Маркировка импортных кварцевых резонаторов: Таблица аналогов кварцевых резонаторов разных изготовителей

Содержание

Таблица аналогов кварцевых резонаторов разных изготовителей











Принятое обозначение корпуса в магазине «Кварц» [старое
обозначение]
Размеры, мм Фирменные обозначения
Российские производители  

 

               
01×04       C-005R                  
  (32,768кГц)          
01×05

 

    C-004R     GWX-15            
CFS145 (32,768кГц) D5 (DT15)  (32,768кГц) ETDC (DT-15)        
 
   
(32,768кГц) C-4  (32~120кГц, 192кГц) GCX-15 (32,768кГц, 30~100кГц)    
  (32~120кГц, 192кГц)    (200~1000кГц)      
02х06 [AA]

 

          GCX-26            
РК206AA   CFS206 С-002RX D6 (DT26) KX-26 (-20~700C) (30~150кГц) ETDA (DT-26) MMTF32  DT-26      
ТУ307-182.012-98             (32,768кГц) (32,768кГц) (32~120кГц,  KX-26T (-40~850C)  GDX-1 (32,768кГц,  (32,768кГц, (32,768кГц)   TF26 SP (CH-206)
(32,768кГц, 30~270кГц) CFV206 C-2 192кГц) (32,768; 77,5кГц) (32,768кГц) 30,0~100,0кГц) 28,0~80,0кГц) DT-261   (25,0~150,0кГц) (32,768кГц, 75кГц)
РК453АА (15~40МГц) (30~100кГц) (20~165кГц,      GWX-26     (28,0~100,0кГц)      
    307,2кГц)     (32,768кГц)            
03х08 (H=8мм)

 

РК308     A8 (AT38) KX-38 (-20~700C) 
               
  ETDB (DT-38) MTF32  DT-38      
ТУ307-182.013-00 CFS308 С-001R (3,579~60МГц) KX-38T (-40~850C) GWX-38  (32,768кГц,  (32,768кГц, (32,768кГц)   TF38 SQ (CH-308) 
(3~5МГц, 8~12МГц) (32,768кГц) (32,768кГц) D8 (DT38)  (32,768кГц) (32,768кГц) 30,0~100,0кГц) 15,0~150,0кГц) DT-381   (25,0~150,0кГц) (32,768кГц, 75кГц)
      (32,0~120,0кГц, 192кГц)         (15,0~150,0кГц)      
03×09 (H=9мм)   CSA309  CA-301 A9 (AT39)   GCX-39 EAT (AT-39) MTF38 AT-38   3×9   
(4,01~70МГц) (4,0~64,0МГц) (3,579~60МГц)   (4,0~90,0МГц) (4,0~70,0МГц) (3,579545~91МГц) (3,579~28,0МГц)   (3,579545~60,0МГц)
03×10 (H=10мм)         KX-39 (-20~700C)              
  CSA310    A10 (AT310) KX-39T (-40~850C) GCX-39  EAT (AT-39)       3×10   
  (3,5~4,0МГц)   (3,579~60,0МГц) (40~100кГц, 3-я гарм.) (3,5~4,0МГц) (3,579545~4,0МГц)       (3,579545~60,0МГц)  
        (3,579545~70МГц)              
03×12  (H=12мм) РК330
(4194,304кГц)
                     
HC49S2 (H=2,2~2,5мм) [HC49SS]

 

      SS (HC-49US)   ESC (HC-49SB)        49S2 SС (ATS-25/U)
РК456МДУ     (3,0~33,5МГц)   (8,0~30,0МГц) SS2     (3,579545~30,0МГц) (3,579~27,0МГц)
ТУ6321-006-07604008-04      (26,0~40,0МГц 3-я   HC49-3H (30,0~66,0МГц 3-я (8,0~30,0МГц)     (24,0~70,0МГц 3-я (27,0~40,0МГц BT-срез)
(10~40МГц)     гармоника)   (3,579~90МГц) гармоника) (27,0~70,0МГц 3-я гармоника)     гармоника) (24,576~85,0МГц 3-я
      (20,0~40,0МГц BT-срез)     (27,0~40,0МГц BT-срез)       (60,0~80,0МГц 5-я гармоника)
                    гармоника)  
HC49S3 (H=3,3~3,6мм)  [HC49S]              РК415   HC49US   S (HC-49US) KX-3H (HC-49/U3H)   ESA (HC-49SA) SS3   HC49SFWA (HC-49/U-S) 49S SD (ATS-49/U)
ТУ6321-002-13279149-94 (3,5~30МГц)   (3,0~33,5МГц) (-20~700C) HC49-4H (3,2~30,0МГц) (3,2768~70МГц) AT-49 (3,2~20МГц) (3,579545~30,0МГц) (3,579~27,0МГц)
(3,5~24МГц) (30,001~50,0МГц   (26,0~40,0МГц 3-я KX-3HT (-40~850C) (1МГц, 3,2768~90МГц) (30,0~66,0МГц 3-я (27,0~70,0МГц 3-я гарм.) (3,072~33,9МГц) HC49SFWB (HC-49/U-S) (24,0~70,0МГц 3-я (27,0~40,0МГц BT-срез)
РН04  (ниобат лития)                          3-я гармоника)   гармоника) KX-3HE (-40~1050C)   гармоника) SS4 (26,0~70,0МГц 3-я (3,2~33,999МГц) гармоника) (24,576~85,0МГц 3-я
(0,4~20МГц)     (20,0~40,0МГц BT-срез) (3,5~40,0МГц)   (27,0~40,0МГц BT-срез) (3,2768~40МГц) гармоника)

виды и применение, маркировка и устройство

Кварцевые резонаторы – специальные электромеханические устройства. Их базой служат особый пьезоэлемент, изготавливаемый из кварцевых кристаллов. Состоит такой резонатор из непосредственно самого пьезоэлемента, кварцедержателя. Элемент обеспечивает включение электродов и самого кристаллического элемента. Форма этого элемента имеет разную форму. Он может быть круглым, прямоугольным или любым другим, что необходимо для облегчения составления электросхем.

Также различаются они по своим физическим габаритам. Сам пьезоэлемент производит механические движения, который производятся посредством движения электронов. В статье приведена подробная информация об устройстве кварцевого резонатора, сфера их использования. Также в статье приведена подробная научная статья и видеоматериал.

Кварцевый резонатор.

Кварцевый резонатор.

Свойства кварцевого резонатора

Кристаллический элемент пьезоэлектрического резонатора входит в состояние резонанса, и действующие внутри него механические напряжения претерпевают наиболее резкие изменения по величине и фазе при сравнительно небольших вариациях частоты колебаний; полное электрическое сопротивление системы изменяется при этом аналогичным образом. При использовании этого явления пьезоэлектрический кристалл помещают в высокочастотное электрическое поле, например между двумя металлическими электродами, закрепляя его определенным способом (механически) так, чтобы расположение всех элементов устройства оставалось неизменным в процессе работы.

Разнообразные кварцевые резонаторы.

Разнообразные кварцевые резонаторы.

Механическая система, в которой закрепляется кварцевый элемент и которая несет элементы конструкции, необходимые для возбуждения кварца, носит название кристаллодержателя. Если на электроды, между которыми помещен кварцевый элемент, подается переменное электрическое напряжение, то механические напряжения и деформации в кристалле также будут переменными, и при частоте переменного электрического напряжения, равной частоте собственных механических колебаний кварца, возникает механический резонанс. При этом на гранях кварцевого элемента, а следовательно, и на электродах кристаллодержателя появляются переменные заряды, величина и фаза которых определяются комплексной амплитудой механических напряжений в кристалле. Полная таблица частот кварцевых резонаторов представлена в таблице ниже (кликабельна для увеличения).

Все частоты кварцевых резонаторов

Таблица частот кварцевых резонаторов.

Кварцевые резонаторы - принцип работы и сфера применения

Взаимодействие этих зарядов с зарядами, создаваемыми приложенным извне переменным электрическим полем, изменяет соотношение между напряжением на электродах кристаллодержателя с кварцем и током через него, причем электрическое сопротивление системы переменному току изменяется с частотой последнего.

Наличие прямого и обратного пьезоэлектрического эффекта позволяет рассматривать резонанс кварца или как явление механических колебаний упругого твердого тела, воздействующих вследствие пьезоэффекта на электрическое поле, или как явление электрических колебаний некоторой электрической цепи, эквивалентной кварцевому резонатору. Оба способа рассмотрения приводят к одинаковому результату: параметры электрической эквивалентной схемы могут быть выражены через физические константы кристалла и через электрическую связь между кварцевым элементом и держателем.

Обычно кварцевый резонатор, представляющий собой пьезоэлектрический кристалл, закрепленный в держателе, является частью некоторой внешней электрической цепи, выполняющей определенные функции в том или ином радиотехническом устройстве, предназначенном для решения конкретной технической задачи. Естественно, что только второй способ рассмотрения кварцевого резонатора может удовлетворить практическим требованиям, поэтому знание эквивалентной электрической цепи, заменяющей элемент и кристаллодержатель, ее формы и параметров является весьма важной для практики задачей. Если эквивалентная электрическая схема по своей форме, параметрам и пределам применения определена  так, что она вполне строго (при указанных ограничениях) отражает явления, происходящие в колеблющемся пьезокварце, то это позволяет рассматривать теоретические вопросы кварцевого резонатора как элемента внешней электрической цепи изолированно от самого кристалла и решать технические задачи, в которых используется пьезокварц, обычными методами, применимыми к линейным электрическим цепям.

Материал в тему: все о переменном конденсаторе.

В зависимости от назначения кварцевый резонатор выполняется различными способами. При использовании в качестве резонансного колебательного контура в генераторе он должен быть рассчитан на определенную мощность рассеяния. При использовании в фильтрах и для контроля частоты радиопередающих устройств существенное значение имеет не мощность рассеяния, а минимальное затухание, малая связь с внешней цепью и т. п. Поэтому размеры кварцевых элементов, их форма, номер гармоники, а также конструкция кристаллодержателя в указанных случаях различны.

Для разных типов кварцевых резонаторов параметры эквивалентной электрической схемы изменяются по величине, хотя форма эквивалентной схемы остается неизменной. Наиболее просто эквивалентная схема выглядит в случае кварцевых элементов, на поверхность которых вакуумным распылением непосредственно нанесены пленки из металлов — электроды; несколько сложнее — в случае кварцевых элементов, помещаемых между электродами с зазорами, или же в случае кварцевого фильтра, имеющего по два входных и два выходных электрода.

Размеры кварцевого резонатора.

Размеры кварцевого резонатора.

С точки зрения внешних электрических цепей, пользуясь динамическими аналогиями, кварцевый резонатор можно заменить эквивалентным электрическим колебательным контуром. При математических расчетах рассмотрение эквивалентного электрического контура (вместо находящегося в колебательном состоянии кварцевого резонатора) позволяет отвлечься от кварцевого резонатора как электромеханической колебательной системы и рассматривать его как элемент электрической цепи .

Эквивалентная электрическая схема кварцевого резонатора состоит из активного сопротивления R1, емкости С1, и индуктивности L1, включенных последовательно и зашунтированных параллельной емкостью С0. Параметры R1, С1, L1 являются основными и носят название динамических параметров пьезоэлектрического резонатора, параметр C0 — статическая емкость. Если кварцевый элемент возбуждается в кристаллодержателе с зазорами, то к его эквивалентной электрической схеме добавляется параметр С3 — емкость зазора кристаллодержателя.

Кварцевые резонаторы - принцип работы и сфера применения

Эквивалентная схема резонатора — это схема замещения электромеханической колебательной системы с одной степенью свободы эквивалентным электрическим колебательным контуром

.

Параметры кварцевых резонаторов

Номинальная частота – частота Fн, указанная на маркировке или в документации на кварцевый резонатор (измеряется в МГц или кГц). Базовая частота – реальная частота резонатора Fо, измеренная в заданных условиях эксплуатации. Как правило, определяются только климатические условия, а именно базовая температура окружающей среды То, (равная 25± 2°С для резонаторов со срезом типа АТ). Рабочая частота – реальная частота резонатора F, измеренная в реальных условиях эксплуатации (климатических, механических и электрических). Обычно определен только допустимый диапазон изменения рабочей температуры.

Точность настройки частоты – максимально допустимое относительное отклонение базовой частоты резонатора от номинальной частоты. Измеряется в миллионных долях от номинальной частоты, обозначаемых как ppm (part per m illion) или 1•10 -6. В отдельных редких случаях значение этого параметра приводится в процентах. Как правило, значение точности настройки частоты кварцевого резонатора выбираются из стандартного ряда.

Параметры кварцевых резонаторов

Параметры кварцевых резонаторов.

Температурная нестабильность частоты

Относительное отклонение рабочей частоты резонатора от базовой частоты.  Может быть представлено в виде зависимости от рабочей температуры T, в соответствии с формулой для кварцевых пластин с типом среза АТ и формулой (4) для кварцевых пластин остальных типов.  Долговременная нестабильность частоты (старение) – систематическое изменение базовой частоты с течением времени из-за внутренних изменений в кварцевом резонаторе. Параметр старения задается как относительное изменение базовой частоты за заданный промежуток времени. Это значение выражается в частях миллиона за год (например, 3 ppm / year ). Уход частоты под влиянием старения в максимальной степени сказывается в течение первых 30 – 60 дней эксплуатации, после чего влияние этого фактора уменьшается. Стандартный ряд относительных отклонений частоты для резонаторов общего назначения включает следующие классы точности: ±5, ±10, ±15, ±20, ±30, ±50, ±75 и ±100 ppm.

Материал в тему: устройство подстроечного резистора.

Режим работы резонатора (номер гармоники)

Режим работы резонатора – неизменяемый параметр, определяющий частоту колебания. Для кристаллов кварца может использоваться не только основная частота, но и ее нечетные гармоники – обертоны. Например, кристалл может работать на основной частоте 10 МГц, или в нечетных гармониках приблизительно 30 МГц (третий обертон), 50 МГц (пятый обертон) и 70 МГц (седьмой обертон).

Параметры температуры

Базовая температура – Температура окружающей среды То, для большинства резонаторов равная 25± 2°С, при которой выполняются измерения определенных параметров кварцевого резонатора (в частности, значения базовой частоты). Диапазон рабочих температур – Диапазон температур, для которого производитель гарантирует, что максимальное отклонение рабочей частоты от номинального значений не выходит за пределы заданного допуска. Диапазон температур, в котором резонатор сохраняет работоспособность, но отклонение частоты от номинала может выходить за пределы, гарантируемые производителем.

Диапазон температур хранения – Диапазон температур, в котором кварцевый резонатор может находиться в режиме хранения (то есть, в состоянии отсутствия колебаний). После окончания хранения резонатора и обеспечения температуры в пределах рабочего диапазона (в течение некоторого отрезка времени), резонатор может использоваться в режиме колебаний, причем при этом будут гарантироваться все указанные производителем параметры.

Проверка резонатора.

Проверка резонатора.

Электрические параметры

Эквивалентная схема кварцевого резонатора – представляет собой электрическое описание кварцевого резонатора, работающего на резонансной частоте. Эквивалентная схема кварцевого резонатора представлена на рисунке 1. С0 – шунтирующая емкость. R1, L1 и С1 – соответственно динамическое сопротивление, динамическая индуктивность и динамическая емкость. Динамические параметры представляют собой соответствующие эквиваленты резонатора как электромеханической системы и определяются, в основном, характеристиками среза кварцевого элемента.

Шунтирующая емкость C0 – Емкость между выводами кристалла. Измеряется в пикофарадах. Шунтирующая емкость складывается из паразитной емкости кварца, емкости области электродов кристалла и емкости, вносимой кристаллодержателем. Шунтирующая емкость имеет значение порядка единиц пФ. Динамическое сопротивление R1 – Параметр, характеризующий энергетические потери в колебательном контуре. Динамическое сопротивление R1 кварцевых резонаторов изменяется в интервале от нескольких Ом до сотен кОм в зависимости от частоты резонанса, номера гармоники и ряда конструктивных факторов.

Набор кварцевых резонаторов.

Набор кварцевых резонаторов.

Емкость нагрузки СL

Измеренное или вычисленное значение емкости, включенной параллельно с кварцевым резонатором. Резонансная частота кварца, включенного в реальную электрическую цепь, будет изменяться в некоторых пределах при разных значениях емкости нагрузки. Для упрощения взаимодействия заказчиков и производителей резонаторов практикуется настройка резонаторов при определенном значении нагрузочной емкости. В этом случае измеренная частота должна соответствовать номинальной с учетом указанной точности настройки.

Как правило, для согласования емкости нагрузки используют конденсаторы Cg , подключаемые между выводами кварцевого резонатора и общим проводом (рисунок 2). Расчет номинала емкости конденсаторов Cg осуществляется по формуле (6), где CL – емкость нагрузки, указанная в технической документации, а CS – значение паразитной емкости (примерно 5 пФ).

Например, для емкости нагрузки равной 16 пФ имеем:

Cg = 2·(16-5) = 22 пФ

Обычно определяется как мощность, рассеиваемая кварцевым резонатором. Минимальное значение этого параметра определяется количеством энергии, необходимой для нормального запуска резонатора и обеспечения устойчивых колебаний. Однако повышенное значение этого параметра может вызвать ухудшение параметров старения и механические повреждения кристалла.

Современный и устаревший резонаторы

Современный и устаревший резонаторы.

Заключение

Более подробно о кварцевых резонаторах можно узнать  из статьи Область применения кварцевых резонаторов. Если у вас остались вопросы, можно задать их в комментариях на сайте. Также в нашей группе ВК можно задавать вопросы и получать на них подробные ответы от профессионалов.

Чтобы подписаться на группу, вам необходимо будет перейти по следующей ссылке: https://vк.coм/еlеctroinfonеt. В завершение статьи хочу выразить благодарность источникам, откуда мы черпали информацию:

www.lit-phonon.ru

www.gaw.ru

www.lit-phonon.ru

Предыдущая

РадиодеталиЧто такое геркон и как применяется в быту?

Следующая

РадиодеталиЧто такое датчик Холла

Кварцевые резонаторы на частоты от 8 до 50МГц SMD кварцы маркировка характеристики корпуса

Мы надеемся, что вся информация, представленная в каталоге, будет полезна и производителям промэлектроники, и сервисным центрам, и радиолюбителям.

Информация по размерам контактных площадок электронных компонентов, применяемых для разработки, сборки и монтажа печатных плат, находится в разделе Печатные платы.

SMD кварцевый резонатор

Кварцевые резонаторы SMD 0532

Кварцевые резонаторы SMD 0705 серия MQ


Упаковка: В блистр-ленте на катушке диаметром 180 мм по 1000 кварцевых резонаторов.

Возможна поставка кварцевых резонаторов на частоты заказчика:


0532 — в диапазоне 8,0…80,0МГц.,


0705 — в диапазоне 8,0…110,0МГц.


При заказе от 1000 штук.

Корпуса кварцев в SMD исполнение

Габариты кварцевого резонатора

ТипоразмерABCDE
0532 (MJ)5,0 мм3,2 мм2,6 мм2,3 мм0,8 мм
0705 (MQ)7,0 мм5,0 мм4,6 мм2,5 мм1,3 мм

Технические характеристики кварцевых резонаторов для поверхностного монтажа

Маркировка резонатораДиапазон частотЕмкость нагрузкиШунтирующая емкостьСопротивление потерьОтклонение частотыТемпературная стабильностьДолговременная стабильность
MJ (0532)8,0…80 МГц12 пФ3,0 пФ типовая25 Ом30 ppm± 20 ppm± 2 ppm
MQ (0705)8,0…110 МГц12 пФ3,0 пФ типовая25 Ом25 ppm± 20 ppm± 2 ppm

Кварцевые резонаторы представляют собой кристалл кварца с нанесенными на его поверхность двумя электродами. Кристалл закреплен в корпусе, при подаче на него переменного электрического напряжения, система меняет свои механические характеристики. При совпадении часто электрического воздействия и собственного резонанса кварцевой механической системы происходит понижение затрат энергии необходимой для поддержания генерации. Это свойство используется в колебательном контуре, включенном в цепь генератора частоты.
Высокая добротность резонансной характеристики колебательного контура используемой в схеме генератора позволяет получать стабильную частоту на его выходе. SMD кварцевые генераторы широко используются в изделиях электронной техники в качестве генераторов тактовой частоты синхронизирующих работу узлов и блоков приборов. Предельное значение резонансной частоты кварцевого резонатора ограничено механическими размерами и свойствами структуры кристалла, имеют максимальное значение частоты около 150МГц в случае использования мезо структуры резонатора.
В SMD корпусах аналогичных типоразмеров 0532 и 0705 поставляются кварцевые тактовые генераторы для поверхностного монтажа в диапазоне частот от 6МГц до 150МГц. В SMD корпусах меньших типоразмеров SS и 3215 поставляются часовые кварцевые резонаторы. Для бюджетных применений предназначен микроминиатюрный керамический SMD резонатор Murata на 16МГц. Для стабилизации более высоких частот применяют SMD ПАВ резонаторы на 433,92МГц

Технические характеристики и маркировка кварцевых резонаторов SMD 0532 для поверхностного монтажа

Технические характеристики и маркировка кварцевых резонаторов SMD 0705 для поверхностного монтажа

Электронный каталог

Корзина

Корзина пуста

Тестер кварцевых резонаторов своими руками

Приветствую, радиолюбители-самоделкины!
Тестер кварцевых резонаторов своими руками
На сегодняшний день в мире существует большое количество разнообразных компонентов электронных схем — резисторы, конденсаторы, микросхемы, транзисторы, диоды и различные их вариации, стабилитроны, кварцы и это ещё далеко не весь список. Раз существуют такие детали, значит, требуются и приборы для их проверки, а потому многие мультиметры позволяют без проблем замерять сопротивление резисторов, ёмкость конденсаторов, проверять транзисторы, чего в большинстве случаев достаточно для рядового радиолюбителя. Но некоторые радиодетали не получится взять и просто так проверить мультиметром, без специальных устройств-тестеров — к таким деталям можно отнести кварцевые резонаторы. Тестер кварцевых резонаторов своими руками

Кварцевые резонаторы, как правило, имеет специфичный металлический корпус, а потому их трудно спутать с чем-либо другим. Также у них имеет два вывода, либо две контактные площадки, если корпус предназначен для поверхностного монтажа. Используются кварцевые резонаторы для создания в электрических схемах колебаний высокой частоты, например, для создания тактовых импульсов для микроконтроллеров, либо для получения высокой несущей частоты радиопередатчика. Создать колебания подобного рода можно и с помощью обычной RC-цепи, такой способ также иногда используется, но обладает гораздо меньшей стабильностью частоты, а потому кварцевые резонаторы — незаменимые элементы во многих схемах. Ещё одно основное применение кварцев — отсчёт времени в часах, там используются специальные часовые кварцы, рассчитанные на частоту 32 768Гц. Именно это число является степенью двойки, а потому из него путём множества делений можно получить нужную для часов частоту 1Гц. Не трудно догадаться, что в таких кварцах очень важна стабильность частоты — ведь даже небольшое отклонение резонансной частоты часового кварца приведёт к тому, что часы, тактируемые от него, будут неизбежно сбиваться. Кварцевые резонаторы могут быть выпущены в разных корпусах, причём очень часто они имеют мелкую нечитаемую маркировку, либо вовсе стёртую, если это б.у. кварц. Для того, чтобы измерить резонансную частоту кварцевого резонатора, то есть проверить его работоспособность, нельзя просто подключить его к мультиметру и прозвонить, как обычный резистор. Существуют и фирменные тестеры кварцев, но порой их трудно найти в продаже, либо они стоят неоправданно много, поэтому в этой статье предлагается к сборке небольшое устройство, которое позволяется замерять частоту резонанса кварцев, оно позволит не только проверить работоспособность, но и посмотреть, не отклонилась ли заявленная частота кварца от фактической, что особенно актуально для б.у. элементов. Схема тестера показана ниже.

Тестер кварцевых резонаторов своими руками

Как можно увидеть, схема состоит всего из двух высокочастотных транзисторов и представляет собой простой генератор Колпитца, который позволяет «запускать» кварцы, заставляя их вырабатывать электрические колебания. Здесь можно применить практически любые маломощные высокочастотные NPN транзисторы, например, хорошо подойдёт отечественный КТ368 в любом корпусе, либо импортные 2SC930, 2SC829, 2SC933. В левой части схемы, в пунктирной рамке показан кварцевый резонатор — собственно тот, частоту которого требуется измерить. Для него при сборке схемы желательно изготовить посадочные контакты-зажимы, чтобы можно было быстро и без пайки менять разные кварцы. При этом соединения до самого кварца от схемы должны быть как можно короче. Контакты схемы, обозначенные «VCC» и идущие стрелочкой вверх — на них подаётся плюс питания, минус же подключается к контактам «GND» — они есть земля. Питается схема от напряжения 9-12В и потребляет совсем небольшой ток. В качестве источника можно использовать, например, USB выход и повышающий до 9В преобразователь, готовый импульсный блок питания на 9-12В, либо трансформатор с выпрямителем и сглаживающим конденсатором. Самым оптимальным источником питания будет являться батарейка крона — она имеет нужное напряжение и позволит работать схеме полностью автономно без внешнего питания. Обозначением «Power in» на схеме показан разъём для подачи питания, при этом конденсатор С4 является сглаживающим питание. Здесь не помешает поставить электролитический на 47-100 мкФ параллельно керамическому/плёночному на 100 нФ, что указан на схеме. Каскад на первом транзисторе является непосредственно генератором колебаний, а второй каскад работает в роли повторителя, уменьшая выходное сопротивление и повышая стабильность схемы. С выхода OUTPUT снимается синусоидальный сигнал, частота которого сгенерирована установленным кварцем. К выходу можно подключить, например, осциллограф и увидеть не только точную частоту, на которой работает данный кварц, но и форму сигнала, которая получается на выходе этой схемы. Также можно подключить к выходу схемы и обычный частотомер, это позволит увидеть частоту и убедиться в работоспособности нужного кварца.

Тестер кварцевых резонаторов своими руками

Элементы схемы рассчитаны для правильной работы генератора Колпитца, а потому не стоит изменять их в больших пределах. Для данной схемы можно использовать выводные резисторы мощностью 0,25Вт, и керамические либо плёночные конденсаторы на напряжение не больше 50-100В. Тестер позволит проверять кварцы частотой от 2 до 27 МГц, что покрывает почти весь диапазон чаще всего используемых кварцевых резонатором. Схема также может запускаться и с кварцами более высокой частоты, вплоть до 50 МГц, но при этом амплитуда сигнала на выходе будет значительно падать. При сборке важно соблюдать аккуратность — высокочастотные устройства, в том числе и эта схема, не допускают неаккуратной сборки. Выводы компонентов должны быть как можно короче, все лишние отрезки выводов должны быть откушены. Также после сборки обязательно нужно удалить все остатки флюса, ведь паразитные ёмкости и сопротивления на плате могут не позволить схеме запуститься, либо она будет работать не стабильно. Собрать схему можно, например, на макетной плате.Тестер кварцевых резонаторов своими руками

Либо же можно просто выточить на отрезке текстолита изолирующие канавки, буквально разделив сплошную медную поверхность на участки для пайки в соответствии со схемой. Такой вариант исполнения виден на одной из картинок выше. Но также можно развести и полноценную печатную плату, а затем выполнить её методом ЛУТ или фоторезистом. Готовое устройство не помешает установить в корпус, при этом он будет содержать панельку для вставки тестируемого кварца, выход для осциллографа или частотомера и гнездо питания, если не используется автономное питание от кроны. Удачной сборки!

Источник (Source)

Кварцевый резонатор | Описание, принцип работы, схемы

Кварцевый резонатор – это радиоэлемент, который используется в радиотехнических цепях для генерации электрических колебаний. В этой статье мы подробно рассмотрим и развенчаем некоторые мифы, связанные с кварцевым резонатором, а также рассмотрим схемы на его основе.

Пьезоэлектрики

На самом деле, кварц  – это один из самых распространенных минералов в земной коре. Его доля составляет около 60%! Если полупроводниковые радиокомпоненты в основном делают из кремния, то кварц тоже состоит из кремния но в связке с кислородом. Его химическая формула SiO2.

Выглядит минерал кварц примерно вот так.

минерал кварцминерал кварц

Ну прямо как сокровище какое-то! Но ценность этого сокровища спрятана не в самом кварце, а в том, каким свойством он обладает. И этот эффект кварца сделал революцию в прецизионной (точной) электронике для генерации высокостабильных колебаний электрического сигнала.

Еще в 19 веке два брата Кюри обнаружили интересное свойство некоторых твердых кристаллов генерировать ЭДС , деформируя эти кристаллы. Деформация – это изменение формы какого-либо тела с помощью кручения, удара, растяжения и так далее. Так вот, ударяя по таким кристаллам, они обнаружили, что те могут выдавать какое-либо кратковременное напряжение.

пьезоэффектпьезоэффект

Но они также обнаружили еще и обратный эффект. При подаче напряжения на такие кристаллы, эти кристаллы деформировались сами. Невооруженным глазом это было практически не заметно. Такой эффект назвали пьезоэффектом, а вещества  –  пьезоэлектриками.

Следует заметить, что ЭДС возникает только в процессе сжатия или растяжения. Может быть вы подумали, что можно прижать такой кристалл какой-нибудь увесистой болванкой и всю жизнь получать из него энергию? Как бы не так! Кстати, радиоэлемент пьезоизлучатель тоже относится к пьезоэлектрикам, и из него можно получить ЭДС. Ниже можно рассмотреть этот случай на видео. Светодиод, подпаянный к пьезоизлучателю, зажигается при ударе самого пьезоизлучателя.

Не так давно смотрел фильм по National Geographic. Там целые пьезоэлектрические плиты устанавливали на дороге. По ним ходили люди и вырабатывали электрическую энергию, сами того не подозревая). Кстати, очень халявная, чистая и возобновляемая энергия.  Ладно, что-то отвлекся… Так вот, кристаллы кварца тоже обладают пьезоэффектом и способны также вырабатывать ЭДС или деформироваться (изгибаться, изменять форму) под воздействием электрического тока.

Кварцевый резонатор

Что представляет из себя кварцевый резонатор

В настоящее время выявлены множество видов кристаллических веществ, но в электронике больше всего используют именно минералы кварца, так как он помимо того, что является пьезоэлетриком, так еще и обладает хорошей механической прочностью.

Резонатор – (от лат. resono –  звучу в ответ, откликаюсь) – это система, которая способна совершать колебания с максимальной амплитудой, то есть резонировать, при воздействии внешней силы определенной частоты и формы. Получается, кварцевый резонатор в электронике, а в народе просто “кварц”, – это радиоэлемент, который способен резонировать, если на него подать переменный ток определенной частоты и формы.

Кварцевые резонаторы выглядят примерно так.

кварцевый резонаторвиды кварцевых резонаторов

Кварц является диэлектриком. А что будет если тонкий диэлектрик разместить между двумя металлическими пластинами? Получится конденсатор! Конденсатор получается очень маленькой емкости, так что замерить его емкость вряд ли получится. Зато не стали мудрить со схемотехническим обозначением кварца, и на схемах его показывают как прямоугольный кусочек кристалла, заключенный между двумя пластинками конденсатора.

обозначение на схеме кварцевого резонатора

Разобрав кварцевый резонатор, мы можем увидеть воочию сам кристалл кварца. Давайте вскроем кварц советского производства вот в таком корпусе.

советский кварцевый резонатор

Здесь мы видим прозрачный кристалл кварца, размещенный между двумя металлическими пластинками, к которым подпаяны выводы.

что внутри кварцевого резонаторачто внутри кварцевого резонатора

пластинка кварца

В маленьких кварцах типа этих

кварцевый резонаторкварцевый резонатор

используются тонкие прямоугольные пластинки кварца. Физический размер и толщина кварцевой пластинки внутри кварцевого резонатора строго должна соблюдаться, так как именно ее габаритные размеры влияют на основную частоту колебаний. Здесь правило такое: чем больше толщина пластинки, тем ниже рабочая частота кварца. Поэтому, самые высокие частоты, на которые делают кварцы, составляет не более 50 МГц, так как пластинка получается очень тонкая, что создает трудности при ее изготовлении. Да и держать ее как-то надо в корпусе, не поломав. По идее, можно выжать из кварца частоту и до 200 МГц, но работать такой кварц будет на обертоне.

Обертоны кварцевого резонатора

Обертоны, или как еще их называют, моды или гармоники – это кратные частоты, выше основной частоты кварца. С помощью фильтров гасят основную частоту кварца и выделяют обертон. В кварцевом резонаторе в режиме обертонов используют нечетные обертоны. Если основная частота кварца F – это первый обертон, то его рабочие обертоны будут как 3F, 5F, 7F, 9F.  Стоит также отметить, что амплитуда обертона убывает с ростом его частоты, поэтому, далее 9 обертона смысла брать уже нет, так как выделять амплитуду маленького сигнала очень проблематично.

Пример: возьмем кварц с частотой в 10 Мегагерц. Тогда мы можем возбудить его на обертонах в 30 Мегагерц (третий обертон), в 50 Мегагерц (пятый обертон), в 70 Мегагерц (седьмой обертон) и максимум в 90 Мегагерц (девятый обертон).

Чтобы хоть как-то понять, что такое обертоны, для примера послушайте основную частоту 110 Герц и ее обертоны.

Схема, которая возбуждает кварц на обертонах, сложная и не очень надежная, так как во-первых, надо “давить” главную частоту кварца и выделять обертон, а во-вторых, кварц может возбудиться в режиме случайных колебаний. На практике все-таки делают схемы с умножением главной частоты кварца, что намного проще и надежнее. Здесь также есть еще одно правило: если частота маркируется в целых числах в Килогерцах – это работа на основной гармонике, а если в Мегагерцах через запятую – это обертонная гармоника. Например: РГ-05-18000кГц – резонатор для работы на основной частоте, а РГ-05-27,465МГц – для работы на 3-ем обертоне.

Последовательный и параллельный резонанс кварца

Очень много мифов ходит по интернету именно о кварцевом резонаторе. Самый популярный миф гласит так: если подать постоянное напряжение на кварцевый резонатор, он будет выдавать переменное напряжение с частотой, которая на нем указана. Насчет “частоты, указанной на нем”, я, может быть, соглашусь, но насчет постоянного напряжения – увы. Кристалл кварца просто сожмется или разожмется). Некоторые вообще до сих пор думают, что кварц сам по себе выдает переменный ток ). Ага, прям вечный двигатель).

Для того, чтобы понять принцип работы кварцевого резонатора, надо рассмотреть его эквивалентную схему:

эквивалентная схема кварцевого резонатора

С – это собственно емкость между обкладками конденсатора. То есть если убрать кристалл кварца, то останутся две пластины и их выводы. Именно они и обладают этой емкостью.

С1 – это эквивалетная емкость самого кристалла. Ее значение несколько фемтоФарад. Фемто – это 10-15 !

L1 – это эквивалентная индуктивность кристалла.

R1 – динамическое сопротивление, при работе кварца может достигать от нескольких Ом и до нескольких КОм

Можно заметить, что С1, L1 и R1 образуют последовательный колебательный контур, который обладает своей резонансной частотой.

последовательный колебательный контурпоследовательный колебательный контур

Резонансная частота такого контура вычисляется по формуле

формула последовательного резонанса кварцевого резонатора

 

Но все бы хорошо, но как видите, есть еще в эквивалентной схеме кварцевого резонатора один увесистый конденсатор С, который портит всю малину.

Кварцевый резонатор

Вся эта схема превращается в сложный параллельный колебательный контур. Резонансная частота такого контура уже будет определяться формулой

формула параллельного резонанса кварцевого резонатораформула параллельного резонанса кварцевого резонатора

Поэтому, запомните: каждый кварцевый резонатор может возбуждаться на двух резонансных частотах. На частоте последовательного резонанса и на частоте параллельного резонанса. Если мы видим на кварце вот такую надпись

частота кварцевого резонаторачастота кварцевого резонатора

это говорит нам о том, что частота последовательного резонанса для этого кварцевого генератора составляет 8 МГц. Кварцевые резонаторы в электронике работают именно на частоте последовательного резонанса. На своей практике не припомню, чтобы кто-то возбуждал кварц для работы на частоте параллельного резонанса.

Часовой кварцевый резонатор

Чаще всего часовой кварц выглядит вот так.

часовой кварц

“Что еще за часовой кварц?” – спросите вы.  Часовой кварц – это кварц с частотой в 32 768 Герц. Почему на нем такая странная частота? Дело все в том, что 32 768 это и есть 215. Такой кварц работает в паре с 15-разрядной микросхемой-счетчиком. Это наша микросхема К176ИЕ5.

к176ие5

Принцип работы этой микросхемы такой: после того, как она сосчитает 32 768 импульсов, на одной из ножек она выдает импульс. Этот импульс на ножке  с кварцевым резонатором на 32 768 Герц появляется ровно один раз в секунду. А как вы помните,  колебание один раз в секунду – это и есть 1 Герц. То есть на этой ножке импульс будет выдаваться с частотой в 1 Герц. А раз это так, то почему бы не использовать это в часах? Отсюда и пошло название – часовой кварц.

В настоящее время в наручных часах и других мобильных гаджетах этот счетчик и кварцевый резонатор встроены в одну микросхему и обеспечивают не только счет секунд, но и целый ряд других функций, типа будильника, календаря и тд. Такие микросхемы называется RTC (Real Time Clock) или в переводе с буржуйского Часы Реального Времени.

 

Кварцевый генератор

Что такое генератор? Генератор – это по сути устройство, которое преобразует один вид энергии в другой. В электронике очень часто можно услышать словосочетание  “генератор электрической энергии, генератор частоты, генератор функций ” и тд.

Кварцевый генератор представляет из себя генератор частоты и имеет в своем составе кварцевый резонатор. В основном  кварцевые генераторы бывают двух видов:

те, которые могут выдавать синусоидальный сигнал

и те, которые выдают прямоугольный сигнал, который чаще всего используется в цифровой электронике.

 Схема Пирса

Для того, чтобы возбудить кварц на частоте резонанса, нам надо собрать схему. Самая простая схема для возбуждения кварца – это классический генератор Пирса, который состоит всего лишь из одного полевого транзистора и небольшой обвязки из четырех радиоэлементов:

схема пирса для кварцевого резонатора

Пару слов о том как работает схема. В схеме  есть положительная обратная связь и в ней начинают возникать автоколебания. Но что такое положительная обратная связь?

В школе всем вам ставили прививки на реакцию Манту, чтобы определить, если у вас тубик или нет. Через некоторое время приходили медсестры и линейкой замеряли вашу реакцию кожи на эту прививку

Кварцевый резонатор

Когда ставили эту прививку, нельзя было чесать место укола. Но мне, тогда еще салаге, было по барабану. Как только я начинал тихонько чесать место укола, мне хотелось чесать еще больше)) И вот скорость руки, которая чесала прививку, у меня замерла на каком-то пике, потому что совершать колебания рукой у меня максимум получалось с частотой Герц  в 15.  Прививка набухала на пол руки))  И даже  один раз меня водили сдавать кровь в подозрении на туберкулез, но как оказалось, не нашли. Оно и неудивительно ;-).

Так что это я вам тут рассказываю хохмы из жизни? Дело в том, что эта чесотка прививки самая что ни на есть положительная обратная связь. То есть пока я ее не трогал, чесать не хотелось. Но как только тихонько почесал, стало чесаться больше и я стал чесать больше, и чесаться стало еще больше и тд.  Если бы на мою руку не было физический ограничений, то наверняка, место прививки уже бы стерлось до мяса. Но я мог махать рукой только с какой-то максимальной частотой. Так вот, такой же принцип и у кварцевого генератора ;-). Чуть подал импульс, и он начинает разгоняться и уже останавливается только на частоте параллельного резонанса ;-). Скажем так, “физическое ограничение”.

Первым делом нам надо подобрать катушку индуктивности. Я взял тороидальный сердечник и намотал из провода МГТФ несколько витков

тороидальная катушка индуктивноститороидальная катушка индуктивности

Весь процесс контролировал с помощью LC-метра, добиваясь номинала, как на схеме – 2,5 мГн. Если не доставало, прибавлял витки, если перебарщивал номинал, то убавлял. В результате добился  вот такой индуктивности.

измерение индуктивностиизмерение индуктивности

Транзистора у меня в загашнике не нашлось, и в местном радиомагазине его тоже не было. Поэтому, пришлось заказывать на Али. Кому интересно, брал здесь.

Его правильное название: транзистор полевой с каналом N типа.

транзистор 2n5485Распиновка слева-направо: Сток – Исток – Затвор

Ну а дальше дело за малым. Собираем схемку:

Кварцевый резонатор

Небольшое лирическое отступление.

Как вы видите, я пытался максимально сократить связи между радиоэлементами. Дело все в том, что все радиоэлементы имеют свои паразитные параметры. Чем длиннее их выводы, а также провода, соединяющие эти радиоэлементы в схеме, тем хуже будет работать схема, а то и вовсе “не зафурычит”. Да и вообще, схемы с кварцевым резонатором на печатных платах трассируют не просто так от балды. Здесь есть свои тонкие нюансы. Мельчайшие паразитные параметры могут испоганить весь сигнал на выходе такого генератора.

Итак, кварцевый генератор мы собрали, напряжение подали, осталось только снять сигнал с выхода нашего самопального генератора. За дело берется цифровой осциллограф OWON SDS6062

цифровой осциллограф

Первым  делом я взял кварц на самую большую частоту, которая у меня есть: 32 768 Мегагерц. Не путайте его с часовым кварцем (о нем пойдет речь ниже).

как проверить кварцевый резонатор

Не, ну а что вы хотели? Хотели увидеть идеальную синусоиду? Не тут-то было. Сказались паразитные параметры плохо собранной схемы и монтажа.

Внизу в левом углу осциллограф нам показывает частоту:

проверка кварцевого резонатора

Как вы видите 32,77 Мегагерц.  Главное, что наш кварц живой и схемка работает!

Давайте возьмем кварц с частотой 27 МГц.

как проверить кварц

Частоту тоже более-менее показал верно.

 

Ну и аналогично проверяем все остальные кварцы, которые у меня есть.

Вот осциллограмма  кварца на 16 МГц.

осциллограмма с кварцевого резонатора

Осциллограф показал частоту ровно 16 МГц.

 

Здесь поставил кварц на 6 МГц.

кварц на 6 мегагерц осциллограмма

Ровно 6 МГц!

На 4 МГц.

кварц на 4 Мгц

Все ОК.

Ну и возьмем еще советский на 1 Мегагерц. Вот так он выглядит.

кварц 1 Мгц

Сверху написано 1000 КГц = 1МГц.

1000 КГц кварц

 

Смотрим осциллограмму.

кварц 1 МГц осциллограмма

Рабочий!

При большом желании можно даже замерять частоту китайским генератором-частотомером.

измерение частоты частотомеромизмерение частоты частотомером

400 Герц погрешность для старенького советского кварца не очень и много, хотя дело может быть даже не кварце, а в самом частотомере.

 

Схема Пирса для прямоугольного сигнала

Итак, вернемся к схеме Пирса. Предыдущая схема Пирса генерирует синусоидальный сигнал

Но также есть видоизмененная схема Пирса для прямоугольного сигнала

А вот и она:

схема Пирса для меандра

Номиналы некоторых радиоэлементов можно менять в достаточно широком диапазоне. Например, конденсаторы С1 и С2 могут быть в диапазоне от 10 и до 100 пФ. Тут правило такое: чем меньше частота кварца, тем меньше должна быть емкость конденсатора. Для часовых кварцев конденсаторы можно поставить номиналом в 15-18 пФ. Если кварц с частотой от 1 до 10 Мегагерц, то можно поставить 22-56 пФ. Если не хотите заморачиваться, то просто поставьте конденсаторы емкостью в 22 пФ. Точно не прогадаете.

Также небольшая фишка на заметку: меняя значение конденсатора С1 можно настраивать частоту резонанса в очень тонких пределах.

Резистор R1 можно менять от 1 и до 20 МОм, а R2 от нуля и до 100 кОм. Тут тоже есть правило: чем меньше частота кварца, тем больше значение этих резисторов и наоборот.

Максимальная частота кварца, которую можно вставить в схему, зависит от быстродействия инвертора КМОП. Я взял микросхему 74HC04. Она не слишком быстродействующая. Состоит из шести инверторов, но использовать  мы будем только один инвертор.

схема пирса

 

Вот ее распиновка:

Кварцевый резонатор

Подключив к этой схеме часовой кварц, осциллограф выдал вот такую осциллограмму:

осциллограмма часового кварца

Ну как всегда всю картинку испортили паразитные параметры монтажа. Но, обратите внимание на частоту. Осциллограф почти верно ее показал с небольшой погрешностью. Ну оно и понятно, так как главная функция осциллографа отображать сигнал, а не считать частоту)

Кстати, вам эта часть схемы ничего не напоминает?

Кварцевый резонатор

Не эта ли часть схемы используется для тактирования микроконтроллеров?

Она самая! Просто недостающие элементы схемы уже есть в самом МК 😉

Схема Колпитца

Это также довольно распространенная и знаменитая схема.

схема Колпитцасхема Колпитца

За основу взять схема усилителя с общим коллектором (эмиттерный повторитель). Здесь все как обычно. Резисторы R1 и R2 устанавливают рабочую точку для транзистора. Резистор RE устанавливает уровень выходного напряжения. Транзистор NPN 2N4265 может работать на частотах до 100 МГц, поэтому его и взяли. Эта схема будет работать с кварцами в диапазоне от 1 и до 5 МГц.

Готовые модули кварцевых генераторов

В настоящее время кварцевые генераторы выпускают в виде законченных модулей. Некоторые фирмы, производящие такие генераторы,  достигают частотной стабильности  до 10-11 от номинала! Выглядят готовые модули примерно так:

виды кварцевых генератороввиды кварцевых генераторов

или так

Кварцевый резонаторкварцевый генератор 4 Мгц

Такие модули кварцевых генераторов в основном имеют 4 вывода.  Вот распиновка квадратного кварцевого генератора:

распиновка кварцевого генераторараспиновка кварцевого генератора

Давайте проверим один из них. На нем написано 1 МГц

кварцевый генератор на 1 мегагерцкварцевый генератор на 1 МГц

Вот его вид сзади.

выводы кварцевого генератора

Подавая постоянное напряжение от 3,3 и до 5 Вольт плюсом на 8, а минусом на 4, с выхода 5  я получил чистый ровный красивый меандр с частотой, написанной на кварцевом генераторе, то бишь 1 Мегагерц, с очень небольшими выбросами.

сигнал с кварцевого генераторасигнал с кварцевого генератора

Ну прям можно залюбоваться).

Да и китайский генератор-частотомер показал точную частоту.

измерение частоты кварцевого генератора

 

Отсюда делаем вывод: лучше купить готовый кварцевый генератор, чем самому убивать кучу времени и нервов на наладку схемы Пирса или Колпитца. Схема Пирса будет пригодна для проверки резонаторов и для ваших различных самоделок, хотя на Алиэкспрессе встречал готовый проверяльщик кварцевых резонаторов, способный замерять частоту кварцев от 1 и до 50 МГц. Посмотреть можете по этой ссылке.

Кварцевый резонатор

Плюсы кварцевых генераторов

Плюсы кварцевых генераторов частоты – это высокая частотная стабильность. В основном это 10-5 – 10-6 от номинала или, как часто говорят,  ppm (от англ. parts per million) — частей на миллион, то есть одна миллионная или числом 10-6. Отклонение частоты  в ту или иную сторону в кварцевом генераторе в основном связано с изменением температуры окружающей среды, а также со старением кварца. При старении кварца, частота кварцевого генератора стает чуточку меньше с каждым годом примерно на 1,8х10-7 от номинала. Если, скажем, я взял кварц с частотой в 10 Мегагерц ( 10 000 000 Герц) и поставил его в схему, то за год его частота уйдет примерно на 2 Герца в минус 😉 Думаю, вполне терпимо.

Кварцевый резонатор.

Принцип работы и свойства кварцевого резонатора

В современной электронике, особенно в цифровой сложно не найти электронный компонент под названием кварцевый резонатор. По своей сути, кварцевый резонатор является аналогом колебательного контура на основе ёмкости и индуктивности. Правда, кварцевый резонатор превосходит LC-контур по очень важным параметрам.

Как известно, колебательный контур характеризуется добротностью. Резонаторы на основе кварца обладают очень высокой добротностью, которая недостижима при использовании обычного колебательного LC-контура. Если добротность обычных контуров лежит в пределах 100 – 300, то для кварцевых резонаторов величина добротности достигает 105 – 107.

Ёмкость конденсатора довольно сильно зависит от температуры окружающей среды. У конденсаторов даже есть параметр, который называется ТКЕ (температурный коэффициент ёмкости). Он показывает насколько измениться ёмкость конденсатора при изменении температуры.

Естественно, при применении конденсатора в составе LC-контура, частота его колебаний будет очень сильно зависеть от внешней температуры среды. То же касается и индуктивности, у которой также есть своя температурная характеристика — ТКИ.

Понятно, что для использования в цифровой технике (в том числе и в технике связи) требуется более стабильный и надёжный источник гармонических колебаний.

Резонаторы на основе кварца обладают очень высокой температурной стабильностью. Именно благодаря высокой добротности и температурной стабильности кварцевые резонаторы применяются в радиотехнике очень активно.

Любой процессор или микроконтроллер работает на определённой тактовой частоте. Понятно, что для задания тактовой частоты необходим генератор. Такой генератор в качестве источника высокоточных гармонических колебаний, как правило, использует кварцевый резонатор. В тех схемах, где высокая добротность не требуется, могут применяться резонаторы на основе керамики – керамические резонаторы. Добротность резонаторов на основе пьезокерамики составляет не более 103. Их можно встретить в пультах дистанционного управления, электронных игрушках, бытовых радиоприёмниках.

Принцип работы кварцевого резонатора.

Принцип работы кварцевого резонатора целиком и полностью опирается на пьезоэлектрический эффект. Основой любого кварцевого резонатора является пластинка из кварца. Кварц – это одна из разновидностей кремнезема SiO2. Для изготовления резонаторов пригоден только лишь низкотемпературный кварц, который обладает пьезоэлектрическими свойствами. В природе такой кварц встречается в виде кристаллов и бесформенной гальки.

Кристалл кварца
Кристалл кварца

Химически кварц очень устойчив и не растворяется ни в одной из кислот, за исключением плавиковой. Также кварц очень твёрдый. На шкале твёрдости он занимает седьмое место из десяти.

Чтобы изготовить кварцевую пластинку берётся кристалл кварца и из него под определённым углом вырезается пластинка. От угла, под которым происходит срез, зависят электромеханические свойства кварцевой пластины. Тип среза существенно влияет на температурную стабильность, количество паразитных резонансов, резонансную частоту.

Далее на две стороны кварцевой пластины наносят металлизированный слой (из серебра, никеля, золота или платины) и посредством жёстких проволочных контактов закрепляют в кварцедержателе. Всю эту конструкцию помещают в герметичный корпус.

Кварцевый резонатор является электромеханической колебательной системой. Как известно, любая колебательная система обладает своей резонансной частотой. У кварцевого резонатора также есть своя номинальная резонансная частота. Если приложить к кварцевой пластине переменное напряжение, которое совпадает с резонансной частотой самой кварцевой пластины, то происходит резонанс частот и амплитуда колебаний резко возрастает.

При резонансе электрическое сопротивление резонатора уменьшается. В результате получается эквивалент последовательной колебательной системы. Поскольку потери энергии в кварцевом резонаторе очень малы, то он фактически представляет собой электрический колебательный контур с очень большой добротностью.

Эквивалентная электрическая схема кварцевого резонатора изображена на рисунке.

Эквивалентная электрическая схема кварцевого резонатора
Эквивалентная электрическая схема кварцевого резонатора

Здесь С0 – это постоянная (статическая) ёмкость образующаяся за счёт металлических пластин-электродов и держателя. Последовательно соединённые индуктивность L1,конденсатор С1 и активное сопротивление Rакт. отражают электромеханические свойства кварцевой пластинки. Как видим, если отбросить ёмкость монтажа и кварцедержателя С0, то получиться последовательный колебательный контур.

При монтаже кварцевого резонатора на печатную плату стоит позаботиться о том, чтобы не перегреть его. Эта рекомендация наверняка связана с тем, что конструкция кварцевого резонатора довольно тонкая. Температурный перегрев может вызвать деформацию кварцедержателя и пластинок-электродов. Естественно, всё это может отразиться на качестве работы резонатора в схеме.

Также известно, что если кварц нагреть свыше 5730 С, то он превращается в высокотемпературный кварц и лишается своих пьезоэлектрических свойств. Конечно, довести температуру кварца до такой температуры оборудованием для пайки нереально.

Обозначение кварцевого резонатора.

На принципиальных схемах и в технической документации кварцевый резонатор обозначается наподобие конденсатора, только между пластинами добавлен прямоугольник, который символизирует пластинку кварца. Рядом с графическим изображением указывается буква Z или ZQ.

Условное графическое обозначение кварцевого резонатора
Условное обозначение кварцевого резонатора на схемах

Как проверить кварцевый резонатор?

Многие начинающие радиолюбители задаются вопросом: “Как проверить кварцевый резонатор?”

К сожалению, достоверно проверить кварцевый резонатор можно только заменой. Причиной неисправности кварцевого резонатора может быть сильный удар либо падение электронного прибора, в котором он был установлен. Поэтому если есть подозрение в исправности кварцевого резонатора, то его стоит заменить новым. К счастью в практике ремонта неисправность кварцевого резонатора встречается редко, конечно, есть и исключения, но они относятся к портативной электронике, которую частенько роняют.

Более подробную информацию о кварцевых резонаторах вы узнаете из книги, которую найдёте здесь.

Главная &raquo Радиоэлектроника для начинающих &raquo Текущая страница

Также Вам будет интересно узнать:

 

Общие сведения о кварцевом резонаторе

Точное время — одно из самых основных требований для многих технологий, которые мы принимаем как должное, но сколько из нас останавливаются, чтобы рассмотреть компонент, который позволяет нам его получить? Кварцевый кристалл — это наш стандарт, когда нам нужна доступная, известная и стабильная тактовая частота для наших микропроцессоров и других цифровых схем. Возможно, пора присмотреться к нему.

Первые электронные генераторы на радиочастотах основывались на электрических свойствах настроенных цепей с индукторами и конденсаторами, чтобы поддерживать их на частоте.Настроенные схемы дешевы и просты в изготовлении, однако на их частотную стабильность сильно влияют внешние факторы, такие как температура и вибрация. Таким образом, РЧ-генератор, использующий настроенную схему, может дрейфовать на многие кГц за период своей работы, и на его синхронизацию нельзя полагаться. Задолго до того, как для компьютеров потребовалась точная синхронизация, радиопередатчики 1920-х и 1930-х годов должны были оставаться на частоте, и приходилось прилагать значительные усилия, чтобы удерживать настроенный передатчик на цели.Кристалл кварца ждал, чтобы налететь и спасти нас от этих усилий.

Хорошая вибрация

Эквивалентная схема кристалла кварца. Вольфманкурд [PD} через Wikimedia Commons. Решение проблемы стабильности частоты настроенного контура заключалось в использовании кварцевого кристалла, резонансного элемента, физические свойства которого значительно менее чувствительны, чем индукторы или конденсаторы к внешним факторам, таким как температура. Кристаллы кварца являются пьезоэлектрическими, то есть, когда вы их деформируете, они развивают электрический заряд, а когда к ним прикладывается электрический заряд, они, в свою очередь, деформируются.Таким образом, вы можете электрически создать физическую вибрацию в тщательно вырезанном кристалле кварца. Так же, как камертоны, гонги и другие упругие твердые тела могут проявлять физический резонанс, кристалл можно использовать в качестве электрического резонатора.

Электрическая эквивалентная модель кристалла кварца — это модель последовательно настроенной цепи, включенной параллельно конденсатору, что придает ему некоторые свойства как параллельной, так и последовательно настроенной цепи. Тем не менее, он отличается от настроенной схемы, изготовленной из обычных компонентов, чрезвычайно высокой добротностью или узкой полосой пропускания.Он может быть включен в цепь обратной связи генератора так же, как и настроенный контур, и тогда генератор будет успешно работать на своей резонансной частоте.

Твердый как камень

Осциллятор Пирса. Омегатрон [CC BY-SA 3.0], через Wikimedia Commons. Практические кристаллы имеют форму точно отшлифованных дисков или пластин синтетического кварца с химически осажденными металлическими электродами с обеих сторон. Они помещены в герметично закрытые пакеты для обеспечения их устойчивости.

Существует множество конфигураций кварцевых генераторов, но наиболее вероятная схема, с которой вы столкнетесь при работе с цифровыми схемами, — это генератор Пирса. Вы обнаружите, что это реализовано с использованием дискретных логических вентилей, а также во множестве микропроцессоров и других ИС. Кристалл устроен с парой конденсаторов и резистором смещения высокого номинала как схема фазового сдвига от выхода к входу инвертора. Один из конденсаторов может иногда иметь небольшой переменный конденсатор, подключенный параллельно, что позволяет выполнять очень небольшие регулировки частоты для корректировки допусков отдельных кристаллов.На резонансной частоте кристалла требуется сдвиг фазы на 180 градусов по кристаллу для поддержания колебаний.

То, что вы только что прочитали, представляет собой очень простой пример того, что такое кристалл, как он работает и как вы можете увидеть его использование. Однако это даст вам только часть истории, поскольку кварцевый резонатор — это больше, чем кажется на первый взгляд.

Все в подтекстах

Резонансная частота кристалла кварца пропорциональна его размерам.По мере того, как кристалл становится тоньше, частота увеличивается. В конце концов, когда частота увеличивается, наступает точка, в которой толщина материала не может быть уменьшена дальше без разрушения кристалла, поэтому существует верхняя частота, за которой кристалл не может быть изготовлен. Он варьируется в зависимости от используемых методов, но обычно превышает 20 МГц.

Демонстрация гармонических обертонов в звуковых волнах в закрытой трубе. Commator [CC BY-SA 4.0], через Wikimedia Commons.Конечно, вы заметите, что кристаллы доступны с частотой, во много раз превышающей эту частоту, так что случилось? Ответ заключается в том, что частоты кристалла выше этого числа достигаются за счет гармонических обертонов. Частота ниже 20 МГц — это просто основной резонанс, другие резонансы могут быть достигнуты в том же кристалле при кратных основаниях. Этот эффект можно легко продемонстрировать на примере стоячих волн в привязанном канате или в акустических свойствах закрытой трубы, как показано на диаграмме.

На практике кристалл, предназначенный для использования обертона, будет иметь резонансы, нечетные кратные его основной частоте. Так, например, обертонный кристалл с основной частотой 10 МГц также будет иметь резонансы обертона на 30 и 50 МГц.

Обертонная версия генератора Пирса с дополнительной настройкой схемы. Примечание 340 к приложению Fairchild Semiconductor, Кристаллические генераторы HCMOS.

Включение кристалла обертона в схему Пирса, показанную выше, не вызовет его колебания на частоте обертона, вместо этого он будет работать на своей основной частоте.Обертонный генератор должен включать в себя дополнительную настроенную схему, предназначенную для подавления основной частоты, оставляя наиболее заметные из обертоновых резонансов определять частоту колебаний. В нашем примере из примечания к приложению логики CMOS, индуктивность в выходной цепи инвертора выполняет эту задачу.

Помимо генератора, есть еще одна функция, в которой могут встречаться кристаллы. В радиосхемах их чрезвычайно узкая полоса пропускания означает, что они могут быть подключены гирляндой для создания чрезвычайно селективного фильтра.Один из способов генерации передачи с одной боковой полосой использует кварцевый фильтр, достаточно узкий, чтобы выделить одну боковую полосу из сигнала AM несущей с подавлением двух боковых полос.

Скорее всего, когда вам понадобятся часы с кварцевым управлением в наши дни, вам понадобится готовый модуль кварцевого генератора, и вам никогда не придется создавать свои собственные. А когда вам потребуется более высокая частота, вы будете использовать микросхему тактового генератора с фазовой автоподстройкой частоты, так что вам никогда не понадобится создавать генератор обертонов.Но если речь идет о каком-либо часто используемом компоненте, знание основ не повредит, и кристаллы — не исключение.

[Показанное и уменьшенное изображение кристалла Arduino: DustyDingo [общественное достояние], через Wikimedia Commons.]

.

бесплатных образцов 13,575 Мхз Хк-49смд кварцевый резонатор с Рохс уступчивым

WTL —- Беспроигрышная позиция для длинной позиции

WTL — профессиональный производитель кварцевых электронных компонентов в Китае, основанный в 2001 , который специализируется на исследованиях и разработках , производстве и маркетинге , WTL предлагает различные виды кристаллов, подходящие для широкого применения. Если вам нужны стандартные или высококлассные требования в специальных областях, мы поддержим вас подходящим кварцевым резонатором и генератором со 100% гарантией надежности.

Веб-сайт: www.wtlcrystals.com

ОСОБЕННОСТЬ

1. Высота 4,0 мм или 3,0 мм, компактный блок для поверхностного монтажа

2. Возможность использования в металлическом корпусе и полностью герметичном корпусе. Высокие характеристики раствора.

3. Справляется с монтажом высокой плотности и оптимален для массового производства.

ЭЛЕКТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Комплект для поверхностного монтажа HC-49 / S, сваренный сопротивлением

Товар

Технические характеристики

Диапазон частот

3.579545 до 100,000 МГц

Емкость нагрузки (CL)

Серия

, 16 пФ, 18 пФ, 20 пФ, 30 пФ или укажите

Допустимое отклонение частоты (при 25 ° C)

± 30ppm при 25 ± 2 ° C (стандарт) или укажите

Стабильность частоты в рабочем режиме
Диапазон температур

± 30ppm (типичное значение) или укажите

Диапазон рабочих температур

-10 ° C — + 60 ° C, -20 ° C — + 70 ° C, -40 ° C — 85 ° C, или укажите

Диапазон температур хранения

-40 ° С — + 85 ° С

Шунтирующая емкость (C 0 )

7 пФ, макс.

Уровень водителя (Типовой)

100 мкВт Типичная

Старение (при 25 ° C)

± 5 ​​частей на миллион / год максимум

13.Кварцевый резонатор HC-49SMD, 575 МГц, соответствует требованиям RoHS

Схема технологического процесса

Профиль компании

1. 19 лет опыта

2. PCB VS Crystal Matching Test бесплатно

3. Служба поддержки FAE

4.Сертификация: ISO9001, ISO14001, SGS, RoHS

5. Обеспечьте полный набор лабораторий надежности

6. Обслуживание от двери до двери

7.Глобальный 180-дневный возврат

8. Более 72 Стран и регионов, 27 Дистрибьюторов

9. Частоты по индивидуальному заказу Благодаря нашей собственной производственной линии вафель

Наш завод имеет 19-летнюю историю и расположен в городе Тонглин , провинция Аньхой, Китай. Он занимает площадь 6000 квадратных метров. В нем работает более 200 рабочих, включая производство, контроль качества, контроль качества, склад, исследования и разработки, технические вопросы, IQC.Добро пожаловать на наш завод!

Свидетельство

Выставка

Упаковка и доставка

FAQ

Как с нами связаться?

Нажмите здесь, чтобы получить техническое описание и другие скидки!

Назад домой

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *