Назначение и принцип действия: Назначение и принцип действия — Студопедия

Содержание

Назначение и принцип действия — Студопедия

Тема № 2. СИСТЕМЫ ЗАЖИГАНИЯ

Содержание

Тема № 2. СИСТЕМЫ ЗАЖИГАНИЯ

Лекция №2

План

2.1. Назначение и принцип действия

2.2. Контактно-транзисторная система зажигания

Система зажигания предназначена для воспламенения рабочей смеси в ци­линдрах бензиновых двигателей внутреннего сгорания (ДВС).

Развитие автомобилей первоначально было связано с системой зажигания от магнето, но оно достаточно быстро было вытеснено батарейной системой зажигания, которая в различных вариантах и применяется на современных ав­томобилях.

Тенденции развития ДВС связаны с повышением их экономичности, снижени­ем токсичности отработавших газов, уменьшением массы и габаритных разме­ров, повышением частоты вращения коленчатого вала и степени сжатия.

Это оказывает влияние на конструкцию и схемное исполнение систем зажига­ния, не затрагивая, однако, основного принципа их действия, — накопления энер­гии в магнитном или электрическом поле с последующим мгновенным выделени­ем ее в искровом промежутке свечи в нужный момент такта сжатия в рабочем ци­линдре и в соответствии с заданным порядком работы цилиндров двигателя.

Разряд в искровом промежутке вызывается импульсом напряжения, величи­на которого зависит от температуры и давления в камере сгорания, конфигура­ции и размеров искрового промежутка. Величина импульса должна обеспечи­ваться системой зажигания с определенным запасом, с учетом износа электро­дов свечи в эксплуатации. Обычно коэффициент запаса составляет 1,5 — 1,8 , а величина импульса напряжения лежит в пределах 20 — 30 кВ.



Процесс сгорания рабочей смеси разделяется на три фазы: начальную, когда формируется пламя, возникающее от искрового разряда в свече, основную, ко­гда пламя распространяется на большей части камеры сгорания, и конечную, когда пламя догорает у стенок камеры. Этот процесс требует определенного времени. Наиболее полное сгорание рабочей смеси достигается своевременной подачей сигнала на воспламенение, т.е. установкой оптимального угла опере­жения зажигания в зависимости от режима работы двигателя.

Угол опережения зажигания определяется по углу поворота коленчатого ва­ла двигателя от момента возникновения искры до момента достижения порш­нем верхней мертвой точки.

Если угол опережения зажигания больше оптимального, то зажигание ран­нее. Давление в камере сгорания при этом достигает максимума до достиже­ния поршнем верхней мертвой точки и оказывает противодействующее воз­действие на поршень. Раннее зажигание может явиться причиной возникнове­ния детонации. Если угол опережения зажигания меньше оптимального, зажи­гание позднее, в этом случае двигатель перегревается.


На начальную фазу сгорания влияет энергия и длительность искрового раз­ряда в свече. В современных системах энергия разряда достигает 50 МДж, а его длительность 1 — 2,5 мс.

По способу накопления энергии раз­личаются системы с накоплением энер­гии в индуктивности и в емкости (рис. 2.1).

В обоих случаях, для получения импульса высокого напряжения ис­пользуется катушка зажигания, пред­ставляющая собой высоковольтный трансформатор, содержащий две об­мотки: первичную с малым числом вит­ков и омическим сопротивлением в до­ли и единицы ома и вторичную с боль­шим числом витков и омическим сопро­тивлением в единицы и десятки кОм. Коэффициент трансформации катушки лежит в пределах 50 — 150.

Рис. 2.1. Системы зажигания:

а — с накоплением энергии в индуктивности; б — с накоплением энергии в емкости

Значитель­ное количество энергии, которое тре­буется для воспламенения рабочей смеси, накопить в конденсаторе прие­млемых размеров при достаточно низком напряжении бортовой сети невозможно. Поэтому система по рис. 2.1, б обо­рудована высоковольтным преобразователем напряжения. Такое усложнение схемы не дает существенных преимуществ, поэтому системы с накоплением энергии в емкости на автомобилях практически не применяются.

Принцип работы схемы, изображенной на рис. 2.1, а, характерен для всех си­стем зажигания, устанавливаемых на автомобилях.

Выключатель зажигания S1 включает систему в сеть питания. В некоторых системах роль выключателя S1 играют контакты реле, управляемого выключа­телем зажигания. При вращении вала двигателя происходит замыкание конта­ктов прерывательного механизма S2, и ток начинает нарастать в первичной це­пи катушки зажигания по экспоненте, как это показано на рис. 2.2, а.

В момент, необходимый для подачи искрового импульса на зажигание, преры­ватель S2 разрывает свои контакты, после чего возникает колебательный про­цесс, связанный с обменом энергией между магнитным полем катушки и элект­рическим полем в емкостях С1 и С2. Амплитуда колебаний напряжения, прило­женного к электродам свечи U2, убывает по экспоненте, как показано на рис. 2.2 пунктиром. Однако интерес представляет лишь первая полуволна напряжения, т.к., если ее максимальное значение U2m превышает напряжение пробоя искро­вого промежутка Un, возникает необходимая для зажигания искра. Величина U2m зависит от коэффициента трансформации катушки зажигания КТ = W2/W1 (W2 и W1 соответственно число витков вторичной и первичной обмо­ток катушки), величины тока первичной обмотки в момент разрыва 1, а также индуктивности L1 и емкости С1 первичной и С2 вторичной цепей

. (2.1)

Рис. 2.2. Временные диаграммы тока в первичной цепи I1 (а) и вторичного напряжения U2 (б) системы зажигания

Коэффициент КП учитывает потерю энергии в активных сопротивлениях первич­ной R1и вторичной R2 цепей, в сопротивлении нагара RШ, шунтирующего искровой промежуток, а также в сердечнике катушки при его перемагничивании. Обычно КП лежит в пределах 0,7 — 0,8. Влияние нагара на свечах на искрообразование значи­тельно снижается с увеличением скорости нарастания вторичного напряжения. В современных системах эта скорость лежит в пределах 200 — 700 В/мкс.

После пробоя искрового промежутка вторичное напряжение резко уменьша­ется (см. рис. 2.2). При этом в искровом промежутке сначала искра имеет емко­стную фазу, связанную с разрядом емкостей на промежуток, а затем индуктив­ную, во время которой в искре выделяется энергия, накопленная в магнитном поле катушки. Емкостная составляющая искры обычно кратковременная очень ярка, имеет голубоватое свечение. Сила тока в искре велика даже при малом количестве протекающего в ней электричества. Индуктивная составляющая отличается значительной продолжительностью, небольшой силой тока, боль­шим количеством электричества и неярким красноватым свечением. Осцилло­грамма вторичного напряжения, соответствующая рис. 2.2, является признаком нормальной работы системы зажигания. О нормальной работе свидетельствует и вид искры между электродами свечи. В исправной системе она имеет яркое ядро, окруженное пламенем красноватого цвета.

Распределение зажигания по цилиндрам может производиться как на высо­ковольтной, так и на низковольтной стороне (рис. 2.3).

Рис. 2.3. Способы распределения зажигания по цилиндрам двигателя:

а — высоковольтное распределение; низковольтное распределение двух- (6) и четырехвыводной (в) катушек зажигания.

При низковольтном рас­пределении каждая катушка зажигания обслуживает два либо четыре цилин­дра. В первом случае катушка имеет два высоковольтных вывода (двухвыводная катушка), во втором четыре (четырехвыводная). Импульсы напряжения на обоих выводах двухвыводной катушки появляются одновременно, но один из них подается в цилиндр в такте сжатия и производит воспламенение рабочей смеси, в другом цилиндре в это время избыточное давление отсутствует и вы­деленная в искре энергия расходуется вхолостую.

Четырехвыводная катушка снабжена первичной обмоткой, состоящей из двух секций, работающих попере­менно. Высоковольтные диоды обеспечивают разделение цепей, так как высо­ковольтные импульсы такой системы разнополярны. Это является недостатком системы с четырехвыводной катушкой, поскольку, в зависимости от полярно­сти импульса, пробивное напряжение на свече может отличаться на 1,5 — 2 кВ. Катушка может обслуживать и один цилиндр, в этом случае она обычно распо­лагается на свече.

В настоящее время наиболее распространено высоковольтное распределение зажигания, однако развитие электроники позволяет перейти, вернее вернуться, к низковольтному распределению, как, например, на первых автомобилях фир­мы «Форд», где имелись 4 прерывателя и 4 катушки зажигания.

При одинаковом принципе работы системы зажигания по своим конструктив­ным и схемным выполнениям делятся на контактную систему (иначе ее называ­ют классической), контактно-транзисторную и бесконтактную электронные си­стемы зажигания.

Область применения и принцип действия трансформаторов напряжения

Они встречаются везде, где присутствует необходимость преобразовать высокое напряжение сети в пропорционально более низкое значение. В этом и есть их назначение: преобразование величины напряжения. ТН-ы используют для:

  • уменьшения величины напряжения до величины, которую безопасно и удобно использовать в цепях измерения (вольтметры, ваттметры, счетчики), защиты, автоматики, сигнализации
  • защиты от высокого напряжения вторичных цепей, а следовательно и человека
  • повышения напряжения при испытаниях изоляции различного эо
  • на подстанциях ТН используют для контроля изоляции сети, работы в составе устройства сигнализации или защиты от замыканий на землю

Если бы не существовало трансформаторов напряжения, то, например, чтобы измерить напряжение на шине 10кВ, пришлось бы сооружать супермощный вольтметр с изоляцией, выдерживающей 10кВ. А это уже габариты ого-го. А ещё плюс к этому необходимо соблюсти точность измерений. Проблемка, но и это не всё. Если в таком приборе что-то коротнет, то электрик ошибается однажды…. при выборе профессии. 10кВ, а ведь есть и 750кВ, как там померить? Загвоздочка. Поэтому отдаем почести изобретателям трансформаторов, и в частности трансформаторов напряжения. Отвлеклись, продолжаем.

Прежде, чем двигаться дальше, нарисую однофазный ТН, чтобы было наглядно и более понятнее далее в изложении материала.

Значит на рисунке сверху у нас приходит напряжение на выводы А, Х трансформатора напряжения на первичную обмотку(1). Это напряжение номинальное напряжение, первичное напряжение. Далее оно трансформируется до величины вторичного напряжения, которое находится на вторичной обмотке (3). Выводы вторичной обмотки — а, х. Вывод вторичной обмотки заземляются. В — это вольтметр, но это может быть и другое устройство. (2) — это магнитопровод ТНа.

Принцип работы ТН

Принцип действия трансформатора напряжения аналогичен принципу работы трансформатора тока. Обозначим это еще раз. По первичной обмотке проходит переменный ток, этот ток образует магнитный поток. Магнитный поток пронизывает магнитопровод и обмотки ВН и НН. Если ко вторичной обмотке подключена нагрузка, то по ней начинает течь ток, который возникает из-за действия ЭДС. ЭДС наводится из-за действия магнитного потока. Подбирая разное количество витков первичной и вторичной обмоток можно получить нужное напряжение на выходе. Более подробно это показано в статье про векторную диаграмму трансформатора напряжения.

Если на ТН подавать постоянное напряжение, то ЭДС не создается постоянным магнитным потоком. Поэтому ТНы выпускают на переменное напряжение. Коэффициентом трансформации трансформатора напряжения называют естественно отношение напряжения первичной обмотки к напряжению вторичной и записывают через дробь. Например, 6000/100. Когда приходят молодые студенты, они иногда на вопрос какой коэффициент отвечают 60. Не стоит так делать.

Классификация трансформаторов напряжения

ТНы классифицируются по следующим параметрам:

  • напряжение первичной обмотки (3, 6, 10 … 750кВ)
  • напряжение основной вторичной обмотки (100 В — для однофазных, включаемых между фазами, трехфазных; 100√3 — однофазных, включаемых между фазой и землей
    напряжение дополнительной вторичной обмотки (100В — однофазные в сети с заземленной нейтралью, 100√3 — однофазные в сети с изолированной нейтралью
  • число фаз (однофазные, трехфазные)
  • количество обмоток (двухобмоточные, трехобмоточные)
  • класс точности (0,1 0,2 0,5 1 3 3Р 6Р)
  • способ охлаждения (сухие, масляные, газонаполненные)
  • изоляция (воздушно-бумажная, литая, компаунд, газ, масло, фарфор)

На напряжение 6, 10кВ используют литые ТНы, залитые эпоксидной смолой. Эти аппараты устанавливают в распредустройствах. Они занимают меньшие габариты, по сравнению с масляными. Также к их плюсам стоит отнести меньшее количество ухода за ними.

электромагнитные и емкостные

Если открыть объемы и нормы испытаний электрооборудования на странице ТНов, то можно увидеть, что трансформаторы напряжения там разделяются на электромагнитные и емкостные. В чем же состоит различие этих типов оборудования.

Электромагнитными считаем все ТНы в которых преобразование происходит по принципу, описанному выше (магнитные потоки, ЭДС и так далее). Индукционный ток, в брошюрах западных производителей их называют индуктивными, в противоположность емкостным. По моему всё именно так.

А вот емкостные трансформаторы напряжения, или же всё таки емкостные делители напряжения… Тут история умалчивает. Принцип работы такого оборудования можно понять, если нарисовать схему.

Вот, например схема ТН марки НДЕ-М. Они выпускаются на напряжение выше 110кВ. Состоит из емкостного делителя и электромагнитного устройства.
Емкостной делитель состоит из конденсаторов С1 и С2. Принцип емкостного делителя в следующем. Напряжение линии Л делится обратно пропорционально величинам емкостей С1 и С2. То есть мы подключаем к С2 наш ТН и напряжение на нем пропорционально входному, которое идет по Л, но гораздо меньше его. Раз рассматриваем НДЕ, то вот табличка величин напряжения для разных классов оборудования.

Электромагнитное устройство состоит из понижающего трансформатора, реактора и демпфера.

Реактор предназначен для компенсации емкостного сопротивления и следовательно уменьшения погрешности.

Электромагнитный демпфер предназначен для устранения субгармонических колебаний, которые могут возникать при включениях и коротких замыканиях в обмотках ТНа.

Чем выше класс напряжения, тем емкостные трансформаторы напряжения выгоднее своих собратьев. За счет снижения размеров изоляции и материалов.

Сохраните в закладки или поделитесь с друзьями



Последние статьи


Самое популярное

как выбрать трансформатор тока

Трансформатор напряжения , назначение и принцип действия

Трансформатор напряжения — это одна из разновидностей трансформаторов, который нужен для:

  1. преобразования электрической мощности и питания различных устройств,
  2. гальванической развязки цепей высокого напряжения (6 кВ и выше) от низкого (обычно 100 В) напряжения вторичных обмоток.
  3. измерения напряжения на подстанциях и питания всевозможных реле защиты

измерительный трансформатор напряженияизмерительный трансформатор напряжения

Измерительный трансформатор напряжения служит для понижения высокого напряжения, подаваемого в установках переменного тока на измерительные приборы и реле защиты и автоматики.

Трансформатор напряжения принцип работы

Для непосредственного включения на высокое напряжение потребовались бы очень громоздкие приборы и реле вследствие необходимости их выполнения с высоковольтной изоляцией. Изготовление и применение такой аппаратуры практически неосуществимо, особенно при напряжении 35 кВ и выше.

Применение трансформаторов напряжения позволяет использовать для измерения на высоком напряжении стандартные измерительные приборы, расширяя их пределы измерения; обмотки реле, включаемых через трансформаторы напряжения, также могут иметь стандартные исполнения.

Кроме того, трансформатор напряжения изолирует (отделяет) измерительные приборы и реле от высокого напряжения, благодаря чего он обеспечивает безопасность их обслуживания на подстанции.

Основное принципиальное отличие измерительных трансформаторов напряжения (ТН) от трансформаторов тока (ТТ) состоит в том, что они, как и все силовые модели, рассчитаны на обычную работу без закороченной вторичной обмотки.

В то же время, если силовые трансформаторы предназначены для передачи транспортируемой мощности с минимальными потерями, то измерительные трансформаторы напряжения конструируются с целью высокоточного повторения в масштабе векторов первичного напряжения.

трансформатор напряжения измерительныйизмерительный трансформатор напряжения

Принципы работы трансформатора напряжения

Конструкцию трансформатора напряжения, как и трансформатора тока, можно представить магнитопроводом с намотанными вокруг него двумя обмотками:

  • первичной;
  • вторичной.

Специальные сорта стали для магнитопровода, а также металл их обмоток и слой изоляции подбираются для максимально точного преобразования напряжения с наименьшими потерями. Число витков первичной и вторичной катушек рассчитывается таким образом, чтобы номинальное значение высоковольтного линейного напряжения сети, подаваемое на первичную обмотку, всегда воспроизводилось вторичной величиной 100 вольт с тем же направлением вектора для систем, собранных с заземленной нейтралью.

Если же первичная схема передачи энергии создана с изолированной нейтралью, то на выходе измерительной обмотки будет присутствовать 100/√3 вольт.

Для создания разных способов моделирования первичных напряжений на магнитопроводе может располагаться не одна, а несколько вторичных обмоток.

Устройство однофазного трансформатора напряжения

устройство трансформатора напряженияустройство однофазного трансформатора напряжения

Устройство однофазного трансформатора напряжения:

  • а — общий вид трансформатора напряжения;
  • б — выемная часть;
  • 1,5 — проходные изоляторы;
  • 2 — болт для заземления;
  • 3 — сливная пробка;
  • 4 — бак;
  • 6 — обмотка;
  • 7 — сердечник;
  • 8 — винтовая пробка;
  • 9 — контакт высоковольтного ввода

Однофазные трансформаторы напряжения получили наибольшее распространение. Они выпускаются на рабочие напряжения от 380 В до 500 кВ.

Конструктивные размеры и масса ТН определяются не мощностью, как у силовых трансформаторов, а в основном объемом изоляции первичной обмотки и размерами её выводов высокого напряжения.

Трансформаторы напряжения с номинальным напряжением от 380 В до 6 кВ имеют исполнение с сухой изоляцией (обмотки выполняются проводом марки ПЭЛ и пропитываются асфальтовым лаком).

Свердловский завод трансформаторов тока выпускает трансформаторы напряжения на 6, 10, 35 кВ с литой изоляцией.

У трансформаторов напряжением 10 — 500 кВ изоляция масляная (магнитопровод погружен в трансформаторное масло).

Пример назначение и область применение трансформаторов напряжения ЗНОЛ-НТЗ

Трансформаторы предназначены для наружной установки в открытых распределительных устройствах (ОРУ). Трансформаторы обеспечивают передачу сигнала измерительной информации измерительным приборам и устройствам защиты и управления, предназначены для использования в цепях коммерческого учета электроэнергии в электрических установках переменного тока на класс напряжения 35 кВ. Трансформаторы выполнены в виде опорной конструкции.

устройство трансформатора напряжения

Корпус трансформаторов выполнен из компаунда на основе гидрофобной циклоалифатической смолы «Huntsman», который одновременно является основной изоляцией и обеспечивает защиту обмоток от механических и климатических воздействий. Рабочее положение трансформаторов в пространстве — вертикальное, высоковольтными выводами вверх.

схема включения обмоток схема включения обмоток трансформатора напряжения ЗНОЛ-НТЗ

Схемы включения  трансформаторов напряжения

Измерительные трансформаторы применяются для замера линейных и/или фазных первичных величин. Для этого силовые обмотки включают между:

  • проводами линии с целью контроля линейных напряжений;
  • шиной или проводом и землей, чтобы снимать фазное значение.

Важным элементом безопасности измерительных трансформаторов напряжения является заземление их корпуса и вторичной обмотки.

На заземление трансформаторов напряжения обращается повышенное внимание, ведь при пробое изоляции первичной обмотки на корпус или во вторичные цепи в них появится высоковольтный потенциал, способный травмировать людей и сжечь оборудование.

Преднамеренное заземление корпуса и одной вторичной обмотки отводит этот опасный потенциал на землю, чем предотвращает дальнейшее развитие аварии.

Трансформатор напряжения при напряжении до 35 кВ

Трансформатор напряжения при напряжении до 35 кВ по принципу выполнения ничем не отличается от силового понижающего трансформатора. Он состоит из магнитопровода, набранного из пластин листовой электротехнической стали, первичной обмотки и одной или двух вторичных обмоток. На рис. 2.1. показана схема трансформатора напряжения с одной вторичной обмоткой. На первичную обмотку подается высокое напряжение Ub a напряжение вторичной обмотки U2 подведено к измерительному прибору.

Схема включения однофазного трансформатора напряжениярис. 2.1  Схема включения однофазного трансформатора напряжения

Трансформаторы применяются в наружных (типа НОМ-35, серий ЗНОМ и НКФ) или внутренних установках переменного тока напряжением 0,38-500 кВ и номинальной частотой 50 Гц. Трехобмоточные трансформаторы НТМИ предназначены для сетей с изолированной нейтралью, серии НКФ (кроме НКФ-110-5 8) — с заземленной нейтралью.

В электроустановках используются однофазные, трехфазные (пятистержневые) и каскадные трансформаторы напряжения (ТН). Выбор того или иного типа трансформатора напряжения  зависит от напряжения сети, значения и характера нагрузки вторичных цепей и назначения трансформатора напряжения (для целей изменения, для контроля однофазных замыканий на землю, для питания устройств релейной защиты и автоматики).

Ввиду относительно высокой стоимости ТН для сетей 110-750 кВ они в ряде случаев, там, где это возможно по условиям работы систем измерения, защиты и автоматики электроустановок, заменяются емкостными делителями напряжения.

По изоляции различают трансформаторы напряжения с сухой и масляной изоляцией.

Обозначение трансформатора напряжения на схеме

Обозначение трансформатора напряжения на схемеОбозначение трансформатора напряжения на схеме

Предохранители  трансформаторов осуществляют защиту трансформаторов напряжения от повреждения в случае их работы в ненормальном режиме — при однофазном замыкании на землю, при возникновении в сети феррорезонансных явлений или в случае наличия короткого замыкания в первичной обмотке трансформатора напряжения.

Трёхфазный трансформатор

Среди электромагнитных устройств данного типа выделяется трёхфазный трансформатор. Он имеет магнитную и гальваническую связи фаз. Наличие схемы первого типа обусловлено соединением магнитопроводов в одну систему. При этом потоки магнитного воздействия расположены относительно друг друга под углом 120 °. Стержень в данной системе не нужен, так как при объединении центров трёх фаз сумма электромагнитных русел равняется нулю вне зависимости от времени. Благодаря этому схема с шестью стержнями преобразуется в трёхстержневую.

В соединении обмоток устройства можно использовать схемы трёх типов:

  • Соединение в виде звезды может осуществляться с выводом от общих точек или же без него. Здесь каждую обмотку соединяют с нейтральной точкой.
  • По треугольной схеме фазы соединяются последовательно.
  • Зигзаг-это схема, которая чаще всего применяется во время отвода от общей точки. В ней соединяются три обмотки, расположенные на разных стержнях магнитопроводов.

Применение трёхфазного трансформатора является более экономичным, чем использование соединённых однофазных конструкций.

Нагрузка трансформаторов напряжения

Вторичная нагрузка трансформатора напряжения—это мощность внешней вторичной цепи. Под номинальной вторичной нагрузкой понимают наибольшую нагрузку, при которой погрешность не выходит за допустимые пределы, установленные для трансформаторов данного класса точности.

Конструкции трансформаторов напряжения

В установках напряжением до 18 кВ применяются трехфазные и однофазные трансформаторы, при более высоких напряжениях — только однофазные.

При напряжениях до 20 кВ имеется большое число типов трансформаторов напряжения: сухие (НОС), масляные (НОМ, ЗНОМ, НТМИ, НТМК), с литой изоляцией (ЗНОЛ). Следует отличать однофазные двухобмоточные трансформаторы НОМ от однофазных трехобмоточных трансформаторов ЗНОМ. Трансформаторы типов ЗНОМ-15, -20 -24 и ЗНОЛ-06 устанавливаются в комплектных токопроводах мощных генераторов. В установках напряжением 110 кВ и выше применяют трансформаторы напряжения каскадного типа НКФ и емкостные делители напряжения НДЕ.

Измерительные трансформаторы напряжения

Измерительные трансформаторы напряжения предназначены для уменьшения первичных напряжений до значений, наиболее удобных для подключения измерительных приборов, реле защиты, устройств автоматики. Применение измерительных трансформаторов обеспечивает безопасность работающих, так как цепи высшего и низшего напряжения разделены, а также позволяет унифицировать конструкцию приборов и реле.

Видео: Трансформаторы напряжения

Технические характеристики трансформаторов напряжения, схемы включения. Факторы, влияющие на класс точности. Виды трансформаторов напряжения, расшифровка маркировки.

Что такое реле, устройство, принцип действия, виды, производители

Реле – коммутационное устройство (КУ), соединяющее или разъединяющее цепь электронной или электрической схемы при изменении входных величин тока. Прежде чем мы перейдем к детальному рассмотрению того, что такое реле, как устроено, по какому принципу работает и где применяется, пожалуй, нужно узнать, когда это устройство впервые появилось и кто его изобретатель.

Вот таких типоразмеров может быть это устройствоВот таких типоразмеров может быть это устройство

Содержание статьи

История создания

Первенство создания реле спорно. Некоторые утверждают, что впервые это устройство было сконструировано в 1830—1832 гг. русским ученым Шиллингом П.Л. и являлось основным элементом вызывающего механизма в разработанном им же варианте телеграфа.

Другие научные историки приписывают первенство изобретения известному физику Дж. Генри, который в 1835 г. разработал контактное реле во время усовершенствования созданного им в 1831 году телеграфного аппарата. Первый соленоид работал по принципу электромагнитной индукции и был некоммутационным устройством.

Что такое релеПервое реле Дж. Генри

Реле, в качестве самостоятельного устройства, впервые упоминается в патенте на телеграф, выданном Самуэлю Морозе.

Первое реле МорзеПервое реле Морзе

Как видим, первой сферой применения этого коммутационного устройства был телеграф и только позднее с развитием техники он стал применяться в электрическом и электронном оборудовании.

Устройство и принцип работы реле

Реле представляет собой катушку, состоящую из немагнитного основания, на которое намотан провод из меди с тканевой или синтетической изоляцией, но чаще всего с диэлектрическим лаковым покрытием. Внутри катушки установленной на нетокопроводящее основание, размещается металлический сердечник. Также в устройстве имеются пружины, якорь, соединительные элементы и пары контактов.

При подаче тока на обмотку электромагнита (соленоида) сердечник притягивает якорь, который соединяется с контактом и электрическая или электронная цепь замыкается. При снижении силы тока до определенного значения, якорь, под действием пружины, возвращается на исходную позицию, вследствие чего происходит размыкание цепи.

Более плавная и точная работа достигается благодаря использованию резисторов, а защиту от скачков напряжения и искрения обеспечивает установка конденсаторов.

У большинства электромагнитных реле имеется не одна, а несколько пар контактов, что позволяет управлять несколькими цепями одновременно.

Простейшая схема устройства электромагнитного соленоидаПростейшая схема устройства электромагнитного соленоида

Если в двух словах, то этот вид коммутационного устройства работает по принципу электромагнитной индукции. Благодаря довольно простому принципу действия реле имеют высокую надежность в эксплуатации.

В видеоролике ниже разъясняется принцип действия электромагнитного КУ:

Основные характеристики КУ

К основным характеристикам, на которые следует обратить внимание при выборе данного вида коммутационного устройства, относят:

  • чувствительность – срабатывание от подаваемого на обмотку тока определенной силы, достаточной для включения устройства;
  • сопротивление обмотки электромагнита;
  • напряжение (ток) срабатывания – минимально допустимое значение, достаточное для переключения контактов;
  • напряжение (ток) отпускания – значение параметра, при котором происходит отключение КУ;
  • время притягивания и отпускания якоря;
  • частота срабатывания с рабочей нагрузкой на контактах.

Классификация и для чего нужно реле

Поскольку реле являются высоконадежными коммутационными устройствами, то не удивительно, что они нашли широкое применение в самых различных областях человеческой деятельности. Они используются в промышленности для автоматизации рабочих процессов, а также в быту в самой различной технике, например в привычных всех холодильниках и стиральных машинах.

Разнообразие видов реле очень велико и каждый предназначен для выполнения определенной задачиРазнообразие видов реле очень велико и каждый предназначен для выполнения определенной задачи

Реле имеют сложную классификацию и делятся на несколько групп:

По сфере применения:

  • управление электрическими и электронными системами;
  • защита систем;
  • автоматизация систем.

По принципу действия:

  • тепловые;
  • электромагнитные;
  • магнитолектические;
  • полупроводниковые;
  • индукционные.

По поступающему параметру, вызывающему срабатывание КУ:

  • от тока;
  • от напряжения;
  • от мощности;
  • от частоты.

По принципу воздействия на управляющую часть устройства:

  • контактные;
  • бесконтактные.

На фото (обведено красным) показано, где находится одно из реле в стиральной машинеНа фото (обведено красным) показано, где находится одно из реле в стиральной машине

В зависимости от вида и классификации реле применяются в бытовой технике, автомобилях, поездах, станках, вычислительной технике и т.д. Однако, чаще всего этот вид коммутирующего устройства используется для управления токами большой величины.

Основные виды реле и их назначение

Производители настраивают современные коммутационные устройства таким образом, чтобы срабатывание происходило только при определенных условиях, например, при увеличении силы тока, поступающего на входные клеммы КУ. Ниже мы вкратце рассмотрим основные виды соленоидов и их назначение.

Электромагнитные реле

Электромагнитное реле – это электромеханическое коммутационное устройство, принцип действия которого основан на воздействии магнитного поля, созданного током в статичной обмотке, на якорь. Этот вид КУ разделяется собственно на электромагнитные (нейтральные) устройства, которые реагируют лишь на значение тока, подаваемого на обмотку, и поляризованные, работа которых зависит как от токовой величины, так и от полярности.

Принцип работы электромагнитного соленоидаПринцип работы электромагнитного соленоида

Используемые в промышленном оборудовании электромагнитные реле находятся на промежуточной позиции между сильноточными устройствами (магнитными пускателями, контакторами и т.д.) и слаботочным оборудованием. Наиболее часто данный вид реле применяется в цепях управления.

Реле переменного тока

Срабатывание этого вида реле, как видно из названия, происходит при подаче на обмотку переменного тока определенной частоты. Данное коммутирующее устройство для переменного тока с контролем перехода фазы через ноль или без такового, представляет собой блок из тиристоров, выпрямительных диодов и управляющих схем. Реле переменного тока могут быть выполнены в виде модулей на основе трансформаторной или оптической развязки. Данные КУ применяются в сетях переменного тока с максимальным напряжением 1,6 кВ и средним током нагрузки до 320 A.

Промежуточное реле 220 ВПромежуточное реле 220 В

Иногда работа электросети и приборов не возможна без использования промежуточного реле на 220 В. Обычно КУ данного типа применяется, если необходимо разомкнуть или разомкнуть разнонаправленные контакты цепи. К примеру, если используется осветительный прибор с датчиком движения, то один проводник присоединяется к сенсору, а другой подводит электроэнергию к светильнику.

Реле переменного тока широко применяются в промышленном оборудовании и бытовой техникеРеле переменного тока широко применяются в промышленном оборудовании и бытовой технике

Работает это таким образом:

  1. подача тока на первое коммутационное устройство;
  2. от контактов первого КУ ток поступает на следующее реле, которое имеет более высокие характеристики, чем у предыдущего и способно выдерживать токи с высокими значениями.

С каждым годом реле становятся эффективней и компактнейС каждым годом реле становятся эффективней и компактней

Функции малогабаритного реле переменного тока с напряжением 220 В весьма разнообразны и широко используются в качестве вспомогательного устройства в самых различных областях. Данный вид КУ применяется в тех случаях, когда основное реле не справляется со своей задачей или же при большом количестве управляемых сетей которые уже не в состоянии обслужить головное устройство.

Промежуточное коммутационное устройство применяется в промышленном и медицинском оборудовании, транспорте, холодильном оборудовании, телевизорах и прочей бытовой технике.

Реле постоянного тока

Реле постоянного тока делятся на нейтральные и поляризованные. Отличие между ними состоит в том, что поляризованные КУ постоянного тока чувствительны к полярности подаваемого напряжения. Якорь коммутационного устройства меняет направление движения в зависимости от полюсов питания. Нейтральные электромагнитные реле постоянного тока не зависят от полярности напряжения.

Электромагнитные КУ постоянного тока в основном используют, когда нет возможности подключения к электрической сети переменного тока.

Четырехконтактное автомобильное релеЧетырехконтактное автомобильное реле

К недостаткам соленоидов постоянного тока относят необходимость использования блока питания и более высокую стоимость в сравнении с КУ переменного тока.

Данное видео демонстрирует схему подключения и объясняет принцип работы 4 контактного реле:

Электронное реле

Электронное реле управления в схеме прибораЭлектронное реле управления в схеме прибора

Разобравшись с тем, что такое токовое реле, рассмотрим электронный тип этого устройства. Конструкция и принцип действия электронных реле практически те же, что и в электромеханических КУ. Однако, для выполнения необходимых функций в электронном устройстве используется полупроводниковый диод. В современных транспортных средствах большинство функций реле и переключателей выполняют электронные релейные блоки управления и на данный момент невозможно полностью от них отказаться. Так, например, блок электронных реле позволяет контролировать расход энергии, величину напряжения на клеммах аккумуляторных батарей, управлять системой освещения и т.д.

Обозначение реле на схеме

Чтобы отремонтировать или создать новое электрооборудование, мало знать как работает реле, нужно знать как оно выглядит на схемах. В приведенной ниже таблице показаны самые основные буквенно-графические обозначения КУ принятые в международном классификаторе.

Основные обозначения

Подробнее, с символическим обозначением реле и других элементов электронных и электрических схем, можно ознакомиться, заглянув в специальные справочники, которых в интернете довольно много.

Ведущие производители реле

Где приобрести реле и их стоимость

Реле в зависимости от типа КУ, производителя, сферы применения и продавца могут стоить от 15$ до нескольких сотен. Приобрести необходимое коммутационное устройство можно непосредственно у производителя в традиционных специализированных магазинах или интернете. В настоящее время купить нужное реле любого типа и назначения не составит труда. Существуют специальные каталоги, в которых указывается маркировка, компания-производитель, параметры и стоимость изделия.

Заключение

Как следует из этого обзора, реле является неотъемлемой частью практически любой электрической и электронной схемы промышленного оборудования и бытовой техники. Полную информацию об этом виде коммутационного устройства сложно втиснуть в рамки одной статьи. Если у вас возникнут какие-либо вопросы по этой теме, то задавайте и будем вместе разбираться.

 

Предыдущая

ИнженерияНасосная станция для частного дома: критерии выбора и особенности эксплуатации

Следующая

ИнженерияПодбираем с умом сифон для раковины на кухню

Понравилась статья? Сохраните, чтобы не потерять!

ТОЖЕ ИНТЕРЕСНО:

ВОЗМОЖНО ВАМ ТАКЖЕ БУДЕТ ИНТЕРЕСНО:

назначение, устройство и принцип действия трансформатора

Трансформатор  –  это статическое электромагнитное устройство предназначенное для преобразование переменного тока одного напряжения той же частоты подающегося на его входную обмотку,  в другое переменное напряжение поступающиеся с его выходной обмотки.

Если на вход трансформатора поступает напряжение ниже, чем образующиеся на его выходе то такой трансформатор называют повышающим. Если на вход поступает напряжение выше чем образующие на его выходе, то это понижающий трансформатор.

Есть некая аналогия с передаточным числом шестереночной передачей.

зубчатая передача

Назначение и принцип действия трансформатора

Назначение и принцип действия трансформатора — это  передача электрической энергии на значительные расстояния от электростанций к различным потребителям: промышленным предприятиям, населению и т.п, с помощью электродвижущей силы и магнитной индукции.

Трансформаторы позволяют значительно экономить на стоимости проводов, а также снижают потери электроэнергии в линиях электропередач. Так как от силы тока зависит сечение проводов то, увеличивая напряжение и снижая силу тока (не снижая при этом передаваемую мощность) можно эффективно предавать напряжение на значительные расстояния.

Повышая напряжение (U), и снижая силу тока (I), передаваемая мощность (Р) остается неизменна.

Формула мощности  P = U * I или P = U2 / I

передача электроэнергии трансформаторамипередача электроэнергии трансформаторами

Это позволяет экономить  на линиях электропередач:

  1. Используя провода с меньшим поперечным сечение, снижается расход  цветных металлов;
  2. Уменьшаются потери мощности при передаче электроэнергии на большие расстояния.

На электростанциях вырабатывается электрическая энергия посредством синхронных генераторов и составляет от 11 кВ до 20кВ, в некоторых случаях может применяться напряжение 30-35 кВ.  Эти величины не подходят как в быту, так и на промышленном производстве из-за слишком высокого напряжения. Но эти напряжения также недостаточны для экономичной передачи электроэнергии на расстояния. Поэтому на выходе из электростанций ставятся повышающие трансформаторы, которые повышают напряжение до 750 кВ, U=750kV напряжение которое непосредственно передается по линиям электропередач.

Приемники электрической энергии: различные бытовые приборы, электродвигатели, станки на производстве из-за соображения безопасности и конструктивными сложностями изготовления (требования к усиленной изоляции), также не могут работать с такими высокими напряжениями.  Они рассчитываются на более низкое напряжения, как правило, это 220V в быту и 380V на производстве.

Для понижения напряжения  используются различные понижающие трансформаторы. Любой трансформатор можно использовать как для повышения, так и для понижения напряжения.

Повышающие трансформаторы используют для передачи электроэнергии на большие расстояния, понижающие для распределения электроэнергии в точке разветвления потребителей.

Электрическая энергия по пути движения от электростанции до потребителя может трансформироваться 3 или 4 раза. Преобразование электроэнергии происходит с помощью магнитопровода трансформатора и переменного магнитного поля.

Трансформатор работает только с переменным напряжением, на постоянном токе не работает, так как не будет создаваться переменного магнитного поля, которое и составляет принцип работы любого трансформатора.

Изобретение трансформатора

Трансформатор изобрел выдающийся русский ученый П.И. Яблочковым в 1876г. Он использовал индукционную катушку с двумя обмотками для питания своей знаменитой лампы, «свечи Яблочкова». Это был первый генератор переменного тока. Этот трансформатор имел незамкнутый сердечник. Замкнутые сердечники, которые используются сейчас, появились только в 1884 г.

В 1889 году русский ученый М. О. Доливо-Добровольским изобрел трехфазную систему переменного тока и построил первый трехфазный асинхронный двигатель и первый трехфазный трансформатор.

С 1891г, он демонстрирует на электротехнической выставке в Франкфурте-на-Майне передачу высоковольтного трехфазного тока на расстояние более 100 км. Его трехфазный генератор имел мощность 230 кВА и напряжение U =95V. С помощью трехфазного трансформатора напряжение повышалось до 15 кВ и понижалось в точке приема до 65V (фазное напряжение), питая трехфазный асинхронный двигатель мощностью 75 кВт насосной установки. С помощью последовательного включения двух обмоток высокого напряжения удалось повысить 28 кВ и увеличить КПД электропередачи до 77%, что в то время было достаточно высоким.

Как устроен трансформатор

работа трансформатораПринцип работы трансформатора

Простейший трансформатор – это две обмотки катушек, намотанные на магнитопроводе (замкнутом сердечнике трансформатора) с изоляцией по которым пропускают переменный ток.
Для наглядности обмотки расположены на разных стержнях стального сердечника. На самом деле часть обмоток может находится на одном стержне, а часть на другом. Такое расположение обмоток улучшает магнитную связь и снижает потери на магнитный поток рассеяния. Обмотка, на которую подают напряжение, называют первичной обмоткой, а обмотка трансформатора, с которой снимают напряжение, называют вторичной.

схема трансформатораИзображение трансформатора на схеме

Обычно в быту для питания различных устройств, применяют понижающие трансформаторы, где напряжение первичной обмотки всегда больше напряжения на вторичной обмотке.
Трансформаторы предназначены не только для передачи электроэнергии, но и служат в различных электронных устройствах: компьютерах, телевизорах и осветительной аппаратуре. В современном мире трансформаторы являются наиболее употребительными и универсальными устройствами.

Видео: Трансформатор. Принцип работы и советы конструкторам

Видео доступным языком объясняет работу трансформатора и даёт некоторые конструктивные советы

Простое объяснение принципа работы трансформатора

Чтобы понять, что такое трансформатор, попробуем собрать его, попутно разбираясь в каждом шаге.

 

Для начала соберем электромагнит. Самый простейший электромагнит это кусок ферромагнетика, например гвоздь (сотка), вокруг которого намотана проволока. (катушка).

катушка индуктивностикатушка индуктивности

Намотайте катушку, скажем витков 20-30 на гвоздь, подключите к батарейке или любому блоку питания постоянного напряжения (например 9 вольт).

При подаче тока на катушку, гвоздь усиливает свое магнитное свойство и становится постоянным электромагнитом — полной копией простого магнита.

Количеством витков, их толщиной (сечением провода), напряжением и током, материалом сердечника, способом намотки (например в два провода) Вашей катушки — Вы можете регулировать степень магнитной силы Вашего электромагнита.

А подключением намотки Вы можете регулировать положение полюсов Вашего электромагнита. (это важно)

соленоидПри подключении катушки к батарейке у гвоздя, т. е. у Вашего электромагнита образовывается, как и у простого магнита два полюса, условно северный (он же плюс) и южный (он же минус).

Поднесите к Вашему электромагниту простой магнит любым из полюсов. Вы увидите электромагнитное взаимодействие. Магнит будет отталкиваться Вашим электромагнитом.

Теперь поменяйте провода от Вашей батарейки местами, т. е. плюс на минус. При этом Вы заметите, что электромагнит поменял направление силы — теперь он наоборот притягивает.

Чем чаще Вы переключаете плюс на минус, тем чаще Ваш магнит будет менять направление силы. Иными словами электромагнит будет притягивать отталкивать с частотой питающей его сети.

Северный и южный полюса магнита будут меняться между собой, потому что ВЫ создали переменное напряжение с частотой Вашего переключения плюс на минус.

Теперь на гвозде намотайте вторую точно такую же катушку и Вы получите простейший трансформатор.

соленоидТрансформатор это прибор, который трансформирует напряжение и ток одной величины в напряжение и ток другой величины.

Первая катушка называется первичной обмоткой, а вторая катушка вторичной обмоткой.

Итак соберите такую конструкцию.

  • Гвоздь, на нем две одинаковые катушки.
  • Подключите первичную обмотку к блоку питания с возможностью менять направление тока.
  • Ко второй катушке подключите мультиметр.

Теперь включите блок питания и начинайте переключать полярность с некоторой частотой. На второй катушке у Вас начнет появляться напряжение, которое передается посредством того, что называют электромагнитной индукции. В итоге на Вашем гвозде у Вас работают два электромагнита, на первый вы подаете ток и напряжение, а на втором электромагните этот ток и напряжение индуктируются.

Виды трансформаторов

Силовой трансформатор

силовой трансформаторТак выглядит силовой трансформатор

Этот виды трансформаторов относится к трансформаторам работающих в сетях промышленных и бытовых установках частотой питающей сети 50-60 Гц. Силовые трансформаторы предназначены для преобразование электрической энергии для передачи ее по ЛЭП например, с 38 кВ до 6кВ, 380V на 220V (380/220В). Электро цепи где используется высокое напряжение принято называть в электротехнике силовыми цепями, а трансформаторы соответственно силовые трансформаторы.

Конструкция силового трансформатора состоит из двух или трёх обмоток, возможно больше. Располагаются обмотки на броневом сердечнике, изготавливаемом из листов электротехнической стали. Некоторые силовые трансформаторы (с расщепленными обмотками) могут иметь несколько обмоток с низшего напряжения (НН) которые запитаны параллельно. Это позволяет получать напряжение больше чем от одного генератора и передавать больше электроэнергии, тем самым повышая КПД электроустановки.

Мощные силовые трансформаторы очень часто делают масляными, то есть его обмотки помещают в бак со специальным трансформаторным маслом. Трансформаторное масло служит для активного охлаждения и одновременной изоляции его обмоток.
Трансформаторы мощностью 400 кВА обладают большим весом и монтируются на специальных платформах или помещениях. Они поступают с завода в собранном состоянии, готовыми к подключению нагрузки на подстанциях или электростанциях. Основное исполнение силовых трансформаторов – это трехфазные трансформаторы. это связно с тем, что потери КПД однофазных трансформаторов на 15% больше.

Сетевые трансформаторы

сетевой трансформаторсетевой трансформатор

Сетевые трансформаторы это самый распространенный вид трансформаторов, который можно встретить практически в любом бытовом электроприборе. Все сетевые трансформаторы, как правило, делают однофазными. Эти трансформаторы служат для преобразования высокого напряжение сети 220V до приемлемого напряжения, используемого в том или ином электроприборе. Понижающее напряжение может быть: 220/12V или 220/9V, 220/36V и т.д.

Многие изготавливают сетевые трансформатор не с одной, а с несколькими вторичными обмотками, что делает трансформатор более универсальным, часто используемый на разное напряжение одновременно.

Например, часть схемы запитана напряжение 12 Вольт, а другая 3 Вольта от одного трансформатора с несколькими обмотками.

магнитопроводыконструкция магнитопроводов трансформатора

Изготавливают сетевые трансформаторы чаще всего из электротехнической стали на Ш – образных или стержневых сердечниках. Встречаются тороидальные сердечники. Ш-образный сердечник набирается из пластин, на которые надевают каркас на который наматываются обмотки трансформатора.

Тороидальный трансформатор имеет преимущества из-за своего более компактного вида и обладают более лучшими характеристиками. Обмотки тороидального трансформатора полностью охватывают магнитопровод, нет пустого пространства незанятого обмоткой в отличие от стержневых или броневых трансформаторов.

Сварочные трансформаторы также можно отнести к сетевым, мощность которых не превышает 6 кВт. Все сетевые трансформаторы работают на низкой частоте равной 50-60 Гц.

Автотрансформатор

схема автотрансформатора
Автотрансформатор – это трансформатор где обмотки низшего напряжения являются частью обмотки высшего. Обмотки автотрансформатора имеют прямую электрическую связь, а не только посредством магнитопровода. Делая отводы от одной обмотки можно получить различное напряжение. Отличить обмотки низшего и высшего напряжение можно по различному сечению использованного для намотки провода.

Преимущество автотрансформатора – это меньшие размеры, меньше использованного провода, меньше сердечник, меньше затрачено стали на его изготовление в итоге меньшая цена автотрансформатора.

Главный недостаток трансформатора — это гальваническая связь обмоток низшего и высокого напряжения. Возможность попадания сети высшего напряжения в сеть низшего. Невозможность применение автотрансформаторов в сетях с заземлением.
Автотрансформаторы применяют в сетях трехфазного тока с соединением обмоток в чаще всего в звезду, реже в треугольник.

Автотрансформаторы часто применяют в устройствах управления напряжением, в высоковольтных установках, в промышленности для пуска мощных асинхронных электродвигателей переменного тока. Мощность автотрансформаторов может быть до 100 МВт.

Преимущество автотрансформаторов увеличивается с увеличением коэффициента трансформации близкими (К=1-2).

Лабораторный автотрансформатор (ЛАТР)

ЛатрЛатр

Разновидностью автотрансформатора можно назвать лабораторный трансформатор (ЛАТР). Его основное назначение — это плавная регулировка напряжения, подающаяся к нагрузке, к любому потребителю электроэнергии. Конструкция автотрансформатора представляет собой тороидальный трансформатор у которого есть только одна обмотка, по которой бежит ползунок (угольный роликовый контакт) подключающий каждый виток не изолируемой обмотки (дорожки) автотрансформатора к схеме. Таким образом, создается регулирующий эффект.

При замыкании соседних витков роликовым ползунком в ЛАТР, не происходит межвитковых замыканий, так как токи питающей сети и нагрузки автотрансформатора в общей обмотке близки друг к другу и направлены встречно. Самые распространенные ЛАТРы регулируют напряжение от 0 до 250V. Трехфазные регулируют от 0/450 вольт. Автотрансформаторы ЛАТРы часто используют в научно исследовательских лабораториях для пусконаладочных работ различного назначения.

Трансформаторы тока

трансформаторы тока

Трансформатор тока служит в основном в измерительной технике. Первичную обмотку такого трансформатора подключают к источнику тока, вторичная обмотка используется для различных измерительных приборов при небольшом внутреннем сопротивлении (R вн).
Первичная обмотка – это, как правило, всего виток провода включенного последовательно с измеряемой цепью переменного тока. Ток первичной обмотки прямо пропорционален току вторичной, в чем и достигается измерение величины силы тока (А).

Главная особенность трансформаторов тока состоит в том, что вторичная обмотка должна быть всегда нагружена, иначе происходит пробой изоляции высоким напряжением, также при отключенной нагрузке магнитопровод трансформатора тока просто сгорает от некомпенсированных наведенных токов.

Конструктивно трансформатор тока это одна или несколько изолированных обмоток намотанных на шихтованную холоднокатаную электротехническую сталь называемую сердечником. Первичная обмотка может быть просто провод, который пропущенный через окно магнитопровода трансформатора тока который измеряет силу тока проходящий через этот провод или шину. Коэффициент трансформации здесь 100/5, безопасны, так как отсутствует гальваническая связь между обмотками.

Применение трансформаторов тока: измерения силы тока в схемах релейной защиты, в измерительной аппаратуре. Выпускают с 1-2 группами вторичных обмоток. Одна группа может, подсоединяется к защитным устройствам, другая к измерительным приборам и счетчикам.

Трансформаторы напряжения

трансформатор напряженТрансформатор напряжения НОМ-3

Трансформаторы напряжения – это трансформаторы, преобразующие высокие напряжения пропорционально и точно в соответствии с фазами в величины, пригодные для измерения. Трансформаторы среднего напряжения имеют единственный магнитопровод и могут быть выполнены с одной или несколькими вторичными обмотками. Заземляемые трансформаторы напряжения по желанию помимо измерительной или защитной обмотки могут быть выполнены с дополнительной обмоткой для регистрации замыкания на землю.

Импульсный трансформатор тока

импульсный трансформатор токаимпульсный трансформатор тока

Применяются для измерения направления или силы тока в импульсных схемах. Импульсный трансформатор состоит из кольцевого ферритового сердечника с одной обмоткой. Измеряемый провод проходит сквозь кольцо, обмотку подключают к сопротивлению нагрузки (Rн).
Если обмотка содержит 1000 витков провода, то ток, проходящий через измеряемый провод будет равен 1000\1, то есть на сопротивлении нагрузки будет ток, который в 1000 раз меньше тока проходящего через измеряемый провод.

Производители трансформаторов тока изготовляют импульсные трансформаторы тока с различным коэффициентом трансформации. Инженеру проектировщику нужно лишь рассчитать сопротивление нагрузки и соответствующую схему измерения.
Если нужно измерить направление тока, то вместо сопротивления нагрузки подключают два стабилитрона с встречным включением.

Импульсный трансформатор

импульсный трансформатор

Распространен во всех современных электронных схемах. Импульсный трансформатор предназначен для сварочных устройств, блоков питания, импульсных преобразователей. Заменили в настоящее время низкочастотные трансформаторы с сердечниками из шихтованной стали, которые имели больше габариты и вес.
Состоит из ферритового магнитопровода различной формы: кольцо, чашечка, стержень, Ш — образный, П – образный. Ферритовый сердечник импульсных трансформаторов дает им несравненное преимущество перед старыми трансформаторами из стали в том, что они могут работать на частотах до и свыше 500 000 гц.

Импульсный трансформатор – это ВЧ (высокочастотный) трансформатор габариты и вес, которого с ростом частоты становиться только меньше!
Обмотка требует меньшего количества витков, а для регистрации высокочастотного тока достаточно полевого или биполярных транзисторов включенных по специальной схеме:

  • Прямоходовая;
  • Двухтактная;
  • Полумостовая;
  • Мостовая схема

Применяют импульсные трансформаторы и дроссели на феррите в энергосберегающих лампах, зарядных для мобильных устройств, в мощных инверторах тока, сварочных аппаратах.

Трансформатор Тесла

импульсный трансформатор

Трансформатор Николы Теслы — это аппарат, с помощью которого получают токи высокой частоты. Реализовывается при помощи первичной и вторичной обмотки, но первичная обмотка получает питание на частоте резонанса вторичной обмотки, при этом напряжение на выходе возрастает в десятки раз.

По мнению специалистов, Тесла изобретал трансформатор для решения глобального вопроса передачи электрической энергии из одного пункта в другой без применения проводов. Для того чтобы получилась задуманная изобретателем передача энергии при помощи эфира, необходимо на двух удаленных точках иметь по одному мощному трансформатору, которые работали бы на одной частоте в резонансе. сли проект реализовать, тогда не понадобятся гидроэлектростанции, мощные ЛЭП, наличие кабельных линий, что, конечно, противоречит монопольному владению электрической энергией разными компаниями.

С проектом Николы Теслы каждый гражданин общества мог бесплатно воспользоваться электричеством в нужный момент в любом месте, где бы он ни находился.

С точки зрения бизнеса эта система нерентабельна, так как она не окупится, ведь электричество становится бесплатным, именно по этой причине патент №645576 до сих пор ожидает своих инвесторов.

Видео: Принцип работы трансформатора

Основы — как работает трансформатор, первичная и вторичная обмотка, каким образом понижается или повышается напряжение у трансформатора за счет магнитного поля, для чего нужен магнитопровод и что такое взаимоиндуктивность — обо всем этом смотрите в видео!

принцип действия, устройство, виды, назначение

Защита электрических цепей от КЗ и перегрузок является одной из самых важных задач в электротехнике. С этой целью изобретено множество защитных аппаратов, которые сегодня применяются как в силовых цепях, так и для защиты электрических схем в различных устройствах. Практически в каждом сложном электроприборе можно встретить плавкие предохранители – одноразовые коммутационные устройства, разъединяющие цепь в аварийной ситуации.

Назначение и принцип действия

Основная задача плавких предохранителей – защита электрической сети и электрооборудования от сверхтоков, возникающих при коротком замыкании или в результате критических перегрузок. При этом они обеспечивают бесперебойную работу защищаемых цепей в номинальном режиме.

В отличие от автоматического выключателя, часто применяемого в электротехнике, плавкая вставка срабатывает только один раз, после чего он подлежит замене. Однако срабатывает такое устройство со стопроцентной вероятностью, в то время как автоматика после многократного отключения может подвести. Именно поэтому для защиты дорогостоящего оборудования используют плавкие вставки. Не отказываются от применения этих защитных устройств и в силовых цепях.

Устройство и принцип защиты

В конструкции плавкого предохранителя есть два основных элемента: корпус (держатель) с контактами и плавкую вставку (рисунок 1). Строго говоря, только сочетание этих элементов можно называть предохранителем. Очень часто деталь плавкой вставки (особенно если она заменяемая) называют плавким предохранителем. В данной статье мы тоже иногда будем придерживаться этой традиции.

Конструкция плавкого предохранителяРис. 1. Конструкция плавкого предохранителя

Рабочим элементом вставки является проводник из меди или сплава металлов. Благодаря этому плавкому элементу происходят отключения цепи в критических ситуациях.

В качестве плавкого элемента может быть одна или несколько медных проволок, пластина либо фигурная деталь. Эти проводники помещаются в жаропрочный корпус: стеклянный, керамический (рис. 2) или пластиковый. В зависимости от назначения, пространство вокруг плавкого элемента может быть заполнено кварцевым песком или окружено легкоиспаряющимся веществом, предназначенным для гашения электрической дуги.

Керамические плавкие вставкиРис. 2. Керамические плавкие вставки

При прохождении номинальных токов через проволоку вставки, она незначительно нагревается, не достигая температуры плавления. Но в режиме короткого замыкания резко возрастает величина тока, что приводит к плавлению вставок. Это приводит к разрыву цепи.

Нагревание предохранителя происходит также при перегрузках, то есть в результате превышения номинального напряжения на защищаемом участке цепи. При достижении рабочих напряжений величины, называемой током отключения, температура плавкого элемента возрастает до точки плавления и цепь разрывается. После восстановления параметров цепи плавкую вставку необходимо заменить.

Плавкие вставки имеют некую инерционность срабатывания. При КЗ задержка незаметна, так как в этом случае плавкий элемент нагревается молниеносно.

Иначе обстоит дело в случаях с перегрузками. Для достижения температуры плавления требуется больше времени. Поэтому, чтобы повысить скорость срабатывания, элементам вставок придают специальную форму и нагружают их силами упругости (один конец пластины соединяют с растянутой пружиной).

В некоторых моделях под действием пружины наружу выходит штифт, называемый индикатором срабатывания (рисунок 3). Он выступает в роли указателя срабатывания и свидетельствует о том, что вставку надо менять.

Строение плавкой вставкиРис. 3. Строение плавкой вставки

Цифрами на рисунке обозначено:

  • I – патрон;
  • 2 – плавкая пластина;
  • 3 – шарики из олова;
  • 4 – плавкая вставка;
  • 5 – кварцевый песок;
  • 6 – пружина;
  • 7 – текстолитовая шайба;
  • 8 – спусковой механизм указателя срабатывания;
  • 9 – колпачок;
  • 10 – ободок колпачка;
  • 11 – указатель срабатывания;
  • 12 – асбоцементная прокладка;
  • 13 – цементная заливка.

В ряде случаев для увеличения скорости срабатывания используют вставки с параллельно натянутыми проволоками разных диаметров. Перегорание самой тонкой проволоки увеличивает нагрузку на остальные элементы, ускоряя их плавление.

С целью снижения перенапряжений в некоторых конструкциях вставок применяют проволоки с разными сечениями отдельных участков. При срабатывании такого предохранителя, первым перегорает участок с наименьшим сечением вставки. Если пары расплавленного металла спровоцируют в точке разрыва электрическую дугу, то перегорит участок с большим сечением.

Конструктивные особенности предохранителей можно узнать по их маркировке. К сожалению, время-токовые характеристики наносятся не на все типы изделий. Но модели, на которые нанесены буквенно-цифровые коды, можно легко классифицировать по их назначению.

Маркировка

При выборе предохранителей важно знать диапазон защиты. Их всего 2: частичный и полный. При частичной защите предохранитель срабатывает только от токов КЗ. Полная защита включает также срабатывание от перегрузок.

В кодовой маркировке диапазоны защиты обозначены буквами «a» (частичный) и «g» (полный). Эти буквы стоят первыми перед цифрами, обозначающими номинальный ток.

На втором месте проставляются английские прописные буквы, которые обозначают:

  • G — универсальный предохранитель. Применяется для защиты оборудования: трансформаторов, кабелей, электродвигателей;
  • L — для кабелей и распределительных устройств;
  • B — защита горнодобывающего оборудования;
  • F — устройство для маломощных цепей;
  • M — прибор для защиты цепей электромоторов и коммутирующих устройств;
  • R — устройства для защиты полупроводниковых схем;
  • S — моментальное сгорание при КЗ и среднее время срабатывания при перегрузках;
  • Tr —трансформаторные предохранители.

Иногда на вставках проставляют только значения номинального тока. Такие предохранители применяются для защиты лишь от коротких замыканий.

Миниатюрные плавкие вставки маркируются в соответствии с требованиями ГОСТ Р МЭК 60127-1-2005. Согласно этому стандарту указывается номинальный ток и номинальное напряжение.

Перед показателем величины номинального тока проставляются буквенные символы:

  • FF – сверхбыстродействующие предохранители;
  • F – быстродействующие плавкие вставки;
  • М – полузамедленные;
  • Т – замедленные;
  • ТТ – сверхзамедленные.

Допускается цветная маркировка. Пример такой маркировки показан на рис. 4.

Цветовая маркировка миниатюрных предохранителейРис. 4. Цветовая маркировка миниатюрных предохранителей

Виды и устройство

В зависимости от решаемых задач классификация предохранителей может быть следующей (рисунок 5):

  • ножевые предохранители;
  • слаботочные плавкие вставки;
  • вилочные предохранители;
  • кварцевые;
  • пробочного типа
  • газогенерирующие.

Виды плавких предохранителейРис. 5. Виды плавких предохранителей

Существуют также самовосстанавливающиеся предохранители, инерционные и откидывающиеся (рис. 6). Изделия инерционного типа предназначены для защиты электромоторов, которые при запуске создают большие нагрузки. Плавкие элементы нагреваются, но не перегорают. После того, как двигатель запустится, инерционный предохранитель переходит в режим ожидания.

Откидывающиеся вставки применяют в защите линий электропередач. В аварийных ситуациях плавкий элемент размыкает цепь. Под действием высокой температуры вставка удлиняется, в результате чего происходит давление на спусковой механизм, который отбрасывает предохранитель из его гнезда. Таким образом, обеспечивается надёжное отключение аварийного участка.

Откидывающиеся плавкие предохранителиРис. 6. Откидывающиеся плавкие предохранители

Устройство самовосстанавливающегося предохранителя отличается от других типов электрических аппаратов. Рабочим элементом изделия является полимер с положительным температурным коэффициентом расширения. Полимер содержит углеродистые включения, которые проводят ток.

При нагревании углеродные связи разрываются, в результате чего растёт электрическое сопротивление. При достижении температуры плавления полимера сопротивление стремится к бесконечности, то есть, цепь размыкается. При остывании возобновляется электропроводность полимера. Предохранитель самовосстанавливается.

Технические характеристики

Плавкие вставки идентифицируются двумя характеристиками: номинальным напряжением и величиной номинального тока. В промышленном оборудовании эти показатели могут достигать десятков киловольт и тысяч ампер.

В бытовых приборах применяются плавкие вставки, номинальное напряжение свободных контактах которых составляет:

  • 110, 220 В – для постоянных токов;
  • 220; 380 В – для переменного тока.

На контактах распространённых моделей номинальные токи составляют от 10 до 2500 А, а на концах плавких вставок – от 2 до 2500 А.

Преимущества и недостатки

К достоинствам плавких предохранителей относятся:

    • полная гарантия отключения аварийного участка цепи;
    • стабильность технических характеристик защиты;
    • можно применять для избирательности;
    • быстродействие;
    • безотказность;
    • простота конструкции.

Основные недостатки:

  • в трёхфазных сетях возможен перекос фаз;
  • вероятность длительного горения дуги;
  • влияние окружающей среды (температуры) на характеристики плавких вставок;
  • сложность в настройках селективной защиты;
  • необходимость замены вставки после каждого срабатывания защиты.

Видео в развитие темы

НАЗНАЧЕНИЕ И ПРИНЦИП ДЕЙСТВИЯ МАШИНЫ ПОСТОЯННОГО ТОКА — Студопедия

Назначение. Машины постоянного тока применяют в качестве электродвигателей и генераторов. Электродвигатели постоянного тока имеют хорошие регулировочные свойства, значительную перегрузочную способность и позволяют получать как жесткие, так и мягкие механические характеристики. Поэтому их широко используют для привода различных механизмов в черной металлургии (прокатные станы, кантователи, роликовые транспортеры), на транспорте (электровозы, тепловозы, электропоезда, электромобили), в грузоподъемных и землеройных устройствах (краны, шахтные подъемники, экскаваторы), на морских и речных судах, в металлообрабатывающей, бумажной, текстильной, полиграфической промышленности и др. Двигатели небольшой мощности применяют во многих системах автоматики.

Конструкция двигателей постоянного тока сложнее и их стоимость выше, чем асинхронных двигателей. Однако в связи с широким применением автоматизированного электропривода и тиристорных преобразователей, позволяющих питать электродвигатели постоянного тока регулируемым напряжением от сети переменного тока, эти электродвигатели широко используют в различных отраслях народного хозяйства.

Генераторы постоянного тока ранее широко использовались для питания электродвигателей постоянного тока в стационарных и передвижных установках, а также как источники Электрической энергии для заряда аккумуляторных батарей, питания электролизных и гальванических ванн, для электроснабжения различных электрических потребителей на автомобилях, самолетах, пассажирских вагонах, электровозах, тепловозах и др.



Недостатком машин постоянного тока является наличие щеточноколлекторного аппарата, который требует тщательного ухода в эксплуатации и снижает надежность работы машины. Поэтому в последнее время генераторы постоянного тока в стационарных установках вытесняются полупроводниковыми преобразователями, а на транспорте — синхронными генераторами, работающими совместно с полупроводниковыми выпрямителями.

Принципиальная возможность создания электродвигателя постоянного тока была впервые показана М. Фарадеем в 1821 г.; в созданном им приборе проводник, по которому пропускали постоянный ток, вращался вокруг магнита.

Двигатель постоянного тока с электромагнитным возбуждением был создан в России акад. Б. С. Якоби в 1834 г., который назвал его магнитной машиной. В 1838 г. им был построен более мощный электродвигатель, который использовался для привода гребного винта речного катера. Принцип обратимости электрических машин был также впервые сформулирован русским физиком акад. Э. X. Ленцем. В дальнейшем ряд коллекторных машин постоянного тока был созданГ. Феррарисом, В. Сименсом и др. Значительное развитие теория электрических машин постоянного тока получила в трудах Д. А. Лачинова. В 1880 г. он опубликовал труд «Электромеханическая работа», в котором рассмотрел вопросы, создания вращающего момента электродвигателя, КПД электрических машин, условия питания электродвигателя от генератора и дал классификацию машин постоянного тока по способу возбуждения.


В XX столетии продолжалось развитие теории и совершенствование конструкции машин постоянного тока. Большое внимание обращалось на повышение надежности этих машин путем устранения причин, вызывающих возникновения искрения под щетками (улучшения коммутации) и образования кругового огня на коллекторе.

Важное значение в решении всех теоретических и практических вопросов работы машин постоянного тока имели в трудах советских ученых: А. Е. Алексеева, Д. А. Завалишина, Г. А. Люста, А. Б. Иоффе, В. Т. Касьянова, М. П. Костенко, В. С. Кулебакина, С. И. Курбатова, Л. М. Пиотровского, Е. М. Синельникова, В. А. Толвинского, К. И. Шенфера, венгер-ского электротехника О. В. Бенедикта и др.

В настоящее время в рамках Интерэлектро разработана серия электродвигателей постоянного тока типа ПИ мощностью от 0,25 до 750 кВт, которая выпускается электропромышленностью всех стран — членов СЭВ. Эти двигатели Предназначены для регулируемых электроприводов и рассчитаны на питание от полупроводниковых преобразователей. Кроме того, электропромышленность выпускает ряд двигателей постоянного тока специального исполнения — для электротяги, экскаваторов, металлургического оборудования, шахтных подъемников, буровых установок, морских и речных судов и других приводов мощностью от нескольких сотен до нескольких тысяч кВт.

Рис. 8.1. Электромагнитная схема двухполюсной машины постоянного тока (а) и эквивалентная схема ее обмотки якоря (б): 1 — обмотка возбуждения; 2 — главные полюсы; 3 — якорь; 4 — обмотка якоря; 5 — щетки; 6 — корпус (станина)

Принцип действия. Машина постоянного тока (рис. 8.1, а) имеет обмотку возбуждения, расположенную на явно выраженных полюсах статора. По этой обмотке проходит постоянный ток Iв , который создает магнитное поле возбуждения Фв . На роторе расположена двухслойная обмотка, в которой при вращении ротора индуцируется ЭДС. Таким образом, ротор машины постоянного тока является якорем, а конструкция машины сходна с конструкцией обращенной синхронной машины.

При заданном направлении вращения якоря направление ЭДС, индуцируемой в его проводниках, зависит только от того, под каким полюсом находится проводник. Поэтому во всех проводниках, расположенных под одним полюсом, направление ЭДС одинаковое и сохраняется таким независимо от частоты вращения. Иными словами, характер, отображающий направление ЭДС на рис. 8.1, а, неподвижен во времени: в проводниках, расположенных выше горизонтальной оси симметрии, которая разделяет полюсы (геометрическая нейтраль), ЭДС всегда направлена в одну сторону; в проводниках, лежащих ниже геометрической нейтрали, ЭДС направлена в противоположную сторону.

При вращении якоря проводники обмотки перемещаются от одного полюса к другому; ЭДС, индуцируемая в них, изменяет знак, т. е. в каждом проводнике наводится переменная ЭДС. Однако количество проводников, находящихся под каждым полюсом, остается неизменным. При этом суммарная ЭДС, индуцируемая в проводниках, находящихся под одним полюсом, также неизменна по направлению и приблизительно постоянна по величине. Эта ЭДС снимается с обмотки якоря с помощью скользящего контакта, включенного между обмоткой и внешней цепью.

Обмотка якоря выполняется замкнутой, симметричной (рис. 8.1,б). При отсутствии внешней нагрузки ток по обмотке не проходит, так как ЭДС, индуцируемые в различных частях обмотки, взаимно компенсируются.

Если щетки, осуществляющие скользящий контакт с обмоткой якоря, расположить на геометрической нейтрали, то при отсутствии внешней нагрузки к щеткам прикладывается напряжение U, равное ЭДС Е, индуцированной в каждой из половин обмоток. Это напряжение практически неизменно, хотя и имеет некоторую переменную составляющую, обусловленную изменением положения проводников в пространстве. При большом количестве проводников пульсации напряжения весьма незначительны.

При подключении к щеткам сопротивления нагрузки Rн через обмотку якоря проходит постоянный ток Iа, направление которого определяется направлением ЭДС Е. В обмотке якоря ток Iа разветвляется и проходит по двум параллельным ветвям (токи ia ).

Для обеспечения надежного токосъема щетки скользят не по проводникам обмотки якоря (как это было вначале развития электромашиностроения), а по коллектору, выполняемому в виде цилиндра, который набирается из медных пластин, изолированных одна от другой. К каждой паре соседних коллекторных пластин присоединяют часть обмотки якоря, состоящую из одного или нескольких витков; эту часть называют секцией обмотки якоря.

Если машина работает в генераторном режиме, то коллектор вместе со скользящими по его поверхности щетками является выпрямителем. В двигательном режиме, когда к якорю подводится питание от источника постоянного тока и он преобразует электрическую энергию в механическую, коллектор со щетками можно рассматривать как преобразователь частоты, связывающий сеть постоянного тока с обмоткой, по проводникам которой проходит переменный ток.

Таким образом, главной особенностью машины постоянного тока является наличие коллектора и скользящего контакта между обмоткой якоря и внешней электрической цепью.

Глава I | Организация Объединенных Наций

ГЛАВА I: ЦЕЛИ И ПРИНЦИПЫ

Артикул 1

Цели Организации Объединенных Наций:

  1. Для поддержания международного мира и безопасности и с этой целью: принимать эффективные коллективные меры для предотвращения и устранения угроз миру, а также для подавления актов агрессии или других нарушений мира, а также для достижения мирными средствами и в соответствии с принципами справедливости и международного права урегулирование или урегулирование международных споров или ситуаций, которые могут привести к нарушению мира;
  2. Развивать дружественные отношения между народами, основанные на уважении принципа равноправия и самоопределения народов, и принимать другие соответствующие меры для укрепления всеобщего мира;
  3. Для достижения международного сотрудничества в решении международных проблем экономического, социального, культурного или гуманитарного характера, а также в поощрении и поощрении уважения к правам человека и основным свободам для всех, без различия расы, пола, языка или религии. ; и
  4. Быть центром согласования действий наций в достижении этих общих целей.
Артикул 2

Организация и ее члены для достижения целей, указанных в статье 1, действуют в соответствии со следующими принципами.

  1. Организация основана на принципе суверенного равенства всех ее Членов.
  2. Все члены, чтобы обеспечить им права и выгоды, вытекающие из членства, должны добросовестно выполнять взятые на себя обязательства в соответствии с настоящим Уставом.
  3. Все участники должны разрешать свои международные споры мирными средствами таким образом, чтобы не подвергать опасности международный мир и безопасность, а также справедливость.
  4. Все Члены должны воздерживаться в своих международных отношениях от угрозы силой или ее применения против территориальной целостности или политической независимости любого государства или любым другим способом, несовместимым с Целями Организации Объединенных Наций.
  5. Все Члены должны оказывать Организации Объединенных Наций всяческую помощь в любых действиях, которые она предпринимает в соответствии с настоящим Уставом, и воздерживаются от оказания помощи любому государству, против которого Организация Объединенных Наций принимает превентивные или принудительные меры.
  6. Организация обеспечивает, чтобы государства, не являющиеся членами Организации Объединенных Наций, действовали в соответствии с настоящими Принципами в той степени, в какой это может быть необходимо для поддержания международного мира и безопасности.
  7. Ничто, содержащееся в настоящем Уставе, не уполномочивает Организацию Объединенных Наций вмешиваться в дела, которые в основном находятся в пределах внутренней юрисдикции любого государства, или требует от Членов передать такие вопросы на рассмотрение в соответствии с настоящим Уставом; но этот принцип не наносит ущерба применению принудительных мер в соответствии с главой Vll.

.

Цели и принципы ООН (Глава I Устава ООН)

В статьях 1 и 2 Устава Организации Объединенных Наций изложены цели и принципы Организации Объединенных Наций.

Репертуар индивидуально охватывает несколько параграфов в статьях 1 и 2. В каждом разделе находятся списки неявных ссылок и явных ссылок на конкретный параграф статьи из протоколов заседаний, отчетов и писем, которые были выпущены. как официальные документы Совета Безопасности.Существуют также тематические исследования, в которых изучаются конкретные случаи, когда Совет обсуждал эти статьи, или которые иным образом иллюстрируют то, как Совет применял эти статьи при принятии решений

.

A. Статья 1 (2) — Равные права и самоопределение народов

Статья 1 (2) устанавливает, что одной из основных целей Организации Объединенных Наций и, следовательно, Совета Безопасности является развитие дружественных международных отношений, основанных на уважении «принципа равноправия и самоопределения народов».Тематические исследования в этом разделе охватывают случаи, когда Совет Безопасности обсуждал ситуации, имеющие отношение к принципу самоопределения и права народов определять свое собственное правительство, что может касаться вопросов независимости, автономии, референдумов, выборов. и легитимность правительств.

B. Статья 2 (4) — Запрещение угрозы силой или ее применения в международных отношениях

Статья 2 (4) Устава запрещает угрозу силой или ее применение и призывает всех членов уважать суверенитет, территориальную целостность и политическую независимость других государств.Примеры в этом разделе обычно охватывают случаи, когда статья 2 (4) цитировалась и обсуждалась в контексте межгосударственного или внутригосударственного насилия, войны или других территориальных конфликтов.

C. Статья 2 (5) — Обязательство оказывать помощь Организации Объединенных Наций и воздерживаться от оказания помощи государствам-объектам превентивных или принудительных мер

Статья 2 (5) Устава гласит, что члены должны помогать Организации Объединенных Наций в любых действиях, предпринимаемых в соответствии с Уставом, и воздерживаться от оказания помощи государству, против которого Организация Объединенных Наций принимает превентивные или принудительные меры.В Справочнике, как правило, основное внимание уделяется первому принципу статьи, а с 1989-2007 гг. Приводятся примеры призывов о помощи, содержащихся в решениях Совета Безопасности. Начиная с 2008 года, Справочник был сосредоточен на практике Совета в отношении второго принципа статьи и содержал, например, призывы воздерживаться от действий, которые могли бы рассматриваться как оказание помощи государству в соответствии с действиями Совета.

D. Статья 2 (6) — Необходимость обеспечения того, чтобы государства, не являющиеся членами Организации Объединенных Наций, действовали в соответствии с ее Принципами

Статья 2 (6) Устава гласит, что Организация обеспечивает, чтобы государства, не являющиеся членами, также действовали в соответствии с ее принципами.Репертуар Исследования по статье 2 (6) охватывают случаи, когда Совет Безопасности обращался к странам, не являющимся членами Организации Объединенных Наций. Он не был включен с 2003 года, когда почти универсальное членство в Организации Объединенных Наций ограничило его актуальность.

E. Статья 2 (7) — Невмешательство во внутренние дела Организации Объединенных Наций

Статья 2 (7) гласит, что Организация Объединенных Наций не имеет полномочий вмешиваться в дела, находящиеся во внутренней юрисдикции любого государства, хотя этот принцип не наносит ущерба применению принудительных мер в соответствии с главой VII Устава.Репертуар охватывает те случаи, когда был поднят этот принцип невмешательства со стороны Организации Объединенных Наций и были поставлены под сомнение полномочия Совета вмешиваться в конкретную ситуацию.

2018 2019

Доступ ко всему разделу на

Цели и принципы Организации Объединенных Наций

,

определение принципа работы | Словарь английских определений

принцип


n

1 стандарт или правило личного поведения
принципиальный человек

2 часто пл набор таких моральных правил
он бы ни перед чем опустился, у него нет принципов

3 соблюдение такого морального кодекса; мораль
дело не в деньгах, а в принципе вещи, разрываемой между принципом и целесообразностью

4 основная или общая истина или закон
основные принципы

5 сущность чего-то
мужское начало

6 источник или основная причина; происхождение
принцип жизни

7 правило или закон, касающийся природного явления или поведения системы
принцип сохранения массы

8 лежащая в основе или руководящая теория или убеждение
наследственный принцип, социалистические принципы

9 (Chem) компонент вещества, придающий веществу его характеристики и поведение
горький принцип

10 ♦
в принципе теоретически или по существу

11 ♦
по принципу из-за или в качестве демонстрации принципа
(C14: от латинского Principium начало, основной принцип)
Принцип и принцип часто путают: основная (не принципиальная) причина его ухода; план одобрен в принципе (не принципиально)

антропный принцип
n (Астрономия) космологическая теория, согласно которой присутствие жизни во Вселенной ограничивает пути, которыми могла развиться очень ранняя Вселенная

Принцип Архимеда
n закон физики, гласящий, что кажущаяся потеря веса тела, погруженного в жидкость, равна весу вытесненной жидкости

Принцип Бернулли , закон
n (Физика) принцип, согласно которому в жидкости, протекающей по трубе, разница давлений, которая ускоряет поток при изменении диаметра канала, равна произведению половины плотности на изменение квадрат скорости при условии, что трение ничтожно мало
(C19: названо в честь Даниэля Бернулли)

горькое начало
n любое из различных горьких на вкус веществ, таких как алоин, обычно извлекаемое из растений

Принцип Карно
n Принцип, согласно которому эффективность реверсивного теплового двигателя зависит от максимальной и минимальной температуры рабочего тела во время рабочего цикла, а не от свойств жидкости

космологический принцип
n (Астрономия) теория о том, что Вселенная однородна, однородна и изотропна и поэтому кажется одинаковой с любой точки

принцип Даламбера
n (Физика) принцип, согласно которому для движущегося тела внешние силы находятся в равновесии с силами инерции; обобщение третьего закона движения Ньютона
(C18: назван в честь Жана Ле Ронда д’Аламбера)

принцип исключения
n См.
Принцип исключения Паули

Принцип Ферма
n (Физика) принцип, согласно которому луч света проходит из одной точки в другую таким образом, чтобы затраченное время составляло минимум

первый принцип
n обычно pl

1 одно из фундаментальных предположений, на которых, как считается, основана та или иная теория или процедура

2 аксиома математической или научной теории

Принцип Гаузе
n (Экология) принцип, согласно которому похожие виды не могут долго сосуществовать в одной и той же экологической нише
(названный в честь Г.Ф. Гаузе, советский биолог ХХ века)

принцип наибольшего счастья
n этический принцип, согласно которому действие является правильным в той мере, в какой оно способствует наибольшему счастью наибольшего числа пострадавших
См.
утилитаризм

Принцип неопределенности Гейзенберга
n более формальное название для
принцип неопределенности

принцип неопределенности
n другое название для
принцип неопределенности

Принцип Ле Шателье
n (Chem) принцип, согласно которому система, находящаяся в химическом равновесии, подвергается нарушению, она имеет тенденцию изменяться таким образом, чтобы противодействовать этому нарушению
(C19: назван в честь Х.Л. Ле Шателье (1850-1936), французский химик)

Принцип исключения Паули
n (Физика) принцип, согласно которому два идентичных фермиона не могут находиться в одном и том же квантовом состоянии в таком теле, как атом; иногда сокращается до принципа исключения

Питер Принципл
n the. теория, обычно воспринимаемая в шутку, что все члены в иерархии поднимаются до своего собственного уровня некомпетентности
(C20: из книги The Peter Principle (1969) Dr.Лоуренс Дж. Питер и Раймонд Халл, в которых первоначально была высказана теория)

принцип удовольствия
n (Психоанал) идея о том, что психологические процессы и действия регулируются удовлетворением потребностей. Он рассматривается как управляющий процесс ид, тогда как принцип реальности — это управляющий процесс эго
См. Также
гедонизм

Принцип
n (Христианская наука) другое слово для
Бог

принцип экономии
n р.другое название для
Бритва Оккама

принцип безразличия
n принцип, согласно которому при отсутствии какой-либо причины ожидать одного события, а не другого, всем возможным событиям должна быть присвоена одинаковая вероятность
См.
математическая вероятность

принцип наименьшего действия
n принцип, согласно которому движение между любыми двумя точками в консервативной динамической системе таково, что действие имеет минимальное значение по отношению ко всем путям между точками, которые соответствуют одной и той же энергии, (Также называется)
Принцип Мопертюи

принцип реальности
n (Психоанальный) контроль поведения эго для удовлетворения условий, налагаемых внешним миром

принцип неопределенности
n принцип, согласно которому энергия и время или положение и импульс не могут быть точно измерены одновременно. Произведение их неопределенностей всегда больше или равно h / 4π, где h — постоянная Планка (также называемая).
Принцип неопределенности Гейзенберга, принцип неопределенности

принцип проверки
n (в философии логических позитивистов) доктрина, согласно которой неавтологичные утверждения имеют смысл только в том случае, если в принципе возможно эмпирически установить, истинны они или ложны

,

Мандаты и правовая основа миротворческой деятельности

Миротворческие операции ООН развертываются на основе мандатов Совета Безопасности ООН. Их задачи различаются от ситуации к ситуации, в зависимости от характера конфликта и конкретных проблем, которые он представляет.

Устав ООН

Устав Организации Объединенных Наций является основополагающим документом всей работы ООН. ООН была создана для того, чтобы «избавить грядущие поколения от бедствий войны», и одна из ее главных целей — поддерживать международный мир и безопасность.

Поддержание мира, хотя это прямо не предусмотрено Уставом, превратилось в один из основных инструментов, используемых Организацией Объединенных Наций для достижения этой цели.

Устав возлагает на Совет Безопасности ООН основную ответственность за поддержание международного мира и безопасности. При выполнении этой обязанности Совет может принять ряд мер, включая учреждение миротворческой операции ООН.

  • Глава VI посвящена «Тихоокеанскому урегулированию споров».Миротворческие операции ООН традиционно ассоциировались с Главой. Однако Совет Безопасности не должен ссылаться на конкретную главу Устава при принятии резолюции, разрешающей развертывание миротворческой операции ООН, и никогда не ссылался на главу VI.
  • Глава VII содержит положения, касающиеся «действий в интересах мира, нарушений мира и актов агрессии». В последние годы Совет принял практику ссылаться на главу VII Устава при санкционировании развертывания миротворческих операций ООН в нестабильных постконфликтных условиях, когда государство не в состоянии поддерживать безопасность и общественный порядок.Ссылка Совета Безопасности на главу VII в этих ситуациях, помимо обозначения правовой основы для его действий, также может рассматриваться как заявление о твердой политической решимости и средство напоминания сторонам в конфликте и более широкому кругу членов ООН об их обязанность выполнять решения Совета Безопасности.
  • Глава VIII Устава предусматривает участие региональных соглашений и агентств в поддержании международного мира и безопасности при условии, что такая деятельность соответствует целям и принципам, изложенным в главе I Устава.

Мандаты операций по поддержанию мира

Female Ethiopean Peacekeeper in the foreground during a medal parade for Milops in Monrovia, Liberia Миротворческие операции ООН развертываются на основании мандатов Совета Безопасности ООН. С годами круг задач, возлагаемых на миротворческие операции ООН, значительно расширился в ответ на меняющиеся модели конфликтов и для наилучшего устранения угроз международному миру и безопасности.

Хотя каждая операция ООН по поддержанию мира отличается, существует значительная степень согласованности в типах мандатных задач, поставленных Советом Безопасности.В зависимости от их мандата миротворческие операции могут потребовать:

  • Развертывание для предотвращения возникновения конфликта или его распространения через границы;
  • Стабилизировать конфликтные ситуации после прекращения огня, чтобы создать условия, в которых стороны смогут достичь прочного мирного соглашения;
  • Содействовать в выполнении всеобъемлющих мирных соглашений;
  • Возглавьте государства или территории посредством перехода к стабильному правительству, основанному на демократических принципах, надлежащем управлении и экономическом развитии.

В зависимости от конкретного набора задач миротворцам ООН часто поручается играть каталитическую роль в следующих основных мероприятиях по миростроительству:

  • Разоружение, демобилизация и реинтеграция бывших комбатантов;
  • Противоминная деятельность;
  • Реформа сектора безопасности и другие мероприятия, связанные с верховенством закона;
  • Защита и продвижение прав человека;
  • Помощь в проведении выборов;
  • Содействие восстановлению и расширению государственной власти;
  • Содействие социально-экономическому восстановлению и развитию.

Мандаты Совета Безопасности также отражают ряд сквозных тематических задач, которые регулярно поручаются миротворческим операциям ООН на основании следующих важных резолюций Совета Безопасности:

Для получения более конкретной информации о типах утвержденных задач и характеристиках «традиционных» и «многомерных» операций, пожалуйста, обратитесь к Операциям ООН по поддержанию мира: Принципы и руководящие указания — «Заключительная доктрина», Часть I, Глава 2 (2.3 и 2 ,4).

,

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *