трех- и многопоршневые.

Поршневой насос простого действия. На рис. 7.9 показана схема поршневого насоса одностороннего действия с приводом от кривошипно-шатунного механизма (возможен также привод от ку-

Рис. 7.9. Поршневой насос простого (одностороннего) действия:
1 — цилиндр; 2 — поршень; 3 — шатун; 4 — кривошип; 5 — вал; 6 — всасываю­щий клапан; 7 — клапанная коробка; 8 — напорный клапан; 9 — воздушный
колпак
 


лачкового механизма). Поршень 2, установленный в цилиндре | совершает возвратно-поступательное движение между крайними

положениями. Такое движение обеспечивает кривошипно-шатунный механизм: при вращении вала 5 насоса и закрепленного на нем кривошипа 4 шатун 3 приводит в движение поршень. К цилиндру примыкает клапанная коробка 7со всасывающим 6 и напорным 8 клапанами.


При движении поршня слева направо (по рисунку) в цилинд­ре и клапанной коробке понижается давление. За счет разности давлений на поверхности жидкости в исходном сосуде и внутри насоса открывается всасывающий клапан, и жидкость по всасы­вающей трубе поступает в камеру насоса, безотрывно следуя за поршнем. Происходит процесс всасывания, который завершается по достижении поршнем крайнего правого положения. Цилиндр заполнен жидкостью.

При обратном движении поршня вследствие его воздействия на жидкость в цилиндре и клапанной коробке повышается давле­ние. Под действием давления всасывающий клапан закрывается а напорный клапан, наоборот, открывается, и жидкость вытесняет­ся из камеры насоса в напорный трубопровод (на данной схеме — через воздушный колпак 9). По достижении поршнем крайнего левого положения процесс вытеснения прекращается. Далее вновь следует процесс всасывания и т.д.

Неравномерность подачи жидкости, отмеченная выше как не­достаток поршневых насосов, возникает из-за переменной скоро­сти движения поршня. В случае приведения насоса в действие с помощью кривошипно-шатунного механизма скорость изменяет­ся по синусоиде. Она снижается до нулевого значения при край­них положениях поршня и имеет максимум в середине хода. В на­сосе простого действия подача жидкости из цилиндра в напорный патрубок происходит лишь за половину оборота кривошипа. В те­чение второй половины оборота жидкость только всасывается в цилиндр. Указанный недостаток можно устранить двумя способами;

Один из них «г установка воздушного колпака (см. рис. 7.9) на выходном (напорном) патрубке насоса. Воздушный колпак пред­ставляет собой герметичный сосуд, в верхней части которого со­держится газ (обычно воздух). Газ в отличие от жидкости может сжиматься. При подаче жидкости в большем количестве по срав­нению со средним значением лишь часть ее поступает в напорный трубопровод. Другая часть накапливается в воздушном колпаке. Газ при этом сжимается, и его давление возрастает. При уменьшен­ной подаче, в том числе при ее полном прекращении, жидкость, накопленная в воздушном колпаке, выдавливается в напорный трубопровод сжатым газом. Таким образом, движение в напорном трубопроводе не прекращается. При необходимости воздушный колпак может быть установлен и на всасывающей линии.


Поршневые насосы двойного действия. На рис. 7.10 приведена схема поршневого насоса двой­ного действия. В этой конструкции насоса обе стороны поршня рабочие. В насосе предусмотрены две рабочие камеры: поршневая Аи штоковая Б, каждая со своей клапанной коробкой. При дви­жении поршня слева направо в камере А происходит процесс вса­сывания (как в насосе однократного действия). В это же время жидкость, накопленная ранее в камере Б, вытесняется в напор­ный трубопровод.

При обратном ходе поршня (справа налево) роль рабочих ка­мер меняется: в камере Б происходит всасывание, а из камеры А жидкость вытесняется в напорный трубопровод. Таким образом, в отличие от насоса простого действия подача жидкости в напор­ный трубопровод происходит в течение каждой половины оборо­та кривошипа. Однако и для этого насоса характерна полная оста­новка движения жидкости при смене направления движения пор­шня — в его крайних положениях.

Трехпоршневые насосы. Наиболее равномерную подачу обеспе­чивают трехпоршневые насосы. Они содержат три элемента «ци­линдр-поршень» одностороннего действия, каждый со своей клапанной коробкой. Подача жидкости из всех элементов проис­ходит в единый напорный трубопровод. Кривошипы элементов трехпоршневого насоса приводятся в движение от одного вала, со смещением кривошипов относительно друг друга на треть ок­ружности. В этих насосах в отдельные периоды вращения вала жидкость подается в трубопровод одновременно из двух цилинд­ров. В целом ее подача в напорный трубопровод не прекращается; колебания подачи незначительны настолько, что не требуется ус­тановки воздушного колпака.

Поршневые насосы выпускают для перемещения различных жидкостей, в том числе химически агрессивных. Возможности при­менения того или иного насоса можно предварительно оценить, исходя из его марки. Трехпоршневой насос марки Т-1/20 (с до­статочно равномерной подачей) имеет следующие параметры: по­дача 1,0 м3/ч и развиваемое давление 20 МПа. Дополнительно в


справочнике указан род перекачиваемой жидкости — вода с тем­пературой до 35 °С.

Насосы типа ХТР — это химические (X) трехпоршневые (Т) регулируемые (Р) насосы, предназначенные для перемещения аг­рессивных жидкостей. В зависимости от типоразмера их максималь­ная подача изменяется в диапазоне 0,8…30 м3/ч, а развиваемое давление — в пределах 2…33 МПа. В регулируемых насосах этого типа можно изменять рабочий объем, а следовательно, и подачу насоса, не меняя частоту вращения вала. Рабочий объем регулиру­ют посредством изменения хода поршня, точнее, радиуса криво­шипа.

Конструкция, принцип действия поршневых насосов — Студопедия

У поршневого насоса подача осуществляется при помощи вытеснителя (поршня или плунжера), совершающего возвратно-поступательное движение в цилиндре. Простейший поршневой насос показан на рис. 4.

В цилиндре 3 помещен поршень 4, плотно прилегающий своей боковой поверхностью к стенке цилиндра. Поршень получает движение от двигателя (не показан) при помощи кривошипно-шатунного механизма 6 и штока 5. К цилиндру прикреплена (или отлита заодно с ним) клапанная коробка 2, в которой размещены всасывающий 9 и напорный (нагнетательный) 10 клапаны. К клапанной коробке присоединены всасывающая 7 и напорная 1 трубы. Насос забирает жидкость из резервуара 8. Через обозначена геометрическая высота всасывания насоса.

Рисунок 4 – Принцип действия поршневого насоса простого действия

Клапаны насоса самодействующие и пропускают жидкость только в одном направлении – снизу вверх. Пространство, заключенное между поршнем и клапанами, называется рабочей камерой насоса. Расстояние между крайними положениями поршня называется его ходом ( ):

(1.8)

где – радиус кривошипа.

Во время работы насоса поршень передвигается внутри цилиндра возвратно-поступательно на длину хода. Крайнее левое и крайнее правое положения поршня называют соответственно левой и правой мертвыми точками. У вертикальных насосов крайнее нижнее и крайнее верхнее положения поршня называют нижней и верхней мертвыми точками.



При движении поршня из крайнего левого положения вправо объем рабочей камеры увеличивается, и давление в ней понижается. Так как клапаны насоса самодействующие, то всасывающий клапан 9 откроется и жидкость по всасывающей трубе 7 под действием внешнего давления устремится из резервуара 8 в рабочую камеру насоса. По достижении поршнем крайнего правого положения всасывание жидкости прекращается, и всасывающий клапан закроется. В дальнейшем поршень при движении справа налево будет давить на находящуюся в рабочей камере жидкость и вытеснять ее через напорный клапан 10 в напорную трубу 1.

У насоса, изображенного на рис. 4, жидкость вытесняется при движении поршня только в одну сторону. Такие насосы называются насосами одностороннего (простого) действия. Если жидкость вытесняется при движении поршня в обе стороны, то такие насосы называются насосами двустороннего (двойного) действия (рис. 5).



Рисунок 5 – Принцип действия поршневого насоса двойного действия

Всасывание и нагнетание у данного насоса совершаются при каждом ходе поршня. При ходе поршня влево всасывающий 4 и напорный 2 клапаны открыты. Через клапан 4 происходит всасывание жидкости в рабочую камеру, а через клапан 2 – вытеснение жидкости в напорную трубу. В это время клапаны 1 и 3 закрыты. При обратном ходе поршня через клапан 1 жидкость поступает в рабочую камеру, а через клапан 3 производится подача жидкости в напорную трубу, клапаны 4 и 2 закрыты.

Принцип работы насоса. Типы насосов. Работа насоса. Устройство насоса

В этой статье мы постарались собрать все возможные принципы работы насосов. Часто, в большом разнообразии марок и типов насосов достаточно трудно разобраться не зная как работает тот или иной агрегат. Мы постарались сделать это наглядным, так как лучше один раз увидеть, чем сто раз услышать.

В большинстве описаний работы насосов в интернете есть только разрезы проточной части (в лучшем случае схемы работы по фазам). Это не всегда помогает разобраться в том как именно функционирует насос. Тем более, что не все обладают инженерным образованием.

Надеемся, что этот раздел нашего сайта не только поможет вам в правильном выборе оборудования, но и расширит ваш кругозор.

Водоподъемное колесо

С давних времен стояла задача подъема и транспортировки воды. Самыми первыми устройствами такого типа были водоподъемные колеса. Считается, что их изобрели Египтяне.

Водоподъемная машина представляла собой колесо, по окружности которого были прикреплены кувшины. Нижник край колеса был опущен в воду. При вращении колеса вокруг оси, кувшины зачерпывали воду из водоема, а затем в верхней точке колеса , вода выливалась из кувшинов в специальный приемный лоток. для вращения устройства применялать мускульная сила человека или животных.

Винт архимеда

Архимед (287–212 гг. до н. э.), великий ученый древности, изобрел винтовое водоподъемное устройство, позже названное в его честь. Это устройство поднимало воду с помощью вращающегося внутри трубы винта, но некоторое количество воды всегда стекало обратно, т. к. в те времена эффективные уплотнения были неизвестны. В результате, была выведена зависимость между наклоном винта и подачей. При работе можно было выбрать между большим объемом поднимаемой воды или большей высотой подъема. Чем больше наклон винта, тем больше высота подачи при уменьшении производительности.

Поршневой насос

Первый поршневой насос для тушения пожаров, изобратенный древнегреческим механиком Ктесибием, был описан еще в 1 веке до н. э. Эти насосы, по праву, можно считать самыми первыми насосами. До начала 18 века насосы этого типа использовались довольно редко, т. к. изготовленные из дерева они часто ломались. Развитие эти насосы получили после того, как их начали изготавливать из металла.

С началом промышленной революции и появлением паровых машин, поршневые насосы стали использовать для откачки воды из шахт и рудников.

В настоящее время, поршневые насосы используются в быту для подъема воды из скважин и колодцев, в промышленности — в дозировочных насосах и насосах высокого давления.

Существуют и поршневые насосы, объединенные в группы: двухплунжерные, трехплунжерные, пятиплунжерные и т.п.

Принципиально отличаются количеством насосов и их взаимным расположением относительно привода.

На картинке вы можете увидеть трехплунжерный насос.

Крыльчатый насос

Крыльчатые насосы являются разновидностью поршневых насосов. Насосы этого типа были изобретены в середине 19 века.

Насосы являются двухходовыми, то есть подают воду без холостого хода.

Применяются, в основном, в качестве ручных насосов для подачи топлива, масел и воды из скважин и колодцев.

Конструкция:

Внутри чугунного корпуса размещены рабочие органы насоса: крыльчатка, совершающая возвратно-поступательные движения и две пары клапанов (впускные и выпускные). При движении крыльчатки происходит перемещение перекачиваемой жидкости из всасывающей полости в нагнетательную. Система клапанов препятствует перетоку жидкости в обратном направлении

Сильфонный насос

Насосы этого типа имеют в своей конструкции сильфон («гармошку»), сжимая который производят перекачку жидкости. Конструкция насоса очень простая и состоит всего из нескольких деталей.

Обычно, такие насосы изготавливают из пластика (полиэтилена или полипропилена).

Основное применение — выкачивание химически активных жидкостей из бочек, канистр, бутылей и т.п.

Низкая цена насоса позволяет использовать его в качестве одноразового насоса для перекачивания едких и опасных жидкостей с последующей утилизацией этого насоса.

Пластинчато-роторный насос

Пластинчато-роторные (или шиберные) насосы представляют собой самовсасывающие насосы объемного типа. Предназначены для перекачивания жидкостей. обладающих смазывающей способностью (масла. дизельное топливо и т.п.). Насосы могут всасывать жидкость «на сухую», т.е. не требуют предварительного заполнени корпуса рабочей жидкостью.

Принцип работы: Рабочий орган насоса выполнен в виде эксцентрично расположенного ротора, имеющего продольные радиальные пазы, в которых скользят плоские пластины (шиберы), прижимаемые к статору центробежной силой.

Так как ротор расположен эксцентрично, то при его вращении пластины, находясь непрерывно в соприкосновении со стенкой корпуса, то входят в ротор, то выдвигаются из него.

Во время работы насоса на всасывающей стороне образуется разрежение и перекачиваемая масса заполняет пространство между пластинами и далее вытесняется в нагнетательный патрубок.

Шестеренный насос с наружным зацеплением

Шестеренные насосы с наружным зацеплением шестерен предназначены для перекачивания вязких жидкостей, обладающих смазывающей способность.

Насосы обладают самовсасыванием (обычно, не более 4-5 метров).

Принцип действия:

Ведущая шестерня находится в постоянном зацеплении с ведомой и приводит её во вращательное движение. При вращении шестерён насоса в противоположные стороны в полости всасывания зубья, выходя из зацепления, образуют разрежение (вакуум). За счёт этого в полость всасывания поступает жидкость, которая, заполняя впадины между зубьями обеих шестерён, перемещается зубьями вдоль цилиндрических стенок в корпусе и переносится из полости всасывания в полость нагнетания, где зубья шестерён, входя в зацепление, выталкивают жидкость из впадин в нагнетательный трубопровод. При этом между зубьями образуется плотный контакт, вследствие чего обратный перенос жидкости из полости нагнетания в полость всасывания невозможен.

Шестеренный насос с внутренним зацеплением

Насосы аналогичны по принципу работы обычному шестеренному насосу, но имеют более компактные размеры. Из минусов можно назвать сложность изготовления.

Принцип действия:

Ведущая шестерня приводится в действие валом электродвигателя. Посредством захвата зубьями ведущей шестерни, внешнее зубчатое колесо также вращается.

При вращении проемы между зубьями освобождаются, объем увеличивается и создается разряжение на входе, обеспечивая всасывание жидкости.

Среда перемещается в межзубьевых пространствах на сторону нагнетания. Серп, в этом случае, служит в качестве уплотнителя между отделениями засасывания и нагнетания.

При внедрении зуба в межзубное пространство объем уменьшается и среде вытесняется к выходу из насоса.

Кулачковый насос с серпообразными роторами

Кулачковые (коловратные или роторные) насосы предназначены для бережной перекачки вызких продуктов, содержащих частицы.

Различная форма роторов, устанавливаемая в этих насосах, позволяет перекачивать жидкости с большими включениями (например, шоколад с цельными орехами и т.п.)

Частота вращения роторов, обычно, не превышает 200…400 оборотов, что позволяет производить перекачивание продуктов не разрушая их структуру.

Применяются в пищевой и химической промышленности.

На картинке можно посмотреть роторный насос с трехлепестковыми роторами.

Насосы такой конструкции применяются в пищевом производстве для бережной перекачки сливок, сметаны, майонеза и тому подобны жидкостей, которые при перекачивании насосами других типов могут повреждать свою структуру.

Например, при перекачке центробежным насосом (у которого частота вращения колеса 2900 об/мин) сливок, они взбиваются в масло.

Импеллерный насос

Импеллерный насос (ламельный, насос с мягким ротором) является разновидностью пластинчато-роторного насоса.

Рабочим органом насоса является мягкий импеллер, посаженый с эксцентриситетом относительно центра корпуса насоса. За счет этого при вращении рабочего колеса изменяется объем между лопастями и создается разряжение на всасывании.

Что происходит дальше видно на картинке.

Насосы являются самовсасывающими (до 5 метров).

Преимущество — простота конструкции.

Синусный насос

Название этого насоса происходит от формы рабочего органа – диска, выгнутого по синусоиде. Отличительной особенностью синусных насосов является возможность бережного перекачивания продуктов содержащих крупные включения без их повреждения.

Например, можно легко перекачивать компот из персиков с включениями их половинок (естественно, что размер перекачиваемых без повреждения частиц зависит от объема рабочей камеры. При выборе насоса нужно обращать на это внимание).

Размер перекачиваемых частиц зависит от объема полости между диском и корпусом насоса.

Насос не имеет клапанов. Конструктивно устроен очень просто, что гарантирует долгую и безотказную работу.

Принцип работы:

На валу насоса, в рабочей камере, установлен диск, имеющий форму синусоиды. Камера разделена сверху на 2 части шиберами (до середины диска), которые могут свободно перемещаться в перпендикулярной к диску плоскости и герметизировать эту часть камеры не давая жидкости перетекать с входа насоса на выход (см. рисунок).

При вращении диска он создает в рабочей камере волнообразное движение, за счет которого происходит перемещение жидкости из всасывающего патрубка в нагнетательный. За счет того, что камера наполовину разделена шиберами, жидкость выдавливается в нагнетательный патрубок.

Винтовой насос

Основной рабочей частью эксцентрикового шнекового насоса является винтовая (героторная) пара, которая определяет как принцип работы, так и все базовые характеристики насосного агрегата. Винтовая пара состоит из неподвижной части – статора, и подвижной – ротора.

Статор – это внутренняя n+1-заходная спираль, изготовленная, как правило, из эластомера (резины), нераздельно (либо раздельно) соединенного с металлической обоймой (гильзой).

Ротор – это внешняя n-заходная спираль, которая изготавливается, как правило, из стали с последующим покрытием или без него.

Стоит указать, что наиболее распространены в настоящее время агрегаты с 2-заходными статором и 1-заходным ротором, такая схема является классической практически для всех производителей винтового оборудования.

Важным моментом, является то, что центры вращения спиралей, как статора, так и ротора смещены на величину эксцентриситета, что и позволяет создать пару трения, в которой при вращении ротора внутри статора создаются замкнутые герметичные полости вдоль всей оси вращения. При этом количество таких замкнутых полостей на единицу длины винтовой пары определяет конечное давление агрегата, а объем каждой полости – его производительность.

Винтовые насосы относятся к объемным насосам. Эти типы насосов могут перекачивать высоковязкие жидкости, в том числе с содержанием большого количества абразивных частиц.

Преимущества винтовых насосов:

— самовсасывание (до 7…9 метров),

— бережное перекачивание жидкости, не разрушающее структуру продукта,

— возможность перекачивания высоковязких жидкостей, в том числе содержащих частицы,

— возможность изготовления корпуса насоса и статора из различных материалов, что позволяет перекачивать агрессивные жидкости.

Насосы этого типа получили большое распространение в пищевой и нефтехимической промышленности.

Перистальтический насос

Насосы этого типа предназначены для перекачивания вязких продуктов с твердыми частицами. Рабочим органом является шланг.

Преимущество: простота конструкции, высокая надежность, самовсасывание.

Принцип работы:

При вращении ротора в глицерине башмак полностью пережимает шланг (рабочий орган насоса), расположенный по окружности внутри корпуса, и выдавливает перекачиваемую жидкость в магистраль. За башмаком шланг восстанавливает свою форму и всасывает жидкость. Абразивные частицы вдавливаются в эластичный внутренний слой шланга, затем выталкиваются в поток, не повреждая шланга.

Вихревой насос

Вихревые насосы предназначены для перекачивания различных жидкотекучих сред. насосы обладают самовсасыванием (после залива корпуса насоса жидкостью).

Преимущества: простота конструкции, высокий напор, малые размеры.

Принцип действия:

Рабочее колесо вихревого насоса представляет собой плоский диск с короткими радиальными прямолинейными лопатками, расположенными на периферии колеса. В корпусе имеется кольцевая полость. Внутренний уплотняющий выступ, плотно примыкая к наружным торцам и боковым поверхностям лопаток, разделяет всасывающий и напорный патрубки, соединенные с кольцевой полостью.

При вращении колеса жидкость увлекается лопатками и одновременно под воздействием центробежной силы закручивается. Таким образом, в кольцевой полости работающего насоса образуется своеобразное парное кольцевое вихревое движение, почему насос и называется вихревым. Отличительная особенность вихревого насоса заключается в том, что один и тот же объем жидкости, движущейся по винтовой траектории, на участке от входа в кольцевую полость до выхода из нее многократно попадает в межлопастное пространство колеса, где каждый раз получает дополнительное приращение энергии, а следовательно, и напора.

Газлифт

Газлифт (от газ и англ. lift — поднимать), устройство для подъёма капельной жидкости за счёт энергии, содержащейся в смешиваемом с ней сжатом газе. Газлифт применяют главным образом для подъёма нефти из буровых скважин, используя при этом газ, выходящий из нефтеносных пластов. Известны подъёмники, в которых для подачи жидкости, главным образом воды, используют атмосферный воздух. Такие подъёмники называют эрлифтами или мамут-насосами.

В газлифте, или эрлифте, сжатый газ или воздух от компрессора подаётся по трубопроводу, смешивается с жидкостью, образуя газожидкостную или водо-воздушную эмульсию, которая поднимается по трубе. Смешение газа с жидкостью происходит внизу трубы. Действие газлифта основано на уравновешивании столба газожидкостной эмульсии столбом капельной жидкости на основе закона сообщающихся сосудов. Один из них — буровая скважина или резервуар, а другой — труба, в которой находится газожидкостная смесь.

Мембранные насосы

Мембранные насосы относятся к объемным насосам. Существуют одно- и двухмембранные насосы. Двухмембраные, обычно выпускаются с приводом от сжатого воздуха. На нашем рисунке показан именно такой насос.

Насосы отличатся простотой конструкции, обладают самовсасыванием (до 9 метров), могут перекачивать химически агрессивные жидкости и жидкости с большим содержанием частиц.

Принцип работы:

Две мембраны, соединенные валом, перемещаются вперед и назад под воздействием попеременного нагнетания воздуха в камеры позади мембран с использованием автоматического воздушного клапана.

Всасывание: Первая мембрана создает разрежение, когда она движется от стенки корпуса.

Нагнетание: Вторая мембрана одновременно передает давление воздуха на жидкость, находящуюся в корпусе, проталкивая ее по направлению к выпускному отверстию. Во время каждого цикла давление воздуха на заднюю стенку выпускающей мембраны равно давлению, напору со стороны жидкости. Поэтому мембранные насосы могут работать и при закрытом выпускном клапане без ущерба для срока службы мембраны

Оседиагональные насосы (шнековые)

Шнековые насосы часто путают с винтовыми. Но это совершенно разные насосы, как можно увидеть в нашем описании. Рабочим органом является шнек.

Насосы этого типа могут перекачивать жидкости средней вязкости (до 800 сСт), обладают хорошей всасывающей способностью (до 9 метров), могут перекачивать жидкости с крупными частицами (размер определяется шагом шнека).

Применяются для перекачивания нефтешламов, мазутов, солярки и т.п.

Внимание! Насосы НЕСАМОВСАСЫВАЮЩИЕ. Для работы в режиме всасывания требуется заливка корпуса насоса и всего всасывающего шланга)

Центробежный насос

Центробежные насосы являются самыми распространенными насосами. Название происходит от принципа действия: насос работает за счет центробежной силы.

Насос состоит из корпуса (улиитки) и расположенного внутри рабочего колеса с радиальными изогнутыми лопастями. Жидкость попадает в центр колеса и под действием центробежной силы отбрасывается к его перифирии а затем выбрасывается через напорный патрубок.

Насосы используются для перекачивания жидких сред. Существуют модели для химически активный жидкостей, песка и шлама. Отличаются материалами корпуса: для химических жидкостей используют различные марки нержавеющих сталей и пластика, для шламов — износостойкие чугуны или насосы с покрытием из резины.

Массовое использование центробежных насосов обусловлено простотой конструкции и низкой себестоимостью изготовления.

Многосекционный насос

Многосекционные насосы — это насосы с несколькоми рабочими колесами, расположенными последовательно. Такая компоновка нужна тогда, когда необходимо большое давление на выходе.

Дело в том, что обычное центробежное колесо выдает максимальное давление 2-3 атм.

По этому, для получения более высоких значение напора, используют несколько последовательно установленных центробежных колес.

(по сути, это несколько последовательно соединенных центробежных насосов).

Такие типы насосов используют в качестве погружных скважинных и в качестве сетевых насосов высокого давления.

Трехвинтовой насос

Трехвинтовые насосы предназначены для перекачивания жидкостей, обладающих смазывающей способностью, без абразивных механических примесей. Вязкость продукта — до 1500 сСт. Тип насоса объемный.

Принцип работы трехвинтового насоса понятен из рисунка.

Насосы этого типа применяются:

— на судах морского и речного флота, в машинных отделениях,

— в системах гидравлики,

— в технологических линиях подачи топлива и перекачивания нефтепродуктов.

Струйный насос

Струйный насос предназначен для перемещения (откачки) жидкостей или газов с помощью сжатого воздуха (или жидкости и пара), подающегося через эжектор. Принцип работы насоса основан на законе Бернули (чем выше скорость течения жидкости в трубе, тем меньше давление этой жидкости). Этим обусловлена форма насоса.

Конструкция насоса чрезвычайно проста и не имеет движущихся деталей.

Насосы этого типа можно использовать в качестве вакуумный насосов или насосов для перекачивания жидкости (в том числе, содержащих включения).

для работы насоса необходим подвод сжатого воздуха или пара.

Струйные насосы, работающие от пара, называют пароструйными насосами, работающие от воды — водоструйными насосами.

Насосы, отсасывающие вещество и создающие разряжение, называются эжекторами. Насосы нагнетающие вещество под давлением — инжекторами.

Гидротаранный насос

Этот насос работает без подвода электроэнергии, сжатого воздуха и т.п. Работа насоса этого типа основана на энергии поступающей самотеком воды и гидроудара, возникающего при резком её торможении.

Принцип работы гидротаранного насоса:

По всасывающей наклонной трубе вода разгоняется до некоторой скорости, при которой отбойный подпружиненный клапан (справа), преодолевает усилие пружины и закрывается, перекрывая поток воды. Инерция резко остановленной воды во всасывающей трубе создает гидроудар (т.е. кратковременно резко возрастает давление воды в питающей трубе). Величина этого давления зависит от длины питающей трубы и скорости потока воды.

Возросшее давление воды открывает верхний клапан насоса и часть воды из трубы проходит в воздушный колпак (прямоугольник сверху) и отводящую трубу (слева от колпака). Воздух в колпаке сжимается, накапливая энергию.

Т.к. вода в питающей трубе остановлена, давление в ней падает, что приводит к открытию отбойного клапана и закрытию верхнего клапана. После этого вода из воздушного колпака выталкивается давлением сжатого воздуха в отводящую трубу. Так как отбойный клапан открылся, вода снова разгоняется и цикл работы насоса повторяется.

Спиральный вакуумный насос

Спиральный вакуумный насос представляет собой объёмный насос внутреннего сжатия и перемещения газа.

Каждый насос состоит из двух высокоточных спиралей Архимеда (серповидные полости) расположенных со смещением в 180° друг относительно друга. Одна спираль неподвижна, а другая крутится двигателем.

Подвижная спираль совершает орбитальное вращение, что приводит к последовательному уменьшению газовых полостей, по цепочке сжимая и перемещая газ от периферии к центру.

Спиральные вакуумные насосы относятся к категории «сухих» форвакуумных насосов, в которых не используются вакуумные масла для уплотнения сопряженных деталей (нет трения — не нужно масло).

Одной из сфер применения данного вида насосов являются ускорители частиц и синхротроны, что само по себе уже говорит о качестве создаваемого вакуума.

Ламинарный (дисковый) насос

Ламинарный (дисковый) насос является разновидностью центробежного насоса, но может выполнять работу не только центробежных, но и прогрессивных полостных насосов, лопастных и шестеренчатых насосов, т.е. перекачивать вязкие жидкости.

Рабочее колесо ламинарного насоса представляет собой два и более параллельных диска. Чем больше расстояние между дисками, тем более вязкую жидкость может перекачивать насос. Теория физики процесса: в условиях ламинарного течения слои жидкости движутся с различной скоростью по трубе: слой, наиболее близкий к неподвижной трубе (так называемый пограничный слой), течёт медленнее, чем более глубокие (близкие к центру трубы) слои текущей среды.

Аналогично, когда жидкость поступает в дисковый насос, на вращающихся поверхностях параллельных дисков рабочего колеса образуется пограничный слой. По мере вращения дисков энергия переносится в последовательные слои молекул в жидкости между дисками, создавая градиенты скорости и давления по ширине условного прохода. Эта комбинация граничного слоя и вязкого перетаскивания приводит к возникновению перекачивающего момента, который «тянет» продукт через насос в плавном, почти не пульсирующем потоке.

*Информация взята из открытых источников.

Виды поршневых жидкостных насосов и особенности их конструкции

Поршневые насосы жидкостные: устройство и принцип работы

Жидкостный поршневой насос – это одно из древнейших устройств, назначением которых является перекачивание жидких сред. Поршневые насосы работают на основе простейшего принципа вытеснения жидкостей, которое осуществляется механическим способом.

По сравнению с первыми моделями подобных устройств, современные жидкостные насосы поршневого типа отличаются значительно более сложной конструкцией, они более надежны и эффективны в использовании.

Так, поршневые насосы, выпускаемые современными производителями, имеют не только эргономичный и прочный корпус, но и развитую элементную базу, а также предоставляют более широкие возможности для монтажа в трубопроводные системы.

Благодаря такой универсальности насосы жидкостные поршневого типа активно используются в трубопроводных системах как промышленного, так и бытового назначения.

Поршневой насос для незамкнутых гидравлических систем

Конструктивные особенности

Основным элементом жидкостного поршневого насоса является полый металлический цилиндр, в котором и протекают все рабочие процессы, осуществляемые с перекачиваемой жидкостью. Физическое же воздействие на жидкость осуществляет поршень плунжерного типа. Благодаря этому элементу данный жидкостный насос и получил свое название.

Принцип работы поршневого насоса основывается на возвратно-поступательном движении его рабочего органа, действующего как гидравлический пресс.

При этом в конструкции такой машины, в отличие от классических гидравлических устройств, присутствует механизм клапанного распределения, а также ряд дополнительных конструктивных элементов (в частности, кривошип и шатун, составляющие основу силовой части насоса жидкостного поршневого типа).

Устройство аксиально-поршневого насоса

Принцип работы

От большинства из тех, кто подбирает технические устройства для оснащения трубопроводных систем, специалисты слышат: «Объясните работу поршневого насоса с воздушной камерой».

Следует сразу сказать, что принцип, по которому действует жидкостный поршневой насос, изобретенный еще несколько столетий назад, достаточно прост.

Заключается он в следующем: совершая поступательное движение, поршень создает разрежение воздуха в рабочей камере, за счет чего в камеру и всасывается жидкость из подводящего трубопровода.

При обратном движении поршня такого насоса, который, по некоторым историческим данным, изобрел древнегреческий механик, жидкость из рабочей камеры выталкивается в нагнетающую магистраль. Поршневые насосы, как уже говорилось выше, оснащаются клапанным механизмом, основная задача которого состоит в том, чтобы не дать перекачиваемой жидкости попасть обратно во всасывающий канал в тот момент, когда она выталкивается в нагнетательную магистраль.

Принцип работы одностороннего поршневого насоса

Принципом, по которому работают поршневые насосы, объясняется тот факт, что поток, создаваемый такими устройствами, двигается по трубопроводу с различной скоростью, скачками. Чтобы избежать этого негативного явления, используют насосы, оснащенные сразу несколькими поршнями, работающими в определенной последовательности.

Преимущества, которые достигаются при использовании жидкостных насосов с несколькими поршнями, заключается еще и в том, что такие устройства способны закачивать жидкость даже в тот момент, когда их рабочая камера ею не заполнена.

Такое качество многопоршневого плунжерного насоса, которое получило название «сухое всасывание», актуально во многих сферах, где используются подобные устройства.

Поршневые насосы различаются по числу действий

Насосы двухстороннего действия

Основная причина, по которой был разработан и стал активно применяться поршневой насос двойного действия, заключается в стремлении производителей уменьшить уровень пульсации потока жидкости, нагнетаемой в трубопроводную систему. Для того чтобы разобраться в преимуществах использования насосного устройства двойного действия, достаточно понять, как работает поршневой жидкостный насос данного типа.

Особенность устройства жидкостного поршневого насоса двойного действия заключается в том, что штоковые и поршневые полости этой машины оснащены индивидуальными клапанными системами.

Такая конструкция поршневого насоса двойного действия, уникальность которой можно заметить даже по фото, позволяет не только устранить пульсации потока в трубопроводной системе, но и значительно повысить эффективность использования самой машины.

Между тем поршневые насосы одностороннего действия, если сравнивать их с двухсторонними моделями, из-за простой конструкции отличаются более высокой надежностью и долговечностью.

Принцип действия двухстороннего поршневого насоса

Существует еще одна конструктивная схема поршневого насоса, при использовании которой удается добиться устранения пульсационных процессов в трубопроводных системах. Насосное оборудование, выполненное по данной схеме, предполагает применение специального гидроаккумулятора.

Основное назначение таких гидроаккумуляторов, используемых для оснащения насосных станций, заключается в том, чтобы накапливать энергию потока жидкости в моменты пикового давления в трубопроводе и отдавать ее тогда, когда такого давления для нормальной работы системы недостаточно.

Однако какие бы виды поршневых насосов ни использовались и какими бы дополнительными техническими устройствами ни оснащались насосные станции, устранить пульсационные процессы в трубопроводах не всегда удается. В таких ситуациях часто применяется дополнительное оборудование, обеспечивающее эффективный отвод лишней жидкости за пределы насосной станции.

Сферы применения

Область применения жидкостных насосов поршневого типа достаточно широка, что объясняется их высокой универсальностью. Между тем конструкция таких машин не позволяет использовать их в тех случаях, когда перекачивать необходимо значительные объемы воды или другой жидкости.

Одним из основных достоинств этих гидравлических машин является то, что их поршни, вытесняя жидкость через нагнетательную магистраль, одновременно всасывают ее новую порцию через подающий канал, что в условиях сухого цилиндра очень важно.

Этим качеством и предопределяется назначение поршневых жидкостных насосов как наиболее эффективных устройств, используемых на предприятиях химической промышленности.

Гидравлический поршневой насос для автокрана

Сферы применения жидкостных насосов поршневого типа расширяются и за счет того, что такое оборудование может успешно использоваться для работы с химически агрессивными средами, некоторыми видами топлива и взрывоопасными смесями.

Активно применяются насосы данного типа и в бытовых целях, с их помощью можно создавать трубопроводные системы для автономного водоснабжения частных строений и для полива.

Между тем, решив использовать такой прибор, не забывайте о том, что для перекачивания больших объемов жидкости он не предназначен.

Еще одной сферой, в которой активно используются жидкостные насосы поршневого типа, является пищевая промышленность. Это объясняется тем, что такие устройства отличаются очень деликатным отношением к перекачиваемой через них жидкости.

Преимущества и недостатки

Если говорить о достоинствах, которыми обладают насосы поршневого типа, служащие для перекачивания жидких сред, то к наиболее значимым можно отнести:

  • простоту конструкции, которую демонстрируют даже картинки и схематическое изображение подобных устройств;
  • высокую надежность, которая определяется не только использованием высокопрочных материалов для производства таких машин, но и принципом действия поршневого насоса;
  • возможность работы с носителями, при использовании которых предъявляются особые требования к условиям пуска насосного оборудования.

Выбирая жидкостные насосы поршневого типа, сначала определитесь с тем, для чего такое оборудование будет использоваться. Если не предполагается перекачивание слишком больших объемов жидкости, то доступные по стоимости и надежные жидкостные насосы поршневого типа оптимально подойдут для реализации ваших целей.

Источник: http://met-all.org/nasosy/porshnevoj-nasos-zhidkostnyj-ustrojstvo-printsip-dejstviya.html

Виды поршневых насосов

К основным видам поршневых насосов можно отнести аксиально-поршневые насосы и радиально-поршневые насосы. Аксиально-поршневые насосы подразделятся на аксиально-поршневые насосы с наклонным блоком цилиндров и наклонной шайбой.

В свою очередь радиально-поршневые насосы подразделяться на радиально-поршневые насосы с цапфенным распределителем и клапанным распределителем.

Давайте рассмотрим по подробней виды радиально-поршневых насосов.

Радиально-поршневые насосы с цапфенным распределителем

Конструкция регулируемого радиально-поршневого насоса с цапфенным распределителем показана на рис.1

В корпусе насоса 9 запрессована распределительная цапфа 10, на которую с помощью двух шарикоподшипников опирается ротор 8 с поршнями 7, взаимодействующими своими сферическими головками с реактивным кольцом 6, установленном в барабане 5.

Барабан размещается в скользящем блоке 4 и опирается на два роликовых подшипника, установленных в самом блоке и его передней крышке.

Скользящий блок вместе с барабаном может смещаться в плоскости перпендикулярной плоскости чертежа, благодаря чему изменяется величина эксцентриситета между осями ротора и реактивного кольца барабана, а значит и величина подачи насоса.

В передней крышке 2 и распределительной цапфе установлены подшипники, на которых опирается приводной вал 1 с шлицевой частью которого связана роликовая муфта 11, передающая крутящий момент от вала к ротору.

Реактивное кольцо  образовано двумя коническими поверхностями, так что точки контакта с ними головок поршней снесена относительно оси поршня, что приводит к вращению поршней при вращении ротора и увлекаемого ими барабана.

Благодаря этому практически устраняется трение скольжения между поршнями и реактивным кольцом.

Жидкость в рабочие камеры поступает через всасывающий канал в корпусе 9, через приемное окно и канал в распределительной цапфе, а затем, через распределительное окно в ней и окно во втулке ротора. Аналогичным образом жидкость из рабочих камер вытесняется в нагнетательный канал корпуса насоса.

Нерегулируемый радиально-поршневой насос (рис.2) состоит из корпуса 1 , в котором установлены поршни 2 с подпятниками и седла 7 шариковых нагнетательных клапанов 8, нагруженных пружинами, крепящиеся относительно корпуса резьбовыми стаканами 9 и контргайками 10.

С поршнями взаимодействуют рабочие втулки 3 опирающиеся на эксцентриковый вал 6, в корпусе в подшипниках качения. Для уравновешивания вала служат противовесы 5.

При вращении вала втулки 3 перемещаются относительно поршней 2, закрепленных в корпусе, попеременно увеличивая и уменьшая объем рабочих камер и осуществляя всасывание и вытеснение жидкости.

На рис.2 нижняя втулка показана в положении конца хода всасывания, а верхняя – в конце хода нагнетания. Всасывание жидкости осуществляется из корпуса через осевой канал в приводном валу и пазы, находящиеся в плоскости расположения поршней и рабочих втулок.

Вытеснение жидкости происходит через осевое отверстие ы поршнях и подпятниках, через шариковые клапаны, отжимаемые от седла давлением жидкости и радиальные отверстия в резьбовой втулке. Ведущие кольца 4 обеспечивают прижим рабочих втулок к эксцентрику.

В передней крышке 11 размещена манжета для уплотнения носка вала.

Регулируемый насос отличается от нерегулируемого наличием управляемых сливных клапанов и управляющей втулки, подобно тому, как это было описано у аксиально-поршневых насосов.

Источник: http://www.metalstanki.com.ua/vidu-porshnevih-nasosov

Устройство и принцип действия поршневых насосов

Поршневым насосом называется возвратно-поступательный насос, у которого рабочие органы выполнены в виде поршней.

По количеству поршней эти насосы разделяются на однопоршневые, двухпоршневые, трехпоршневые и многопоршневые.

По числу циклов нагнетания и всасывания за один двойной ход поршня различают насосы одностороннего действия, двустороннего действия и дифференциальные.

Схема однопоршневого насоса одностороннего действия представлена на

рис. 3.1.

При движении поршня вправо в левой полости цилиндра и в рабочей камере создается разрежение.

За счет разрежения верхний нагнетательный клапан Кн прижимается к седлу, а нижний всасывающий клапан Кв приподнимается, и в создавшийся зазор по всасывающей трубе засасывается жидкость из источника в рабочую камеру.

При движении поршня влево в рабочей камере создается повышенное давление, под действием которого всасывающий клапан Кв закрывается, а нагнетательный клапан Кн приподнимается, и жидкость вытесняется из цилиндра в напорный трубопровод.

При многократном возвратно-поступательном движении поршня вода перемещается по всасывающей трубе через цилиндр насоса в нагнетательную трубу и дальше к месту потребления.

При этом подача жидкости в нагнетательную линию оказывается неравномерной, что является существенным недостатком насосов одностороннего действия.

Для устранения этого недостатка применяются насосы двустороннего действия.

На рис. 3.2 представлена схема насоса двустороннего действия (с двумя рабочими камерами). Процесс всасывания в одной камере идет одновременно с процессом нагнетания в другой.

Для обеспечения равномерности подачи применяются дифференциальные насосы (поршневые и плунжерные). На рис. 3.3 показана схема дифференциального насоса с диаметрами поршней D1 и D2.

устройство и принцип работы. Статьи компании «ООО Гидро-Максимум»

Корзина

34 отзыва

 — 10% на наборы уплотнительных и металло-резиновых колец!
 Купить со скидкой

+380503713700

+380675522377

ООО «Гидро-Максимум»

Корзина

  • Главная
  • Товары
    • Гидрораспределители
    • Гидронасосы
    • Колокола и муфты к насосам
    • Гидромоторы
    • Гидроцилиндры
    • Манометры
    • БРС соединения
    • Катушки соленоиды
    • Клапаны гидравлические
    • Мультипликаторы
    • Насосы-дозаторы
    • Гидроаккумуляторы
    • Реле давления
    • Навесное оборудование
    • Диагностическое оборудование
    • Запчасти к ГСТ
  • Ремонт и производство
    • Ремонт насосов, моторов и запчасти к ним
    • Выездная диагностика гидравлики
    • Ремонт и производство гидроцилиндров
    • Изготовление рукавов высокого давления
    • Ремонт гидростатики ГСТ
    • Поверка манометров
    • Ремонт погрузчиков
    • Заправка гидроаккумуляторов
  • Сотрудничество
  • О нас
  • Контакты
  • Статьи
    • Все статьи одним списком
    • Гидравлика общая информатция
    • Формулы расчета
    • Книги по гидравлике
    • Руководства к отечественной технике
    • Станочная гидравлика
    • Соединения в гидравлике. БРС, РВД.
    • Истории развития ведущих производителей
    • Руководства по ремонту к технике
    • Каталоги запчастей к технике Claas
    • Новости
  • Маслостанции
    • Гидростанции в сборе
    • Минимаслостанции
    • Теплообменники ОМТ
    • Электродвигатели
    • Баки и люки
    • Фильтры и фильтроэлементы
    • Модульная аппаратура
    • Фильтровально-заправочные установки ФЗУ
  • Запчасти для импортной спецтехники
    • Каталог по производителям
    • Запчасти для погрузчиков Balkancar
    • Гидронасосы для тракторов и комбайнов
    • Гидроклапаны для комбайнов
    • Гидронасосы для вилочных погрузчиков
    • Гидрораспределители для спецтехники
  • Портфолио
  • Масло и смазки
    • Гидравлические масла
    • Смазочные материалы
  • еще

    • Главная
    • Товары
      • Гидрораспределители
      • Гидронасосы
      • Колокола и муфты к насосам
      • Гидромоторы
      • Гидроци

история и принцип работы разных типов насосных агрегатов

Сегодня мы постараемся рассказать, что такое насос, принцип работы разных типов насосных агрегатов, как они приводятся в движение, какие функции выполняют. 

Некоторые люди, которые использовали или используют насосные агрегаты, не всегда понимают принцип работы агрегата, знают только какую задачу решает данный насос. В данной статье мы постараемся объяснить принцип работы тех или иных насосов. И это будет не просто удовлетворение любопытства. Если Вы столкнетесь с потребностью в насосном агрегате, Вы уже будете «подкованы» для правильного выбора насоса. 

Сначала немного истории… 

Первые методы перекачивания воды известны с очень далеких времен. Воду черпали ковшиками или другой емкостью. Было физически тяжело обеспечить объём и скорость подачи воды, добывая жидкость из водоема. Первое, что придумали наши предки – это водочерпательное колесо. Согласно археологическим источникам, это было устройство в виде колеса со спицами, в конце которого, на стыке обода и спиц крепились ковши. Нижний сосуд был помещен в воду. Когда колесо начинало вращаться вокруг оси, ковши зачерпывали воду из водоема, а потом в самой верхней точке колеса, с высотой подъема равной диаметру колеса, вода выливалась из ковшей в желоб, расположенный сбоку, с определенной длиной и уклоном (самотеком), так сказать до потребителя. Колесо вращали физической силой с помощью быков, волов или просто руками. Ковш свисал набок, затрудняя вращение колеса, это также приводило к потере воды. Избавиться от потерь помогла конструкция, основанная на использовании пустого пространства между внешним и внутренним ободами колеса, где сбоку имелись отверстия для черпания воды. Это уменьшало потери воды при выливании, т. к. скорость вращения водочерпального колеса была постоянной. Уже с третьего века до н.э. в качестве силы вращения колеса водочерпальных системах использовали напор воды. Ниже мы покажем самые распространенные варианты добычи и подачи воды, которые придумали наши далекие предки.

На первом рисунке колесо с «ручным приводом» (емкости в ободе колеса).

На втором рисунке «ножной привод» – приводился в движение человеком, переступавшим с одной перекладины на другую, и уже водочерпальные сосуды находились сбоку.

Третий рисунок самое «прогрессивное» решение того времени – самодвижущееся колесо с лопастями в виде ложек.  Колесо с ложковидными лопастями вращает нижний барабан, который, в свою очередь, жестко соединяется цепью с верхним барабаном.  На цепи укреплялись ведра, при движении вверх, они наполнялись водой, которая выливалась в сточный желоб, находившийся в верхней точке конструкции. Таким образом, вниз ведра спускались уже пустыми, чтобы вновь зачерпнуть воду из реки.

 

Следующий шаг в цивилизационной спирали развития «насосостроения» стал так называемый «Архимедов винт»

Архимед — древнегреческий ученый-мыслитель, известно о нем из трудов античных историков, изобрел винтовое водоподъемное устройство, названное позже в его честь. Это устройство представляло собой наклонную деревянную трубу с винтом, установленным внутри. Вращался винт, с помощью ветряного колеса или вручную. В то время как поворачивается нижний конец винта, он собирает некоторый объём воды. Это количество воды будет скользить вверх по трубе во время вращения вала, пока наконец вода не выльется из вершины трубы. Однако потери были неизбежны, так как какое-то количество воды стекало обратно, т.е. эффективность оставляла желать лучшего. Чем больше угол наклона винта, тем больше высота подачи, при уменьшении производительности. Кстати, к примеру, такого типа конструкция использовалась для осушения затопленных трюмов кораблей и шахт.

Следующий вид изобретенного вида насоса — это поршневые насосы.

Поршневой насос — детище греческого изобретателя Ктезибия Александрийского, который жил в III веке до н. э. Поршневые насосы использовались для подъема воды из колодцев. В основе работы подобных насосов базовые принципы пневматики и гидравлики.  Кстати он же изобрел прототип такого музыкального инструмента, как орган, с помощью двух поршневых насосов. Звуки извлеченные из этого инструмента были на удивления очень «чистыми». Принято считать, что  эти насосы пионеры в истории человечества, так как надолго вперед, вплоть до наших дней, определи компоновку устройства. Произошел переход на замену материала конструкции от дерева на бронзу. Но базовые элементы устройства теже, что и современных насосах: плунжер, цилиндры, клапаны. 

Появление парового двигателя и гидроприводов, подтолкнуло к технической революции в промышленности. В 1712 году английский изобретатель Томас Ньюкомен создал поршневой насос с паровым приводом, для откачки воды. В современное время, поршневые насосы все также используются  для подъема воды из скважин и колодцев.

Сильфонный насос

Сильфонные насосы представляют собой сильфон типа вертикальной гармошки, сжимая которую производят перекачивание жидкости. Простейшая конструкция насоса состоит всего из нескольких деталей, которые, как правило, изготавливаются из пластика, соответственно они не подвержены коррозии. Применяются для выкачивания жидкостей, в том числе агрессивных из бочек, бутылей, канистр и т.п.

Пластинчато-роторный насос

Пластинчато-роторные насосы – это самовсасывающие насосы объемного типа – перемещение жидкости происходит за счет изменения объема в рабочей камере насоса. Используются для перекачивания вязких жидкостей, масел. 

Конструкция насоса представляет собой эксцентрично расположенный ротор, имеющий продольные радиальные пазы, в которых скользят плоские пластины, они выходят из пазов и прижимаются к цилиндрической поверхности расточки корпуса. В результате перекачиваемая вязкая жидкость заполняет пространство между пластинами, а дальше выталкивается в нагнетательный патрубок. Пластинчато-роторные насосы нашли широкое применение в различных сферах, где в рабочем процессе применяется вакуумное масло.

Шестеренный насос 

Шестеренные насосы – устройство настолько простое, что в очередной раз подтверждает, гениальность в самой простоте изобретения. Шестеренные насосы предназначены для перекачки вязких сред маслянистого типа. Агрегат представляет собой сцепленные между собой шестерни, которые приводятся в движение под принудительным изменением полости между шестернями. Ведущая шестерня находится в постоянном сцеплении с ведомой и приводит её в движение, вращает в противоположное направление. Жидкость поступает во впадины между зубьев, перемещаясь вдоль стенки насоса с внутренней части и выталкивает через выходной патрубок в трубопровод. 

Импеллерный насос

Импеллерные насосы (ламельные, насосы с мягким ротором) являются подвидом пластинчато-роторных насосов. Насосы с гибким рабочим колесом (импеллером) благодаря своей особой конструкции позволяют бережно и эффективно перекачивать определенные среды с различной вязкостью и плотностью. Рабочим органом насоса является мягкий импеллер, выполненный из эластомера. Ось ротора расположена эксцентрично к корпусу. Ротор вращается, лопасти изгибаются и распрямляются, создают вакуум и всасывают среду. Движение лопаток переносит среду к выходному отверстию насоса насоса.

Синусный (синусоидальный) насос 

 

Важнейшим элементом конструкции синусоидального насоса является ротор, имеющий форму с синусоидной структурой (отсюда и название всего устройства). Синусоидальные насосы имеют четыре камеры, которые открываются и закрываются по очереди, что позволяет перекачивать даже очень нежные структуры, например, измельченные помидоры.

Конструкция насоса обеспечивает высокую мощность всасывания, но в отличие от традиционных насосов, оснащенных рабочим колесом, которое «режет» транспортируемую жидкость, синусное рабочее колесо мягко проталкивает жидкость через насос. Максимально допустимый размер перекачиваемых частиц зависит от объема полости между диском и корпусом насоса. 

Насос не имеет клапанов. Конструкция насоса очень простая, что гарантирует долгую и безотказную работу устройства.

Винтовой насос

Винтовые насосные агрегаты объемного типа предназначены для перекачивания жидких сред с повышенной вязкостью, допустимо перекачивание жидкостей с включением твердых фракций. Благодаря особенностям конструкции, винтовые насосы отлично всасывают и перекачивают жидкости различной вязкости и консистенции. Перекачиваемые жидкости не подвергаются центробежным или пульсирующим усилиям, благодаря этому винтовые насосы очень аккуратно перекачивают даже самые чувствительные среды. Условием правильной работы насоса является выбор подходящей скорости для данной среды. Винтовые насосы обладают высокой надёжностью, они экономичны и просты в эксплуатации, обладают высокой ремонтопригодностью. 

Преимущества винтовых насосов:

  • простота конструкции, хорошая ремонтопригодность
  • высокая мощность всасывания 
  • жидкости не подвергаются центробежным или пульсирующим усилиям, поэтому нет необходимости использовать гасители пульсации или компенсаторы в трубопроводах
  • возможность перекачивания жидкостей, содержащих твердые включения
  • большой диапазон применения по подаче за счет возможности ее изменения, изменением частоты вращения

Винтовые насосы нашли широкое применение в нефтехимической и пищевой промышленности.

Перистальтический (шланговый) насос

Перистальтические насосы часто называют линейными или шланговыми насосами. Первый патент, защищающий изобретение, был подан в конце 19-го века в Соединенных Штатах, и устройство первоначально предназначалось для переливания крови во время операции. Транспортировка жидкости с использованием перистальтического насоса возможна благодаря движению роликов или башмаков, скользящих по шлангу. Эти насосы позволяют перекачивать жидкость без загрязнения, обеспечивая при этом относительно низкие эксплуатационные расходы. Благодаря этим характеристикам дозирующие насосы на основе перистальтических насосов играют огромную роль в различных отраслях промышленности и медицины. Принцип работы здесь прост — он включает перемещение среды, расположенной в специальном толстостенном шланге. Это возможно благодаря вращающейся головке с роликами (башмаками), которые пережимают сливной шланг, расположенный по окружности внутри корпуса, ролики проталкивают жидкость на выход насоса.

Вихревой насос

Вихревые насосы, по большей части, предназначены для перекачки жидкости, но также могут использоваться и для перекачивания газообразных сред, движение жидкости в нем осуществляется за счет сил инерции и трения. Существует несколько подвидов вихревых насосов, но аналогичным компонентом у всех является рабочее колесо в виде стального диска, где на внешнем диаметре находятся ямки, которые формируют лопасти различного вида. Колесо с лопастями вращается внутри корпуса, имеющего форму цилиндра, при этом расстояние от торца лопатки до стенки минимальное. Принцип действия вихревого насоса заключается в том, что вода всасывается во входное отверстие и закручивается в вихрь благодаря крыльчатке.  При малых энергозатратах, мощность потока многократно увеличивается, и жидкость с большим давлением выбрасывается из выходного патрубка. Большим преимуществом вихревых насосов является возможность работы с небольшими объемами жидкости, при этом насосы могут обеспечить достаточно сильный напор. Учитывая вышеописанные особенности, вихревые насосы, нашли применение в системах, где есть необходимость создать высокий напор при, относительно небольшой подаче. Например, в небольших автоматических насосных станциях водоснабжения. Способность перекачивать жидкостно газовую смесь дает возможность эксплуатировать вихревые насосы для перекачивания летучих жидкостей (бензины, керосины и т.д.), что является основанием для использования подобных насосов в системах заправки топливом.

Насос газлифт

Газлифтные насосы — это один из методов принудительного подъёма капельной жидкости за счёт энергии, которая содержится в смешиваемом с ней сжатом газе. Чаще всего, применяются при добыче нефтепродуктов. Принцип работы газлифта заключается в нагнетании газа под давлением по затрубному пространству между наружной и внутренней трубами. Газ снижает перепад давления в насосно-компрессорных трубах, тем самым способствуя вытеснению нефтепродукта по стволу скважины на поверхность за счет естественной энергии.

Мембранные (диафрагменные) насосы

Диафрагменный насос является одним из наиболее универсальных типов насосов благодаря простоте эксплуатации, а также относительно низкой частоте отказов. Диафрагменные насосы принадлежат к семейству объемных насосов, в большинстве случаев они приводятся в действие сжатым воздухом, реже с помощью электродвигателя. 

Принцип работы диафрагменных насосов заключается в следующем: сжатый воздух, проникающий за одну из диафрагм, заставляет её сжиматься и продвигать жидкость в отверстие выхода. В это время вторая диафрагма напротив создаёт вакуум, всасывая жидкость. После прохождения импульса пневматический коаксиальный обменник меняет направление сжатого воздуха за вторую мембрану и процесс повторяется с другой стороны. Давление нагнетания на стороне среды равно давлению выше по потоку от диафрагмы, поэтому диафрагменные насосы могут работать и при закрытом выпускном клапане без ущерба для срока службы диафрагмы. Диафрагменные насосы не требуют охлаждения или смазки во время работы, что обеспечивает бесперебойную работу всухую.

Шнековый (оседиагональный насос)

Шнековый (оседиагональный насос) – погружное насосное оборудование винтового типа. Перекачка жидкой среды шнековым насосом основана на работе специфического архимедового винта определенной длины. Исключительным преимуществом этого агрегата является возможность осуществлять перекачку жидкостей с сильным загрязнением (абразивными веществами небольших размеров).

Оседиагональные насосы обладают хорошей всасывающей способностью и более высокой производительностью, по сравнению с другими типами лопастных насосов. Применяются для перекачивания нефтешламов, мазутов, дизельного топлива и т.д. 

Центробежный насос

Констукция насоса представляет собой спиральный корпус и установленное внутри рабочее колесо с лопастями, вращающемся с постоянной скоростью. Жидкость, постоянно протекающая через рабочее колесо, подвергается центробежной силе. Таким образом, энергия двигателя передается жидкости через рабочее колесо, в результате чего увеличивается давление и кинетическая энергия. После того как жидкость выходит из ротора, ее кинетическая энергия далее преобразуется в энергию давления. Увеличение кинетической энергии и давления в насосе зависит от конструкции ротора и скорости его вращения. Центробежные насосы идеально подойдут для наполнения емкостей и заполнения бассейнов, подачи воды в частные дома, коттеджи и орошения приусадебных участков.

Многосекционный насос

Многосекционными называют центробежные насосы, оснащенные двумя и более последовательно размещенными рабочими колесами, по сути, это серия последовательно размещенных центробежных насосов. Подобная конструкция оборудования позволяет создать на выходе значительное давление: выйдя под давлением из первого рабочего колеса, жидкость поступает во второе рабочее, где в свою очередь тоже повышается давление, затем в третье и т.д.

Основное применение насосы многосекционные нашли в системах холодного и горячего водоснабжения. Также могут применяться и в других областях промышленности и хозяйства, гражданских объектах.

Струйные насосы

Струйные насосы бывают двух основных типов:

  • Эжектор – насос отсасывающий среду и создающий разряжение
  • Инжектор – насосы нагнетающие среду под давлением. 

Работа струйного насоса заключается в создании разности давлений между давлением во всасывающем баке и давлением в нагнетательной камере.

Рабочая жидкость, подаваемая насосом подачи через впуск, попадает в сопло, где скорость жидкости увеличивается за счет падения давления, согласно закону Бернулли. Перепад давления во всасывающей камере достаточен для подъема жидкости или суспензии из всасывающего бака.

Преимущество струйных насосов – отсутствие движущихся частей и, следовательно, высокая надежность. Недостатком является низкая энергоэффективность (30 — 40%). Для работы насоса необходим подвод сжатого воздуха или пара.

Гидротаранный насос

Гидротаран качает воду без бензина, тока и газа, ему не  требуется источник питания и при отсутствии двигателя, способен поднимать жидкость на высоту до нескольких десятков метров. Такой насос способен долгое время непрерывно работать, обеспечивая водой экопоселения деревенские дома сельскохозяйственные угодья и т.д.  Принцип работы гидротарана заключается в использовании энергии гидроудара.

Гидротаран получает энергию непосредственно от проточной воды, перетекающей под действием силы тяжести по напорному трубопроводу в сток, который находится на более низком уровне.

Пропуская через себя большую часть воды с небольшой высоты h (разница высот между стоком и уровнем воды в питающем резервуаре) гидротаран поднимает меньшую часть воды на большую высоту H (разница высот между верхней точкой отводящей трубы и уровнем воды в питающем резервуаре).

Это устройство с довольно низкой энергоэффективностью, потому что только небольшая часть энергии, протекающей по водопроводу, преобразуется в работу по подъему воды в резервуар.

Спиральный вакуумный насос

Вакуумные насосы создают вакуум с помощью простого механизма, состоящего из двух спиральных частей, которые перекрывают друг друга. Одна часть является статором насоса и остается неподвижной, другая часть представляет собой ротор и эксцентрично вращается, создавая подвижные зоны захваченного газа.

Когда перекачиваемый газ поступает в спиральный механизм, он затем перемещается по периферии, сжимается и направляется к выходному отверстию насоса. Сухие спиральные вакуумные насосы отличаются исключительной надежностью.

Ламинарный насос

 

Ламинарный (дисковый) насос является разновидностью центробежного насоса, но может выполнять работу не только центробежных, но и прогрессивных полостных насосов, лопастных и шестеренчатых насосов, т.е. перекачивать вязкие жидкости. 

Рабочее колесо ламинарного насоса представляет собой два и более параллельных диска. Чем больше расстояние между дисками, тем более вязкую жидкость может перекачивать насос. Теория физики процесса: в условиях ламинарного течения слои жидкости движутся с различной скоростью по трубе: слой, наиболее близкий к неподвижной трубе (так называемый пограничный слой), течёт медленнее, чем более глубокие (близкие к центру трубы) слои текущей среды. 

Аналогично, когда жидкость поступает в дисковый насос, на вращающихся поверхностях параллельных дисков рабочего колеса образуется пограничный слой. По мере вращения дисков энергия переносится в последовательные слои молекул в жидкости между дисками, создавая градиенты скорости и давления по ширине условного прохода. Эта комбинация граничного слоя и вязкого перетаскивания приводит к возникновению перекачивающего момента, который «тянет» продукт через насос в плавном, почти не пульсирующем потоке. 

 

 

 

Все об аксиально-поршневых насосах

Что такое поршневые насосы?

Поршневые насосы

— это прочные и относительно простые устройства. Основной поршневой насос состоит из поршня, камеры и двух клапанов. Насос работает, загоняя поршень в камеру, тем самым сжимая среду внутри. В ручном насосе это обычно воздух. Когда давление воздуха превышает давление пружины выпускного клапана, сжатая среда проходит через открытый выпускной клапан. Когда поршень поднимается обратно, он открывает впускной клапан и закрывает выпускной клапан, тем самым используя всасывание для втягивания новой среды для сжатия.

Поршневые насосы, хотя и довольно дорогие, являются одними из самых эффективных типов насосов. Они имеют отличное номинальное давление (до 10 000 фунтов на квадратный дюйм), но их конструкция делает их восприимчивыми к загрязнениям. Они представляют собой отличное решение для многих применений, связанных с перекачкой гидравлического масла под высоким давлением.

Что такое аксиально-поршневые насосы?

Аксиально-поршневые насосы — это поршневые насосы прямого вытеснения, в которых используется несколько цилиндров, сгруппированных вокруг центральной оси. Группа цилиндров, обычно содержащая нечетное число, называется блоком цилиндров.Поршни в каждом цилиндре прикреплены к наклонной шайбе. Качающаяся шайба также известна как кулачок или качающаяся шайба и крепится к вращающемуся валу. По мере вращения вала угол наклонной шайбы изменяется, что приводит к перемещению поршней в соответствующие цилиндры и из них.

Поскольку наклонная шайба расположена под углом к ​​оси вращения, поршни должны совершать возвратно-поступательное движение в осевом направлении при вращении вокруг оси блока цилиндров. Осевое движение поршней синусоидальное. Когда поршень поднимается, он движется к тарелке клапана.В этот момент вращения жидкость, захваченная между заглубленным концом поршня и тарелкой клапана, выталкивается в выпускное отверстие насоса через одно из полукруглых отверстий тарелки клапана. Когда поршень движется обратно к пластине клапана, жидкость проталкивается через выпускное отверстие пластины клапана.

Аксиально-поршневые насосы могут быть спроектированы как поршневые насосы с регулируемым рабочим объемом, что делает их очень полезными для управления скоростью гидравлических двигателей и цилиндров. В этой конструкции наклонная шайба используется для изменения глубины, на которую каждый поршень входит в свой цилиндр при вращении насоса, влияя на объем нагнетания.Поршень компенсатора давления используется в некоторых конструкциях для поддержания постоянного давления нагнетания при переменных нагрузках. В более дешевых аппаратах высокого давления иногда используются конструкции с фиксированной скоростью.

В типичном насосе с компенсацией давления угол наклонной шайбы регулируется с помощью клапана с использованием обратной связи по давлению, чтобы гарантировать, что выходного потока насоса достаточно для поддержания заданного давления. Если поток нагрузки увеличивается, давление на мгновение уменьшается, но клапан компенсации давления определяет это уменьшение, а затем увеличивает угол наклонной шайбы, чтобы увеличить выходной поток насоса, восстанавливая желаемое давление.

Каковы их приложения?

Аксиально-поршневые насосы могут содержать большую часть необходимых элементов управления контурами, контролируя угол наклонной шайбы, чтобы регулировать поток и давление. Они очень надежны и позволяют сделать остальную часть гидравлической системы, к которой они прикреплены, очень простой и недорогой.

Они используются для питания гидравлических систем реактивных самолетов, приводятся в действие зубчатым колесом от главного вала газотурбинного двигателя, и часто используются в автомобильных компрессорах кондиционеров для охлаждения салона.Конструкция этих насосов соответствует ограниченному весу и требованиям к месту в моторном отсеке автомобиля, а также снижает вибрации.

Мойки высокого давления также используют эти насосы, а осевые поршневые двигатели используются для питания многих машин. Они работают по тем же принципам, что и аксиально-поршневые насосы, за исключением того, что циркулирующая жидкость находится под значительным давлением, а корпус поршня вращается и передает мощность вала другой машине. Обычно осевой поршневой двигатель используется для привода небольших землеройных машин, таких как погрузчики с бортовым поворотом.

Сводка

Это руководство дает общее представление об аксиально-поршневых насосах. Чтобы узнать больше о других типах насосов, прочтите наше руководство здесь. Для получения дополнительной информации о сопутствующих продуктах обратитесь к нашим руководствам по другим продуктам или посетите платформу Thomas Supplier Discovery Platform, чтобы найти потенциальные источники или просмотреть подробную информацию о конкретных продуктах.

Насосы прочие артикулы

Больше от Насосы, клапаны и аксессуары

Конструкция аксиально-поршневого насоса

Некоторые из основных особенностей внутри насосов:

Конструкция поршня — цельная, полая или с поршневыми кольцами.Конструкция и вес поршней будут иметь большое влияние на эффективность насоса. Конструкция Parker F11 с легкой головкой и удерживаемыми шариками может развивать значительно более высокие скорости, чем насосы с наклонной шайбой с их более длинными и тяжелыми поршнями.

Некоторые насосы и двигатели могут выходить за пределы центра, что означает, что они могут обеспечивать поток или вращать свой приводной вал в обоих направлениях. Они обычно используются в замкнутых системах привода мобильных транспортных средств.

Конструкции с изогнутыми осями обычно имеют более тяжелые подшипники вала, чем насосы с наклонной шайбой.Это связано с тем, что они чаще используются в качестве моторных приводов и должны воспринимать нагрузки колес на свой вал. С другой стороны, насосы с наклонной шайбой, как правило, приводятся в движение через гибкие муфты, которые снимают любые боковые нагрузки, поэтому размер внутреннего подшипника рассчитан так, чтобы выдерживать внутренние нагрузки от динамических сил и сил нагрузки давления.

Уровень шума может быть проблемой для поршневых насосов. Шум создается неоднородностями потока, например. когда поршни движутся вперед и назад, они создают пульсирующий поток, который проходит в полную гидравлическую систему и вибрирует или излучается от других компонентов дальше по контуру.Эта неравномерность потока дополнительно осложняется портом подачи, который соединяет и разъединяет каждый поршень при его вращении. Время открытия и закрытия может создать другие, более частые разрывы потока. Часто для разных условий эксплуатации доступны разные пластины ГРМ, например приложения с фиксированной или регулируемой скоростью.

Давление в трубопроводе утечки из корпуса имеет решающее значение для управления балансом давления втулки против давления всасывания. Следует проявлять осторожность с некоторыми контроллерами насосов, так как клапаны выходят в корпус насоса и могут создавать опасные скачки давления.Убедитесь, что дренажные линии корпуса имеют достаточный размер. Одно из возможных решений может заключаться в использовании более подходящего прозрачного пластикового шланга для линии утечки через корпус, который будет иметь эффект гашения этих пиков до повреждения тапочек. Температуры линии утечки корпуса также являются хорошим способом контроля состояния насоса, как описано в разделе о лопастном насосе.

Если вы сомневаетесь в выборе насоса, наиболее подходящего для вашего применения, всегда обращайтесь к производителю или дистрибьютору, который сможет предложить наиболее подходящий диапазон насосов и сообщить предполагаемый срок службы.

Принципы управляемых ракет и ядерного оружия

5A1. Общий

В этой главе будут представлены некоторые из многочисленных устройств, которые могут использоваться для управления полетом управляемой ракеты. Мы обсудим четыре типа систем управления: пневматические, пневмоэлектрические, гидроэлектрические и электрические. На протяжении всей главы мы будем иметь дело с общими принципами, а не с реальной конструкцией какой-либо конкретной ракеты.

5A2. Определения

Система НАВЕДЕНИЯ ракеты удерживает ракету на правильной траектории полета от пусковой установки до цели в соответствии с сигналами, полученными от контрольных точек, от цели или из других источников информации.Система управления ракетой удерживает ракету в правильном полете. Например, ось ракеты должна лежать по желаемой траектории, а не под углом. Ракета должна быть стабилизирована по крену; то есть фиксированная плоскость, проходящая через ось ракеты, должна оставаться параллельной фиксированной плоскости отсчета вне ракеты. Стабилизация высоты полета абсолютно необходима, если ракета должна правильно реагировать на сигналы наведения. Например, предположим, что ракета повернулась на 90 градусов по часовой стрелке из правильного положения.Теперь, если она получит команду «повернуть направо» от системы наведения, управление поверхностями управления фактически повернет ракету вниз, а не вправо. Но если система управления удерживает ракету в правильном положении, сигналы наведения будут правильно интерпретироваться и произведут желаемую коррекцию траектории полета ракеты.

Когда система управления определяет необходимость изменения положения ракеты, она использует определенные контроллеры и исполнительные механизмы для перемещения поверхностей управления ракетой.Система наведения, когда определяет необходимость изменения курса ракеты, использует эти же устройства для перемещения поверхности управления. Таким образом, системы наведения и управления перекрываются. Для удобства предположим, что контроллеры и исполнительные механизмы являются частью системы управления, а не руководства.

система. Таким образом, мы можем сказать, что выходные сигналы от системы управления вводятся в действие частью системы управления.

Подводя итог: система управления ракетой, обсуждаемая в этой главе, отвечает за управление ориентацией ракеты.Система наведения, описанная в главе 6, отвечает за управление траекторией полета ракеты.

5A3. Назначение и функции: основные требования

Система управления состоит из нескольких секций, которые предназначены для выполнения, насколько это возможно, функций пилота-человека. Для достижения этой цели поверхности управления должны функционировать в надлежащее время и в правильной последовательности. Например, управляя автомобилем, вы помните, что вы должны сделать поворот на определенном расстоянии от начальной точки.Поэтому вы ожидаете поворота. В системе управления ракетой запоминание осуществляется ИНТЕГРИРУЮЩИМИ УСТРОЙСТВАМИ, а прогнозирование — УСТРОЙСТВАМИ СКОРОСТИ. Эти устройства будут описаны позже.

Первое требование к системе управления — это средство определения, когда необходимы операции управления. Затем система должна определить, какие элементы управления должны использоваться и каким образом.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

2021 © Все права защищены.