Мтз коэффициент чувствительности: Примеры расчета коэффициента чувствительности МТЗ трансформатора

Содержание

Примеры расчета коэффициента чувствительности МТЗ трансформатора

В приведенных примерах будет рассматриваться только расчет коэффициента чувствительности максимально токовой защиты трансформатора со схемами соединения обмоток звезда-звезда и треугольник-звезда с выведенной нейтралью на стороне 0,4 кВ, подробно расчет токов КЗ и выбор токов срабатывания МТЗ трансформатора — не рассматривается!

Как нужно рассчитывать уставки трансформатора 10/0,4 кВ подробно рассмотрено в статье:«Расчет уставок релейной защиты трансформатора 10/0,4 кВ».

Согласно [Л1. с.165] проверять чувствительность максимально токовой защиты трансформатора нужно не только при двухфазных КЗ, но и при однофазных КЗ на землю на стороне 0,4 кВ. В таблицах 2-1 и 2-3 [Л1. с.158 и с.166] приведены формулы для определения расчетных токов в реле при различных схемах защиты.

Сразу, хотел бы отметить, что в таблице 2-3, есть не которая неточность, схема соединения трансформаторов тока полная звезда – ПРИМЕНЯЕТСЯ и в настоящее время очень часто, ток в реле при однофазном КЗ за трансформатором при таком соединении определяется так же как и при схеме соединения трансформаторов тока неполная звезда с тремя реле.

Пример 1 – Определение чувствительности защиты МТЗ трансформатора со схемой соединения обмоток Y/Y-0

Требуется определить чувствительность защиты МТЗ для трансформатора типа ТМ-400/10, мощность 400 кВА, на напряжение 10/0,4-0,23 кВ, напряжение короткого замыкания Uк = 4,5%, со схемой соединения обмоток Y/Y-0.

Ток 3х фазного КЗ на шинах 10 кВ в минимальном режиме равен — Iк.з.min(3)=11 кА;

Значение тока 3х фазного КЗ на шинах 0,4 кВ, приведенное к стороне 10 кВ равно — Iк.з.min(3) =523 А.

Первичный ток срабатывания МТЗ трансформатора составляет Iсз = 48,3 A.

Решение

Проверяем чувствительность МТЗ трансформатора для схемы представленной на рис.1.

1. Определяем ток срабатывания реле:

где:

  • Ксх.= 1 – когда вторичные обмотки трансформаторов тока, выполнены по схеме «полная звезда» и «неполная звезда»;
  • nт =100/5 — коэффициент трансформации трансформаторов тока.

2. Определяем ток в реле при двухфазном КЗ за трансформатором для двухрелейной схемы в соответствии с таблицей 2-1:

Для трехрелейной схемы формула будет иметь такой же вид как и для двухрелейной схемы.

3. Определяем коэффициент чувствительности при двухфазном КЗ за трансформатором по формуле 1-4 [Л1. с.19]:

4. При однофазном КЗ за трансформатором см.рис.1 расчетный ток в реле определяется по току однофазного металлического КЗ, который вычисляется без учета сопротивления питающей энергосистемы и переходного сопротивления в месте КЗ. Для практических расчетов формула имеет следующий вид [Л1. с.176]:

Значения сопротивлений 1/3Zтр.(1) или Zт/3 определяются по таблице 2 [Л2] и по таблице П-4 из приложения [Л1. с.325].

5. Определяем полное сопротивление для трансформатора ТМ-400, мощность 400 кВА 1/3Zтр.(1) = 0,065 Ом.

6. Определяем ток однофазного КЗ на стороне 0,4 кВ по формуле 2-18а [Л1. с.176]:

7. Приведем ток однофазного КЗ на стороне 0,4 кВ к напряжению 10 кВ:

8. Определяем ток в реле при однофазном КЗ за трансформатором при двухрелейной схеме защиты (КА1, КА2 см.рис.1) в соответствии с таблицей 2-3:

9. Определяем ток в реле при однофазном КЗ за трансформатором при трехрелейной схеме защиты (КА1, КА2, КА3 см.рис.1) в соответствии с таблицей 2-3:

10. Определяем коэффициент чувствительности при однофазном КЗ за трансформатором по формуле 1-4 [Л1. с.19] для двухрелейной схемы защиты:

11. Определяем коэффициент чувствительности при однофазном КЗ за трансформатором по формуле 1-4 [Л1. с.19] для трехрелейной схемы защиты:

Как видно из результатов расчета при однофазном КЗ за трансформатором на стороне 0,4 кВ при двухрелейной схеме чувствительности МТЗ — не достаточно, следует применять трехрелейную схему.

Если же у вас чувствительности МТЗ при однофазном КЗ при трехрелейной схеме — не достаточно, тогда нужно дополнительно устанавливать специальную защиту нулевой последовательности на стороне 0,4 кВ (реле КА4 на рис.1), которая работает при однофазных КЗ на землю.

Для наглядности, результаты расчетов сводим в таблицу 1.

Виды КЗ за трансформатором на стороне 0,4 кВ Значение тока КЗ, А Ток в реле Iр.мин, А Коэффициент чувствительности kчувст. Наименование
Трехфазный ток КЗ Iк(3)=523 Не проверяется
Двухфазный ток КЗ при схеме соединения ТТ полная, неполная звезда с тремя и двумя реле Iк(2)= √3/2*Iк(3)=0,865*523=452 22,6 9,4 > 1,5 Условие выполняется
Однофазный ток КЗ при схеме соединения ТТ неполная звезда с двумя реле 142 2,37 1 < 1,5 Условие не выполняется
Однофазный ток КЗ при схеме соединения ТТ полная, неполная звезда с тремя реле 142 4,9 2 > 1,5 Условие выполняется

Выводы:

1. Для двухрелейной и трехрелейной схемы при схеме соединения трансформаторов тока неполная звезда и полная звезда чувствительность защиты при двухфазном КЗ – одинакова.
2. Наименее благоприятным режимом для МТЗ трансформатора является однофазное КЗ за трансформатором на стороне 0,4 кВ.
3. При использовании трехрелейной схемы защиты, мы увеличиваем чувствительность защиты в 2 раза по сравнению с двухрелейной схемой при однофазном КЗ.

Пример 2 — Определение чувствительности защиты МТЗ трансформатора со схемой соединения обмоток ∆/Y-11

Определять чувствительность защиты МТЗ будем для трансформатора ТМ-400/10 со схемой соединения обмоток ∆/Y-11.

Все исходные данные применяем из примера 1:

  • Iк.з.min(3)=11 кА на стороне 10 кВ;
  • Iк.з.min(3)=523 А на стороне 0,4 кВ приведенное к стороне 10 кВ;
  • nт =100/5 — коэффициент трансформации трансформаторов тока.
  • Iс.з = 48,3 A — первичный ток срабатывания МТЗ трансформатора.
  • Iс.р = 2,4 A — ток срабатывания реле МТЗ трансформатора.

Решение

Проверять чувствительность МТЗ трансформатора будем для схемы представленной на рис.2.

1. Определяем ток в реле при двухфазном КЗ за трансформатором для неполной звезды с двумя реле (КА1, КА2 см.рис.2) в соответствии с таблицей 2-1:

2. Определяем ток в реле при двухфазном КЗ за трансформатором для неполной (полной) звезды с тремя реле (КА1-КА3 см.рис.2) в соответствии с таблицей 2-1:

3. Определяем коэффициент чувствительности при двухфазном КЗ за трансформатором по формуле 1-4 [Л1. с.19] для неполной звезды с двумя реле:

4. Определяем коэффициент чувствительности при двухфазном КЗ за трансформатором по формуле 1-4 [Л1. с.19] для неполной (полной) звезды с тремя реле:

При однофазном КЗ на стороне 0,4 кВ трансформатора со схемой соединения обмоток ∆/Y-11, ток Iк.з.(1) ~ Iк.з.min(3), это связано с тем, что у этих трансформаторов полные сопротивления прямой и нулевой последовательности практически равны.

Исходя из этого, принимаем, что ток однофазного КЗ будет равен: Iк.з.(1) ~ Iк.з.min(3) = 523 А.

5. Определяем ток в реле при однофазном КЗ за трансформатором для неполной, полной звезды с двумя и тремя реле, формула по определению тока в реле имеет одинаковый вид в соответствии с таблицей 2-3:

6. Определяем коэффициент чувствительности при однофазном КЗ за трансформатором по формуле 1-4 [Л1. с.19] для неполной, полной звезды с двумя и тремя реле:

Результаты расчетов сводим в таблицу 2.

Таблица 2 – Результаты расчетов

Виды КЗ за трансформатором на стороне 0,4 кВ Значение тока КЗ, А Ток в реле Iр.мин, А Коэффициент чувствительности kчувст. Наименование
Трехфазный ток КЗ Iк(3)=523 Не проверяется
Двухфазный ток КЗ при схеме соединения ТТ полная, неполная звезда с тремя реле Iк(2)= √3/2*Iк(3)=0,865*523=452 26,15 10,9 > 1,5 Условие выполняется
Двухфазный ток КЗ при схеме соединения ТТ неполная звезда с двумя реле Iк(2)= √3/2*Iк(3)=0,865*523=452 13,08 5,45 > 1,5 Условие выполняется
Однофазный ток КЗ при схеме соединения ТТ полная, неполная звезда с тремя и двумя реле Iк(1)=Iк(3)/√3=523/√3=302 15,1 6,3 > 1,5 Условие выполняется

Выводы:

1. Для двухрелейной и трехрелейной схемы и при схеме соединения трансформаторов тока неполная звезда и полная звезда чувствительность защиты при однофазном КЗ – одинакова.
2. Наименее благоприятным режимом для МТЗ трансформатора является однофазное КЗ за трансформатором на стороне 0,4 кВ.
3. При использовании схемы соединения ТТ: полная, неполная звезда с тремя реле, мы увеличиваем чувствительность защиты в 2 раза по сравнению со схемой соединения ТТ неполная звезда с двумя реле при двухфазном КЗ.

Литература:

1. Расчеты релейной защиты и автоматики распределительных сетей. 2003 г. М.А.Шабад.
2. Рекомендации по расчету сопротивления цепи «фаза-нуль». Главэлектромонтаж. 1986 г.
3. Выпуск №10. Методика выбора уставок защит Sepam присоединений РП (РТП) 6-10 кВ с ячейками SM6. А.Н. Ермишкин. 2007 г.

Расчет коэффициента чувствительности МТЗ трансформатора со схемами соединения обмоток Y/Y-0 и ∆/Y-11

В данной статье я хотел бы рассказать о проверке чувствительности для максимальной токовой защиты (МТЗ) трансформаторов 6(10)/0,4 кВ со схемами соединения обмоток звезда-звезда и треугольник-звезда с выведенной нейтралью на стороне 0,4 кВ (Y/Y-0 и ∆/Y-11).

Обращаю ваше внимание, что есть требование Главгосэнергонадзора Минэнерго применять только трансформаторы со схемой соединения обмоток ∆/Y-11 [Л3. с.6], в данной же статье я буду рассматривать и трансформаторы со схемой соединения обмоток Y/Y-0, так как их еще применяют в других странах СНГ.

Оценка эффективности МТЗ производится коэффициентом чувствительности kчув., который показывает насколько ток в реле защиты при разных видах КЗ превышает ток срабатывания (уставку) и определяется по формуле 1-4 [Л1. с.19]:

Согласно ПУЭ 7-издание раздел 3.2.21 пункт 1 для МТЗ с пуском и без пуска напряжения kчув. ≥ 1,5 при КЗ в основной зоне защиты и kчув. ≥ 1,2 (ПУЭ 7-издание раздел 3.2.25) при КЗ в конце смежного элемента или наиболее удаленного из нескольких последовательных элементов, входящих в зону резервирования.

Согласно [Л1. с.165] проверять чувствительность максимально токовой защиты трансформатора нужно проверять не только при двухфазных КЗ, но и при однофазных КЗ на землю на стороне 0,4 кВ. В таблицах 2-1 и 2-3 [Л1. с.158 и с.166] приведены формулы для определения расчетных токов в реле при различных схемах защиты.

Обращаю Ваше внимание, что в таблице 2-3, есть не которая неточность, схема соединения трансформаторов тока полная звезда – ПРИМЕНЯЕТСЯ и в настоящее время очень часто, ток в реле при однофазном КЗ за трансформатором при таком соединении определяется так же как и при схеме соединения трансформаторов тока неполная звезда с тремя реле.

Расчетные выражения в таблицах 2-1 и 2-3 составлены на основании векторных диаграмм полных токов в месте двухфазного КЗ и однофазного КЗ и после трансформации симметричных составляющих через трансформатор со стандартными схемами соединения обмоток Y/Y-0 и ∆/Y-11, см. рис.2-2 и 2-4.

Как видно из расчетных формул на чувствительность МТЗ очень сильно влияют схемы включения токовых реле, на рис. 2-1 представлены наиболее используемые схемы включения реле тока МТЗ трансформаторов.

Рассматривая векторные диаграммы токов прямой и обратной последовательности представленных на рис. 2-2 и 2-4 и схемы включения токовых реле рис. 2-1 наглядно нам показывают, как изменяется чувствительность максимально токовой защиты трансформатора.

Например, если мы добавим одно реле в нулевой провод в схему рис. 2-1 б, то этим мы увеличим чувствительность защиты к двухфазным КЗ в 2 раза.

Вопрос о выборе схемы соединения трансформаторов тока и реле, обеспечивающую наибольшую чувствительность защиты, подробно рассмотрен в книге: «Релейная защита систем электроснабжения в примерах и задачах» В. А. Андреев, 2007 г.

Общий вывод из данных схем, векторных диаграмм и приведенных расчетных выражений из таблиц 2-1 и 2-3, можно сделать следующий:

  • для трансформатора со схемой соединения обмоток ∆/Y-11:
  • при трехфазном и двухфазном КЗ, чувствительность защиты при трехрелейной схеме будет в 2 раза повышаться по сравнению с двухрелейной схемой, см. таблицу 2-1.
  • при однофазном КЗ, чувствительность защиты при трехрелейной и двухрелейной схеме будет одинакова, см. таблицу 2-3.
  • для трансформатора со схемой соединения обмоток Y/Y-0:
  • при трехфазном и двухфазном КЗ, чувствительность защиты при трехрелейной и двухрелейной схеме будет одинакова, см. таблицу 2-1.
  • при однофазном КЗ, чувствительность защиты при трехрелейной схеме будет в 2 раза повышаться по сравнению с двухрелейной схемой, см. таблицу 2-3.

Здесь следует отметить, что чувствительность защиты оценивается по наибольшему из вторичных токов, проходящих в измерительных реле защиты.

В случае если чувствительности МТЗ трансформатора при однофазных КЗ не достаточно, то в этом случае следует применять специальную защиту нулевой последовательности на стороне 0,4 кВ.

На этом я б хотел закончить теоретическую часть, советую посмотреть статью: «Примеры расчета коэффициента чувствительности МТЗ трансформатора». Где на примерах подробно рассмотрено определение чувствительности МТЗ трансформатора со схемами соединения обмоток Y/Y-0 и ∆/Y-11.

Литература:

1. Расчеты релейной защиты и автоматики распределительных сетей. 2003 г. М.А.Шабад.
2. Выпуск №10. Методика выбора уставок защит Sepam присоединений РП (РТП) 6-10 кВ с ячейками SM6. А.Н. Ермишкин. 2007 г.

Поделиться в социальных сетях

МТЗ. Оценка чувствительности. — Студопедия.Нет

Чувствительность — реакция защитных элементов на всевозможные изменения в структуре прибора. Для оценки чувствительности важнейших типов релейной защиты мы применяем коэффициент чувствительности, определяемый следующим образом:

— для защит, реагирующих на величины, возрастающие в условиях повреждений, как отношение расчетных значений этих величин при металлическом КЗ в пределах защищаемой зоны к параметрам срабатывания защит;

— для защит, реагирующих на величины, уменьшающиеся в условиях повреждения, как отношение параметров срабатывания к расчетным значениям этих величин.

МТЗ с пуском и без пуска по напряжению, направленные и ненаправленные, а также токовые одноступенчатые направленные и ненаправленные защиты, включенные на составляющие обратной и нулевой последовательности:

— для органов тока и напряжения – около 1.5;

 — для органов направления мощности обратной и нулевой последовательности – около 2,0 по мощности и около 1.5 по току и напряжению.

Для МТЗ защит трансформаторов с низшим напряжением 0, 23 -0, 4кВ наименьший коэффициент чувствительности может быть около 1.5. Дистанционные защиты – 1.5 Дифзащита – около 2.

 

МТЗ. Способы повышения чувствительности.

Способы повышения чувствительности:

— применение более современных реле коэффициентом надежности и коэффициентом возврата реле

— изменение схем подсоединения ТТ и обмоток реле (изменение коэффициента схемы)


— применение блокировки максимального напряжения, используется по обстоятельствам. При КЗ происходит не только увеличения тока, но и снижение напряжения, поэтому в схему включают вспомогательное реле напряжения разрешающее пуск защиты при КЗ.

Ток срабатывания защиты:

 где kн – коэффициент надежности, учитывающий погрешности реле и равный для реле типа РТ-85 kн= 1,2; kсзп – коэффициент самозапуска для линий сельских районов, равный kсзп= 1,2; kв – коэффициент возврата реле, равный для реле РТ-85 и РТ-40 kв = 0,85; Iраб.макс– рабочий максимальный ток линии, А;

Ток срабатывания реле:

 где nт – коэффициент трансформации трансформаторов тока.

Коэффициент чувствительности:

 

Повреждения и ненормальные режимы работы силовых трансформаторов.

Трансформаторы являются надежным оборудованием электроустановок. Основными видами повреждений являются многофазные и однофазные КЗ в обмотках и на выводах трансформаторов, а также «пожар стали» магнитопровода. Однофазные замыкания бывают на землю и между витками обмотки (витковые). Наиболее вероятны многофазные и однофазные КЗ на выводах трансформаторов и однофазные витковые замыкания в обмотках. Значительно реже возникают в обмотках многофазные КЗ «Пожар стали» случаются также редко, но может нанести серьезные повреждения магнитопроводу. Причиной его является нарушение изоляции между листами магнитопровода, что ведет к увеличению потерь на перемагничивание и вихревые токи, повышению местного нагрева и дальнейшему разрушению изоляции. Недопустимый нагрев при «пожаре стали» и под действием электрической дуги при витковых замыканиях приводит к разложению трансформаторного масла и других изоляционных материалов. Следствием этих процессов является выделение газа и повышение давления внутри бака трансформатора.
Ненормальные режимы работы трансформаторов обусловлены внешними КЗ, перегрузками, понижением уровня масла. При внешних КЗ по обмоткам трансформаторов протекают токи, которые во много раз превышают номинальные, создавая опасность перегрева и повреждения обмоток. Внешние КЗ (сверхтоки) сопровождаются снижением напряжения в сети за трансформатором. Перегрузки трансформаторов обуславливаются режимами работы потребителей электроэнергии. При этом увеличение тока даже 2 раза сверх номинального не требует немедленного отключения трансформатора. Он может оставаться в работе в этом режиме до 10 мин. Перегрузку током 1,6 /ном можно допускать в течение уже 45 мин. Понижение уровня масла может произойти при образовании течи вследствие повреждения бака, сильном снижении температуры окружающей среды. Защиты трансформаторов действуют на их отключение от всех источников питания при многофазных КЗ, витковых замыканиях, замыканиях одной фазы на землю при заземленной нейтрали и значительном выделении газов из масла. Они должны также отключать трансформатор при КЗ на линиях, питающихся от него, если по каким-то причинам не отключаются выключатели линий. Защиты должны действовать на сигнал при перегрузках, слабом газообразовании, повышении температуры и понижении уровня масла.



 

принцип действия, виды, примеры схем

В силу разных причин аварии в электросетях случаются довольно часто. При коротком замыкании губительно действует на все электроприборы сверхток. Если не предпринять защитных мер, то последствием от неуправляемого увеличения тока может стать не только повреждение электроустановок на участке от места аварии до источника питания, но и выведение из строя всей энергосистемы. Во избежание негативных последствий, вызванных авариями, применяются разные схемы электрозащиты:

  • отсечка;
  • дифференциально-фазная;
  • высокоэффективная максимальная токовая защита электрических цепей (МТЗ).

Из перечисленных видов защиты самой распространённой является МТЗ. Этот простой и надёжный способ предотвращения опасных перегрузок линий нашёл широкое повсеместное применение благодаря обеспечению селективности, то есть, обладанию способностью избирательно реагировать на различные ситуации.

Устройство и принцип действия

Конструктивно МТЗ состоят из двух важных узлов: автоматического выключателя и реле времени. Они могут быть объединены в одной конструкции либо размещаться отдельными блоками.

Отличия от токовой отсечки

Из всех видов защиты по надёжности лидирует токовая отсечка. Примером может служить защита бытовой электросети устройствами с применением плавких предохранителей или пакетных автоматов. Метод токовых отсечек гарантирует обесточивания защищаемой цепи в аварийных ситуациях. Но для возобновления подачи электроэнергии необходимо устранить причину отсечения и заменить предохранитель, либо включить автомат.

Недостатком такой системы является то, что отключение может происходить не только вследствие КЗ, но и в результате даже кратковременного превышения параметров по току нагрузки. Кроме того, требуется участие человека для восстановления защиты. Эти недостатки не критичны в бытовой сети, но они неприемлемы при защите разветвлённых линий электропередач.

Благодаря тому, что в конструкциях МТЗ предусмотрены реле времени, задерживающие срабатывание механизмов отсечения, они кратковременно игнорируют перепады напряжений. Кроме того, токовые реле сконструированы таким образом, что они возвращаются в исходное положение после ликвидации причины, вызвавшей размыкание контактов.

Именно эти два фактора кардинально отличают МТЗ от простых токовых отсечек, со всеми их недостатками.

Принцип действия МТЗ

Между узлом задержки и токовым реле существует зависимая связь, благодаря которой отключение происходит не на начальной стадии возрастания тока, а спустя некоторое время после возникновения нештатной ситуации. Данный промежуток времени слишком короткий для того, чтобы величина тока достигла критического уровня, способного навредить защищаемой цепи. Но этого хватает для предотвращения возможных ложных срабатываний защитных устройств.

Принцип действия систем МТЗ напоминает защиту токовой отсечки. Но разница в том, что токовая отсечка мгновенно разрывает цепь, а МТЗ делает это спустя некоторое, наперёд заданное время. Этот промежуток, от момента аварийного возрастания тока до его отсечения, называется выдержкой времени. В зависимости от целей и характера защиты каждая отдельная ступень времени задаётся на основании расчётов.

Наименьшая выдержка времени задаётся на самых удалённых участках линий. По мере приближения МТЗ к источнику тока, временные задержки увеличиваются. Эти величины определяются временем, необходимым для срабатывания защиты и именуются ступенями селективности. Сети, построенные по указанному принципу, образуют зоны действия ступеней селективности.

Такой подход обеспечивает защиту поврежденного участка, но не отключает линию полностью, так как ступени селективности увеличиваются по мере удаления МТЗ от места аварии. Разница величин ступеней позволяет защитным устройствам, находящимся на смежных участках, оставаться в состоянии ожидания до момента восстановления параметров тока. Так как напряжение приходит в норму практически сразу после отсечения зоны с коротким замыканием, то авария не влияет на работу смежных участков.

Примеры использования защиты

МТЗ используют:

  • с целью локализации и обезвреживания междуфазных КЗ;
  • для защиты сетей от кратковременных перегрузок;
  • для обесточивания трансформаторов тока в аварийных ситуациях;
  • в качестве протектора при запуске мощного, энергозависимого оборудования.

Задержка времени очень полезна при пуске двигателей. Дело в том, что на старте в цепях обмоток наблюдается значительное увеличение пусковых токов, которое системы защиты могут воспринимать как аварийную ситуацию. Благодаря небольшой задержке времени МТЗ игнорирует изменение параметров сети, возникающие при пуске или самозапуске электродвигателей. За короткое время показатели тока приближаются к норме и причина для аварийного отключения устраняется. Таким образом, предотвращается ложное срабатывание.

Пример подключения МТЗ электродвигателя иллюстрирует схема на рисунке 1. На этой схеме реле времени обеспечивает уверенный пуск электромотора до момента реагирования токового реле.

МТЗ с выдержкой времениРисунок 1. МТЗ с выдержкой времени

Аналогично работает задержка времени при кратковременных перегрузках в защищаемой сети, которые не связаны с аварийными КЗ. Отсечка действует лишь в тех случаях, когда на защищаемой линии возникает значительное превышение номинальных значений, которое по времени превосходит величину выдержки.

Для надёжности защиты на практике часто используют схемы двухступенчатой и даже трёхступенчатой защиты участков цепей. Стандартная трёхступенчатая защитная характеристика выглядит следующим образом (Рис. 2):

Карта селективности стандартной трёхступенчатой защитыРис. 2. Карта селективности стандартной трёхступенчатой защиты

На абсциссе отмечено значения тока, а на оси ординат время задержки в секундах. Кривая в виде гиперболы отображает снижение времени защиты от возрастания перегрузок. При достижении тока отметки 170 А включается отсчёт времени МТЗ. Задержка времени составляет 0,2 с, после чего на отметке 200 А происходит отключение. То есть, разрыв цепи происходит в случае отказа защиты остальных устройств.

Расчет тока срабатывания МТЗ

Стабильность работы и надёжность функционирования максимально-токовой защиты зависит от настройки параметров по току срабатывания. Расчёты должны обеспечивать гарантированное срабатывание реле при авариях, однако на её работу не должны влиять параметры тока нагрузки, а также кратковременные всплески, возникающие в режиме запуска двигателей.

Следует помнить, что слишком чувствительные реле могут вызывать ложные срабатывания. С другой стороны, заниженные параметры срабатывания не могут гарантировать безопасности стабильной работы электроприборов. Поэтому при расчетах уставок необходимо выбирать золотую середину.

Существует формула для расчёта среднего значения тока, на который реагирует электромагнитное реле [ 1 ]:

Iс.з. > Iн. макс.,

где Iс.з. – минимальный первичный ток, на который должна реагировать защита, а Iн. макс. – предельное значение тока нагрузки.

Ток возврата реле подбирается таким образом, чтобы его хватило повторного замыкания контактов в отработавшем устройстве. Для его определения используем формулу:

Iвз = kн.×kз.×Iраб. макс.

Здесь Iвз– ток возврата, kн. – коэффициент надёжности,  kз – коэффициент самозапуска, Iраб. макс. величина максимального рабочего тока.

Для того чтобы токи возврата и срабатывания максимально приблизить, вводится коэффициент возврата, рассчитываемый по формуле:

kвIвз Iс.з с учётом которого Iс.з. = kн.×kз.×Iраб. макс / kв

В идеальном случае kв = 1, но на практике этот коэффициент всегда меньший за единицу. Чувствительность защиты тем выше, чем выше значение kв.. Отсюда вывод: для повышения чувствительности необходимо подобрать kв в диапазоне, стремящимся к 1.

Виды максимально-токовых защит

В электрических сетях используют 4 разновидности МТЗ. Их применение диктуется условиями, которые требуется создать для уверенной работы электрооборудования.

МТЗ с независимой от тока выдержкой времени

В таких устройствах выдержка времени не меняется. Для задания уставок периода, достаточного для активации реле с независимыми характеристиками, учитывают ступени селективности. Каждая последующая выдержка (в сторону источника тока) увеличивается от предыдущей на промежуток времени, соответствующий ступени селективности. То есть, при расчётах необходимо соблюдать условия селективности.

МТЗ с зависимой от тока выдержкой времени

В данной защите процесс задания уставок МТЗ требует более сложных расчётов. Зависимые характеристики, в случаях с индукционными реле, выбирают по стандарту МЭК: tсз = A / (k— 1), где A, n – коэффициенты чувствительности, k = Iраб  / Iср — кратность тока.

Из формулы следует, что выдержка времени уже не является константой. Она зависит от нескольких параметров, в т. ч. и от силы тока, попадающего на обмотки реле, причём эта зависимость обратная. Однако выдержка не линейная, её характеристика приближается к гиперболе (рис. 3). Такие МТЗ используют для защиты от опасных перегрузок.

Характеристика МТЗ с зависимой выдержкойРисунок 3. Характеристика МТЗ с зависимой выдержкой

МТЗ с ограниченно-зависимой от тока выдержкой времени

В устройствах данного вида релейных защит совмещено две ступени защиты: зависимая часть с гиперболической характеристикой и независимая. Примечательно, что времятоковая характеристика независимой части является прямой, плавно сопряжённой с гиперболой. При малых кратностях критичных токов характеристика зависимого периода более крутая, а при больших – пологая кривая (применяется для защиты электромоторов большой мощности).

МТЗ с пуском (блокировкой) от реле минимального напряжения

В данном виде дифференциальной защиты применена комбинация МТЗ с использованием влияния минимального напряжения. В электромеханическом реле произойдёт размыкание контактов только тогда, когда возрастание тока в сети приведёт к падению разницы потенциалов. Если падение превысит нижнюю границу напряжения уставки – это вызовет отработку защиты. Поскольку уставка задана на падение напряжения, то реле не среагирует на резкие скачки тока в сети.

Примеры и описание схем МТЗ

С целью защиты обмоток трансформаторов, а также других элементов сетей с односторонним питанием используются различные схемы.

МТЗ на постоянном оперативном токе.

Особенность данной схемы в том, что управление элементами защиты осуществляется выпрямленным током, который меняет полярность, реагируя на аварийные ситуации. Мониторинг изменения напряжения выполняют интегральные микроэлементы.

Для защиты линий от последствий междуфазных замыканий используют двухфазные схемы на двух, либо на одном токовом реле.

Однорелейная на оперативном токе

В данной защите используется токовое пусковое реле, которое реагирует на изменение разности потенциалов двух фаз. Однорелейная МТЗ реагирует на все межфазные КЗ.

Схема на 1 релеСхема на 1 реле

Преимущества: одно токовое реле и всего два провода для подсоединения.

Недостатки:

  • сравнительно низкая чувствительность;
  • недостаточная надёжность – при отказе одного элемента защиты участок цепи остаётся незащищённым.

Однорелейка применяется в распределительных сетях, где напряжение не превышает 10 тыс. В, а также для безопасного запуска электромоторов.

Двухрелейная на оперативном токе

В данной схеме токовые цепи образуют неполную звезду. Двухрелейная МТЗ реагирует на аварийные междуфазные короткие замыкания.

Схема на 2 релеСхема на 2 реле

К недостаткам этой схемы можно отнести ограниченную чувствительность. МТЗ выполненные по двухфазным схемам нашли широкое применение, особенно в сетях, где используется изолированная нейтраль. Но при добавлении промежуточных реле могут работать в сетях с глухозаземлённой нейтралью.

Трехрелейная

Схема очень надёжная. Она предотвращает последствия всех КЗ, реагируя также и на однофазные замыкания. Трехфазные схемы можно применять в случаях с глухозаземлённой нейтралью, вопреки тому, что там возможны ситуации с междуфазными так и однофазными замыканиями.

Из рисунка 4 можно понять схему работы трёхфазной, трёхлинейной МТЗ.

Схема трёхфазной трёхрелейной защитыРисунок 4. Схема трёхфазной трёхрелейной защиты

Схема двухфазного трёхрелейного подключения МТЗ изображена на рисунке 5.

Схема двухфазного трёхрелейного подключения МТЗРис. 5. Схема двухфазного трёхрелейного подключения МТЗ

На схема обозначены:

  • KA — реле тока;
  • KT — реле времени;
  • KL — промежуточное реле;
  • KH — указательное реле;
  • YAT — катушка отключения;
  • SQ — блок контакт, размыкающий цепь;
  • TA — трансформатор тока.

Видео в дополнение темы

Чувствительность МТЗ

Проверка ведется по минимальному значению тока КЗ IK min при повреждении в конце зоны МТЗ, которая должна охватывать защищаемую ЛЭП и резервировать РЗ следующего участка (второго), т.е. линию W2 и трансформаторы, отходящие от шин приемной подстанции В (рис.5.4). Минимальный ток КЗ рассчитывается для реального минимального режима на электростанциях и в сетях, питающих ЛЭП.

Чувствительность МТЗ оценивается коэффициентом чувствительности

(5.7)

Коэффициент чувствительности для защищаемой ЛЭП считается допустимым, если kч ≥ 1,5, при КЗ на резервируемом участке допускается kч ≥ 1,2.

Выдержки времени защиты


Ступень времени

Для обеспечения селективности выдержки времени МТЗ выбираются по ступенчатому принципу (см. рис.4.1). Разница между временем действия МТЗ двух смежных участков (например, А и В на рис.5.5) называется ступенью времени или ступенью селективности:

(5.8)

Ступень Δt должна быть такой, чтобы при КЗ на каком-нибудь участке сети (например, на wb)МТЗ соседнего участка (т.е. на WA)не успевала сработать.

Чтобы МТЗ ЛЭПA не сработала при КЗ на предыдущем участке, она должна иметь выдержку времени, большую времени отключения на wb:

где tзВвыдержка времени МТЗ В; tп В– положительная погрешность в сторону замедления реле времени МТЗ В; tB Ввремя отключения выключателя wbс момента подачи импульса в катушку отключения до разрыва тока КЗ контактами выключателя. Приняв запас tзап и учтя, что МТЗ А может из-за погрешности реле времени снизить выдержку времени на величину tп A(отрицательная погрешность), получим

(5.8a)

Отсюда минимальная ступень времени

(5.9)

 

Согласно выражению (5.9) выбирается ступень для МТЗ с независимой характеристикой. Что касается МТЗ с зависимой характеристикой, выполняемых с помощью индукционных реле, то они могут продолжать работать по инерции после отключения тока КЗ. Поэтому ступень времени у таких МТЗ должна быть увеличена на время инерционной ошибки реле tи:

(5.10)

Для применяемых в эксплуатации реле и выключателей ступень времени колеблется у МТЗ с независимой выдержкой времени в пределах 0,35-0,6 с, а у МТЗ с зависимой или ограниченно зависимой характеристикой 0,6-1 с. При согласовании с быстродействующей РЗ погрешность ее не учитывается (tпB= 0), и тогда Δt= 0,35 ÷ 0,4с.

Похожие статьи:

Пример расчета уставок кабельной линии 10 кВ с ответвлениями

В данной статье будет рассматриваться пример расчета уставок токовых защит для кабельной линии 10 кВ с ответвлениями.

Согласно ПУЭ 7-издание пункт 3.2.93 на линиях с односторонним питанием от многофазных КЗ должна предусматриваться двухступенчатая токовая защита.

Первая ступень – токовая отсечка (ТО) без выдержки времени, вторая ступень максимально-токовая защита (МТЗ) с независимой или зависимой характеристикой выдержки времени.

В конце каждого ответвления установлены трансформаторы типа ТМГ 10/0,4 кВ, защищенные предохранителями типа ПКТ. Расчетная схема кабельной линии 10 кВ представлена на рис.1.

Исходные данные

1. Параметры питающей системы:

  • Uc.ном = 10,5 кВ – среднее номинальное напряжение системы;
  • Iк.мах. = 5500 А – ток КЗ системы в максимальном режиме на шинах 10 кВ;
  • Iк.min. = 5030 А – ток КЗ системы в минимальном режиме на шинах 10 кВ;

2. Характеристики трансформаторов 10,5/0,4 кВ

Тип тр-ров Мощность Sном., кВА Номинальное напряжение, кВ Напряжение
короткого
замыкания Uк, %
ВН НН
ТМГ-160/10 160 10,5 0,4 4,5
ТМГ-250/10 250 10,5 0,4 4,5
ТМГ-400/10 400 10,5 0,4 4,5

3. Параметры линий:

Значения активных и реактивных сопротивлений для кабеля марки АСБ-10 сечением 35 мм2 определяем по таблице 2-5 [Л1.с 48].

  • Rуд.=0,894 Ом/км – удельное активное сопротивление;
  • Худ. = 0,095 Ом/км – удельное реактивное сопротивление;
  • L1 = 1500 м – длина кабельной линии КЛ-1;
  • L2 = 1000 м – длина кабельной линии КЛ-2;

4. Для защиты кабельной линии применяется микропроцессорный терминал типа Sepam 1000+S40 компании «Schneider Electric».

5. Трансформаторы тока ТОЛ-СЭЩ-10-100/5:

  • Iтт1ном. = 100 А –номинальный первичный ток ТТ;
  • Iтт2ном. = 5 А –номинальный вторичный ток ТТ;
  • nт = Iтт1ном./ Iтт2ном. = 100/5 = 20 – номинальный коэффициент трансформации ТТ.

1. Расчет тока трехфазного КЗ

1.1. Определяем максимальный рабочий ток для трансформаторов 10,5/0,4 кВ:

1.2. Определяем полное сопротивление двухобмоточных трансформаторов 10,5/0,4 кВ по выражению 25 [Л2. с. 27]:

где:

  • Uном. – номинальное напряжение трансформатора, кВ;
  • Sном. – номинальная мощность трансформатора, кВА;

Еще в технической литературе вы можете встретить, вот такую формулу по определению полного сопротивления трансформатора.

Как мы видим результаты совпадают.

1.3. Определяем сопротивление системы в максимальном режиме по выражению 3 [Л2. с. 5]:

1.4. Определяем сопротивление кабельных линий с учетом длины, по формулам представленным в [Л5. с. 21]:

1.5. Рассчитаем ток трехфазного КЗ в точке подключения трансформаторов (точка К2), ближних к источнику питания (в конце кабельной линии КЛ-1):

1.6. Рассчитаем ток трехфазного КЗ в точке К3 в конце кабельной линии КЛ-2:

2. Расчет токовой отсечки линии

Согласно [Л3, с.39] селективность токовой отсечки без выдержки времени установленной на линии обеспечивается выбором ее тока срабатывания Iто.с.з. большим, чем максимальное значение тока КЗ Iк.з.макс. при повреждении в конце защищаемой линии.

При расчете ТО линии, по которой питается несколько трансформаторов, ТО должна отстраиваться от КЗ на выводах ближайшего трансформатора для обеспечения селективности между ТО и защитами трансформаторов [Л4, с.22] (см. пример 12 [Л3, с.102]).

2.1. Определяем ток срабатывания токовой отсечки по выражению 1-17 [Л3, с.39]:

где: kн – коэффициент надежности, для цифровых терминалов, в том числе Sepam принимается в пределах 1,1 – 1,15;

Токовую отсечку нужно отстраивать не только от максимального значения тока КЗ, но и отстраивать от бросков тока намагничивания (БТН) силовых трансформаторов согласно [Л3, с.41].

Данные токи возникают в момент включения под напряжения ненагруженного трансформатора и могут достигать значения 5-7*Iном.тр.

Однако как показывает практика, выбор тока срабатывания ТО по условию отстройки от максимального значения тока КЗ, обеспечивает и отстройку от бросков тока намагничивания.

2.2. Для проверки себя, выполним условие отстройки ТО от бросков тока намагничивания по выражение 4.12 [Л4, с.22]:

где:

  • kбтн = 5 — 7 – коэффициент броска тока намагничивания;
  • ∑Iном.тр. – сумма номинальных токов всех трансформаторов, питающихся по линии, А;

2.3. Определяем вторичный ток срабатывания реле по формуле 1-3 [Л3, с.18]:

где: kсх=1 — когда вторичные обмотки трансформаторов тока, выполнены по схеме «полная звезда» и «неполная звезда»;

2.4. Определяем коэффициент чувствительности при двухфазном к.з. в минимальном режиме по выражению 1-5 [Л3, с.19]:

Согласно ПУЭ 7 издание пункт 3.2.21.2 kч.то > 1,5.

Принимает ток срабатывания ТО Iто.с.з.=2849 A, время срабатывания ТО t = 0 сек.

3. Расчет МТЗ линии

3.1. Определим ток срабатывания МТЗ по условию отстройки от самозапуска двигателей нагрузки после восстановления питания действием автоматики по выражению 1-1 [Л3, с.16]:

где:

  • kн = 1,1 – 1,15 – коэффициент надежности, берется по ана0логии из расчета ТО;
  • kв — коэффициент возврата, для цифровых терминалов рекомендуется принимать – 0,96, для Sepam принимается 0,935;
  • kсзп. – коэффициент самозапуска, в связи с тем, что в данном примере линия питает только бытовую нагрузку (двигательная нагрузка — отсутствует), по опыту эксплуатации и проведенных исследований рекомендуется принимать kсзп. = 1,2 – 1,3 [Л3, с.75, 111], при условии, что время срабатывания защиты будет не менее 0,5 с.

Если же у вас в виде нагрузки преобладают асинхронные двигатели напряжением до 1000 В, в этом случае нужно определить коэффициент самозапуска.

В качестве примера, расчет коэффициента самозапуска, рассмотрен в статье: «Пример выбора уставок секционного выключателя 6(10) кВ».

Iраб.макс. – максимальный рабочий ток линии, то есть Iраб.макс. – это сумма номинальных токов всех трансформаторов, питаемых по защищаемой линии, без учета коэффициента загрузки трансформаторов.

Определяя Iраб.макс. без учета коэффициента загрузки, мы создаем определенный расчетный запас на несколько лет.

3.2. Определяем вторичный ток срабатывания реле по выражению 1-3 [Л3, с.18]:

3.3. Определяем коэффициент чувствительности при двухфазном КЗ в основной зоне действия защиты (точка КЗ с наименьшим током КЗ) по выражению 1-5 [Л3, с.19]:

3.4. Определяем коэффициент чувствительности в зоне резервирования, т.е. когда КЗ у нас на шинах 0,4 кВ трансформаторов ответвления.

3.4.1. Определим токи КЗ за трансформаторами:

3.4.2. Определяем коэффициенты чувствительности при двухфазном КЗ в зоне резервирования:

Согласно ПУЭ 7-издание пункт 3.2.25 kч ≥1,2. Очень часто МТЗ не чувствительна к повреждениям за маломощными трансформаторами, в этом случае, допускается не резервировать отключение КЗ за трансформаторами, согласно ПУЭ 7-издание пункт 3.2.17.

3.5. Определяем ток срабатывания МТЗ по условию согласования с плавкими вставками предохранителей трансформаторов по выражению 4.3 [Л4, с.16]:

где:

  • kотс. = 1,3 – коэффициент отстройки;
  • k”отс. = 2 – коэффициент отстройки от номинального тока плавкой вставки предохранителей;
  • Iвс.ном.макс. – наибольший из номинальных токов плавких вставок предохранителей, А;
  • ∑Iраб.макс. – суммарный ток нагрузки неповрежденных присоединений, А.

Если же в место предохранителя у вас установлен автоматический выключатель, то ток срабатывания определяется по формуле 4.4 [Л4, с.16]:

Предварительно принимает наибольший ток срабатывания МТЗ Iс.з. = 195 A.

3.6. Определяем выдержку времени МТЗ с независимой времятоковой характеристикой.

Как видно из рис. П-11 при токе МТЗ Iс.з. = 195 A время плавления плавкой вставки достигает 8 с, что неприемлемо, поэтому нужно увеличить ток срабатывания МТЗ, что бы уменьшить время срабатывания.

Построим карту селективности для предохранителя ПКТ-50 по следующим точкам используя типовую времятоковую характеристику (см. рис. П-11): 200А – 8 с, 400 А – 0,55 с, 500 А – 0,3 с, 600 А – 0,18 с, 700 А – 0,14 с, 800 А – 0,09 с, 900 А – 0,07 с, 1000 А – 0,05 с.

В соответствии с ГОСТ 2213-79 отклонения значения ожидаемого тока КЗ при данном времени плавления плавкого элемента tпл. от значения тока КЗ, получаемого по типовой времятоковой характеристике плавления, не должно превышать ±20%.

Исходя из этого, типовая характеристика предохранителя типа ПКТ 50 должна быть смещена вправо на 20%.

Построим времятоковую характеристику с учетом 20% по следующим точкам:

  • 200А + 20% = 240 А – 8 с;
  • 400А + 20% = 480 А – 0,55 с;
  • 500А + 20% = 600 А – 0,3 с;
  • 600А + 20% = 720 А – 0,18 с;
  • 700А + 20% = 840 А – 014 с;
  • 800А + 20% = 960 А – 0,09 с;
  • 900А + 20% = 1080 А – 0,07 с;
  • 1000А + 20% = 1200 А – 0,05 с;

Исходя из времятоковой характеристики плавких предохранителей, принимаем ток срабатывания МТЗ Iс.з. = 500 A, при таком токе плавкая вставка предохранителя расплавится за время tвс = 0,3 с.

Согласно [Л3, с.78] ступень селективности между защитой линии 10 кВ и предохранителем должна быть в пределах ∆t = 0,5 – 0,7 с.

3.6.1. Определяем время срабатывания МТЗ линии:

tс.з. = tвс + ∆t = 0,3 + 0,5 = 0,8 с

Принимает ток срабатывания МТЗ Iс.з. = 500 A и время срабатывания МТЗ tс.з. = 0,8 с.

Литература:

1. Проектирование кабельных сетей и проводок. Хромченко Г.Е. 1980 г.
2. Расчет токов короткого замыкания в электросетях 0,4-35 кВ, Голубев М.Л. 1980 г.
3. Расчеты релейной защиты и автоматики распределительных сетей. М. А. Шабад, 2003г.
4. СТО ДИВГ-059-2017 «Релейная защита распределительных сетей 6-10 кВ. Расчет уставок. Методические указания» ООО «НТЦ «Механотроника» 2017 г.
5. Расчет токов короткого замыкания для релейной защиты. И.Л.Небрат. 1998 г.

КОЭФФИЦИЕНТ ЧУВСТВИТЕЛЬНОСТИ kЧ

КОЭФФИЦИЕНТ ЧУВСТВИТЕЛЬНОСТИ kЧ – показатель [1, 2] с помощью которого
принято оценивать чувствительность [3]
релейной защиты.

Для релейных защит, реагирующих на возрастание
контролируемой величины, коэффициент чувствительности kч определяют как отношение минимально возможного
значения сигнала, соответствующего повреждению или ненормальному режиму, к
установленному на защите параметру срабатывания (уставке).

        Например, для максимальной токовой
защиты МТЗ коэффициент
чувствительности равен:

 

 

где
Ikmin
минимальное значение тока короткого замыкания

Iсз – ток срабатывания МТЗ.

        Таким образом, в данном случае
коэффициент чувствительности kч
фактически показывает во сколько раз ток, возникающий при ненормальном режиме
или повреждении, превышает ток срабатывания (уставку).

Для релейных защит, реагирующих на уменьшение
контролируемой величины, коэффициент чувствительности kч определяют как отношение параметра срабатывания (уставки) к расчетному значению этого параметра. В этом
случае коэффициент чувствительности kч показывает во сколько раз уставка
срабатывания превышает расчетное значение контролируемой величины.

        Расчетное значение коэффициента
чувствительности kч должно
быть не меньше значения, приведенного в ПУЭ [1] для соответствующего типа
релейной защиты и контролируемого ею параметра (ток, напряжение, мощность и
т.д.).

Согласно ПУЭ коэффициент чувствительности kч
может принимать значение от 1,2 до 2,0.

 

Литература:

1. Правила устройства
электроустановок. М.: Главгосэнергонадзор России,
1998, 608 с.

2. Чернобровов
Н.В., Семенов В.А. Релейная защита энергетических систем. М.: Энергоатомиздат, 1998, 800 м.

3.
Чувствительность// Материал размещен на странице: http://maximarsenev.narod.ru/slovar2/chuvst.htm

 

Как рассчитать коэффициенты чувствительности для погрешности измерения

how to calculate sensitivity coefficients for measurement uncertainty

Введение

Задумывались ли вы об использовании коэффициентов чувствительности при оценке неопределенности измерения?

Возможно, вы видели коэффициенты чувствительности, используемые в бюджете неопределенности, и задавались вопросом, почему они использовались или как они рассчитывались.

Если вы ответили утвердительно на любое из приведенных выше утверждений, это руководство для вас.

Сегодня вы узнаете все, что вам когда-либо понадобится об использовании коэффициентов чувствительности для вычисления неопределенности.

В этом руководстве вы узнаете:

• Что такое коэффициенты чувствительности,
• Почему коэффициенты чувствительности важны,
• Когда следует использовать коэффициенты чувствительности,
• Когда не следует использовать коэффициенты чувствительности, и
• Как рассчитать коэффициенты чувствительности (шаг за шагом)

Итак, если вам интересно узнать о коэффициентах чувствительности, продолжайте читать. Вы только что нашли полное руководство по коэффициентам чувствительности и погрешности измерения.

Что такое коэффициенты чувствительности

Согласно Руководству по выражению неопределенности в измерениях (GUM), коэффициенты чувствительности — это частные производные, используемые для описания того, как выходная оценка y изменяется при изменении значений исходных оценок x 1 , x 2 ,… , х н .

По сути, коэффициенты чувствительности показывают, как переменные в уравнении или функции связаны с вычисленным результатом.

Когда вы изменяете значение переменной x в уравнении, это влияет на величину результата y.

Это полезно при оценке неопределенности, так как вы можете преобразовать компоненты неопределенности в аналогичные единицы измерения.

Таким образом, коэффициенты чувствительности — это просто множители, используемые для преобразования компонентов неопределенности в правильные единицы и величины для анализа неопределенности.

Если вы знаете коэффициенты чувствительности для переменных в процессе измерения, вы можете воспроизвести взаимосвязь при оценке неопределенности.

Почему следует использовать коэффициенты чувствительности

Согласно руководству A2LA G104 по оценке неопределенности измерений при тестировании, все вклады в неопределенность должны быть в одних и тех же единицах измерения, прежде чем их можно будет объединить.

При принятии решения о том, использовать ли коэффициенты чувствительности, вы должны определить, выражены ли ваши источники неопределенности количественно в одних и тех же единицах измерения.

Если да, то коэффициенты чувствительности использовать не нужно.

Если ваши участники используют несколько разных единиц измерения, вам следует рассмотреть возможность использования коэффициентов чувствительности.

Однако у вас все еще есть возможность.

Вместо использования коэффициентов чувствительности в ваших бюджетах неопределенности вы можете преобразовать значения ваших индивидуальных компонентов неопределенности перед вводом данных в ваш бюджет неопределенности.

Используя этот метод, вам не нужно использовать коэффициенты чувствительности.

В данном руководстве я предполагаю, что вам нужно использовать коэффициенты чувствительности.

Когда следует использовать коэффициенты чувствительности

Используйте коэффициенты чувствительности, когда вам нужно преобразовать компоненты неопределенности в аналогичные единицы измерения для анализа.

Например…

Представьте, что у вас есть набор стальных мерных блоков с коэффициентом линейного теплового расширения 10,8 x 10-6 м / К. Теперь представьте, что у вас есть термометр, который контролирует вашу рабочую зону и имеет погрешность измерения 0,2 ° C.

Как вы соотносите неопределенность термометра с неопределенностью измерения измерительного блока?

С коэффициентом чувствительности.

В этом примере коэффициент линейного теплового расширения — это ваш коэффициент чувствительности. Так что самостоятельно рассчитывать коэффициент чувствительности не нужно.

Теперь все, что вам нужно сделать, это умножить коэффициент чувствительности и погрешность вашего термометра. Результатом будет составляющая неопределенности, преобразованная в метры (м), которая связана с вашим анализом.

coefficient of thermal expansion measurement uncertainty

В качестве альтернативы, коэффициенты чувствительности также могут использоваться для преобразования компонентов неопределенности в правильный порядок величины.

Например…

Представьте, что вы выполняете анализ неопределенности, где результаты измерений выражаются в миллиметрах (мм), а ваша составляющая неопределенности — в метрах (м).

Что ж, большинство людей просто переведут компонент неопределенности в миллиметры (мм).

Однако вы можете использовать коэффициенты чувствительности, чтобы выполнить эту задачу за вас.

Используя коэффициент чувствительности 1000, вы можете преобразовать составляющую неопределенности из метров в миллиметры в вашем бюджете неопределенности.

Это еще один сценарий использования коэффициентов чувствительности при оценке неопределенности.

convert meters to millimeter measurement uncertainty

В целом, так работают коэффициенты чувствительности. Они используются для преобразования ваших компонентов неопределенности в единицы измерения и величины относительно вашего анализа неопределенности.

Итак, когда у вас есть источники неопределенности, которые находятся в разных единицах измерения или порядке величины, вы должны использовать коэффициенты чувствительности.

Если вы продолжите читать, я научу вас вычислять коэффициенты чувствительности позже в этом руководстве.

Когда не следует использовать коэффициенты чувствительности

Вам не нужно использовать коэффициенты чувствительности, если все ваши входные величины или факторы неопределенности указаны в одной и той же единице измерения.

Когда все ваши неопределенности указаны в одних и тех же единицах измерения, вы просто зря потратите время. Так что не беспокойтесь о коэффициентах чувствительности.

Однако некоторые калькуляторы неопределенности требуют, чтобы вы использовали коэффициенты чувствительности, даже если они вам не нужны.

В этом случае необходимо ввести значение коэффициента чувствительности, иначе калькулятор неопределенности может работать неправильно, что может привести к неверным результатам или ошибкам.

Чтобы избежать этой проблемы, просто используйте значение единицы (т.е. 1) в качестве коэффициента чувствительности.

Это быстрое и простое решение, которое избавит вас от множества головных болей.

Если вам интересно, почему вы должны использовать значение единицы, посмотрите на уравнение ниже и примите во внимание следующее:

calculate sensitivity coefficient equation

Неопределенность вашего результата y вычисляется путем умножения коэффициента чувствительности на неопределенность вашей входной переменной x.

Любое значение, умноженное на единицу, все равно будет равняться тому же значению. Таким образом, использование коэффициента чувствительности, равного единице, позволит вам рассчитать погрешность и не повлиять на результаты.

Чтобы лучше понять, взгляните на пример ниже.

Это анализ неопределенности для элемента с ламинарным потоком, где результаты измерений выражены в стандартных кубических сантиметрах в минуту (sccm). Поскольку неопределенность, связанная с повторяемостью, находится в тех же единицах измерения (т.е. sccm) коэффициент чувствительности не нужен.

Однако калькулятор неопределенности на изображении ниже требует, чтобы вы вводили коэффициент чувствительности. Следовательно, вы должны использовать значение, равное единице (т.е. 1).

Теперь, когда калькулятор неопределенности умножает коэффициент чувствительности и значение неопределенности для повторяемости, результат не будет изменен.

sensitivity coefficient of 1 for measurement uncertainty

Итак, когда все ваши источники неопределенности количественно определены в тех же единицах измерения, что и результат измерения, вам не нужно использовать коэффициенты чувствительности.

Однако, если ваш калькулятор неопределенности требует, чтобы вы использовали коэффициенты чувствительности, обязательно используйте значение, равное единице в этих ситуациях.

Как рассчитать коэффициенты чувствительности

Время от времени вам нужно будет использовать коэффициент чувствительности при оценке неопределенности. Поэтому вам важно знать, как их рассчитать.

В этом разделе я покажу вам, как рассчитать коэффициенты чувствительности для большинства основных сценариев.

Однако следует отметить, что некоторые функции измерения могут быть довольно сложными и могут потребовать более продвинутого метода для расчета коэффициентов чувствительности.

Этот раздел не будет обучать вас продвинутым методам.

Вместо этого вы научитесь выполнять только основной метод. Но не волнуйся. Большинство из вас, вероятно, никогда не столкнется с редкой необходимостью использовать передовые методы.

После того, как это раскрыто, давайте начнем.

Чтобы вычислить коэффициенты чувствительности, вы должны сравнить изменение выходной переменной y при изменении значения конкретной входной переменной x при сохранении постоянных остальных переменных.
Еще в средней школе по алгебре вы, наверное, узнали, что функция x равна y.

function of x equation

Зная этот принцип, вы можете использовать неопределенность или ошибку переменной x, чтобы определить изменение переменной y.

Когда эти значения известны, вы можете использовать приведенное ниже уравнение для расчета коэффициента чувствительности.

how to calculate sensitivity coefficient equation

По сути, все, что вам нужно сделать, это разделить изменение переменной y на изменение переменной x.

Если это объяснение сбивает с толку, я разбил процесс на девять простых шагов, которым вы можете следовать, чтобы вычислить свой первый коэффициент чувствительности.

Просто следуйте приведенным ниже инструкциям, чтобы рассчитать коэффициент чувствительности.

Пошаговое вычисление коэффициентов чувствительности

1. Определите функцию измерения или уравнение

Первым шагом к вычислению коэффициента чувствительности является определение функции или уравнения, которые представляют ваш процесс измерения.

2. Определите переменные в уравнении.

Каждая переменная, входящая в уравнение, будет входной переменной x.Вычисленным результатом уравнения всегда будет выходная переменная y.

3. Выберите интересующую переменную.

Выберите в уравнении переменную, для которой требуется коэффициент чувствительности.

Если более чем одной переменной требуется коэффициент чувствительности, оценивайте только одну переменную за раз.

4. Выберите два значения для выбранной переменной.

Выберите два разных значения для вашей переменной. Как правило, вы должны выбрать высокое и низкое значение, которое представляет диапазон вашей функции измерения.

В качестве альтернативы вы можете выбрать одно значение для переменной x, а второе значение добавить неопределенность измерения к исходному значению x.

Подойдет любой метод. Итак, выберите наиболее удобный для вас метод.

5. Вычислите и запишите результат, используя первое значение.

Используя первое значение, которое вы выбрали на шаге 4, вставьте его в уравнение и вычислите первый результат для выходной переменной y.

Если ваше уравнение имеет более одной входной переменной x, убедитесь, что их значения постоянны на протяжении всего процесса. Это важное правило, которое следует помнить при оценке одной переменной за раз.

6. Вычислите и запишите результат, используя второе значение.

Затем вставьте второе значение, которое вы выбрали на шаге 4, в свое уравнение и вычислите второй результат для выходной переменной y.

7. Вычислите разницу результатов y.

Теперь, когда у вас есть данные, пора вычислить коэффициент чувствительности.

Начните с вычисления разности выходной переменной y. Вычтите результат y на шаге 6 из результата y на шаге 5.

8. Вычислите разницу в вашей переменной x.

Затем вычислите разность входной переменной x. Вычтите значение x на шаге 6 на значение x на шаге 5.

9. Разделите разницу y на разницу x.

Наконец, разделите результат шага 7 на результат шага 8.

Это будет ваш коэффициент чувствительности для входной переменной x.

Бонус: проверьте свои результаты.

После этого обязательно проверьте свои результаты. Просто умножьте свой новый коэффициент чувствительности на входные переменные, выбранные на шаге 4.

Для помощи можно использовать приведенное ниже уравнение.

sensitivity coefficient equation for uncertainty of measurement

Результат должен быть равен результатам, вычисленным на шагах 5 и 6.

Если ваши результаты совпадают, ваш коэффициент чувствительности был рассчитан правильно. В противном случае вы допустили ошибку и должны повторять процесс, пока он не сработает.

Примеры расчета коэффициентов чувствительности

Теперь, когда вы знаете, как рассчитывать коэффициенты чувствительности, давайте рассмотрим несколько примеров, демонстрирующих этот процесс.

Примеры в этом разделе должны помочь вам понять визуальную концепцию письменных инструкций в предыдущем разделе.

Я постарался дать вам практические примеры, которые вы можете легко воспроизвести и попробовать на себе.

Примеры в разделе будут включать:

1. Калибровка постоянного тока с использованием закона Ома
2. Калибровка измерительного блока и коэффициент линейного теплового расширения
3. Калибровка датчика давления с выходом 4–20 мА
4. Калибровка датчика давления с выходом 0–5 В

Калибровка постоянного тока с использованием закона Ома

Если вы когда-либо работали в области электрической метрологии, вы должны знать закон Ома и хорошо разбираться в круговой диаграмме.

ohms law pie chart

Используя принцип закона Ома, представьте, что вы косвенно измеряете ток с помощью резистора 0,1 Ом и цифрового мультиметра.

При 1 амперах цифровой мультиметр показывает 0,1 вольт.

При 10 амперах на цифровом мультиметре вы видите 1 вольт.

Используя записанные данные, вычислите разницу двух измерений напряжения и двух заданных значений тока.

Затем разделите разницу в вольтах на разницу в амперах.

Результат — коэффициент чувствительности 0,1 В на ампер.

sensitivity coefficient example fir dc current calibration

Калибровка измерительного блока и коэффициент линейного теплового расширения

Если вы когда-либо работали в области размерной метрологии, вы, вероятно, слышали о коэффициенте линейного теплового расширения.

Может использоваться как коэффициент чувствительности. Однако давайте проверим КТР, измерив длину стального измерительного блока при двух разных температурах.

При 20 ° C измерительный блок составляет примерно 1 дюйм.

При 25 ° C размер измерительного блока составляет примерно 1,000058 дюйма.

Теперь, когда у вас есть результаты измерения, вы захотите независимо вычислить разницу температуры и длины.

После этого вы разделите разницу в длине на разницу в температуре.

Результат — коэффициент чувствительности 11,5 микродюймов на градус Цельсия.

sensitivity coefficient example gage block and thermal expansion

Калибровка датчика давления с выходом 4-20 мА

Если вы работаете в области механической метрологии и калибруете преобразователи давления, я уверен, что у вас есть калиброванные преобразователи с выходным сигналом от 4 до 20 мА.

Когда дело доходит до оценки неопределенности измерения для этих типов устройств, я наблюдал у многих людей, у которых возникли проблемы с преобразованием неопределенности давления в неопределенность наблюдаемого выходного сигнала.

В этом примере я покажу вам, как найти коэффициент чувствительности для этих преобразований.

Представьте, что у вас есть датчик давления от 0 до 100 фунтов на кв. Дюйм, который выдает сигнал от 4 до 20 мА.

При давлении 0 фунтов на кв. Дюйм датчик выдает сигнал 4 мА.

При давлении 100 фунтов на кв. Дюйм датчик выдает сигнал 20 мА.

Посчитав разницу каждого, вы должны получить разницу в 100 фунтов на кв. Дюйм и разницу в 16 мА соответственно.

Если вы разделите разницу выходного сигнала на разницу давления, вы получите коэффициент чувствительности 0,16 миллиампера на фунт / кв.

sensitivity coefficient example for pressure transducer 4 to 20 mA

Калибровка датчика давления с выходом от 0 до 5 В

Как и в предыдущем примере, некоторые преобразователи давления вырабатывают выходной сигнал напряжения, а не выходной сигнал тока.

Поэтому я покажу вам, как рассчитать коэффициенты чувствительности для этих устройств.

Представьте, что у вас есть датчик давления от 0 до 100 фунтов на квадратный дюйм, который выдает сигнал от 0 до 5 В.

При давлении 0 фунтов на кв. Дюйм датчик выдает сигнал 0 В.

При давлении 100 фунтов на кв. Дюйм датчик выдает сигнал 5 В.

Посчитав разницу каждого, вы должны получить разницу в 100 фунтов на кв. Дюйм и разницу в 5 В соответственно.

Если вы разделите разницу выходного сигнала на разницу давления, вы получите коэффициент чувствительности 0.05 Вольт на фунт / кв. Дюйм.

sensitivity coefficient example for pressure transducer 0 to 5V

Коэффициенты чувствительности и бюджеты неопределенности

Коэффициенты чувствительности — важный элемент в анализе неопределенности. Даже если вам не всегда нужно их использовать, ваш калькулятор неопределенности должен предлагать вам возможность использовать коэффициенты чувствительности.

Если нет, довольно легко добавить коэффициенты чувствительности в калькулятор неопределенности, сделанный в Excel.

Коэффициенты чувствительности

следует использовать в расчете неопределенности, прежде чем вычислять комбинированную неопределенность.

Итак, вы должны умножить коэффициент чувствительности на значение неопределенности.

calculate sensitivity coefficient equation

Взгляните на изображение ниже, чтобы увидеть, как уравнение используется в моем калькуляторе неопределенности.

sensitivity coefficient and uncertainty budgets

Глядя на приведенный выше пример, вы увидите, что коэффициент чувствительности помещен в столбец перед значением неопределенности и рядом с ним.

Если вы посмотрите на столбец стандартной неопределенности, вы заметите, что коэффициент чувствительности и значение неопределенности умножаются вместе, прежде чем они будут разделены на делитель.

Использование этого уравнения гарантирует, что ваше значение неопределенности будет правильно преобразовано в стандартную неопределенность перед обработкой корневой суммы квадратов (RSS).

Если ваш калькулятор неопределенности не включает коэффициенты чувствительности, используйте приведенный выше пример и уравнение, чтобы добавить их в свой бюджет неопределенности.

Где узнать больше о коэффициентах чувствительности

Если вы все еще хотите узнать больше о коэффициентах чувствительности и неопределенности измерений, я предлагаю вам прочитать следующие материалы, чтобы узнать, могут ли они помочь ответить на ваши вопросы.

ГУМ

Руководство по выражению неопределенности в измерениях

NIST SEMATECH

2.5.6. Балансы неопределенности и коэффициенты чувствительности

2.5.6.1. Коэффициенты чувствительности для измерений на предмете

Википедия

Анализ чувствительности

ИЗОБЮДЖЕТЫ

3 способа объединения погрешности измерения с разными единицами измерения

Если этих ресурсов недостаточно, оставьте комментарий со своим вопросом, и я буду рад обновить это руководство, чтобы ответить на ваши вопросы.

Заключение

Коэффициенты чувствительности — важный элемент оценки неопределенности измерения. По возможности их следует включать в ваши бюджеты неопределенности.

Однако коэффициенты чувствительности не нужны для каждого анализа неопределенности. Так что используйте их только в том случае, если они вам нужны.

В этом руководстве вы узнали все, что вам нужно знать о коэффициентах чувствительности; что это такое, когда их использовать и как их рассчитывать.Плюс я даже привел вам несколько практических примеров.

Надеюсь, вы найдете это руководство полезным, если вам когда-нибудь понадобится рассчитать коэффициенты чувствительности.

Итак, обязательно попробуйте этот процесс. Подсчитайте несколько коэффициентов чувствительности и напишите в комментариях, для чего вы рассчитывали коэффициенты чувствительности или какие вопросы могут возникнуть.

.

Анализ чувствительности

Анализ чувствительности

Анализ чувствительности

Изменения

Графическая интерпретация

Удар

Выход в Excel

Заменить неосновную переменную решения на базовую

Переход с одной угловой точки на другую

Уменьшить оптимальное значение целевой функции (т.е.,
Z или C)

Величину обесценения можно определить по столбцу
«Сниженная стоимость» под блок Adjust Cells

Изменить коэффициент заданной переменной решения
в целевой функции

Изменение наклона целевой функции

Может или не может изменить оптимальную смесь раствора
в зависимости от допустимого диапазона, связанного с этой переменной решения

Диапазон можно получить из столбца «Допустимые
Увеличение »и« Допустимое уменьшение »под блоком Adjust
Ячейки

Изменить значение правой стороны (RHS) заданного
ограничение

смена ограничение

Может или не может изменить оптимальную целевую функцию
значение
в зависимости от допустимого диапазона, связанного с этим RHS

Изменение значения оптимальной целевой функции может быть
выведено из столбца «Теневые цены» в блоке Ограничения
Допустимый диапазон можно получить из столбца «Допустимые
Увеличение »и« Допустимое уменьшение »по блоку Ограничения

Целевая функция:
1. возможность / сниженная стоимость данной переменной решения может
интерпретироваться как скорость, с которой значение целевой функции (т. е.
прибыль) будет ухудшаться с каждым изменением единицы оптимизированного значения
переменная решения с фиксированными всеми остальными данными.

2. Допустимое увеличение / уменьшение, связанное с исходным
коэффициент переменной решения сообщает нам диапазон, в котором коэффициент
данной переменной решения в целевой функции может быть увеличено / уменьшено
без изменения оптимального решения, где все остальные данные зафиксированы.

Ограничение:
1. Теневую цену данного ограничения можно интерпретировать как
скорость улучшения оптимального значения целевой функции (например, Z в
максимизация прибыли или C в минимизации затрат), поскольку правая часть этого ограничения увеличивается
с фиксированными всеми остальными данными. «Скорость улучшения» означает
«скорость роста» для модели максимизации; и «скорость
уменьшение «для модели минимизации. Если RHS уменьшается, тень
Цена — это скорость обесценения Z (или C).

2. Приведенная выше интерпретация теневой цены действительна только в пределах
диапазон данной RHS. Теневая цена может измениться на другое значение
вне этого допустимого диапазона. Информация о теневых ценах не говорит нам, как
оптимальное сочетание решений (т. е. значения переменных решения X 1 ,
X 2 и др.) Меняется.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *