Параллельное подключение сопротивления: Параллельное соединение резисторов | Онлайн калькулятор

Содержание

Формула сопротивления при параллельном подключении

Определение параллельного соединения

Параллельное соединение электрических элементов (проводников, сопротивлений, емкостей, индуктивностей) – это такое соединение, при котором подключенные элементы цепи имеют два общих узла подключения.

Другое определение: сопротивления подключены параллельно, если они подключены одно и той же паре узлов.

Графическое обозначение схемы параллельного соеднинения

На приведенном рисунке показана схема параллельное подключения сопротивлений R1, R2, R3, R4. Из схемы видно, что все эти четыре сопротивления имеют две общие точки (узла подключения).

В электротехнике принято, но не строго требуется, рисовать провода горизонтально и вертикально. Поэтому эту же схему можно изобразить, как на рисунке ниже. Это тоже параллельное соединение тех же самых сопротивлений.

Формула для расчета параллельного соединения сопротивлений

При параллельном соединении обратная величина от эквивалентного сопротивления равна сумме обратных величин всех параллельно подключенных сопротивлений. Эквивалентная проводимость равна сумме всех параллельно подключенных проводимостей электрической схемы.

Для приведенной выше схемы эквивалентное сопротивление можно рассчитать по формуле:

В частном случае при подключении параллельно двух сопротивлений:

Эквивалентное сопротивление цепи определяется по формуле:

В случае подключения «n» одинаковых сопротивлений, эквивалентное сопротивление можно рассчитать по частной формуле:

Формулы для частного рассчета вытекают из основной формулы.

Формула для расчета параллельного соединения емкостей (конденсаторов)

При параллельном подключении емкостей (конденсаторов) эквивалентная емкость равна сумме параллельно подключенных емкостей:

Формула для расчета параллельного соединения индуктивностей

При параллельном подключении индуктивностей, эквивалентная индуктивность рассчитывается так же, как и эквивалентное сопротивление при параллельном соединении:

Необходимо обратить внимание, что в формуле не учтены взаимные индуктивности.

Пример свертывания параллельного сопротивления

Для участка электрической цепи необходимо найти параллельное соединение сопротивлений выполнить их преобразование до одного.

Из схемы видно, что параллельно подключены только R2 и R4. R3 не параллельно, т.к. одним концом оно подключено к источнику ЭДС E1. R1 – одним концом подключено к R5, а не к узлу. R5 – одним концом подключено к R1, а не к узлу. Можно так же говорить, что последовательное соединение сопротивлений R1 и R5 подключено параллельно с R2 и R4.

Рассчитать эквивалентное сопротивлений R14 можно по формуле для двух сопротивлений.

Ток при параллельном соединении

При параллельном соединении сопротивлений ток через каждое сопротивление в общем случае разный. Величина тока обратно пропорциональна величине сопротивления.

Напряжение при параллельном соединении

При параллельном соединении разность потенциалов между узлами, объединяющими элементы цепи, одинакова для всех элементов.

Применение параллельного соединения

1. В промышленности изготавливаются сопротивления определенных величин. Иногда необходимо получить значение сопротивления вне данных рядов. Для этого можно подключить несколько сопротивлений параллельно. Эквивалентное сопротивление всегда будет меньше самого большого номинала сопротивления.

Последовательное соединение сопротивлений

Возьмем три постоянных сопротивления R1, R2 и R3 и включим их в цепь так, чтобы конец первого сопротивления R1 был соединен с началом второго сопротивления R 2, конец второго — с началом третьего R 3, а к началу первого сопротивления и к концу третьего подведем проводники от источника тока (рис. 1 ).

Такое соединение сопротивлений называется последовательным. Очевидно, что ток в такой цепи будет во всех ее точках один и тот же.

Рис 1 . Последовательное соединение сопротивлений

Как определить общее сопротивление цепи, если все включенные в нее последовательно сопротивления мы уже знаем? Используя положение, что напряжение U на зажимах источника тока равно сумме падений напряжений на участках цепи, мы можем написать:

U1 = IR1 U2 = IR2 и U3 = IR3

IR = IR1 + IR2 + IR3

Вынеся в правой части равенства I за скобки, получим IR = I(R1 + R2 + R3) .

Поделив теперь обе части равенства на I , будем окончательно иметь R = R1 + R2 + R3

Таким образом, мы пришли к выводу, что при последовательном соединении сопротивлений общее сопротивление всей цепи равно сумме сопротивлений отдельных участков.

Проверим этот вывод на следующем примере. Возьмем три постоянных сопротивления, величины которых известны (например, R1 == 10 Ом, R 2 = 20 Ом и R 3 = 50 Ом). Соединим их последовательно (рис. 2 ) и подключим к источнику тока, ЭДС которого равна 60 В (внутренним сопротивлением источника тока пренебрегаем).

Рис. 2. Пример последовательного соединения трех сопротивлений

Подсчитаем, какие показания должны дать приборы, включенные, как показано на схеме, если замкнуть цепь. Определим внешнее сопротивление цепи: R = 10 + 20 + 50 = 80 Ом.

Найдем ток в цепи по закону Ома: 60 / 80 = 0 ,75 А

Зная ток в цепи и сопротивления ее участков, определим падение напряжения на каждое участке цепи U 1 = 0,75 х 10 = 7,5 В, U 2 = 0,75 х 20=15 В, U3 = 0,75 х 50 = 37,5 В.

Зная падение напряжений на участках, определим общее падение напряжения во внешней цепи, т. е. напряжение на зажимах источника тока U = 7,5+15 + 37,5 = 60 В.

Мы получили таким образом, что U = 60 В, т. е. несуществующее равенство ЭДС источника тока и его напряжения. Объясняется это тем, что мы пренебрегли внутренним сопротивлением источника тока.

Замкнув теперь ключ выключатель К, можно убедиться по приборам, что наши подсчеты примерно верны.

Параллельное соединение сопротивлений

Возьмем два постоянных сопротивления R1 и R2 и соединим их так, чтобы начала этих сопротивлений были включены в одну общую точку а, а концы — в другую общую точку б. Соединив затем точки а и б с источником тока, получим замкнутую электрическую цепь. Такое соединение сопротивлений называется параллельным соединением.

Рис 3. Параллельное соединение сопротивлений

Проследим течение тока в этой цепи. От положительного полюса источника тока по соединительному проводнику ток дойдет до точки а. В точке а он разветвится, так как здесь сама цепь разветвляется на две отдельные ветви: первую ветвь с сопротивлением R1 и вторую — с сопротивлением R2. Обозначим токи в этих ветвях соответственно через I1 и I 2. Каждый из этих токов пойдет по своей ветви до точки б. В этой точке произойдет слияние токов в один общий ток, который и придет к отрицательному полюсу источника тока.

Таким образом, при параллельном соединении сопротивлений получается разветвленная цепь. Посмотрим, какое же будет соотношение между токами в составленной нами цепи.

Включим амперметр между положительным полюсом источника тока (+) и точкой а и заметим его показания. Включив затем амперметр (показанный «а рисунке пунктиром) в провод, соединяющий точку б с отрицательным полюсом источника тока (—), заметим, что прибор покажет ту же величину силы тока.

Значит, сила тока в цепи до ее разветвления (до точки а) равна силе тока после разветвления цепи (после точки б).

Будем теперь включать амперметр поочередно в каждую ветвь цепи, запоминая показания прибора. Пусть в первой ветви амперметр покажет силу тока I1 , а во второй — I 2. Сложив эти два показания амперметра, мы получим суммарный ток, по величине равный току I до разветвления (до точки а).

Следовательно, сила тока, протекающего до точки разветвления, равна сумме сил токов, утекающих от этой точки. I = I1 + I2 Выражая это формулой, получим

Это соотношение, имеющее большое практическое значение, носит название закона разветвленной цепи .

Рассмотрим теперь, каково будет соотношение между токами в ветвях.

Включим между точками а и б вольтметр и посмотрим, что он нам покажет. Во-первых, вольтметр покажет напряжение источника тока, так как он подключен, как это видно из рис. 3 , непосредственно к зажимам источника тока. Во-вторых, вольтметр покажет падения напряжений U1 и U2 на сопротивлениях R 1 и R2, так как он соединен с началом и концом каждого сопротивления.

Следовательно, при параллельном соединении сопротивлений напряжение на зажимах источника тока равно падению напряжения на каждом сопротивлении.

Это дает нам право написать, что U = U1 = U2 ,

где U — напряжение на зажимах источника тока; U 1 — падение напряжения на сопротивлении R 1 , U2 — падение напряжения на сопротивлении R2. Вспомним, что падение напряжения на участке цепи численно равно произведению силы тока, протекающего через этот участок, на сопротивление участка U = IR .

Поэтому для каждой ветви можно написать: U1 = I1R1 и U2 = I2R2 , но так как U 1 = U2, то и I1R1 = I2R2 .

Применяя к этому выражению правило пропорции, получим I1/ I2 = U2 / U1 т. е. ток в первой ветви будет во столько раз больше (или меньше) тока во второй ветви, во сколько раз сопротивление первой ветви меньше (или больше) сопротивления второй ветви.

Итак, мы пришли к важному выводу, заключающемуся в том, что при параллельном соединении сопротивлений общий ток цепи разветвляется на токи, обратно пропорциональные величинам сопротивлении параллельных ветвей. Иначе говоря, чем больше сопротивление ветви, тем меньший ток потечет через нее, и, наоборот, чем меньше сопротивление ветви, тем больший ток потечет через эту ветвь.

Убедимся в правильности этой зависимости на следующем примере. Соберем схему, состоящую из двух параллельно соединенных сопротивлений R1 и R 2, подключенных к источнику тока. Пусть R1 = 10 Ом, R2 = 20 Ом и U = 3 В.

Подсчитаем сначала, что покажет нам амперметр, включенный в каждую ветвь:

I1 = U / R1 = 3 / 10 = 0 ,3 А = 300 мА

I 2 = U / R 2 = 3 / 20 = 0,15 А = 150 мА

Общий ток в цепи I = I1 + I2 = 300 + 150 = 450 мА

Проделанный нами расчет подтверждает, что при параллельном соединении сопротивлений ток в цепи разветвляется обратно пропорционально сопротивлениям.

Действительно, R1 == 10 Ом вдвое меньше R 2 = 20 Ом, при этом I1 = 300 мА вдвое больше I2 = 150 мА. Общий ток в цепи I = 450 мА разветвился на две части так, что большая его часть ( I1 = 300 мА) пошла через меньшее сопротивление ( R1 = 10 Ом), а меньшая часть ( R2 = 150 мА) — через большее сопротивление ( R 2 = 20 Ом).

Такое разветвление тока в параллельных ветвях сходно с течением жидкости по трубам. Представьте себе трубу А, которая в каком-то месте разветвляется на две трубы Б и В различного диаметра (рис. 4). Так как диаметр трубы Б больше диаметра трубок В, то через трубу Б в одно и то же время пройдет больше воды, чем через трубу В, которая оказывает потоку воды большее сопротивление.

Рис. 4 . Через тонкую трубу в один и тот же промежуток времени пройдет воды меньше, чем через толстую

Рассмотрим теперь, чему будет равно общее сопротивление внешней цепи, состоящей из двух параллельно соединенных сопротивлений.

Под этим общим сопротивлением внешней цепи надо понимать такое сопротивление, которым можно было бы заменить при данном напряжении цепи оба параллельно включенных сопротивления, не изменяя при этом тока до разветвления. Такое сопротивление называется эквивалентным сопротивлением.

Вернемся к цепи, показанной на рис. 3, и посмотрим, чему будет равно эквивалентное сопротивление двух параллельно соединенных сопротивлений. Применяя к этой цепи закон Ома, мы можем написать: I = U/R , где I — ток во внешней цепи (до точки разветвления), U — напряжение внешней цепи, R — сопротивление внешней цепи, т. е. эквивалентное сопротивление.

Точно так же для каждой ветви I1 = U1 / R1 , I2 = U2 / R2 , где I1 и I 2 — токи в ветвях; U 1 и U2 — напряжение на ветвях; R1 и R2 — сопротивления ветвей.

По закону разветвленной цепи: I = I1 + I2

Подставляя значения токов, получим U / R = U1 / R1 + U2 / R2

Так как при параллельном соединении U = U1 = U2 , то можем написать U / R = U / R1 + U / R2

Вынеся U в правой части равенства за скобки, получим U / R = U (1 / R1 + 1 / R2 )

Разделив теперь обе части равенства на U , будем окончательно иметь 1 / R = 1 / R1 + 1 / R2

Помня, что проводимостью называется величина, обратная сопротивлению , мы можем сказать, что в полученной формуле 1 / R – проводимость внешней цепи; 1 / R1 проводимость первой ветви; 1 / R2- проводимость второй ветви.

На основании этой формулы делаем вывод: при параллельном соединении проводимость внешней цепи равна сумме проводимостей отдельных ветвей.

Следовательно, чтобы определить эквивалентное сопротивление включенных параллельно сопротивлений, надо определить проводимость цепи и взять величину, ей обратную.

Из формулы также следует, что проводимость цепи больше проводимости каждой ветви, а это значит, что эквивалентное сопротивление внешней цепи меньше наименьшего из включенных параллельно сопротивлений.

Рассматривая случай параллельного соединения сопротивлений, мы взяли наиболее простую цепь, состоящую из двух ветвей. Однако на практике могут встретиться случаи, когда цепь состоит из трех и более параллельных ветвей. Как же поступать в этих случаях?

Оказывается, все полученные нами соотношения остаются справедливыми и для цепи, состоящей из любого числа параллельно соединенных сопротивлений.

Чтобы убедиться в этом, рассмотрим следующий пример.

Возьмем три сопротивления R1 = 10 Ом, R2 = 20 Ом и R3 = 60 Ом и соединим их параллельно. Определим эквивалентное сопротивление цепи (рис. 5 ).

Рис. 5. Цепь с тремя параллельно соединенными сопротивлениями

Применяя для этой цепи формулу 1 / R = 1 / R1 + 1 / R2 , можем написать 1 / R = 1 / R1 + 1 / R2 + 1 / R3 и, подставляя известные величины, получим 1 / R = 1 / 10 + 1 / 20 + 1 / 60

Сложим эта дроби: 1/R = 10 / 60 = 1 / 6, т. е.. проводимость цепи 1 / R = 1 / 6 Следовательно, эквивалентное сопротивление R = 6 Ом.

Таким образом, эквивалентное сопротивление меньше наименьшего из включенных параллельно в цепь сопротивлений , т. е. меньше сопротивления R1.

Посмотрим теперь, действительно ли это сопротивление является эквивалентным, т. е. таким, которое могло бы заменить включенные параллельно сопротивления в 10, 20 и 60 Ом, не изменяя при этом силы тока до разветвления цепи.

Допустим, что напряжение внешней цепи, а следовательно, и напряжение на сопротивлениях R1, R2, R3 равно 12 В. Тогда сила токов в ветвях будет: I1 = U/R1 = 12 / 10 = 1 ,2 А I 2 = U/R 2 = 12 / 20 = 1 ,6 А I 3 = U/R1 = 12 / 60 = 0, 2 А

Общий ток в цепи получим, пользуясь формулой I = I1 + I2 + I3 = 1,2 + 0,6 + 0,2 = 2 А.

Проверим по формуле закона Ома, получится ли в цепи ток силой 2 А, если вместо трех параллельно включенных известных нам сопротивлений включено одно эквивалентное им сопротивление 6 Ом.

I = U / R = 12 / 6 = 2 А

Как видим, найденное нами сопротивление R = 6 Ом действительно является для данной цепи эквивалентным.

В этом можно убедиться и на измерительных приборах, если собрать схему с взятыми нами сопротивлениями, измерить ток во внешней цепи (до разветвления), затем заменить параллельно включенные сопротивления одним сопротивлением 6 Ом и снова измерить ток. Показания амперметра и в том и в другом случае будут примерно одинаковыми.

На практике могут встретиться также параллельные соединения, для которых рассчитать эквивалентное сопротивление можно проще, т. е. не определяя предварительно проводимостей, сразу найти сопротивление.

Например, если соединены параллельно два сопротивления R1 и R2 , то формулу 1 / R = 1 / R1 + 1 / R2 можно преобразовать так: 1/R = (R2 + R1) / R1 R2 и, решая равенство относительно R, получить R = R1 х R2 / ( R1 + R2 ), т. е. при параллельном соединении двух сопротивлений эквивалентное сопротивление цепи равно произведению включенных параллельно сопротивлений, деленному на их сумму.

Параллельным соединением резисторов (или приемников энергии, ветвей,сопротивлений) называется такое, при котором к одним и тем же двум узлам электрической цепи (рисунок 1) присоединены несколько резисторов (ветвей).

Рис. 1 Изображение параллельного соединения трех резисторов

Проводимость при параллельном соединении

Сопротивление при параллельном соединении:

Для трёх параллельно соединенных сопротивлений

Для двух параллельно соединенных сопротивлений

Для ветвей с одинаковым сопротивлением где n количество ветвей

Ток при параллельном соединении

Мощность при параллельном соединении

Доказательство

Так как резисторы присоединены к одним и тем же узлам, то каждый из них находится под одинаковым напряжением U. Согласно закону Ома токи в сопртивлениях определяются по формулам

Из этих формул следует, что токи в параллельных ветвях с сопротивлениями распределяются прямо пропорционально проводимостям ветвей или обратно пропорционально их сопротивлениям. Ряд параллельно соединенных резисторов можно заменить эквивалентным с сопротивлением R, значение которого должно быть таким, чтобы при том же напряжении на выводах ток в эквивалентном резисторе был равен сумме токов в отдельных ветвях:

т. е. эквивалентная проводимость параллельного соединения резисторов равна сумме проводимостей всех параллельных ветвей. Следовательно, эквивалентное сопротивление будет меньше самого малого из параллельно соединенных резисторов.
Формула (1) дает возможность определить и эквивалентное сопротивление параллельного соединения резисторов. Например, при трех ветвях эквивалентная проводимость

и эквивалентное сопротивление

Для двух резисторов

Если сопротивление ветвей одинаково R1 = R2 = R3, то можно воспользоваться формулой

в общем случае при соединении n резисторов с одинаковым сопротивлением R1 эквивалентное сопротивление равно

Мощности параллельно соединенных резисторов равна сумме мощностей всех резисторов

Параллельное соединение проводников | Физика

При параллельном соединении все проводники (резисторы, лампы и т. д.) подключаются к одной и той же паре точек A и B (рис. 43). Связь между общими значениями силы тока, напряжения и сопротивления с их значениями на отдельных участках цепи при этом отличается от той, что была при последовательном соединении. Теперь соответствующие формулы имеют вид

I = I1 + I2, (17.1)     U = U1 = U2, (17.2)      R = (R1R2) / (R1 + R2). (17.3)

Чтобы убедиться в справедливости этих соотношений, следует собрать цепь и с помощью амперметра и вольтметра произвести необходимые измерения.

Итак, при параллельном соединении проводников напряжение на всех участках цепи одно и то же, общая сила тока равна сумме сил токов на отдельных проводниках, а общее сопротивление двух проводников находится как отношение произведения их сопротивлений к их сумме.

Первые две из этих закономерностей справедливы для любого числа параллельно соединенных проводников, последняя — только для двух.

Если R1 = R2, то

R = (R1R2) / (R1 + R2) = R12/2R1 = R1/2      (17.4)

Мы видим, что общее сопротивление двух одинаковых проводников в 2 раза меньше сопротивления одного проводника. Эта закономерность допускает обобщение: если параллельно соединено n одинаковых потребителей электроэнергии (резисторов, ламп и т.д.), то их общее сопротивление в n раз меньше сопротивления каждого из них:

R = R1/n      (17.5)

Отсюда следует, что с увеличением числа проводников общее сопротивление будет становиться все меньше и меньше. Это может показаться странным. На самом деле ничего удивительного в этом нет: ведь при параллельном соединении проводников происходит как бы увеличение общей площади их поперечного сечения, а с увеличением площади сечения проводника, как известно, его сопротивление уменьшается.

Отличительной особенностью параллельного соединения нескольких потребителей является то, что при выключении одного из них остальные продолжают работать. Так, например, вывернув одну лампу в цепи, изображенной на рисунке 44, мы увидим, что другая будет по-прежнему гореть.

Большинство потребителей электроэнергии — электронагревательные приборы, холодильники, швейные машины, магнитофоны, телевизоры и т. д. — рассчитаны на напряжение сети 220 В. Поэтому все они должны включаться в сеть параллельно, ибо только в этом случае они окажутся под одним и тем же напряжением (220 В) и будут продолжать работать при выключении одного из них.

На рисунке 45 приведена упрощенная схема квартирной электропроводки. Провода сети, между которыми существует напряжение 220 В, обозначены буквами Ф и О. Первый из них называют фазным, второй — нулевым. Нулевой провод соединен с землей. Именно с ним соединяют все потребители. И наоборот, все выключатели соединяют с фазным проводом. Такой порядок подключения потребителей и выключателей обеспечивает наибольшую безопасность человека.

??? 1. Какое соединение называют параллельным? 2. Начертите схему цепи, изображенной на рисунке 44. 3. Какие три закономерности справедливы для параллельного соединения проводников? 4. Как находится общее сопротивление параллельно соединенных проводников, когда они одинаковые? 5. Перечислите все элементы электрической цепи, изображенной на рисунке 45. 6. Предположим, что при замене лампы человек случайно коснулся металлического контакта в патроне лампы и одновременно с этим какой-либо заземленной части здания (например, батареи отопления). Под каким напряжением он окажется? Рассмотрите ситуацию, когда лампа и выключатель подсоединены к проводам сети так, как это показано на рисунке 45. Что произойдет, если лампу и выключатель поменять местами? 7. Почему у вольтметров делают большое внутреннее сопротивление, а у амперметров — малое?

Параллельная схема: характеристики, преимущества и недостатки

Параллельное соединение проводников

Параллельным соединением проводников называется такое соединение, когда начала всех проводников соединены в одну точку, а концы проводников – в другую точку (рисунок 4). Начало цепи присоединяется к одному полюсу источника напряжения, а конец цепи – к другому полюсу.

Рисунок 4. Схема параллельного соединения проводников

Из рисунка видно, что при параллельном соединении проводников для прохождения тока имеется несколько путей. Ток, протекая к точке разветвления А, растекается далее по трем сопротивлениям и равен сумме токов, уходящих от этой точки:

I = I1 + I2 + I3.

Если токи, приходящие к точке разветвления, считать положительными, а уходящие – отрицательными, то для точки разветвления можно написать:

то есть алгебраическая сумма токов для любой узловой точки цепи всегда равна нулю. Это соотношение, связывающее токи в любой точке разветвления цепи, называется первым законом Кирхгофа. Определение первого закона Кирхгофа может звучать и в другой формулировке, а именно: сумма токов втекающих в узел электрической цепи равна сумме токов вытекающих из этого узла.

Видео 2. Первый закон Кирхгофа

Обычно при расчете электрических цепей направление токов в ветвях, присоединенных к какой либо точке разветвления, неизвестны. Поэтому для возможности самой записи уравнения первого закона Кирхгофа нужно перед началом расчета цепи произвольно выбрать так называемые положительные направления токов во всех ее ветвях и обозначить их стрелками на схеме.

Пользуясь законом Ома, можно вывести формулу для подсчета общего сопротивления при параллельном соединении потребителей.

Общий ток, приходящий к точке А, равен:

Токи в каждой из ветвей имеют значения:

По формуле первого закона Кирхгофа

I = I1 + I2 + I3

или

Вынося U в правой части равенства за скобки, получим:

Сокращая обе части равенства на U, получим формулу подсчета общей проводимости:

или

g = g1 + g2 + g3.

Таким образом, при параллельном соединении увеличивается не сопротивление, а проводимость.

Пример 3. Определить общее сопротивление трех параллельно включенных сопротивлений, если r1 = 2 Ом, r2 = 3 Ом, r3 = 4 Ом.

откуда

Пример 4. Пять сопротивлений 20, 30 ,15, 40 и 60 Ом включены параллельно в сеть. Определить общее сопротивление:

откуда

Следует заметить, что при подсчете общего сопротивления разветвления оно получается всегда меньше, чем самое меньшее сопротивление, входящее в разветвление.

Если сопротивления, включенные параллельно, равны между собой, то общее сопротивление r цепи равно сопротивлению одной ветви r1, деленному на число ветвей n:

Пример 5. Определить общее сопротивление четырех параллельно включенных сопротивлений по 20 Ом каждое:

Для проверки попробуем найти сопротивление разветвления по формуле:

откуда

Как видим, ответ получается тот же.

Пример 6. Пусть требуется определить токи в каждой ветви при параллельном их соединении, изображенном на рисунке 5, а.

Рисунок 5. К примеру 6

Найдем общее сопротивление цепи:

откуда

Теперь все разветвления мы можем изобразить упрощенно как одно сопротивление (рисунок 5, б).

Падение напряжения на участке между точками А и Б будет:

U = I × r = 22 × 1,09 = 24 В.

Возвращаясь снова к рисунку 5, а видим, что все три сопротивления окажутся под напряжением 24 В, так как они включены между точками А и Б.

Рассматривая первую ветвь разветвления с сопротивлением r1, мы видим, что напряжение на этом участке 24 В, сопротивление участка 2 Ом. По закону Ома для участка цепи ток на этом участке будет:

Ток второй ветви

Ток третьей ветви

Проверим по первому закону Кирхгофа

I = I1 + I2 + I3 = 12 + 6 + 4 = 22 А.

Следовательно, задача решена верно.

Обратим внимание на то, как распределяются токи в ветвях нашего параллельного соединения. Первая ветвь: r1 = 2 Ом, I1 = 12 А

Вторая ветвь: r2 = 4 Ом, I2 = 6 А. Третья ветвь: r3 = 6 Ом, I3 = 4 А

Первая ветвь: r1 = 2 Ом, I1 = 12 А. Вторая ветвь: r2 = 4 Ом, I2 = 6 А. Третья ветвь: r3 = 6 Ом, I3 = 4 А.

Как видим, сопротивление первой ветви в два раза меньше сопротивление второй ветви, а ток первой ветви в два раза больше тока второй ветви. Сопротивление третьей ветви в три раза больше сопротивления первой ветви, а ток третьей ветви в три раза меньше тока первой ветви. Отсюда можно сделать вывод, что токи в ветвях при параллельном соединении распределяются обратно пропорционально сопротивлениям этих ветвей. Таким образом, по ветви с большим сопротивлением потечет ток меньший, чем по ветви с малым сопротивлением.

Для двух параллельных ветвей можно также, конечно, пользоваться данной выше формулой.

Однако общее сопротивление проводника при параллельном соединении в этом случае легче подсчитать по формуле:

или окончательно:

Последовательное соединение ламп накаливания.

Последовательное соединение ламп накаливания в домашнем быту используется редко. В свое время я подключал две лампы последовательно у себя в подъезде, но это был единичный случай.

Тут ситуация была такая, что подъездная лампа перегорала с периодичностью в один месяц, и надо было что-то делать.

Обычно, в таких случаях лампу включают через диод, чтобы она питалась пониженным напряжением 110В и долго служила. Вариант проверенный, но при этом сама лампа мерцает, да и светит в полнакала.

Когда же стоят две последовательно, то они так же питаются пониженным напряжением 110В, не мерцают, долго служат, светят и потребляют энергии как одна. Причем их можно развести по разным углам помещения, что тоже плюс.Но повторюсь – это редкий случай.

Посмотрите на рисунок ниже. Здесь изображены две схемы последовательного соединения ламп накаливания. В верхней части рисунка показана принципиальная схема, а в нижней части – монтажная. Причем для лучшего восприятия, монтажная схема показана с реальным изображением ламп и двужильного провода.

Здесь в линии коричневого цвета, лампы HL1 и HL2 соединены последовательно – одна за другой. Поэтому такое соединение называют последовательным.

Если подать напряжение питания 220В на концы L и N, то загорятся обе лампы, но гореть они будут не в полную силу, а в половину накала. Так как сопротивление нитей ламп рассчитано на питающее напряжение 220В, и когда они стоят в цепи последовательно, одна за другой, то за счет добавления сопротивления нити накала следующей лампы, общее сопротивление цепи будет увеличиваться, а значит, для следующей лампы напряжение всегда будет меньше согласно закону Ома.

Поэтому при последовательном соединении двух ламп напряжение 220В будет делиться пополам, и составит 110В для каждой.

На следующем рисунке показаны три лампы соединенные последовательно.

На этой схеме напряжение на каждой лампе составит около 73 Вольт, так как будет делиться уже между тремя лампами.

Так же примером последовательного соединения могут служить новогодние гирлянды. Здесь из миниатюрных лампочек с низким питанием создается одна лампа на напряжение 220В.

Например, берем лампочки, рассчитанные на 6,3 Вольта и делим их на 220 Вольт. Получается 35 штук. То есть, чтобы сделать одну лампу на напряжение 220В, нам нужно соединить последовательно 35 штук с напряжением питания 6,3 Вольта.

P.S. Так как напряжение в сети не постоянно, то расчет лучше производить исходя из 245 – 250 Вольт.

Как Вы знаете, у гирлянд есть один недостаток. Перегорает одна из ламп, например, канала зеленого цвета, значит, не горит канал зеленого цвета. Тогда мы идем на базар, покупаем лампочки зеленого цвета, а потом дома по одной вынимаем, вставляем новую, и пока не заработает канал, перебираем его весь.

Вывод:

Недостатком последовательного соединения является то, что если выйдет из строя хоть одна из ламп, гореть не будут все, так как нарушается электрическая цепь.

А вторым недостатком, как Вы уже догадались, является слабое свечение. Поэтому последовательное соединение ламп накаливания на напряжение 220В в домашних условиях практически не применяется.

Первый закон Кирхгофа

Как я уже упоминал, законы Кирхгофа вместе с законом Ома являются основными при анализе и расчётах электрических цепей. Закон Ома был подробно рассмотрен в двух предыдущих статьях, теперь настала очередь для законов Кирхгофа. Их всего два, первый описывает соотношения токов в электрических цепях, а второй – соотношение ЭДС и напряжениями в контуре. Начнём с первого.

Первый закон Кирхгофа гласит, что алгебраическая сумма токов в узле равна нулю. Описывается это следующим выражением

где ∑ — обозначает алгебраическую сумму.

Слово «алгебраическая» означает, что токи необходимо брать с учётом знака, то есть направления втекания. Таким образом, всем токам, которые втекают в узел, присваивается положительный знак, а которые вытекают из узла – соответственно отрицательный. Рисунок ниже иллюстрирует первый закон Кирхгофа

На рисунке изображен узел, в который со стороны сопротивления R1 втекает ток, а со стороны сопротивлений R2, R3, R4 соответственно вытекает ток, тогда уравнение токов для данного участка цепи будет иметь вид

Первый закон Кирхгофа применяется не только к узлам, но и к любому контуру или части электрической цепи. Например, когда я говорил о параллельном соединении приемников энергии, где сумма токов через R1, R2 и R3 равна втекающему току I.

Примеры использования

  • Батареи гальванических элементов или аккумуляторов, в которых отдельные химические источники тока соединены последовательно (для увеличения напряжения) или параллельно (для увеличения тока).
  • Регулировка мощности электрического устройства, состоящего из нескольких одинаковых потребителей электроэнергии, путём их переключения с параллельного на последовательное соединение. Таким способом регулируется мощность конфорки электрической плиты, состоящей из нескольких спиралей; мощность (скорость движения) электровоза, имеющего несколько тяговых двигателей.
  • Делитель напряжения
  • Балласт
  • Шунт

Какой способ лучше?

Метод «шлейфов» не слишком удобен только тем, что любой потребитель по цепи зависит от предыдущего. Например, если произойдёт обрыв провода на второй розетке, то третья и четвёртая также останутся без напряжения. Но при этом нельзя не выделить экономию проводника при начальном монтаже электропроводки.

Рисунок 3: Комбинированное соединение розеток

К тому же, «шлейфом» очень удобно проводить линии, когда необходимо минимизировать количество штроб в стенах. А делают это при монтаже проводки по полу или потолку, в специальной гофрированной трубе. Тогда остаётся провести только основные штробы к розеткам и между ними.

Вывод: прокладка электропроводки «шлейфом» удобна и экономична, не занимает много времени в процессе монтажа, имеет длительный эксплуатационный срок и совсем незначительные недостатки, которые можно оставить без внимания.

Последовательное соединение ламп накаливания.

Последовательное соединение ламп накаливания в домашнем быту используется редко. В свое время я подключал две лампы последовательно у себя в подъезде, но это был единичный случай.

Тут ситуация была такая, что подъездная лампа перегорала с периодичностью в один месяц, и надо было что-то делать.

Обычно, в таких случаях лампу включают через диод, чтобы она питалась пониженным напряжением 110В и долго служила. Вариант проверенный, но при этом сама лампа мерцает, да и светит в полнакала.

Когда же стоят две последовательно, то они так же питаются пониженным напряжением 110В, не мерцают, долго служат, светят и потребляют энергии как одна. Причем их можно развести по разным углам помещения, что тоже плюс.Но повторюсь – это редкий случай.

Посмотрите на рисунок ниже. Здесь изображены две схемы последовательного соединения ламп накаливания. В верхней части рисунка показана принципиальная схема, а в нижней части – монтажная. Причем для лучшего восприятия, монтажная схема показана с реальным изображением ламп и двужильного провода.

Здесь в линии коричневого цвета, лампы HL1 и HL2 соединены последовательно – одна за другой. Поэтому такое соединение называют последовательным.

Если подать напряжение питания 220В на концы L и N, то загорятся обе лампы, но гореть они будут не в полную силу, а в половину накала. Так как сопротивление нитей ламп рассчитано на питающее напряжение 220В, и когда они стоят в цепи последовательно, одна за другой, то за счет добавления сопротивления нити накала следующей лампы, общее сопротивление цепи будет увеличиваться, а значит, для следующей лампы напряжение всегда будет меньше согласно закону Ома.

Поэтому при последовательном соединении двух ламп напряжение 220В будет делиться пополам, и составит 110В для каждой.

На следующем рисунке показаны три лампы соединенные последовательно.

На этой схеме напряжение на каждой лампе составит около 73 Вольт, так как будет делиться уже между тремя лампами.

Так же примером последовательного соединения могут служить новогодние гирлянды. Здесь из миниатюрных лампочек с низким питанием создается одна лампа на напряжение 220В.

Например, берем лампочки, рассчитанные на 6,3 Вольта и делим их на 220 Вольт. Получается 35 штук. То есть, чтобы сделать одну лампу на напряжение 220В, нам нужно соединить последовательно 35 штук с напряжением питания 6,3 Вольта.

P.S. Так как напряжение в сети не постоянно, то расчет лучше производить исходя из 245 – 250 Вольт.

Как Вы знаете, у гирлянд есть один недостаток. Перегорает одна из ламп, например, канала зеленого цвета, значит, не горит канал зеленого цвета. Тогда мы идем на базар, покупаем лампочки зеленого цвета, а потом дома по одной вынимаем, вставляем новую, и пока не заработает канал, перебираем его весь.

Вывод:

Недостатком последовательного соединения является то, что если выйдет из строя хоть одна из ламп, гореть не будут все, так как нарушается электрическая цепь.

А вторым недостатком, как Вы уже догадались, является слабое свечение. Поэтому последовательное соединение ламп накаливания на напряжение 220В в домашних условиях практически не применяется.

Как выглядит формула Георга Ома

Примером такого типа подключения резисторов может быть соединение цепи потребителей электроэнергии в многоквартирном доме. Так, светодиоды, отопительный радиатор, микроволновка и другие приборы установлены в цепи параллельно.

Вольтметр, который подключают в цепь, будет показывать напряжение на всех резисторах. Тогда оно везде будет равным и формулу можно записать как:

U1 = U2 = U.

Схема параллельного соединения

Когда образуются ветви при подключении, то часть общего напряжения проходит через первый резистор, а часть — через второй и так далее. Поэтому при таком виде соединения резисторов Fтока в неразветвлённой точке будет равняться суммарной Fтока в отдельных резисторах и записывается как:

I = I1 + I2.

Расчет силы тока при помощи закона Ома записывается как:

I = U/R;

I1 = U1/R1;

I2 = U2/R2.

Из формулы следует:

U/R = U1/R1 + U2/R2;

U = U1 = U2;

1/R = 1/R1 + 1/R2.

Дословно правило звучит так: число, обратное общему сопротивлению при параллельном подключении, будет суммарно равно числу обратного сопротивления.

Зависимость сопротивления

Значение электропроводимости зависит от нескольких факторов, которые необходимо учитывать при расчетах, изготовлении элементов резистивной нагрузки (резисторов), ремонте и проектировании устройств. К этим факторам необходимо отнести следующие:

  1. Температура окружающей среды и материала.
  2. Электрические величины.
  3. Геометрические свойства вещества.
  4. Тип материала, из которого изготовлен проводник (полупроводник).

Электрические величины

Зависимость величины электропроводимости от параметров электричества определяется законом Ома. Существует две формулировки: одна — для участка, а другая — для полной цепи. В первом случае соотношение определяются, исходя из значений силы тока (I) и напряжения (U) простой формулой: I = U / R. Из соотношения видна прямо пропорциональная зависимость тока от величины напряжения, а также обратно пропорциональная от сопротивления. Можно выразить R: R = U / I.

Для расчета электропроводимости всего участка следует воспользоваться соотношением между ЭДС (e), силой тока (i), а также внутренним сопротивлением источника питания (Rвн): i = e / (R+Rвн). В этом случае величина R вычисляется по формуле: R = (e / i) — Rвн. Однако при выполнении расчетов необходимо учитывать также геометрические параметры и тип проводника, поскольку они могут существенно повлиять на вычисления.

Тип и геометрические параметры

Свойство вещества к проводимости электричества определяется структурой кристаллической решетки, а также количеством свободных носителей. Исходя из этого, тип вещества является ключевым фактором, который определяет величину электропроводимости. В науке коэффициент, определяющий тип вещества, обозначается литерой «р» и называется удельным сопротивлением. Его значение для различных материалов (при температуре +20 градусов по Цельсию) можно найти в специальных таблицах.

Иногда для удобства расчетов используется обратная величина, которая называется удельной проводимостью (σ). Она связана с удельным сопротивлением следующим соотношением: p = 1 / σ. Площадь поперечного сечения (S) влияет на электрическое сопротивление. С физической точки зрения, зависимость можно понять следующим образом: при малом сечении происходят более частые взаимодействия частиц электрического тока с узлами кристаллической решетки. Поперечное сечение можно вычислить по специальному алгоритму:

  1. Измерение геометрических параметров проводника (диаметр или длину сторон) при помощи штангенциркуля.
  2. Визуально определить форму материала.
  3. Вычислить площадь поперечного сечения по формуле, найденной в справочнике или интернете.

В случае когда проводник имеет сложную структуру, необходимо вычислить величину S одного элемента, а затем умножить результат на количество элементов, входящих в его состав. Например, если провод является многожильным, то следует вычислить S для одной жилы. После этого нужно умножить, полученную величину S, на количество жил. Зависимость R от вышеперечисленных величин можно записать в виде соотношения: R = p * L / S. Литера «L» является длиной проводника. Однако для получения точных расчетов необходимо учитывать температурные показатели внешней среды и проводника.

Температурные показатели

Существует доказательство зависимости удельного сопротивления материала от температуры, основанное на физическом эксперименте. Для проведения опыта нужно собрать электрическую цепь, состоящую из следующих элементов: источника питания, нихромовой спирали, соединительных проводов амперметра и вольтметра. Приборы нужны для измерения значений силы тока и напряжения соответственно. При протекании электричества происходит нагревание нихромовой пружины. По мере ее нагревания, показания амперметра уменьшаются. При этом происходит существенное падение напряжения на участке цепи, о котором свидетельствуют показания вольтметра.

В радиотехнике уменьшение величины напряжение называется просадкой или падением. Формула зависимости р от температуры имеет следующий вид: p = p0 * . Значение p0 — удельное сопротивление материала, взятого из таблицы, а литера «t» — температура проводника.

Температурный коэффициент «а» принимает следующие значения: для металлов — a>0, а для электролитических растворов — a<0. Для получения формулы, определяющей все зависимости, необходимо подставить все соотношения в общую формулу зависимости R от типа материала, температуры, длины и сечения: R = p0 * * L / S. Формулы используются только для расчетов и изготовления резисторов. Для быстрого измерения величины сопротивления применяется омметр.

Формула параллельного соединения резисторов

Общее сопротивление нескольких резисторов соединенных параллельно определяется по следующей формуле:

Ток, протекающий через отдельно взятый резистор, согласно закону Ома, можно найти по формуле:

Пример  №1

При разработке устройства, возникла необходимость установить резистор с сопротивлением 8 Ом. Если мы просмотрим весь номинальный ряд стандартных значений резисторов, то мы увидим, что резистора с сопротивлением в 8 Ом в нем нет.

Выходом из данной ситуации будет использование двух параллельно соединенных резисторов. Эквивалентное значение сопротивления для двух резисторов соединенных параллельно рассчитывается следующим образом:

Данное уравнение показывает, что если R1 равен R2, то сопротивление R составляет половину сопротивления одного из двух резисторов. При R = 8 Ом, R1 и R2 должны, следовательно, иметь значение 2 × 8 = 16 Ом.
Теперь проведем проверку, рассчитав общее сопротивление двух резисторов:

Таким образом, мы получили необходимое сопротивление 8 Ом, соединив параллельно два резистора по 16 Ом.

Пример расчета №2

Найти общее сопротивление  R из трех параллельно соединенных резисторов:

Общее сопротивление R рассчитывается по формуле:

Этот метод расчета может быть использованы для расчета любого количества отдельных сопротивлений соединенных параллельно.

Один важный момент, который необходимо запомнить при расчете параллельно соединенных резисторов – это то, что общее сопротивление всегда будет меньше, чем значение наименьшего сопротивления в этой комбинации.

Как рассчитать сложные схемы соединения резисторов

Более сложные соединения резисторов могут быть рассчитаны путем систематической группировки резисторов. На рисунке ниже необходимо посчитать общее сопротивление цепи, состоящей из трех резисторов:

Резисторы R2 и R3 соединены последовательно (группа 2). Они в свою очередь соединены параллельно с резистором R1 (группа 1).

Последовательное соединение резисторов группы 2 вычисляется как сумма сопротивлений R2 и R3:

В результате мы упрощаем схему в виде двух параллельных резисторов. Теперь общее сопротивление всей схемы можно посчитать следующим образом:

Расчет более сложных соединений резисторов можно выполнить используя законы Кирхгофа.

Ток, протекающий в цепи параллельно соединенных резисторах

Общий ток I протекающий в цепи параллельных резисторов равняется сумме отдельных токов, протекающих во всех параллельных ветвях, причем ток в отдельно взятой ветви не обязательно должен быть равен току в соседних ветвях.

Несмотря на параллельное соединение, к каждому резистору приложено одно и то же напряжение. А поскольку величина сопротивлений в параллельной цепи может быть разной, то и величина протекающего тока через каждый резистор тоже будет отличаться (по определению закона Ома).

Рассмотрим это на примере двух параллельно соединенных резисторов. Ток, который течет через каждый из резисторов ( I1 и I2 ) будет отличаться друг от друга поскольку сопротивления резисторов R1 и R2 не равны.
Однако мы знаем, что ток, который поступает в цепь в точке «А» должен выйти из цепи в точке «B» .

Первое правило Кирхгофа гласит: «Общий ток, выходящий из цепи равен току входящий в цепь».

  • Таким образом, протекающий общий ток в цепи  можно определить как:
  • I = I1 + I2
  • Затем с помощью закона Ома можно вычислить ток, который протекает через каждый резистор:
  • Ток, протекающий в R1 = U ÷ R1 = 12 ÷ 22 кОм = 0,545 мА
  • Ток, протекающий в R 2 = U ÷ R2 = 12 ÷ 47 кОм = 0,255 мА
  • Таким образом, общий ток будет равен:
  • I = 0,545 мА + 0,255 мА = 0,8 мА
  • Это также можно проверить, используя закон Ома:
  • I = U ÷ R = 12 В ÷ 15 кОм = 0,8 мА (то же самое)
  • где 15кОм — это общее сопротивление двух параллельно соединенных резисторов (22 кОм и 47 кОм)
  • И в завершении хочется отметить, что большинство современных резисторов маркируются цветными полосками и назначение ее можно узнать здесь.

Параллельное соединение резисторов — онлайн калькулятор

Чтобы быстро вычислить общее сопротивление двух и более резисторов, соединенных параллельно, вы можете воспользоваться следующим онлайн калькулятором:

Подведем итог

Когда два или более резистора соединены так, что оба вывода одного резистора соединены с соответствующими выводами другого резистора или резисторов, то говорят, что они соединены между собой параллельно. Напряжение на каждом резисторе внутри параллельной комбинации одинаковое, но токи, протекающие через них, могут отличаться друг от друга, в зависимости от величины сопротивлений каждого резистора.

Эквивалентное или полное сопротивление параллельной комбинации всегда будет меньше минимального сопротивления резистора входящего в параллельное соединение.

Последовательное соединение источников питания

Теперь давайте представим вот такую ситуацию. Что будет, если в нашей обрезанной водобашне полной воды добавим еще одну такую же сверху полную воды? Схематически это будет выглядеть примерно вот так:

Как вы думаете, уменьшится давление на землю, или увеличится? Понятное дело, что увеличится! Да еще и ровно в два раза! Почему так произошло? Уровень воды стал выше, следовательно, давление на дно увеличилось.

Если “минус” одной батарейки соединить с “плюсом” другой батарейки, то их общее напряжение суммируется.

Полностью заряженная батарейка будет выглядеть как башня, полностью залитая водой с учетом того, что работает насос автоматической подачи воды. По аналогии, насос – это ЭДС.

Наполовину разряженная батарейка будет уже выглядеть примерно вот так:

Можно сказать, насос уже не справляется.

Батарейка посаженная в “ноль” будет выглядеть вот так:

Насос автоматической подачи воды сломался.

Естественно, что если вы соедините полностью заряженную и наполовину дохлую батарейку последовательно, то их общее напряжение будет выглядеть примерно вот так:

Давайте все это продемонстрируем на практике. Итак, у нас есть 2 литий-ионных аккумулятора. Я их пометил цифрами 1 и 2. С плюса каждого аккумулятора я вывел красный провод, а с минуса – черный.

Давайте замеряем напряжение аккумулятора под №1 с помощью мультиметра. Как это сделать, я еще писал в статье Как измерить ток и напряжение мультиметром.

На первом аккумуляторе у нас напряжение 3,66 Вольт. Это типичное значение литий-ионного аккумулятора.

Таким же способом замеряем напряжение на аккумуляторе №2

О, как совпало). Те же самые 3,66 Вольт.

Для того, чтобы соединить последовательно эти аккумуляторы, нам надо сделать что-то подобное:

Также как и в башнях, нам надо соединить основание одной башни с верхушкой другой башни. В источниках питания, типа аккумуляторов или батареек, нам надо соединить минус одной батарейки с плюсом другой. Так мы и сделаем. Соединяем плюс одной батарейки с минусом другой и получаем… сумму напряжений каждой батарейки! Как вы помните, на первой батарейке у нас было напряжение 3,66 В, на второй тоже 3,66 В. 3,66+3,6=7,32 В.

Мультиметр показывает 7,33 В. 0,01В спишем на погрешность измерений.

Это свойство прокатывает не только с двумя аккумуляторами, но также с их бесконечным множеством. Думаю, не стоит говорить, что если выставить в ряд штук 100 таких аккумуляторов, соединить последовательно и коснуться крайних полюсов голыми руками, то все это может завершиться даже летальным исходом.

Оцените статью:

Элеком37, Закон Ома. Последовательное и параллельное соединение проводников.

Закон Ома. Последовательное и параллельное соединение проводников.

Немецкий физик Г.Ом в 1826 году экспериментально установил, что сила тока I, текущего по однородному металлическому проводнику (то есть проводнику, в котором не действуют сторонние силы) сопротивлением R, пропорциональна напряжению U на концах проводника:

Величину R принято называть электрическим сопротивлением. Проводник, обладающий электрическим сопротивлением, называется резистором. Это соотношение выражает закон Ома для однородного участка цепи:
сила тока в проводнике прямо пропорциональна приложенному напряжению и обратно пропорциональна сопротивлению проводника.

Проводники, подчиняющиеся закону Ома, называются линейными. Графическая зависимость силы тока I от напряжения U (такие графики называются вольт-амперными характеристиками, сокращенно ВАХ) изображается прямой линией, проходящей через начало координат.
Следует отметить, что существует много материалов и устройств, не подчиняющихся закону Ома, например, полупроводниковый диод или газоразрядная лампа. Даже у металлических проводников при достаточно больших токах наблюдается отклонение от линейного закона Ома,
так как электрическое сопротивление металлических проводников растет с ростом температуры.

Проводники в электрических цепях можно соединять двумя способами: последовательно и параллельно. У каждого способа есть свои закономерности.

1. Закономерности последовательного соединения:

Формула для общего сопротивления последовательно соединенных резисторов справедлива для любого числа проводников. Если же в цепь последовательно включено n одинаковых сопротивлений R, то общее сопротивление R0 находится по формуле:

2. Закономерности параллельного соединения:

Формула для общего сопротивления параллельно соединенных резисторов справедлива для любого числа проводников. Если же в цепь параллельно включено n одинаковых сопротивлений R, то общее сопротивление R0 находится по формуле:

Электроизмерительные приборы

Для измерения напряжений и токов в электрических цепях постоянного тока используются специальные приборы – вольтметры и амперметры.

Вольтметр предназначен для измерения разности потенциалов, приложенной к его клеммам. Он подключается параллельно участку цепи, на котором производится измерение разности потенциалов. Любой вольтметр обладает некоторым внутренним сопротивлением RB.
Для того чтобы вольтметр не вносил заметного перераспределения токов при подключении к измеряемой цепи, его внутреннее сопротивление должно быть велико по сравнению с сопротивлением того участка цепи, к которому он подключен.

Амперметр предназначен для измерения силы тока в цепи. Амперметр включается последовательно в разрыв электрической цепи, чтобы через него проходил весь измеряемый ток. Амперметр также обладает некоторым внутренним сопротивлением RA.
В отличие от вольтметра, внутреннее сопротивление амперметра должно быть достаточно малым по сравнению с полным сопротивлением всей цепи.

Последовательное и параллельное соединение электрических сопротивлений

Рассмотрим пример электрической цепи, несколько более сложной, чем рассмотрен­ная ранее цепь с выключателем и лампочкой. Итак, обратимся к схеме на рис. 1. Имеется электрическая цепь, составленная из трех резисторов. Мы хотим узнать об­щее сопротивление между клеммами А и В.

Рис. 1   цепь с последовательно параллельным соединением резисторов

Итак, имеются три резистора: R1 соединен (включен) параллельно R2, а эта пара соединена последовательно с R3

Разобьем цепь на простейшие части, что всегда удобно при анализе сложных це­пей и схем. Если мы знаем метод определения величины резисторов, соединенных последовательно, можно использовать его для вычисления сопротивления, образуе­мого R3, соединенного последовательно с парой R1 и R2. Но так как мы еще не знаем способа нахождения величины сопротивления параллельного соединения, то сначала требуется разобраться с этим. Вопрос о последовательности анализа цепей и схем очень важен, и мы еще не раз будем к нему обращаться.

Если два резистора (или любых другие компонентов) соединены параллельно, то они должны иметь одинаковое падение напряжения на них. Следовательно, в качест­ве отправной точки, можно воспользоваться законом Ома.

I=V/R.

Теперь, применяя закон Кирхгофа о токах, можно смело утверждать что:

Iобщий= IR1+IR2+…

Значит:       V/Rпаралельное = V/R1 + V/R2 + …

Разделив на V, получим:      1/Rпаралельное = 1/R1 + 1/R2 + …

Итак: обратная величина общего параллельного сопротивления равна сумме об­ратных величин всех резисторов.

Величину, обратную сопротивлению, в электротехнике часто называют про­водимостью, и обозначают буквой С. Тогда

Gобщ =G1+G2

Таким образом, при параллельном включении элементов, алгебраически склады­ваются их проводимости.

В частном случае, когда параллельно включены два резистора, можно вывести более удобную формулу для расчета общего сопротивления (это выражение часто называют «произведение над суммой»):

Rпараллельное = R1R2/R1+R2

Итак, мы решили проблему вычисления параллельного включения сопротивле­ний, а теперь необходимо разобраться с последовательным включением.

Для начала, упростим схему, поскольку мы уже умеем вычислять общее сопротив­ление параллельного соединения, которое теперь можно заменить одним сопротив­лением соответствующей величины. Таким образом, на рис. 1.5 показан упрощенный вид все той же цепи, что и на рис. 2, но параллельное включение двух сопротивле­ний заменено одним, так называемым эквивалентным.

Используя закон Кирхгофа о напряжениях, легко сделать вывод, что сумма паде­ний напряжений на резисторах должна быть равна приложенной ЭДС:

Vобщее = VR1 + V R2 +…

Рис. 2 Упрощение схемы на рис. 1,используя эквивалентное сопротивление

Теперь применив закон Ома, получим:

VобщееI = IR1 + IR2 +…

Но поскольку мы пытаемся рассчитать эквивалентное сопротивление, величина которого равна общему сопротивлению, то удобнее записать

IRобщее = IR1 + I R2 +…

Откуда:

R последовательное=R1 + R2 +…

Общее сопротивление последовательно соединенных резисторов равно сумме со­противлений резисторов.

Используя формулы для параллельного и последовательного включения со­противлений, можно вычислить общее сопротивление любой сложной цепи, как бы «устрашающе» на первый взгляд она не выглядела.

Схемы могут быть очень сложными, но задача их анализа вполне разрешима, если подойти к ней логически. Здесь главное найти изначальный подход к решению, а ма­нипуляции с числами — проблема второстепенная.

Обратимся к цепи, изображенной на рис. 3. Требуется вычислить общее сопро­тивление цепи, то есть сопротивление между клеммами А и В. Поскольку цепь слож­ная, у нас нет правила для нахождения ее эквивалентного сопротивления напрямую, а значит, мы должны разбить сложную цепь на простейшую, к которой где можно применить уже известные нам правила. Таким образом, требуется выделить из слож­ной цепи группы компонентов, имеющие только последовательные или только парал­лельные соединения.

Рис. 3 Сложная разветвлённая цепь

В этом примере — между узлами А и D только параллельно включенные компо­ненты. Можно вычислить значение их эквивалентного сопротивления и подставить его в схему:

Rпараллельное = произведение / сумма = 6×12/6+12 = 4 Ом.

Теперь перечерчиваем схему, заменяя параллельное включение этихдвух элемен­тов их эквивалентным сопротивлением (рис. 4).

Рис. 4 Первое упрощение сложной цепи с рис. 3

Теперь имеются только последовательные и параллельные соединения между узлами А и С. Имеется выбор расчета — либо сперва рассчитать последовательное соединение 2 Ом и 4 Ом, либо параллельное соединение 3 Ом и 6 Ом. Рассчитаем сперва последовательное соединение, поскольку в результате получим эквивалент­ное сопротивление, включенное параллельно сопротивлениям 3 Ом и 6 Ом, а затем найдем сопротивление трех параллельно включенных резисторов.

Rпоследовательное = R1 + R2=4 + 2 = 6 Ом.

Снова перечерчиваем схему, заменив только что рассчитанное последовательное соединение двух резисторов, одним эквивалентным (рис. 1.8).

Рис. 5 Второе упрощение сложной цепи с рис. 3

Теперь имеются три компонента, включенные параллельно. Тогда:

1/R = 1/R1 + 1/R2 + 1/R3 = 1/3 + 1/6 + 1/6 = 2/3,

Rпаралельное=1,5 Ом

Теперь имеется совсем простая цепь, состоящая из двух последовательно вклю­ченных сопротивлений по 1,5 Ом. Применив правило для последовательного включе­ния двух резисторов, не трудно сказать, общее сопротивление всей цепи равно 3 Ом.

Итак, методами последовательного и параллельного соединения элементов, а так­же путем непосредственного применения законов Ома и Кирхгофа, можно анализиро­вать цепи любой сложности. Однако, существует ряд полезных методов, которые дают возможность несколько упростить и ускорить анализ электрических цепей и схем. Су­ществует множество различных учебников и книг по теории электрических цепей и электротехники, где разбираются различные методы анализа сложных цепей. Рассмат­ривать их все здесь вряд ли является целесообразным, поскольку цели настоящей книги несколько иные. Однако, к ряду таких методов мы будем обращаться далее, где и остано­вимся на них подробнее. Здесь же приведем некоторые самые общие рекомендации.

  • выбор отправной точки (то есть той группы элементов цепи, с которой начина­ется анализ сцепи (см., например, рассуждения к рис. 2) для решения задачи анализа цепи является очень важным и зачастую критическим;
  • отправную точку нужно стараться выбирать как можно дальше от внешних клемм цепи;
  • в качестве отправной точки выбирают группы элементов, включенные только последовательно или только параллельно;
  • анализ обычно проводится от в направлении от отправной точки к внешним клеммам;
  • Процессу анализа цепи очень помогает перечерчивание схемы, постепенно упрощая ее путем замены уже рассчитанной группы элементов на один эквива­

Морган Джонс. Ламповые усилителию. Перевод с английского под общей научной редакцией к.т.н. доц. Иванюшкина Р Ю.

Расчет сопротивления двух параллельно соединенных резисторов.

Последовательное и параллельное соединение резисторов. Формула для расчета параллельного соединения сопротивлений

В каждой электрической схеме присутствует резистор, имеющий сопротивление электрическому току. Резисторы бывают двух типов: постоянные и переменные. Во время разработки любой электрической схемы и ремонта электронных изделий часто приходится применять резистор, обладающий необходимым номиналом.

Несмотря на то что для резисторов предусмотрены различные номиналы
, может случиться так, что не будет возможности найти необходимый или же вообще ни один элемент не сможет обеспечить требуемый показатель.

Рассчитать производительность и работу

Угол сдвига фаз вычисляется по изображению указателя. Чтобы иметь возможность определять мощности, поглощаемые схемой, предыдущие формулы используются снова. Для определения работы используются следующие формулы.

Дальнейший интересный контент по теме

Резисторы переменного тока представляют собой омические, индуктивные и емкостные резисторы. Для параллельного подключения таких резисторов в цепи переменного тока применяются разные законы, чем для сопротивлений в цепи постоянного тока. Учитывая это, например, катушку: настоящая катушка имеет как индуктивное, так и омическое сопротивление и поэтому может рассматриваться как последовательная связь чисто индуктивного и чисто омического резистора.

Решением этой проблемы может стать применение последовательного и параллельного соединения. Ознакомившись с этой статьей, вы узнаете об особенностях выполнения расчета и подбора различных номиналов сопротивлений.

Часто при изготовлении какого-либо устройства используют резисторы, которые соединяются в соответствии с последовательной схемой. Эффект от применения такого варианта сборки сводится к увеличению общего сопротивления цепи. Для данного варианта соединения элементов создаваемое ими сопротивление рассчитывается как сумма номиналов. Если же сборка деталей выполняется по параллельной схеме, то здесь потребуется рассчитать сопротивление
, используя нижеописанные формулы.

Примеры параллельного соединения проводников

Мы рассматриваем только индуктивную составляющую резистора, т.е. катушку как чисто индуктивный резистор. Аналогично, используется омическое сопротивление и емкостное сопротивление, поскольку омическое сопротивление также может иметь индуктивный компонент. В то время как в случае сопротивления проволоки витки, подобные виткам, видны напрямую, это обычно скрыто в резисторах слоя. Фактически, проводящий слой наносят на носитель, из которого материал, проводящий материал, удаляется с помощью процесса спирально-циркулирующего фрезерования, так что остается спирально циркулирующий слой.

К схеме параллельного соединения прибегают в ситуации, когда стоит задача по снижению суммарного сопротивления, а, помимо этого, увеличения мощности для группы элементов, подключенных по параллельной схеме, которое должно быть больше, чем при их отдельном подключении.

Таким образом генерируется требуемое значение сопротивления. Сразу видно, что эта катушечная структура приводит к индуктивному компоненту. Однако это обычно настолько мало, что его можно пренебречь. Общая обработка взаимосвязи любых резисторов переменного тока невозможна и не требуется с помощью математических знаний, доступных в школе.

Объяснение Подключение серии и параллельное соединение

Ниже приведен упрощенный случай параллельной схемы чисто омического, индуктивного и емкостного резисторов. В этой статье мы рассмотрим параллельное соединение и последовательное соединение резисторов. Давайте сначала уточним, что такое последовательное соединение и что такое параллельное соединение, и где разница между последовательным соединением и параллельным соединением. В последовательной цепи мы имеем два или более сопротивления последовательно. Тот же ток протекает через все резисторы.

Расчет сопротивления

В случае подключения деталей друг с другом, с применением параллельной схемы для расчета суммарного сопротивления, будет использоваться следующая формула:

R(общ)=1/(1/R1+1/R2+1/R3+1/Rn).

  • R1- R3 и Rn – резисторы, подсоединенные по параллельной схеме.

Причем, если цепь создается на основе только двух элементов, то для определения суммарного номинального сопротивления следует использовать такую формулу:

Универсальная схема расчета

На следующем графике показаны резисторы последовательно, два резистора, индивидуально нарисованные в начале, и три резистора под электрической цепью. Напротив, существует параллельное соединение резисторов. Что такое параллельная схема? Теперь, в параллельной цепи, линия распадается, и, следовательно, и ток разлагается. В случае параллельного подключения резисторов во многих случаях впервые рассматривается параллельное соединение двух резисторов. Это выглядит следующим образом, включая формулу для расчета.

R(общ)=R1*R2/R1+R2.

  • R(общ) – суммарное сопротивление;
  • R1 и R2 – резисторы, подсоединенные по параллельной схеме.

Универсальная схема расчета

Применительно к радиотехнике следует уделить внимание одному важному правилу: если подключаемые друг к другу элементы по параллельной схеме имеют одинаковый показатель
, то для расчета суммарного номинала необходимо общее значение разделить на число подключенных узлов:

Для трех резисторов в параллельной схеме это будет выглядеть на следующем графике, включая формулу для расчета. Разностное соединение и параллельное соединение. В случае последовательной цепи все резисторы подключаются по одной линии за другой. В случае параллельной схемы, с другой стороны, линия расщепляется, резисторы лежат в отдельных линиях. В последовательной цепи тот же ток протекает через все резисторы, а в случае параллельной цепи ток расщепляется. В случае параллельной схемы одно и то же напряжение подается на каждый резистор, но не в последовательной цепи. Другое примечание: смесь последовательной цепи и параллельной схемы называется групповой схемой.

  • R(общ) – суммарное значение сопротивления;
  • R – номинал резистора, подсоединенного по параллельной схеме;
  • n – число подключенных узлов.

Особое внимание следует обратить на то, что конечный показатель сопротивления в случае использования параллельной схемы подключения обязательно будет меньше
по сравнению с номиналом любого элемента, подключаемого в цепь.

Примеры Подключение серий и параллельное соединение

В следующих примерах мы увидим, как рассчитать смесь схемы параллельной цепи и серии. В этой области шаг за шагом должен быть рассчитан набор последовательных схем и параллельных схем. На следующем графике показана смесь последовательного соединения и параллельного соединения. Каково общее сопротивление?

Сначала мы суммируем 20 Ом и 30 Ом, так как здесь имеется параллельная схема. Таким образом, схема выглядит следующим образом. Теперь добавим эту схему, добавив резисторы для вычисления общего сопротивления. Вычислите общее сопротивление следующего контура.

Пример расчета

Для большей наглядности можно рассмотреть следующий пример: допустим, у нас есть три резистора, чьи номиналы соответственно равны 100, 150 и 30 Ом. Если воспользоваться первой формулой для определения общего номинала, то получим следующее:

Прежде всего, вы должны увидеть, что есть короткое замыкание на резисторе с 95 Ом. Поэтому ток течет практически полностью по линии ниже, а 95 Ом не учитывается при расчете полного сопротивления. В противном случае у нас есть сочетание последовательной цепи и параллельной схемы.

Комбинированные последовательные и параллельные схемы

Вам нужно знать, как рассчитать резисторы последовательно, параллельно и комбинацию резисторов параллельно и последовательно? Если вы не хотите жарить свою печатную плату, вы это делаете! Эта статья покажет вам, как это сделать за несколько простых шагов. Это просто образный способ говорить, чтобы понятий было легко понять.

Некоторые факты, которые вы должны учитывать

Любой материал, который проводит электрический ток, имеет удельное сопротивление, которое представляет собой сопротивление материала при прохождении электрического тока.

  • Понять понятие сопротивления.
  • Единицей измерения резисторов является Ом.

Параллельное соединение резисторов характеризуется тем, что входные клеммы каждого из резисторов соединены друг с другом.

R(общ)=1/(1/100+1/150+1/30)=1/(0,01+0,007+0,03)=1/0,047=21,28Ом.

Если выполнить несложные расчеты, то можно получить следующее: для цепи, включающей в себя три детали, где наименьший показатель сопротивления составляет 30 Ом, результирующее значение номинала будет равно 21,28 Ом. Этот показатель будет меньше минимального значения номинала в цепи практически на 30%.

Аналогично, в конфигурации параллельного резистора выходные клеммы также соединены друг с другом. Из-за этого все резисторы пропускают одинаковое напряжение, т.е. имеют одинаковое падение напряжения. Это связано с тем, что концы каждого из резисторов соединены с одной и той же точкой в ​​цепи, и поэтому они имеют одинаковое напряжение.

Однако общий ток, протекающий через резисторы параллельно, равен сумме интенсивностей, которые проходят каждый резистор. Дифференциация параллельного соединения из последовательного интерфейса проста. В последовательной конфигурации резистора выходной разъем одного подключается к входному разъему следующего.

Важные нюансы

Обычно для резисторов параллельное соединение применяется тогда, когда стоит задача по созданию сопротивления большей мощности. Для ее решения потребуются резисторы, которые должны иметь равные показатели сопротивления и мощности. При таком варианте определить общую мощность можно следующим образом
: мощность одного элемента необходимо перемножить с суммарным числом всех резисторов, из которых состоит цепь, подсоединенных друг с другом в соответствии с параллельной схемой.

Вычисление сопротивлений параллельно: формула

Чтобы вычислить эквивалентное сопротивление нескольких подключенных параллельных резисторов, мы должны применить формулу, указанную выше этих строк. Чтобы избежать ошибок в расчетах, лучше всего разделить формулу на два шага. Сначала мы вычисляем сумму обратного для каждого сопротивления и, когда получаем результат, вычисляем его обратно, чтобы знать эквивалентное сопротивление.

Решенное сопротивление сопротивлениям параллельно

Например, мы вычислим эквивалентное сопротивление конфигурации, аналогичное той, что мы имеем на следующем рисунке. Первый шаг: вычислить сумму обратного каждого сопротивления. Шаг второй: вычислите обратное только что полученное сопротивление.

Вычисление трех резисторов параллельно

Если мы хотим решить предыдущий пример, но используя наш калькулятор из трех резисторов параллельно в сети, просто заполните значение каждого резистора в соответствующем поле. Порядок, в котором вы его пишете, не имеет значения, поэтому вам не нужно его уважать.

Скажем, если нами будут использоваться пять резисторов, чей номинал составляет 100 Ом, а мощность каждого равна 1 Вт, которые присоединены друг к другу в соответствии с параллельной схемой, то суммарный показатель сопротивления будет равен 20 Ом, а мощность составит 5 Вт.

Если взять те же резисторы, но подсоединить их в соответствии с последовательной схемой, то конечная мощность составит 5 Вт, а суммарный номинал будет равен 500 Ом.

Когда вы пишете значение трех резисторов параллельно, просто нажмите кнопку расчета, и вы автоматически получите результат без применения формулы для расчета сопротивления параллельно. С этим вы экономите время и, прежде всего, просчеты. Как мы видели в предыдущих разделах, устройства, которые выступают против прохода электрического тока более выраженным образом, чем обычно, обычно используются в электрических цепях. Эти устройства называются резисторами и могут быть связаны таким образом, что вместе они эквивалентны значению другого сопротивления, называемого эквивалентным сопротивлением.

Заключение

Параллельная схема подключения резисторов очень востребована по той причине, что часто возникает задача по созданию такого номинала, которого невозможно добиться при помощи простого параллельного соединения. При этом процедура расчета этого параметра отличается достаточной сложностью
, где необходимо учитывать разные параметры.

Ассоциация резисторов в серии

Он называется полученным сопротивлением или эквивалентом, к значению сопротивления, которое получается путем связывания их набора. В основном резисторы могут быть связаны последовательно, параллельно или комбинацией обоих смешанных вызовов. Когда два или более резисторов последовательно, интенсивность тока, проходящая через каждую из них, одинакова.

Если применить закон Ома к каждому из сопротивлений предыдущего рисунка, мы получим. Если мы сделаем сумму от члена к элементу по трем уравнениям, заметим, что. Таким образом, приведенное выше уравнение, если учесть, что. Итак, если вы понимаете, вы можете видеть, что три предыдущих резистора серии эквивалентны одному резистору, значение которого представляет собой сумму трех предыдущих.

Здесь важная роль отводится не только количеству подключаемых элементов, но и рабочим параметрам резисторов — прежде всего, сопротивлению и мощности. Если один из подключаемых элементов будет иметь неподходящий показатель, то это не позволит эффективно решить задачу по созданию требуемого номинала в цепи.

Последовательное соединение
это соединение двух или более резисторов в форме цепи,
в которой каждый отдельный резистор соединяется с другим отдельным резистором только в одной точке.

Ассоциация резисторов в параллельном

Когда два или более резисторов параллельны, они делятся своими концами, как показано на следующем рисунке. Если мы применим закон Ома в каждом из сопротивлений фигуры. Зная, что сумма интенсивностей каждого сопротивления равна интенсивности перед входом и выходом из набора, образованного тремя сопротивлениями.

Ассоциация смешанного сопротивления

Как правило, в электрических цепях они не просто похожи на последовательные или параллельные резисторы, но и на комбинацию обоих. Чтобы лучше понять, как подойти к этим типам ассоциаций, мы проиллюстрируем пример. Представьте себе следующую схему сопротивлений.

Общее сопротивление R общ

При таком соединении, через все резисторы проходит один и тот же электрический ток.
Чем больше элементов на данном участке электрической цепи, тем «труднее» току протекать через него.
Следовательно, при последовательном соединении резисторов их общее сопротивление увеличивается,
и оно равно сумме всех сопротивлений.

Подключение 2 равных громкоговорителей последовательно добавляет импедансы и ватты? Сопротивление добавляется, и общая мощность рассеивания на громкоговоритель уменьшается вдвое. Предположим, что выход 8 вольт и динамик 8 Ом ток, который циркулирует громкоговорителем.

Таким образом, динамик должен будет поддерживать более 8 Вт, чтобы он не был поврежден. Теперь подключите два динамика 8 Ом и 8 Вт последовательно, импеданс обоих составляет 16 Ом. Теперь мы вычисляем ток, протекающий через динамики. С этими данными мы вычисляем мощность в каждом динамике.

Напряжение при последовательном соединении

Напряжение при последовательном соединении распределяется на каждый резистор согласно закону Ома:

Т.е чем большее сопротивление резистора, тем большее напряжение на него падает.

Вывод: динамики работают более сдержанно, но усилитель будет поставлять половину мощности, когда динамик составляет 8 Ом. Разделен ли импеданс и ватт параллельно? Если мы рассмотрим одни и те же ораторы на примере предыдущего вопроса, можно сказать, что общий импеданс уменьшается наполовину и рассчитывается следующим образом.

Для работы с более чем двумя динамиками параллельно необходимо использовать другое уравнение для расчета импеданса. Если мы анализируем отдельно каждого динамика, мы понимаем, что каждый из них ведет себя так же, как в примере 1, когда каждый из них подключен к усилителю, через который они будут циркулировать 1 А, а мощность, подлежащая рассеиванию, будет составлять 8 Вт в каждом динамике.

Параллельное соединение
это соединение, при котором резисторы соединяются между собой обоими контактами.
В результате к одной точке (электрическому узлу) может быть присоединено несколько резисторов.

Общее сопротивление R общ

При таком соединении, через каждый резистор потечет отдельный ток.
Сила данного тока будет обратно пропорциональна сопротивлению резистора.
В результате общая проводимость такого участка электрической цепи увеличивается,
а общее сопротивление в свою очередь уменьшается.

Таким образом, при параллельном подсоединении резисторов с разным сопротивлением,
общее сопротивление будет всегда меньше значения самого маленького отдельного резистора.

Формула общей проводимости при параллельном соединении резисторов:

Формула эквивалентного общего сопротивления при параллельном соединении резисторов:

Для двух одинаковых резисторов общее сопротивление будет равно половине одного отдельного резистора:

Соответственно, для n одинаковых резисторов общее сопротивление будет равно значению одного резистора, разделенного на n.

Напряжение при параллельном соединении

Напряжение между точками A и B является как общим напряжением для всего участка цепи, так и напряжением, падающим на каждый резистор в отдельности.
Поэтому при параллельном соединении на все резисторы упадет одинаковое напряжение.

Через каждый резистор течет ток, сила которого обратно пропорциональна сопротивлению резистора.
Для того чтобы узнать какой ток течет через определенный резистор, можно воспользоваться законом Ома:

Смешанным соединением называют участок цепи, где часть резисторов
соединяются между собой последовательно, а часть параллельно.
В свою очередь, смешанное соединение бывает последовательного и параллельного типов.

Общее сопротивление R общ

  • Цепь разбивают на участки с только пареллельным или только последовательным соединением.
  • Вычисляют общее сопротивление для каждого отдельного участка.
  • Вычисляют общее сопротивление для всей цепи смешанного соединения.

Также существует более быстрый способ расчета общего сопротивления для смешанного соединения.
Можно, в соответствии схеме, сразу записывать формулу следующим образом:

  • Если резисторы соединяются последоватеьно — складывать.
  • Если резисторы соединяются параллельно — использовать условное обозначение «||».
  • Подставлять формулу для параллельного соединения где стоит символ «||».

Так это будет выглядеть для схемы 1:

последовательное, параллельное, смешанное соединение. Расчет сопротивления

Резисторы между собой могут быть соединены двумя основными способами: последовательно и параллельно. Смешанное соединение резисторов является их комбинацией.

Сочетания любых соединений резисторов можно привести к одному резистору, расчетом сопротивления которого (R) мы сейчас займемся.

ПАРАЛЛЕЛЬНОЕ СОЕДИНЕНИЕ РЕЗИСТОРОВ

Давайте рассчитаем общее сопротивление такой цепи (рисунок 1). Для этого нам понадобится закон Ома — I=U/R и закон Кирхгофа — I=I1+I2+..In

С учетом этого имеем:

  • I=U/R
  • I1=U/R1
  • I2=U/R2
  • In=U/Rn
  • U/R=U/R1+U/R2+…U/Rn
  • 1/R=1/R1+1/R2+…1/Rn

Последняя формула является основной для расчета сопротивления цепи параллельно соединенных резисторов. Для двух резисторов ее можно записать более удобно:
R=(R1*R2)/(R1+R2).

Отсюда следует, что в случае параллельного соединения двух одинаковых по номиналу резисторов (R1=R2) их общее сопротивление будет вдвое меньше любого из них. Это полезно помнить.

ПОСЛЕДОВАТЕЛЬНОЕ СОЕДИНЕНИЕ РЕЗИСТОРОВ

Используя уже упомянутые законы для цепи последовательно соединенных резисторов (рисунок 2) можем записать:

  • U=I*R
  • I=I1=I2=…In
  • U=U1+U2+…Un
  • I*R=I*R1+I*R2+…I*Rn
  • R=R1+R2+…Rn

То есть общее сопротивление резисторов при последовательном соединении равно сумме их сопротивлений.

СМЕШАННОЕ СОЕДИНЕНИЕ РЕЗИСТОРОВ

Такое соединение всегда можно представить как комбинацию последовательного и параллельного соединений (рис.3).

Расчет общего сопротивления цепи при этом производится поэтапно. В приведенном примере рассчитываем:

  1. последовательное сопротивление резисторов Rпосл=R1+R2
  2. параллельное соединение R=(Rпосл*R3)/(Rпосл+R3)

Безусловно, могут встретиться более сложные варианты, но методика расчета их сопротивления та же.

Несколько слов про то, когда возникает необходимость соединять резисторы тем или иным способом:

  1. Отсутствие «под рукой» резистора нужного номинала. При этом следует помнить, что погрешности резисторов будут суммироваться.

    Например, для рисунка 3.a, если фактическая погрешность R1 составляет +10%, а R2 имеет +15%, то для Rпосл она будет +25%.

    Здесь следует обращать внимание на знак, то есть для -10% и +15% в результате получим +5%.

  2. Необходимость получить большую мощность.

    Здесь надо учесть, что при одинаковых номиналах сопротивлений и мощностей соединяемых резисторов, как при последовательном, так и при параллельном их соединении итоговая мощность будет равна сумме мощностей.

    В противном случае следует ее рассчитать, используя закон Ома и формулу для определения рассеиваемой мощности P=I*U.

Про мощность и номиналы резисторов можно почитать здесь.

© 2012-2020 г. Все права защищены.

Представленные на сайте материалы имеют информационный характер и не могут быть использованы в качестве руководящих и нормативных документов

10.3: Последовательные и параллельные резисторы

Цели обучения

К концу раздела вы сможете:

  • Определите термин эквивалентное сопротивление
  • Рассчитайте эквивалентное сопротивление резисторов, включенных последовательно
  • Вычислить эквивалентное сопротивление резисторов, включенных параллельно

В книге «Ток и сопротивление» мы описали термин «сопротивление» и объяснили основную конструкцию резистора.По сути, резистор ограничивает поток заряда в цепи и представляет собой омическое устройство, где \ (V = IR \). В большинстве схем имеется более одного резистора. Если несколько резисторов соединены вместе и подключены к батарее, ток, подаваемый батареей, зависит от эквивалентного сопротивления цепи.

Эквивалентное сопротивление комбинации резисторов зависит как от их индивидуальных значений, так и от способа их подключения. Самыми простыми комбинациями резисторов являются последовательное и параллельное соединение (Рисунок \ (\ PageIndex {1} \)).В последовательной схеме выходной ток первого резистора течет на вход второго резистора; следовательно, ток одинаков в каждом резисторе. В параллельной схеме все выводы резистора на одной стороне резисторов соединены вместе, а все выводы на другой стороне соединены вместе. В случае параллельной конфигурации каждый резистор имеет одинаковое падение потенциала на нем, и токи через каждый резистор могут быть разными в зависимости от резистора.Сумма отдельных токов равна току, протекающему по параллельным соединениям.

Рисунок \ (\ PageIndex {1} \): (a) При последовательном соединении резисторов ток одинаков на каждом резисторе. (b) При параллельном соединении резисторов напряжение на каждом резисторе одинаковое. Резисторы

серии

Считается, что резисторы

включены последовательно, когда ток течет через резисторы последовательно. Рассмотрим рисунок \ (\ PageIndex {2} \), на котором показаны три последовательно включенных резистора с приложенным напряжением, равным \ (V_ {ab} \).Поскольку заряды проходят только по одному пути, ток через каждый резистор одинаков. Эквивалентное сопротивление набора резисторов при последовательном соединении равно алгебраической сумме отдельных сопротивлений.

Рисунок \ (\ PageIndex {2} \): (a) Три резистора, последовательно подключенные к источнику напряжения. (b) Исходная схема сокращается до эквивалентного сопротивления и источника напряжения.

На рисунке \ (\ PageIndex {2} \) ток, исходящий от источника напряжения, протекает через каждый резистор, поэтому ток через каждый резистор одинаков.Ток в цепи зависит от напряжения, подаваемого источником напряжения, и сопротивления резисторов. Для каждого резистора происходит падение потенциала, равное потере электрической потенциальной энергии, когда ток проходит через каждый резистор. Согласно закону Ома, падение потенциала \ (V \) на резисторе при протекании через него тока рассчитывается по формуле \ (V = IR \), где \ (I \) — ток в амперах (\ (A \)), а \ (R \) — сопротивление в Ом \ ((\ Omega) \).N V_i = 0. \]

Это уравнение часто называют законом петли Кирхгофа, который мы рассмотрим более подробно позже в этой главе. На рисунке \ (\ PageIndex {2} \) сумма падения потенциала каждого резистора и напряжения, подаваемого источником напряжения, должна равняться нулю:

\ [\ begin {align *} V — V_1 — V_2 — V_3 & = 0, \\ [4pt] V & = V_1 + V_2 + V_3, \\ [4pt] & = IR_1 + IR_2 + IR_3, \ end { выровнять *} \]

Решение для \ (I \)

\ [\ begin {align *} I & = \ frac {V} {R_1 + R_2 + R_3} \\ [4pt] & = \ frac {V} {R_ {S}}.\ end {align *} \]

Поскольку ток через каждый компонент одинаков, равенство можно упростить до эквивалентного сопротивления (\ (R_ {S} \)), которое представляет собой просто сумму сопротивлений отдельных резисторов. N R_i.\ label {серия эквивалентных сопротивлений} \]

Одним из результатов подключения компонентов в последовательную цепь является то, что если что-то происходит с одним компонентом, это влияет на все остальные компоненты. Например, если несколько ламп подключены последовательно и одна лампа перегорела, все остальные лампы погаснут.

Пример \ (\ PageIndex {1} \): эквивалентное сопротивление, ток и мощность в последовательной цепи

Батарея с напряжением на клеммах 9 В подключена к цепи, состоящей из четырех последовательно соединенных резисторов \ (20 \, \ Omega \) и одного \ (10 ​​\, \ Omega \) (Рисунок \ (\ PageIndex {3 } \)).Предположим, что батарея имеет незначительное внутреннее сопротивление.

  1. Рассчитайте эквивалентное сопротивление цепи.
  2. Рассчитайте ток через каждый резистор.
  3. Рассчитайте падение потенциала на каждом резисторе.
  4. Определите общую мощность, рассеиваемую резисторами, и мощность, потребляемую батареей.

Рисунок \ (\ PageIndex {3} \): Простая последовательная схема с пятью резисторами.

Стратегия

В последовательной цепи эквивалентное сопротивление представляет собой алгебраическую сумму сопротивлений.2R \), а общая мощность, рассеиваемая резисторами, равна сумме мощности, рассеиваемой каждым резистором. Мощность, подаваемая батареей, можно найти с помощью \ (P = I \ epsilon \).

Решение

  1. Эквивалентное сопротивление — это алгебраическая сумма сопротивлений (уравнение \ ref {ряд эквивалентных сопротивлений}): \ [\ begin {align *} R_ {S} & = R_1 + R_2 + R_3 + R_4 + R_5 \\ [4pt ] & = 20 \, \ Omega + 20 \, \ Omega + 20 \, \ Omega + 20 \, \ Omega + 10 \, \ Omega = 90 \, \ Omega.2 (10 \, \ Omega) = 0,1 \, W, \ nonumber \] \ [P_ {рассеивается} = 0,2 \, W + 0,2 \, W + 0,2 \, W + 0,2 \, W + 0,1 \, W = 0,9 \, W, \ nonumber \] \ [P_ {источник} = I \ epsilon = (0,1 \, A) (9 \, V) = 0,9 \, W. \ nonumber \]

Значение

Есть несколько причин, по которым мы будем использовать несколько резисторов вместо одного резистора с сопротивлением, равным эквивалентному сопротивлению цепи. Возможно, резистора необходимого размера нет в наличии, или нам нужно отводить выделяемое тепло, или мы хотим минимизировать стоимость резисторов.Каждый резистор может стоить от нескольких центов до нескольких долларов, но при умножении на тысячи единиц экономия затрат может быть значительной.

Упражнение \ (\ PageIndex {1} \)

Некоторые гирлянды миниатюрных праздничных фонарей закорачиваются при перегорании лампочки. Устройство, вызывающее короткое замыкание, называется шунтом, который позволяет току течь по разомкнутой цепи. «Короткое замыкание» похоже на протягивание куска проволоки через компонент. Луковицы обычно сгруппированы в серии по девять луковиц.Если перегорает слишком много лампочек, в конце концов открываются шунты. Что вызывает это?

Ответ

Эквивалентное сопротивление девяти последовательно соединенных лампочек составляет 9 R . Ток равен \ (I = V / 9 \, R \). Если одна лампочка перегорит, эквивалентное сопротивление составит 8 R , и напряжение не изменится, но ток возрастет \ ((I = V / 8 \, R \). Чем больше лампочек перегорят, ток станет равным. В конце концов, ток становится слишком большим, что приводит к перегоранию шунта.№ Р_и. \]

  • Одинаковый ток течет через каждый резистор последовательно.
  • Отдельные последовательно включенные резисторы не получают полное напряжение источника, а делят его. Общее падение потенциала на последовательной конфигурации резисторов равно сумме падений потенциала на каждом резисторе.
  • Параллельные резисторы

    На рисунке \ (\ PageIndex {4} \) показаны резисторы, включенные параллельно, подключенные к источнику напряжения. Резисторы включены параллельно, когда один конец всех резисторов соединен непрерывным проводом с незначительным сопротивлением, а другой конец всех резисторов также соединен друг с другом непрерывным проводом с незначительным сопротивлением.Падение потенциала на каждом резисторе одинаковое. Ток через каждый резистор можно найти с помощью закона Ома \ (I = V / R \), где напряжение на каждом резисторе постоянно. Например, автомобильные фары, радио и другие системы подключены параллельно, так что каждая подсистема использует полное напряжение источника и может работать полностью независимо. То же самое и с электропроводкой в ​​вашем доме или любом здании.

    Рисунок \ (\ PageIndex {4} \): Два резистора, подключенных параллельно источнику напряжения.(b) Исходная схема сокращается до эквивалентного сопротивления и источника напряжения.

    Ток, протекающий от источника напряжения на рисунке \ (\ PageIndex {4} \), зависит от напряжения, подаваемого источником напряжения, и эквивалентного сопротивления цепи. В этом случае ток течет от источника напряжения и попадает в соединение или узел, где цепь разделяется, протекая через резисторы \ (R_1 \) и \ (R_2 \). По мере того, как заряды проходят от батареи, некоторые проходят через резистор \ (R_1 \), а некоторые — через резистор \ (R_2 \).Сумма токов, протекающих в переходе, должна быть равна сумме токов, текущих из перехода:

    \ [\ sum I_ {in} = \ sum I_ {out}. {- 1}.{-1}. \ label {10.3} \]

    Это соотношение приводит к эквивалентному сопротивлению \ (R_ {P} \), которое меньше наименьшего из отдельных сопротивлений. Когда резисторы подключены параллельно, от источника течет больше тока, чем протекает для любого из них по отдельности, поэтому общее сопротивление ниже.

    Пример \ (\ PageIndex {2} \): Анализ параллельной цепи

    Три резистора \ (R_1 = 1,00 \, \ Omega \), \ (R_2 = 2,00 \, \ Omega \) и \ (R_3 = 2,00 \, \ Omega \) подключены параллельно.Параллельное соединение подключается к источнику напряжения \ (V = 3,00 \, V \).

    1. Какое эквивалентное сопротивление?
    2. Найдите ток, подаваемый источником в параллельную цепь.
    3. Рассчитайте токи в каждом резисторе и покажите, что в сумме они равны выходному току источника.
    4. Рассчитайте мощность, рассеиваемую каждым резистором.
    5. Найдите выходную мощность источника и покажите, что она равна общей мощности, рассеиваемой резисторами.

    Стратегия

    (a) Общее сопротивление для параллельной комбинации резисторов определяется с помощью уравнения \ ref {10.3}. (Обратите внимание, что в этих расчетах каждый промежуточный ответ отображается с дополнительной цифрой.)

    (b) Ток, подаваемый источником, можно найти из закона Ома, заменив \ (R_ {P} \) на полное сопротивление \ (I = \ frac {V} {R_ {P}} \).

    (c) Отдельные токи легко вычислить по закону Ома \ (\ left (I_i = \ frac {V_i} {R_i} \ right) \), поскольку каждый резистор получает полное напряжение.{-1} = 0,50 \, \ Omega. \ Nonumber \] Общее сопротивление с правильным количеством значащих цифр равно \ (R_ {eq} = 0,50 \, \ Omega \). Как и предполагалось, \ (R_ {P} \) меньше наименьшего индивидуального сопротивления.

  • Полный ток можно найти из закона Ома, заменив полное сопротивление \ (R_ {P} \). Это дает \ [I = \ frac {V} {R_ {P}} = \ frac {3.00 \, V} {0.50 \, \ Omega} = 6.00 \, A. \ nonumber \] Текущий I для каждого устройства намного больше, чем для тех же устройств, подключенных последовательно (см. предыдущий пример).Схема с параллельным соединением имеет меньшее общее сопротивление, чем резисторы, включенные последовательно.
  • Отдельные токи легко вычислить по закону Ома, так как каждый резистор получает полное напряжение. Таким образом, \ [I_1 = \ frac {V} {R_1} = \ frac {3.00 \, V} {1.00 \, \ Omega} = 3.00 \, A. \ nonumber \] Аналогично, \ [I_2 = \ frac {V } {R_2} = \ frac {3.00 \, V} {2.00 \, \ Omega} = 1.50 \, A \ nonumber \] и \ [I_3 = \ frac {V} {R_3} = \ frac {3.00 \, V } {2.00 \, \ Omega} = 1.50 \, A. \ nonumber \] Общий ток — это сумма отдельных токов: \ [I_1 + I_2 + I_3 = 6.2} {2.00 \, \ Omega} = 4.50 \, W. \ nonumber \]
  • Общую мощность также можно рассчитать несколькими способами. Выбор \ (P = IV \) и ввод общей текущей доходности \ [P = IV = (6.00 \, A) (3.00 \, V) = 18.00 \, W. \ nonumber \]
  • Значение

    Общая мощность, рассеиваемая резисторами, также 18,00 Вт:

    \ [P_1 + P_2 + P_3 = 9,00 \, W + 4,50 \, W + 4,50 \, W = 18,00 \, W. \ nonumber \]

    Обратите внимание, что общая мощность, рассеиваемая резисторами, равна мощности, подаваемой от источника.

    Упражнение \ (\ PageIndex {2A} \)

    Рассмотрим одну и ту же разность потенциалов \ ((V = 3,00 \, V) \), приложенную к одним и тем же трем последовательно включенным резисторам. Будет ли эквивалентное сопротивление последовательной цепи больше, меньше или равно трем резисторам, включенным параллельно? Будет ли ток в последовательной цепи выше, ниже или равен току, обеспечиваемому тем же напряжением, приложенным к параллельной цепи? Как мощность, рассеиваемая последовательно резистором, будет сравниваться с мощностью, рассеиваемой параллельно резисторами?

    Решение

    Эквивалент последовательной схемы будет \ (R_ {eq} = 1.00 \, \ Omega + 2.00 \, \ Omega + 2.00 \, \ Omega = 5.00 \, \ Omega \), что выше эквивалентного сопротивления параллельной цепи \ (R_ {eq} = 0.50 \, \ Omega \ ). Эквивалентный резистор любого количества резисторов всегда выше, чем эквивалентное сопротивление тех же резисторов, соединенных параллельно. Ток через последовательную цепь будет \ (I = \ frac {3.00 \, V} {5.00 \, \ Omega} = 0.60 \, A \), что меньше суммы токов, проходящих через каждый резистор в параллельная цепь, \ (I = 6.00 \, А \). Это неудивительно, поскольку эквивалентное сопротивление последовательной цепи выше. Ток при последовательном соединении любого количества резисторов всегда будет ниже, чем ток при параллельном соединении тех же резисторов, поскольку эквивалентное сопротивление последовательной цепи будет выше, чем параллельной цепи. Мощность, рассеиваемая последовательно включенными резисторами, будет равна \ (P = 1,800 \, Вт \), что ниже мощности, рассеиваемой в параллельной цепи \ (P = 18.00 \, Вт \).

    Упражнение \ (\ PageIndex {2B} \)

    Как бы вы использовали реку и два водопада для моделирования параллельной конфигурации двух резисторов? Как разрушается эта аналогия?

    Решение

    Река, текущая в горизонтальном направлении с постоянной скоростью, разделяется на две части и течет через два водопада. Молекулы воды аналогичны электронам в параллельных цепях. Количество молекул воды, которые текут в реке и падает, должно быть равно количеству молекул, которые текут над каждым водопадом, точно так же, как сумма тока через каждый резистор должна быть равна току, текущему в параллельном контуре.Молекулы воды в реке обладают энергией благодаря своему движению и высоте. Потенциальная энергия молекул воды в реке постоянна из-за их одинаковой высоты. Это аналогично постоянному изменению напряжения в параллельной цепи. Напряжение — это потенциальная энергия на каждом резисторе.

    При рассмотрении энергии аналогия быстро разрушается. В водопаде потенциальная энергия преобразуется в кинетическую энергию молекул воды. В случае прохождения электронов через резистор падение потенциала преобразуется в тепло и свет, а не в кинетическую энергию электронов.

    Суммируем основные характеристики резисторов параллельно:

    1. Эквивалентное сопротивление находится по формуле \ ref {10. 3} и меньше любого отдельного сопротивления в комбинации.
    2. Падение потенциала на каждом параллельном резисторе одинаковое.
    3. Параллельные резисторы не получают общий ток каждый; они делят это. Ток, поступающий в параллельную комбинацию резисторов, равен сумме токов, протекающих через каждый резистор, включенный параллельно.

    В этой главе мы представили эквивалентное сопротивление резисторов, соединенных последовательно, и резисторов, соединенных параллельно. Как вы помните, в разделе «Емкость» мы ввели эквивалентную емкость конденсаторов, соединенных последовательно и параллельно. Цепи часто содержат как конденсаторы, так и резисторы. В таблице \ (\ PageIndex {1} \) приведены уравнения, используемые для эквивалентного сопротивления и эквивалентной емкости для последовательных и параллельных соединений.

    Таблица \ (\ PageIndex {1} \): Сводка по эквивалентному сопротивлению и емкости в последовательной и параллельной комбинациях
    Комбинация серий Параллельная комбинация
    Эквивалентная емкость \ [\ frac {1} {C_ {S}} = \ frac {1} {C_1} + \ frac {1} {C_2} + \ frac {1} {C_3} +. N R_i \ nonumber \] \ [\ frac {1} {R_ {P}} = \ frac {1} {R_1} + \ frac {1} {R_2} + \ frac {1} {R_3} +. . . \ nonumber \]

    Сочетания последовательного и параллельного

    Более сложные соединения резисторов часто представляют собой просто комбинации последовательного и параллельного соединения. Такие комбинации обычны, особенно если учитывать сопротивление проводов. В этом случае сопротивление провода включено последовательно с другими сопротивлениями, включенными параллельно.

    Комбинации последовательного и параллельного соединения могут быть уменьшены до одного эквивалентного сопротивления, используя метод, показанный на рисунке \ (\ PageIndex {5} \).Различные части могут быть идентифицированы как последовательные или параллельные соединения, уменьшенные до их эквивалентных сопротивлений, а затем уменьшенные до тех пор, пока не останется единственное эквивалентное сопротивление. Процесс занимает больше времени, чем труден. Здесь мы отмечаем эквивалентное сопротивление как \ (R_ {eq} \).

    Рисунок \ (\ PageIndex {5} \): (а) Исходная схема из четырех резисторов. (b) Шаг 1: резисторы \ (R_3 \) и \ (R_4 \) включены последовательно, и эквивалентное сопротивление равно \ (R_ {34} = 10 \, \ Omega \) (c) Шаг 2: сокращенная схема показывает, что резисторы \ (R_2 \) и \ (R_ {34} \) включены параллельно, с эквивалентным сопротивлением \ (R_ {234} = 5 \, \ Omega \).(d) Шаг 3: приведенная схема показывает, что \ (R_1 \) и \ (R_ {234} \) включены последовательно с эквивалентным сопротивлением \ (R_ {1234} = 12 \, \ Omega \), которое является эквивалентное сопротивление \ (R_ {eq} \). (e) Уменьшенная схема с источником напряжения \ (V = 24 \, V \) с эквивалентным сопротивлением \ (R_ {eq} = 12 \, \ Omega \). Это приводит к току \ (I = 2 \, A \) от источника напряжения.

    Обратите внимание, что резисторы \ (R_3 \) и \ (R_4 \) включены последовательно. Их можно объединить в одно эквивалентное сопротивление. {- 1} = 5 \, \ Omega.\ nonumber \]

    Этот шаг процесса сокращает схему до двух резисторов, показанных на рисунке \ (\ PageIndex {5d} \). Здесь схема сводится к двум резисторам, которые в данном случае включены последовательно. Эти два резистора можно уменьшить до эквивалентного сопротивления, которое является эквивалентным сопротивлением цепи:

    \ [R_ {eq} = R_ {1234} = R_1 + R_ {234} = 7 \, \ Omega + 5 \ Omega = 12 \, \ Omega. \ nonumber \]

    Основная цель этого анализа схемы достигнута, и теперь схема сведена к одному резистору и одному источнику напряжения.

    Теперь мы можем проанализировать схему. Ток, обеспечиваемый источником напряжения, равен \ (I = \ frac {V} {R_ {eq}} = \ frac {24 \, V} {12 \, \ Omega} = 2 \, A \). Этот ток проходит через резистор \ (R_1 \) и обозначается как \ (I_1 \). Падение потенциала на \ (R_1 \) можно найти с помощью закона Ома:

    \ [V_1 = I_1R_1 = (2 \, A) (7 \, \ Omega) = 14 \, V. \ nonumber \]

    Глядя на рисунок \ (\ PageIndex {5c} \), это оставляет \ (24 \, V — 14 \, V = 10 \, V \) отбрасывать через параллельную комбинацию \ (R_2 \) и \ ( R_ {34} \). Ток через \ (R_2 \) можно найти с помощью закона Ома:

    \ [I_2 = \ frac {V_2} {R_2} = \ frac {10 \, V} {10 \, \ Omega} = 1 \, A. \ nonumber \]

    Резисторы \ (R_3 \) и \ (R_4 \) включены последовательно, поэтому токи \ (I_3 \) и \ (I_4 \) равны

    .

    \ [I_3 = I_4 = I — I_2 = 2 \, A — 1 \, A = 1 \, A. \ nonumber \]

    Используя закон Ома, мы можем найти падение потенциала на двух последних резисторах. Потенциальные капли равны \ (V_3 = I_3R_3 = 6 \, V \) и \ (V_4 = I_4R_4 = 4 \, V \).2 (4 \, \ Omega) = 4 \, W, \\ [4pt] P_ {рассеивается} & = P_1 + P_2 + P_3 + P_4 = 48 \, W. \ end {align *} \]

    Полная энергия постоянна в любом процессе. Следовательно, мощность, подаваемая источником напряжения, составляет

    \ [\ begin {align *} P_s & = IV \\ [4pt] & = (2 \, A) (24 \, V) = 48 \, W \ end {align *} \]

    Анализ мощности, подаваемой в схему, и мощности, рассеиваемой резисторами, является хорошей проверкой достоверности анализа; они должны быть равны.

    Пример \ (\ PageIndex {3} \): объединение последовательных и параллельных цепей

    На рисунке \ (\ PageIndex {6} \) показаны резисторы, подключенные последовательно и параллельно.Мы можем рассматривать \ (R_1 \) как сопротивление проводов, ведущих к \ (R_2 \) и \ (R_3 \).

    1. Найдите эквивалентное сопротивление цепи.
    2. Какое падение потенциала \ (V_1 \) на резисторе \ (R_1 \)?
    3. Найдите ток \ (I_2 \) через резистор \ (R_2 \).
    4. Какую мощность рассеивает \ (R_2 \)?

    Рисунок \ (\ PageIndex {6} \): Эти три резистора подключены к источнику напряжения так, чтобы \ (R_2 \) и \ (R_3 \) были параллельны друг другу, и эта комбинация была последовательно с \ (R_1 \).

    Стратегия

    (a) Чтобы найти эквивалентное сопротивление, сначала найдите эквивалентное сопротивление параллельного соединения \ (R_2 \) и \ (R_3 \). Затем используйте этот результат, чтобы найти эквивалентное сопротивление последовательного соединения с \ (R_1 \).

    (b) Ток через \ (R_1 \) можно найти с помощью закона Ома и приложенного напряжения. Ток через \ (R_1 \) равен току от батареи. Падение потенциала \ (V_1 \) на резисторе \ (R_1 \) (которое представляет собой сопротивление в соединительных проводах) можно найти с помощью закона Ома.{-1} = 5.10 \, \ Omega. \ Nonumber \] Общее сопротивление этой комбинации занимает промежуточное положение между значениями чистой серии и чисто параллельной (\ (20.0 \, \ Omega \) и \ (0.804 \, \ Omega \) ), соответственно).

  • Ток через \ (R_1 \) равен току, обеспечиваемому батареей: \ [I_1 = I = \ frac {V} {R_ {eq}} = \ frac {12.0 \, V} {5.10 \, \ Omega} = 2.35 \, A. \ nonumber \] Напряжение на \ (R_1 \) равно \ [V_1 = I_1R_1 = (2.35 \, A) (1 \, \ Omega) = 2.35 \, V. \ nonumber \] Напряжение, приложенное к \ (R_2 \) и \ (R_3 \), меньше напряжения, подаваемого батареей, на величину \ (V_1 \).Когда сопротивление провода велико, это может существенно повлиять на работу устройств, представленных \ (R_2 \) и \ (R_3 \).
  • Чтобы найти ток через \ (R_2 \), мы должны сначала найти приложенное к нему напряжение. Напряжение на двух параллельных резисторах одинаково: \ [V_2 = V_3 = V — V_1 = 12.0 \, V — 2.35 \, V = 9.65 \, V. \ nonumber \] Теперь мы можем найти ток \ (I_2 \) через сопротивление \ (R_2 \) по закону Ома: \ [I_2 = \ frac {V_2} {R_2} = \ frac {9.65 \, V} {6.00 \, \ Omega} = 1.2 (6.00 \, \ Omega) = 15.5 \, W. \ nonumber \]
  • Значение

    Анализ сложных схем часто можно упростить, сведя схему к источнику напряжения и эквивалентному сопротивлению. Даже если вся схема не может быть сведена к одному источнику напряжения и одному эквивалентному сопротивлению, части схемы могут быть уменьшены, что значительно упрощает анализ.

    Упражнение \ (\ PageIndex {3} \)

    Учитывайте электрические цепи в вашем доме.Приведите хотя бы два примера схем, в которых для эффективной работы необходимо использовать комбинацию последовательных и параллельных схем.

    Решение

    Все цепи верхнего освещения параллельны и подключены к основному источнику питания, поэтому при перегорании одной лампочки все верхнее освещение не гаснет. У каждого верхнего света будет как минимум один переключатель, включенный последовательно с источником света, так что вы можете включать и выключать его.

    В холодильнике есть компрессор и лампа, которая загорается при открытии двери.Обычно для подключения холодильника к стене используется только один шнур. Цепь, содержащая компрессор, и цепь, содержащая цепь освещения, параллельны, но есть переключатель, включенный последовательно со светом. Термостат управляет переключателем, включенным последовательно с компрессором, чтобы контролировать температуру холодильника.

    Практическое применение

    Одним из следствий этого последнего примера является то, что сопротивление в проводах снижает ток и мощность, подаваемую на резистор.Если сопротивление провода относительно велико, как в изношенном (или очень длинном) удлинителе, то эти потери могут быть значительными. Если потребляется большой ток, падение IR в проводах также может быть значительным и может проявляться из-за тепла, выделяемого в шнуре.

    Например, когда вы роетесь в холодильнике и включается мотор, свет холодильника на мгновение гаснет. Точно так же вы можете увидеть тусклый свет в салоне, когда вы запускаете двигатель вашего автомобиля (хотя это может быть связано с сопротивлением внутри самой батареи).

    Что происходит в этих сильноточных ситуациях, показано на рисунке \ (\ PageIndex {7} \). Устройство, обозначенное символом \ (R_3 \), имеет очень низкое сопротивление, поэтому при его включении течет большой ток. Этот увеличенный ток вызывает большее падение IR в проводах, обозначенных \ (R_1 \), уменьшая напряжение на лампочке (которое составляет \ (R_2 \)), которое затем заметно гаснет.

    Рисунок \ (\ PageIndex {7} \): Почему свет тускнеет при включении большого прибора? Ответ заключается в том, что большой ток, потребляемый двигателем прибора, вызывает значительное падение IR в проводах и снижает напряжение на свету.

    Стратегия решения проблем: последовательные и параллельные резисторы

    1. Нарисуйте четкую принципиальную схему, пометив все резисторы и источники напряжения. Этот шаг включает список известных значений проблемы, так как они отмечены на вашей принципиальной схеме.
    2. Определите, что именно необходимо определить в проблеме (определите неизвестные). Письменный список полезен.
    3. Определите, подключены ли резисторы последовательно, параллельно или в комбинации последовательно и параллельно.Изучите принципиальную схему, чтобы сделать эту оценку. Резисторы включены последовательно, если через них должен последовательно проходить один и тот же ток.
    4. Используйте соответствующий список основных функций для последовательных или параллельных подключений, чтобы найти неизвестные. Есть один список для серий и другой для параллельных.
    5. Проверьте, являются ли ответы разумными и последовательными.

    Пример \ (\ PageIndex {4} \): объединение последовательных и параллельных цепей

    Два резистора, соединенных последовательно \ ((R_1, \, R_2) \), соединены с двумя резисторами, включенными параллельно \ ((R_3, \, R_4) \).Последовательно-параллельная комбинация подключается к батарее. Каждый резистор имеет сопротивление 10,00 Ом. Провода, соединяющие резисторы и аккумулятор, имеют незначительное сопротивление. Через резистор \ (R_1 \) проходит ток 2,00 А. Какое напряжение подается от источника напряжения?

    Стратегия

    Используйте шаги предыдущей стратегии решения проблем, чтобы найти решение для этого примера.

    Решение

    Рисунок \ (\ PageIndex {8} \): Чтобы найти неизвестное напряжение, мы должны сначала найти эквивалентное сопротивление цепи.

    1. Нарисуйте четкую принципиальную схему (рисунок \ (\ PageIndex {8} \)).
    2. Неизвестно напряжение аккумулятора. Чтобы определить напряжение, подаваемое батареей, необходимо найти эквивалентное сопротивление.
    3. В этой схеме мы уже знаем, что резисторы \ (R_1 \) и \ (R_2 \) включены последовательно, а резисторы \ (R_3 \) и \ (R_4 \) включены параллельно. Эквивалентное сопротивление параллельной конфигурации резисторов \ (R_3 \) и \ (R_4 \) последовательно с последовательной конфигурацией резисторов \ (R_1 \) и \ (R_2 \).{-1} = 5,00 \, \ Омега. \ nonumber \] Эта параллельная комбинация включена последовательно с двумя другими резисторами, поэтому эквивалентное сопротивление схемы равно \ (R_ {eq} = R_1 + R_2 + R_ {34} = (25.00 \, \ Omega \). поэтому напряжение, подаваемое батареей, равно \ (V = IR_ {eq} = 2.00 \, A (25.00 \, \ Omega) = 50.00 \, V \).
    4. Один из способов проверить соответствие ваших результатов — это рассчитать мощность, подаваемую батареей, и мощность, рассеиваемую резисторами. Мощность, обеспечиваемая аккумулятором, равна \ (P_ {batt} = IV = 100.2R_4 \\ [4pt] & = 40.00 \, W + 40.00 \, W + 10.00 \, W + 10.00 \, W = 100. \, W. \ end {align *} \]

      Поскольку мощность, рассеиваемая резисторами, равна мощности, выделяемой батареей, наше решение кажется последовательным.

      Значение

      Если проблема имеет комбинацию последовательного и параллельного соединений, как в этом примере, ее можно уменьшить поэтапно, используя предыдущую стратегию решения проблемы и рассматривая отдельные группы последовательных или параллельных соединений.При нахождении \ (R_ {eq} \) для параллельного соединения необходимо с осторожностью относиться к обратному. Кроме того, единицы и числовые результаты должны быть разумными. Эквивалентное последовательное сопротивление должно быть больше, а эквивалентное параллельное сопротивление, например, должно быть меньше. Мощность должна быть больше для одних и тех же устройств, подключенных параллельно, по сравнению с последовательными и так далее.

      Авторы и авторство

      • Сэмюэл Дж. Линг (Государственный университет Трумэна), Джефф Санни (Университет Лойола Мэримаунт) и Билл Мобс со многими авторами.Эта работа лицензирована OpenStax University Physics в соответствии с лицензией Creative Commons Attribution License (4.0).

      6.2 Последовательные и параллельные резисторы — Введение в электричество, магнетизм и схемы

      ЦЕЛИ ОБУЧЕНИЯ

      К концу раздела вы сможете:

      • Определите термин эквивалентное сопротивление
      • Рассчитайте эквивалентное сопротивление резисторов, включенных последовательно
      • Вычислить эквивалентное сопротивление резисторов, включенных параллельно

      В книге «Ток и сопротивление» мы описали термин «сопротивление» и объяснили основную конструкцию резистора.По сути, резистор ограничивает поток заряда в цепи и представляет собой омическое устройство, где. В большинстве схем имеется более одного резистора. Если несколько резисторов соединены вместе и подключены к батарее, ток, подаваемый батареей, зависит от эквивалентного сопротивления цепи.

      Эквивалентное сопротивление комбинации резисторов зависит как от их индивидуальных значений, так и от способа их подключения. Самыми простыми комбинациями резисторов являются последовательное и параллельное соединение (рисунок 6.2.1). В последовательной схеме выходной ток первого резистора течет на вход второго резистора; следовательно, ток одинаков в каждом резисторе. В параллельной схеме все выводы резистора на одной стороне резисторов соединены вместе, а все выводы на другой стороне соединены вместе. В случае параллельной конфигурации каждый резистор имеет одинаковое падение потенциала на нем, и токи через каждый резистор могут быть разными в зависимости от резистора.Сумма отдельных токов равна току, протекающему по параллельным соединениям.

      (рисунок 6.2.1)

      Рисунок 6.2.1. (a) При последовательном соединении резисторов ток одинаков на каждом резисторе. (b) При параллельном соединении резисторов напряжение на каждом резисторе одинаковое.
      Резисторы

      серии

      Считается, что резисторы

      включены последовательно, когда ток течет через резисторы последовательно. Рассмотрим рисунок 6.2.2, на котором показаны три последовательно включенных резистора с приложенным напряжением, равным.Поскольку заряды проходят только по одному пути, ток через каждый резистор одинаков. Эквивалентное сопротивление набора резисторов при последовательном соединении равно алгебраической сумме отдельных сопротивлений.

      (рисунок 6.2.2)

      Рисунок 6.2.2 (a) Три резистора, последовательно подключенных к источнику напряжения. (b) Исходная схема сокращается до эквивалентного сопротивления и источника напряжения.

      На рисунке 6.2.2 ток, идущий от источника напряжения, протекает через каждый резистор, поэтому ток через каждый резистор одинаков.Ток в цепи зависит от напряжения, подаваемого источником напряжения, и сопротивления резисторов. Для каждого резистора происходит падение потенциала, равное потере электрической потенциальной энергии, когда ток проходит через каждый резистор. Согласно закону Ома падение потенциала на резисторе при протекании через него тока рассчитывается по формуле, где — ток в амперах (), а — сопротивление в омах (). Поскольку энергия сохраняется, а напряжение равно потенциальной энергии на заряд, сумма напряжения, приложенного к цепи источником, и падения потенциала на отдельных резисторах вокруг контура должны быть равны нулю:

      Это уравнение часто называют законом петли Кирхгофа, который мы рассмотрим более подробно позже в этой главе.На рисунке 6.2.2 сумма падения потенциала каждого резистора и напряжения, подаваемого источником напряжения, должна равняться нулю:

      Поскольку ток через каждый компонент одинаков, равенство можно упростить до эквивалентного сопротивления, которое представляет собой просто сумму сопротивлений отдельных резисторов.

      Любое количество резисторов может быть подключено последовательно. Если резисторы соединены последовательно, эквивалентное сопротивление равно

      .

      (6.2.1)

      Одним из результатов подключения компонентов в последовательную цепь является то, что если что-то происходит с одним компонентом, это влияет на все остальные компоненты. Например, если несколько ламп подключены последовательно и одна лампа перегорела, все остальные лампы погаснут.

      ПРИМЕР 6.2.1


      Эквивалентное сопротивление, ток и мощность в последовательной цепи

      Батарея с напряжением на клеммах подключена к цепи, состоящей из четырех и одного резистора, соединенных последовательно (рисунок 6.2.3). Предположим, что батарея имеет незначительное внутреннее сопротивление. (а) Рассчитайте эквивалентное сопротивление цепи. (b) Рассчитайте ток через каждый резистор. (c) Рассчитайте падение потенциала на каждом резисторе. (d) Определите общую мощность, рассеиваемую резисторами, и мощность, потребляемую батареей.

      (рисунок 6.2.3)

      Рисунок 6.2.3 Простая последовательная схема с пятью резисторами.

      Стратегия

      В последовательной цепи эквивалентное сопротивление представляет собой алгебраическую сумму сопротивлений.Ток в цепи можно найти из закона Ома и равен напряжению, деленному на эквивалентное сопротивление. Падение потенциала на каждом резисторе можно найти с помощью закона Ома. Мощность, рассеиваемая каждым резистором, может быть найдена с помощью, а общая мощность, рассеиваемая резисторами, равна сумме мощности, рассеиваемой каждым резистором. Мощность, обеспечиваемую аккумулятором, можно найти с помощью.

      Решение

      а. Эквивалентное сопротивление — это алгебраическая сумма сопротивлений:

      г.Ток в цепи одинаков для каждого резистора в последовательной цепи и равен приложенному напряжению, деленному на эквивалентное сопротивление:

      г. Падение потенциала на каждом резисторе можно найти с помощью закона Ома:

      Обратите внимание, что сумма падений потенциала на каждом резисторе равна напряжению, подаваемому батареей.

      г. Мощность, рассеиваемая резистором, равна, а мощность, отдаваемая аккумулятором, равна:

      Значение

      Есть несколько причин, по которым мы будем использовать несколько резисторов вместо одного резистора с сопротивлением, равным эквивалентному сопротивлению цепи.Возможно, резистора необходимого размера нет в наличии, или нам нужно отводить выделяемое тепло, или мы хотим минимизировать стоимость резисторов. Каждый резистор может стоить от нескольких центов до нескольких долларов, но при умножении на тысячи единиц экономия затрат может быть значительной.

      ПРОВЕРЬТЕ ПОНИМАНИЕ 6.2

      Некоторые гирлянды миниатюрных праздничных огней закорачиваются при перегорании лампочки. Устройство, вызывающее короткое замыкание, называется шунтом, который позволяет току течь по разомкнутой цепи.«Короткое замыкание» похоже на протягивание куска проволоки через компонент. Луковицы обычно сгруппированы в серии по девять луковиц. Если перегорает слишком много лампочек, в конце концов открываются шунты. Что вызывает это?

      Кратко обозначим основные характеристики последовательно соединенных резисторов:

      Сопротивления серии

      1. суммируются, чтобы получить эквивалентное сопротивление:

      2. Одинаковый ток течет через каждый резистор последовательно.
      3. Отдельные последовательно включенные резисторы не получают полное напряжение источника, а делят его.Общее падение потенциала на последовательной конфигурации резисторов равно сумме падений потенциала на каждом резисторе.

      Параллельные резисторы

      На рисунке 6.2.4 показаны резисторы, включенные параллельно, подключенные к источнику напряжения. Резисторы включены параллельно, когда один конец всех резисторов соединен непрерывным проводом с незначительным сопротивлением, а другой конец всех резисторов также соединен друг с другом непрерывным проводом с незначительным сопротивлением.Падение потенциала на каждом резисторе одинаковое. Ток через каждый резистор можно найти с помощью закона Ома, где напряжение на каждом резисторе постоянно. Например, автомобильные фары, радио и другие системы подключены параллельно, так что каждая подсистема использует полное напряжение источника и может работать полностью независимо. То же самое и с электропроводкой в ​​вашем доме или любом здании.

      (рисунок 6.2.4)

      Рисунок 6.2.4 (a) Два резистора, подключенных параллельно источнику напряжения.(b) Исходная схема сокращается до эквивалентного сопротивления и источника напряжения.

      Ток, протекающий от источника напряжения на рисунке 6.2.4, зависит от напряжения, подаваемого источником напряжения, и эквивалентного сопротивления цепи. В этом случае ток течет от источника напряжения и попадает в переход или узел, где цепь разделяется, протекая через резисторы и. По мере того, как заряды проходят от батареи, некоторые проходят через резистор, а некоторые — через резистор. Сумма токов, протекающих в переходе, должна быть равна сумме токов, текущих из перехода:

      Это уравнение называется правилом соединения Кирхгофа и будет подробно обсуждено в следующем разделе.На рисунке 6.2.4 показано правило соединения. В этой схеме есть две петли, что приводит к уравнениям и Обратите внимание, что напряжение на резисторах, включенных параллельно, одинаковое (), а ток является аддитивным:

      Если обобщить на любое количество резисторов, эквивалентное сопротивление параллельного соединения связано с отдельными сопротивлениями на

      (6.2.2)

      Это соотношение приводит к эквивалентному сопротивлению, которое меньше наименьшего из отдельных сопротивлений.Когда резисторы подключены параллельно, от источника течет больше тока, чем протекает для любого из них по отдельности, поэтому общее сопротивление ниже.

      ПРИМЕР 6.2.2


      Анализ параллельной цепи

      Три резистора, и соединены параллельно. Параллельное соединение подключается к источнику напряжения. а) Какое эквивалентное сопротивление? (б) Найдите ток, подаваемый источником в параллельную цепь. (c) Рассчитайте токи в каждом резисторе и покажите, что в сумме они равны выходному току источника.(d) Рассчитайте мощность, рассеиваемую каждым резистором. (e) Найдите выходную мощность источника и покажите, что она равна общей мощности, рассеиваемой резисторами.

      Стратегия

      (a) Общее сопротивление для параллельной комбинации резисторов определяется с помощью.
      (Обратите внимание, что в этих расчетах каждый промежуточный ответ отображается с дополнительной цифрой.)

      (b) Ток, подаваемый источником, можно найти из закона Ома, заменив полное сопротивление.

      (c) Отдельные токи легко вычислить по закону Ома, так как каждый резистор получает полное напряжение.Полный ток — это сумма отдельных токов:.

      (d) Мощность, рассеиваемая каждым резистором, может быть найдена с помощью любого из уравнений, связывающих мощность с током, напряжением и сопротивлением, поскольку все три известны. Давайте использовать, поскольку каждый резистор получает полное напряжение.

      (e) Полная мощность также может быть рассчитана несколькими способами, используйте.

      Решение

      а. Общее сопротивление для параллельной комбинации резисторов находится с помощью уравнения 6.2.2.Ввод известных значений дает

      Общее сопротивление с правильным количеством значащих цифр составляет. Как и предполагалось, меньше минимального индивидуального сопротивления.

      г. Полный ток можно найти из закона Ома, заменив полное сопротивление. Это дает

      Ток для каждого устройства намного больше, чем для тех же устройств, подключенных последовательно (см. Предыдущий пример). Схема с параллельным соединением имеет меньшее общее сопротивление, чем резисторы, включенные последовательно.

      г. Отдельные токи легко вычислить по закону Ома, поскольку каждый резистор получает полное напряжение. Таким образом,

      Аналогично

      и

      Полный ток складывается из отдельных токов:

      г. Мощность, рассеиваемую каждым резистором, можно найти с помощью любого из уравнений, связывающих мощность с током, напряжением и сопротивлением, поскольку все три известны.Давайте использовать, поскольку каждый резистор получает полное напряжение. Таким образом,

      Аналогично

      и

      e. Полная мощность также может быть рассчитана несколькими способами. Выбор и ввод общей текущей доходности

      Значение

      Общая мощность, рассеиваемая резисторами, также составляет:

      Обратите внимание, что общая мощность, рассеиваемая резисторами, равна мощности, подаваемой от источника.

      ПРОВЕРЬТЕ ПОНИМАНИЕ 6.3


      Рассмотрим одну и ту же разность потенциалов, приложенную к одним и тем же трем последовательно включенным резисторам. Будет ли эквивалентное сопротивление последовательной цепи больше, меньше или равно трем резисторам, включенным параллельно? Будет ли ток в последовательной цепи выше, ниже или равен току, обеспечиваемому тем же напряжением, приложенным к параллельной цепи? Как мощность, рассеиваемая последовательно резистором, будет сравниваться с мощностью, рассеиваемой параллельно резисторами?

      ПРОВЕРЬТЕ ПОНИМАНИЕ 6.4


      Как бы вы использовали реку и два водопада для моделирования параллельной конфигурации двух резисторов? Как разрушается эта аналогия?

      Суммируем основные характеристики резисторов параллельно:

      1. Эквивалентное сопротивление находится из

        и меньше любого отдельного сопротивления в комбинации.

      2. Падение потенциала на каждом параллельном резисторе одинаковое.
      3. Параллельные резисторы не получают общий ток каждый; они делят это.Ток, поступающий в параллельную комбинацию резисторов, равен сумме токов, протекающих через каждый резистор, включенный параллельно.

      В этой главе мы представили эквивалентное сопротивление резисторов, соединенных последовательно, и резисторов, соединенных параллельно. Вы можете вспомнить, что в разделе «Емкость» мы ввели эквивалентную емкость конденсаторов, соединенных последовательно и параллельно. Цепи часто содержат как конденсаторы, так и резисторы. В таблице 6.2.1 приведены уравнения, используемые для эквивалентного сопротивления и эквивалентной емкости для последовательного и параллельного соединения.

      (таблица 6.2.1)

      Комбинация серий Параллельная комбинация
      Эквивалентная емкость
      Эквивалентное сопротивление

      Таблица 10.1 Сводка по эквивалентному сопротивлению и емкости в последовательной и параллельной комбинациях

      Сочетания последовательного и параллельного

      Более сложные соединения резисторов часто представляют собой просто комбинации последовательного и параллельного соединения.Такие комбинации обычны, особенно если учитывать сопротивление проводов. В этом случае сопротивление провода включено последовательно с другими сопротивлениями, включенными параллельно.

      Комбинации последовательного и параллельного соединения можно уменьшить до одного эквивалентного сопротивления, используя метод, показанный на рисунке 6.2.5. Различные части могут быть идентифицированы как последовательные или параллельные соединения, уменьшенные до их эквивалентных сопротивлений, а затем уменьшенные до тех пор, пока не останется единственное эквивалентное сопротивление. Процесс занимает больше времени, чем труден.Здесь мы отмечаем эквивалентное сопротивление как.

      (рисунок 6.2.5)

      Обратите внимание, что резисторы и включены последовательно. Их можно объединить в одно эквивалентное сопротивление. Один из методов отслеживания процесса — включить резисторы в индексы. Здесь эквивалентное сопротивление и равно

      .

      Теперь схема сокращается до трех резисторов, показанных на Рисунке 6.2.5 (c). Перерисовывая, мы теперь видим, что резисторы и составляют параллельную цепь.Эти два резистора можно уменьшить до эквивалентного сопротивления:

      .

      Этот шаг процесса сокращает схему до двух резисторов, показанных на Рисунке 6.2.5 (d). Здесь схема сводится к двум резисторам, которые в данном случае включены последовательно. Эти два резистора можно уменьшить до эквивалентного сопротивления, которое является эквивалентным сопротивлением цепи:

      Основная цель этого анализа схемы достигнута, и теперь схема сведена к одному резистору и одному источнику напряжения.

      Теперь мы можем проанализировать схему. Ток, обеспечиваемый источником напряжения, равен. Этот ток проходит через резистор и обозначен как. Падение потенциала можно найти с помощью закона Ома:

      Глядя на рис. 6.2.5 (c), остается отбросить параллельную комбинацию и. Проходной ток можно найти с помощью закона Ома:

      Резисторы и включены последовательно, поэтому токи и равны

      .

      Используя закон Ома, мы можем найти падение потенциала на двух последних резисторах.Потенциальные падения равны и. Окончательный анализ — это посмотреть на мощность, подаваемую источником напряжения, и мощность, рассеиваемую резисторами. Мощность, рассеиваемая резисторами

      Полная энергия постоянна в любом процессе. Следовательно, мощность, подаваемая источником напряжения, равна. Анализ мощности, подаваемой в схему, и мощности, рассеиваемой резисторами, является хорошей проверкой достоверности анализа; они должны быть равны.

      ПРОВЕРЬТЕ ПОНИМАНИЕ 6.5


      Учитывайте электрические цепи в вашем доме. Приведите хотя бы два примера схем, в которых для эффективной работы необходимо использовать комбинацию последовательных и параллельных схем.

      Практическое применение

      Одним из следствий этого последнего примера является то, что сопротивление в проводах снижает ток и мощность, подаваемую на резистор. Если сопротивление провода относительно велико, как в изношенном (или очень длинном) удлинителе, то эти потери могут быть значительными. Если протекает большой ток, провал в проводах также может быть значительным и проявляться в виде тепла, выделяемого в шнуре.

      Например, когда вы роетесь в холодильнике и включается мотор, свет холодильника на мгновение гаснет. Точно так же вы можете увидеть тусклый свет в салоне, когда вы запускаете двигатель вашего автомобиля (хотя это может быть связано с сопротивлением внутри самой батареи).

      Что происходит в этих сильноточных ситуациях, показано на Рисунке 6.2.7. Устройство, представленное значком, имеет очень низкое сопротивление, поэтому при его включении протекает большой ток.Этот увеличенный ток вызывает большее падение в проводах, представленных значком, уменьшая напряжение на лампочке (которая есть), которое затем заметно гаснет.

      (рисунок 6.2.7)

      Рисунок 6.2.7 Почему свет тускнеет, когда включен большой прибор? Ответ заключается в том, что большой ток, потребляемый двигателем прибора, вызывает значительное падение напряжения в проводах и снижает напряжение на свету.

      Стратегия решения проблем: последовательные и параллельные резисторы


      1. Нарисуйте четкую принципиальную схему, пометив все резисторы и источники напряжения.Этот шаг включает список известных значений проблемы, так как они отмечены на вашей принципиальной схеме.
      2. Определите, что именно необходимо определить в проблеме (определите неизвестные). Письменный список полезен.
      3. Определите, подключены ли резисторы последовательно, параллельно или в комбинации последовательно и параллельно. Изучите принципиальную схему, чтобы сделать эту оценку. Резисторы включены последовательно, если через них должен последовательно проходить один и тот же ток.
      4. Используйте соответствующий список основных функций для последовательных или параллельных подключений, чтобы найти неизвестные.Есть один список для серий и другой для параллельных.
      5. Проверьте, являются ли ответы разумными и последовательными.

      ПРИМЕР 6.2.4


      Объединение последовательных и параллельных цепей

      Два резистора, соединенных последовательно, подключены к двум резисторам, включенным параллельно. Последовательно-параллельная комбинация подключается к батарее. Каждый резистор имеет сопротивление. Провода, соединяющие резисторы и аккумулятор, имеют незначительное сопротивление.Ток проходит через резистор. Какое напряжение подается от источника напряжения?

      Стратегия

      Используйте шаги предыдущей стратегии решения проблем, чтобы найти решение для этого примера.

      Решение
      1. Нарисуйте четкую принципиальную схему (рисунок 6.2.8).

        (рисунок 6.2.8)

        Рисунок 6.2.8 Чтобы найти неизвестное напряжение, мы должны сначала найти эквивалентное сопротивление цепи.

      2. Неизвестно напряжение аккумулятора.Чтобы определить напряжение, подаваемое батареей, необходимо найти эквивалентное сопротивление.
      3. В этой схеме мы уже знаем, что резисторы и включены последовательно, а резисторы и включены параллельно. Эквивалентное сопротивление параллельной конфигурации резисторов и последовательно с последовательной конфигурацией резисторов и.
      4. Напряжение, подаваемое батареей, можно найти, умножив ток от батареи на эквивалентное сопротивление цепи.Ток от батареи равен току через и равен. Нам нужно найти эквивалентное сопротивление, уменьшив схему. Чтобы уменьшить схему, сначала рассмотрите два резистора, включенных параллельно. Эквивалентное сопротивление равно. Эта параллельная комбинация включена последовательно с двумя другими резисторами, поэтому эквивалентное сопротивление цепи равно. Таким образом, напряжение, подаваемое батареей, составляет.
      5. Один из способов проверить соответствие ваших результатов — это рассчитать мощность, подаваемую батареей, и мощность, рассеиваемую резисторами.Мощность, подаваемая аккумулятором, составляет

        Поскольку они включены последовательно, сквозной ток равен сквозному току. Т.к. ток через каждый будет. Мощность, рассеиваемая резисторами, равна сумме мощности, рассеиваемой каждым резистором:

        Поскольку мощность, рассеиваемая резисторами, равна мощности, выделяемой батареей, наше решение кажется последовательным.

      Значение

      Если проблема имеет комбинацию последовательного и параллельного соединений, как в этом примере, ее можно уменьшить поэтапно, используя предыдущую стратегию решения проблемы и рассматривая отдельные группы последовательных или параллельных соединений.При поиске параллельного подключения необходимо соблюдать осторожность. Кроме того, единицы и числовые результаты должны быть разумными. Эквивалентное последовательное сопротивление должно быть больше, а эквивалентное параллельное сопротивление, например, должно быть меньше. Мощность должна быть больше для одних и тех же устройств, подключенных параллельно, по сравнению с последовательными и так далее.

      Кандела Цитаты

      Лицензионный контент CC, особая атрибуция

      • Загрузите бесплатно с http: // cnx.org/contents/[email protected] Получено с : http://cnx.org/contents/[email protected] Лицензия : CC BY: Attribution

      4.1 Последовательные и параллельные резисторы

      Последовательные резисторы

      Когда резисторы включены последовательно? Резисторы включены последовательно всякий раз, когда поток заряда, называемый током, должен проходить через устройства последовательно. Например, если ток протекает через человека, держащего отвертку, в землю, тогда R1.R1. размер 12 {R rSub {размер 8 {1}}} {} на рис. 4.2 (a) может быть сопротивлением вала отвертки, R2R2 размер 12 {R rSub {размер 8 {2}}} {} сопротивлением его ручка, R3R3 размер 12 {R rSub {размер 8 {3}}} {} сопротивление тела человека и R4R4 размер 12 {R rSub {размер 8 {4}}} {} сопротивление ее обуви.

      На рисунке 4.3 показаны резисторы, последовательно подключенные к источнику напряжения. Кажется разумным, что полное сопротивление является суммой отдельных сопротивлений, учитывая, что ток должен проходить через каждый резистор последовательно.Этот факт был бы преимуществом для человека, желающего избежать поражения электрическим током, который мог бы уменьшить ток, надев обувь на резиновой подошве с высоким сопротивлением. Это могло быть недостатком, если бы одно из сопротивлений было неисправным шнуром с высоким сопротивлением к прибору, который уменьшал бы рабочий ток.

      Рисунок 4.3 Три резистора, подключенных последовательно к батарее (слева) и эквивалентному одиночному или последовательному сопротивлению (справа).

      Чтобы убедиться, что последовательно включенные сопротивления действительно складываются, давайте рассмотрим потерю электроэнергии, называемую падением напряжения, в каждом резисторе на рисунке 4.3.

      Согласно закону Ома падение напряжения, V, V, размер 12 {V} {} на резисторе, когда через него протекает ток, рассчитывается по формуле V = IR, V = IR, размер 12 {V = ital «IR»} {} где II размер 12 {I} {} равен току в амперах (A), а размер RR 12 {R} {} — сопротивление в омах Ω.Ω. размер 12 {слева (% OMEGA справа)} {} Другой способ представить это: VV размером 12 {V} {} — это напряжение, необходимое для протекания тока II размера 12 {I} {} через сопротивление RR размера 12 {R} {}

      Таким образом, падение напряжения на R1R1 размером 12 {R rSub {размер 8 {1}}} {} равно V1 = IR1, V1 = IR1, размер 12 {V rSub {size 8 {1}} = ital «IR» rSub { размер 8 {1}}} {}, что для R2R2 размер 12 {R rSub {размер 8 {2}}} {} равен V2 = IR2, V2 = IR2, размер 12 {V rSub {size 8 {2}} = ital «IR» rSub {размер 8 {2}}} {}, а для R3R3 размера 12 {R rSub {размер 8 {3}}} {} — V3 = IR3.V3 = IR3. размер 12 {V rSub {size 8 {3}} = ital «IR» rSub {size 8 {3}}} {} Сумма этих напряжений равна выходному напряжению источника; то есть

      4,1 В = V1 + V2 + V3. V = V1 + V2 + V3. размер 12 {V = V rSub {размер 8 {1}} + V rSub {размер 8 {2}} + V rSub {размер 8 {3}}} {}

      Это уравнение основано на сохранении энергии и сохранении обвинять. Электрическая потенциальная энергия может быть описана уравнением PE = qV, PE = qV, size 12 {ital «PE» = ital «qV»} {}, где qq size 12 {q} {} — электрический заряд, а размер VV 12 { V} {} — напряжение.Таким образом, энергия, подаваемая источником, равна qV, qV, размер 12 {ital «qV»} {}, а энергия, рассеиваемая резисторами, равна

      .
      4.2 qV1 + qV2 + qV3. QV1 + qV2 + qV3. размер 12 {ital «qV» rSub {size 8 {1}} + ital «qV» rSub {size 8 {2}} + ital «qV» rSub {size 8 {3}}} {}

      Связи: законы сохранения

      Вывод выражений для последовательного и параллельного сопротивления основан на законах сохранения энергии и сохранения заряда, согласно которым общий заряд и полная энергия постоянны в любом процессе.Эти два закона непосредственно участвуют во всех электрических явлениях и будут многократно использоваться для объяснения как конкретных эффектов, так и общего поведения электричества.

      Эти энергии должны быть равны, потому что в цепи нет другого источника и другого назначения для энергии. Таким образом, qV = qV1 + qV2 + qV3.qV = qV1 + qV2 + qV3. размер 12 {ital «qV» = ital «qV» rSub {size 8 {1}} + ital «qV» rSub {size 8 {2}} + ital «qV» rSub {size 8 {3}}} {} заряд qq размер 12 {q} {} отменяется, давая V = V1 + V2 + V3, V = V1 + V2 + V3, размер 12 {V = V rSub {размер 8 {1}} + V rSub {размер 8 {2 }} + V rSub {размер 8 {3}}} {}, как указано.(Обратите внимание, что одинаковое количество заряда проходит через батарею и каждый резистор за заданный промежуток времени, так как нет емкости для хранения заряда, нет места для утечки заряда и заряд сохраняется.)

      Теперь замена значений отдельных напряжений дает

      4,3 В = IR1 + IR2 + IR3 = I (R1 + R2 + R3). V = IR1 + IR2 + IR3 = I (R1 + R2 + R3). размер 12 {V = ital «IR» rSub {size 8 {1}} + ital «IR» rSub {size 8 {2}} + ital «IR» rSub {size 8 {3}} = I \ (R rSub { размер 8 {1}} + R rSub {размер 8 {2}} + R rSub {размер 8 {3}} \)} {}

      Обратите внимание, что для эквивалентного сопротивления одиночной серии Rs, Rs, мы имеем

      . Это означает что полное или эквивалентное последовательное сопротивление RsRs трех резисторов равно Rs = R1 + R2 + R3.Rs = R1 + R2 + R3. размер 12 {R rSub {размер 8 {s}} = R rSub {размер 8 {1}} + R rSub {размер 8 {2}} + R rSub {размер 8 {3}}} {}

      Эта логика действительно для любого количества последовательно подключенных резисторов; таким образом, полное сопротивление RsRs последовательного соединения составляет

      4,5 Rs = R1 + R2 + R3 + …, Rs = R1 + R2 + R3 + …, размер 12 {R rSub {size 8 {s}} = R rSub {размер 8 {1}} + R rSub {размер 8 {2}} + R rSub {размер 8 {3}} + «.» «.» «.» } {}

      как предложено. Поскольку весь ток должен проходить через каждый резистор, он испытывает сопротивление каждого, а последовательно соединенные сопротивления просто складываются.

      Пример 4.1 Расчет сопротивления, тока, падения напряжения и рассеиваемой мощности: анализ последовательной цепи

      Предположим, что выходное напряжение батареи на рисунке 4.3 составляет 12,0 В 12,0 В размером 12 {«12» «.» 0`V} {} и сопротивления: R1 = 1,00 Ом, R1 = 1,00 Ом, размер 12 {R rSub {size 8 {1}} = 1 «.» «00»% OMEGA} {} R2 = 6,00 Ом, R2 = 6,00 Ом, размер 12 {R rSub {размер 8 {2}} = 6 дюймов «. «00»% OMEGA} {} и R3 = 13,0 Ом. R3 = 13,0 Ом. размер 12 {R rSub {размер 8 {3}} = «13» «.» 0% OMEGA} {} (а) Какое полное сопротивление? (б) Найдите ток.(c) Рассчитайте падение напряжения на каждом резисторе и покажите, что в сумме они равны выходному напряжению источника. (d) Рассчитайте мощность, рассеиваемую каждым резистором. (e) Найдите выходную мощность источника и покажите, что она равна общей мощности, рассеиваемой резисторами.

      Стратегия и решение для (а)

      Общее сопротивление — это просто сумма отдельных сопротивлений, как указано уравнением

      4,6 Rs = R1 + R2 + R3 = 1,00 Ом + 6,00 Ом + 13,0 Ом = 20,0 Ом.Rs = R1 + R2 + R3 = 1,00 Ом + 6,00 Ом + 13,0 Ом = 20,0 Ом.

      Стратегия и решение для (b)

      Ток определяется по закону Ома, V = IR.V = IR. размер 12 {V = ital «IR»} {} Ввод значения приложенного напряжения и общего сопротивления дает ток в цепи.

      4,7 I = VRs = 12,0 В 20,0 Ом = 0,600 AI = VRs = 12,0 В 20,0 Ом = 0,600 A, размер 12 {I = {{V} больше {R rSub {size 8 {s}}}} = {{» 12 «». » 0 «V»} больше {«20» «.» «0»% OMEGA}} = 0 «.» «600» «A»} {}

      Стратегия и решение для (c)

      Падение напряжения — или IRIR размером 12 {ital «IR»} {} — в резисторе определяется законом Ома.Ввод значения тока и значения первого сопротивления дает

      .
      4,8 В1 = IR1 = (0,600 A) (1,0 Ом) = 0,600 В. V1 = IR1 = (0,600 A) (1,0 Ом) = 0,600 В. размер 12 {V rSub {размер 8 {1}} = ital «IR» rSub {size 8 {1}} = \ (0 «.» «600» «A» \) \ (1 «.» 0% OMEGA \) = 0 «.» «600» «V»} {}

      Аналогично

      4,9 В2 = IR2 = (0,600 А) (6,0 Ом) = 3,60 ВV2 = IR2 = (0,600 А) (6,0 Ом) = 3,60 В, размер 12 {В rSub {размер 8 {2}} = ital «IR» rSub {размер 8 {2}} = \ (0 «.» «600» «A» \) \ (6 «.» 0% OMEGA \) = 3 «.» «60» «V»} {}

      и

      4.10 V3 = IR3 = (0,600 A) (13,0 Ом) = 7,80 В. V3 = IR3 = (0,600 A) (13,0 Ом) = 7,80 В. размер 12 {V rSub {размер 8 {3}} = курсив «IR» rSub {size 8 {3}} = \ (0 «.» «600» «A» \) \ («13» «.» 0% OMEGA \) = 7 «.» «80» «V»} {}

      Обсуждение для (c)

      Три капли IRIR размером 12 {ital «IR»} {} добавляют к 12,0 В, 12,0 В, размер 12 {«12» «». 0`V} {} как и ожидалось.

      4,11 V1 + V2 + V3 = (0,600 + 3,60 + 7,80) V = 12,0 VV1 + V2 + V3 = (0,600 + 3,60 + 7,80) V = 12,0 В размер 12 {V rSub {размер 8 {1}} + V rSub {размер 8 {2}} + V rSub {размер 8 {3}} = \ (0 «.»» 600 «+3». «» 60 «+7». «» 80 «\)» V «=» 12 «». «0» V «} {}

      Стратегия и решение для (d)

      Самый простой способ рассчитать мощность в ваттах (Вт), рассеиваемую резистором в цепи постоянного тока, — это использовать закон Джоуля, P = IV, P = IV, размер 12 {P = курсив «IV»} {}, где PP размер 12 {P} {} — электроэнергия. В этом случае через каждый резистор протекает одинаковый полный ток. Подставляя закон Ома V = IRV = IR, размер 12 {V = ital «IR»} {} в закон Джоуля, мы получаем мощность, рассеиваемую первым резистором, как

      4.12 P1 = I2R1 = (0,600 A) 2 (1,00 Ом) = 0,360 Вт. P1 = I2R1 = (0,600 A) 2 (1,00 Ом) = 0,360 Вт размер 12 {P rSub {размер 8 {1}} = I rSup {размер 8 {2}} R rSub {размер 8 {1}} = \ (0 «.» «600» «A» \) rSup {размер 8 {2}} \ (1 «.» «00»% OMEGA \) = 0 «.» «360» «W»} {}

      Аналогично

      4,13 P2 = I2R2 = (0,600 A) 2 (6,00 Ом) = 2,16 WP2 = I2R2 = (0,600 A) 2 (6,00 Ом) = 2,16 Вт размер 12 {P rSub {размер 8 {2}} = I rSup {размер 8 {2}} R rSub {размер 8 {2}} = \ (0 «.» «600» «A» \) rSup {размер 8 {2}} \ (6 «.» «00»% OMEGA \) = 2 «.» «16» «W»} {}

      и

      4.14 P3 = I2R3 = (0,600 A) 2 (13,0 Ом) = 4,68 Вт. P3 = I2R3 = (0,600 A) 2 (13,0 Ом) = 4,68 Вт. Размер 12 {P rSub {размер 8 {3}} = I rSup {размер 8 {2}} R rSub {размер 8 {3}} = \ (0 «.» «600» «A» \) rSup {размер 8 {2}} \ («13» «.» 0% OMEGA \) = 4 «.» «68» «W»} {}

      Обсуждение для (d)

      Мощность также можно рассчитать, используя либо P = IVP = IV, размер 12 {P = ital «IV»} {}, либо P = V2R, P = V2R, размер 12 {P = {{V rSup {size 8 {2}}) } over {R}}} {}, где величина VV 12 {V} {} — это падение напряжения на резисторе (а не полное напряжение источника).Будут получены такие же значения.

      Стратегия и решение для (e)

      Самый простой способ рассчитать выходную мощность источника — использовать P = IV, P = IV, размер 12 {P = ital «IV»} {}, где VV размером 12 {V} {} — это напряжение источника. Это дает

      4,15 P = (0,600 A) (12,0 В) = 7,20 WP = (0,600 A) (12,0 В) = 7,20 Вт. Размер 12 {P = \ (0 «.» «600» «A» \) \ («12 «». «0» V «\) = 7″. » «20» «W»} {}

      Обсуждение для (e)

      Обратите внимание, что по совпадению общая мощность, рассеиваемая резисторами, также равна 7.20 Вт, столько же, сколько мощность, выдаваемая источником. То есть

      4,16 P1 + P2 + P3 = (0,360 + 2,16 + 4,68) W = 7,20 W. P1 + P2 + P3 = (0,360 + 2,16 + 4,68) W = 7,20 W. размер 12 {P rSub {размер 8 {1}} + P rSub {размер 8 {2}} + P rSub {размер 8 {3}} = \ (0 «.» «360» +2 «.» «» 16 «+4». «» 68 «\)» W » = 7 «.» «20» «Вт»} {}

      Мощность — это энергия в единицу времени (ватт), поэтому для сохранения энергии требуется, чтобы выходная мощность источника была равна общей мощности, рассеиваемой резисторами.

      Основные характеристики резисторов серии

      1. Последовательные сопротивления добавляют Rs = R1 + R2 + R3 +…. Rs = R1 + R2 + R3 + …. размер 12 {R rSub {размер 8 {s}} = R rSub {размер 8 {1}} + R rSub {размер 8 {2}} + R rSub { размер 8 {3}} + «.» «.» «.» «.» } {}
      2. Одинаковый ток течет через каждый резистор последовательно.
      3. Отдельные последовательно включенные резисторы не получают полное напряжение источника, а скорее делят его.

      Серия

      и параллельные резисторы

      • Изучив этот раздел, вы сможете:
      • Рассчитайте значения общего сопротивления в цепях с последовательным сопротивлением.
      • Используйте соответствующие формулы для расчета сопротивления в цепях с параллельным сопротивлением.
      • • Вычисление суммы обратных величин.
      • • Произведение над суммой.
      • Рассчитайте значения общего сопротивления в последовательных / параллельных сетях.

      Расчеты в последовательно- и параллельных резисторных цепях

      Компоненты, включая резисторы в цепи, могут быть соединены вместе двумя способами:

      ПОСЛЕДОВАТЕЛЬНО, так что один и тот же ток течет через все компоненты, но различная разность потенциалов (напряжение) может существовать на каждом из них.

      ПАРАЛЛЕЛЬНО, так что одна и та же разность потенциалов (напряжение) существует на всех компонентах, но каждый компонент может проводить разный ток.

      Рис. 4.2.1 Резисторы серии

      Рис. 4.2.2 Параллельные резисторы

      В любом случае (для резисторов) полное сопротивление той части цепи, которая содержит резисторы, может быть рассчитано с использованием методов, описанных ниже.

      Возможность рассчитать суммарное (общее) значение резисторов таким способом позволяет легко вычислить неизвестные значения сопротивления, тока и напряжения для довольно сложных схем с использованием относительно простых методов.Это очень полезно при поиске неисправностей.

      ПЕРЕД ДАЛЬНЕЙШЕЙ ДАЛЬНОСТЬЮ ПОПРОБУЙТЕ ИСПОЛЬЗУЙТЕ ФОРМУЛЫ ДЛЯ РАСЧЕТА ОБЩИХ ЗНАЧЕНИЙ СЕРИИ И ПАРАЛЛЕЛЬНЫХ РЕЗИСТОРОВ.

      Для резисторов в серии:

      Суммарное сопротивление двух или более резисторов, подключенных последовательно , определяется простым сложением индивидуальных значений резисторов, чтобы найти общую сумму (R TOT ):

      Для резисторов, включенных параллельно:

      Для расчета общего сопротивления цепи, в которой используются параллельные резисторы, можно использовать следующую формулу.

      Обратите внимание, однако, что эта формула НЕ дает вам общего сопротивления R TOT .
      Это дает вам ВЗАИМОДЕЙСТВИЕ РИНГ или:

      Это совсем другое значение — и НЕ является полным сопротивлением. Он делится на 1, разделенный на TOT . Чтобы получить правильное значение для R TOT (которое будет обратным 1/ TOT , то есть TOT /1, просто нажмите соответствующую клавишу на вашем калькуляторе (отмеченную 1 / x или x-1) .

      Другой способ расчета параллельных цепей.

      Суммарное сопротивление двух резисторов, включенных параллельно , которое не включает обратных, определяется как:

      Эту формулу часто называют «произведение над суммой».

      Он рассчитывает только ДВА резистора параллельно? Ну да, но это не большая проблема. Если имеется более двух параллельных резисторов, просто выберите два из них и определите общее сопротивление для этих двух — затем используйте это общее сопротивление, как если бы это был один резистор, и составьте еще одну пару с третьим резистором.Определите новую сумму и так далее, пока вы не включите все параллельные резисторы в этой конкретной сети.

      О, еще кое-что, что нужно помнить о произведении над суммой, видите скобки вокруг суммы (нижняя часть) формулы? Это означает, что вы должны решить это ДО того, как использовать его для разделения продукта (верхняя часть) на. Если вы этого не сделаете, ваш ответ будет неправильным.

      Звучит сложно? Не совсем, это просто вопрос повторения, и на практике вы не часто встречаетесь с множеством параллельных сетей с гораздо более чем двумя резисторами.Тем не менее, какую формулу вы выберете, зависит от вас, взаимная или сумма продукта.

      подсказки

      Использование обратного метода

      Если вы используете МЕТОД ВЗАИМОДЕЙСТВИЯ для параллельных цепей, НЕ ЗАБУДЬТЕ, когда вы добавили обратные величины отдельных резисторов — вы должны снова найти обратную величину 1 / R1 + 1 / R2 + 1 / R3 = 1 / R TOT , а чтобы найти R TOT , вы должны найти обратную величину 1 / R TOT .

      Упрощающие схемы

      Для комбинированных последовательных и параллельных цепей сначала разработайте участок цепи (последовательный или параллельный).Затем нарисуйте схему заново, заменив участок, сопротивление которого вы нашли, одним резистором. Теперь у вас есть упрощенная схема, по которой можно найти R TOT .

      Вы можете использовать формулу «произведение на сумму»:

      Для цепей с более чем двумя параллельными резисторами просто определите два параллельных резистора одновременно, используя формулу произведения на сумму, а затем перерисуйте схему, заменив два резистора одним резистором, значение которого представляет собой объединенное сопротивление двух .

      Теперь вы можете использовать ваше первое комбинированное значение в качестве единственного резистора со следующим параллельным резистором и так далее. Таким образом, можно выработать большое количество параллельных резисторов с использованием произведения на сумму.

      Когда все параллельные резисторы одинакового номинала.

      Если несколько одинаковых параллельных резисторов подключены, общее сопротивление будет равно номиналу резистора, умноженному на обратную величину количества резисторов.

      , т. Е. Два параллельных резистора 12 кОм имеют суммарное сопротивление

      .

      12K x 1/2 = 6K

      Три параллельно включенных резистора 12 кОм имеют суммарное сопротивление

      12K x 1/3 = 4K и т. Д.

      Проверяю ответ

      Суммарное значение любого количества параллельных резисторов всегда будет МЕНЬШЕ, чем значение наименьшего отдельного резистора в сети. Используйте этот факт, чтобы проверить свои ответы.

      Серия

      и параллельная комбинация

      Попробуйте несколько вычислений, основанных на последовательной и параллельной цепях резисторов. Для этого вам просто нужно использовать информацию на этой странице и на странице «Советы по расчету резисторов». Вас просят вычислить полное сопротивление для каждой цепи.Вы можете выбрать, какую формулу использовать

      Вы также можете получить помощь по математике, загрузив наш бесплатный буклет «Советы по математике».

      Прежде чем начать, подумайте об этих нескольких советах. Они упростят задачу, если вы будете внимательно им следовать.

      1. Разработайте ответы карандашом и бумагой; перерисуйте схему, над которой работаете.

      2. Конечно, ответ будет не просто числом, это будет определенное количество Ом, не забудьте указать правильную единицу (например,грамм. Ω, KΩ или MΩ), иначе ваш ответ не имеет смысла.

      3. Когда вы вводите значения в калькулятор, преобразуйте все значения КОм или МОм в Ом с помощью клавиши EXP. Если вы здесь ошибетесь, то получите действительно глупые ответы, в тысячи раз слишком большие или слишком маленькие.

      Итак, вы прочитали эти инструкции и готовы приступить к работе. Вот способ решить типичную проблему на бумаге, чтобы (с практикой) вы не запутались.

      Серия

      и пример параллельной цепи.

      Хорошо, есть что вспомнить, так почему бы не попробовать несколько практических вопросов в Resistors Module 4.5 по определению полного сопротивления некоторых цепей резисторов?

      Различий и сходств между последовательной цепью и параллельной цепью

      Электричество создается, когда отрицательно заряженные частицы, называемые электронами, перемещаются от одного атома к другому. В последовательной цепи есть только один путь, по которому могут течь электроны, поэтому разрыв в любом месте на пути прерывает поток электричества во всей цепи.В параллельной цепи есть две или более ветвей, создающих отдельные пути, по которым могут течь электроны, поэтому разрыв одной ветви не влияет на поток электричества в других.

      Ток

      В последовательной цепи ток в любом месте цепи определяется наиболее важным и основным законом электричества, известным как закон Ома. Закон Ома гласит, что I = V / R, где I представляет собой электрический ток, V представляет напряжение, подаваемое источником, а R представляет собой общее сопротивление цепи, противодействующее прохождению электрического тока.В параллельной цепи ток в каждой ветви цепи обратно пропорционален сопротивлению каждой ветви, а общий ток равен сумме токов в каждой ветви.

      Напряжение

      В последовательной цепи разность потенциалов или напряжение — сила, которая «толкает» электроны вокруг — уменьшается на каждом компоненте в цепи. Падение напряжения на каждом компоненте пропорционально его сопротивлению, так что сумма падений напряжения равна общему напряжению, подаваемому источником.В параллельной цепи каждый компонент эффективно соединяет одни и те же две точки цепи, поэтому напряжение каждого компонента одинаковое.

      Сопротивление

      В последовательной цепи полное сопротивление — это просто сумма сопротивлений компонентов, подключенных к цепи. В параллельной цепи тот факт, что ток может течь по более чем одному пути, означает, что общее общее сопротивление ниже, чем сопротивление любого отдельного компонента. Общее общее сопротивление Rt можно рассчитать по формуле Rt = R1 + R2 + R3… Rn, где R1, R2, R3 и т.д. — сопротивления отдельных компонентов.

      Сходства

      Помимо того факта, что они оба используются для соединения электрических компонентов, таких как диоды, резисторы, переключатели и т. Д., Вместе, между последовательными и параллельными цепями мало общего. Последовательные цепи спроектированы таким образом, чтобы ток через каждый компонент был одинаковым, тогда как параллельные цепи спроектированы так, чтобы напряжение через каждый компонент было одинаковым.

      Параллельные цепи постоянного тока и последовательно-параллельные цепи постоянного тока и переменный ток (AC) и напряжение

      Параллельные цепи постоянного тока

      Цепь, в которой два или более электрических сопротивления или нагрузки подключены к одному источнику напряжения, называется параллельной цепью.Основное различие между последовательной цепью и параллельной цепью состоит в том, что для тока в параллельной цепи предусмотрено более одного пути. Каждый из этих параллельных путей называется ветвью. Минимальные требования для параллельной цепи следующие:

      • Источник питания
      • Проводники
      • Сопротивление или нагрузка для каждого пути тока
      • Два или более путей для протекания тока

      На рисунке 12-96 показаны самые основные параллельная цепь.Ток, вытекающий из источника, делится в точке A на диаграмме и проходит через R 1 и R 2 . По мере того как в схему добавляется больше ветвей, предоставляется больше путей для тока источника.

      Рисунок 12-96. Базовая параллельная схема.

      Падения напряжения

      Прежде всего необходимо понять, что напряжение на любой ветви равно напряжению на всех других ветвях.

      Общее параллельное сопротивление

      Параллельная цепь состоит из двух или более резисторов, соединенных таким образом, чтобы позволить току проходить через все резисторы одновременно.Это устраняет необходимость прохождения тока через один резистор перед прохождением через следующий. При параллельном соединении резисторов общее сопротивление цепи уменьшается. Общее сопротивление параллельной комбинации всегда меньше, чем номинал наименьшего резистора в цепи. В последовательной цепи ток должен проходить через резисторы по одному. Это дало сопротивление току, равное сумме всех резисторов. В параллельной цепи ток имеет несколько резисторов, через которые он может проходить, фактически уменьшая общее сопротивление цепи по отношению к любому номиналу резистора.

      Величина тока, проходящего через каждый резистор, зависит от его индивидуального сопротивления. Полный ток цепи — это сумма тока во всех ветвях. Путем осмотра можно определить, что общий ток больше, чем у любой данной ветви. Используя закон Ома для расчета общего сопротивления на основе приложенного напряжения и общего тока, можно определить, что общее сопротивление меньше, чем у любой ветви.

      Примером этого может быть схема с резистором 100 Ом и резистором 5 Ом; хотя точное значение необходимо рассчитать, все же можно сказать, что общее сопротивление между ними меньше 5 Ом.

      Параллельные резисторы

      Формула для общего параллельного сопротивления имеет следующий вид:

      Если взять обратное значение для обеих сторон, то общая формула для общего параллельного сопротивления будет:

      Два параллельных резистора

      Как правило, удобнее рассматривать одновременно только два резистора, потому что такая установка встречается в обычной практике. Любое количество резисторов в цепи можно разбить на пары. Поэтому наиболее распространенный метод — использовать формулу для двух резисторов, включенных параллельно.Объединение терминов в знаменателе и переписывание: Проще говоря, это означает, что полное сопротивление для двух резисторов, включенных параллельно, равно произведению обоих резисторов, деленному на сумму двух резисторов. По приведенной ниже формуле рассчитайте общее сопротивление.

      Источник тока

      Источник тока — это источник энергии, который обеспечивает постоянное значение тока для нагрузки, даже когда нагрузка изменяется в сопротивлении. Общее правило, о котором следует помнить, заключается в том, что полный ток, производимый источниками тока, подключенными параллельно, равен алгебраической сумме отдельных источников.

      Текущий закон Кирхгофа

      Текущий закон Кирхгофа можно сформулировать следующим образом: сумма токов в переходе или узле равна сумме токов, вытекающих из того же перехода или узла. Соединение можно определить как точку в цепи, где сходятся два или более тракта цепи. В случае параллельной цепи это точка в цепи, где соединяются отдельные ветви. См. Пример на Рисунке 12-97. Точка A и точка B представляют два соединения или узла в цепи с тремя резистивными ветвями между ними.

      Рисунок 12-97. Текущий закон Кирхгофа.

      Источник напряжения обеспечивает общий ток I T в узле A. В этот момент ток должен делиться и выходить из узла A в каждую из ветвей в соответствии со значением сопротивления каждой ветви. Текущий закон Кирхгофа гласит, что входящий ток должен равняться выходящему. После прохождения тока через три ветви и обратно в узел B, общий ток I T , входящий в узел B и покидающий узел B, будет таким же, как тот, который вошел в узел A.Затем ток возвращается к источнику напряжения. На Рис. 12-98 показано, что токи отдельных ответвлений равны:

      Рис. 12-98. Отдельные токи ответвления.

      Общий ток, протекающий в узел A, равен сумме токов ответвления, что составляет: I T = I 1 + I 2 Общий ток, поступающий в узел B, также такой же.

      На рисунке 12-99 показано, как определить неизвестный ток в одной ветви. Обратите внимание, что полный ток в соединении трех ветвей известен.Известны два тока ответвления. Изменив общую формулу, можно определить ток во второй ветви.

      Рисунок 12-99. Определение неизвестной цепи в ветви 2.

      Делители тока

      Теперь легко увидеть, что параллельная цепь является делителем тока. Как показано на Рис. 12-96, через каждый из двух резисторов проходит ток.

      Рисунок 12-96. Базовая параллельная схема.

      Поскольку одно и то же напряжение приложено к обоим резисторам параллельно, токи ответвления обратно пропорциональны значениям сопротивления резисторов.Ветви с более высоким сопротивлением имеют меньший ток, чем ветви с меньшим сопротивлением. Например, если значение сопротивления R 2 вдвое выше, чем у R 1 , ток в R 2 будет вдвое меньше, чем у R 1 . Все это можно определить с помощью закона Ома. По закону Ома ток через любую из ветвей может быть записан как: Источник напряжения появляется на каждом из параллельных резисторов, а R X представляет любой из резисторов. Напряжение источника равно суммарному току, умноженному на общее параллельное сопротивление.

      Эта формула является общей формулой делителя тока. Ток через любую ветвь равен полному параллельному сопротивлению, деленному на сопротивление отдельной ветви, умноженному на общий ток.

      Последовательно-параллельные цепи постоянного тока

      Большинство цепей, с которыми сталкивается технический специалист, не являются простой последовательной или параллельной цепью. Цепи обычно представляют собой комбинацию обоих, известных как последовательно-параллельные цепи, которые представляют собой группы, состоящие из резисторов, включенных параллельно и последовательно.Пример схемы этого типа можно увидеть на Рисунке 12-100. Хотя сначала последовательно-параллельная схема может показаться сложной, к этим схемам можно применить те же правила, которые использовались для последовательной и параллельной схемы.

      Рисунок 12-100. Последовательно-параллельные схемы.

      Источник напряжения подает ток на резистор R 1 , затем на группу резисторов R 2 и R 3 , а затем на следующий резистор R 4 перед тем, как вернуться к источнику напряжения.Первым шагом в процессе упрощения является выделение группы R 2 и R 3 и признание того, что они представляют собой параллельную сеть, которая может быть уменьшена до эквивалентного резистора. Используя формулу для параллельного сопротивления, можно уменьшить

      R 2 и R 3 до 23 . На рисунке 12-101 показана эквивалентная схема с тремя последовательно включенными резисторами. Общее сопротивление цепи теперь можно просто определить, сложив значения резисторов R 1 , R 23 и R 4 .

      Рисунок 12-101. Эквивалентная схема с тремя последовательно включенными резисторами.

      Определение общего сопротивления

      В следующем примере показан более количественный пример определения общего сопротивления и тока в каждой ветви комбинированной схемы. [Рисунок 12-102] Рисунок 12-102. Определение общего сопротивления.

      Первым шагом является определение тока в переходе A, ведущем в параллельную ветвь. Для определения I T необходимо знать общее сопротивление R T всей цепи.Общее сопротивление цепи определяется как:

      . Теперь определив общее сопротивление R T , можно определить общее сопротивление I T . Использование закона Ома:

      Ток через параллельные ветви R 2 и R 3 можно определить с помощью правила делителя тока, описанного ранее в тексте. Напомним, что:

      Теперь, используя Закон Кирхгофа, можно определить ток в ветви с R 3 .

      Переменный ток (AC) и напряжение

      Переменный ток (AC) в значительной степени заменил постоянный ток (DC) в коммерческих энергосистемах по ряду причин.Его можно передавать на большие расстояния легче и экономичнее, чем постоянный ток, поскольку переменное напряжение можно увеличивать или уменьшать с помощью трансформаторов.

      Поскольку все больше и больше устройств работают от электричества в самолетах, требования к мощности таковы, что при использовании переменного тока можно реализовать ряд преимуществ. Можно сэкономить место и вес, поскольку устройства переменного тока, особенно двигатели, меньше и проще устройств постоянного тока. В большинстве двигателей переменного тока щетки не требуются, и проблемы с коммутацией на большой высоте устранены.Автоматические выключатели удовлетворительно работают под нагрузкой на больших высотах в системе переменного тока, в то время как образование дуги в системах постоянного тока настолько велико, что автоматические выключатели необходимо часто заменять. Наконец, большинство самолетов, использующих 24-вольтовую систему постоянного тока, имеют специальное оборудование, которое требует определенного количества переменного тока с периодом 400 циклов.

      Сравнение переменного и постоянного тока

      Многие принципы, характеристики и эффекты переменного тока аналогичны таковым для постоянного тока. Точно так же есть ряд отличий.Постоянный ток постоянно течет только в одном направлении с постоянной полярностью. Он меняет величину только тогда, когда цепь разомкнута или замкнута, как показано на кривой постоянного тока на Рисунке 12-103. AC меняет направление через равные промежутки времени, увеличивается с определенной скоростью от нуля до максимальной положительной силы и снова уменьшается до нуля; затем он течет в противоположном направлении, аналогично увеличиваясь до максимального отрицательного значения и снова уменьшаясь до нуля. Формы сигналов постоянного и переменного тока сравниваются на Рисунке 12-103.

      Рисунок 12-103. Кривые постоянного и переменного напряжения.

      Поскольку переменный ток постоянно меняет направление и интенсивность, в цепях переменного тока имеют место два следующих эффекта (которые будут рассмотрены позже), которые не возникают в цепях постоянного тока:

      1. Индуктивное реактивное сопротивление
      2. Емкостное реактивное сопротивление

      Flight Mechanic рекомендует серию

      и параллельные схемы — хорошо объяснены

      Последовательное и параллельное соединение ламп

      Ток в цепи определяется импедансом, обеспечиваемым компонентами схемы, который, в свою очередь, определяется способом соединения компонентов схемы.Последовательное и параллельное соединение цепи — это два самых простых способа соединения цепи.

      Последовательное соединение

      Цепи, подключенные к серии

      , состоят из двух или более активных и / или пассивных устройств, соединенных последовательно. Ток, протекающий через эти цепи, остается неизменным в любой момент, но напряжение меняется. Напряжение в цепи должно быть равно сумме напряжений на каждом устройстве.

      Параллельное соединение

      Параллельно соединенные цепи состоят из двух или более активных и пассивных устройств, соединенных параллельно.В этих схемах напряжение на любой ветви остается неизменным, но ток, протекающий через каждую ветвь, меняется. Полный ток равен сумме токов через каждую ветвь.

      Серия

      Подключение сопротивления

      На приведенном выше рисунке показан пример последовательно соединенной резистивной сети. В последовательно соединенной цепи должен быть только один путь для прохождения тока. Скорость протекания тока зависит от эквивалентного сопротивления цепи. Ток встречает сопротивление, равное сумме сопротивлений каждого устройства в цепи.Эквивалентное сопротивление последовательного соединения резисторов

      .

      Треб = R1 + R2 + R3 +… + Rn

      Эквивалентное сопротивление последовательного соединения резисторов

      Треб = R1 + R2 + R3 +… + Rn

      Пример

      Учитывая схему, показанную выше, эквивалентное сопротивление, предлагаемое схемой, должно быть равно сумме R1, R2 и R3

      Req = R1 + R2 + R3 = = 5 Ом + 5 Ом + 5 Ом = 15 Ом

      Параллельное соединение сопротивления

      На приведенном выше рисунке показан пример параллельной резистивной сети.В параллельной цепи ток течет более чем по одному пути, и скорость протекания тока по каждому пути может варьироваться в зависимости от сопротивления каждого пути. Эквивалентное сопротивление цепи равно сумме обратных сопротивлений, предлагаемых каждым устройством в цепи.

      Эквивалент параллельного включения сопротивления

      1 / Req = 1 / R1 + 1 / R2 + 1 / R3 +… + 1 / Rn

      Пример

      Рассматривая схему выше, эквивалентное сопротивление, предлагаемое схемой, должно быть равно сумме обратных величин R1, R2 и R3.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *