Маркировка трансформаторов тока: Расшифровка трансформаторов: тока, напряжения и силовых

Содержание

Расшифровка трансформаторов: тока, напряжения и силовых

Чтобы понимать, для каких условий эксплуатации предназначен тот или иной трансформатор тока или напряжения, а также прочие разновидности, применяется особая маркировка приборов. Отечественные и импортные агрегаты имеют различное обозначение. В нашей стране чаще применяются установки, изготовленные по ГОСТу.

Маркировка трансформаторов наносится на щиток из металла на корпусе. Самые распространённые виды условных обозначений трансформаторов будут рассмотрены далее.

маркировка трансформаторов тока

Информация на корпусе

Информация, представленная на видимой стороне устройства, наносится при помощи гравировки, травления или теснения. Это обеспечивает чёткость и долговечность надписи. На металлическом щитке указываются данные о заводе-изготовителе оборудования. Наносится год его выпуска, заводской номер.

трансформатор расшифровка

Помимо данных о производителе обязательно присутствует информация об агрегате. Указывается номер стандарта, которому соответствует представленная конструкция. Обязательно наносится показатель номинальной мощности. Для трехфазных устройств этот параметр приводится для каждой обмотки отдельно. Указывается информация о напряжении ответвлений витков катушек.

Для всех обмоток определяется показатель номинального тока. Приводится количество фаз установки, частота тока. Производитель предоставляет данные о конфигурации и группах соединения катушек.

После приведённой выше информации можно ознакомиться с параметрами напряжения короткого замыкания. Представляются требования к установке. Она может быть наружной или внутренней.

Маркировка

Технические характеристики позволяют определить способ охлаждения, массу масла в баке (если применяется эта система), а также массу активной части. На приводе переключателя указывается его положение. Если установка обладает сухим видом охлаждения, есть данные о мощности установки при отключённом вентиляторе.

Под щитком должен быть выбит заводской номер. Он присутствует на баке. Номер указывается на крышке возле ввода ВН, а также сверху и слева на полке балки сердечника.

Схема

Все приведённые на табличке данные можно разбить на 6 групп. Чтобы не запутаться в информации, следует рассмотреть последовательность её написания. Например, установка АТДЦТН-125000/220/110/10-У 1. Для маркировки особенностей прибора применяются следующие группы:

  • I группа. А — Предназначена для указания типа прибора (силовой или автотрансформатор).
  • II группа. Т — Соответствует типу сети, для которой применяется прибор (однофазная, трехфазная).
  • III группа. ДЦ – Система охлаждения с принудительной циркуляцией масла и воздуха.
  • IV группа. Т – Показывает количество обмоток (трехобмоточный).
  • V группа. Н – Напряжение регулируется под нагрузкой.
  • VI группа. Все цифры (номинальная мощность, напряжение ВН СН обмоток, климатическое исполнение, категория размещения).

О каждой категории следует узнать подробнее. Это значительно облегчит выбор.

Разновидности

Обозначение трансформаторов обязательно начинается с разновидности оборудования. Если маркировка начинается с буквы А, это автотрансформатор. Её отсутствие говорит о том, что агрегат относится к классу силовых трансформаторов.

Автотрансформатор

Обязательно приводится число фаз. Это позволяет выбрать установку, работающую от бытовой или промышленной сети. Если трансформатор подключается к трехфазной сети, в маркировке будет присутствовать Т. Однофазные же разновидности имеют букву О. Они применяются в бытовых сетях.

расшифровка масляных трансформаторов ТМГ

Если устройство обладает расщеплённой обмоткой, он будет иметь Р. Если присутствует регулировка напряжения под нагрузкой (РПН) устройство будет иметь маркировку Н на металлическом щитке. При её отсутствии можно сделать вывод об отсутствии представленной особенности в аппарате.

Трансформатор с РПН расшифровка

Особые обозначения

В зависимости от категории установки могут применяться особые обозначения. Для трансформатора тока и напряжения они могут не совпадать. Вторая разновидность техники применяется при работе защитных механизмов или для измерения тока. Первая категория приборов предназначается для изменения значения переменного тока.

маркировка трансформаторов тока

Трансформаторы напряжения не используют для передачи электричества большой мощности. Они способны создавать развязку от низковольтных коммуникаций. В цепях с напряжением 12В и менее применяется эта категория приборов. Основным их рабочим параметром выступает ток и напряжение первичной обмотки. Именно их величину предоставляет производитель.

Маркировка трансформаторов напряжения начинается с их конструкции. Если это проходная конструкция, она обозначается литерой П. Если её нет, это опорный вид аппаратов. Литой изолятор имеет в маркировке Л, а фарфоровый – Ф. Встроенный изолятор имеет В.

Расшифровка трансформаторов напряжения НОЛ

Расшифровка современных трансформаторов тока выполняется в установленной последовательности. Она начинается с Т, которая характеризует представленные приборы. Способ установки может быть проходным (П), опорным (О) или шинным (Ш). Если этот прибор присутствует в аппаратуре силовых трансформаторов, он обозначается как ВТ. Если же он встроен в масляный выключатель, то маркировка будет иметь букву В. При наружной установке прибор будет иметь Н.

Охладительная система

Условное обозначение трансформатора продолжается способом охлаждения. Сегодня существуют сухие, масляные разновидности. Также охладительная установка может иметь в своём составе негорючий текучий диэлектрик.

Масляные разновидности включают в себя около десятка различных конструкций оборудования. Если циркуляция жидкости внутри производится естественным путём, прибор имеет на щитке М. Если же она принудительная, здесь будет присутствовать обозначение Д. Оно соответствует также и сухим разновидностям приборов с представленным устройством внутренней циркуляции.

Автотрансформатор 220 кВ

Если установлено оборудование с естественным движением масла и принудительным течением воды, оно маркируется сочетанием МВ. Для приборов с принудительной циркуляцией ненаправленного потока масла и естественным перемещением воздуха используется комбинация МЦ. Если же в таком устройстве направление масла чётко обозначено, маркировка будет НМЦ.

Для систем с принудительным ненаправленным движением масла и воздуха применяется обозначение ДЦ, а для направленного перемещения – НДЦ. Когда масло движется в пространстве между трубами и перегородками, по которым течёт вода, такой агрегат имеет на щитке букву Ц. Если же масло течёт по направленному вектору, прибор маркируется НЦ.

Охладительная система с жидким диэлектриком

Сегодня в «эксплуатацию» вводят новые разновидности устройств с различными улучшенными охладительными системами. Одной из них являются экземпляры техники с негорючим диэлектриком жидкого типа. Если охлаждение происходит посредством естественной циркуляции, представленная установка обозначается буквой Н. Если же присутствует принудительное движение воздуха, маркировка будет НД.

На табличке агрегатов с направленным потоком жидкого диэлектрика и принудительной циркуляцией воздуха указывается ННД. Это позволяет подобрать правильно тип аппаратуры.

Сухие системы

Одной из новых разновидностей являются системы сухого охлаждения. Они просты в эксплуатации и обслуживании, не требовательны и не капризны. Если исполнение установки открытое, а циркуляция воздуха происходит естественным способом, его маркируют как С.

Защищённое исполнение обозначается буквами СЗ. Корпус может быть закрыт от воздействия различных факторов окружающей среды, он называется герметичным. При естественной циркуляции воздуха в нём, маркировка имеет буквы СГ.

Сухие трансформаторы

В воздушных охладительных системах может присутствовать принудительная циркуляция. В этом случае устройство обозначается буквами СД.

Исполнение

Установки могут отличаться между собой особенностями исполнения. Если в них присутствует принудительная циркуляция воды, это позволит понять присутствующая на корпусе буква В. При наличии защиты от грозы и поражения молнией, конструкция имеет маркировку Г.

Система может обладать естественной циркуляцией масла или негорючего диэлектрика. При этом в некоторых разновидностях используется защита с азотной подушкой. В ней нет расширителей, выводов во фланцах стенок бака. Обозначение имеет букву З.

особенностями исполнения корпуса

Литая изоляция обозначается как Л. Подвесное исполнение определяет буква П. Усовершенствованная категория аппаратов обозначается как У. Они могут иметь автоматические РПН.

Оборудование с выводами и расширителем, установленными на фланцах стенках бака, маркируется буквой Ф. Энергосберегающий аппарат имеет пониженные потери энергии на холостом ходу. Его обозначают буквой Э.

Назначение

После категории особенностей исполнения представляется информация о назначении и области применения оборудования. Маркировка с буквой Б говорит о способности конструкции прогревать грунт или бетон зимой. Такое же обозначение может иметь трансформатор, предназначенный для станков буровых.

При электрификации железной дороги нужны установки с особыми свойствами и характеристиками. Они маркируются буквой Ж. Устройства с обозначением М эксплуатируются на металлургических комбинатах.

Трансформатор железнодорожный ТМЖ

При передаче постоянного тока по линии нужны конструкции класса П. Агрегаты для обеспечения работы погружных насосов обозначаются как ПН.

Если агрегат применяется для собственных нужд электростанции, он относится к категории С. Тип ТО применяется для обработки грунта и бетона при высокой температуре, обеспечения электроэнергией временного освещения и ручного инструмента.

В угольных шахтах применяют трансформаторы разновидности Ш, а в системе питания электричеством экскаватора – Э.

Цифры

После перечисленных обозначений могут следовать числовые значения. Это номинальное напряжение обмотки в кВ, мощность в кВА. Для автотрансформаторов добавляется информация о напряжении обмотки СН.

В маркировке может присутствовать первый год выпуска представленной конструкции. Мощность агрегатов может составлять 20,40, 63, 160, 630, 1600 кВА и т. д. Этот показатель подбирают в соответствии с эксплуатационными условиями. Существует оборудование более высокой мощности. Этот параметр может достигать 200, 500 МВА.

Трансформатор ТРНДЦН 110 КВ маркировка

Продолжительность применения трансформаторов советского производства составляет порядка 50 лет. Поэтому в современных энергетических коммуникациях может применяться оборудование, выпущенное до 1968 г. Их периодически совершенствуют и реконструируют при капитальном ремонте.

Примеры

Чтобы понимать, как трактовать информацию на корпусе аппаратуры, следует рассмотреть несколько примеров маркировок. Это могут быть следующие трансформаторы:

  1. ТДТН-1600/110. Трехфазный класс техники понижающего типа. Он имеет масляное принудительное охлаждение, а также устройство РПН. Номинальная мощность равняется 1600, а напряжение ВН обмотки – 110 кВ.
  2. АТДЦТН-120000/500/110-85. Автотрансформатор, который применяется в трехфазной сети. Он имеет три обмотки. Масляная система охлаждения имеет принудительную циркуляцию. Есть устройство РПН. Номинальная мощность составляет 120 МВА. Устройство понижает напряжение и работает между сетями 500 и 110 кВ. Разработка 1985 года.
  3. ТМ-100/10 – двухобмоточный агрегат, который рассчитан для работы в трехфазной сети. Масляная система циркуляции имеет естественное перемещение жидкости. Изменение напряжения происходит при помощи ПБВ узла. Номинальная мощность составляет 100 кВА, а класс обмотки – 10 кВ.
  4. ТРДНС-25000/35-80. Аппарат для трехфазной сети с двумя расщеплёнными обмотками. Охлаждение производится посредством принудительной циркуляции масла. В конструкции есть регулятор РПН. Применяется для нужд электростанции. Мощность агрегата составляет 25 МВА. Класс напряжения обмотки – 35 кВ. Конструкция разработана в 1980 году.
  5. ОЦ-350000/500. Двухобмоточное устройство для однофазной сети повышающего класса. Применяется масляное охлаждение при помощи принудительного движения жидкости. Мощность 350 МВА, напряжение обмотки 500 кВ.
  6. ТСЗ-250/10-79. Экземпляр для трехфазной сети с сухим способом охлаждения. Корпус защищённый. Мощность составляет 250 кВА, а обмотки – 10 кВ. Устройство создано в 1979 г.
  7. ТДЦТГА-350000/500/110-60. Трехобмоточный прибор для трехфазной сети. Применяется для повышения напряжения. Трансформация происходит по принципу НН-СН и НН-ВН. Конструкция разработана в 1960 году.

Видео: Классификация трансформаторов

Рассмотрев особенности маркировки различных видов трансформаторов, можно правильно применять их на объекте. Знание обозначений позволяет понимать функции, основные технические характеристики подобного оборудования. Маркировка, включающая в себя буквы и цифры, соответствует ГОСТам, применяемым в процессе изготовления специальной техники.

Маркировка вторичных цепей трансформаторов тока

Здравствуйте, уважаемые читатели и гости сайта «Заметки электрика».

Я уже знакомил Вас с требованиями по цветовой маркировке шин и проводов.

В данной статье я хочу рассказать Вам про цифровую и буквенную маркировку вторичных цепей трансформаторов тока.

В последнее время я часто замечаю, что маркировку токовых цепей выполняют совершенно не правильно.

Например, маркируют любыми взятыми из головы цифрами или буквами. А бывает и так, что маркировка вообще отсутствует. Причем зачастую в этом виноваты не монтажники, а специалисты, которые разрабатывали проект — монтажники лишь выполняют все по проекту.

В данной статье я хочу Вас призвать к соблюдению правил маркировки вторичных цепей ТТ, ведь она очень удобна для распознавания проводников при обслуживании и эксплуатации.

Признаюсь Вам, что на обслуживаемых мною подстанциях (их  более 100) маркировка вторичных цепей выполнена не идеально — имеются, как старые обозначения, так и новые. Изменять старые обозначения я не собираюсь, но вот когда вводится новый объект (фидер, подстанция), то я обязательно проверяю маркировку на соответствие нормативному техническому документу (НТД).

Итак, единственный документ, который существует по маркировке токовых цепей (и не только) — это руководящие материалы (РУМ) Минэнерго СССР 10260ТМ-Т1, которые были разработаны и введены в действие еще 1 апреля 1981 года производственно-техническим отделом института «Энергосетьпроект» (г.Москва).

Что же там говорится о маркировке?

Запомните!!! Для маркировки вторичных цепей ТТ используется нумерация с 401 по 499. Есть исключение, но об этом я расскажу чуть ниже.

 

Основное правило маркировки

Перед цифрой всегда должна стоять буква соответствующей фазы (А, В, С) в зависимости от того, где установлен трансформатор тока. Если трансформатор тока установлен в нуле, то используется буква «N».

Первая цифра всегда «4».

Вторая цифра — это номер группы обмоток трансформаторов тока, согласно схемы (например, ТА, ТА1, ТА2…ТА9).

Третья цифра — от 1 до 9. Она обозначает последовательную маркировку от одного устройства или прибора (амперметры, преобразователи тока, обмотки реле, счетчиков и ваттметров) к другому. Т.е. в токовой цепи может быть включено не более 9 приборов.

Если в Вашей токовой цепи последовательно включено более 9 устройств или приборов, хотя я такое не встречал на практике, то третья цифра будет находиться в пределах от 10 до 99, т.е. нумерация будет начинаться с 4010 и заканчиваться 4099. Но это скорее всего частный случай.

Перейдем к примерам, чтобы легче понять вышесказанное.

1. Один трансформатор тока

Рассмотрим пример, когда на фидере (присоединении) установлен один трансформатор тока в фазе «С» для подключения щитового амперметра.

Таким образом, маркировка токовых цепей у нас будет следующая:

  • ТТ установлен в фазе «С», значит первой буквой в маркировке будет «С»
  • первая цифра всегда «4»
  • вторая цифра — «0», т.к. трансформатор тока обозначен по схеме, как «ТА»
  • третья цифра — нумерация от 1 до 9

Вот схема подключения амперметра через трансформатор тока:

С вывода И1 трансформатора тока провод с маркировкой «С401» идет на амперметр (РА), а с него уходит «С402» на вывод И2. В точке И2 вторичная цепь заземляется (на фото ниже видна перемычка с клеммы И2 на болт заземления).

Это щитовой амперметр типа Э30.

2. Два трансформатора тока (схема неполной звезды)

В этом примере на фидере установлены два трансформатора тока на фазе «А» и «С».

Таким образом, токовые цепи для фазы «А» будут маркироваться следующим образом:

  • ТТ установлен в фазе «А», значит первой буквой будет «А»
  • первая цифра всегда «4»
  • вторая цифра —  «0», т.к. группа трансформаторов тока обозначена по схеме, как «ТА»
  • третья цифра — нумерация от 1 до 9

Токовые цепи для фазы «С»:

  • ТТ установлен в фазе «С», значит первой буквой будет «С»
  • первая цифра всегда «4»
  • вторая цифра —  «0», т.к. группа трансформаторов тока обозначена по схеме, как «ТА»
  • третья цифра — нумерация от 1 до 9

Для примера рассмотрим схему подключения амперметра и двухэлементного счетчика САЗУ-ИТ:

С вывода И1 трансформатора тока фазы «А» провод с маркировкой «А401» идет на амперметр (РА), с амперметра «А402» идет  на обмотку счетчика, а с нее уходит на вывод И2. Аналогично по фазе «С» — провод с маркировкой «С401» идет на обмотку счетчика, а с нее —  на вывод И2. Нулевая (общая) цепь обозначается, как «N401» и заземляется.

Двухэлементный счетчик САЗУ-ИТ.

3. Три трансформатора тока (схема полной звезды)

На фидере установлено три трансформатора тока в каждой фазе.

Вторичные цепи для фазы «А» будут иметь следующую маркировку:

  • ТТ установлен в фазе «А», значит первой буквой будет «А»
  • первая цифра всегда «4»
  • вторая цифра — «0»,  т.к. группа трансформаторов тока обозначена по схеме, как «ТА»
  • третья цифра — нумерация от 1 до 9

Токовые цепи для фазы «В»:

  • ТТ установлен в фазе «В», значит первой буквой будет «В»
  • первая цифра всегда «4»
  • вторая цифра — «0»,  т.к. группа трансформаторов тока обозначена по схеме, как «ТА»
  • третья цифра — нумерация от 1 до 9

Токовые цепи для фазы «С»:

  • ТТ установлен в фазе «С», значит первой буквой будет «С»
  • первая цифра всегда «4»
  • вторая цифра — «0»,  т.к. группа трансформаторов тока обозначена по схеме, как «ТА»
  • третья цифра — нумерация от 1 до 9

Вот пример схемы подключения амперметра и трехэлементного счетчика СЭТ4ТМ.03М.01 через три трансформатора тока:

С клеммы И1 трансформатора тока фазы «А» провод с маркировкой «А401» идет на амперметр (РА), с амперметра «А402» идет на обмотку счетчика, а с нее уходит на вывод И2. Аналогично по фазе «В» — провод с маркировкой «В401» идет на обмотку счетчика, а с нее уходит на вывод И2. Аналогично по фазе «С» — провод с маркировкой «С401» идет на обмотку счетчика, а с нее уходит на вывод И2. Нулевая (общая) цепь обозначается, как «N401» и заземляется.

Перечисленные выше примеры имели на фидере (присоединении) всего одну группу обмоток трансформаторов тока. А теперь рассмотрим распространенный пример, когда на высоковольтном фидере имеется три группы обмоток:

  • 1 группа обмоток — это цепи измерения и учета
  • 2 группа обмоток — это токовые цепи релейной защиты
  • 3 группа обмоток — это токовые цепи земляной защиты

Схема подключения реле земляной защиты (КА7).

Здесь все аналогично.

Первая группа обмоток измерения и учета на схеме изображена, как «ТА1», а значит в обозначении всех проводников второй цифрой будет «1».

Вторая группа обмоток токовых цепей релейной защиты на схеме изображена, как «ТА2», а значит в обозначении всех проводников второй цифрой будет «2».

Третья группа обмоток земляной защиты на схеме изображена, как «ТА3», а значит в обозначении всех проводников второй цифрой будет «3».

Трансформатор тока нулевой последовательности (ТТНП), или другими словами, феррантий. Он устанавливается на оболочку силового кабеля.

P.S. Уважаемые, коллеги. Прошу Вас, соблюдайте правила маркировки вторичных цепей ТТ. Если есть вопросы по материалу статьи, то спрашивайте. 

Если статья была Вам полезна, то поделитесь ей со своими друзьями:


Трансформаторы. Расшифровка наименований. Примеры — Всё об энергетике

Трансформаторы. Расшифровка наименований. Примеры

Наименование (а точнее, номенклатура) трансформатора, говорит о его конструктивных особенностях и параметрах. При умении читать наименование оборудования можно только по нему узнать количество обмоток и фаз силового трансформатора, тип охлаждения, номинальную мощность и напряжение высшей обмотки.

Общие рекомендации

Номенклатура трансформаторов (расшифровка буквенных и цифровых обозначений наименования) не регламентируется какими-либо нормативными документами, а всецело определяется производителем оборудования. Поэтому, если название Вашего трансформатора не поддаётся расшифровке, то обратитесь к его производителю или посмотрите паспорт изделия. Приведенные ниже расшифровки букв и цифр названия трансформаторов актуальны для отечественных изделий.

Наименование трансформатора состоит из букв и цифр, каждая из которых имеет своё значение. При расшифровке наименования следует учитывать то что некоторые из них могут отсутствовать в нём вообще (например буква «А» в наименовании обычного трансформатора), а другие являются взаимоисключающими (например, буквы «О» и «Т»).

Расшифровка наименований силовых трансформаторов

Для силовых трансформаторов приняты следующие буквенные обозначения [1, c.238]:





































Таблица 1 — Расшифровка буквенных и цифровых обозначений наименования силового трансформатора
1. Автотрансформатор А
2. Число фаз
   Однофазный О
   Трёхфазный Т
3. С расщепленной обмоткой Р
4. Охлаждение
   Сухие трансформаторы:
      естественное воздушное при открытом исполнении С
      естественное воздушное при защищенном исполнении СЗ
      естественное воздушное при герметичном исполнении СГ
      воздушное с принудительной циркуляцией воздуха СД
   Масляные трансформаторы:
      естественная циркуляция воздуха и масла М
      принудительная циркуляция воздуха и естественная циркуляция масла Д
      естественная циркуляция воздуха и принудительная циркуляция масла с ненаправленным потоком масла МЦ
      естественная циркуляция воздуха и принудительная циркуляция масла с направленным потоком масла НМЦ
      принудительная циркуляция воздуха и масла с ненаправленным потоком масла ДЦ
      принудительная циркуляция воздуха и масла с направленным потоком масла НДЦ
      принудительная циркуляция воды и масла с ненаправленным потоком масла Ц
      принудительная циркуляция воды и масла с направленным потоком масла НЦ
5. Трёхобмоточный Т
6. Переключение ответвлений
   регулирование под нагрузкой (РПН) Н
   автоматическое регулирование под нагрузкой (АРПН) АН
7. С литой изоляцией Л
8. Исполнение расширителя
   с расширителем Ф
   без расширителя, с защитой при помощи азотной подушки З
   без расширителя в гофробаке (герметичная упаковка) Г
9. С симметрирующим устройством У
10. Подвесного исполнения (на опоре ВЛ) П
11. Назначение
   для собственных нужд электростанций С
   для линий постоянного тока П
   для металлургического производства М
   для питания погружных электронасосов ПН
   для прогрева бетона или грунта (бетоногрейный), для буровых станков Б
   для питания электрооборудования экскаваторов Э
   для термической обработки бетона и грунта, питания ручного инструмента, временного освещения ТО
   шахтные трансформаторы Ш
Номинальная мощность, кВА [число]
Класс напряжения обмотки ВН, кВ [число]
Класс напряжения обмотки СН (для авто- и трёхобмоточных тр-ов), кВ [число]

Примечание: принудительная циркуляция вохдуха называется дутьем, то есть «с принудительной циркуляцией воздуха» и «с дутьем» равнозначные выражения.

Примеры расшифровки наименований силовых трансформаторов

ТМ — 100/35 — трансформатор трёхфазный масляный с естественной циркуляцией воздуха и масла, номинальной мощностью 0,1 МВА, классом напряжения 35 кВ;
ТДНС — 10000/35 — трансформатор трёхфазный с дутьем масла, регулируемый под нагрузкой для собственных нужд электростанции, номинальной мощностью 10 МВА, классом напряжения 35 кВ;
ТРДНФ — 25000/110 — трансформатор трёхфазный, с расщеплённой обмоткой, масляный с принудительной циркуляцией воздуха, регулируемый под нагрузкой, с расширителем, номинальной мощностью 25 МВА, классом напряжения 110 кВ;
АТДЦТН — 63000/220/110 — автотрансформатор трёхфазный, масляный с дутьём и принудительной циркуляцией масла, трёхобмоточный, регулируемый под нагрузкой, номинальной мощностью 63 МВА, класс ВН — 220 кВ, класс СН — 110 кВ;
АОДЦТН — 333000/750/330 — автотрансформатор однофазный, масляный с дутьём и принудительной циркуляцией масла, трёхобмоточный, регулируемый под нагрузкой, номинальной мощностью 333 МВА, класс ВН — 750 кВ, класс СН — 500 кВ.

Расшифровка наименований регулировочных (вольтодобавочных) трансформаторов

Для регулировочных трансформаторов приняты следующие сокращения [1, c.238][2, c.150]:














Таблица 2 — Расшифровка буквенных и цифровых обозначений наименования регулировочного трансформатора
1. Вольтодобавочный трансформатор В
2. Регулировочный трансформатор Р
3. Линейный регулировочный Л
4. Трёхфазный Т
5. Тип охлаждения:
   принудительная циркуляция воздуха и естественная циркуляция масла Д
   естественная циркуляция воздуха и масла М
6. Регулирование под нагрузкой (РПН) Н
7. Поперечное регулирование П
8. Грозоупорное исполнение Г
9. С усиленным вводом У
Проходная мощность, кВА [число]
Класс напряжения обомотки возбуждения, кВ [число]
Класс напряжения регулировочной обомотки, кВ [число]
Примеры расшифровки наименований регулировочных трансформаторов

ВРТДНУ — 180000/35/35 — трансформатор вольтодобавочный, регулировочный, трёхфазный, с масляным охлаждением типа Д, регулируемый под нагрузкой, с усиленным вводом, проходной мощностью 180 МВА, номинальное напряжение обмотки возбуждения 35 кВ, номинальное напряжения регулировочной обмотки 35 кВ;
ЛТМН — 160000/10 — трансформатор линейный, трёхфазный, с естественной циркуляцией масла и воздуха, регулируемый под нагрузкой, проходной мощностью 160 МВА, номинальным линейным напряжением 10 кВ.

Расшифровка наименований трансформаторов напряжения

Для трансформаторов напряжения приняты следующие сокращения [2, c.200]:














Таблица 3 — Расшифровка буквенных и цифровых обозначений наименования трансформатора напряжения
1. Конец обмотки ВН заземляется З
2. Трансформатор напряжения Н
3. Число фаз:
   Однофазный О
   Трёхфазный Т
4. Тип изоляции:
   Сухая С
   Масляная М
   Литая эпоксидная Л
5. Каскадный (для серии НКФ)(1,2) К
6. В фарфоровой покрышке Ф
7. С обмоткой для контроля изоляции сети И
8. С ёмкостным делителем (серия НДЕ) ДЕ
Номинальное напряжение(3), кВ [число]
Климатическое исполнение [число]

    Примечание:

  1. Комплектующий для серии НОСК;
  2. С компенсационной обмоткой для серии НТМК;
  3. Кроме серии НОЛ и ЗНОЛ, в которых:
    • 06 — для встраивания в закрытые токопроводы, ЗРУ и КРУ внутренней установки;
    • 08 — для ЗРУ и КРУ внутренней и наружной установки;
    • 11 — для взрывоопасных КРУ.

Примеры расшифровки наименований трансформаторов напряжения

НОСК-3-У5 — трансформатор напряжения однофазный с сухой изоляцией, комплектующий, номинальное напряжение обмотки ВН 3 кВ, климатическое исполнение — У5;
НОМ-15-77У1 — трансформатор напряжения однофазный с масляной изоляцией, номинальное напряжение обмотки ВН 15 кВ, 1977 года разработки, климатическое исполнение — У1;
ЗНОМ-15-63У2 — трансформатор напряжения с заземляемым концом обмотки ВН, однофазный с масляной изоляцией, номинальное напряжение обмотки ВН 15 кВ, 1963 года разработки, климатическое исполнение — У2;
ЗНОЛ-06-6У3 — трансформатор напряжения с заземляемым концом обмотки ВН, однофазный с литой эпоксидной изоляцией, для встраивания в закрытые токопроводы, ЗРУ и КРУ внутренней установки, климатическое исполнение — У3;
НТС-05-УХЛ4 — трансформатор напряжения трёхфазный с сухой изоляцией, номинальное напряжение обмотки ВН 0,5 кВ, климатическое исполнение — УХЛ4;
НТМК-10-71У3 — трансформатор напряжения трёхфазный с масляной изоляцией и компенсационной обмоткой, номинальное напряжение обмотки ВН 10 кВ, 1971 года разработки, климатическое исполнение — У3;
НТМИ-10-66У3 — трансформатор напряжения трёхфазный с масляной изоляцией и обмоткой для контроля изоляции сети, номинальное напряжение обмотки ВН 10 кВ, 1966 года разработки, климатическое исполнение — У3;
НКФ-110-58У1 — трансформатор напряжения каскадный в фарфоровой покрышке, номинальное напряжение обмотки ВН 110 кВ, 1958 года разработки, климатическое исполнение — У1;
НДЕ-500-72У1 — трансформатор напряжения с ёмкостным делителем, номинальное напряжение обмотки ВН 500 кВ, 1972 года разработки, климатическое исполнение — У1;

Расшифровка наименований трансформаторов тока

Для трансформаторов тока приняты следующие сокращения [2, c.201,206-207,213]:





















Таблица 4 — Расшифровка буквенных и цифровых обозначений наименования трансформатора тока
1. Трансформатор тока Т
2. В фарфоровой покрышке Ф
3. Тип:
   Встроенный(1) В
   Генераторный Г
   Нулевой последовательности Н
   Одновитковый О
   Проходной(2) П
   Усиленный У
   Шинный Ш
4. Исполнение обмотки:
   Звеньевого типа З
   U-образного типа У
   Рымочного типа Р
5. Исполнение изоляции:
   Литая Л
   Масляная М
6. Воздушное охлаждение(3,4) В
7. Защита от замыкания на землю отдельных жил кабеля(5) З
8. Категория исполнения А,Б
Номинальное напряжение(6,7) [число]
Ток термической стойкости(8) [число]
Климатическое исполнение [число]

    Примечание:

  1. Для серии ТВ, ТВТ, ТВС, ТВУ;
  2. Для серии ТНП, ТНПШ — с подмагничиванием переменным током;
  3. Для серии ТШВ, ТВГ;
  4. Для ТВВГ — 24 — водяное охлаждение;
  5. Для серии ТНП, ТНПШ;
  6. Для серии ТВ, ТВТ, ТВС, ТВУ — номинальное напряжения оборудования;
  7. Для серии ТНП, ТНПШ — число обхватываемых жил кабеля;
  8. Для серии ТНП, ТНПШ — номинальное напряжение.

Примеры расшифровки наименований трансформаторов тока

ТФЗМ — 35А — У1 — трансформатор тока в фарфоровой покрышке, с обмоткой звеньевого исполнения, с масляной изоляцией, номинальным напряжением обмотки ВН 35 кВ, категории А, климатическим исполнением У1;
ТФРМ — 750М — У1 — трансформатор тока в фарфоровой покрышке, с обмоткой рымочного исполнения, с масляной изоляцией, номинальным напряжением обмотки ВН 750 кВ, климатическим исполнением У1;
ТШЛ — 10К — трансформатор тока шинный с литой изоляцией, номинальное напряжением обмотки ВН 10 кВ;
ТЛП — 10К — У3 — трансформатор тока с литой изоляцией, проходной, номинальным напряжением обмотки ВН 10 кВ, климатическое исполнение — У3;
ТПОЛ — 10 — трансформатор тока проходной, одновитковый, с литой изоляцией, номинальным напряжением обмотки ВН 10 кВ;
ТШВ — 15 — трансформатор тока шинный, с воздушным охлаждением, номинальным напряжением обмотки ВН 15 кВ;
ТВГ — 20 — I — трансформатор тока с воздушным охлаждением, генераторный, номинальным напряжением обмотки ВН 20 кВ;
ТШЛО — 20 — трансформатор тока шинный, с литой изоляцией, одновитковый, номинальным напряжением обмотки ВН 20 кВ;
ТВ — 35 — 40У2 — трансформатор тока встроенный, номинальным напряжением обмотки ВН 35 кВ, током термической стойкости 40 кА, климатическое исполнение — У2;
ТНП — 12 — трансформатор тока нулевой последовательности, с подмагничиванием переменным током, охватывающий 12 жил кабеля;
ТНПШ — 2 — 15 — трансформатор тока нулевой последовательности, с подмагничиванием переменным током, шинный, охватывающий 2 жилы кабеля, номинальным напряжением обмотки ВН 15 кВ.

Список использованных источников

  1. Справочник по проектированию электрических сетей / под ред. Д.Л. Файбисовича. — 3-е изд., перераб. и доп. — Москва: ЭНАС, 2009. — 392 с.: ил.
  2. Справочник по электрическим установкам высокого напряжения / под ред. И.А. Баумштейна, С.А. Баженова. — 3-е изд., перераб. и доп. — Москва: Энергоатомиздат, 1989. — 768 с.: ил.

что это такое, виды, принцип работы, устройство, назначение

Одно из важнейших открытий человечества – это электричество. Данная форма энергии стала настоящим прорывом и колоссальным потенциалом для научно-технического прогресса. Было разработано множество приборов для преобразования и измерения этого ресурса. Наиболее ярким примером являются трансформаторы тока, которые широко применяются в самых различных сферах.

Зачастую, простые обыватели считают идентичными устройства тока и напряжения, что в корне неправильно. Назначение, конструкция и принцип действия у них, совершенно различные. Разобраться в отличиях будет проще, зная основные понятия и функции преобразователей. А так же, виды, применение и модификации аппаратов.

Описание и назначение устройств

Электроустановки высокой мощности работают с питанием, достигающим несколько сот Вт, при силе тока, превышающей десятки кА. Логично, что произвести измерения величин подобного порядка, обычными приборами, попросту невозможно. Для этого используют трансформаторы тока, выполняющие одновременно несколько функций. Благодаря появлению преобразователей, значительно расширился потенциал измерительных приборов. И открылась возможность передачи энергии по гальванической развязке.

Трансформатор тока

Конструкция аппаратов является их дополнительным преимуществом. К примеру, если бы существовали типовые устройства для измерения напряжения высоковольтных сетей переменного тока, они были бы очень габаритными и дорогостоящими. В отличие от трансформаторов, которые выглядят, относительно, компактно и имеют защиту от неблагоприятных внешних факторов и механических повреждений.

Основная задача трансформаторов тока – преобразовать первичную величину (подаваемого напряжения) до уровня, позволяющего подключить измерительные приборы и системы защиты. Дополнительная функция – обеспечить гальваническую развязку между потребителями низкого и высокого питания, устраняя риски для обслуживающего персонала.

Проще говоря, цель приборов – моделирование определенных условий и процессов в электроустановках для безопасного снятия показаний.

Трансформатор

Принцип работы и описание процессов

Главным элементом трансформатора тока является сердечник, состоящий из двух тонких пластин электротехнической стали, первичной и вторичной обмотки. Первичная служит для подключения цепи контролируемого напряжения. К вторичной подключают измерительные приборы и различные реле. Принцип работы устройства основан на законе об электромагнитной индукции, объясняющем действие магнитных и электрических полей, работающих по принципу гармоник переменных синусоид (величин переменного тока).

Трансформатор тока

Прежде чем вникать в подробности работы аппарата, стоит детальнее рассмотреть свойства элементов. Особенно, понятие сопротивления. Начать стоит с того, что трансформаторы тока классифицируются по определенным характеристикам, в том числе и типу конструкции. Наиболее распространенной является обмотка в виде катушек.

Сопротивление

Теперь о главном, – от сечения и металлов зависит уровень сопротивления. В свою очередь, чем выше показатель сопротивления, тем больше выделяется тепла, при «прохождении» напряжения по металлу, а значит, есть риск перегрева. Поэтому, для обмотки выбирают, в большинстве случаев, медную проволоку, как металл, характеризующийся высокой электропроводимость и низким сопротивлением. К тому же, медь обладает высокой эластичностью, устойчивостью к коррозиям и повышенным эксплуатационным нагрузкам, что важно для создания обмотки.

Однако, помимо преимуществ, у меди есть и существенный недостаток – высокая стоимость. В целях экономии, для катушек используют алюминий, но только, для аппаратов низкой и средней мощности. А, так же, при изготовлении устройств, оптимально выбирается площадь поперечного сечения, исключающая возможность перегрева. Для защиты используются масляные смазочные материалы.

Итак, к работе… Ток, поступающий на первичную обмотку, имеющую определенное количество витков, преодолевает ее сопротивление и формирует магнитное поле (направленный поток), направляющееся магнитопроводом, имеющим расположение перпендикулярно направлению вектора. Такая конструкция обеспечивает минимальные потери электроэнергии во время ее преобразования.

Как говорилось ранее, пересекающий первичную обмотку ток формирует в ней электромагнитную энергию, которая воздействует и включает в работу вторичную обмотку. Направленный поток, проходит через нее и «теряет заряд» на ее зажимах. А вот, соотношение векторов носит название – коэффициент трансформации, позволяющий измерить подаваемое  напряжение по формуле.

Трансформатор

Основная классификация

По назначению

  • Измерительные – для подключения измерительных приборов.
  • Защитные – для подключения релейных устройств или для гальванической развязки.
  • Промежуточные – для выравнивания силовой нагрузки и подключения релейных устройств.
  • Лабораторные – служат для подключения измерительных приборов высокой точности.

 По типу установки

  • Наружного подключения – для открытых распределительных устройств.
  • Закрытого подключения.
  • Встроенные в различные приборы и аппараты.
  • Накладные – «одеваются» сверху на проходной изолятор.
  • Переносные – для контрольных и аналитических измерений.

Наружного подключения трансформатор

По конструкциям первичных обмоток

  • Многовитковые.
  • Одновитковые.
  • Шинные.

Многовитковые трансформаторы тока

По способу монтажа

  • Проходные.
  • Опорные.

По типу изоляции

  • Сухая, к которой относится группа материалов – литая, эпоксидная, фосфорная, бакелитовая и т.д.
  • Бумажно-масляная.
  • Конденсаторная бумажно-масляная.
  • Газонаполнительная.
  • Заливочная – с компаундом.

Конденсаторная бумажно-масляная

По количеству ступеней трансформации

  • Одноступенчатые.
  • Двухступенчатые.

По номиналу рабочего напряжения

  • До 1 000В.
  • Более 1 000В.

Главные параметры и характеристики

У каждого устройства есть рабочие показатели, включающие такие аспекты, как – максимальная нагрузка, погрешности, предел мощности и другие. Имеют свои индивидуальные характеристики и трансформаторы тока. К ним относятся:

Тока трансформатор

Номинальный ток

Это предельная величина напряжения при которой, может работать устройство. Подразумевается допустимый номинал первичного тока, проходящего по первичной обмотке. Данный показатель указывается в паспорте, обязательно прилагающемся в базовой комплектации. Выделяют стандартный ряд, отображающийся, так же, в маркировке аппаратов.

Стоит отметить, что чем выше величина, тем габаритнее будет устройство.

Существует еще одно понятие – номинал вторичного тока. Зачастую от стандартный – двух величин 1А или 5А. Однако, некоторые производители предлагают выпуск устройств по индивидуальным характеристикам. Но и в этом случае, выбор будет не велик и ограничится двумя показателями 2А или 2.5А.

Коэффициент трансформации

Это соотношение, позволяющее определить, во сколько раз понижается подаваемое напряжение на первичную обмотку, проходящее через обе обмотки, в сравнении с выходящим. Определяется таким образом – показатель тока, поступающего на первичную обмотку, делится на величину, измеренную во вторичной, получают Кт. При этом, первичную обмотку необходимо закоротить – прервать передачу напряжения по цепи. Рассчитывается коэффициент на производстве. Серийный выпуск устройств производится по аналогии. Все показатели указываются в паспорте или в маркировке.

Коэффициент трансформации

Токовая погрешность

Это процентное соотношение математической разности величин вторичного тока и первичного, к показателю приведенного тока ко вторичной цепи. Включает в себя два понятия – угловая и относительная погрешности. В соответствии с вышеупомянутым законом об электромагнитной индукции, направленные колебания или векторы образуют угол между первичными и вторичными потоками. Рассчитывает показатель по формуле и выражается в минутах.

Относительная погрешность – это математическая разница между величинами первичного и вторичного тока к реальной величине, приведенного тока ко вторичной цепи. Выделяют дополнительное понятие – относительно полной погрешности. Данный показатель подразумевает соотношение геометрической разности, тех же величин, только, в соответствии с мгновенным значением, т.е. замеренным в определенный интервал времени.

Номинальная предельная кратность

Показатель максимального значения кратности первичного тока, при условии, что полная погрешность на вторичной нагрузке не превысит 10%.

Максимальная кратность вторичного тока

Соотношение наибольшего показателя вторичного тока к его номинальной величине, при номинальном значении вторичной нагрузки. Данный показатель формируется насыщением самого магнитопровода, при условии, что дальнейшее возрастание не приводит к увеличению потока.

Номинальная предельная кратность трансформатора тока

Классы точности

Один из важнейших показателей. Регламентирован и контролируется нормативной документацией. Согласно ГОСТу – рассчитывается для каждого типа устройств и должен строго соответствовать установленным нормам. Различают 9 основных классов точности для измерительных приборов и два для защитных. В стандарте предусмотрена таблица с точной нормировкой и условными обозначениями. От класса точности устройства будет зависеть, насколько точны будут показатели измерительных устройств.

Расшифровка маркировки и обозначений

Все специализированные, да и бытовые устройства, маркируются, в обязательном порядке. И если для продавца, большую роль играет штрих- или QR-код, то для потребителя, основным является буквенно-числовой индекс, отражающий характеристики и основную информацию о приобретении. Маркировка трансформаторов тока содержит такие основные показатели:

  • Первая заглавная буква «Т» – обозначает наименование продукта – трансформатор тока.
  • Вторая указывает тип конструкции – «П» проходной, «О» опорный, «Ф» фарфоровая покрышка.
  • Третья обозначает тип изоляции – «М» масляная и «Л» литая.
  • Число после сочетания букв – это класс изоляции. Указывается просто цифрой подразумевает величину в кВ.

Трансформатор

  • Буквы «У» и «Х» означают возможность эксплуатации в умеренном и холодном климате. В большинстве моделей «УХ».
  • За ним идет число указывающее категорию устройства.
  • В конце индекса указывается коэффициент трансформации через «/» – первичной и вторичной обмотки.

Схемы подключения и вариации цепи

Подключение трансформатора тока, стандартно, рассматривается на примере электросчетчика. Более простая, доступная и понятная схема имеет два основных варианта и включает ряд ограничений. Категорически запрещено подключать трансформатор тока к приборам, питающимся напрямую от электросети. На примере трехфазного счетчика:

  • Внимательно изучите техническую схему расположения контактов. В большинстве устройств их местоположение идентичное, т.к. и принцип работы. Клеммы будут размещаться на тех же местах в прибор различной модификации. Но, все же, будьте внимательны.
  • Контакт обозначающийся К1 – это питание трансформатора. К2- подключение цепи напряжения. К3 – выходной контакт трансформатора.
  • По аналогии подключаются остальные две фазы. Имеющие, так же, по три значения с буквой К и последовательным числом.

Схема подключения трансформатора тока

Наиболее распространенной считается схема раздельного подключения вторичных потоков цепи. На фазный зажим от входного автомата необходимо подать фазовый ток. Для упрощения процесса, к этому же контакту производится подключение второй клеммы катушки напряжения (фаза счетчика). Окончание первичной обмотки трансформатора – это выход фазы, которая подключается к нагрузке распределительного щита. Выход вторичной обмотки трансформатора подсоединяют к концу токовой обмотки учетного прибора. И дальше, по аналогии.

Существует и другой вариант, по схеме совмещенных цепей тока. Подобное явление встречается очень редко, по большей части являясь исключением, если нет других вариантов. При такой последовательности возникают существенные погрешности в измерениях и отсутствует возможность своевременно выявить «пробой». Конечно, вариации есть, однако, данный пример считается наиболее оптимальным и рабочим.

Схема трансформатора тока

Возможные неисправности и признаки нарушений работоспособности

Трансформаторы сталкиваются с различными негативными факторами в процессе работы. Это и высокие непрерывные нагрузки. Механические повреждения. Окружающие неблагоприятные воздействия. Короткие замыкания. Перегрузы, перегрев устройства и многое другое. Для работы трансформаторов, так же, требуется создавать определенные условия в помещениях, где они располагаются. Регулярно анализировать рабочие процессы, проводить диагностику и своевременно устранять нарушения, предотвращая поломки. Не допускается:

  • Высокая температура и влажность в помещении.
  • Отсутствие оптимального уровня масла.
  • Работа при внутренних повреждениях.

Выявить отклонения на ранних стадиях помогут:

  • Проверки нагрузки.
  • Ведение «журнала» обслуживания.
  • Изменение звука рабочих процессов.
  • Температура.
  • Высокие вибрации.
  • Осмотр обмотки.

Сферы применения

Трансформаторы тока, в тех или иных целях, всегда, активно применяются во всех сферах – промышленной, коммерческой, бытовой и других, где предусмотрена эксплуатация электросети, в частности, высокого напряжения. В тех случаях, когда необходимо преобразование тока, по принципу магнитной индукции, от первичной схемы переменного тока в другую – вторичную. При этом, отличия одной от другой, могут быть самые разнообразные – напряжение, количество фаз, частота и т.д.

В дополнение, защитные устройства, позволяющие подключать приборы и аппараты по гальванической развязке, предотвращают риски, как для потребителя, так и обслуживающего персонала или пользователя. Незаменимы трансформаторы тока для измерения показателей, особенно регулярных или непрерывных.

Трансформатор тока

Методики расчета

Алгоритм расчета при выборе устройств достаточно прост и основывается на характеристиках самих трансформаторов тока. Каждый показатель играет роль. Определяется оптимальная величина напряжения, коэффициент трансформации, уровень погрешности, конструкция устройств и т.д. Все расчеты производятся по формулам. Коэффициент трансформации, к примеру, необходимо определять согласно минимальным и максимальным величинам первичного тока. С учетом данных о присоединяемом устройстве и установленной мощности силовых трансформаторов. Наиболее популярным является метод упрощенного расчета. Берется:

  • Напряжение первичной обмотки.
  • Вторичной.
  • Ток вторичной обмотки.
  • И ее мощность.

При условии, что обмоток будет несколько – за расчетное берется суммарное значение. Результат выводится по формуле.

Все данные, обозначения и формулы указываются в нормативной документации. К тому же, главная рекомендация: обращайте внимание на технические аспекты, а не стоимость. Это всегда помогает при любом выборе.

Расшифровка и маркировка обозначений трансформаторов (аббревиатур)

Маркировка трансформаторов

расшифровка трансформаторов

Любой трансформатор отличается различными конструктивными особенностями, областью применения, номинальным напряжением и климатическими условиями и т.п. Нужно уметь правильно расшифровать маркировку буквенно — цифровые обозначения характеристик трансформаторов: его мощность, систему охлаждения, количество обмоток, напряжение на обмотках высшего напряжения и низшего напряжения.

В настоящее время чтобы точно определить номенклатуру трансформатора нужно не только смотреть на название трансформатора, нормативные документы, но сверятся с документацией завода производителя трансформатора. Ниже даны расшифровки трансформаторов отечественного производства.

Любая цифра или буква на табличке набитой на корпусе трансформатора имеет свое значение. Некоторые буквы могут отсутствовать, другие не могут быть одновременно, например «О» и «Т» однофазный и трехфазный.

Самые частые обозначения трансформаторов буквенные: ТМ, ТС, ТСЗ, ТД, ТДЦ, ТМН, ТДН, ТЦ, ТДГ, ТДЦГ, ОЦ, ОДГ, ОДЦГ, АТДЦТНГ, АОТДЦН и т. д

  1.  А – обозначает автотрансформатор
  2.  Первая буква отмечает фазировку: Т — трехфазный, О – однофазный;
  3. Буква Р (с расщепленной обмоткой) после числа фаз в обозначении указывает, что обмотка низшего напряжения представлена двумя (тремя) обмотками.
  4. Вторая буква указывает на систему охлаждения: М — естественное масляное, т. е. естественная циркуляция масла, С — сухой трансформатор с естественным воздушным охлаждением открытого исполнения, Д — масляное с дутьем, т. е. с обдуванием бака при помощи вентилятора, Ц — принудительная циркуляция масла через водяной охладитель, ДЦ — принудительная циркуляция масла с дутьем.
  5. Наличие второй буквы Т означает, что трансформатор трехобмоточный, двухобмоточный специального обозначения не имеет.
  6. Н — регулирование напряжения под нагрузкой (РПН), отсутствие — наличие переключения без возбуждения (ПБВ),
  7. Г — грозоупорный.
  8. За буквенными обозначениями следуют (Uн) номинальная мощность трансформатора (кВА)
  9. через дробь — класс номинального напряжения обмотки ВН (кВ). В автотрансформаторах добавляют в виде дроби класс напряжения обмотки СН. Иногда указывают год начала выпуска трансформаторов данной конструкции.

Шкала номинальных мощностей трехфазных силовых трансформаторов и автотрансформаторов (действующие государственные стандарты 1967 — 1974 гг.) высоковольтных сетей выстроена так, чтобы были значения мощности, кратные десяти: 20, 25, 40, 63, 100, 160, 250, 400, 630, 1000, 1600 кВА и т. д. Отдельные исключение составляют мощности 32000, 80000, 125000, 200000, 500000 кВА

Срок службы трансформаторов довольно длительные и равен 50 лет. В наше время можно встретить трансформаторы промышленных производств изготовленные еще 1968г, прошедшие капитальный ремонт.

Шкала мощностей трансформаторов выпущенных в СССР: 5, 10, 20, 30, 50, 100, 180, 320, 560, 750, 1000, 1800, 3200, 5600, …, 31500, 40500, кВА и т. д.

Чтобы не запутаться в табличке указанных данных, можно разбить ее шесть групп.
Пример определения показателей для трансформатора АОДЦТН — 333000/750/330
автотрансформатор однофазный, масляный с дутьём и принудительной циркуляцией масла, трёхобмоточный, регулируемый под нагрузкой, номинальной мощностью 333 МВА, класс ВН — 750 кВ, класс СН — 500 кВ

Расшифровка трансформаторов, примеры

Трансформаторы тока обозначаются следующим образом:
• Т — Буква указывает, что это именно трансформатор тока
• Вторая буква означает конструктивное исполнение: «П» — проходной, «О» – опорный трансформатор, «Ш» -шинный, «Ф» — с фарфоровой покрышкой
• Третье обозначение указывает на изоляцию и систему охлаждения обмоток трансформатора «Л» — литая изоляция, «М» — масляная,
Потом идет через “-“ класс изоляции, климатическое исполнение трансформаторов, и, категория установок.

Пример расшифровки трансформатора тока ТПЛ — 10УХЛ4 100/5А.

  •  Т – тока
  •  П – проходной
  •  Л – литая изоляция
  •  Класс 10 кВ
  •  УХ – умеренного и холодного климата
  •  4 – четвертая категория
  •  100/5А – коэффициент трансформации как сто к пяти.

Примеры расшифровка трансформаторов напряжения:
ТМ — 100/35 — трансформатор трёхфазный масляный с естественной циркуляцией воздуха и масла, номинальной мощностью 0,1 МВА, классом напряжения 35 кВ;
ТДНС — 10000/35 — трансформатор трёхфазный с дутьем масла, регулируемый под нагрузкой для собственных нужд электростанции, номинальной мощностью 10 МВА, классом напряжения 35 кВ;
ВРТДНУ — 180000/35/35 — трансформатор вольтодобавочный, регулировочный, трёхфазный, с масляным охлаждением типа Д, регулируемый под нагрузкой, с усиленным вводом, проходной мощностью 180 МВА, номинальное напряжение обмотки возбуждения 35 кВ, номинальное напряжения регулировочной обмотки 35 кВ;
ЛТМН — 160000/10 — трансформатор линейный, трёхфазный, с естественной циркуляцией масла и воздуха, регулируемый под нагрузкой, проходной мощностью 160 МВА, номинальным линейным напряжением 10 кВ.
НКФ-110-58У1 — трансформатор напряжения каскадный в фарфоровой покрышке, номинальное напряжение обмотки ВН 110 кВ, 1958 года разработки, климатическое исполнение — У1;
НДЕ-500-72У1 — трансформатор напряжения с ёмкостным делителем, номинальное напряжение обмотки ВН 500 кВ, 1972 года разработки, климатическое исполнение — У1;
ТНП — 12 — трансформатор тока нулевой последовательности, с подмагничиванием переменным током, охватывающий 12 жил кабеля;
ТНПШ — 2 — 15 — трансформатор тока нулевой последовательности, с подмагничиванием переменным током, шинный, охватывающий 2 жилы кабеля, номинальным напряжением обмотки ВН 15 кВ.

Видео: Классификация трансформаторов

Трансформатор маркировка

Для того, чтоб иметь какое-то понятие того, для каких условий использования подойдет конкретная разновидность трансформаторов, которая распределяет ток или напряжение, или какие-либо другие виды приборов, существует определенная маркировка трансформаторов. Обозначение у оборудования отечественного производства и зарубежного отличается. На территории нашей страны наиболее востребованными являются предметы техники, при изготовлении которых использовался стандарт качества ГОСТ.

Расположена так называемая маркировка трансформаторов на щитке на корпусе, который произведен из прочного металла. Далее в статье мы более детально ознакомимся с определенным количеством наиболее распространенных разновидностей оборудования.

Знакомство с информацией

На видимой стороне представленного оборудования имеются данные, нанесение которых осуществляется одним из трех нижеперечисленных способов, таких как теснение, травление или гравировка. Каждый из представленных методов гарантирует долговечность сохранения информации. Также надпись сохраняет свою четкость на протяжении длительного периода, независимо от факторов окружающей среды и каких-либо дополнительных особенностей хранения оборудования. Информация о заводе, где было произведено оборудование, указывается на щитке, который выполнен из металла. Также там расположен год производства и заводской номер, который был присвоен оборудованию в процессе производства.

Кроме информации, которая предоставляется об производителе, в любом случае будет присутствовать информация относительно самого агрегата. Поэтому на всем оборудовании представлена номер стандарта, к которому относится само оборудование. Также обязательной для нанесения является информация о показателе номинальной мощности. Важным является наличие данных о напряжении ответвлений витков катушек.

Для каждого типа обмотки имеется определенный показатель номинального тока. Важно точно привести данные о количестве фаз для установки и частоты тока. Обязательной к предоставлению является информация о конфигурации и групп соединения катушек.

Исходя из данных, которые были приведены вашему вниманию немного выше, следует перейти к информации о трансформатор маркировка с параметрами напряжения. К установке имеются определенные требования, соблюдение которых является необходимым. Различают два типа установки трансформатора маркировка – наружную и внутреннюю.

Благодаря указанию в маркировке трансформаторов технических характеристик имеется возможность точно определиться с предполагаемым методом охлаждения оборудования, вес масла, который размещается в бачке, массу начинки, которая является активной. Возле привода переключателя имеется информация относительно его расположения. В том случае, когда в установке используется способ охлаждения сухого типа, представляются на оборудовании данные относительно мощности аппаратуры в случае отключенного вентилятора. Возле щитка в обязательном порядке выбивается заводской номер конструкции. Также эта информация имеется и на баке и возле сердечника.

Особенности трансформатор маркировка

В маркировке, которая представлена на оборудовании, данные имеется возможность разбить на несколько подгрупп. Для того, чтоб не возникало путаницы в данных, следует предварительно ознакомиться с последовательностью их указания. Для написания маркировки какого-либо прибора следует принять во внимание некоторые группы:

  • 1 группа А позволяет указывать тип, к которому относится прибор. То есть оборудование относится к силовому типу или является автотрансформатором.
  • 2 группа Т обозначает тип сети, для которой используется рассматриваемый прибор. Наиболее распространенными являются однофазная и трехфазная.
  • 3 группа ДЦ представляет собой систему охлаждения с обязательной циркуляцией масла и воздуха.
  • В 4 группе Т демонстрируется численность обмоток, которая использовалась при производстве оборудования.
  • 5 группа Н предназначена для демонстрации данных напряжения, регулировка которого осуществляется под нагрузкой.
  • 6 группа включает в себя указание всех цифр и данных, которыми характеризуется оборудование – мощность, напряжение обмоток, особенности установки и многое другое.

Если ознакомиться с информацией о каждой из вышеуказанных категорий более детально, можно существенно проще выбрать подходящее оборудование для конкретных целей.

Существующие виды трансформатор маркировка

Независимо от каких-либо особенностей оборудования маркировка трансформаторов осуществляется в обязательном порядке с разновидности аппаратуры. В том случае, когда маркировка начинается с буквы А, это обозначает, что речь идет про автотрансформатор. Если же данная буква отсутствует, то перед вами устройство, которое относится к силовому типу.

В обязательном порядке приводится численность фаз. Благодаря этому имеется возможность отдать предпочтение оборудованию, которое работает от сети бытового или промышленного типа. В том случае, если осуществляется подключение оборудования к сети трехфазного типа, в маркировке трансформаторов вы обязательно увидите букву Т. Если же речь идет про однофазные модели, они обозначаются буквой О. Преимущественно трансформатор маркировка используется в сетях бытового предназначения.

Если принимать во внимание категорию установки, возможно использование на практике каких-либо особых обозначений. У трансформаторов напряжения или тока они могут совершенно различаться. Также различие заключается в том, что оборудование бывает защитного типа и для осуществления измерения тока. Первые используются для того, чтоб замерять значения переменного тока. Трансформаторы напряжения не применяют для осуществления передачи электрического тока, который имеет большую мощность. Главную роль в маркировке трансформаторов играют их конструкционные особенности. Конструкции, которые относятся к переходному типу, например, имеют в аббревиатуре букву П. В случае ее отсутствия перед вами оборудование опорного типа.

Купить трансформатор выгодно

Если вам требуется купить электротехническое оборудование, советуем вам посмотреть продукцию, представленную в нашем интернет-магазине. У нас имеется большой ассортиментный ряд продукции, которая в полной мере соответствуют качественным стандартам ГОСТ. Оборудование, которое представлено на сайте нашей компании, прошло тщательную проверку. Оборудование полностью соответствует заявленным характеристикам, которые указаны в пособии по эксплуатации.

На продукцию, реализацией которой мы занимаемся, предоставляется гарантия от производителя. Это дает возможность владельцу обращаться в специализированные сервисные центры нашей компании для проведения технического обслуживания или ремонта. За дополнительными консультациями обращайтесь на горячую линию нашей компании.

ГОСТ 18685-73 Трансформаторы тока и напряжения. Термины и определения, ГОСТ от 04 мая 1973 года №18685-73

1. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета стандартов Совета Министров СССР от 04.05.73 N 1120

2. ВВЕДЕН ВПЕРВЫЕ

3. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

4. Ограничение срока действия снято (ИУС 11-79)

5. ПЕРЕИЗДАНИЕ

Настоящий стандарт устанавливает применяемые в науке, технике и производстве термины и определения основных понятий в области видов, параметров, характеристик и элементов трансформаторов тока и напряжения.

Стандарт не распространяется на трансформаторы постоянного тока.

Термины, установленные настоящим стандартом, обязательны для применения в документации всех видов, учебниках, учебных пособиях, технической и справочной литературе.

Для каждого понятия установлен один стандартизованный термин. Применение терминов — синонимов стандартизованного термина запрещается. Недопустимые к применению термины-синонимы приведены в стандарте в качестве справочных и обозначены пометой «Ндп».

В стандарте приведен алфавитный указатель содержащихся в нем терминов.

Стандартизованные термины набраны полужирным шрифтом, их краткая форма — светлым, а недопустимые синонимы — курсивом.

Текст документа сверен по:
официальное издание
Электротехника. Термины и определения. Часть 2:
Сб. стандартов. — М.: Стандартинформ, 2005

Термин

Определение

ОБЩИЕ ПОНЯТИЯ

1. Трансформатор

По ГОСТ 16110

2. Трансформатор тока (напряжения)

Трансформатор, в котором при нормальных условиях применения вторичный ток (вторичное напряжение) практически пропорционален (пропорционально) первичному току (первичному напряжению) и при правильном включении сдвинут (сдвинуто) относительно него по фазе на угол, близкий к нулю

3. Вторичная цепь трансформатора тока (напряжения)

Внешняя цепь, получающая сигналы измерительной информации от вторичной обмотки трансформатора тока (напряжения)

4. Разряд образцового трансформатора тока (напряжения)

Категория, характеризующая место образцового трансформатора тока (напряжения) в поверочной схеме

5. Класс точности трансформатора тока (напряжения)

Обобщенная характеристика трансформатора тока (напряжения), определяемая установленными пределами допускаемых погрешностей при заданных условиях работы.

Примечание. Класс точности обозначается числом, которое равно пределу допускаемой токовой погрешности (погрешности напряжения) в процентах при номинальном первичном токе (напряжении)

6. Номинальный класс точности трансформатора тока (напряжения)

Класс точности, гарантируемый трансформатору тока (напряжения) при номинальной вторичной нагрузке и указываемый на его паспортной табличке

7. Номинальное значение параметра

Номинальный параметр

По ГОСТ 18311.

Примечание. В трансформаторах тока и напряжения различают следующие номинальные параметры: номинальное напряжение, номинальный первичный ток, номинальный вторичный ток, номинальный коэффициент трансформации, номинальное первичное напряжение, номинальное вторичное напряжение и т.д.

ВИДЫ ТРАНСФОРМАТОРОВ ТОКА И НАПРЯЖЕНИЯ

8. Лабораторный трансформатор тока (напряжения)

Трансформатор тока (напряжения), предназначенный для эпизодического использования при электрических измерениях и поверке измерительных приборов и трансформаторов тока (напряжения)

9. Образцовый трансформатор тока (напряжения)

Трансформатор тока (напряжения), служащий для поверки по нему других трансформаторов тока (напряжения) или расширения пределов измерения образцовых измерительных приборов и утвержденный в качестве образцового органами государственной метрологической службы

10. Компенсированный трансформатор тока (напряжения)

Трансформатор тока (напряжения), точность трансформации тока (напряжения) которого в определенном диапазоне первичного тока (напряжения) обеспечивается с помощью специальных средств

11. Однодиапазонный трансформатор тока (напряжения)

Ндп. Однопредельный трансформатор тока (напряжения)

Трансформатор тока (напряжения) с одним коэффициентом трансформации

12. Многодиапазонный трансформатор тока (напряжения)

Ндп. Многопредельный трансформатор тока (напряжения)

Трансформатор тока (напряжения) с несколькими коэффициентами трансформации

13. Трансформатор тока для измерений

Трансформатор тока, предназначенный для передачи сигнала измерительной информации измерительным приборам

14. Трансформатор тока для защиты

Трансформатор тока, предназначенный для передачи сигнала измерительной информации на устройства защиты и управления

15. Трансформатор тока нулевой последовательности

Трансформатор тока, предназначенный для определения тока нулевой последовательности в трехфазных цепях

16. Насыщающийся трансформатор тока

Трансформатор тока с малой кратностью насыщения

17. Суммирующий трансформатор тока

Трансформатор тока, предназначенный для суммирования токов нескольких электрических цепей

18. Одноступенчатый трансформатор тока

Трансформатор тока с одной ступенью трансформации тока

19. Каскадный трансформатор тока

Трансформатор тока с несколькими последовательными ступенями трансформации тока

20. Промежуточный трансформатор тока

Трансформатор тока, предназначенный для включения во вторичную цепь основного трансформатора тока для получения требуемого коэффициента трансформации или разделения электрических цепей

21. Комбинированный трансформатор тока и напряжения

Сочетание трансформатора тока и трансформатора напряжения, объединенных в одном конструктивном исполнении

22. Встроенный трансформатор тока

Трансформатор тока, первичной обмоткой которого служит ввод электротехнического устройства

23. Опорный трансформатор тока

Трансформатор тока, предназначенный для установки на опорной плоскости

24. Проходной трансформатор тока

Трансформатор тока, предназначенный для использования его в качестве ввода

25. Шинный трансформатор тока

Трансформатор тока, первичной обмоткой которого служит одна или несколько параллельно включенных шин распределительного устройства.

Примечание. Шинные трансформаторы тока имеют изоляцию, рассчитанную на наибольшее рабочее напряжение

26. Втулочный трансформатор тока

Проходной шинный трансформатор тока

27. Разъемный трансформатор тока

Трансформатор тока без первичной обмотки, магнитная цепь которого может размыкаться и затем замыкаться вокруг проводника с измеряемым током

28. Электроизмерительные клещи

Ндп. Трансформаторные клещи

Переносный разъемный трансформатор тока

29. Однофазный трансформатор

См. ГОСТ 16110

30. Трехфазный трансформатор

См. ГОСТ 16110

31. Заземляемый трансформатор напряжения

Однофазный трансформатор напряжения, один конец первичной обмотки которого должен быть наглухо заземлен, или трехфазный трансформатор напряжения, нейтраль первичной обмотки которого должна быть наглухо заземлена

32. Незаземляемый трансформатор напряжения

Трансформатор напряжения, у которого все части первичной обмотки, включая зажимы, изолированы от земли до уровня, соответствующего классу напряжения

33. Каскадный трансформатор напряжения

Трансформатор напряжения, первичная обмотка которого разделена на несколько последовательно соединенных секций, передача мощности от которых к вторичным обмоткам осуществляется при помощи связующих и выравнивающих обмоток

34. Емкостный трансформатор напряжения

Трансформатор напряжения, содержащий емкостный делитель

35. Двухобмоточный трансформатор напряжения

Трансформатор напряжения, имеющий одну вторичную обмотку

36. Трехобмоточный трансформатор напряжения

Трансформатор напряжения, имеющий две вторичные обмотки: основную и дополнительную

ЭЛЕМЕНТЫ ТРАНСФОРМАТОРОВ ТОКА И НАПРЯЖЕНИЯ

37. Первичная обмотка трансформатора тока

Обмотка, через которую протекает ток, подлежащий трансформации

38. Вторичная обмотка трансформатора тока

Обмотка, по которой протекает трансформированный (вторичный) ток

39. Вторичная обмотка для измерений

Вторичная обмотка трансформатора тока, предназначенная для присоединения к ней измерительных приборов

40. Вторичная обмотка для защиты

Вторичная обмотка трансформатора тока, предназначенная для присоединения к ней устройств защиты и управления

41. Секционированная обмотка трансформатора тока

Обмотка трансформатора тока, состоящая из отдельных секций, допускающих различные соединения.

Примечание. Для получения различных коэффициентов трансформации или выравнивания индукции в магнитопроводе

42. Обмотка трансформатора тока с ответвлениями

Обмотка трансформатора тока, имеющая выводы от части витков для получения различных коэффициентов трансформации

43. Обмотки звеньевого типа трансформатора тока

Ндп. Обмотка восьмерочного типа

Обмотки трансформатора тока, выполненные так, что внутренняя изоляция трансформатора конструктивно распределена между первичной и вторичной обмотками, а взаимное расположение обмоток напоминает звенья цепи

44. Обмотки U-образного типа трансформатора тока

Ндп. Обмотки шпилечного типа

Обмотки трансформатора тока, выполненные так, что внутренняя изоляция трансформатора нанесена в основном только на первичную обмотку, имеющую U-образную форму

45. Обмотки рымовидного типа трансформатора тока

Обмотки трансформатора тока, выполненные так, что внутренняя изоляция трансформатора нанесена в основном только на вторичную (вторичные) обмотку и ее выводные концы, а сами обмотки образуют рымовидную фигуру

46. Первичная обмотка трансформатора напряжения

Обмотка, к которой прикладывается напряжение, подлежащее трансформации

47. Основная вторичная обмотка трансформатора напряжения

Обмотка, в которой возникает трансформированное (вторичное) напряжение

48. Дополнительная вторичная обмотка трансформатора напряжения

Обмотка, предназначенная для соединения в разомкнутый треугольник с целью присоединения к ней цепей контроля изоляции сети

49. Компенсационная обмотка трансформатора напряжения

Вспомогательная обмотка трехфазного трансформатора напряжения, предназначенная для уменьшения угловой погрешности напряжения

50. Связующая обмотка трансформатора напряжения

Обмотка, служащая для передачи мощности с обмотки одного магнитопровода на обмотки другого магнитопровода каскадного трансформатора напряжения

51. Выравнивающая обмотка трансформатора напряжения

Обмотка, служащая для выравнивания мощности в первичной обмотке двух стержней одного магнитопровода каскадного трансформатора напряжения

ПАРАМЕТРЫ И ХАРАКТЕРИСТИКИ ТРАНСФОРМАТОРОВ ТОКА И НАПРЯЖЕНИЯ

52. Первичный ток трансформатора тока

Ток, протекающий по первичной обмотке трансформатора тока и подлежащий трансформации

53. Наибольший рабочий первичный ток трансформатора тока

Наибольшее значение первичного тока, длительное протекание которого допустимо по условиям нагрева

54. Вторичный ток трансформатора тока

Ток, протекающий по вторичной обмотке трансформатора тока

55. Коэффициент трансформации трансформатора тока

Отношение первичного тока к вторичному току

56. Токовая погрешность трансформатора тока

Погрешность, которую трансформатор тока вносит в измерение тока, возникающая вследствие того, что действительный коэффициент трансформации не равен номинальному.

Примечание. Токовая погрешность определяется как арифметическая разность между действительным вторичным током и приведенным ко вторичной цепи действительным первичным током, выраженная в процентах приведенного ко вторичной цепи действительного первичного тока

57. Угловая погрешность трансформатора тока

Угол между векторами первичного и вторичного токов при таком выборе их направлений, чтобы для идеального трансформатора тока этот угол равнялся нулю.

Примечание. Угловая погрешность выражается в минутах или сантирадианах и считается положительной, когда вектор вторичного тока опережает вектор первичного тока

58. Полная погрешность трансформатора тока

Действующее значение разности между произведением номинального коэффициента трансформации на мгновенное действительное значение вторичного тока и мгновенным значением первичного тока в установившемся режиме.

Примечание. Полная погрешность выражается обычно в процентах действующего значения первичного тока

59. Витковая коррекция трансформатора тока

Ндп. Отмотка

Уменьшение токовой погрешности трансформатора тока изменением числа витков вторичной обмотки

60. Вторичная нагрузка трансформатора тока

Полное сопротивление внешней вторичной цепи трансформатора тока, выраженное в омах, с указанием коэффициента мощности.

Примечание. Вторичная нагрузка может характеризоваться также кажущейся мощностью в вольтамперах, потребляемой ею при данном коэффициенте мощности при номинальном вторичном токе

61. Номинальная вторичная нагрузка трансформатора тока

Значение вторичной нагрузки, указанное на паспортной табличке трансформатора тока, при котором гарантируется класс точности или предельная кратность

62. Кратность первичного тока трансформатора тока

Отношение первичного тока трансформатора тока к его номинальному значению

63. Предельная кратность трансформатора тока

Наибольшее значение кратности первичного тока, при котором полная погрешность при заданной вторичной нагрузке не превышает 10%

64. Номинальная предельная кратность трансформатора тока

Гарантируемая трансформатору тока предельная кратность при номинальной вторичной нагрузке

65. Кратность насыщения трансформатора тока

Отношение первичного тока к его номинальному значению, при котором при заданной вторичной нагрузке индукция в магнитопроводе трансформатора тока близка к индукции насыщения

66. Ток электродинамической стойкости трансформатора тока

Наибольшее амплитудное значение тока короткого замыкания за все время его протекания, которое трансформатор тока выдерживает без повреждений, препятствующих его дальнейшей исправной работе

67. Кратность тока электродинамической стойкости трансформатора тока

Отношение тока электродинамической стойкости к амплитудному значению номинального первичного тока

68. Ток термической стойкости трансформатора тока

Наибольшее действующее значение тока короткого замыкания за промежуток времени , которое трансформатор тока выдерживает в течение этого промежутка времени без нагрева токоведущих частей до температур, превышающих допустимые при токах короткого замыкания, и без повреждений, препятствующих его дальнейшей исправной работе

69. Кратность тока термической стойкости трансформатора тока

Отношение тока термической стойкости к действующему значению номинального первичного тока

70. Ток намагничивания трансформатора тока

Ндп. Намагничивающий ток

Действующее значение тока, потребляемого вторичной обмоткой трансформатора тока, когда ко вторичным зажимам подведено синусоидальное напряжение номинальной частоты, причем первичная обмотка и все остальные обмотки разомкнуты

71. Первичное напряжение трансформатора напряжения

Напряжение, приложенное к первичной обмотке трансформатора напряжения и подлежащее трансформации

72. Вторичное напряжение трансформатора напряжения

Напряжение, возникающее на зажимах вторичной обмотки трансформатора напряжения при приложении напряжения к его первичной обмотке

73. Коэффициент трансформации трансформатора напряжения

Отношение напряжений на зажимах первичной и вторичной обмоток при холостом ходе

74. Погрешность напряжения трансформатора напряжения

Погрешность, которую вносит трансформатор напряжения в измерение напряжения, возникающая вследствие того, что действительный коэффициент трансформации не равен номинальному.

Примечание. Погрешность напряжения определяется как арифметическая разность между приведенным к первичной цепи действительным вторичным напряжением и действительным первичным напряжением, выраженная в процентах действительного первичного напряжения

75. Угловая погрешность трансформатора напряжения

Угол между векторами первичного и вторичного напряжения при таком выборе их направлений, чтобы для идеального трансформатора напряжения этот угол равнялся нулю.

Примечание. Угловая погрешность выражается в минутах или сантирадианах и считается положительной, когда вектор вторичного напряжения опережает вектор первичного напряжения

76. Витковая коррекция трансформатора напряжения

Ндп. Отмотка

Уменьшение погрешности напряжения трансформатора напряжения изменением числа витков первичной обмотки

77. Номинальная мощность трансформатора напряжения

Значение полной мощности, указанное на паспортной табличке трансформатора напряжения, которую он отдает во вторичную цепь при номинальном вторичном напряжении с обеспечением соответствующих классов точности.

Примечание. Трансформатор напряжения имеет несколько значений номинальной мощности, соответствующих классам точности

78. Предельная мощность трансформатора напряжения

Кажущаяся мощность, которую трансформатор напряжения длительно отдает при номинальном первичном напряжении, вне классов точности, и при которой нагрев всех его частей не выходит за пределы, допустимые для класса нагревостойкости данного трансформатора

Значение параметра номинальное

7

Класс точности трансформатора напряжения

5

Класс точности трансформатора напряжения номинальный

6

Класс точности трансформатора тока

5

Класс точности трансформатора тока номинальный

6

Клещи трансформаторные

28

Клещи электроизмерительные

28

Коррекция трансформатора напряжения витковая

76

Коррекция трансформатора тока витковая

59

Коэффициент трансформации трансформатора напряжения

73

Коэффициент трансформации трансформатора тока

55

Кратность насыщения трансформатора тока

65

Кратность первичного тока трансформатора тока

62

Кратность трансформатора тока предельная

63

Кратность трансформатора тока предельная номинальная

64

Кратность тока электродинамической стойкости трансформатора тока

67

Кратность тока термической стойкости трансформатора тока

69

Мощность трансформатора напряжения номинальная

77

Мощность трансформатора напряжения предельная

78

Нагрузка трансформатора тока вторичная

60

Нагрузка трансформатора тока вторичная номинальная

61

Напряжение трансформатора напряжения вторичное

72

Напряжение трансформатора напряжения первичное

71

Обмотка для защиты вторичная

40

Обмотка для измерений вторичная

39

Обмотка трансформатора напряжения вторичная дополнительная

48

Обмотка трансформатора напряжения вторичная основная

47

Обмотка трансформатора напряжения компенсационная

49

Обмотка трансформатора напряжения первичная

46

Обмотка трансформатора напряжения связующая

50

Обмотка трансформатора напряжения выравнивающая

51

Обмотка трансформатора тока вторичная

38

Обмотка трансформатора тока первичная

37

Обмотка трансформатора тока секционированная

41

Обмотка трансформатора тока с ответвлениями

42

Обмотка шпилечного типа

44

Обмотка восьмерочного типа

43

Обмотки звеньевого типа трансформатора тока

43

Обмотки рымовидного типа трансформатора тока

45

Обмотки U-образного типа трансформатора тока

44

Отмотка

50, 76

Параметр номинальный

7

Погрешность напряжения трансформатора напряжения

74

Погрешность трансформатора напряжения угловая

75

Погрешность трансформатора тока полная

58

Погрешность трансформатора тока токовая

56

Погрешность трансформатора тока угловая

57

Разряд образцового трансформатора напряжения

4

Разряд образцового трансформатора тока

4

Ток электродинамической стойкости трансформатора тока

66

Ток намагничивания трансформатора тока

70

Ток намагничивающий

70

Ток трансформатора тока вторичный

54

Ток трансформатора тока первичный

52

Ток трансформатора тока первичный рабочий наибольший

53

Ток термической стойкости трансформатора тока

68

Трансформатор

1

Трансформатор напряжения

1

Трансформатор напряжения двухобмоточный

35

Трансформатор напряжения емкостный

34

Трансформатор напряжения заземляемый

31

Трансформатор напряжения каскадный

33

Трансформатор напряжения компенсированный

10

Трансформатор напряжения лабораторный

8

Трансформатор напряжения незаземляемый

32

Трансформатор напряжения многодиапазонный

12

Трансформатор напряжения многопредельный

12

Трансформатор напряжения образцовый

9

Трансформатор напряжения однодиапазонный

11

Трансформатор напряжения однопредельный

11

Трансформатор напряжения трехобмоточный

36

Трансформатор однофазный

29

Трансформатор тока

2

Трансформатор тока втулочный

26

Трансформатор тока встроенный

22

Трансформатор тока для защиты

14

Трансформатор тока для измерений

13

Трансформатор тока и напряжения комбинированный

21

Трансформатор тока каскадный

19

Трансформатор тока компенсированный

10

Трансформатор тока лабораторный

8

Трансформатор тока многодиапазонный

12

Трансформатор тока многопредельный

12

Трансформатор тока насыщающийся

16

Трансформатор тока нулевой последовательности

15

Трансформатор тока образцовый

9

Трансформатор тока однодиапазонный

11

Трансформатор тока однопредельный

11

Трансформатор тока одноступенчатый

18

Трансформатор тока опорный

23

Трансформатор тока промежуточный

20

Трансформатор тока проходной

24

Трансформатор тока разъемный

27

Трансформатор тока суммирующий

17

Трансформатор тока шинный

25

Трансформатор трехфазный

30

Цепь трансформатора напряжения вторичная

3

Цепь трансформатора тока вторичная

3

Что такое трансформатор тока (ТТ)? Определение, конструкция, векторная диаграмма и типы

Определение: Трансформатор тока — это устройство, которое используется для преобразования тока с более высокого значения в пропорциональный ток к более низкому значению. Он преобразует ток высокого напряжения в ток низкого напряжения, благодаря чему сильный ток, протекающий по линиям передачи, надежно контролируется амперметром.

Трансформатор тока используется с прибором переменного тока, измерителями или контрольной аппаратурой, где измеряемый ток имеет такую ​​величину, что измеритель или приборную катушку невозможно сделать с достаточной пропускной способностью по току.Трансформатор тока показан на рисунке ниже.

current-transformer Первичный и вторичный ток трансформаторов тока пропорциональны друг другу. Трансформатор тока используется для измерения тока высокого напряжения из-за трудности с недостаточной изоляцией самого счетчика. Трансформатор тока используется в счетчиках для измерения тока до 100 ампер.

Строительство трансформаторов тока

Сердечник трансформатора тока выполнен из кремнистой стали.Для получения высокой степени точности для изготовления стержней используется Permalloy или Mumetal. Первичные обмотки трансформаторов тока пропускают измеряемый ток, и он подключен к главной цепи. Вторичные обмотки трансформатора пропускают ток, пропорциональный измеряемому току, и он подключен к токовым обмоткам счетчиков или приборов.

Первичная и вторичная обмотки изолированы от сердечников и друг от друга.Первичная обмотка — это однооборотная обмотка (также называемая стержневой первичной обмоткой), по которой проходит полный ток нагрузки. Вторичная обмотка трансформаторов имеет большое количество витков.

current-transformer-circuit Соотношение первичного тока и вторичного тока известно как коэффициент трансформатора тока цепи. Коэффициент тока трансформатора обычно высокий. Номинальные значения вторичного тока составляют 5 А, 1 А и 0,1 А. Текущие номинальные значения первичной обмотки варьируются от 10 А до 3000 А или более.Условное изображение трансформатора тока показано на рисунке ниже.

circuit-of-bar-type-current-transformer Принцип работы трансформатора тока немного отличается от силового трансформатора. В трансформаторе тока полное сопротивление нагрузки или нагрузка на вторичной обмотке немного отличается от силовых трансформаторов. Таким образом, трансформатор тока работает в условиях вторичной цепи.

Нагрузка на груз

Нагрузка трансформатора тока — это величина нагрузки, подключенной ко вторичному трансформатору.Он выражается как мощность в вольт-амперах (ВА). Номинальная нагрузка — это величина нагрузки, указанная на паспортной табличке ТТ. Номинальная нагрузка — это произведение напряжения и тока на вторичной обмотке, когда трансформатор тока подает на прибор или реле максимальное номинальное значение тока.

Влияние открытых вторичных обмоток ТТ

В нормальных условиях эксплуатации вторичная обмотка ТТ подключена к его нагрузке, и она всегда замкнута. Когда ток течет через первичные обмотки, он всегда течет через вторичные обмотки, и ампер-витки каждой обмотки соответственно равны и противоположны.

Число витков вторичной обмотки будет на 1% и 2% меньше витков первичной обмотки, и разница будет использоваться в намагничивающем сердечнике. Таким образом, если вторичная обмотка разомкнута и ток течет через первичные обмотки, то размагничивающего потока из-за вторичного тока не будет.

Из-за отсутствия противоамперных витков вторичной обмотки несопротивляющийся первичный MMF создаст аномально высокий магнитный поток в сердечнике. Этот поток вызовет потери в сердечнике с последующим нагревом, и на вторичном выводе будет индуцировано высокое напряжение.

Это напряжение вызвало пробой изоляции, а также в будущем может произойти потеря точности, потому что чрезмерный MMF оставляет остаточный магнетизм в сердечнике. Таким образом, вторичная обмотка ТТ никогда не может быть разомкнута, если по первичной обмотке проходит ток.

Векторная диаграмма трансформатора тока

Векторная диаграмма трансформатора тока показана на рисунке ниже. Основной поток взят за эталон. Наведенные напряжения в первичной и вторичной обмотках отстают от основного потока на 90º.Величина первичного и вторичного напряжений зависит от количества витков на обмотках. Ток возбуждения индуцируется составляющими намагничивающего и рабочего тока.

phasor-diagram-of-current-transformer где, I s — вторичный ток
E s — вторичное индуцированное напряжение
I p — первичный ток
E p — первичное индуцированное напряжение
K t — коэффициент передачи, количество вторичных витков / количество первичных витков
I 0 — ток возбуждения
I м — ток намагничивания
I Вт — рабочий компонент
Φ с — главный поток

Вторичный ток отстает от вторичного наведенного напряжения на угол θº.Вторичный ток перемещается в первичную обмотку путем реверсирования вторичного тока и умножения на коэффициент трансформации. Ток, протекающий через первичную обмотку, является суммой возбуждающего тока I 0 и произведения коэффициента трансформации и вторичного тока K t I s.

Ошибка соотношения и фазового угла CT

Трансформатор тока имеет две ошибки — ошибку соотношения и ошибку угла сдвига фаз.

Current Ratio Errors — Трансформатор тока в основном обусловлен энергетической составляющей тока возбуждения и представлен как

ratio-current-transformer-equation Где I p — первичный ток.K t — коэффициент трансформации и вторичный ток.

Ошибка фазового угла — В идеальном трансформаторе тока векторный угол между первичным и обратным вторичным током равен нулю. Но в реальном трансформаторе тока существует разница фаз между первичным и вторичным токами, потому что первичный ток также обеспечивает составляющую тока возбуждения. Таким образом, разница между двумя фазами называется ошибкой фазового угла.

Типы трансформаторов тока

Трансформаторы тока в основном подразделяются на три типа, т.е.е., трансформатор тока намотки, трансформатор тока тороидальный и трансформаторы стержневого типа.

1. Трансформатор с обмоткой — В этом трансформаторе первичная обмотка расположена внутри трансформатора. Первичная обмотка имела один виток и была подключена последовательно с проводником, измеряющим ток. Трансформатор с обмоткой в ​​основном используется для измерения тока от 1 до 100 ампер.

wound-type-current-transformer 2. Трансформатор тока стержневого типа — Трансформатор стержневого типа имеет только вторичные обмотки.Проводник, на котором установлен трансформатор, будет действовать как первичная обмотка трансформаторов тока.

current-transformer 3. Тороидальный трансформатор тока — Этот трансформатор не содержит первичных обмоток. Линия, по которой протекает ток в сети, подключается через отверстие или окно трансформаторов. Основным преимуществом этого трансформатора является то, что трансформатор имеет симметричную форму, благодаря чему он имеет низкий поток рассеяния, а значит, и меньшие электромагнитные помехи.

.

Трансформатор тока

ТТ для работы в сети 110 кВ

В электротехнике для измерения электрических токов используется трансформатор тока ( CT ). Трансформаторы тока вместе с трансформаторами напряжения ( VT ) ( трансформаторов напряжения ( PT )) известны как измерительные трансформаторы . Когда ток в цепи слишком велик, чтобы напрямую подаваться на измерительные приборы, трансформатор тока вырабатывает пониженный ток, точно пропорциональный току в цепи, который можно удобно подключить к измерительным и регистрирующим приборам.Трансформатор тока также изолирует измерительные приборы от очень высокого напряжения в контролируемой цепи. Трансформаторы тока обычно используются в реле измерения и защиты в электроэнергетике.

Типовой проект

SF 6 Трансформатор тока 110 кВ серии ТГФМ, Россия

Как и любой другой трансформатор, трансформатор тока имеет первичную обмотку, магнитный сердечник и вторичную обмотку. Переменный ток, протекающий в первичной обмотке, создает магнитное поле в сердечнике, которое затем индуцирует ток во вторичной цепи обмотки.Основная цель конструкции трансформатора тока — обеспечить эффективное соединение первичной и вторичной цепей, так что вторичный ток точно соотносится с первичным током.

Наиболее распространенная конструкция ТТ состоит из отрезка проволоки, многократно обернутого вокруг кольца из кремнистой стали, проходящего по измеряемой цепи. Таким образом, первичная цепь трансформатора тока состоит из одного «витка» проводника с вторичной обмоткой из многих десятков или сотен витков.Первичная обмотка может быть постоянной частью трансформатора тока с тяжелым медным стержнем для пропускания тока через магнитный сердечник. Также распространены оконные трансформаторы тока, в которых кабели цепи могут проходить через середину отверстия в сердечнике, чтобы обеспечить одновитковую первичную обмотку. Если проводники, проходящие через трансформатор тока, не отцентрированы в круглом (или овальном) отверстии, могут возникнуть небольшие неточности.

Формы и размеры могут различаться в зависимости от конечного пользователя или производителя распределительного устройства.Типичными примерами низковольтных измерительных трансформаторов тока с одинарным коэффициентом передачи являются кольцевые или пластмассовые корпуса. Трансформаторы тока высокого напряжения устанавливаются на фарфоровые вводы для их изоляции от земли. Некоторые конфигурации трансформатора тока скользят вокруг проходного изолятора высоковольтного трансформатора или автоматического выключателя, который автоматически центрирует проводник внутри окна трансформатора тока.

Первичная цепь практически не зависит от включения ТТ. Номинальный вторичный ток обычно стандартизован на 1 или 5 ампер.Например, трансформатор тока 4000: 5 обеспечит выходной ток 5 ампер, когда первичная обмотка проходит 4000 ампер. Вторичная обмотка может иметь одно или несколько передаточных чисел, при этом пять отводов являются общими для трансформаторов с несколькими передаточными числами. Нагрузка ТТ должна иметь низкое сопротивление. Если интегральная площадь напряжения по времени превышает расчетную номинальную величину сердечника, сердечник переходит в насыщение к концу каждого цикла, искажая форму волны и влияя на точность.

Использование

Трансформаторы тока широко используются для измерения тока и контроля работы электросети.Наряду с выводами напряжения коммерческие трансформаторы тока управляют счетчиками электроэнергии в ватт-часах практически в каждом здании с трехфазным питанием и однофазным питанием более 200 ампер.

ТТ обычно описывается соотношением тока от первичной к вторичной. Часто несколько трансформаторов тока устанавливаются в виде «стека» для различных целей. Например, устройства защиты и коммерческое измерение могут использовать отдельные трансформаторы тока для обеспечения изоляции между цепями измерения и защиты и позволяют использовать трансформаторы тока с различными характеристиками (точность, характеристики перегрузки) для устройств.

Правила техники безопасности

Необходимо следить за тем, чтобы вторичная обмотка трансформатора тока не была отключена от нагрузки, пока в первичной обмотке течет ток, поскольку вторичная обмотка трансформатора будет пытаться продолжать пропускать ток через фактически бесконечный импеданс. Это создаст высокое напряжение на открытой вторичной обмотке (в некоторых случаях до нескольких киловольт), которое может вызвать искрение. Возникающее высокое напряжение поставит под угрозу безопасность оператора и оборудования и необратимо повлияет на точность трансформатора.

Точность

Точность ТТ напрямую зависит от ряда факторов, включая:

  • Обременение
  • Класс нагрузки / класс насыщения
  • Коэффициент рейтинга
  • Нагрузка
  • Внешние электромагнитные поля
  • Температура и
  • Физическая конфигурация.
  • Выбранный ответвитель, для многоскоростных ТТ

В соответствии со стандартом МЭК классы точности для различных типов измерений указаны в МЭК 60044-1, классы 0.1, 0,2 с, 0,2, 0,5, 0,5 с, 1 и 3. Обозначение класса является приблизительной мерой точности ТТ. Погрешность отношения (первичного к вторичному току) ТТ класса 1 составляет 1% при номинальном токе; погрешность отношения ТТ класса 0,5 составляет 0,5% или меньше. Ошибки по фазе также важны, особенно в схемах измерения мощности, и каждый класс имеет допустимую максимальную фазовую ошибку для заданного импеданса нагрузки. Трансформаторы тока, используемые для защитных реле, также имеют требования к точности при токах перегрузки, превышающих номинальные, чтобы гарантировать точную работу реле при сбоях в системе.

Бремя

Нагрузка или нагрузка в измерительной цепи ТТ — это (в основном резистивный) импеданс, представленный ее вторичной обмотке. Типичные номинальные значения нагрузки для трансформаторов тока IEC составляют 1,5 ВА, 3 ВА, 5 ВА, 10 ВА, 15 ВА, 20 ВА, 30 ВА, 45 ВА и 60 ВА. Что касается нагрузочных рейтингов ANSI / IEEE, то это B-0,1, B-0,2, B-0,5, B-1,0, B-2,0 и B-4,0. Это означает, что ТТ с номинальной нагрузкой B-0,2 может выдерживать до 0,2 Ом импеданса в измерительной цепи, прежде чем его выходной ток перестанет быть фиксированным отношением к первичному току.Объектами, которые увеличивают нагрузку на схему измерения тока, являются блоки выключателей, счетчики и промежуточные проводники. Наиболее распространенным источником избыточной нагрузки в цепи измерения тока является проводник между измерителем и трансформатором тока. Часто счетчики на подстанциях располагаются на значительном расстоянии от шкафов счетчиков, и чрезмерная длина проводов малого калибра создает большое сопротивление. Эту проблему можно решить, используя трансформатор тока с вторичными обмотками на 1 ампер, что приведет к меньшему падению напряжения между трансформатором тока и его измерительными устройствами.

Напряжение в точке колена

Напряжение точки перегиба трансформатора тока — это величина вторичного напряжения, после которой выходной ток перестает линейно следовать за входным током. Это означает, что взаимно однозначное или пропорциональное соотношение между входом и выходом больше не находится в пределах заявленной точности. При испытании, если напряжение подается на вторичные клеммы, ток намагничивания будет увеличиваться пропорционально приложенному напряжению, вплоть до точки изгиба.Точка перегиба определяется как точка, в которой увеличение приложенного напряжения на 10% приводит к увеличению тока намагничивания на 50%. От точки перегиба вверх ток намагничивания резко увеличивается даже с небольшими приращениями напряжения на клеммах вторичной обмотки. Напряжение точки перегиба в меньшей степени применимо для измерения трансформаторов тока, поскольку их точность, как правило, намного выше, но ограничена в пределах очень небольшой полосы пропускания номинала трансформатора тока, обычно от 1,2 до 1.5-кратный номинальный ток. Однако концепция напряжения в точке перегиба очень уместна для трансформаторов тока защиты, поскольку они обязательно подвергаются воздействию токов, в 20 или 30 раз превышающих номинальный ток во время повреждений. [1]

Коэффициент рейтинга

Номинальный коэффициент viqar — это коэффициент, на который можно умножить номинальный ток полной нагрузки ТТ для определения его абсолютного максимального измеряемого первичного тока. И наоборот, минимальный первичный ток, который ТТ может точно измерить, составляет «легкую нагрузку» или 10% от номинального тока (однако существуют специальные ТТ, предназначенные для точного измерения токов, составляющих всего 2% от номинального тока).Коэффициент мощности ТТ во многом зависит от температуры окружающей среды. Большинство CT имеют рейтинговые факторы для 35 градусов Цельсия и 55 градусов Цельсия. При установке трансформаторов тока внутри трансформаторов с монтажной площадкой или в плохо вентилируемых механических помещениях важно учитывать температуру окружающей среды и результирующие номинальные факторы. В последнее время производители переходят на более низкие номинальные первичные токи с более высокими коэффициентами рейтинга. Это стало возможным благодаря разработке более эффективных ферритов и соответствующих им кривых гистерезиса.

Специальные исполнения

Специально сконструированные широкополосные трансформаторы тока также используются (обычно с осциллографом) для измерения форм сигналов высокочастотных или импульсных токов в импульсных энергосистемах. Один тип специально сконструированного широкополосного трансформатора обеспечивает выходное напряжение, пропорциональное измеряемому току. Другой тип (называемый поясом Роговского) требует внешнего интегратора для обеспечения выходного напряжения, пропорционального измеряемому току.В отличие от трансформаторов тока, используемых для силовых цепей, широкополосные трансформаторы тока рассчитаны на выходное напряжение на ампер первичного тока.

Стандарты

В зависимости от конечных требований клиентов существует два основных стандарта, по которым проектируются трансформаторы тока. IEC 60044-1 (BSEN 60044-1) и IEEE C57.13 (ANSI), хотя канадские и австралийские стандарты также признаются.

См. Также

Список литературы

  • Guile, A .; Патерсон, В. (1977). Электроэнергетические системы, Том первый . Anon, Руководство по применению защитных реле, второе издание , The General Electric Company Limited of England, 1975 Раздел 5.3
  • Внешние ссылки

    .

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *