Переделка компьютерного бп: Регулируемый блок питания 2,5-24в из БП компьютера

Содержание

Переделываем блок питания в картинках / Хабр

Доброе время суток обитателю хабрахабра!
Довело меня увлечение электроникой до момента, когда дешевого китайского паяльника стало мало. Было принято волевое решение собрать паяльную станцию своими руками. Но вот беда, оказалось что в городе достать трансформатор на 24 вольта просто невозможно. Благодаря этому прискорбному факту и родилась статья.

В закромах нашлись несколько старых блоков питания ATX, и начался долгий и тернистый путь к получению заветных 24 вольт.

Как известно у ATX есть линия, выдающая -12 вольт с силой тока около 0,5 ампер, так почему бы её не усилить? Но первый блин, как известно, комом: при попытке запитать чудо паяльник блок питания сделал «БЗЗЗ» и ушел на покой.

Второй попыткой было решено сделать удвоитель напряжения. Но удвоителю на вход нужен переменный ток, который можно взять от трансформатора. Но, как оказалось, и этот путь не привел к успеху…

Продолжение истории под катом (осторожно: много картинок)

Из вооружения был только дешевый мультиметр, который показал, что на трансформаторе около 10 вольт переменного тока. Ну чтож, можно идти в бой! На макетке был собран удвоитель. К сожалению, его фотография сохранилась только одна, так сказать, в боевом режиме

Какого же было удивление, когда мультиметр показал на выходе все 50 вольт! Опровержением постулатов физики заниматься не захотелось, поэтому была приобретена тяжелая артиллерия в виде осциллографа. Картинка на выводах трансформатора получилась следующая

Это с пред делителем 1:10 на щупе и цена деления в 1 вольт. Оказывается трансформатор и выдает заветные 24 вольта, только очень страшной формы (не удивительно, что китайский мультиметр не справился с задачей).

Новая задача — переделать удвоитель в выпрямитель. Заодно было решено перенести всю силовую часть будущей паяльной станции в блок питания. Схема получилась вот такая

Пояснение по схеме:

Диоды D2, D4 (Шоттки 30А 60В) образуют обычный диодный мост, на вход которого приходит 24 вольта ужасной формы, а на выходе — те же 24, но постоянного (стоит заметить, что на выходе ток практически ровный!)

Стабилизатор U1 (7805) понижает напряжение до 5 вольт

Конденсаторы С1 (1000uF, 60V) и С2 (220uF, 16V) — электролиты, выполняющие роль фильтра. В теории перед выходом еще надо поставить керамику, которая бы ловила высокочастотные помехи, но она будет стоять в паяльной станции.

Внешний вид:

На этом электронная часть закончена, осталось собрать все в корпусе.

Первым делом обрезаем все провода, они должны комфортно поместиться в корпус. Провода собраны в пары, чтобы выдерживать большую нагрузку, концы смотаны и залужены.

После этого, добавляем кнопку запуска блока питания. Для запуска ATX нужно замкнуть PS_ON (зеленый провод) на землю (любой из черных).На выключатель у меня ушло 3 провода — PS_ON, GND и один из +5 (красный провод). Последний нужен для питания светодиода внутри кнопки.

Ах, да, выключатель пришлось немного модифицировать, ибо внутри стояла галогенка, рассчитанная на 220 вольт. Пришлось вытащить потроха и заменить на светодиод () и резистор (511R).

К корпусу одного БП была применена грубая сила и он стал плоским (это будет дно конструкции).

На текущем этапе была собрана и запущена бета-версия вот такого вида

Срезаем все лишнее на корпусе с кулером. Так все выглядит в разобранном состоянии:

На корпусе размещаем 9 гнезд RCA и один молекс (выход для паяльной станции)

Внутри все выглядит ужасающе:

Внешне не многим лучше, но уже не так пугает:

Пришло время проверить как справляется наша «пристройка» со своими обязанностями
5 вольт (цена деления — 2 вольта, осциллограф немножко не откалиброван)

24 вольта (цена деления 1 вольт + пред делитель на щупе 1:10)

Как видно, справляется хорошо! Небольшой стресс тест в виде двухчасового кручения моторчика так же пройден успешно. наконец то можно приступать к созданию паяльной станции…

Уф, кажется все. Спасибо всем, кто осилил до конца. Буду рад критике конструкции (версии 2.0 однозначно быть) и текста.

PS. Спасибо хабражителю TheHorse за инвайт

Переделка БП компьютера под свои нужды


Появилась необходимость в блоке питания для работы. Нужны фиксированные напряжения. В основном необходимы 12 и 5 вольт. Сразу оговорюсь, маркировать будем на работе позже.

Так вот. В интернете полно вариантов, но остановился как всегда на своем варианте. Такого варианта нигде не видел, вот и внесу свою лепту в данную категорию переделок. А переделывать буду, восстановленный блок питания компьютера.

Для самоделки нам понадобится:
— блок питания компьютера;
— держатели предохранителей;
— клеммы;
— выключатель;
— пластик листовой;
— инструменты.

О комплектующих.
Переделывать буду, восстановленный недавно компьютерный блок питания на 350Вт. Так как мне нужны напряжения 5 и 12В, с током около 5 А, этого блока более чем достаточно. Добавлю еще мощные 3.3В.

Из Китая заказал держатели для «авто» предохранителей. Приходят они с защитными колпачками. Колпачки не пригодятся, по крайней мне.

Из Китая заказал клеммы. Нужны разного цвета.

В роли сетевого выключателя у меня тумблер, которых у меня завалялось много. В моем варианте это Т3.

Передней панелью служит отрезок ПВХ пластика. Его скорей всего покрашу.

Сборка.
Панель из ПВХ размечаю под отверстия и окно для держателей предохранителей.

Размеченные отверстия сверлю, окно вырезаю. Так же, дублирую все отверстия и окно на передней панели блока питания.

Панель покрасил черной краской. Прикрутил держатели предохранителей. По углам прикрутил винты. Установил выключатель и клеммы. Тут ничего военного нет. В готовой конструкции все будет понятно.

Оставил по несколько проводов блока питания. Провода завел на предохранители и припаял. Тонкие провода, синий и черный, идут на светодиод. Минусовой(черный) провод запаял к наконечнику и прикрутил к черной клемме.

Сетевые провода с платы блока питания я припаял на тумблер. С тумблера на сетевой разъем. Вторые концы держателей предохранителей соединил вместе. Провод с них припаял к наконечнику и его прикрутил к плюсовой клемме. Припаял провода к светодиоду, через токоограничивающий резистор на 150 Ом. Светодиод запитал от -5В, можно и запитать и от дежурного напряжения.

Крышку блока питания покрасил из баллончика.

Прикручиваем ее и блок готов. Напряжение на выходе переключается устанавливаемым предохранителем.

Такой вот блок получился. Для моих целей его предостаточно.

Видео по изготовлению, прилагается:

Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.

Лабораторный источник питания из блока ATX компьютера

Если у вас дома есть старый блок питания от компьютера (ATX), то не стоит его выбрасывать. Ведь из него можно сделать отличный блок питания для домашних или лабораторных целей. Доработка потребуется минимальная и в конце вы получите почти универсальный источник питания с рядом фиксированных напряжений.
Лабораторный источник питания из БП компьютера
Компьютерные блоки питания обладают большой нагрузочной способностью, высокой стабилизацией и защитой от короткого замыкания.
Лабораторный источник питания из БП компьютера
Я взял вот такой блок. У всех есть такая табличка с рядом выходных напряжений и максимальным током нагрузки. Основные напряжения для постоянной работы 3,3 В; 5 В; 12 В. Есть ещё выходы, которые могут быть использованы на небольшой ток, это минус 5 В и минус 12 В. Так же можно получить разность напряжений: к примеру, если подключится в к «+5» и «+12», то вы получите напряжение 7 В. Если подключиться к «+3,3» и «+5», то получите 1,7 В. И так далее… Так что линейка напряжений намного больше, чем может показаться с разу.

Распиновка выходов блока питания компьютера

Лабораторный источник питания из БП компьютера
Цветовой стандарт, в принципе, един. И эта схема цветовых подключений на 99 процентов подойдет и вам. Может что-то добавиться или удалиться, но конечно все не критично.

Переделка началась

Что нам понадобиться?

  • — Клеммы винтовые.
  • — Резисторы мощностью 10 Вт и сопротивлением 10 Ом (можно попробовать 20 Ом). Мы будем использовать составные из двух пятиватных резисторов.
  • — Трубка термоусадочная.
  • — Пара светодиодов с гасящими резисторами на 330 Ом.
  • — Переключатели. Один для сети, второй для управления

Детали для переделки блока Детали для переделки блока Детали для переделки блока Детали для переделки блока Детали для переделки блока

Схема доработки блока питания компьютера

Лабораторный источник питания из БП компьютера
Тут все просто, так что не бойтесь. Первое что нужно сделать, так это разобрать между собой и соединить провода по цветам. Затем, согласно схемы подключить светодиоды. Первый слева будет индицировать наличие питания на выходе после включения. А второй справа будет гореть всегда, пока сетевое напряжение присутствует на блоке.
Подключить переключатель. Он будет запускать основную схему, замыканием зеленого провода на общий. И выключать блок при размыкании.
Также, в зависимости от марки блока, вам понадобится повесить нагрузочный резистор на 5-20 Ом между общим выходом и плюсом пять вольт, иначе блок может не запуститься из-за встроенной защиты. Так же если не заработает, будьте готовы повесить такие резисторы на все напряжения: «+3,3», «+12». Но обычно хватает одного резистора на выход 5 Вольт.

Начнем

Снимаем верхнюю крышку кожуха.
Откусываем разъемы питания, идущие к материнской плате компьютера и другим устройствам.
Распутываем провода по цветам.
Сверлим отверстия в задней стенке под клеммы. Для точности сначала проходим тонким сверлом, а затем толстым под размер клеммы.
Будьте осторожны, не насыпьте металлическую стружку на плату блока питания.
Лабораторный источник питания из БП компьютера
Вставляем клеммы и затягиваем.
Лабораторный источник питания из БП компьютера
Складываем черные провода, это будет общий, и зачищаем. Затем залуживаем паяльником, одеваем термоусадочную трубку. Припаиваем к клемме и надев трубку на спайку – обдуваем термофеном.
Лабораторный источник питания из БП компьютера
Так делаем со всеми проводами. Которые не планируете использовать – откусите под корень у платы.
Также сверлим отверстия по тумблер и светодиоды.
Лабораторный источник питания из БП компьютера
Устанавливаем и фиксируем горячим клеем светодиоды. Припаиваем по схеме.
Лабораторный источник питания из БП компьютера
Нагрузочные резисторы ставим на монтажную платы и привинчиваем винтами.
Закрываем крышку. Включаем и проверяем ваш новый лабораторный блок питания.
Лабораторный источник питания из БП компьютера
Не лишним будет замерить выходное напряжение на выходе каждой клеммы. Чтобы быть уверенным, что ваш старый блок питания вполне работоспособен и выходные напряжения не вышли за пределы допустимых.
Лабораторный источник питания из БП компьютера
Как вы могли заметить, я использовал два переключателя – один есть в схеме, и он запускает работу блока. А второй, который побольше, двухполюсный – коммутирует входное напряжение 220 В на вход блока. Его можно не ставить.
Так что друзья, собирайте свой блок и пользуйтесь на здоровье.
Лабораторный источник питания из БП компьютера

Смотрите видео изготовления лабораторного блока своими руками

Ещё одна переделка компьютерного БП в лабораторный

Многие самодельщики используют компьютерные БП в качестве лабораторных. Иногда с переделкой на плавную регулировку, иногда без таковой. Во втором случае вскрытие БП не требуется, но набор напряжений получается фиксированным. Для удобства можно добавить внешний корпус с зажимами.

Мастер обзаводится необходимыми компонентами: зажимами (показан только один), переключателем, разъёмом, снятым со сломанной материнской платы, небольшой автомобильной лампой, необходимой некоторым БП, неспособным работать без нагрузки.

Вот с этой платы мастер выпаивает разъём:


Размечает согласно цоколёвке:

Ещё одна переделка компьютерного БП в лабораторный
Ещё одна переделка компьютерного БП в лабораторный

Подключает к выходному кабелю БП:

Ещё одна переделка компьютерного БП в лабораторный

Проектирует корпус, в котором предусмотрены отверстия для зажимов, переключателя, вентилятора, и т.п.:

Ещё одна переделка компьютерного БП в лабораторный

Печатает отдельно корпус и отдельно крышку, так как одновременно они на стол 3D-принтера не помещаются.

Ещё одна переделка компьютерного БП в лабораторный
Ещё одна переделка компьютерного БП в лабораторный

И начинает всё соединять. Выводит на зажимы проводниками достаточного сечения все напряжения, вырабатываемые БП, а также несколько раз дублирует общий провод. Переключатель подключает между чёрным и зелёным проводниками. При этом протекающий через переключатель ток мал, так как управление включением БП электронное. Чтобы выключить БП полностью, включая источник питания дежурного режима, можно воспользоваться выключателем, установленным прямо на нём, либо отключить его от сети. Присоединяет лампу накаливания, необходимую в том случае, если БП не рассчитан на работу без нагрузки, а также вентилятор для охлаждения этой лампы.

Ещё одна переделка компьютерного БП в лабораторный
Ещё одна переделка компьютерного БП в лабораторный

Самоделка готова. Благодаря тому, что мастер не откусывает от БП разъём для подключения к материнской плате, можно при необходимости переставить его в компьютер.

Источник (Source)

Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.

Простой лабораторный блок питания из старого компьютерного блока питания.

Эту поделку можно сделать не только для применения лабораторного блока питания, а также она ещё подойдёт, как зарядное устройство для аккумулятора автомобиля.

Поделка простая и много слов говорить не буду, итак берём старый блок питания, вскрываем его и откусываем все ненужные провода, оставляем только 12 и 5 вольт.

Простой лабораторный блок питания

Возможно кто то не знает, для того чтобы блок питания запускался нужно замкнуть на плате черный и зеленый провод.

Простой лабораторный блок питания

Далее я взял 2 разъема от колонок, они удобны тем, что можно быстро подключать и отключать провода. Вы можете использовать любые разъемы на ваше усмотрение.

Простой лабораторный блок питания

Один такой разъем я подключил напрямую на 5 вольт, а вот 12 вольт я подключил к модулю повышения напряжения, который я заказывал на всем известном алиэкспрессе, может кому пригодится то вот ссылка на него.

Простой лабораторный блок питания

Этот модуль имеет мощность 150 ватт и может поднимать напряжение до 32 вольт.

А вот к выходу этого модуля уже подключаем выходной разъём,

Простой лабораторный блок питания

который впоследствии будем крепить на лицевой стороне нашего блока питания и снимать с него напряжение от 12 до 32 вольт.

А чтобы плавно регулировать напряжение, нужно закрепить переменный резистор на 10 килоом, тоже на лицевой панели нашего блока питания. А для этого нужно сначала выпаять на плате маленький, переменный резистор и вместо него впаять свой.

Простой лабораторный блок питания

Ничего тут сложного нет, я надеюсь, что каждый разберётся.

Ну и конечно же для удобства я ещё подключил вольт-амперметр, подключить можно по предоставленной схеме.

Простой лабораторный блок питания

Вот и всё, у нас получился простой и довольно таки мощный лабораторный блок питания и совмещенное зарядное устройство для заряда аккумуляторных батарей.

Простой лабораторный блок питанияПростой лабораторный блок питания

Как сделать зарядное устройство из компьютерного блока питания

Всем привет, вы меня давно просите показать, как переделать компьютерный блок питания в зарядное устройство для автомобильного аккумулятора или в лабораторный блок питания.

Ну что ж вооружитесь паяльником поскольку этот день настал, но прежде, чем начнем замечу, что в ходе переделки нужно соблюдать крайнюю осторожность, так как мы будем иметь дело с высоким напряжением.

Во время наладочных работ обязательно убедитесь, что блок питания отключен от сети, также не будет лишним лампочкой разрядить ёмкие электролиты на плате блока питания, либо после отключения подождать несколько минут, пока шунтирующие их резисторы не разрядят ёмкость.Как сделать зарядное устройство из компьютерного блока питанияСхема по которой мы будем переделывать довольно популярная, она более известная, как «схема от итальянца», актуально для блоков питания формата «at» на базе TL494. Современные блоки питания построены на самых разных микросхемах ШИМ, наиболее часто встречаются блоки питания на базе шим контроллера TL490 или её аналога КА7500 и компаратора LM339.Как сделать зарядное устройство из компьютерного блока питанияРанее я никогда не рассказывал о процессе переделки блоков питания, так как считаю, что проще собрать новый блок питания своими руками, чем переделывать компьютерный.

Хотя в сети очень много архивов на эту тему, но все повествуют нас о переделки конкретных блоков питания, универсальных способов нет и не может быть.Как сделать зарядное устройство из компьютерного блока питанияМне пришлось изрядно попотеть чтобы заставить блок питания работать как нужно, схема итальянца рабочая (есть в архиве в конце статьи), но чтобы применить её для блоков питания на основе TL494 и компаратора LM339, придётся выкинуть половину схемы, при том очень аккуратно, чтобы случайно не выкинуть то, что необходимо для работы.

Поэтому было решено сделать сверх доступное пособие по переделке блоков питания, всё будет очень наглядно в картинках и в мельчайших подробностях.

Сперва нужно найти блок питания. Подойдут блоки построенные на одной TL494 или более современные с применением компаратора LM339 и шим контроллера TL494.

Для начала замыкаем зеленый провод с любым из черных, Как сделать зарядное устройство из компьютерного блока питанияэтим запустив блок питания, начнёт крутится вентилятор, что свидетельствует о том, что блок рабочий, но лениться не стоит лучше мультиметром проверить напряжение на выходе блока питания.

Как мы знаем это у нас 3,3 вольта, 5 вольт и 12 вольт, если всё нормально вскрываем корпус, вынимаем плату и выпаиваем все провода оставляя только пару черных, пару желтых и зеленый провод.Как сделать зарядное устройство из компьютерного блока питания Нужны они для тестов, позже будут заменены или убраны.зарядное устройство из компьютерного блока питания

Далее, можно также выкинуть диодные сборки на линиях 5 и 3,3 вольта,зарядное устройство из компьютерного блока питания а конденсатор на шине 12 вольт заменить на 25,зарядное устройство из компьютерного блока питания а лучше 35 или 50 вольтовый, ёмкость от 1000 до 2.2 тысяч микрофарад.

зу из компьютерного блока питанияОчень и очень желательно использовать конденсаторы с низким внутренним сопротивлением.

Теперь займёмся серьезным, смотрим на микросхему TL494, (в моём случае стоит аналог K7500), отпаиваем всё, что идёт к первому выводу микросхемы, это как правило несколько резисторов.зу из компьютерного блока питания

Далее смотрим на выводы 13, 14 и 15 той же микросхемы, скорее всего, все они будут замкнуты друг с другом, нужно разъединить 15 вывод от остальных двух,зу из компьютерного блока питания а точнее от 13-го и 14-го.  Я лично перерезал дорожку, зу из компьютерного блока питаниятаким образом выводы 1 и 15 у нас уже висят в воздухе,зу из компьютерного блока питания идём дальше.

Ту же самую операцию проводим с выводом 16,освобождая её от остальной обвязки. Далее берём любой резистор сопротивлением 2,2 килоома,зу из компьютерного блока питания протягиваем этот резистор с массы блока питания, (то есть с чёрного провода), к первому выводу микросхемы.

зу из компьютерного блока питания

Следующим делом, находим переменный резистор на 20 кОм и подключаем его так, как показано на фото.зу из компьютерного блока питания

По идее у нас готова регулировка напряжения, но ничего пока проверять не нужно.зу из компьютерного блока питания

Далее находим пару резисторов сопротивлением 0,1 оМ мощность каждого резистора 5 ватт,зу из компьютерного блока питания соединяем их параллельно и подключаем одним выводом к массе питания, другой конец резистора подключается к выводу 16 микросхемы TL494, этот резистор у нас будет в качестве датчика тока.зу из компьютерного блока питания зу из компьютерного блока питания зу из компьютерного блока питания

Думаете всё))), нет… сделано только полдела, далее нужно скачать архив, который находиться в конце статьи, там есть печатная плата в программе «sprint layout», которую я сделал специально для вас и подробно подписал.зу из компьютерного блока питаниязу из компьютерного блока питанияВсе точки на этой плате нужно подключить к соответствующим точкам, которые указаны на схеме,зу из компьютерного блока питания вот теперь ребята всё.

Можно радоваться и перейти к тестам, я всё сделал на макете, так как приходилось экспериментировать.

Теперь нужно окультурить всё это дело.зу из компьютерного блока питания зу из компьютерного блока питания зу из компьютерного блока питания Провода которые идут от самодельной платы желательно взять экранированные и как можно короче, места их соединений желательно и даже обязательно залить смолой или термоклеем. зу из компьютерного блока питанияОбрыв провода может стать причиной выхода из строя всей конструкции.

Теперь замыкаем зеленый провод с черным, но перед этим обязательно берём страховочную лампу ватт на 40, 60 и подключаем блок питания в сеть только через эту лампу, иначе при косяках возможен фейерверк.зу из компьютерного блока питания

Запускаем источник питания, регулируем сперва напряжение, убеждаемся, что всё прекрасно и плавно регулируется в диапазоне от полутора до 15 с лишним вольт, можно и больше но данный блок питания будет использован в качестве зарядного устройства для автомобильных аккумуляторов, а там 15 вольт сполна хватит.зу из компьютерного блока питанияГоняем блок питания несколько минут, можно даже с небольшой нагрузкой, если всё нормально убираем страховочную лампу и подключаем на выход блока питания более серьезную нагрузку в моем случае галогенка на 60 ватт.

Введите электронную почту и получайте письма с новыми поделками.

Мультиметр показывает значение тока в цепи и как видим ток также прекрасно регулируется, снять кстати можно более 10 ампер.зу из компьютерного блока питанияОсталось только подключить более менее нормальный вольтамперметр например китайский, цифровой, за пару тройку баксов и в добрый путь, подключается следующим образом.зу из компьютерного блока питаниязу из компьютерного блока питания зу из компьютерного блока питания

Можно доработать данный блок питания защитой от переполюсовки, но это уже другая история… Спасибо всем за внимание.

Архив к статье; скачать…

Автор; АКА Касьян

Цепи

, различные типы и их работа

Источник питания является важным компонентом любой электрической или электронной системы. Существуют различные требования, которые необходимо учитывать при выборе точного источника питания, например: Потребности в питании цепи или нагрузки в основном включают напряжение и ток. Функции безопасности цепи питания, такие как ограничения по току и напряжению для защиты нагрузки, эффективность, физические размеры и помехоустойчивость системы. В этой статье мы рассмотрим определение блока питания , различных типов блоков питания и то, как они работают.Эти блоки питания в основном используются для измерений, технического обслуживания, тестирования и расширения ассортимента продукции.

Что такое блок питания?

Источник питания может быть определен как , поскольку это электрическое устройство, используемое для подачи электроэнергии на электрические нагрузки. Основная функция этого устройства заключается в изменении электрического тока от источника до точного напряжения, частоты и тока для питания нагрузки. Иногда эти блоки питания можно назвать преобразователями электроэнергии.Некоторые типы расходных материалов представляют собой отдельные элементы нагрузки, тогда как другие изготавливаются в виде устройств, которыми они управляют.

Цепь питания

Цепь питания используется в различных электрических и электронных устройствах. Цепи питания подразделяются на разные типы в зависимости от мощности, которую они используют для обеспечения цепей или устройств. Например, схемы на основе микроконтроллера, как правило, представляют собой схемы регулируемого источника питания (RPS) 5 В постоянного тока, которые могут быть разработаны с помощью различных методов для изменения мощности с 230 В переменного тока на 5 В постоянного тока.

Схема источника питания показана выше, а пошаговое преобразование 230 В переменного тока в 12 В постоянного тока обсуждается ниже.

  • Понижающий трансформатор преобразует 230 В переменного тока в 12 В.
  • Мостовой выпрямитель используется для преобразования переменного тока в постоянный.
  • Конденсатор используется для фильтрации пульсаций переменного тока и подает их на регулятор напряжения.
  • Наконец, регулятор напряжения регулирует напряжение до 5 В и, наконец, используется блокирующий диод для измерения пульсирующей формы волны.

Power Supply Block Diagram Power Supply Block Diagram

Блок-схема источника питания

Различные типы источников питания

Различные типы источников питания классифицируются следующим образом.

1) Импульсный источник питания с переключаемым режимом

Источник питания SMPS или компьютерный источник питания — это один из типов источников питания, который включает в себя импульсный стабилизатор для мощного преобразования электроэнергии. Подобно другим источникам питания, этот источник питания передает мощность от источника постоянного или переменного тока на нагрузки постоянного тока, такие как ПК (персональный компьютер), изменяя при этом характеристики тока и напряжения. Пожалуйста, перейдите по этой ссылке, чтобы узнать больше о блоке питания с импульсным режимом «Знай все»

SMPS - Switched Mode Power Supply SMPS - Switched Mode Power Supply

SMPS — импульсный источник питания

2) Источник бесперебойного питания

ИБП (источник бесперебойного питания) — это электрическое устройство, которое позволяет ПК должен продолжать работать в течение некоторого времени, так как основной источник питания пропал.Это устройство также защищено от перетока мощности.

UPS - Uninterruptible Power Supply UPS - Uninterruptible Power Supply

ИБП — источник бесперебойного питания

ИБП включает батарею для хранения энергии, когда устройство обнаруживает потерю мощности от основного источника. Например, если вы используете ПК, когда источник бесперебойного питания обнаруживает потерю мощности, вам необходимо сохранить данные до того, как ИБП (вторичный источник питания) разрядится.

Когда оба источника питания исчерпаны, как первичный, так и вторичный, все данные в RAM (оперативной памяти) вашего ПК стираются.Когда происходит потеря мощности, вторичный источник питания останавливает потерю мощности, чтобы не повредить персональный компьютер. Пожалуйста, перейдите по этой ссылке, чтобы узнать больше о схеме и работе источника бесперебойного питания

3) Источник питания переменного тока

Обычно источник питания переменного тока получает напряжение от сети, и напряжение может повышаться или понижаться на используя трансформатор до необходимого напряжения, может иметь место некоторая фильтрация. Различные типы источников питания переменного тока предназначены для обеспечения почти стабильного тока, и напряжение п / п может изменяться в зависимости от импеданса нагрузки.В некоторых случаях, поскольку источником питания является постоянный ток, для преобразования его в переменный ток могут использоваться повышающий трансформатор и инвертор. Некоторые виды изменения мощности переменного тока не используют трансформатор.

AC Power Supply AC Power Supply

Источник питания переменного тока

Если входное и выходное напряжения одинаковы, основная функция устройства — фильтрация переменного тока. Если аппарат предназначен для обеспечения резервного питания, то его можно назвать источником бесперебойного питания (ИБП). В настоящее время источники питания переменного тока подразделяются на два типа: однофазные системы и трехфазные системы.Основное различие между этими двумя вариантами — надежность доставки. Эти источники могут также применяться для изменения напряжения, а также частоты.

4) Источник питания постоянного тока

Источник питания постоянного тока — это источник питания постоянного тока, который обеспечивает постоянное напряжение постоянного тока для своей нагрузки. Согласно его плану, источник питания постоянного тока может управляться от источника постоянного тока или от источника переменного тока, такого как электросеть.

DC Power Supply DC Power Supply

Источник питания постоянного тока

5) Регулируемый источник питания

RPS (стабилизированный источник питания) — это фиксированная схема, используемая для преобразования нерегулируемого переменного тока в стабильный постоянный ток.

Здесь выпрямитель используется для изменения источника переменного тока на постоянный, и его основная функция состоит в том, чтобы подавать стабильное напряжение на устройство или схему, которые должны функционировать в определенных пределах источника питания. Выход RPS может быть изменяющимся (или) однонаправленным, но всегда DC (постоянный ток).

Regulated Power Supply Regulated Power Supply

Регулируемый источник питания

Тип используемой стабилизации можно контролировать, чтобы гарантировать, что o / p остается в определенных ограничениях при различных условиях нагрузки.

6) Программируемый источник питания

Этот тип источника питания позволяет дистанционно управлять его работой через аналоговый вход или цифровые интерфейсы, такие как GPIB или RS232. Контролируемые свойства этого источника питания включают ток, напряжение, частоту. Эти типы расходных материалов используются в широком спектре приложений, таких как производство полупроводников, генераторов рентгеновского излучения, мониторинг роста кристаллов, автоматическое тестирование оборудования.

Обычно в этих типах источников питания используется необходимый микрокомпьютер для управления, а также мониторинга работы источника питания.Блок питания, снабженный интерфейсом компьютера, использует стандартные (или) проприетарные протоколы связи и язык управления устройством, такой как SCPI (стандартные команды для программируемых инструментов)

7) Блок питания компьютера

Блок питания в компьютере — это часть оборудования, которая используется для преобразования мощности, подаваемой из розетки, в полезную мощность для нескольких частей компьютера. Он преобразует переменный ток в постоянный.

Он также контролирует перегрев с помощью управляющего напряжения, которое может изменяться вручную или автоматически в зависимости от источника питания.Блок питания или блок питания также называют преобразователем мощности или блоком питания.

В компьютере все внутренние компоненты, такие как корпуса, материнские платы и блоки питания, доступны в различных конфигурациях, размеры которых известны как форм-фактор. Все эти три компонента должны быть хорошо согласованы, чтобы работать вместе.

8) Линейный источник питания

Схема LPS (линейный источник питания) или LR (линейный регулятор) используется в различных электрических и электронных схемах для подачи постоянного тока на всю цепь.Линейный источник питания в основном состоит из понижающего трансформатора, выпрямителя, цепи фильтра и регулятора напряжения. Основная функция этой схемы — во-первых; постепенно понижает напряжение переменного тока, а затем преобразует его в постоянный ток. К основным характеристикам этого блока питания можно отнести следующее.

  • КПД этого источника питания колеблется от 20 до 25%.
  • В качестве магнитных материалов, используемых в этом источнике питания, используется сердечник из CRGO или нержавеющий сплав.
  • Он более надежный, менее сложный и громоздкий.
  • Дает более быстрый ответ.

К основным преимуществам линейного источника питания можно отнести надежность, простоту, дешевизну и низкий уровень шума. Наряду с этими преимуществами, есть некоторые недостатки, такие как

. Они лучше всего подходят для нескольких приложений с низким энергопотреблением, в результате, когда требуется высокая мощность; недостатки становятся более очевидными. К недостаткам этого источника питания можно отнести большие потери тепла, габариты и низкий КПД. Когда линейный источник питания используется в приложениях большой мощности; для управления мощностью требуются большие компоненты.

Таким образом, речь идет о разных типах блоков питания, которые используются для эффективного обеспечения питания различных систем. Источники питания являются важными компонентами каждой системы, обеспечивающими электрическую энергию для работы. Таким образом, некоторые аспекты источника питания, такие как дизайн или разработка, более важны. Потому что с каждым днем ​​изобретение технологий, а также источников питания расширяются для обеспечения защиты электрических и электронных устройств.

.

Другие комплектующие для компьютеров | HowStuffWorks

Так что еще внутри вашего компьютера? Мы можем разделить внутренности компьютера на пять категорий:

  • Источники питания и батареи
  • Дисководы
  • Модемы и карты Wi-Fi
  • Звуковые и графические карты
  • Системы охлаждения

Блок питания Компонент обеспечивает подачу электричества на остальную часть компьютера.Когда вы подключаете компьютер к розетке, электричество перетекает из шнура в экранированный ящик, содержащий трансформатор . Задача трансформатора — преобразовывать поступающую электроэнергию в соответствующее напряжение для каждой части машины, которая нуждается в электричестве. Если вы используете ноутбук, часть этой энергии идет на аккумулятор ноутбука для его зарядки. В отключенном состоянии ноутбук должен полагаться на заряд внутри батареи для обеспечения своих потребностей в энергии.

В компьютерах есть небольшая батарея, которая всегда включена, даже когда вы выключаете остальную часть компьютера.Эта батарея помогает сохранять данные, хранящиеся в специальной микросхеме, отвечающей за хранение информации об оборудовании вашего компьютера. Он также питает часы, поэтому ваш компьютер должен вести точное время, даже если вы выключите его или отключите от сети.

Накопители в компьютере — это устройства, которые позволяют хранить и вызывать данные и приложения. Большинство компьютеров имеют жесткий диск — либо серию тонких пластин , которые хранят информацию с помощью магнитных записей, либо твердотельный жесткий диск флэш-памяти без движущихся частей.В любом случае жесткий диск позволяет хранить информацию и приложения прямо на вашем компьютере.

В старых компьютерах использовалось дисководов для гибких дисков . В новых компьютерах есть оптические накопители, такие как CD-ROM или DVD-ROM . Эти приводы позволяют использовать с компьютером устройства хранения мультимедиа, такие как компакт-диски или DVD.

Модемы — это машины, которые позволяют компьютерам связываться с другими вычислительными системами.Модемы тесно связаны с беспроводными картами , которые представляют собой радиоприемопередатчики, которые могут отправлять и получать данные через определенную частоту радиоволн.

Звук Видеокарты и говорят сами за себя. Они дают вашему компьютеру возможность отображать графику или воспроизводить звуки и музыку. Не все карты одинаковы — некоторые поддерживают больше форматов программного обеспечения, чем другие. В частности, видеокарты имеют самые разные спецификации.

Системы охлаждения обычно включают радиаторы и вентиляторы .Перегрев может стать серьезной проблемой для компьютеров, в некоторых случаях приводя к снижению производительности до отказа системы. Радиаторы поглощают тепло и отводят его от критически важных компонентов. Вентиляторы позволяют компьютерам отводить тепло наружу. Некоторые компьютеры имеют более совершенные системы жидкостного охлаждения. В системе водяного охлаждения используются трубы с проточной водой для поглощения тепла и отвода его от критических компонентов.

Вот и все. Это охватывает основные элементы, которые находятся внутри обычного компьютера.Теперь не нужно разбирать один и самому смотреть. И мы узнаем, будет ли этот компьютер по-прежнему работать, когда мы его снова соберем.

Чтобы узнать больше о компьютерах и других связанных темах, перейдите по ссылкам ниже.

Статьи по теме HowStuffWorks

Еще отличные ссылки

  • Обзоры настольных компьютеров и справочник
  • Обзоры портативных компьютеров и справочники

Источники

  • «Руководство для ПК.»17 апреля 2001 г. (9 сентября 2008 г.) http://www.pcguide.com/
  • » PC Tech Guide. «(10 сентября 2008 г.) http://www.pctechguide.com/
  • Розенталь, Моррис. «Построение компьютера — иллюстрированное пошаговое руководство», 2008 г. (10 сентября 2008 г.) http://www.daileyint.com/build/
  • Уайт, Рон. «Как работают компьютеры». QUE Corporation. Сентябрь 1999 г.

,

Как работает источник бесперебойного питания (ИБП) компьютера?

То, что ваш компьютер ожидает получить от электросети (в Соединенных Штатах), — это 120-вольтовая мощность переменного тока с частотой 60 Гц (дополнительную информацию см. В разделе «Как работают распределительные сети»). Компьютер может допускать небольшие отклонения от этой спецификации, но значительное отклонение приведет к отказу источника питания компьютера. ИБП обычно защищает компьютер от четырех различных проблем с питанием:

  • Скачки и скачки напряжения — Времена, когда напряжение на линии больше, чем должно быть
  • Падения напряжения — Времена, когда напряжение на линии меньше, чем должно быть
  • Полный отказ питания — Время, когда линия выходит из строя или перегорает предохранитель где-то в сети или в здании
  • Разница частот — Время, когда мощность колеблется с частотой, отличной от 60 Гц

В настоящее время используются две распространенные системы: резервный ИБП и непрерывный ИБП.Резервный ИБП отключает компьютер от обычного сетевого питания до тех пор, пока не обнаружит проблему. В этот момент он очень быстро (за пять миллисекунд или меньше) включает инвертор питания и отключает компьютер от батареи ИБП (дополнительную информацию см. В разделе Как работают батареи). Инвертор мощности просто преобразует мощность постоянного тока, подаваемую батареей, в мощность переменного тока напряжением 120 вольт и частотой 60 Гц.

В ИБП непрерывного действия компьютер всегда работает от батареи, и батарея постоянно заряжается.Вы можете довольно легко построить себе ИБП непрерывного действия с большим зарядным устройством, батареей и инвертором мощности. Зарядное устройство для аккумуляторов непрерывно вырабатывает постоянный ток, который инвертор постоянно преобразует в переменный ток напряжением 120 В. В случае сбоя питания инвертор получает питание от аккумулятора. У ИБП непрерывного действия нет времени переключения. Эта установка обеспечивает очень стабильный источник питания.

Системы резервного ИБП

гораздо более распространены для домашнего использования или для малого бизнеса, потому что они, как правило, стоят примерно вдвое дешевле, чем система непрерывного действия.Системы непрерывного действия обеспечивают исключительно чистое и стабильное питание, поэтому они, как правило, используются в серверных и критически важных приложениях.

Вот несколько интересных ссылок:

,

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *