Линейка автоматических выключателей по току: Автоматический выключатель

Содержание

Выбор автоматического выключателя по параметрам сети, подключенной нагрузке (мощности), по току, по сечению провода. Конструктивные элементы и особенности эксплуатации автоматов.

Старая версия статьи здесь

Автоматические выключатели одновременно выполняют функции защиты и управления: защищают кабели, провода, электрические сети и потребителей от перегрузки и короткого замыкания (сверхтоков короткого замыкания), а также обеспечивают нормальный режим протекания электротока в цепи и осуществляют управление участками электроцепей.

Автоматические выключатели выполняют одновременно функции защиты и управления, бывают однополюсные, двухполюсные, трехполюсные и четырехполюсные.

Автоматы имеют защитные (спусковые) устройства двух типов: тепловое реле с выдержкой времени для защиты от перегрузки и электромагнитное реле для защиты от короткого замыкания.

Основные конструктивные узлы автоматических выключателей: главная контактная система, дугогасительная система, привод, расцепляющее устройство, расцепители и вспомогательные контакты. Расцепители представляют собой реле прямого действия, служащее для отключения автоматического выключателя (без выдержки времени или с выдержкой) через механизм свободного расцепления, который в свою очередь состоит из рычагов, защелок, коромысел и отключающих пружин.

 

Только правильно выбранный автоматический выключатель сможет защитить Вас и сработает в случае аварии или при опасной нагрузке на вашу электропроводку. Неверный выбор может привести к пожару или поражению электрическим током.

Не рекомендуется применять «автомат» с видимыми повреждениями корпуса, а также устанавливать автоматические выключатели с завышенным номинальным током срабатывания. Нужно выбирать автоматический выключатель строго под параметры вашей электропроводки и потребителей, только известных производителей и желательно в специализированных магазинах.

Выбираются автоматические выключатели по номинальному току, напряжению и по условиям эксплуатации (исходя из типа исполнения). Если необходимо выбрать автомат для подключения известных нагрузок необходимо рассчитать ток. Автоматический выключатель также должен отключить напряжение при коротком замыкании.

Характеристики срабатывания (отключения) и эксплуатации установлены в европейских стандартах на автоматические выключатели: DIN VDE 0641 часть 11/8.92, EN 60 898, IEC 898 (DIN – Немецкий промышленный стандарт, VDE – Технические правила Общества немецких электриков, EN – Европейский стандарт, IEC – Международная электротехническая комиссия) и в российском стандарте ГОСТ Р 50345-99.

Согласно данным стандартам защитные устройства могут быть трех характеристик срабатывания:

    • Автоматический выключатель с характеристикой срабатывания B рекомендуется применять преимущественно для защиты оборудования, кабелей и цепей в жилых домах (как правило, цепи освещения и розеток)
    • Автоматический выключатель с характеристикой срабатывания C рекомендуется применять  для защиты оборудования, кабелей и цепей в жилых домах (цепи освещения и розеток), а также для защиты цепей с потребителями, обладающими большим пусковым током (группы ламп, электродвигатели и т. д.)
    • Автоматические выключатели с характеристикой срабатывания D преимущественно применяются для защиты кабелей и цепей с потребителями с очень большим пусковым током (сварочные трансформаторы, электродвигатели и т.д.)

Стоит отметить, что подавляющее большинство автоматов на российском рынке предлагается с характеристикой С, с характеристикой B продаются как правило автоматы на малые токи, остальные поставляются в основном под заказ.

 

Согласно стандарту DIN VDE 0100 часть 430/11.91 и его приложений (для устройств защиты кабелей и электрических цепей от перегрузки), защита от чрезмерного нагрева (тепловая защита) в случае перегрузки обеспечивается, если выполняются следующие условия:

    • Потребляемый ток цепи должен быть меньше или равным номинальному току автоматического выключателя, который в свою очередь должен быть не больше, чем максимально допустимая нагрузка электрической цепи или кабеля (Ib<=In<=Iz)
    • Номинальный ток срабатывания автоматического выключателя (для защиты от перегрузки по току) должен быть примерно в 1,5 раза меньше, чем максимально допустимая нагрузка электрической цепи или кабеля (In<=1,45*Iz)

где Ib – потребляемый ток цепи, нагрузка
Iz – допустимая нагрузка электрической цепи или кабеля
In – номинальный или заданный ток устройств защиты от чрезмерного тока

Определить максимальный ток, который выдерживает проводка можно с помощью программы по выбору сечения провода по нагреву и потерям напряжения или по таблицам ПУЭ (Правил устройства электроустановок).

 

 
Характеристики срабатывания автоматических выключателей B и C согласно DIN VDE 0641 и D согласно IEC 947-2

 

Параметры срабатывания линейных защитных автоматов согласно DIN VDE 0641 и IEC 60 898

 

 Характеристика срабатывания  Тепловое реле  Электромагнитное реле
 Малый испытательный ток  Большой испытательный ток  Время срабатывания  Удерживание  Срабатывание Время срабатывания
 B  1,13*In    > 1час  3*In   > 0,1 с
   1,45*In  < 1час    5*In < 0,1 с
 C  1,13*In    > 1час  5*In   > 0,1 с
   1,45*In  < 1час    10*In < 0,1 с
 D  1,13*In    > 1час  10*In   > 0,1 с
   1,45*In  < 1час    20*In < 0,1 с

 

То есть при перегрузке до 13% номинального тока, автоматический выключатель должен отключиться не ранее, чем через час (т. е. выдерживать перегрузку 13% минимум в течение часа), а при перегрузке до 45%, тепловое реле должно отключить «автомат» в течение часа.

Трехкратную перегрузку автоматический выключатель с характеристикой B должен как минимум выдерживать 0,1 секунду, а при пятикратной перегрузке встроенное электромагнитное реле должно отключить автоматический выключатель менее чем за 0,1 секунду.

Из всего этого видно, что номинальный ток выбранного Вами автоматического выключателя, как минимум, не должен превышать допустимых токовых нагрузок для Вашей электропроводки, поэтому, приобретая автоматические выключатели, будьте внимательны с выбором тока. Если Вам продавец советует выбрать автоматический выключатель с током не менее 25А, чтобы при включенном холодильнике, обогревателе, стиральной машине и т.п. его не выбивало, то помните, что в большинстве квартир проводка выполнена из алюминия сечением 2.5 мм2, а такой провод выдерживает максимум 24А. В этом случае единственным разумным решением будет не включать одновременно, например, микроволновую печь и электрочайник или стиральную машину, а не заменять автомат 16А на 25А. Не забывайте, что автоматический выключатель должен выполнять свое основное предназначение — защищать Вашу сеть от перегрузок.

Аналогичным образом подбирается и номинальный ток для дифференциального автомата (так как он объединяет в себе УЗО и автоматический выключатель) — выбор дифференциального автоматического выключателя.

При использовании в цепи постоянного тока характеристики срабатывания теплового расцепителя остаются теми же, что и в сетях переменного напряжения. А характеристики максимального испытательного тока электромагнитного расцепителя изменятся.

Значения максимального испытательного тока электромагнитного расцепителя.

 

 

 

Характеристика выключения

B

C

D

АС/50 Гц (переменный ток)

DC (постоянный ток)

АС/50 Гц (переменный ток)

DC (постоянный ток)

АС/50 Гц (переменный ток)

Минимальный испытательный ток

3,0*In

3,0*In

5*In

5*In

10*In

Максимальный испытательный ток

5,0*In

7,5*In

10*In

15*In

20*In


Допустимая нагрузка на автоматические выключатели
, установленные в ряд один за другим

Поправочный коэффициент (K) в случае взаимного теплового влияния автоматических выключателей, установленных рядом друг с другом, при расчетной нагрузке.

 Число автоматических выключателей  Коэффициент К
 1  1
 2…3  0,95
 4…5  0,9
 ≥6  0,85

Влияние окружающей температуры на тепловое срабатывание автоматического выключателя (приведенные в столбце 30°С токи соответствуют номинальным токам автоматического выключателя, так как при этой температуре задается режим срабатывания). В таблице приведены уточненные значения расчетного тока в зависимости от окружающей температуры.

 

In (А) 30°С 35°С 40°С 45°С 50°С 55°С 60°С
0,5 0,5 0,47 0,45 0,4 0,38
1 1 0,95 0,9 0,8 0,7 0,6 0,5
2 2 1,9 1,7 1,6 1,5 1,4 1,3
3 3 2,8 2,5 2,4 2,3 2,1 1,9
4 4 3,7 3,5 3,3 3 2,8 2,5
6 6 5,6 5,3 5 4,6 4,2 3,8
10 10 9,4 8,8 8 7,5 7 6,4
16 16 15 14 13 12 11 10
20 20 18,5 17,5 16,5 15 14 13
25 25 23,5 22 20,5 19 17,5 16
32 32 30 28 26 24 22 20
40 40 37,5 35 33 30 28 25
50 50 47 44 41 38 335 32
63 63 59 55 51 48 44 40

 

См. каталог:
Модульные устройства коммутации и управления HAGER
Автоматические выключатели, УЗО и дифф. автоматы Hager
Линейные защитные автоматы — для защиты кабелей и проводов
Автоматические выключатели Hager HMF на токи 80-125А
Автоматические выключатели SASSIN
Автоматы дифференциальные SASSIN серии C45L, C45N

Статьи по теме:

Выбор устройства защитного отключения (УЗО)
Выбор дифференциального автомата
Проведение электромонтажных работ


Внимание! При полном или частичном копировании материалов данной статьи или другой информации с сайта www.electromirbel.ru, обязательно наличиеактивной ссылки, ведущей на главную страницу www.electromirbel.ru или на страницу с копируемым материалом. Гиперссылка не должна быть запрещена к индексации поисковыми системами (например, с помощью тегов noindex, nofollow и т.д.)!!!


© ООО «Электромир», 2010.

Номинал и токовые характеристики автоматических выключателей

Здравствуйте, уважаемые читатели сайта elektrik-sam.info.

В этой статье мы рассмотрим основные характеристики автоматических выключателей, которые необходимо знать, чтобы правильно ориентироваться при их выборе — это номинальный ток и время токовые характеристики автоматических выключателей.

Напомню, что эта публикация входит в серию статей и видео, посвященных электрическим аппаратам защиты из курса Автоматические выключатели, УЗО, дифавтоматы — подробное руководство.

Основные характеристики автоматического выключателя указываются на его корпусе, где также наносится торговая марка или бренд производителя и каталожный либо серийный номер.

Самая главная характеристика автоматического выключателя – номинальный ток. Это максимальный ток (в Амперах), который может протекать через автомат бесконечно долго, не отключая защищаемую цепь. При превышении протекающим током этой величины, автомат срабатывает и размыкает защищаемую цепь.

Ряд значений номинального тока автоматических выключателей стандартизован и составляет:

6, 10, 16, 20, 25, 32, 40, 50, 63, 80, 100А.

Величина номинального тока автомата указывается на его корпусе в амперах и соответствует температуре окружающей среды +30˚С. С увеличением температуры, значение номинального тока снижается.

Также автоматы в электрощитах обычно устанавливаются по несколько штук в ряд вплотную друг к другу, это приводит к увеличению температуры (автоматы «подогревают» друг друга) и снижению величины коммутируемого ими тока.

Некоторые производители автоматических выключателей указывают в каталогах поправочные коэффициенты для учета этих параметров.

Подробно о влиянии температуры окружающей среды и количества рядом установленных аппаратов защиты смотрите в статье Почему в жару срабатывает автоматический выключатель.

В момент подключения в электрическую сеть некоторых потребителей, например, холодильников, пылесосов, компрессоров и др. в цепи кратковременно возникают пусковые токи, которые могут в несколько раз превышать номинальный ток автомата. Для кабеля такие кратковременные броски тока не страшны.

Поэтому, чтобы автомат не выключался каждый раз при небольшом кратковременном возрастании тока в цепи, применяют автоматы с разными типами время-токовой характеристики.

Таким образом, следующая основная характеристика:

время-токовая характеристика срабатывания автоматического выключателя – это зависимость времени отключения защищаемой цепи, от силы протекающего через нее тока. Ток указывается как отношение к номинальному току I/Iном, т.е. во сколько раз протекающий через автомат ток превышает номинальный для данного автоматического выключателя.

Важность этой характеристики заключается в том, что автоматы с одинаковым номиналом будут отключаться по-разному (в зависимости от типа время-токовой характеристики). Это дает возможность уменьшить количество ложных срабатываний, применяя автоматические выключатели с различными токовыми характеристиками для разных типов нагрузки,

Рассмотрим типы время-токовых характеристик:

Тип A (2-3 значения номинального тока) применяются для защиты цепей с большой протяженностью электропроводки и для защиты полупроводниковых устройств.

Тип B (3-5 значений номинального тока) применяются для защиты цепей с малым значением кратности пускового тока с преимущественно активной нагрузкой (лампы накаливания, обогреватели, печи, осветительные электросети общего назначения). Показаны для применения в квартирах и жилых зданиях, где нагрузки в основном активные.

Тип C (5-10 значений номинального тока) применяются для защиты цепей установок с умеренными пусковыми токами — кондиционеры, холодильники, домашние и офисные розеточные группы, газоразрядные лампы с повышенным пусковым током.

Тип D (10-20 значений номинального тока) применяются для защиты цепей, питающих электроустановки с высокими пусковыми токами (компрессоры, подъемные механизмы, насосы, станки). Устанавливаются, в основном, в производственных помещениях.

Тип K (8-12 значений номинального тока) применяются для защиты цепей с индуктивной нагрузкой.

Тип Z (2,5-3,5 значений номинального тока) применяются для защиты цепей с электронными приборами, чувствительными к сверхтокам.

В быту обычно используются автоматические выключатели с характеристиками B,C и очень редко D. Тип характеристики обозначается на корпусе автомата латинской буквой пред значением номинального тока.

Маркировка «С16» на автоматическом выключателе будет обозначать, что он имеет тип мгновенного расцепления С (т.е. срабатывает при величине тока от 5 до 10 значений от номинального тока) и номинальный ток, равный 16 А.

Время-токовая характеристика автоматического выключателя обычно приводится в виде графика. На горизонтальной оси указывается кратность значения номинального тока, а по вертикальной оси — время срабатывания автомата.

Широкий диапазон значений на графике обусловлен разбросом параметров автоматических выключателей, которые зависят от температуры — как внешней, так и внутренней, поскольку автоматический выключатель нагревается проходящим через него электрическим током, особенно, при аварийных режимах — током перегрузки или током короткого замыкания (КЗ).

На графике видно, что при значении I/Iн≤1 время отключения автоматического выключателя стремится к бесконечности. Другими словами, до тех пор, пока ток, протекающий через автоматический выключатель, меньше или равен номинальному току, автоматический выключатель не сработает (не отключится).

Также график показывает, что чем больше значение I/Iн (т.е. чем больше протекающий через автомат ток превышает номинальный), тем быстрее автоматический выключатель отключится.

При протекании через автоматический выключатель тока, величина которого равна нижней границе диапазона срабатывания электромагнитного расцепителя (3In для «В», 5In для «С» и 10In для «D»), он должен отключиться за время более 0,1с.

При протекании тока, равного верхней границе диапазона срабатывания электромагнитного расцепителя (5In для «В», 10In для «С» и 20In для «D»), автоматический выключатель отключится за время менее 0,1с. Если значение тока главной цепи находится внутри диапазона токов мгновенного расцепления, автоматический выключатель расцепляется либо с незначительной выдержкой, либо без задержки времени (менее 0,1 с).

В следующих статьях мы продолжим рассмотрение характеристик автоматических выключателей, методику и стратегию их расчета и выбора, потому если хотите не пропустить новые интересные материалы по этой теме — подписывайтесь на новости сайта, форма подписки внизу статьи.

В заключении статьи подробное видео Номинал и токовые характеристики автоматических выключателей:

 

Рекомендую прочитать:

 

Автоматические выключатели УЗО дифавтоматы — подробное руководство.

Как выбирать автоматические выключатели, УЗО, дифавтоматы?

Автоматические выключатели — конструкция и принцип работы.

Номиналы групповых автоматов превышают номинал вводного?

Почему в жару срабатывает автоматический выключатель?

Менять ли автоматический выключатель, если его «выбивает»?

Конструкция (устройство) УЗО.

Устройство УЗО и принцип действия.

Работа УЗО при обрыве нуля.

Как проверить тип УЗО?

Почему УЗО выбирают на ступень выше?

Выбор автоматического выключателя. | www.domamaster.net

Назначение автоматического выключателя.

Автоматический выключатель — это устройство, которое предназначено для защиты электрических сетей и потребителей подключённых в данную сеть от токов перегрузки и токов короткого замыкания(КЗ). Чтобы кабельные сети оставались в исправном состоянии, важно правильно произвести выбор автоматического выключателя. В сегодняшней статье мы расскажем, как выбрать автоматический выключатель и на что следует обратить своё внимание.

Критерии выбора автоматического выключателя.

Прежде всего, при выборе автоматического выключателя следует обратить внимание на следующие важные критерии:

  1. Номинальный ток автоматического выключателя;
  2. Максимальная отключающая способность автомата;
  3. Тип характеристики автоматического выключателя;
  4. Селективность;
  5. Количество полюсов;
  6. Марка производителя.

Выбор автоматического выключателя по мощности нагрузки и току в цепи.

Как известно, большинство людей полагает, что автоматический выключатель в первую очередь должен защищать устройства подключенные в сеть. Отсюда возникает популярный запрос, — «Выбор автоматического выключателя по мощности». На самом деле, всё обстоит несколько иначе. Первым делом автомат защищает электрический кабель, а затем уже потребителей. Отсюда появляется первый вывод:

Выбор автоматического выключателя по номинальному току

Как правило, в идеальном варианте, номинальный ток автомата, должен быть на 45% ниже допустимого тока на который рассчитан кабель. Потому что тепловая защита автомата способна выдерживать токовые перегрузки от 13% до 45% в интервале времени до 1 часа. Таким образом, чтобы защитить кабель от возможного перегрева, следует использовать автомат с немного заниженным значением номинального тока.

Например: Кабель ВВГнг-LS 3×1,5 в зависимости от условий монтажа может выдерживать в нормальном состоянии ток до 21 А. Следовательно, номинальный ток автоматического выключателя к которому подключается данный кабель не должен превышать 16А.

Iном.кабеля=Iном.автомата*1,45=16*1,45=23,2 А

Как видите, расчёты показывают, что в режиме максимальной перегрузки в сети, при использовании автоматического выключателя на 16 А, всё-таки возможен незначительный нагрев кабеля в течении короткого периода времени. Современные линейки автоматических выключателей предлагают автоматы с номинальным током 13 А. В частности, выбор автомата с данным номиналом, будет оптимальным решением для защиты кабеля ВВГнг-LS 3×1,5:

Iном. кабеля=Iном.автомата*1,45=13*1,45=18,9 А

Таким образом, приходим к выводу, что номинальный ток автомата, должен быть минимум на 45% ниже, максимально допустимого тока на который рассчитан кабель:
                             Iном.автомата = Iном.кабеля /1,45

Выбор автоматического выключателя по максимальной отключающей способности.

Максимальная отключающая способность автомата — это характеристика, которая отражает уровень максимального тока, при котором автомат способен выполнять свои функции и не выходить из строя. Как правило, обозначается в кА и характеризует величину тока КЗ, которую автоматический выключатель должен выдержать и произвести отключение.

К примеру, в современных линейках автоматических выключателей наиболее часто встречаются автоматы со следующими параметрами максимальной отключающей способности:

  • 4,5 кА;
  • 6,0 кА;
  • 10 кА.

Выбор автоматического выключателя по максимальной отключающей способности

Чем выше значение максимальной отключающей способности, тем надёжней и дороже автоматический выключатель. Чтобы выбрать оптимальную величину максимальной отключающей способности автомата, необходимо проанализировать, насколько далеко он установлен от источника питания (ТЭЦ, электростанции и т.п.). Величина тока короткого замыкания, будет снижаться по мере удалённости от источника электроэнергии. Чем ближе к источнику электроэнергии, тем больше величина тока КЗ, чем дальше от источника электроэнергии, тем ниже величина тока КЗ.

Как известно, на трансформаторных подстанциях, рекомендуют установку устройств на 10 кА. В общих распределительных щитах на 6 кА. В квартирных щитах автоматические выключатели на 4,5 кА. Однако, Вам никто не запрещает устанавливать в квартирных и домовых щитах устройства на 6 кА и 10 кА. Используя такие устройства, Вы повышаете надёжность системы и уровень своей защиты.

Выбор автоматического выключателя по типу характеристики.

Прежде всего существуют различные время-токовые характеристики (ВТХ) автоматических выключателей. Подробно мы их разобрали в одной из наших прошлых статей, кому интересно, советуем обязательно ознакомиться, — тут.

Время токовые характеристики автоматических выключателей B C D

Если рассмотреть вопрос более обобщённо, то можно выделить, несколько основных характеристик: B, С, D. В свою очередь, данные характеристики определяют при какой величине тока, автомат отключится мгновенно. Параметры отключения для характеристик B, С, D:

  1. B — от 3 до 5 ×In;
  2. C — от 5 до 10 ×In;
  3. D — от 10 до 20 ×In.

In — это номинальный ток автоматического выключателя. То есть мы берём номинальный ток автомата, например 16А и получаем следующие данные:

  1. Автоматический выключатель с характеристикой B16 отключится мгновенно при величине тока от 48 до 80 А;
  2. Автомат с характеристикой С16 отключится мгновенно при токе от 80 до 160 А;
  3. Автомат с характеристикой D16 отключится мгновенно при токе от 160 до 320 А.

Стоит отметить, что автоматические устройства с характеристикой D используются в основном в промышленности. Например, в бытовых сетях используются в основном устройства с характеристикой B и С.

Автоматы с характеристикой С используются для обеспечения защиты групповых линий и отдельных устройств с большим пусковым током. Автоматы с характеристикой B в основном используются для реализации защиты линий освещения и устройств с низким пусковым током.

Селективность автоматических выключателей.

Несомненно, при выборе устройства автоматического отключения важно уделить внимание такому параметру, как селективность. Под селективностью подразумевается такое техническое решение, при котором в случае неисправности отключается непосредственно неисправная линия, а не к примеру групповая линия. Как правило, селективность реализуется двумя способами:

  1. Выбор номинального тока автоматического выключателя;
  2. выбор характеристики автоматического выключателя;

Характеристики автоматических выключателей

Для групповых линий следует выбирать автоматы с характеристикой С и с большим номинальным током (расчётным током в групповой линии). Для питающей линии одной нагрузки следует выбирать автоматы с характеристиками B и С, при этом если нагрузка имеет низкий пусковой ток, то следует выбрать устройство с характеристикой B.

Выбор автоматического выключателя по количеству полюсов.

Как известно, в зависимости от напряжения в сети, для защиты устройств и питающих кабелей могут использоваться следующие автоматические выключатели:

Для сети 230 В:

  1. Однополюсные;
  2. двухполюсные.

Для сети 400 В (380В):

  1. Трёхполюсные;
  2. четырёхполюсные.

Выбор автоматических выключателей по количеству полюсов

С одной стороны, однополюсные и трёхполюсные автоматы коммутируют фазные проводники. С другой стороны, двухполюсные и четырёхполюсные автоматические выключатели помимо фазных проводников, коммутируют также и нулевые проводники.

Важно! Нельзя отключать нулевой проводник без отключения фазного! Запрещено подключение нулевого проводника к однополюсному автоматическому выключателю.

Выбор автоматического выключателя по производителю.

Выбор автоматического выключателя по производителю

Бесспорно, многие задаются вопросом, какой марки автоматический выключатель выбрать? Во-первых, следует определится с сегментном и имеющимся бюджетом. К примеру, ведущими игроками в премиум сегменте являются следующие производители:

  1. ABB — устройства шведско-швейцарской компании. Как известно, на текущий момент являются лидером по качеству, надёжности и соответственно по дороговизне автоматических устройств;
  2. Legrand (Франция) — устройства во многом схожи с ABB по качеству и цене, — надёжные автоматические выключатели;
  3. Schneider Electric (Франция) — отличные устройства, которые хорошо себя зарекомендовали на рынке стран СНГ.

А вот автоматические выключатели среднего ценового сегмента:

  1. Moeller (Eaton) — немецкий бренд. Безусловно, качественные автоматические выключатели по приемлемой стоимости;
  2. Siemens — немецкий бренд. Выпускает также качественную автоматику, которая немногим уступает ABB, Legrand и Schneider Electric.

В частности, автоматы бюджетного сегмента представлены в большом количестве, в эту категорию попадает много устройств от китайских производителей. Одним словом, можно выделить несколько «более или менее» вменяемых брендов: КЭАЗ, DEKraft , IEK. Однако, мы бы Вам рекомендовали использовать автоматические выключатели из премиум сегмента или среднего ценового сегмента.

Наши ресурсы в социальных сетях, присоединяйтесь:

Автоматические выключатели

Модульные автоматические выключатели производятся на максимальный номинальный ток до 125А, имеют нерегулируемые характеристики расцепления, принцип действия тепловой и электромагнитный.  По  отключающей способности подразделяются на следующие типы — 4,5 кА; 6 кА; 10 кА; 15  кА. В продуктовой линейке компании Schrack Technik  имеется 3 варианта по характеристикам расцепления — В, C и D. Доступны в 1, 2 ,3  и 4 -х полюсном исполнении, а так же вариант 1+N выполненный в  единичном объеме. Версия для постоянного тока производится в 1 и 2-х полюсном исполнении, максимальный номинальный ток до 50А.

 

Устройства защитного отключения (УЗО) производятся  на  ток до 100А. Подразделяются по току утечки  на несколько типов — 10 мА, 30 мА и 100 мА, 500 mA. Поставляются в 2- и 4-х полюсном исполнении.Отключающая способность 6 и 10 кА.

Комбинированные автоматический выключатели+УЗО (диффавтоматы) рассчитаны на  ток до 40 А. Поставляются в однополюсном исполнении, с коммутируемой нейтралью. По току утечки подразделены на 3 типа — 30 мА, 100 мА, 300 мА. Отключающая способность 6 и 10кА.

 

Автоматические выключатели в литом корпусе рассчитаны на ток до 1600 А и оснащены возможностью регулировки расцепителей.   Доступны в версиях с термомагнитными и электронными расцепителями.  Производятся в 4 типоразмерах, 3 -х и 4 — х полюсном исполнении. Могут поставляться в выкатной или втычной версии. По номинальной отключающей способности разделены на несколько типов — 25 кА, 36 кА, 50 кА, 65 кА, 85 кА, 150 кА. 

 

 

 

Воздушные автоматические выключатели производятся в 3-х типоразмерах и охватывают диапазон  токов от 630 до  6300 А. По отключающей способности подразделяются на несколько типов — 55 кА, 66 кА, 80 кА, 100 кА. Поставляются в 3 — и 4-х полюсном исполнении и имеют 2 варианта монтажа — фиксированный и выкатной.  3 класса  отключающей способности — базовая, нормальая и высокая, 6 электронных расцепителей. Воздушные автоматическиие выключатели  имеют одинаковую высоту и глубину корпусов во всём диапазоне токов, изменяется только ширина автоматического выключателя, в зависимости от числа полюсов и типоразмера.

 

 


Производители


Документация


Контакты


 Отдел силовой электроники Зубарев Михаил Владимирович  [email protected] ru


 Отдел силовой электроники Лисюткин Алексей Сергеевич     [email protected]


 Отдел силовой электроники Шелегов Александр Васильевич [email protected]

 

 

Автоматический выключатель с регулировкой по току

Автомат с регулировкой тока

Автоматический выключатель с регулируемыми расцепителями

Я стараюсь быть объективным и при возможности не рекламировать различных производителей, тем более что они мне за это не платят Но в этой статье придется мне отступить от своих принципов и рассказать о силовом автоматическом выключателе серии ВА-99С.

Автомат торговой марки EKF предназначен для нечастых включений и отключений, а также для защиты от перегрузки и токов короткого замыкания. Казалось бы ничего особенного…

В чем же особенность силового автоматического выключателя серии ВА-99С?

Выключатели до 400А комплектуются термомагнитными расцепителями ТМ, а на токи выше 400А предусмотрен электронный расцепитель STR23SE.

Автоматический выключатель с регулируемыми расцепителями серии ВА-99С

Как видим, на картинке снизу видны регуляторы уставок расцепителей, которые позволяют установить нужные нам параметры. Это и есть их особенность.

Термомагнитные расцепители автоматов до 100А не имеют регулируюемую уставку по току короткого замыкания. Тепловой расцепитель имеет регулировку 0,8-0,9-1,0 от номинального тока. Выключатели, выполненные в габарите 250А позволяют отрегулировать уставку по току в пределах (5-10) Ir.

Автоматический выключатель серии ВА-99С с термомагнитным расцепителем ТМ

Стоит также обратить внимание на то, что у данной серии автоматических выключателей имеются аппараты с термомагнитными расцепитялеями на токи 180 и 225А.

Автоматические выключатели с электронными расцепителями STR23SE (200-630)А имеют грубую и тонкую регулировку по защите от перегрузки, что позволит достаточно точно настроить аппарат. По защите от токов короткого замыкания автоматы с электронным расцепителем позволяют установить уставку от 2 до 10.

Автоматический выключатель серии ВА-99С с электронным расцепителем STR23SE

В общем данные аппараты будут полезны для выполнения селективной защиты значительно не завышая номинальные токи автоматических выключателей. Кроме этого, на эти автоматы при необходимости можно установить дополнительные устройства, включая электропривод.

Еще одним немало важным достоиством выключателя серии ВА-99С считаю его цену. Предложите аналог по меньшей цене?

Источник: http://220blog.ru/pro-vybor/avtomaticheskij-vyklyuchatel-s-reguliruemymi-rascepitelyami.html

>Газета ЗАО МПО «Электромонтаж»

Новые автоматы EasyРact от Schneider Еlectric

Компания Schneider Electric известна как мировой лидер в области коммутационных аппаратов для распределения электроэнергии — вспомните, из ассортимента МПО Электромонтаж, семейства автоматов Асti 9, Compact NSХ и др. , обладающие высокими характеристиками. Однако, такие многофункциональные изделия вам не всегда требуются для решения более простых задач гражданского и промышленного строительства.

Для таких случаев Schneider Еlectric разработала высококачественные трёхполюсные автоматические выключатели Easypact в литом корпусе, предназначенные для применения в качестве вводного низковольтного автоматического выключателя, для защиты отходящих кабельных линий (токоограничивающая способность Easypact позволяет избегать высоких токов короткого замыкания и их повреждения), для защиты электродвигателя и для защиты силовых трансформаторов.

Серия EasyРact EZC у нас уже полтора года, вы могли оценить её достоинства этих традиционных аппаратов с биметаллическим тепловым и электромагнитным расцепителями. Для тех, кто ещё не оценил, поясняем. Серия исполнена в двух типоразмерах.

Автоматы EZC100 в ассортименте МПО Электромонтаж вы найдёте на номинальные токи 25, 40, 50, 60, 80, 100 A. Уставка электромагнитного расцепителя — 5–10 Iн, теплового — 1,13–1,45 Iн. Отключающая способность 18 кА при 380 В, габариты 75х130х60 мм. (А6801–А6807).

Типоразмер EZC250 у нас — на 125, 160, 200, 250 А. Уставка электромагнитного расцепителя — 8–14 Iн, теплового — 1,13–1,45 Iн. Отключающая способность при 380 В — 18 кА для аппаратов с индексом F в наименовании (A6825, A6827, A6829, A6831) или 25 кА — с индексом N (А6833, A6835, A6837, A6839). Габариты 105х165х85,5 мм (глубина корпуса 60 мм).

С автоматическими выключателями EZS100 применяются имеющиеся в нашем ассортименте независимые расцепители дистанционного отключения EZASHT100 AC (А6812) и EZASHT200 AC (А6813): при кратковремнной подаче на обмотку расцепителя напряжения питания (соотв. 100–130 и 200–277 В переменного тока) происходит отключение автомата. Для сигнализации положения силовых контактов (включено/отключено) аппаратов EZC100 N предназначены контакты сигнализации OF EZAUX10–1 переключающийся (А6808) и OF+SD EZAUX11–2 переключающихся (А6810).

Для автоматических выключателей серии EasyPact — EZC250 у нас имеются расцепители для их дистанционного отключения: независимый EZESHT024 DC срабатывает при подаче питания 24 В пост. тока (А6843) и минимального напряжения EZEUVR200 AC — при снижении напряжения до 0,35–0,7 напряжения питания расцепителя — 200–240 В переменного тока (А6848).

Контакт сигнализации EZEAX (А6840) указывает положения силовых контактов (вкл/откл) этих аппаратов. Контакты сигнализации аварийного отключения автоматов SZC250 — SD EZAUX01 (А6809) и EZEAL (А6841).

Вспомогательные контакты и расцепители устанавливаются под лицевой панелью автоматического выключателя слева или справа от рычага управления.

Кроме того, в товарной группе А68 прайс-листа вы можете найти клеммы EZALUG0503 для подключения кабеля к EZC100 N, поворотные рукоятки EZEROTDS, комплект удлинительных контактных пластин EZETEX, перегородку EZEFASB2 межполюсную, комплект клеммных заглушек EZETSHD3 P — для EZC250.

А теперь предлагаем ознакомиться с новинками: это серия EasyРact CVS с линейкой номинальных токов от 40 до 630 А. В них используются термомагнитный расцепитель — TM… D (А8660–А6886) или электронный ETS (А6889, А6890) с регулировочными переключателями уставок.

Автоматические выключатели типа CVS100 B TM… D у нас на 40, 63, 80, 100 А (величина номинального тока обозначена в наименовании — на месте многоточия), аппараты CVS160 B TM… D и CVS160 F TM… D — на 125, 160 А, и есть CVS100 F TM100 D, CVS250 F TM250 D, CVS400 F TM400 D, CVS630 F TM600 D. Буквы В и F в наименовании говорят об отключающей способности автоматов: при 380 В это, соответственно, 25 и 36 кА для типов CVS100, CVS 160, CVS250 и 36 и 50 кА для CVS400 CVS630. Размеры, так же соответственно, 105х161х86 и 140х255х110 мм.

Термомагнитный (магнитотермический) расцепитель ТМ… D обеспечивает тепловую защиту распределительный сетей с регулируемым порогом от 0,7 до 1 от номинального тока. Уставка времени нерегулируемая. Электромагнитный порог для автоматов CVS-100 фиксированный, 8–12 значений номинального тока, для CVS160/250–10 кратный. Уставка электромагнитная CVS400 регулируется в пределах 5–10, CVS630–4–8 номиналов тока.

С электронным расцепителем у нас автоматические выключатели EasyРact CVS400 F ETS 2. 3–400 и CVS630 F ETS 2.3–630. Номинальные токи, соответственно, 400 и 630 В, отключающая способность при 380 В — 36 кА.

Расцепители ETS 2.3 обеспечивают защиту от перегрузки с нерегулируемой уставкой времени и регулируемой по току — 0,5–1 значения номинального. Защита от КЗ селективная — с регулируемой уставкой по току 2–10 кратной номинальному и нерегулируемой уставкой времени срабатывания (не более 60 мс), и мгновенная — с нерегулируемой 11 кратной уставкой по току.

С автоматическим выключателями CVS используются унифицированные для CVS/Compact NSX прямые контактные пластины и расширители полюсов (А6894 и А6895).

Аппараты EasyРact EZC и CVS — трёхполюсные, в литом корпусе, стационарные, переднего присоединения.

Монтируются в любом положении на заднюю стенку шкафа, монтажную плату, на профили, а EZC с переходником EZADINR (А6821) и — на DIN рейку.

Автоматические выключатели Easypact и их аксессуары соответствуют требованиям Европейских, американского, японского и российских стандартов.

Высокое качество и надёжность по конкурентной по сравнению с аналогами цене, эффективное токоограничение, востребованные значения номинальных токов и отключающих способностей унифицированные типоразмеры, большое количество вспомогательных устройств выгодно отличают автоматические выключатели EasyРact от Schneider Electric.

Источник: https://www.electro-mpo.ru/newspaper/gazeta-mpo-elektromontazh-fevral-2013/novye-avtomaty-easyract-ot-schneider-electric/

Виды однофазных автоматов по буквам. Маркировка автоматического выключателя на схеме

Любой автоматический выключатель имеет определенную маркировку. Она состоит из букв, цифр и схем. По всему этому можно сразу узнать все характеристики автомата, которые вам будут необходимы при его выборе. Без этих обозначений невозможно узнать об автоматическом выключателе практически ничего.

Данная статья будет своеобразным обощением всех предыдущих публикаций про автоматические выключатели . Тут вы найдете краткое описание всех параметров со ссылками на их подробное разъяснение.

Все параметры автоматов наносятся на корпус специальной стойкой краской. Они находятся на передней (лицевой) стороне. Это позволяет их читать даже тогда, когда автоматический выключатель установлен в распределительном шкафу .

На верхней и нижней картинках представлены автоматические выключатели разных производителей. На них разными цифрами и буквами обозначены определенные характеристики. Давайте ниже разберем их все по порядку.

  1. Марка (производитель) автоматического выключателя. Они бывают разные. На картинках представлены аппараты компаний Schneider Electric, ABB, IEK и EKF. Эти бренды известны многим и сегодня за каждым из них уже прочно закрепилась своя репутация по поводу качества выпускаемой продукции. Читайте по этому поводу — Какой марки выбрать автоматический выключатель?
  2. Серия линейки автоматических выключателей. У каждого производителя есть несколько серий автоматов, которые различаются некоторыми характеристиками и соответственно ценой. Например у ABB есть бюджетная серия Sh300 и более навороченная S200. В последней серии есть два отсека в винтовой клемме для подключения двух проводов или объединяющей гребенки. Также S200 рассчитаны на максимальные токи короткого замыкания до 6кА, а Sh300 только до 4,5кА. А компания Schneider Electric выпускает автоматы следующих серий: Домовой, Acti9, Multi9.
  3. Номинал автоматического выключателя и его время токовая характеристика.

    Следом за буквой идут цифры. Они обозначают номинал данного автомата. То есть величину максимального тока, который может протекать через него длительное время без его срабатывания. Если ток в цепи будет превышать номинал автомата на 13-45%, то в нем сработает тепловой расцепитель. На это может потребоваться время от нескольких секунд до нескольких минут. При коротких замыканиях исправный аппарат должен отработать за 0,01-0,02 секунды, иначе изоляция электропроводки начнет плавиться и может воспламениться. За это в автоматическом выключателе отвечает электромагнитный расцепитель. Вы должны обязательно знать как правильно выбрать автоматический выключатель по номиналу .

  4. 230/400В или 230/400V~ обозначает в каких сетях должны использоваться данные устройства. 230В — это в однофазных сетях, 400В — это в трехфазных. Данный параметр показывает, что данные автоматы можно смело использовать как в однофазных распределительных щитах , так и в трехфазных распределительных щитах для подключения однофазных потребителей.
  5. 4500, 6000 или может быть 10000 — это предельные значения токов отключения при коротких замыканиях, после прохождения которых автомат может продолжать работу в штатном режиме.
  6. Цифрой 6 обозначен такой параметр, как класс токоограничения. Бываю следующие классы: 1,2 и 3. Любому току короткого замыкания необходимо время чтобы достичь своего максимального значения. Поэтому необходимо обесточить аварийный участок как можно быстрее, чтобы ток КЗ не успел повредить изоляцию электропроводки. Другими словами автоматический выключатель с токоограничением не позволяет току короткого замыкания принять свое максимальное значение и быстрее производит отключение. Класс токоограничения – 2 ограничивает по времени КЗ в пределах 1/2 полупериода, класс – 3 ограничивает короткое замыкание в пределах 1/3 полупериода.
  7. На корпусе автоматического выключателя (не обязательно на лицевой стороне) можно встретить комбинацию цифр с буквами. Это артикул данного устройства, который присвоил ему производитель. По нему можно быстро найти по каталогу или в интернете данный автомат.
  8. Электрическая схема устройства. Ее можно встретить на корпусах некоторых автоматических выключателях. Она носит информативный характер. На ней стрелками могут быть показаны куда необходимо подключать приходящие провода.

Еще на корпусах 2-х и 4-х полюсных автоматов можно встретить обозначение «N». Так маркируется винтовая клемма, к которой необходимо подключать только нулевой проводник.

Если вы познакомитесь со всем вышеизложенным материалом про автоматические выключатели, то вы про них будете знать практически все, что необходимо для их правильно выбора, правильного подключения и правильной эксплуатации.

Улыбнемся:

Электрик ошибается два раза в жизни. Первый раз при выборе профессии….!

С автоматическими выключателями знакомы все. В народе их называют просто «автомат». И у каждого в доме или квартире есть как минимум один, а то и два таких прибора. Автоматы защищают проводку от аварийных ситуаций и предотвращают их развитие. На их корпусе производители печатают целый ряд текста, но не все понимают, о чем там говорится. Эта статья поможет вам расшифровать маркировку автоматических выключателей.

Расшифровка маркировки автоматов

По внешнему виду большинства нельзя определить на какой ток он рассчитан, единственное, о чем можно догадаться по его размерам — большой или малый ток он пропускает и на сколько фаз (полюсов) рассчитан. Как определить характеристики автомата? Нужно просто прочесть маркировку. И так что вы можете увидеть на корпусе автоматического выключателя:

1. Название производителя.

2. Серию или модель.

3. Номинальный ток.

4. Номинальные напряжение и частоту.

5. Время токовую характеристику.

6. Иногда изображает его внутреннюю схему.

Но не на каждом автомате присутствует полный набор этой информации, где-то её больше, где-то меньше. В этом вы убедитесь прочитав статью до конца и рассмотрев все иллюстрации.

Рассмотрим всё по порядку

Популярными производителями автоматических включателей являются:

Фактически производителей гораздо больше. На картинке ниже вы видите, где это указано:

Маркировка серии автоматов позволяет найти полную документацию со всеми техническими характеристиками и особенностями модели. Она указывается либо под логотипом фирмы-производителя, либо в другом месте.

Номинальный ток

Это основная величина, по которой выбирают автоматический выключатель. Это , которое он может выдержать в течение долгого времени. Это всегда указывается на автоматических выключателях, как на этих примерах:

В зависимости от потребностей подбирают соответствующий автомат, в квартирах обычно ставят от 16 до 32А.

В таблице приведена часть ряда автоматических выключателей и значения номинальных токов при различных температурах окружающей среды.

На маркировке он часто обведен квадратом, указывается мелким шрифтом:

Предельный ток отключения — это величина тока короткого замыкания в тысячах Ампер, например 4500А или 6000А. При таком токе КЗ автомат успешно отключится и не выйдет из строя. Нужно учитывать этот момент, подбирая предельную величину выше чем ток КЗ на данной линии.

В бытовых электроцепях на этот фактор почти не обращают внимание. Автомат может сгореть или залипнуть если ток КЗ в защищаемой цепи превысит это значение, если автомат залипнет (т.е. контакты останутся замкнутыми) то в лучшем случае отгорят клеммы на проводе, в худшем — может произойти возгорание.

Другими словами предельный ток отключения — это коммутационная способность автоматических выключателей.

Сразу под ним указан класс токоограничения это цифра 1, 2 или 3. Обозначает временной интервал в течение которого автомат может ограничить ток короткого замыкания.

Вторая по важности характеристика при выборе автоматического выключателя — это . При превышениях номинального тока автоматический выключатель размыкается и ток перестает течь по проводам. При каком превышении тока и как быстро разъединится выключатель зависит как раз от время-токовой характеристики. Она обычно указывается перед током.

В быту наиболее распространены автоматы с буквами BCD, их время-токовая характеристика изображена ниже:

Но есть и другие модели.

Она нужна для того чтобы определить для каких целей предназначен автомат и каково его быстродействие при отключении. Это важно, например, при подключении двигателей, чтобы автомат преждевременно не сработал, если произойдет затяжной пуск и другое.

На корпусе автоматического выключателя часто указывают и номинальное напряжение, на которое он рассчитан.

Схема

Среди многочисленных маркировок можно найти и схему выключателя, она не несет особой ценности, для электрика.

Для чего это нужно?

Такая широкая маркировка нужна, для оперативной замены вышедших из строя автоматических выключателей и подбора подходящих аппаратов при монтаже электроцепей, без обращения к справочникам и технической документации.

Примеры расшифровки маркировок

Для закрепления пройденного материала мы подобрали несколько примеров расшифровки маркировок на различных автоматических выключателях.

Заключение

Подведем итоги — маркировка автоматических выключателей включает в себя важные и вспомогательные данные. Благодаря ей электромонтер может определить тип, номинальный ток, предельный ток, время-токовую характеристику выключателя и быстро подобрать подходящий для защиты определенной линии.

Как производитель самой качественной электротехнической продукции, выпускает все виды автоматических выключателей. Автоматические выключатели компании АВВ делятся на серии по характеристикам и области применения.

Автоматические выключатели АВВ серии S200

Автоматические выключатели этой серии служат для защиты цепей от возможных перегрузок и токов короткого замыкания в электрических линиях и кабелях различного назначения. Они могут монтироваться на стандартную DIN-рейку в электрических щитах, шкафах и боксах.
Особенностью этих автоматических выключателей является то, что они имеют большую надежность и повышенную коммутационную способность. Также серия S200 отличается большим ассортиментом представленных устройств.
Типоисполнения и технические характеристики серии автоматов S200:

  • . одновременное устройство электромагнитного и теплового расцепителя,
  • . количество полюсов имеет несколько вариаций:
    • . с расцепителем на фазе и разрывом нейтрали при сработке (1+N или 3+N),
    • . с расцепителем в каждом полюсе (1 или 3 полюсные),
    • . с расцепителем в фазных проводах и нейтрали (2 или 4 полюсные).
  • . исполнения с различными характеристиками срабатывания (B, C, D, а также K и Z),
  • . исполнения с различными характеристиками предельной способности коммутации (25 кА, 15кА, 10кА, 6кА),
  • . наличие дополнительного контакта,
  • . возможность использования приставки DDA-200 для обеспечения дополнительной защиты от токов утечки.

Маркировка и обозначения серии S200 автоматов АВВ

STO S 201 C1
S20 — серия автоматов S200,
Дополнительная буква обозначает отключающую способность:

  • . нет буквы — 6кА,
  • . буква М — 10кА,
  • . буква Р — 15-25кА.

1 в конце серии (S201) — количество полюсов:

  • . S201 один полюс,
  • . S202 два полюса,
  • . S203 три полюса,
  • . S204 четыре полюса.

Буква после обозначения серии и количества полюсов — характеристика сработки при КЗ (тип назначения автомата):

  • . В — для защиты при активных нагрузках (линии освещения с заземлением),
  • . С — для защиты при активных и индуктивных нагрузках (электродвигатели малой мощности, вентиляторы, компрессоры),
  • . D — для защиты при больших пусковых токах и высоком токе включения (трансформаторы, разрядники, насосы и т.п.),
  • . К — для защиты линий с подключением активно-индуктивных нагрузок (электродвигатели, трансформаторы и т.д.),
  • . Z — для защиты электронных систем с полупроводниковыми элементами.

Последние цифры в обозначении — номиналы (уставки) токов.

Автоматические выключатели серии Sh300L

Автоматы серии Sh300L являются облегченным вариантом автоматических выключателей серии S200.
Автоматы этой серии обладают всеми характеристиками качества продукции компании АВВ и предназначены для систем освещения и розеточных групп. Но так как в этой серии автоматы имеют невысокую предельную коммутационную способность, то использовать их в качестве вводных не рекомендуется.
Параметры автоматических выключателей серии Sh300L мало отличаются от параметров автоматов серии S200, кроме предельной коммутационной способности (4.5кА). Также автоматы этой серии представлены в более узком ассортименте по сравнению с серией S200.

Правила маркировки автоматических выключателей

Все электротехнические изделия, которые относятся к автоматическим выключателям, должны иметь четко читаемую маркировку. Эта маркировка должна состоять из обозначений:

  • . товарного знака или имени производителя,
  • . типового, серийного или каталожного обозначения (номера),
  • . рабочих номинальных напряжений с символом рода напряжения (переменное (~) или постоянное),
  • . номинального тока в амперах с буквой типа мгновенного расцепления (B, C, D, K, Z),
  • . номинальной частоты при рабочей одной частоте,
  • . номинальной коммутационной способности при КЗ указанного в прямоугольнике при одинаковой цифре для постоянного и переменного тока и в разных прямоугольниках с символами типа напряжения при разных цифрах,
  • . схемы устройства (при сложности определения схемы),
  • . контрольную температуру воздуха (для 30 градусов не ставят),
  • . степень защиты IP (при IP20 не проставляется).

На лицевой панели указывается тип расцепления и номинальный ток, а вся остальная информация наносится на боковую или заднюю поверхность.
Если входные и выходные контакты нужно четко различать, то они должны иметь обозначения в виде стрелок (к выключателю — вход, от выключателя — выход).
Контакт для нейтрали обозначается буквой N. Контакт для проводника защиты обозначается символикой заземления.
Обозначения автоматических выключателей должны иметь максимальную информацию о устройстве, которая должна давать ясную картину представленного устройства. Наличие маркировки говорит об ответственности производителя перед потребителем за соответствие заявленных характеристик реальным.

Многообразие автоматических выключателей АВВ не ограничивается описанными сериями и имеет намного больший спектр. Компания АВВ выпускает большое множество специализированных автоматических выключателей для профессионального монтажа электрических производственных схем и систем другого применения.

Как выбираются автоматические выключатели.

Автоматические выключатели — это устройства, которые защищают электрооборудование от перегрузок и коротких замыканий.

Перегрузка — это плавное превышение максимального рабочего тока. Она приводит к перегреву проводов и розеток. Необходимо избегать перегрузок. Перегрузка может привести к пожару.

Короткое замыкание (К. З.) — это резкое превышение рабочего тока. Последствия этого тоже могут быть катастрофичными. Чтобы не произошло неприятное, правильно выбирайте автоматы.

Внутри автомата, как раз есть две системы защиты.

От перегрузки — биметаллическая пластина, которая нагревается и постепенно изгибается, и выключает автомат. Время, через которое отключится автомат зависит от степени перегрузки, чем она выше, тем быстрее он отключается, и от окружающей температуры. Тяжело предсказать, когда отключится автомат на улице, где температура может отличаться на десятки градусов.

От короткого замыкания — катушка, которая срабатывает быстро, при резком и большом превышении рабочего тока.

На корпусе автомата есть надписи. Что они означают? Самые крупные — это буквы B или C, и затем число. Могут быть и другие буквы, например D, но мы здесь это не будем рассматривать. Буква означает тип время-токовой характеристики — это когда вступает в действие электромагнитная защита.

B — электромагнитная защита срабатывает при превышении рабочего тока в 3 — 5 раз.

C — электромагнитная защита срабатывает при превышении рабочего тока в 5 — 10 раз.

После буквы стоит число, которое показывает максимальный рабочий ток. Это ток при котором автомат не отключается. В России обычно используют автоматы с характеристикой типа C.

Рядом с крупными буквами и цифрами, в небольшом прямоугольнике есть число, например 4500, или 6000. Это отключающая способность, максимальный ток, при котором контакты разомкнутся и автомат не испортится. Если автомат плохого качества, или имеет малую отключающую способность, он не защитит наш дом. Контакты не разомкнутся при коротком замыкании. Не надо экономить на защите.

Величина тока короткого замыкания зависит от длины и сечения проводов до трансформатора на электрической подстанции. Чем до нее дальше, тем меньше этот ток. Тока короткого замыкания, который может дать трансформатор на подстанции. В быту обычно используют автоматы с отключающей способностью максимум на 6000 А, иногда 4500 А.

Еще рядом с прямоугольником, в котором стоит цифра отключающей способности, в маленьком прямоугольнике стоит цифра 1, 2 или 3. Это класс токоограничения, насколько быстро отключится автомат и не даст стать току короткого замыкания слишком большим. Если стоит цифра 3, то это лучше всего.

Если у вас слабая электросеть, малый ток короткого замыкания, где-нибудь в сельской местности, длинные и тонкие провода, например до столба с лампой освещения. Вы выбираете автомат слишком большого номинала, да еще типа C. Автомат может не отключится при коротком замыкании. Надо иметь это ввиду.

Выбирайте автоматы не слишком большого номинала, или он вас не защитит.

Делите электроустановку на большее количество ветвей с отдельным автоматом . Мощные нагрузки подключайте отдельно от слабых.

Электрический щит должен стоять в помещении со стабильной температурой. Параметры автоматов указываются для температуры 30 градусов Цельсия. При 40 градусах рабочий ток автомат уменьшится примерно на 20%. Если в щите стоят плотно друг к другу много автоматов, рабочий ток уменьшается из-за взаимного нагрева. Лучше не ставить автоматы слишком плотно. Можно поставить между автоматами заглушки. На улице лучше использовать предохранители.

Параметры автоматов указываются для переменного тока . Они будут другими при постоянном токе.

Автоматический выключатель — защитный прибор, срабатывающий от короткого замыкания или тепловой перегрузки линии к которой подключен.
Типы:


Основные типы или виды автоматических выключателей:
— Модульный автоматический выключатель. Устройство стандартного, модульного типа с установкой в электрический щиток на din-рейку. Применяется для защиты в бытовых целях, а так же в коммерческих и промышленных сетях энергораспределения.
— Промышленные автоматические выключатели в корпусе. Предназначены для защиты распределительных сетей 50/60 Гц с напряжением до 660 В, рабочим током до 1600 А. Применяется в больших щитовых подстанциях и на производстве используются для подключения мощного оборудования или как главный вводной автоматический выключатель.
— Автоматические выключатели для защиты электрических двигателей.
Все вышеперечисленные типы автоматических выключателей имеют свои характеристики для определенных параметров срабатывания.
Остановимся более подробнее на модульном автоматическом выключателе. Это основной элемент защиты в электрораспределении для жилищных, коммерческих помещений.
Сразу обозначим, что внешний вид модульных автоматических выключателей одного и того же производителя будет одинаков, характеристики срабатывания на внешний вид не влияют.
Различают автоматические выключатели по характеристике срабатывания:
Характеристика срабатывания это настройка магнитного расцепителя, более простыми словами — настройка чувствительности на ток короткого замыкания.

Токи автоматических выключателей

Для бытовых условий электрораспределения (в жилом доме, квартире) применяются номинальные токи автоматических выключателей от 0,5 до 63 Ампер. Такие параметры автоматических выключателей являются достаточными для обеспечения защиты и правильного распределения электрических линий. Если, в жилом доме, возникает потребность установки автоматического выключателя на токи выше 63 Ампера, то такие приборы так же существует, но уже в промышленных сериях. Устанавливая в доме такой мощный автомат, убедитесь что сечение вводного кабеля позволяет устанавливать автоматический выключатель на такой ток. К примеру, для автоматического выключателя на ток 100 Ампер сечение кабеля, которого он защищает должно быть не менее 16 mm² медного проводника или же 25 mm² алюминиевого. Более точное определение номинального тока автомата защиты к сечению кабеля зависит от ряда таких факторов, как длинна токоведущей линии, количество жил в проводнике (одножильный, двухжильный, трехжильный провод и т.д) и способ прокладки кабеля. Приняв во внимание потерю мощности, от длинны линии, и условие охлаждения от способа прокладки кабеля вы сможете правильно подобрать номинальный ток автоматического выключателя для надежной и безопасной работы.

Технические характеристики автоматического выключателя:

Рассмотрим самые востребованные время-токовые характеристики автоматических выключателей в бытовых сериях:

Каждый автоматический выключатель должен иметь стойкую маркировку, которая включает в себя следующие данные:

  1. Наименование или товарный знак изготовителя.
  2. Типовое обозначение, каталожный или серийный номер. Например ВА 47-29
  3. Одно или несколько значений номинального напряжения . Для универсальных автоматических выключателей значения номинального напряжения переменного тока указывают с символом ~ постоянного тока — с символом ~.
  4. Номинальный ток In в амперах без указания единицы измерения с предшествующим обозначением типа мгновенного расцепления (B, C или D, для универсальных автоматических выключателей указывают B или C). Например, маркировка «С 32» на автоматическом выключателе обозначает, что он имеет тип мгновенного расцепления С и номинальный ток, равный 32 А.
  5. Номинальную частоту, если автоматический выключатель рассчитан только на одну частоту.
  6. Номинальную коммутационную способность при коротком замыкании Icn в амперах. Для универсальных автоматических выключателей значение этой характеристики указывают в одном прямоугольнике, если оно одинаково для переменного и постоянного тока, например 6000 А Если номинальные коммутационные способности при коротких замыканиях для переменного и постоянного тока отличаются друг от друга, то их указывают в двух расположенных рядом прямоугольниках,помеченных символами переменного и постоянного тока, например: 10000 ~ 6000~/-.
  7. Если на универсальный автоматический выключатель наносят обозначение постоянной времени T15, которая относится к маркировке номинальной коммутационной способности при коротком замыкании, то ее выполняют в прямоугольнике
  8. Коммутационную схему, если не очевиден правильный способ присоединения к автоматическому выключателю проводников внешних электрических цепей.
  9. Контрольную температуру окружающего воздуха, если она отличается от 30 оС.
  10. Степень защиты, если она отличается от IP20.
  11. Маркировка, указывающая тип мгновенного расцепления и номинальный ток, должна быть четко видна после установки автоматического выключателя. При отсутствии места маркировка остальных характеристик может быть выполнена на боковых и задних поверхностях автоматического выключателя.
  12. На автоматических выключателях, которые имеют несколько значений номинального тока, маркируют максимальное его значение, а также значение номинального тока, на который он отрегулирован. По запросам потребителей изготовитель обязан предоставлять характеристики I2t выпускаемых им автоматических выключателей.
    Изготовитель может указать класс характеристики I2t (класс ограничения электроэнергии) и выполнить соответствующую маркировку автоматических выключателей. Разомкнутое (отключенное) положение автоматического выключателя, управляемого органом оперирования, перемещаемым вверх вниз (вперед-назад), должно обозначаться знаком О (окружностью), замкнутое (включенное) его положение маркируется знаком I (вертикальной чертой). Эти обозначения должны быть хорошо видны после установки автоматического выключателя. При необходимости различать входные и выходные выводы их следует соответственно обозначать стрелками, которые направлены к автоматическому выключателю и от него.
    Выводы автоматического выключателя, предназначенные только для присоединения нейтрального проводника, должны быть маркированы буквой N.
    Выводы автоматического выключателя, которые используют исключительно лишь для присоединения защитного проводника , маркируют символом заземления.

У нас на сайте представлены основные серии модульных автоматов различных производителей


Наверное, нет сегодня такого человека, который бы не знал, что такое автомат (автоматический выключатель), для чего он устанавливается в распределительном щите квартиры или дома. Но не многие знают, по каким критериям его надо подбирать. То есть, что является основной его качественной и долгосрочной работы. Поэтому тема этой статьи: «автоматические выключатели – технические характеристики ». Именно по ним можно подобрать автомат для электрической сети вашего дома. Но тут встает вопрос, сколько технических характеристик влияют на его работу, какие из них главные, а какие второстепенные? Давайте разбираться.

Номинальный ток

Номинальный ток, который обозначается на корпусе прибора в амперах (А), определяет величину тока, протекающего по автомату без ограничения времени. При этом токе электрическая цепь не отключается. Если значение номинальной величины превышается, сразу происходит разрыв сети.

В настоящее время существует определенный ряд значений номинала, который стандартизирован. Вот этот ряд:

6, 10, 16, 20, 25, 32, 40, 50, 63, 80, 100А.

При этом считается, что данная величина будет существовать при температуре окружающего воздуха +30С. Если температурный режим будет расти, номинальный ток будет снижаться. Это необходимо учитывать, выбирая автоматический выключатель. Необходимо также отметить, что обычно автоматы устанавливаются в один ряд, плотно прижатые друг к другу. Это также увеличивает температуру приборов за счет общего выделения тепла блоком автоматов.

Поэтому большинство производителей в своих каталогах указывают поправочные коэффициенты, связанные с повышением температурного режима эксплуатации. Получается так, что данная техническая характеристика зависит от нагрузки в электрической сети, которую надо подбирать, подсчитывая суммарную мощность всех потребителей, и температуры окружающей среды.

Но тут есть один нюанс. К примеру, такие мощные бытовые приборы , как стиральная и посудомоечная машины, холодильник и кондиционер, при пуске выдают ток большего значения, чем номинал. Это так и называют – пусковой ток. То есть, автомат (ВА47 29) должен при этом сработать, но не срабатывает, потому что эта пусковая нагрузка кратковременная. Отсюда вторая характеристика автоматического выключателя.

Время токовая характеристика

Итак, что такое время токовые характеристики автоматических выключателей? Это зависимость времени срабатывания отключения автомата (ВА 47 29) от силы тока, протекающего в электрической питающей цепи. На корпусе этот показатель указывается также, к примеру, в виде значка «В». То есть, во сколько раз протекающий ток больше номинального. Это указывается в типах автоматов, о которых информация будет ниже.

В чем важность этой характеристики? Суть в том, что существует большое разнообразие выключателей, у которых номинальный ток одинаковый, а время токовая характеристика различная. Это дает возможность установить в одну цепь несколько автоматов с разным временным отключением, что моментально снизит показатель ложных отключений.

Чтобы понять, как правильно подобрать автомат (ВА 47 29) по время токовой нагрузке, необходимо разобраться в типах этой характеристики.

  • Тип A используется для защиты полупроводниковых приборов и электрических линий большой длины. Срабатывает автомат, если сила тока будет выше номинального в 2-3 раза.
  • Тип B используется в бытовых помещениях с активными нагрузками. К примеру, освещение, обогреватели разных моделей , печки и так далее. Предел срабатывания при превышении 3-5 раз.
  • Тип C устанавливаются в электрические схемы, где присутствуют приборы с умеренными пусковыми моментами. Это кондиционеры, холодильники и так далее. 5-10 значений номинала.
  • Тип D устанавливаются на производствах, где присутствует высокий пусковой ток. Через него можно подключать невысокой мощности станки, компрессоры и прочее оборудование. 10-20 значений номинала.
  • Тип K используется только в одном случае – это защита от индукционной нагрузки. 8-12 значений тока номинального.
  • Тип Z монтируется в сети, куда подключены электронные приборы. Предел срабатывания при превышении номинального тока в 2,5-3,5 раза.

В квартирах и домах обычно устанавливаются автоматы (ВА 47-29) типа «B» и «C». На загородных участках можно использовать и тип «D». Скажем так, что время токовая характеристика автоматического выключателя – это один из главных параметров.

Номинальное напряжение

Две предыдущие характеристики являются основными, все остальные второстепенные. Правда, такое разграничение не совсем правильное, потому что каждая характеристика несет определенную нагрузку, которая влияет на качество работы самого автоматического выключателя (ВА 47 29).

Номинальное напряжение показывается в вольтах (В), оно может быть переменным или постоянным. Обозначается соответственно двумя значками «~» или «-».
Именно при этом показателе формируются все остальные технические характеристики. Обычно обозначение производится двумя величинами. К примеру, 230/350 или 230/400.

Предельная коммутационная способность

Что определяет эта характеристика? Необходимо отметить, что в электрических сетях нередко случаются короткие замыкания. Это когда между фазой и нулем происходит обрыв изоляции, и ток начинает движение по этой перемычке, минуя потребителя. При этом возникают так называемые сверхтоки. Они большой величины, но краткосрочные. Так вот, предельная коммутационная способность прибора – это значение сверхтока, которое автомат (ВА 47 29) может выдержать, не теряя своей работоспособности. Конечно, он при этом разъединяет электрическую цепь.

В основном автоматические выключатели с данной характеристикой имеют величину 4500, 6000 и 10000 А. этот показатель также указывается на корпусе в значке прямоугольника. Если прибор можно использовать и в сети переменного тока, и постоянного, то указываются две величины и соответствующие им значки.

Сила тока короткого замыкания в основном зависит от сопротивления проводки, поэтому приходится учитывать, из какого материала она изготовлена, какого сечения провода были уложены, качество стыков, длина разводки и так далее.

Правда, выключатели с пределом 4500 А давно не используются в быту. А вот 6000-апмерные сегодня самые ходовые. Что касается 10000А автоматов (ВА 47 29), то их обычно используют в том случае, если подстанция расположена рядом с домом. И то это общий входной автомат.

Класс токоограничения

При появлении сверхтоков (КЗ) изоляция проводов начинает резко нагреваться. Автомат разъединит цепь, когда сила тока достигнет своего максимального значения. За это короткое время изоляция может повредиться. Поэтому установлена еще одна характеристика, которая контролирует этот самый ток, чтобы он не дошел до своего максимума, и автомат отключился.

То есть, данный параметр влияет на безопасность эксплуатации всей электрической схемы дома, плюс долговечность и надежность проводки. По сути, класс токоограничения – это промежуток времени, при котором произойдет размыкание силовых контактов и гашение дуги в гасительной камере прибора. Отсюда и три класса:

  • 3 класс – самый высокий, то есть, быстрый. Время гашения – 2,5-6 миллисекунд.
  • 2 класс – 6-10 мс.
  • 1 класс – более 10 мс.

На корпусе прибора этот параметр обозначается в черном квадрате под обозначением коммутационной способности.

Внимание! Класс 1 на приборе не обозначается. То есть, если вы данный показатель не нашли, значит, этот автомат первого класса.

Вот такие технические характеристики у автоматического выключателя. Если в них разобраться, то можно легко подобрать под условия эксплуатации электрической схемы дома определенные приборы.


У всех защитных устройств есть определенная техническая характеристика. При выборе автомата необходимо ознакомиться с ними для того, чтобы правильно выбрать прибор. Эти характеристики расположены на корпусе автомата, и называется маркировкой.

Маркировка автоматических выключателей необходима при производстве замены поломанного устройства, а также когда прокладывается новая проводка с новым заземляющим контуром. Кроме этого знание маркировки нужно для того, чтобы найти причину возникновения аварийной ситуации. Электромонтер должен суметь прочитать характеристики, которые относятся именно к этому защитному устройству.

Обозначение и надписи

Символы, буквы, надписи и цифры наносятся на корпус автоматического выключателя специальной несмываемой краской. Со временем использования маркировка не должна стираться. Маркировка наносится на лицевую панель прибора, это делается для того, чтобы в рабочем состоянии устройства его не пришлось демонтировать, для того чтобы узнать нужные характеристики.

Маркировка включает в себя такие показатели как:

  • фирма-производитель;
  • номинальный ток;
  • напряжение; частота;
  • ток отключения; модель;
  • класс токоограничения;
  • схема подключения;
  • обозначение клемм;
  • артикул.

Маркировочные данные дополнительно дублируются в техническом паспорте устройства.

Номинальный ток

Данная характеристика обозначается в виде цифр и наносится рядом с временно токовой характеристикой. Производители выпускают пять видов автоматов: В, С, D, К, Z. Самыми популярными являются В, C, D. Для бытовых условий применяются автоматы, с временно токовой характеристикой типа С.

Остальные виды предназначены для узкопрофильной направленности. После этого значения наносится цифра, обозначающая номинальный ток автоматического выключателя. Он указывает максимальное значения тока, при котором защитное устройство способно сохранять работоспособность.

В случае превышения этого значения автомат сработает. При этом номинальный ток рассчитан на температурный режим, который соответствует величине + 30 градусов. Так, если температура в помещении будет выше этого показателя, то защитный прибор может сработать, даже если сила тока была меньше указанной.

Принцип работы основан на защите двух расцепителей – теплового и электромагнитного. При этом тепловой расцепитель обесточит электрическую цепь в промежутке от нескольких секунд до нескольких минут. Электромагнитная защита сработает значительно быстрее – 0,01 – 0,02 секунды, иначе проводка начнет плавиться, что может повлечь дальнейший пожар.

Напряжение и частота

Номинальное напряжение расположено под время токовой характеристикой. Данный норматив может относиться к постоянному и переменному току и указывается в вольтах. При этом постоянный ток обозначается «?», а переменный –« ~». Каждое значение соответствует данной электрической сети.

Напряжение указывается в двух обозначениях: одно для однофазной электрической сети, второе — для трехфазной. Так маркировка в виде 230/400V~, обозначает, что автомат предназначен для электросети, имеющих одну фазу и напряжение 230 вольт, а также для электрической цепи, обладающей тремя фазами и напряжением 400 вольт.

Для электрической сети, имеющей напряжение 220 вольт, в нашей стране стандартной частотой вращения является 50 Герц.

Ток отключения

Этот критерий обозначает ток короткого замыкания. При этом защитное устройство сработает без ущерба для своей работоспособности. Электрическая линия имеет достаточно сложное устройство, в которой иногда появляются повышенные токовые величины, вызванные коротким замыканием.

Это кратковременный процесс, но при этом ток слишком завышен. Автоматические выключатели обладают отключающейся способностью, когда ток превысит 4500А, 6000А или 10000А. При этом, чем выше этот показатель, тем больше гарантий, что защитный прибор сработает даже при самой тяжелой аварийной ситуации.

Производитель

В самой верхней части автоматического выключателя указывается бренд прибора. Для этого зачастую выбирается более яркий цвет краски. Обычно этот цвет совпадает с цветом рычага управления. Иногда для этого выбирается нейтральный серый цвет.

Популярные серии

Автоматические выключатели ВА. Эти выключатели относятся к современным устройствам. Они устанавливаются на дин-рейку, также отдельные производители выпускают специальные монтажные планки, приспособленные именно к автоматам данной серии. Защитные приспособления применяются для токовых характеристик, которые составляют от 0,5А до 63А.

Отключающая способность равна 4,5 кА. Автомат имеет от одного до четырех полюсов. Характеристика этих изделий также быть: B, C, D. Эту серию автоматов изготовляют такие популярные фирмы как EKF, ДЭК, Контактор, ИНТЭС. Выключатели этих марок отличаются небольшой ценой и хорошим качеством.

Выключатели серии Schneider Electric. Токи таких автоматов настроены на 6А до 63А. Защитные устройства имеют отключающую способность в 4,5 кА; характеристику C, D; численность полюсов 1, 2, 3; рассчитано на 20 тысяч срабатываний. Практически ничем не отличается от предыдущей серии, но стоит на порядок дороже.

Автоматические выключатели серий ABB, Legrand, Siemens. Более дорогой вид автоматов. К сожалению, на современном рынке встречаются подделки данной продукции. Отличить такие изделия можно по корпусу устройства, он должен быть изготовлен из качественной пластмассы.

У настоящих приборов количество крепежей должно быть пять. Фирменные автоматы обладают большей отключающей способностью в отличие от остальных – 6кА – 8кА. Помимо этого эти выключатели снабжены дополнительными компонентами в виде крышки или индикатора.

Как не оконфузиться при выборе автоматического выключателя / Хабр

Краткая заметка по поводу выбора автоматических выключателей. Искренне надеюсь, что читатель не узнает для себя ничего нового.

У поста есть видеоверсия на моем ютуб канале. Реалии времени заставляют меня делать делать еще и видео:

Определимся с целью

Для начала нужно определиться — для чего нам автоматический выключатель в электрощите. Задача автоматического выключателя — прежде всего защитить стационарную кабельную линию от протекания токов свыше предельно допустимых. Если ток превышен — то проводники нагреваются, с плавлением и разрушением изоляции или расплавлением самих проводников. И если не случится пожара, то случится дорогостоящий ремонт, с работами по замене замурованной в стенах электропроводки. А ток может быть превышен, если к линии подключили слишком много потребителей (происходит перегрузка) или если происходит короткое замыкание.  Неправильный выбор характеристик автоматического выключателя — путь к дорогостоящему ремонту, а при особенной везучести — к пожару.

Номинальный ток

Поняв, что автоматический выключатель должен защитить кабельную линию от протекания тока свыше допустимого, мы должны понять, какой же ток допустимый. Чаще всего ссылаются на вот эту табличку из ПУЭ (таблица 1.3.4):

Но, на мой субъективный взгляд, у этой таблички есть существенный недостаток, и он указан в источнике — эта табличка составлена для окружающей температуры +25, температуры земли +15 и температуры жилы (!!!) +65. Длительная работа изоляции при повышенной температуре ускоряет процесс старения полимеров, поэтому мое личное мнение — указанные в таблице цифры стоит уменьшить хотя бы на 1/4. Если кабель проложен таким образом, что его охлаждение затруднено, то предельно допустимый рабочий ток также уменьшают. Например если кабель расположен в пучке с другими кабелями или под слоем теплоизоляции.

И вот в этом месте подходим к самой неочевидной вещи. В таблице указаны предельно допустимые токи, а на автоматических выключателях указан номинальный ток. Номинальный ток автоматического выключателя, указанный  на нем — это ток, который может длительно проходить через автоматический выключатель и не вызывать его отключения. Для определения тока отключения заглянем в документацию, в график время-токовых характеристик:

Но это график конкретного экземпляра автоматического выключателя. В реальном мире, у автоматических выключателей есть разброс характеристик, даже у выключателей взятых из одной коробки. Поэтому на графике изображена область, в которой  окажется характеристика случайно взятого автоматического выключателя.

В результате, если взять определенный ток, то мы получим диапазон значений времени, за которое сработает автоматический выключатель. От и до, как например вот здесь:

Думаю  очевидно, что в расчетах стоит полагать, что нам попался самый плохой экземпляр, и берется самое худшее значение.

В автоматическом выключателе есть два расцепителя — тепловой, который достаточно точный, но медленный, и электромагнитный — очень быстрый, но неточный.  (В посте (https://serkov.su/blog/?p=5563) я разбирал, как к такому пришли, и почему лучше пока ничего не придумали.) В итоге получается нелинейная зависимость времени срабатывания от протекающего тока. Для наглядности возьмем автоматический выключатель, на котором указан номинальный ток 16А. При перегрузке будет работать тепловой расцепитель:

До тока в 1,13 от номинального, расцепления совсем  не произойдет (16*1,13=18,08А)

При токе в 1,45 от номинального тепловой расцепитель сработает, но за время менее 1 часа (!). (16*1,45=23,2А)

При токе в 2,55 от номинального тепловой расцепитель сработает за время менее 60 сек. (16*2,55= 40А)

При превышении тока еще сильнее — сработает электромагнитный расцепитель, но об этом чуть позже.

Все это становится понятнее, если взглянуть на график:

Откуда взялись эти магические цифры? Из стандарта (у нас в стране — ГОСТ 60898-1-220). Просто разработчики условились, что разброс параметров срабатывания расцепителей должны быть в этих пределах. Причем скорее всего взяли просто две удобные точки времени — 1 час и 1 минута, и воспользовались статистическими данными, чтобы получить кратности номинального тока.

Ну и чтобы совсем жизнь мёдом не казалась, стоит добавить, что в зависимости от температуры окружающей среды применяют коэффициенты. На жаре тепловой расцепитель прогревается и срабатывает быстрее, а вот на морозе наоборот.

А теперь сценарий везунчика по жизни. В частный дом заходит кабель, сечением 1,5 мм2. Щиток с автоматическим выключателем находится в холодном предбаннике, когда на улице мороз -35. Кабель от щитка идет через стену под слоем утеплителя. Автоматический выключатель на 16А почти час (!) будет пропускать ток в (16*1,45*1,25(поправочный на температуру, рис.4) = 29А. При 19А по табличке из ПУЭ у нас жилы будут горячими — +65С, а под слоем утеплителя изоляция уже начнет плавиться.

Еще раз резюмирую: Номинальный ток автоматического выключателя НЕ РАВЕН предельно допустимому току кабеля. Предельный ток кабеля должен вызывать отключение автоматического выключателя в адекватное время.

Тип электромагнитного расцепителя

Тепловой расцепитель медленный, что плохо при коротком замыкании — токи могут быть огромными, и даже за одну секунду могут наделать бед. Поэтому в конструкцию автоматического выключателя добавили электромагнитный расцепитель, который срабатывает за доли секунды. Но он настроен на ток в разы превышающий номинальный.

Дело в том, что некоторые виды потребителей при включении потребляют ток в разы, превышающий ток в рабочем режиме. Например мотор в пылесосе в момент включения кратковременно потребляет ток в 2-3 раза больший, но после разгона мотора, потребление снижается. Возможно вы замечали, как лампочки накаливания слегка притухают в момент включения чего-то как раз из-за этого. Вот график потребления тока мотора пылесоса:

Чтобы эти пусковые токи не заставляли сработать электромагнитный расцепитель, его характеристику сдвинули в зону бОльших токов, что бы такие кратковременные превышения тока были в зоне теплового расцепителя, который в силу своей инерционности такие краткосрочные процессы не замечает.

В итоге получилась линейка автоматических выключателей с одинаковыми тепловыми расцепителями, но с разными электромагнитными. Из-за огромного разброса параметров электромагнитных расцепителей — получились большие разбросы кратности тока срабатывания:

Характеристика В — электромагнитный расцепитель сработает при превышении тока в 3-5 раз

Характеристика С — электромагнитный расцепитель сработает при превышении тока в 5-10 раз

Характеристика D — электромагнитный расцепитель сработает при превышении тока в 10-20 раз

Вот они на графике:

Есть и другие характеристики (K, Z и т.д) но встречаются крайне редко и под заказ, поэтому опустим их.

Если по какой-то причине стартовые токи кратковременно попадут в зону действия электромагнитного расцепителя то возможны ложные срабатывания. И именно для исключения таких ложных срабатываний и сделали несколько типов характеристик.

Некоторые производители для упрощения указывают стартовые токи, вот например светодиодный драйвер уважаемой фирмы при включении кушает солидные 55А (из-за зарядки конденсатора в блоке питания), производитель даже сразу посчитал, сколько светодиодных драйверов можно подключить параллельно на один автоматический выключатель:

4 штуки с характеристикой В и 7 штук на автомат с характеристикой С. Кто бы мог подумать, что 150 ватт светодиодного света могут вышибать 16А автомат! Ситуация становится еще хуже, если используются некачественные светодиодные светильники,  где производитель не только не  предусмотрел плавный старт, да даже пусковой ток не регламентирует!

Если используется большое количество светодиодных светильников — то придется делить их на группы, чтобы одновременный пуск не вызывал срабатывание автоматического выключателя. Пытливый читатель задастся вопросом — а почему бы не взять просто автоматический выключатель  с характеристикой «C» или «D»? Тогда бы пусковые токи не вызывали бы ложных срабатываний! Но не все так просто….

Ток короткого замыкания

Можно иногда услышать выражение «сопротивление цепи фаза-нуль», оно по сути про то же. Ток короткого замыкания — это величина тока в цепи, в случае если из-за повреждения случается короткое замыкание (прямое соединение фазного проводника и нейтрального, или соединение фазного и заземления) в самом дальнем участке. В идеальном мире с идеальными проводниками ток короткого замыкания был бы бесконечным. Но в реальном мире кабели имеют собственное сопротивление, и чем они длиннее  тоньше — тем выше их собственное сопротивление. При обычной работе это не так важно — их собственное сопротивление много меньше сопротивления нагрузки. Но если случится короткое замыкание, ток будет ограничен именно этим собственным сопротивлением всех проводников в цепи + внутреннее сопротивление источника тока.

А теперь смотрим. В деревне Вилларибо измеренный ток короткого замыкания линии 278 Ампер, и электрик поставил автоматический выключатель С16:

Как видим все отлично — при коротком замыкании тока будет достаточно, чтобы электромагнитный расцепитель сработал. А вот в деревне Вилабаджо очень плохая проводка, и ток короткого замыкания всего 124 А. Смотрим на график:

В самом худшем случае, электромагнитный расцепитель типа «С» сработает при токе в 10 раз больше номинального (16*10=160А). А значит при 124А возможна ситуация, когда электромагнитный расцепитель при коротком замыкании не сработает, а пока тепловой расцепитель успеет сработать — по линии будет гулять ток в 124А, что может закончиться плохо. В таком случае деревне Вилабаджо нужно или менять проводку, чтобы уменьшить потери, или использовать автоматический выключатель типа В16, у которого электромагнитный расцепитель сработает в худшем случае при токе 5*16=80А. Теперь вы понимаете, почему характеристика типа D (10-20 *Iном) в некоторых случаях изощренный способ стрелять себе в ногу?

Как же определить ток короткого замыкания? Для  проектируемых линий его можно расчитать — длина кабеля известна, сечение тоже. Для линий уже находящихся в эксплуатации — только измерять, поскольку никто не знает, на что пришлось пойти электрикам при ремонте поврежденных участков.

Для определения тока короткого замыкания есть специальные приборы. Показывать современные не интересно, поэтому покажу суровый советский олдскул, который есть у меня. М-417 измеряет сопротивление цепи путем измерения падения напряжения на известном сопротивлении, а ток короткого замыкания необходимо рассчитывать:

Щ41160, творение сумрачного советского гения.  Устраивает короткое замыкание на доли секунды и измеряет ток непосредственно. В коричневой коробочке на проводе — предохранитель на 100А.:

Как правило, ток короткого замыкания измеряют при введении линии в эксплуатацию, и планово, раз в несколько лет. Только после измерения тока короткого замыкания можно сказать, правильно ли подобрана защита.

Ток короткого замыкания равен …Oh shi….

Если ток короткого замыкания будет черезчур большим? Вот тут мы сталкиваемся с отключающей способностью автоматического выключателя.  В момент размыкания контактов выключателя загорается электрическая дуга, которая сама по себе проводит ток и гаснет неохотно. Для ее принудительного разрушения в конструкции автоматических выключателей предусмотрены дугогасительные камеры. Вот здесь на высокоскоростной съемке видно как работает дугогасительная камера:

На автоматическом выключателе в прямоугольной рамке нанесена величина  отключающей способности в амперах — это максимальный ток, который способен разомкнуть автоматический выключатель без поломки. Вот на фото автоматические выключатели с отключающей способностью в 3000, 4500, 6000 и 10000 А:

Для наглядности я их разобрал. Большая отключающая способность заставляет не только делать дугогасительные камеры больше, но и усиливать другие конструктивные части, например защиту от прогара вбок.

Отключающая способность автоматического выключателя должна быть больше тока короткого замыкания в линии. Как правило, 6000 А достаточно для большинства применений. 4500А обычно достаточно для работы в линиях старых домов, но может быть недостаточным в новых сетях.

Коммутационная стойкость

При каждом включении/отключении автомата меж контактов загорается дуга, которая постепенно разрушает контактную группу. Производитель часто указывает количество циклов включения/отключения, который должны выдержать контакты:

Отсюда легко видеть, что автоматический выключатель не замена нормальному выключателю при частом использовании. Если пожадничать, и вместо пускателя с контактором  заставить сотрудника включать/отключать мешалку дергая автомат по 10 раз в  день, то автомат может прийти в негодность менее чем за пару лет. Вот фото автоматического выключателя, контакты которого пришли в негодность из-за большого тока:

Помните, каждая коммутация и срабатывание автоматического выключателя «съедает» его ресурс.

Класс токоограничения

Наверное самая мистическая характеристика. Указывается в виде цифры в квадратике. Про нее в рунете написано мало и чаще ерунда. Класс токоограничения, если упрощать, говорит о количестве электричества, которое успеет пройти через автоматический выключатель при коротком замыкании прежде, чем он отключит цепь, и  говорит о быстродействии. Всего классов три:

Что интересно, отечественными стандартами класс токоограничения не регламентируется, поэтому на картинке выше нет кириллицы. Цифры в таблице — это величина интеграла Джоуля. Отечественные производители указывают класс просто потому что «так принято», а не того требуют отечественные стандарты 🙂  В быту на данный параметр можно не обращать внимание — классы хуже третьего встречаются в продаже не часто.

Селективность

Вам бы не хотелось, чтобы при перегрузке или коротком замыкании срабатывал автоматический выключатель где-то на столбе у ввода в дом. При последовательном соединении автоматов защиты, подбором их характеристик можно добиться селективности — свойству срабатывать защите ближайшей  к повреждению, без срабатывания вышестоящей. И у меня две новости.

Хорошая — можно воспользоваться специальными таблицами, которые есть у многих производителей, и подобрать пары автоматических выключателей, которые при перегрузке будут обеспечивать селективность. На графике это видно как непересекающиеся графики работы  расцепителей:

Но по графику вы могли понять, что плохая новость — обеспечить полную селективность автоматических выключателей при коротком замыкании затруднительно. Кривые пересекаются в области больших токов. Поэтому чаще всего речь о частичной селективности. Например, если синий график — автомат В10, а фиолетовый В40, то ток селективности составит 120А (значение взято из таблиц одного производителя для конкретной модели автоматов). Тоесть при токах меньше тока селективности — все отлично. При токах больше — сработать могут оба устройства защиты.

В бытовой серии модульных автоматических выключателей обеспечивать селективность, даже частичную, довольно трудно. Лишь большие и мощные устройства защиты, например на подстанциях, имеют тонкие настройки уставок расцепителей для обеспечения селективности с вышестоящими устройствами защиты.

Да скажи уже что ставить!?

Прежде всего то, что предусмотрено проектом.

Ну а если уж совсем среднестатистический случай с кучей оговорок, то:

Линия 1,5 мм2 — Автомат В10 с отключающей способностью 6000А

Линия 2,5 мм2 — Автомат В16 с отключающей способностью 6000А

Применение автоматического выключателя с характеристикой «C» или «D» вместо «B» должно иметь вескую причину.

Плюшки

Автоматические выключатели разных производителей могут содержать разные приятности/полезности, которые напрямую на защитные функции не влияют, но могут быть полезны:

Это различные шторки/колпачки/крышечки для пломбирования вводного автомата по требованию электросетевой компании.

Это визуальный индикатор фактического состояния контактов, такой индикатор останется красным, если контакты из-за перегрузки сварились

Это окошки для дополнительных нашлепок с электромагнитными расцепителями, контактами

Это дополнительное окошко у клемм для использования гребенки при подключении

и прочее и прочее.

Резюме

  1. Номинальный ток автоматического выключателя не равен предельно допустимому для кабеля!  В силу особенностей конструкции автоматический выключатель может длительное время пропускать через себя токи значительно больше номинальных и не отключаться.

  2. Разные типы электромагнитных расцепителей позволяют избежать ложных срабатываний, но использовать тип С, и в особенности тип D нужно понимая что к чему.

  3. Если ток короткого замыкания в вашей линии мал — то использование автоматического выключателя требует вдумчивого подхода.

  4. Если ток короткого замыкания в вашей линии огромен, то отключающая способность автоматического выключателя должна быть еще больше.

  5. А чтобы знать ток короткого замыкания, его нужно измерить специализированным прибором. И только после измерения можно сказать, будет ли правильно работать  защита

Хочу сказать спасибо всем, кто принимал участие в рецензировании черновика. Буду рад указаниям на фактические ошибки в статье и ценным дополнениям.

Выбор автоматического выключателя — Руководство по электрическому монтажу

Выбор ряда автоматических выключателей определяется: электрическими характеристиками установки, окружающей средой, нагрузками и потребностью в дистанционном управлении, а также типом предполагаемой системы связи.

Выбор выключателя

Выбор выключателя производится по:

  • Электрические характеристики (переменного или постоянного тока, напряжения …) установки, для которой предназначен выключатель
  • Окружающая среда: температура окружающей среды, в помещении киоска или распределительного щита, климатические условия и т. Д.
  • Предполагаемый ток короткого замыкания в месте установки
  • Характеристики защищаемых кабелей, шин, шинопроводов и область применения (распределение, двигатель …)
  • Координация с вышестоящим и / или последующим устройством: селективность, каскадирование, координация с выключателем нагрузки, контактором …
  • Эксплуатационные характеристики: требования (или нет) к дистанционному управлению и индикации и соответствующим вспомогательным контактам, вспомогательным катушкам отключения, соединению
  • Правила монтажа; в частности: защита от поражения электрическим током и теплового воздействия (см. Защита от поражения электрическим током и электрического пожара)
  • Нагрузочные характеристики, такие как двигатели, люминесцентное освещение, светодиодное освещение, трансформаторы низкого / низкого напряжения

Следующие примечания относятся к выбору автоматического выключателя низкого напряжения для использования в распределительных сетях.

Выбор номинального тока в зависимости от температуры окружающей среды

Номинальный ток автоматического выключателя определяется для работы при заданной температуре окружающей среды, как правило:

  • 30 ° C для выключателей бытового типа в соответствии с IEC 60898 серия
  • 40 ° C по умолчанию для автоматических выключателей промышленного типа в соответствии с серией IEC 60947. Однако может быть предложено другое значение.

Характеристики этих выключателей при различной температуре окружающей среды в основном зависят от технологии их отключающих устройств (см. Рис. х47).

Рис. H47 — Температура окружающей среды

Некомпенсированные термомагнитные расцепители

Автоматические выключатели с некомпенсированными тепловыми расцепителями имеют уровень тока отключения, который зависит от температуры окружающей среды.

Автоматические выключатели с некомпенсированными тепловыми отключающими элементами имеют уровень тока отключения, который зависит от окружающей температуры. Если выключатель установлен в кожухе или в горячем месте (котельная и т. Д.), Ток, необходимый для отключения выключателя при перегрузке, будет значительно снижен.Когда температура, при которой находится выключатель, превышает его эталонную температуру, его номинальные параметры будут «снижены». По этой причине производители выключателя предоставляют таблицы, в которых указаны факторы, которые следует применять при температурах, отличных от эталонной температуры выключателя. Из типичных примеров таких таблиц (см. , рис. h49) можно заметить, что более низкая температура, чем эталонное значение, приводит к повышению номинальной мощности автоматического выключателя. Более того, небольшие выключатели модульного типа, устанавливаемые рядом, как обычно показано на рис. h34, обычно устанавливаются в небольшой закрытый металлический корпус.В этой ситуации взаимный нагрев при прохождении нормальных токов нагрузки обычно требует их уменьшения в 0,8 раза.

Пример

Какой рейтинг (In) следует выбрать для iC60 N?

  • Защита цепи, максимальный ток нагрузки которой оценивается в 34 А
  • Устанавливается бок о бок с другими выключателями в закрытой распределительной коробке
  • При температуре окружающей среды 60 ° C

Автоматический выключатель iC60N с номиналом 40 А будет снижен до 38.2 А в окружающем воздухе при 60 ° C (см. Рисунок h49). Однако для обеспечения взаимного нагрева в замкнутом пространстве необходимо использовать указанный выше коэффициент 0,8, так что 38,2 x 0,8 = 30,5 А, что не подходит для нагрузки 34 А.

A, автоматический выключатель на 50 A, поэтому номинальный ток (пониженный) составляет 47,6 x 0,8 = 38 A.

Компенсированные термомагнитные расцепители

Эти расцепители включают биметаллическую компенсирующую полосу, которая позволяет регулировать уставку тока срабатывания при перегрузке (Ir или Irth) в пределах указанного диапазона независимо от температуры окружающей среды.

Например:

  • В некоторых странах система TT является стандартной для низковольтных распределительных систем, а бытовые (и аналогичные) установки защищены на рабочем месте автоматическим выключателем, предоставленным органом электроснабжения. Этот выключатель, помимо защиты от опасности косвенного прикосновения, срабатывает при перегрузке; в этом случае, если потребитель превышает текущий уровень, указанный в его контракте на поставку с энергетическим органом. Автоматический выключатель (≤ 60 A) рассчитан на диапазон температур от — 5 ° C до + 40 ° C.
  • Автоматические выключатели

  • на номинальные токи ≤ 630 A обычно оснащаются компенсированными расцепителями для этого диапазона (от -5 ° C до + 40 ° C)

Примеры таблиц, в которых приведены значения пониженного / повышенного тока в зависимости от температуры для цепи -выключатели с некомпенсированными тепловыми расцепителями

Тепловые характеристики выключателя

приведены с учетом сечения и типа проводника (Cu или Al) в соответствии с IEC60947-1, таблицы 9 и 10 и IEC60898-1 и 2, таблица 10.

iC60 (МЭК 60947-2)

Рис.h48 — iC60 (IEC 60947-2) — значения пониженного / повышенного тока в зависимости от температуры окружающей среды

Рейтинг Температура окружающей среды (° C)
(А) 10 15 20 25 30 35 40 45 50 55 60 65 70
0,5 0,58 0,57 0.56 0,55 0,54 0,53 0,52 0,51 0,5 0,49 0,48 0,47 0,45
1 1,16 1,14 1,12 1,1 1,08 1,06 1,04 1,02 1 0,98 0,96 0,93 0,91
2 2.4 2,36 2,31 2,26 2,21 2,16 2,11 2,05 2 1,94 1,89 1,83 1,76
3 3,62 3,55 3,48 3,4 3,32 3,25 3,17 3,08 3 2,91 2,82 2,73 2,64
4 4.83 4,74 4,64 4,54 4,44 4,33 4,22 4,11 4 3,88 3,76 3,64 3,51
6 7,31 7,16 7,01 6,85 6,69 6,52 6,35 6,18 6 5,81 5,62 5,43 5,22
10 11.7 11,5 11,3 11,1 10,9 10,7 10,5 10,2 10 9,8 9,5 9,3 9
13 15,1 14,8 14,6 14,3 14,1 13,8 13,6 13,3 13 12,7 12,4 12,1 11,8
16 18.6 18,3 18 17,7 17,3 17 16,7 16,3 16 15,7 15,3 14,9 14,5
20 23 22,7 22,3 21,9 21,6 21,2 20,8 20,4 20 19,6 19,2 18,7 18,3
25 28.5 28,1 27,6 27,2 26,8 26,4 25,9 25,5 25 24,5 24,1 23,6 23,1
32 37,1 36,5 35,9 35,3 34,6 34 33,3 32,7 32 31,3 30,6 29,9 29,1
40 46.4 45,6 44,9 44,1 43,3 42,5 41,7 40,9 40 39,1 38,2 37,3 36,4
50 58,7 57,7 56,7 55,6 54,5 53,4 52,3 51,2 50 48,8 47,6 46,3 45
63 74.9 73,5 72,1 70,7 69,2 67,7 66,2 64,6 63 61,4 59,7 57,9 56,1

Compact NSX100-250 с расцепителями TM-D или TM-G

Рис. H49 — Compact NSX100-250, оборудованный расцепителями TM-D или TM-G — номинальные / пониженные значения тока в зависимости от температуры окружающей среды

Рейтинг Температура окружающей среды (° C)
(А) 10 15 20 25 30 35 40 45 50 55 60 65 70
16 18.4 18,7 18 18 17 16,6 16 15,6 15,2 14,8 14,5 14 13,8
25 28,8 28 27,5 25 26,3 25,6 25 24,5 24 23,5 23 22 21
32 36.8 36 35,2 34,4 33,6 32,8 32 31,3 30,5 30 29,5 29 28,5
40 46 45 44 43 42 41 40 39 38 37 36 35 34
50 57.5 56 55 54 52,5 51 50 49 48 47 46 45 44
63 72 71 69 68 66 65 63 61,5 60 58 57 55 54
80 92 90 88 86 84 82 80 78 76 74 72 70 68
100 115 113 110 108 105 103 100 97.5 95 92,5 90 87,5 85
125 144 141 138 134 131 128 125 122 119 116 113 109 106
160 184 180 176 172 168 164 160 156 152 148 144 140 136
200 230 225 220 215 210 205 200 195 190 185 180 175 170
250 288 281 277 269 263 256 250 244 238 231 225 219 213

Электронные расцепители

Электронные расцепители очень стабильны при изменении температурных уровней.

Важным преимуществом электронных расцепителей является их стабильная работа в меняющихся температурных условиях.Однако само распределительное устройство часто налагает эксплуатационные ограничения при повышенных температурах, поэтому производители обычно предоставляют рабочую диаграмму, связывающую максимальные значения допустимых уровней тока срабатывания с температурой окружающей среды (см. , рис. h50).

Кроме того, электронные расцепители могут предоставлять информацию, которая может использоваться для лучшего управления распределением электроэнергии, включая энергоэффективность и качество электроэнергии.

Рис. H50 — Снижение номинальных характеристик автоматического выключателя Masterpact MTZ2 в зависимости от температуры

Тип выдвижения Masterpact МТЗ2 Н1 — х2 — х3 — х4 -L1 -х20
08 10 12 16 20 [а] 20 [b]
Температура окружающей среды (° C)
Спереди или сзади по горизонтали 40 800 1000 1250 1600 2000 2000
45
50
55
60 1900
65 1830 1950
70 1520 1750 1900
Задняя вертикальная 40 800 1000 1250 1600 2000 2000
45
50
55
60
65
70
  1. ^ Тип: h2 / h3 / h4
  2. ^ Тип: L1

Выбор мгновенного или кратковременного порога отключения

На рисунке h51 ниже представлены основные характеристики расцепителей мгновенного действия или с кратковременной задержкой.

Рис. H51 — Различные устройства отключения, мгновенные или с кратковременной задержкой

Тип Расцепитель Приложения
Низкое значение

тип B

  • Источники, вырабатывающие низкие уровни тока короткого замыкания (резервные генераторы)
  • Длинные отрезки линии или кабеля
Стандартная настройка

тип C

  • Защита цепей: общий
Высокая установка

типа D или K

  • Защита цепей с высокими начальными уровнями переходного тока (например,грамм. двигатели, трансформаторы, резистивные нагрузки)
12 дюймов

типа МА

  • Защита двигателей с помощью контакторов и защита от перегрузки

Выбор автоматического выключателя в соответствии с предполагаемым током короткого замыкания

Установка низковольтного выключателя требует, чтобы его отключающая способность при коротком замыкании (или отключающая способность автоматического выключателя вместе с соответствующим устройством) была равна или превышала расчетный ожидаемый ток короткого замыкания в точке его установки.

Установка автоматического выключателя в установке низкого напряжения должна соответствовать одному из двух следующих условий:

  • Либо иметь номинальную отключающую способность при коротком замыкании Icu (или Icn), которая равна или превышает ожидаемый ток короткого замыкания, рассчитанный для точки установки, либо
  • Если это не так, быть связанным с другим устройством, расположенным выше по потоку и имеющим требуемую отключающую способность при коротком замыкании

Во втором случае характеристики двух устройств должны быть согласованы таким образом, чтобы энергия, разрешенная для прохождения через вышестоящее устройство, не должна превышать ту, которую может выдержать последующее устройство и все связанные с ним кабели, провода и другие компоненты без какого-либо повреждения.Этот метод с успехом применяется в:

  • Объединения предохранителей и автоматических выключателей
  • Объединения токоограничивающих автоматических выключателей и стандартных автоматических выключателей.

Метод известен как «каскадирование» (см. «Координация между автоматическими выключателями»).

Автоматические выключатели для IT-систем

В системе IT автоматические выключатели могут столкнуться с необычной ситуацией, называемой двойным замыканием на землю, когда второе замыкание на землю происходит в присутствии первого замыкания на противоположной стороне автоматического выключателя (см. Рисунок h52).

В этом случае автоматический выключатель должен устранить замыкание с помощью межфазного напряжения на одном полюсе вместо напряжения между фазой и нейтралью. В такой ситуации отключающая способность выключателя может быть изменена.

Приложение H стандарта IEC60947-2 рассматривает эту ситуацию, и автоматический выключатель, используемый в системе IT, должен быть испытан в соответствии с этим приложением.

Если автоматический выключатель не был испытан в соответствии с настоящим приложением, на паспортной табличке должна использоваться маркировка символом.

Регламент некоторых стран может добавлять дополнительные требования.

Рис. H52 — Ситуация двойного замыкания на землю

Выбор автоматических выключателей в качестве главных вводов и фидеров

Установка с питанием от одного трансформатора

Если трансформатор расположен на подстанции потребителя, согласно некоторым национальным стандартам требуется автоматический выключатель низкого напряжения, в котором разомкнутые контакты хорошо видны, например:
выкатной автоматический выключатель.

Пример

(см. рис. х53)

Какой тип автоматического выключателя подходит для главного автоматического выключателя установки, питаемой от трехфазного трансформатора среднего / низкого напряжения (400 В) 250 кВА на подстанции потребителя?

В трансформаторе = 360 А

Isc (3 фазы) = 9 кА

Compact NSX400N с регулируемым диапазоном отключающих устройств от 160 до 400 А и отключающей способностью при коротком замыкании (Icu) 50 кА будет подходящим выбором для этой работы.

Рис. H53 — Пример трансформатора на подстанции потребителя

Установка с питанием от нескольких трансформаторов параллельно

(см. рис. х54)

  • Каждый выключатель фидера CBP должен быть способен отключать полный ток короткого замыкания от всех трансформаторов, подключенных к шинам: Isc1 + Isc2 + Isc3
  • Главные автоматические выключатели CBM должны быть способны выдерживать максимальный ток короткого замыкания (например) Isc2 + Isc3 только для короткого замыкания, расположенного на стороне входа CBM1.

Из этих соображений будет видно, что автоматический выключатель наименьшего трансформатора будет подвергаться наибольшему уровню тока короткого замыкания в этих обстоятельствах, в то время как выключатель наибольшего трансформатора пройдет наименьший уровень короткого замыкания. — ток цепи

  • Номинальные параметры CBM должны выбираться в соответствии с номинальными значениями кВА соответствующих трансформаторов.

Рис.h54 — Трансформаторы параллельно

Примечание: Существенные условия для успешной работы трехфазных трансформаторов, включенных параллельно, можно резюмировать следующим образом:

1. Фазовый сдвиг напряжений, первичный и вторичный, должен быть одинаковым во всех параллельных устройствах.

2. Соотношение напряжения холостого хода первичной и вторичной обмоток должно быть одинаковым во всех блоках.

3. Напряжение полного сопротивления короткого замыкания (Zsc%) должно быть одинаковым для всех блоков.

Например, трансформатор 750 кВА с Zsc = 6% будет правильно разделять нагрузку с трансформатором 1000 кВА с Zsc 6%, т.е.е. трансформаторы будут загружены автоматически пропорционально их номинальной мощности в кВА. Для трансформаторов с коэффициентом мощности более 2 кВА параллельная работа не рекомендуется.

На рисунке h56 для наиболее обычного расположения (2 или 3 трансформатора с одинаковой мощностью кВА) указаны максимальные токи короткого замыкания, которым подвергаются основные и главные выключатели (CBM и CBP соответственно, на рис. , рисунок h55). В его основе лежат следующие гипотезы:

  • Мощность трехфазного короткого замыкания на стороне СН трансформатора составляет 500 МВА
  • Трансформаторы стандартные 20/0.Распределительные устройства 4 кВ, указанные в перечне
  • Кабели от каждого трансформатора до его выключателя низкого напряжения состоят из 5 метров одножильных проводов
  • Между каждым CBM входящей цепи и каждым CBP исходящей цепи имеется 1 метр сборной шины
  • Распределительное устройство устанавливается в закрытом распределительном щите, монтируемом на полу, при температуре окружающего воздуха 30 ° C

Пример

(см. рисунок h55)

Выбор автоматического выключателя для режима CBM

Для трансформатора 800 кВА In ​​= 1155 А; Icu (минимум) = 38 кА (с Рисунок h56), CBM, указанный в таблице, представляет собой Compact NS1250N (Icu = 50 кА)

Выбор автоматического выключателя для режима CBP

С.c. Отключающая способность (Icu), необходимая для этих автоматических выключателей, указана на Рисунок h56 как 56 кА.

Рекомендуемым выбором для трех исходящих цепей 1, 2 и 3 были бы токоограничивающие автоматические выключатели типов NSX400 H, NSX250 H и NSX100 H. Номинал Icu в каждом случае = 70 кА.

Эти автоматические выключатели обладают следующими преимуществами:

  • Полная селективность с выключателями на входе (CBM)
  • Использование «каскадного» метода с связанной с ним экономией на всех последующих компонентах

Рис.h55 — Трансформаторы параллельно

Рис. H56 — Максимальные значения тока короткого замыкания, прерываемые автоматическими выключателями ввода и фидера (CBM и CBP соответственно) для нескольких трансформаторов, включенных параллельно

Количество и номинальная мощность трансформаторов 20 / 0,4 кВ Минимальная отключающая способность основных выключателей (Icu) кА Главные автоматические выключатели (CBM), полная селективность с исходящими автоматическими выключателями (CBP) Минимальная отключающая способность основных выключателей (Icu) кА Номинальный ток In главного автоматического выключателя (CPB) 250A
2 х 400 14 МТЗ1 08х2 / МТЗ2 08Н1 / НС800Н 28 NSX100-630F
3 х 400 28 МТЗ1 08х2 / МТЗ2 08Н1 / НС800Н 42 NSX100-630N
2 х 630 22 МТЗ1 10х2 / МТЗ2 10Н1 / НС1000Н 44 NSX100-630N
3 х 630 44 МТЗ1 10х3 / МТЗ2 10Н1 / НС1000Н 66 NSX100-630S
2 х 800 19 МТЗ1 12х2 / МТЗ2 12Н1 / НС1250Н 38 NSX100-630N
3 х 800 38 МТЗ1 12х2 / МТЗ2 12Н1 / НС1250Н 57 NSX100-630H
2 х 1000 23 МТЗ1 16х2 / МТЗ2 16Н1 / НС1600Н 46 NSX100-630N
3 X 1000 46 МТЗ1 16х3 / МТЗ2 16х2 / НС1600Н 69 NSX100-630H
2 х 1250 29 МТЗ2 20Н1 / НС2000Н 58 NSX100-630H
3 X 1250 58 МТЗ2 20х2 / НС2000Н 87 NSX100-630S
2 х 1600 36 МТЗ2 25Н1 / НС2500Н 72 NSX100-630S
3 х 1600 72 МТЗ2 25х3 / НС2500Х 108 NSX100-630L
2 х 2000 45 МТЗ2 32х2 / НС3200Н 90 NSX100-630S
3 X 2000 90 МТЗ2 32х3 135 NSX100-630L

Выбор выключателей фидера и выключателей конечного контура

Уровни тока короткого замыкания в любой точке установки можно узнать из таблиц.

Использование таблицы G42

Из этой таблицы можно быстро определить значение трехфазного тока короткого замыкания для любой точки установки, зная:

  • Значение тока короткого замыкания в точке перед током, предназначенным для соответствующего выключателя
  • Длина, гр.s.a., и состав проводников между двумя точками

Затем можно выбрать автоматический выключатель, рассчитанный на отключающую способность при коротком замыкании, превышающую табличное значение.

Детальный расчет уровня тока короткого замыкания

Для более точного расчета тока короткого замыкания, в частности, когда отключающая способность выключателя по току короткого замыкания немного меньше значения, указанного в таблице, необходимо использовать метод, указанный в разделе Ток короткого замыкания. .

Двухполюсные выключатели (для фазы и нейтрали) только с одним защищенным полюсом

Эти выключатели обычно снабжены устройством защиты от перегрузки по току только на фазном полюсе и могут использоваться в схемах TT, TN-S и IT. Однако в ИТ-схеме должны соблюдаться следующие условия:

  • Условие (B) таблицы в Рисунок G68 для защиты нейтрального проводника от перегрузки по току в случае двойного замыкания
  • Номинальное значение отключения по току короткого замыкания: 2-полюсный выключатель фаза-нейтраль должен быть способен отключать на одном полюсе (при межфазном напряжении) ток двойного замыкания
  • Защита от непрямого прикосновения: эта защита обеспечивается в соответствии с правилами для схем IT.

Выбор автоматического выключателя — Руководство по устройству электроустановок

Выбор ряда автоматических выключателей определяется: электрическими характеристиками установки, окружающей средой, нагрузками и потребностью в дистанционном управлении, а также типом предполагаемой системы связи.

Выбор выключателя

Выбор выключателя производится по:

  • Электрические характеристики (переменный или постоянный ток, напряжение…) установки, для которой предназначен выключатель
  • Окружающая среда: температура окружающей среды, в помещении киоска или распределительного щита, климатические условия и т. Д.
  • Предполагаемый ток короткого замыкания в месте установки
  • Характеристики защищаемых кабелей, шин, шинопроводов и область применения (распределение, двигатель …)
  • Координация с вышестоящим и / или нижним устройством: селективность, каскадирование, координация с выключателем нагрузки, контактором…
  • Эксплуатационные характеристики: требования (или нет) к дистанционному управлению и индикации и соответствующим вспомогательным контактам, вспомогательным катушкам отключения, соединению
  • Правила монтажа; в частности: защита от поражения электрическим током и теплового воздействия (см. Защита от поражения электрическим током и электрического пожара)
  • Нагрузочные характеристики, такие как двигатели, люминесцентное освещение, светодиодное освещение, трансформаторы низкого / низкого напряжения

Следующие примечания относятся к выбору автоматического выключателя низкого напряжения для использования в распределительных сетях.

Выбор номинального тока в зависимости от температуры окружающей среды

Номинальный ток автоматического выключателя определяется для работы при заданной температуре окружающей среды, как правило:

  • 30 ° C для выключателей бытового типа в соответствии с IEC 60898 серия
  • 40 ° C по умолчанию для автоматических выключателей промышленного типа в соответствии с серией IEC 60947. Однако может быть предложено другое значение.

Характеристики этих выключателей при различной температуре окружающей среды в основном зависят от технологии их отключающих устройств (см. Рис. х47).

Рис. H47 — Температура окружающей среды

Некомпенсированные термомагнитные расцепители

Автоматические выключатели с некомпенсированными тепловыми расцепителями имеют уровень тока отключения, который зависит от температуры окружающей среды.

Автоматические выключатели с некомпенсированными тепловыми отключающими элементами имеют уровень тока отключения, который зависит от окружающей температуры. Если выключатель установлен в кожухе или в горячем месте (котельная и т. Д.), Ток, необходимый для отключения выключателя при перегрузке, будет значительно снижен.Когда температура, при которой находится выключатель, превышает его эталонную температуру, его номинальные параметры будут «снижены». По этой причине производители выключателя предоставляют таблицы, в которых указаны факторы, которые следует применять при температурах, отличных от эталонной температуры выключателя. Из типичных примеров таких таблиц (см. , рис. h49) можно заметить, что более низкая температура, чем эталонное значение, приводит к повышению номинальной мощности автоматического выключателя. Более того, небольшие выключатели модульного типа, устанавливаемые рядом, как обычно показано на рис. h34, обычно устанавливаются в небольшой закрытый металлический корпус.В этой ситуации взаимный нагрев при прохождении нормальных токов нагрузки обычно требует их уменьшения в 0,8 раза.

Пример

Какой рейтинг (In) следует выбрать для iC60 N?

  • Защита цепи, максимальный ток нагрузки которой оценивается в 34 А
  • Устанавливается бок о бок с другими выключателями в закрытой распределительной коробке
  • При температуре окружающей среды 60 ° C

Автоматический выключатель iC60N с номиналом 40 А будет снижен до 38.2 А в окружающем воздухе при 60 ° C (см. Рисунок h49). Однако для обеспечения взаимного нагрева в замкнутом пространстве необходимо использовать указанный выше коэффициент 0,8, так что 38,2 x 0,8 = 30,5 А, что не подходит для нагрузки 34 А.

A, автоматический выключатель на 50 A, поэтому номинальный ток (пониженный) составляет 47,6 x 0,8 = 38 A.

Компенсированные термомагнитные расцепители

Эти расцепители включают биметаллическую компенсирующую полосу, которая позволяет регулировать уставку тока срабатывания при перегрузке (Ir или Irth) в пределах указанного диапазона независимо от температуры окружающей среды.

Например:

  • В некоторых странах система TT является стандартной для низковольтных распределительных систем, а бытовые (и аналогичные) установки защищены на рабочем месте автоматическим выключателем, предоставленным органом электроснабжения. Этот выключатель, помимо защиты от опасности косвенного прикосновения, срабатывает при перегрузке; в этом случае, если потребитель превышает текущий уровень, указанный в его контракте на поставку с энергетическим органом. Автоматический выключатель (≤ 60 A) рассчитан на диапазон температур от — 5 ° C до + 40 ° C.
  • Автоматические выключатели

  • на номинальные токи ≤ 630 A обычно оснащаются компенсированными расцепителями для этого диапазона (от -5 ° C до + 40 ° C)

Примеры таблиц, в которых приведены значения пониженного / повышенного тока в зависимости от температуры для цепи -выключатели с некомпенсированными тепловыми расцепителями

Тепловые характеристики выключателя

приведены с учетом сечения и типа проводника (Cu или Al) в соответствии с IEC60947-1, таблицы 9 и 10 и IEC60898-1 и 2, таблица 10.

iC60 (МЭК 60947-2)

Рис.h48 — iC60 (IEC 60947-2) — значения пониженного / повышенного тока в зависимости от температуры окружающей среды

Рейтинг Температура окружающей среды (° C)
(А) 10 15 20 25 30 35 40 45 50 55 60 65 70
0,5 0,58 0,57 0.56 0,55 0,54 0,53 0,52 0,51 0,5 0,49 0,48 0,47 0,45
1 1,16 1,14 1,12 1,1 1,08 1,06 1,04 1,02 1 0,98 0,96 0,93 0,91
2 2.4 2,36 2,31 2,26 2,21 2,16 2,11 2,05 2 1,94 1,89 1,83 1,76
3 3,62 3,55 3,48 3,4 3,32 3,25 3,17 3,08 3 2,91 2,82 2,73 2,64
4 4.83 4,74 4,64 4,54 4,44 4,33 4,22 4,11 4 3,88 3,76 3,64 3,51
6 7,31 7,16 7,01 6,85 6,69 6,52 6,35 6,18 6 5,81 5,62 5,43 5,22
10 11.7 11,5 11,3 11,1 10,9 10,7 10,5 10,2 10 9,8 9,5 9,3 9
13 15,1 14,8 14,6 14,3 14,1 13,8 13,6 13,3 13 12,7 12,4 12,1 11,8
16 18.6 18,3 18 17,7 17,3 17 16,7 16,3 16 15,7 15,3 14,9 14,5
20 23 22,7 22,3 21,9 21,6 21,2 20,8 20,4 20 19,6 19,2 18,7 18,3
25 28.5 28,1 27,6 27,2 26,8 26,4 25,9 25,5 25 24,5 24,1 23,6 23,1
32 37,1 36,5 35,9 35,3 34,6 34 33,3 32,7 32 31,3 30,6 29,9 29,1
40 46.4 45,6 44,9 44,1 43,3 42,5 41,7 40,9 40 39,1 38,2 37,3 36,4
50 58,7 57,7 56,7 55,6 54,5 53,4 52,3 51,2 50 48,8 47,6 46,3 45
63 74.9 73,5 72,1 70,7 69,2 67,7 66,2 64,6 63 61,4 59,7 57,9 56,1

Compact NSX100-250 с расцепителями TM-D или TM-G

Рис. H49 — Compact NSX100-250, оборудованный расцепителями TM-D или TM-G — номинальные / пониженные значения тока в зависимости от температуры окружающей среды

Рейтинг Температура окружающей среды (° C)
(А) 10 15 20 25 30 35 40 45 50 55 60 65 70
16 18.4 18,7 18 18 17 16,6 16 15,6 15,2 14,8 14,5 14 13,8
25 28,8 28 27,5 25 26,3 25,6 25 24,5 24 23,5 23 22 21
32 36.8 36 35,2 34,4 33,6 32,8 32 31,3 30,5 30 29,5 29 28,5
40 46 45 44 43 42 41 40 39 38 37 36 35 34
50 57.5 56 55 54 52,5 51 50 49 48 47 46 45 44
63 72 71 69 68 66 65 63 61,5 60 58 57 55 54
80 92 90 88 86 84 82 80 78 76 74 72 70 68
100 115 113 110 108 105 103 100 97.5 95 92,5 90 87,5 85
125 144 141 138 134 131 128 125 122 119 116 113 109 106
160 184 180 176 172 168 164 160 156 152 148 144 140 136
200 230 225 220 215 210 205 200 195 190 185 180 175 170
250 288 281 277 269 263 256 250 244 238 231 225 219 213

Электронные расцепители

Электронные расцепители очень стабильны при изменении температурных уровней.

Важным преимуществом электронных расцепителей является их стабильная работа в меняющихся температурных условиях.Однако само распределительное устройство часто налагает эксплуатационные ограничения при повышенных температурах, поэтому производители обычно предоставляют рабочую диаграмму, связывающую максимальные значения допустимых уровней тока срабатывания с температурой окружающей среды (см. , рис. h50).

Кроме того, электронные расцепители могут предоставлять информацию, которая может использоваться для лучшего управления распределением электроэнергии, включая энергоэффективность и качество электроэнергии.

Рис. H50 — Снижение номинальных характеристик автоматического выключателя Masterpact MTZ2 в зависимости от температуры

Тип выдвижения Masterpact МТЗ2 Н1 — х2 — х3 — х4 -L1 -х20
08 10 12 16 20 [а] 20 [b]
Температура окружающей среды (° C)
Спереди или сзади по горизонтали 40 800 1000 1250 1600 2000 2000
45
50
55
60 1900
65 1830 1950
70 1520 1750 1900
Задняя вертикальная 40 800 1000 1250 1600 2000 2000
45
50
55
60
65
70
  1. ^ Тип: h2 / h3 / h4
  2. ^ Тип: L1

Выбор мгновенного или кратковременного порога отключения

На рисунке h51 ниже представлены основные характеристики расцепителей мгновенного действия или с кратковременной задержкой.

Рис. H51 — Различные устройства отключения, мгновенные или с кратковременной задержкой

Тип Расцепитель Приложения
Низкое значение

тип B

  • Источники, вырабатывающие низкие уровни тока короткого замыкания (резервные генераторы)
  • Длинные отрезки линии или кабеля
Стандартная настройка

тип C

  • Защита цепей: общий
Высокая установка

типа D или K

  • Защита цепей с высокими начальными уровнями переходного тока (например,грамм. двигатели, трансформаторы, резистивные нагрузки)
12 дюймов

типа МА

  • Защита двигателей с помощью контакторов и защита от перегрузки

Выбор автоматического выключателя в соответствии с предполагаемым током короткого замыкания

Установка низковольтного выключателя требует, чтобы его отключающая способность при коротком замыкании (или отключающая способность автоматического выключателя вместе с соответствующим устройством) была равна или превышала расчетный ожидаемый ток короткого замыкания в точке его установки.

Установка автоматического выключателя в установке низкого напряжения должна соответствовать одному из двух следующих условий:

  • Либо иметь номинальную отключающую способность при коротком замыкании Icu (или Icn), которая равна или превышает ожидаемый ток короткого замыкания, рассчитанный для точки установки, либо
  • Если это не так, быть связанным с другим устройством, расположенным выше по потоку и имеющим требуемую отключающую способность при коротком замыкании

Во втором случае характеристики двух устройств должны быть согласованы таким образом, чтобы энергия, разрешенная для прохождения через вышестоящее устройство, не должна превышать ту, которую может выдержать последующее устройство и все связанные с ним кабели, провода и другие компоненты без какого-либо повреждения.Этот метод с успехом применяется в:

  • Объединения предохранителей и автоматических выключателей
  • Объединения токоограничивающих автоматических выключателей и стандартных автоматических выключателей.

Метод известен как «каскадирование» (см. «Координация между автоматическими выключателями»).

Автоматические выключатели для IT-систем

В системе IT автоматические выключатели могут столкнуться с необычной ситуацией, называемой двойным замыканием на землю, когда второе замыкание на землю происходит в присутствии первого замыкания на противоположной стороне автоматического выключателя (см. Рисунок h52).

В этом случае автоматический выключатель должен устранить замыкание с помощью межфазного напряжения на одном полюсе вместо напряжения между фазой и нейтралью. В такой ситуации отключающая способность выключателя может быть изменена.

Приложение H стандарта IEC60947-2 рассматривает эту ситуацию, и автоматический выключатель, используемый в системе IT, должен быть испытан в соответствии с этим приложением.

Если автоматический выключатель не был испытан в соответствии с настоящим приложением, на паспортной табличке должна использоваться маркировка символом.

Регламент некоторых стран может добавлять дополнительные требования.

Рис. H52 — Ситуация двойного замыкания на землю

Выбор автоматических выключателей в качестве главных вводов и фидеров

Установка с питанием от одного трансформатора

Если трансформатор расположен на подстанции потребителя, согласно некоторым национальным стандартам требуется автоматический выключатель низкого напряжения, в котором разомкнутые контакты хорошо видны, например:
выкатной автоматический выключатель.

Пример

(см. рис. х53)

Какой тип автоматического выключателя подходит для главного автоматического выключателя установки, питаемой от трехфазного трансформатора среднего / низкого напряжения (400 В) 250 кВА на подстанции потребителя?

В трансформаторе = 360 А

Isc (3 фазы) = 9 кА

Compact NSX400N с регулируемым диапазоном отключающих устройств от 160 до 400 А и отключающей способностью при коротком замыкании (Icu) 50 кА будет подходящим выбором для этой работы.

Рис. H53 — Пример трансформатора на подстанции потребителя

Установка с питанием от нескольких трансформаторов параллельно

(см. рис. х54)

  • Каждый выключатель фидера CBP должен быть способен отключать полный ток короткого замыкания от всех трансформаторов, подключенных к шинам: Isc1 + Isc2 + Isc3
  • Главные автоматические выключатели CBM должны быть способны выдерживать максимальный ток короткого замыкания (например) Isc2 + Isc3 только для короткого замыкания, расположенного на стороне входа CBM1.

Из этих соображений будет видно, что автоматический выключатель наименьшего трансформатора будет подвергаться наибольшему уровню тока короткого замыкания в этих обстоятельствах, в то время как выключатель наибольшего трансформатора пройдет наименьший уровень короткого замыкания. — ток цепи

  • Номинальные параметры CBM должны выбираться в соответствии с номинальными значениями кВА соответствующих трансформаторов.

Рис.h54 — Трансформаторы параллельно

Примечание: Существенные условия для успешной работы трехфазных трансформаторов, включенных параллельно, можно резюмировать следующим образом:

1. Фазовый сдвиг напряжений, первичный и вторичный, должен быть одинаковым во всех параллельных устройствах.

2. Соотношение напряжения холостого хода первичной и вторичной обмоток должно быть одинаковым во всех блоках.

3. Напряжение полного сопротивления короткого замыкания (Zsc%) должно быть одинаковым для всех блоков.

Например, трансформатор 750 кВА с Zsc = 6% будет правильно разделять нагрузку с трансформатором 1000 кВА с Zsc 6%, т.е.е. трансформаторы будут загружены автоматически пропорционально их номинальной мощности в кВА. Для трансформаторов с коэффициентом мощности более 2 кВА параллельная работа не рекомендуется.

На рисунке h56 для наиболее обычного расположения (2 или 3 трансформатора с одинаковой мощностью кВА) указаны максимальные токи короткого замыкания, которым подвергаются основные и главные выключатели (CBM и CBP соответственно, на рис. , рисунок h55). В его основе лежат следующие гипотезы:

  • Мощность трехфазного короткого замыкания на стороне СН трансформатора составляет 500 МВА
  • Трансформаторы стандартные 20/0.Распределительные устройства 4 кВ, указанные в перечне
  • Кабели от каждого трансформатора до его выключателя низкого напряжения состоят из 5 метров одножильных проводов
  • Между каждым CBM входящей цепи и каждым CBP исходящей цепи имеется 1 метр сборной шины
  • Распределительное устройство устанавливается в закрытом распределительном щите, монтируемом на полу, при температуре окружающего воздуха 30 ° C

Пример

(см. рисунок h55)

Выбор автоматического выключателя для режима CBM

Для трансформатора 800 кВА In ​​= 1155 А; Icu (минимум) = 38 кА (с Рисунок h56), CBM, указанный в таблице, представляет собой Compact NS1250N (Icu = 50 кА)

Выбор автоматического выключателя для режима CBP

С.c. Отключающая способность (Icu), необходимая для этих автоматических выключателей, указана на Рисунок h56 как 56 кА.

Рекомендуемым выбором для трех исходящих цепей 1, 2 и 3 были бы токоограничивающие автоматические выключатели типов NSX400 H, NSX250 H и NSX100 H. Номинал Icu в каждом случае = 70 кА.

Эти автоматические выключатели обладают следующими преимуществами:

  • Полная селективность с выключателями на входе (CBM)
  • Использование «каскадного» метода с связанной с ним экономией на всех последующих компонентах

Рис.h55 — Трансформаторы параллельно

Рис. H56 — Максимальные значения тока короткого замыкания, прерываемые автоматическими выключателями ввода и фидера (CBM и CBP соответственно) для нескольких трансформаторов, включенных параллельно

Количество и номинальная мощность трансформаторов 20 / 0,4 кВ Минимальная отключающая способность основных выключателей (Icu) кА Главные автоматические выключатели (CBM), полная селективность с исходящими автоматическими выключателями (CBP) Минимальная отключающая способность основных выключателей (Icu) кА Номинальный ток In главного автоматического выключателя (CPB) 250A
2 х 400 14 МТЗ1 08х2 / МТЗ2 08Н1 / НС800Н 28 NSX100-630F
3 х 400 28 МТЗ1 08х2 / МТЗ2 08Н1 / НС800Н 42 NSX100-630N
2 х 630 22 МТЗ1 10х2 / МТЗ2 10Н1 / НС1000Н 44 NSX100-630N
3 х 630 44 МТЗ1 10х3 / МТЗ2 10Н1 / НС1000Н 66 NSX100-630S
2 х 800 19 МТЗ1 12х2 / МТЗ2 12Н1 / НС1250Н 38 NSX100-630N
3 х 800 38 МТЗ1 12х2 / МТЗ2 12Н1 / НС1250Н 57 NSX100-630H
2 х 1000 23 МТЗ1 16х2 / МТЗ2 16Н1 / НС1600Н 46 NSX100-630N
3 X 1000 46 МТЗ1 16х3 / МТЗ2 16х2 / НС1600Н 69 NSX100-630H
2 х 1250 29 МТЗ2 20Н1 / НС2000Н 58 NSX100-630H
3 X 1250 58 МТЗ2 20х2 / НС2000Н 87 NSX100-630S
2 х 1600 36 МТЗ2 25Н1 / НС2500Н 72 NSX100-630S
3 х 1600 72 МТЗ2 25х3 / НС2500Х 108 NSX100-630L
2 х 2000 45 МТЗ2 32х2 / НС3200Н 90 NSX100-630S
3 X 2000 90 МТЗ2 32х3 135 NSX100-630L

Выбор выключателей фидера и выключателей конечного контура

Уровни тока короткого замыкания в любой точке установки можно узнать из таблиц.

Использование таблицы G42

Из этой таблицы можно быстро определить значение трехфазного тока короткого замыкания для любой точки установки, зная:

  • Значение тока короткого замыкания в точке перед током, предназначенным для соответствующего выключателя
  • Длина, гр.s.a., и состав проводников между двумя точками

Затем можно выбрать автоматический выключатель, рассчитанный на отключающую способность при коротком замыкании, превышающую табличное значение.

Детальный расчет уровня тока короткого замыкания

Для более точного расчета тока короткого замыкания, в частности, когда отключающая способность выключателя по току короткого замыкания немного меньше значения, указанного в таблице, необходимо использовать метод, указанный в разделе Ток короткого замыкания. .

Двухполюсные выключатели (для фазы и нейтрали) только с одним защищенным полюсом

Эти выключатели обычно снабжены устройством защиты от перегрузки по току только на фазном полюсе и могут использоваться в схемах TT, TN-S и IT. Однако в ИТ-схеме должны соблюдаться следующие условия:

  • Условие (B) таблицы в Рисунок G68 для защиты нейтрального проводника от перегрузки по току в случае двойного замыкания
  • Номинальное значение отключения по току короткого замыкания: 2-полюсный выключатель фаза-нейтраль должен быть способен отключать на одном полюсе (при межфазном напряжении) ток двойного замыкания
  • Защита от непрямого прикосновения: данная защита предоставляется согласно правилам для схем ИТ.

FAQ: Как выбрать автоматический выключатель? | Техническая информация.

При выборе автоматического выключателя для защиты входной цепи импульсного источника питания имейте в виду следующее.

1. Число полюсов

при однофазном питании

Существуют линии электропитания переменного (L) и переменного (N) тока, а переменный ток (N) — это электрический потенциал земли.
Если переменный ток (L) и переменный ток (N) могут быть точно известны, для отключения линии питания переменного тока (L) можно использовать однополюсный выключатель. Но если переменный ток (L) и переменный ток (N) нельзя точно определить, вы должны выбрать двухполюсный размыкающий выключатель, чтобы отключить их оба.

При трехфазном питании

Трехполюсный размыкающий выключатель необходим для отключения всех фаз.

2. Характеристики срабатывания и номинальная мощность

Обычно входная цепь импульсного источника питания представляет собой конденсаторный вход, поэтому при включении питания в цепи мгновенно возникает сильный импульсный ток, называемый пусковым током. Кроме того, пусковой ток проходит через цепь всего за несколько миллисекунд [мСм], но становится в 10 раз больше, чем нормальный входной ток.Автоматический выключатель может отключаться пусковым током в зависимости от его характеристик. Поэтому следует выбирать автоматический выключатель, который не срабатывает при кратковременном пусковом токе. Обычно он называется выключателем с медленным срабатыванием.

Рис.1 Пример пускового тока

Рис.2 Пример срабатывания выключателя на 5А

Область, обведенная двумя кривыми, — это рабочий диапазон автоматического выключателя.Предположим, что время броска тока составляет 2 мс, согласно приведенным выше графикам, это вне рабочего диапазона автоматического выключателя.

С учетом входных характеристик импульсного источника питания, когда фаза входного напряжения составляет 90 is или 270˚, пиковый пусковой ток будет возникать и течь по цепи, однако он вернется к 0A максимум за 5 мс.

На основании значения пускового тока, указанного в нашем каталоге, следует выбрать выключатель, который не сработает в течение 5 мсек.Кроме того, значения пускового тока измеряются только тогда, когда входное напряжение установлено на номинальное входное напряжение, в основном 100 и 200 В переменного тока. Если вы хотите использовать источник питания с более высоким входным напряжением, чем номинальное входное напряжение, определите кратное входное напряжение (100 В / 200 В) и умножьте его на значение пускового тока, указанное в нашем каталоге. (Например, если [входное напряжение = 220 В], [кратное = 220/200 = 1,1]).

Помимо вышеперечисленных соображений, необходимо также принять во внимание рабочую температуру, чтобы выбрать прерыватель, который не сработает, даже если источник питания используется в своем максимальном рабочем диапазоне.

И, наконец, обратите внимание на предохранитель блока питания, потому что автоматический выключатель может не сработать при выходе из строя блока питания из-за перегорания предохранителя.

Определение значений короткого замыкания для автоматических выключателей

Автоматические выключатели защищают электрооборудование от повреждений, которые могут возникнуть в результате токов короткого замыкания. Однако «ток короткого замыкания» может варьироваться в зависимости от приложения. Как стандарты IEC и EN помогают проектировщикам правильно определять защиту от сверхтоков в электрическом оборудовании?

Иоахим Беккер ABB Stotz-Kontakt GmbH, Гейдельберг, Германия, Иоахим[email protected]

В любом современном обществе постоянная подача электроэнергии жизненно важна. Без электричества большинство жилых домов, коммерческих предприятий и промышленных предприятий будут парализованы. Эта электрическая энергия должна быть доставлена ​​конечному пользователю безопасно и надежно, и именно здесь распределительное устройство играет важную роль. Из-за очевидных опасностей такое распределительное устройство или местный распределительный щит должны быть спроектированы так, чтобы защищать установку от неисправностей путем отключения неисправной цепи и, одновременно, обеспечения непрерывной работы незатронутых цепей.

Типы выключателей
Короткое замыкание подвергает оборудование большой нагрузке. Поэтому при проектировании распределительного устройства или распределительного щита необходимо учитывать тепловые и динамические нагрузки, вызванные максимальным током короткого замыкания в точке подключения на месте. Для предотвращения повреждения установки (или персонала) используются устройства защиты от короткого замыкания для отключения тока короткого замыкания в точке подключения → 1.

01 Различные автоматические выключатели используются для защиты электрооборудования при возникновении токов короткого замыкания.Широкий ассортимент автоматических выключателей АББ охватывает практически все значения напряжения и тока. Показан главный автоматический выключатель ABB S753DR-E63.

Чаще всего для этой задачи переключения используются автоматические выключатели в литом корпусе (MCCB) → 2, миниатюрные автоматические выключатели (MCB), автоматические выключатели, работающие от остаточного тока (RCCB), и автоматические выключатели с защитой от перегрузки по току (RCBO). Эти устройства имеют маркировку с указанием максимальной способности к короткому замыканию, что позволяет изготовителю панели выбрать правильный продукт для применения.Такие выключатели подходят для разъединения, но обычно также устанавливаются выключатели-разъединители, чтобы оборудование могло быть полностью обесточено для обслуживания или ремонта.

02 Автоматический выключатель в литом корпусе низковольтного типа ABB A1 (соответствует IEC / EN 60947-2).

Непрерывный ток короткого замыкания
Низковольтные установки обычно питаются от трансформаторов. В такой низковольтной сети непрерывный ток короткого замыкания (I k ) рассчитывается на основе номинального напряжения и сопротивления переменного тока (импеданса) короткого замыкания.Наложенная составляющая постоянного тока, которая медленно спадает до нуля, также существует → 3. Пиковое значение I k является важным значением для определения короткого замыкания в стандартах.

03 Характеристики токов короткого замыкания.

Стандарты, касающиеся автоматических выключателей
В зависимости от конкретного применения, когда проектировщик определяет автоматические выключатели или связанное оборудование для защиты силовых сетей, могут использоваться различные стандарты:
• Стандарт IEC / EN 60898-1 применяется к автоматическим выключателям для максимальной токовой защиты в домашних условиях и аналогичных установках — например, в магазинах, офисах, школах и небольших коммерческих зданиях.Эти выключатели предназначены для использования людьми, не прошедшими инструктаж, и без необходимости обслуживания.
• Стандарт IEC / EN 60947-2 применяется к автоматическим выключателям, используемым в основном в промышленных приложениях, доступ к которым имеют только обученные люди.
• Выключатели-разъединители испытаны на соответствие стандарту IEC / EN 60947-3.
• КРУЭ или распределительные щиты протестированы на соответствие стандарту IEC / EN 61439.

В связи с разной областью применения стандартов в некоторых случаях для одного и того же электрического процесса используются разные определения.Следовательно, инженер должен убедиться, что он полностью понимает, какое конкретное определение, например, способности к короткому замыканию, применимо к конструкции, над которой он работает.

Автоматические выключатели и IEC / EN 60898-1
IEC / EN 60898-1 определяет номинальную стойкость к короткому замыканию (I cn ) как отключающую способность в соответствии с заданной последовательностью испытаний. Эта последовательность испытаний не включает способность автоматического выключателя выдерживать 85% тока без отключения в течение определенного условного времени.Служебная отключающая способность при коротком замыкании (I cs ) — это отключающая способность в соответствии с заданной последовательностью испытаний, которая включает способность автоматического выключателя выдерживать 85 процентов своего тока без отключения в течение заданного времени.

IEC / EN 60898-1 определяет фиксированные значения отношения I cs к I cn . Значения I cs и I cn выражаются как среднеквадратические значения предполагаемых токов короткого замыкания.

Чтобы соответствовать требованиям стандарта для обеих этих характеристик короткого замыкания, необходимо проверить операции включения / выключения каждого из трех автоматических выключателей.Для разомкнутого режима ток короткого замыкания инициируется под заданным фазовым углом по отношению к форме волны напряжения. Три автоматических выключателя испытываются под разными углами. Последовательность испытаний для I cn : «O — t — CO», где «O» — это размыкание, а «CO» — это замыкание-размыкание, что означает, что тестируемый выключатель включен и испытывает короткое замыкание. — ток цепи в течение определенного времени. Время «t» между операциями — 3 мин. Для I cs последовательность испытаний: «O — t — O — t — CO» для однополюсных и двухполюсных выключателей и «O — t — CO — t — CO» для трехполюсных и четырехполюсных выключателей. -полюсные выключатели.Способ возникновения тока короткого замыкания, установленный в стандарте, означает, что по крайней мере один испытуемый автоматический выключатель должен отключиться при наиболее значительном фазовом угле напряжения.

Автоматические выключатели и IEC / EN 60947-2
IEC / EN 60947-2 определяет предельную отключающую способность при коротком замыкании (I cu ), также известную как отключающая способность, в соответствии с заданной последовательностью испытаний. Эта последовательность испытаний включает проверку расцепителя перегрузки автоматического выключателя.В IEC / EN 60947-2 I cs — это отключающая способность в соответствии с заданной последовательностью испытаний, которая включает проверку работоспособности выключателя при номинальном токе, испытание на превышение температуры и проверку расцепителя перегрузки. IEC / EN 60947-2 определяет значения от 25 до 100 процентов для отношения I cs к I cn . Опять же, значения I cs и I cn выражены как среднеквадратические значения предполагаемых токов короткого замыкания.Чтобы соответствовать требованиям стандарта, для обеих мощностей короткого замыкания необходимо испытать каждый из двух автоматических выключателей. Подобно МЭК / EN 60898-1, ток короткого замыкания инициируется под определенным фазовым углом по отношению к форме волны напряжения для разомкнутого режима, но здесь два выключателя испытываются под одним и тем же углом. Последовательность испытаний для I cu : «O — t — CO» и «O — t — CO — t — CO» для I cs . Время «t» между операциями снова составляет 3 мин, и для размыкания ток короткого замыкания инициируется при определенном фазовом угле напряжения, определяемом как угол, при котором достигается пиковый ток.Этот пиковый ток одновременно является номинальной включающей способностью при коротком замыкании (I см ) и выражается как номинальная предельная отключающая способность при коротком замыкании, умноженная на коэффициент, определенный в МЭК 60947-2.

Выключатели-разъединители и IEC / EN 60947-3
Когда выключатели, разъединители, выключатели-разъединители или блоки с предохранителями включены в конструкцию, используется стандарт IEC / EN 60947-3. Выключатель-разъединитель способен включать и выключать ток при определенных условиях.В разомкнутом положении выключатель нагрузки обеспечивает функцию отключения.

Поскольку выключатель нагрузки не оборудован расцепителем максимального тока, он должен быть защищен автоматическим выключателем, автоматическим выключателем или предохранителем. Способность к короткому замыканию комбинации переключателя и автоматического выключателя определяется как номинальный условный ток короткого замыкания. Он выражается как значение предполагаемого тока короткого замыкания, который может выдержать выключатель нагрузки, защищенный устройством защиты от короткого замыкания (SCPD).Важно помнить, что выключатель-разъединитель должен выдерживать ток, ограниченный SCPD.

Этот подход также применим для ВДТ — т. Е. Ток короткого замыкания, указанный на устройстве, является номинальным условным током короткого замыкания комбинации ВДТ с SCPD.

Еще одним значением короткого замыкания, определенным как в IEC / EN 60947-3, так и в IEC / EN 60947-2, является номинальный выдерживаемый кратковременный ток (I cw ). Это значение может применяться к выключателям (например, выключателю-разъединителю), автоматическим выключателям, таким как MCCB или воздушный выключатель (ACB), и сборным шинам.I cw — это значение тока, которое оборудование может выдержать в течение определенного времени без повреждений. IEC / EN 60947-2 определяет предпочтительные значения этого времени 0,05, 0,1, 0,25, 0,5 и 1 с; IEC / EN 60947-3 определяет 1 с. Для переменного тока I cw — это среднеквадратичное значение тока.

Значение I cw важно для распределительного устройства с оборудованием, подключенным последовательно, где селективность между защитными устройствами реализуется с помощью временной задержки. Например, если фидерная цепь оборудована автоматическим выключателем, а последующие ответвленные цепи защищены автоматическими выключателями, тогда для достижения селективности устанавливается временная задержка для отключения автоматического выключателя.Установка между ACB и MCCB должна выдерживать указанный ток короткого замыкания в течение времени задержки ACB.

Низковольтное распределительное устройство и IEC / EN 61439-1
IEC / EN 61439-1 распространяется на низковольтные распределительные устройства и устройства управления в сборе. Для сборок с SCPD во входном блоке производитель должен указать максимальный предполагаемый ток короткого замыкания на входной клемме сборки. Для защиты сборки I cu или I cn SCPD должны быть равны предполагаемому току короткого замыкания или превышать его.Если в качестве SCPD используется автоматический выключатель с задержкой по времени или в сборку не входит SCPD, необходимо указать I cw с максимальной выдержкой времени.

Пример применения: завод по производству меди и медных сплавов
Предположим, что медный завод питается от электросети среднего напряжения 20 кВ с помощью понижающего трансформатора 20 кВ / 400 В. Номинальная мощность трансформатора S r составляет 1600 кВА, а номинальное напряжение полного сопротивления u kr составляет 6 процентов.Для распределительных трансформаторов мощностью до 3150 кВА импедансом сети обычно можно пренебречь. Полное сопротивление короткого замыкания трансформатора ограничивает ток короткого замыкания, который выражается как:

→ 4 показана принципиальная схема блока питания.

04 Пример конфигурации защитного устройства для такого применения, как медный завод.

Для входящего питания используется прерыватель ABB Emax E2 с номинальным током 2 500 А. Уровень распределения защищен автоматическим выключателем ABB 250 A Tmax XT4S.Конечные цепи оборудованы автоматическими выключателями ABB S800C и S200P.

Чтобы добиться правильного каскадирования, выполняется следующий расчет: I cw Emax E2 (версия B) составляет 42 кА. Задержка установлена ​​на 0,1 с. Следовательно, Emax может выдерживать ток короткого замыкания. На уровне распределения I cu Tmax XT4S составляет 50 кА. Кабель между Tmax и сборной шиной для вторичного распределения имеет поперечное сечение 95 мм 2 и длину 15 м.Сопротивление кабеля, указанное в технических справочниках, составляет 0,246 Ом / км.

Сопротивление трансформатора 0,00597 Ом. Тогда ток короткого замыкания в подраспределительной сети составляет:

.

При использовании автоматических выключателей S800C и S200P резервная защита не требуется, поскольку предельная мощность короткого замыкания этих устройств составляет 25 кА. Приведена полная селективность между Tmax XT4S и S800C, S200P.

Пример применения: распределение электроэнергии в большом офисном здании
Если офисное здание питается от электросети среднего напряжения 20 кВ через трансформатор 20 кВ / 400 В, с S r на 630 кВА и au крон из 4 процентов, полное сопротивление короткого замыкания трансформатора снова ограничивает ток короткого замыкания, который составляет:

→ 5 показана принципиальная схема блока питания.

05 Пример схемы защиты для большого офисного здания.

I cu выключателя Tmax XT4 (версия N) — 36 кА. I cu селективного главного выключателя ABB S750DR составляет 25 кА. Следовательно, Tmax и S750DR могут отключать ток короткого замыкания. Кабель между S750DR и вспомогательной распределительной сетью имеет поперечное сечение 16 мм2 и длину 10 м. Сопротивление кабеля, указанное в технических справочниках, составляет 1,32 Ом / км.Сопротивление трансформатора 0,01012 Ом.

Ток короткого замыкания на промежуточном уровне распределения можно рассчитать как:

При использовании MCB S200M резервная защита не требуется, поскольку предельная мощность короткого замыкания составляет 15 кА. Приведена полная селективность между S750DR и S200M.

Для MCB SD200, показанного на → 5, важен номинальный условный ток короткого замыкания. Значение для комбинации SD200 / S750DR составляет 10 кА. Следовательно, SD200 защищен S750DR, так как максимальный ток короткого замыкания в этот момент равен 9.9 кА.

Приведенные выше примеры показывают, что правильная конфигурация защитных устройств может обеспечить безопасную и надежную работу распределительного устройства в условиях короткого замыкания. Упомянутые различные стандарты IEC / EN помогают проектировщикам выбрать правильные характеристики для используемых ими продуктов и, таким образом, гарантировать, что электрическая энергия продолжает поступать в приложение независимо от того, какие условия электрического сбоя возникают.

Электрические контакты в автоматических выключателях среднего и высокого напряжения

Предисловие
Сети передачи электроэнергии защищены и управляются автоматическими выключателями среднего и высокого напряжения.
Выключатели предназначены для включения и отключения электрических токов в линиях электропередачи. Таким образом, функция электрического контакта играет основную и решающую роль в правильной работе выключателя.
В данной статье вы найдете краткое описание различных типов электрических контактов, используемых в силовых выключателях, основных рисков для их правильной работы и основных тестов, используемых для проверки их состояния.

ВВЕДЕНИЕ
Автоматический выключатель — это автоматический выключатель, предназначенный для защиты электрической цепи от повреждений, вызванных перегрузкой или коротким замыканием.В отличие от предохранителя, который срабатывает один раз, а затем его необходимо заменить, автоматический выключатель можно сбросить (вручную или автоматически) для возобновления нормальной работы.

Автоматические выключатели производятся разных размеров, от небольших устройств, которые защищают отдельный бытовой прибор, до больших распределительных устройств, предназначенных для защиты цепей высокого напряжения, питающих весь город.

Высоковольтный выключатель состоит из трех основных компонентов:

Камера прерывания: , где происходит прохождение тока и прерывание в силовой цепи.Обычно это замкнутый объем, содержащий замыкающие контакты и прерывающую среду (сжатый воздух, масло, SF6, вакуум и т. Д.), Используемую для изоляции и гашения дуги.

Рабочий механизм: , где инициируется энергия, необходимая для замыкания или размыкания контактов и гашения дуги.

Управление: , где генерируются команды на включение выключателя и отслеживается его состояние.

Электрические контакты в автоматических выключателях
Как упоминалось ранее, силовой ток проходит через проводящий материал в камере прерывания (рис. 2).Различные части, которые соединяются вместе, образуют проводящий материал. Различные соединения образуют электрические контакты.

Электрический контакт достигается путем физического контакта двух проводящих объектов. Это можно сделать несколькими способами. Несмотря на то, что существует широкий диапазон конструкций контактов в камерах прерывания, их можно сгруппировать в четыре основные категории:

  1. Перемыкающие контакты — которые могут замыкаться или размыкаться под нагрузкой;
  2. Скользящие контакты — которые поддерживают контакт во время относительного движения
  3. Фиксированные контакты — которые могут быть зажаты вместе в течение многих лет и никогда не размыкаются.
  4. Разборные контакты — замыкающие или размыкающие нагрузку. Обычно встречается в распределительных устройствах среднего напряжения в металлической оболочке.

На рисунке 3 представлена ​​символическая схема типичной архитектуры контактов, на которой четко показан ток, протекающий через три основных типа контактов во время последовательности событий операции размыкания. Во всех трех типах контакт осуществляется касающимися поверхностями каждого компонента.

Переключающие контакты
Типы размыкающих контактов можно подразделить по номинальной мощности, начиная с наивысшей:
Сильноточные контакты высоковольтного выключателя, которые отключают большие электрические нагрузки и образуют дуги, содержатся в специальных дугогасительные камеры.Они могут находиться в воздухе при нормальном давлении или в потоке воздуха, в гексафториде серы (SF6), в масле или другой среде для гашения дуги, включая вакуум.

Включает подвижный и стационарный контакт. Обычно один из них представляет собой кольцо из подпружиненных медных контактных пальцев (вставного типа, рис. 4 или торцевого типа), либо другой — сплошной медный стержень. Контакты могут быть покрыты дугостойким материалом для защиты от эрозии от мощной дуги, а поверхности могут быть покрыты гальваническим покрытием (например,грамм. с серебром) для улучшения проводимости.

Механические свойства меди в сочетании с ее прекрасной электропроводностью и хорошей стойкостью к искрению в масле сделали ее предпочтительным металлом в этом применении.

В вакуумных автоматических выключателях контакты также обычно изготавливаются из меди, смешанной с вольфрамом и имеют особую форму, чтобы гарантировать правильное распределение электрического поля и движение корня дуги.

Меньшие автоматические выключатели с воздушным разрывом (среднего напряжения) используют медь во всех внутренних проводящих частях, но контакты часто покрываются сплавом на основе серебра, чтобы противостоять сварке.Такие автоматические выключатели, являясь защитными устройствами, редко размыкаются или замыкаются.

Раздвижные контакты (рис. 5)
Они могут быть самой разной природы.
Высокоскоростные, сильноточные типы, они обычно встречаются в камерах силовых прерывателей. Эти контакты должны обладать очень высокой устойчивостью к механическому износу, поскольку их относительная скорость может достигать 10 метров в секунду и более.

Фиксированные контакты
Сюда входит широкий спектр болтовых и гофрированных контактов.
Зажимное соединение позволяет избежать уменьшения поперечного сечения, вызванного сверлением для вставки болтов, и обеспечивает более равномерное распределение контактного усилия, делая контакт более эффективным и, следовательно, более холодным.Болтовые соединения используются потому, что это дешево и удобно.
Гофрированные соединения используют предельную чрезвычайную силу установления контакта, заставляя металл течь и создавая прочное соединение. Бесперебойный характер этих соединений, а также простота и быстрота операции опрессовки делают этот тип соединения очень привлекательным для постоянных соединений.
Болтовые или гофрированные контакты используются в камерах прерывания для защиты и поддержания целостности электрического компонента.

Разборные контакты

Применяются в выключателях среднего напряжения в металлической оболочке.Это помогает отключать прерыватель от сети, легко снимая его с шин для технического обслуживания. Это нужно делать без нагрузки.

Эти контакты, как и замыкающие контакты, могут пропускать большие токи при высоком напряжении (например, высоковольтные изоляторы или контакты предохранителей высокого или среднего напряжения). Они должны надежно проводить ток в течение длительных периодов времени без перегрева или потери контакта, но не включать и отключать ток. Они не подвергаются напряжению дуги; следовательно, они не получают присущего им очищающего действия.Они часто проектируются так, чтобы иметь некоторое фрикционное действие при замыкании для удаления поверхностных оксидных или коррозионных пленок, которые могут препятствовать контакту, а медь и ее сплавы являются наиболее часто используемыми материалами для основной части съемных контактов.

Эти контакты отличаются тем, что они имеют высокое контактное усилие, намного большее, чем у автоматических выключателей аналогичного номинального тока, но не такое высокое, как контактное усилие в болтовом контакте, из-за чрезмерного механического износа, который может быть вызван при разделении контактов

Сопротивление контакта
Как мы уже говорили, контакт происходит при соприкосновении двух поверхностей.Для электрического тока, если это проводящий материал, это означает путь, по которому он течет.

Наблюдение в микроскопическом масштабе показывает, что контактная поверхность на самом деле шероховатая, хотя невооруженному глазу кажется гладкой.

На самом деле, как показывает микроскоп, реальный контакт между двумя поверхностями происходит через множество небольших поверхностей, называемых микроконтактами (рис. 7), которые случайным образом распространяются в пределах видимой области контакта.

Это сумма площадей всех микроконтактов, составляющая эффективную площадь контакта.

Поскольку сопротивление электрического контакта обратно пропорционально площади контакта, чем меньше эффективная площадь, тем больше сопротивление. (рис. 8)

Влияние контактного сопротивления
Когда ток I проходит через область A , имеющую сопротивление R , энергия E , поглощаемая A , составляет:

E = RI 2 t
Где t — длительность I .

Мы знаем, что температура A T напрямую связана с E следующим уравнением:
E = T
является функцией скорости рассеивания тепла.

Для постоянного тока I o , если R увеличивается, E затем увеличивается, что приводит к увеличению температуры контакта. Если T продолжает увеличиваться, материал контакта может достигнуть точки плавления, что приведет к его разрушению.(рис. 9)

Элементы, влияющие на сопротивление контакта

Окисление

Тонкий слой изолирующего оксида, покрывающий область одиночного микроконтакта, мало повлияет на проводимость контакта в целом. Как только оксидный слой достигнет значительного количества микроконтактов, токопроводящая площадь уменьшится, увеличивая тем самым ее сопротивление. Повышенное сопротивление увеличит температуру контакта, что приведет к его разрушению.

Любая окружающая среда, содержащая газы, способные вступать в реакцию с материалом контакта, такие как O2, SO2, h3O, h3S и т. Д., было бы полезно для получения оксидных слоев, даже если контакт замкнут. Со временем газ сможет проникнуть в контактную поверхность и вступить с ней в реакцию, что ухудшит ее характеристики и повысит сопротивление.

УИЛЬЯМСОН изучал это явление. На рис. 10 показано увеличение сопротивления со временем. Как мы видим, изменение сопротивления незначительно до определенного момента времени, когда деградация быстро увеличивается. Аналогичные результаты получены LEMELSON для медных контактов в масле.

Эти результаты показывают интересное поведение и указывают на срочность технического обслуживания, когда сопротивление контакта начинает увеличиваться.

Износ контактов
С механической точки зрения это может быть связано с движением и трением контактов, а также электрически из-за эффекта дуги (в основном размыкающего контакта). Износ контактов напрямую влияет на сопротивление контакта и резко увеличивает его, если износ находится в высоком состоянии (рис. 11).

Fretting
Возможна форма ускоренного окисления, если контактные поверхности испытывают циклическое движение относительно друг друга.Например, контакты не замыкаются каждый раз в одной и той же области.

Это явление было замечено давно, но его масштабы стали известны только недавно. Когда контакт перемещается из своего предыдущего положения, деталь подвергается воздействию окружающей атмосферы. Затем образуется окислительный слой. Когда контакт возвращается в это положение, он разрывает тонкий слой и отодвигает его в сторону. Это явление повторяется много раз, пока слой окисления не станет значительной толщины, достаточной для увеличения его сопротивления.

BRAUNOVIC экспериментировал с явлением истирания при малых токах в алюминии, а компания JOHNSON & MOBERLY изучила его при больших токах и достигла аналогичных результатов.

Сопротивление быстро увеличивается сразу после того, как начинает изменяться. На фиг.13 показан случай, аналогичный фиг.10, но в ускоренном виде.

Контактное усилие
Как известно, сопротивление R является функцией удельного сопротивления материала контакта p и площади S , (R = p / S).

S — это сумма площадей всех точек контакта.
Площади контактных точек зависят от приложенной силы F и твердости материала H ,
( k — постоянная величина)

Если F уменьшается, S также уменьшается и R , тогда увеличивается.

F может уменьшаться из-за разных факторов, например:

  1. Чрезмерный износ контактной поверхности;
  2. Усталость контактных пружин со временем;
  3. Химическая реакция материала пружины с окружающей атмосферой;
  4. Слабый или смещенный контакт и т. Д.

Пружинные материалы, таким образом, являются важным элементом, который необходимо учитывать. По той же логике, важная мера предосторожности состоит в том, чтобы не допустить, чтобы пружина была токопроводящей дорожкой, поскольку повышение ее температуры вызовет ослабление результирующей силы F .

Температура
При повышении температуры T контактов, материал контактов может размягчиться до такой степени, что это уменьшит контактное усилие, что приведет к быстрому увеличению контактного сопротивления.

Испытания
Выше мы видели, что окисление, износ, истирание, сила и температура напрямую влияют на значение сопротивления R (в микроомах) контактов.

Итак, чтобы легко оценить состояние контактов выключателя, два типа испытаний, как для статического, так и для динамического измерения R , установились и широко используются.

Измерение контактного сопротивления
Измерение контактного сопротивления обычно выполняется с использованием принципов закона Ома V = RI ;
В — напряжение на контакте;
I — ток;
R — сопротивление.

Если подать ток I и измерить напряжение В , сопротивление R можно получить напрямую, разделив В на I .
R = V / I

Как видно на рис. 14

Так как камера прерывания представляет собой закрытый контейнер, у нас есть доступ только к входным и выходным проводникам; измеренное R между этими двумя точками будет суммой всех контактных сопротивлений, обнаруженных последовательно (фиксированные, размыкающие и скользящие контакты).

Согласно IEC 694, статья 6.4.1, используемое значение тока должно быть максимально приближенным к номинальному току, на который рассчитана камера прерывания. Если это невозможно сделать, можно использовать более низкие токи, но не менее 50 А для устранения гальванического эффекта, который может повлиять на показания.

При измерении следует соблюдать особые меры предосторожности:

  1. Точки измерения должны быть чистыми и не иметь следов окисления;
  2. Точки измерения должны всегда быть одинаковыми;
  3. Выполните несколько последовательных тестов и вычислите среднее значение.

Используемая единица измерения — микроом ().
1 = 10-6 Ом ()

Мы можем иметь в виду, что диапазон значений сопротивления микроом в выключателях примерно разделен в зависимости от напряжения и допустимой нагрузки по току
:

  • 25 кВ — от 100 до 350;
  • 120 кВ — от 80 до 200;
  • от 120 до 330 кВ — 100 максимум.
  • 735 кВ — от 20 до 80.

Динамическое измерение контактного сопротивления
Микроомметр, описанный выше, используется для измерения контактного сопротивления с камерой прерывания в закрытом положении, но он не дает никакой индикации состояния дугогасительных контактов.

Один из вариантов — провести внутреннюю проверку, но на это уходит много времени. В случае элегазовых выключателей необходимо строго соблюдать процедуры технического обслуживания, чтобы безопасно обращаться с элегазом и побочными продуктами дуги. Вот почему было разработано измерение динамического контактного сопротивления.

По определению, как следует из названия, начиная с закрытого положения, когда контакт перемещается в свое открытое положение, подается ток и измеряется напряжение. Это даст нам значение сопротивления на всем пути от закрытой до открытой позиции.

Этот тест требует специального оборудования (рис. 15) и более сложной процедуры по сравнению со статической. Собранная информация имеет другой характер и дает нам более полное представление о состоянии контакта, недоступное при статическом тесте.

Детальное обсуждение динамического теста в этой статье не актуально. Но мы можем иметь в виду, что этот тест может дать нам хорошую информацию о величине сопротивления дугового контакта и его эродированной части.

Эта информация имеет решающее значение для некоторых выключателей, у которых качество гашения дуги сильно зависит от этого факта. Эффект был бы настолько велик, что мог бы привести к взрыву камеры прерывания.

Мы также должны знать, что выполнение динамического измерения контактного сопротивления стыковых контактов не имеет смысла. Простого статического теста с помощью микроомметра достаточно из-за конструкции контактов.

Таким образом, перед использованием испытания динамического сопротивления контакта вам необходимо проверить типы и механическую архитектуру вашего выключателя.Подробнее об этом мы поговорим в следующей статье.

Резюме
Электрический контакт является важным компонентом силовых выключателей. Увеличение контактного сопротивления может привести к выходу выключателя из строя. Мы видели, что все элементы, влияющие на контактное сопротивление, дадут одинаковый результат. Если сопротивление контакта начинает значительно увеличиваться, увеличение значения будет расти экспоненциально.

Международный стандарт IEC 56 устанавливает допустимое показание, увеличивающее до 20% исходное значение теста.При превышении этого значения необходимо проводить открытый осмотр.

При проверке важно принимать особые меры предосторожности, поскольку ложные показания могут привести к частому и ненужному обслуживанию.

Библиография
Настоящая статья основана на нашем личном опыте.

  • Теория и конструкция силового выключателя, под редакцией C.H. Flurscheim, переработанное издание 1982 г .;
  • Теория и методы прерывания цепи, под редакцией Томаса Э. Брауна мл., выпуск 1984 г .;
  • J.B.P. Уильямсон, Процессы износа электрических соединителей, Proc. 4-й Int. Конф. Электр. Контактное явление, Суонси, Уэльс, 1968.
  • М. Браунович, Влияние фреттинга на контактное сопротивление алюминия с различными контактными материалами, Proc. 9-й Int. Конф. Электр. Связаться с феноменом / 24-я Holm Conf. Электр. Контакты, ИИТ, Чикаго, сентябрь 1978 г., стр. 81-86.
  • Дж. Л. Джонсон и Л. Э. Moberly, Разъемные электрические контакты с алюминиевыми шинами, Proc.21-я Holm Conf. Электр. Контакты, ИИТ, Чикаго, октябрь 1975 г., стр. 53–59;
  • K. Lemelson, Разрушение замкнутых силовых контактных элементов в изоляционном масле при высокой температуре, Proc. 6-й Int. Конф. Феномен электрического контакта, IIT, Чикаго, июнь 1972 г., стр. 252–258;
  • Р. Холм и Э. Холм, Электрические контакты: теория и применение, Springer-Verlag, Нью-Йорк, 1967, стр. 89, 136, 161, 438;
  • Manual 6WE — CBA-32P — Z-DRM-2 module manual, Zensol Automation Inc, апрель 2006 г .;
  • М.Ландри, IREQ и Ф. Брикчи — Презентация Z-DRM-2 Powerpoint, май 2005 г.

Об авторах
Эмиль Насраллах — инженер-электрик, специализирующийся на обслуживании силовых выключателей. После окончания института в 1984 году работал инженером-сапером. В 1990 году он присоединился к мировому производителю автоматических выключателей GEC ALSTHOM в качестве специализированного полевого инженера. В 1997 году он стал менеджером подразделения элегазовых выключателей среднего и высокого напряжения компании ALSTOM, отвечая за техническую поддержку, обслуживание и обучение элегазовых выключателей.В 2001 году он стал менеджером подразделения автоматических выключателей AREVA. В партнерстве с Hydro-Quebec он отвечал за программу восстановления с воздушным ударом (PK и PKV) и представил уникальную систему управления программой (в среднем 35 735 кВ воздушных выключателей PK в год). В 2005 году он присоединился к компании General Electric в Канаде в качестве старшего специалиста по автоматическим выключателям и отвечает за подразделение автоматических выключателей в сервисном центре в Монреале, отвечая за программу восстановления масляных выключателей

Stéphan Perron , Hydro-Québec преподаватель, техническое обслуживание высоковольтных выключателей Стефан Перрон более 7 лет преподавал техническое обслуживание и устранение неисправностей высоковольтных выключателей и термографию в Центре компетенции Hydro-Quebec, расположенном в Сен-Антуан-де-Лаурентид, Квебек, Канада.Он развил свой опыт, работая на стороне обслуживания высоковольтных автоматических выключателей Hydro-Quebec в течение 18 лет. Его специальность — автоматические выключатели ABB (модели SFE, HPL, ELF и DLF), выключатели GE (модели KSO, AT) и все связанные с ними испытательные приборы, а также секционные выключатели Joslyn VBM, обращение с газом SF6 и его поведение. интерпретация термографических показаний (Уровень 1) на выключателях. Стефан Перрон имеет степень DEC в области электроники в CEGEP St Jérome, QC, Canada

Dr.Фуад Брикчи — президент Zensol Automation Inc. Он был первым, кто представил концепцию полностью компьютеризированного испытательного оборудования в области анализаторов выключателей. В качестве бывшего преподавателя в Политехнической школе в Алжире и научного сотрудника CNRS-LAAS во Франции, доктор Брикчи приобрел опыт в области электроники, автоматизации и информатики. Большая часть деятельности была сосредоточена на промышленном применении компьютеров. Среди его достижений — разработка полностью компьютеризированных измерительных систем для контроля качества в производстве выключателей, лабораториях и сервисном обслуживании электроэнергетических компаний.Доктор Брикчи имеет докторскую степень в области электроники и степень магистра наук в ЕЭЗ (электроника, электротехника и автоматизация) в Университете Бордо, Франция. http://www.zensol.com, электронная почта: [email protected] Фуад Брикчи, Zensol Automation Inc.

Термины и определения автоматических выключателей

аксессуар — Электрическое или механическое устройство, которое выполняет второстепенные или второстепенные функции, кроме защиты от перегрузки по току.

крышка для принадлежностей — Съемная крышка на передней панели автоматического выключателя, за которой монтируется расцепитель и все электрические аксессуары.

регулируемая вилка номинального тока — Компонент, который подключается к расцепителю и определяет номинальный ток автоматического выключателя.

AIC — Отключающая способность в амперах.

AIR — номинальный ток отключения.

аварийный выключатель — см. аварийный сигнал звонка и выключатель максимального тока .

Компенсация окружающей среды — Ограничивает или устраняет снижение тепловых характеристик (снижение рабочих характеристик), вызванное экстремальными температурами окружающей среды.

температура окружающей среды — Относится к температуре воздуха, непосредственно окружающего автоматический выключатель / защитное устройство.

номинальная температура окружающей среды — температура, при которой определяется номинальный длительный ток (номинальный ток) автоматического выключателя; температура воздуха, непосредственно окружающего автоматический выключатель, которая может повлиять на тепловые характеристики отключения (перегрузка) тепловых магнитных выключателей. Однако электронные расцепители нечувствительны к нормальным условиям окружающей среды (от -10 ° до 50 ° C).

амперметр — (местный измеритель тока) Модуль, который устанавливается непосредственно на расцепитель автоматического выключателя и сообщает среднеквадратичные значения фазы и тока замыкания на землю, видимые расцепителем.

Пропускная способность — Ток в амперах, который проводник или автоматический выключатель может выдерживать непрерывно в условиях эксплуатации без превышения его температурного номинала.

ампер — эквивалент одного кулона в секунду или установившийся ток, создаваемый одним вольт, приложенным к сопротивлению в один ом.

Вернуться к началу

ампер, номинальное отключение — Максимальный ток при номинальном напряжении, который устройство защиты от перегрузки по току предназначено для отключения в определенных условиях испытаний (NEC).

ANSI — Американский национальный институт стандартов.

дуговой контакт — Контакты, предназначенные для предотвращения повреждения основных контактов. Когда автоматический выключатель размыкается, сначала разделяются главные контакты, а затем часть дугогасительных контактов, протягивая дугу через них.Когда автоматический выключатель замыкается, сначала замыкаются дугогасительные контакты, снова протягивая дугу через них. Это предотвращает перенос дуги через главные контакты и сохраняет их.

автоматический выключатель в литом корпусе — Выключатель, конструкция которого аналогична автоматическому выключателю в литом корпусе, за исключением того, что переключатель отключается только мгновенно при нерегулируемой точке срабатывания, откалиброванной для защиты только самого переключателя в литом корпусе.

автоматический сброс — Устройство, которое автоматически размыкает цепь перегрузки.Он также автоматически закроет или завершит цепь через некоторое время. Если перегрузка все еще присутствует, устройство будет продолжать цикл до тех пор, пока не будет устранено питание или перегрузка.

вспомогательный выключатель — Выключатель, механически управляемый главным устройством для сигнализации, блокировки или других целей.

сигнал тревоги звонка — Переключатель с механическим приводом, используемый для индикации положения главного контакта автоматического выключателя, который указывает на срабатывание автоматического выключателя.Также см. Выключатель максимального тока.

обдувающая катушка — Катушка, по которой проходит электрический ток, которая служит для отклонения и, таким образом, гашения дуги, образующейся, когда контакты переключающей части отключают ток.

BPFE — Кнопка электрического включения.

параллельная цепь — Цепь между конечным устройством максимальной токовой защиты, защищающим цепь, и розеткой (ями).

BCM — Коммуникационный модуль выключателя.

Вернуться к началу

CSA — (Канадская ассоциация стандартов) Канадская организация по тестированию и сертификации безопасности продукции.

каретка — см. Подставку .

CCM — Модуль связи базовой станции.

рукоятка взвода — См. Рукоятку взвода пружины .

автоматический выключатель — Устройство, предназначенное для размыкания и замыкания цепи неавтоматическими средствами и автоматического размыкания цепи при перегрузке по току без повреждения себя при правильном применении в пределах своих номиналов.

Коммуникационный модуль автоматического выключателя — (BCM) = Модуль, который при установке в автоматический выключатель принимает и передает информацию по сети связи.

Рама автоматического выключателя — (1) Корпус автоматического выключателя, который содержит токоведущие компоненты, компоненты измерения тока, а также механизм отключения и управления. (2) Та часть выключателя в литом корпусе со сменным расцепителем, остающаяся после снятия сменного расцепителя.

кнопка замыкания — кнопка для ручного замыкания главных контактов после взведения замыкающих пружин.

крышка кнопки закрытия — крышка, которая надевается на кнопку закрытия и закрывает доступ к ней. Доступ к кнопке закрытия может быть разрешен с помощью инструмента или стержня, вставленного в небольшое отверстие в передней части крышки кнопки закрытия.

замыкающая катушка — (шунтирующее замыкание) = катушка, которая электрически замыкает выключатель с помощью внешнего источника напряжения, когда на катушку подается заданное напряжение.

выключатель отключения катушки — M механический выключатель, включенный последовательно с катушкой независимого расцепителя, который прерывает ток катушки при размыкании автоматического выключателя.

В начало

коммуникационная сеть — Сеть, обеспечивающая обмен информацией между электрическими компонентами, состоящая из интерфейсных модулей программируемого контроллера, программного обеспечения протокола и модемов.

проводник — Вещество или тело, которое позволяет электрическому току непрерывно проходить по нему.

ход контакта — Полный открытый зазор между контактами в устойчивом открытом положении.

номинальный постоянный ток — (номинальный ток) (номинальный ток) Обозначенный среднеквадратичный переменный или постоянный ток в амперах, который устройство или узел будет постоянно переносить на открытом воздухе без отключения или превышения температурных пределов.

непрерывная нагрузка — нагрузка, при которой ожидается сохранение максимального тока в цепи.

Модуль связи базовой станции — (CCM) Внешний модуль, который позволяет адресовать подставку и сохранять адрес, когда выкатной автоматический выключатель находится в отключенном положении, и который используется для передачи информации о положении выключателя в подставка для сети связи.

Отсек люльки — Отсек, содержащий все разъемы, экраны, адаптеры, барьеры, расширители, заслонки, ключи и устройства блокировки для выкатного автоматического выключателя.

CT — Трансформатор тока. См. Также переключатель ячейки .

путь тока — (автоматического выключателя) Токоведущие проводники внутри автоматического выключателя между выводами линии и нагрузки, включая их.

трансформатор тока — (датчик тока) (CT) Прибор для измерения тока, охватывающий проводник, по которому проходит ток, который необходимо измерить или контролировать.

мертвый резервуар — Прерыватели мертвого резервуара имеют заземленные резервуары, в отличие от гидравлических разрывных устройств резервуара, в которых используется изолирующая колонна для размещения механизма и контактных узлов.

Вернуться к началу

Измерение потребления — Измерение потребляемой мощности или тока, наблюдаемое автоматическим выключателем. Он рассчитывается в фиксированном или скользящем временном окне, которое можно запрограммировать от пяти до 60 минут. В зависимости от контракта, подписанного с поставщиком электроэнергии, специальное программирование позволяет избежать или минимизировать затраты на превышение установленной мощности.Максимальные значения потребления систематически сохраняются и имеют отметку времени.

размыкающие контакты — См. Главные размыкающие контакты и вспомогательные размыкающие контакты.

выключатель выкатных — Узел автоматический выключатель и опорная конструкция (люлька) сконструированы таким образом, что автоматический выключатель поддерживается и может быть перемещен либо в главной цепи, подключенной или отключенное положение без удаления соединений или крепления опоры.

выдвижной механизм — Механизм, который включает в себя выдвижную подставку в сборе и втягивает автоматический выключатель в распределительный щит или из него. Выдвижной механизм включает в себя вал выдвижного механизма, рычаги выдвижного рычага и индикатор положения выкатного устройства.

индикатор положения выкатного устройства — средство индикации, которое показывает положение выключателя в выкатной конструкции.

Выдвижная крышка доступа — (крышка выдвижного вала) Заслонка, которая позволяет или ограничивает доступ к выдвижной штанге.

Кнопка электрического включения — Кнопка, используемая для электрического включения выключателя с помощью шунтирующего включения с опцией связи. При этом учитываются все функции безопасности, которые являются частью системы управления и контроля установки.

электрический привод — (моторный привод) Электрическое устройство, используемое для размыкания и замыкания автоматического выключателя или переключателя и сброса автоматического выключателя. См. Также двигатель взвода пружины .

автоматический выключатель с электронным отключением — Автоматический выключатель, который использует датчики тока и электронные схемы для определения, измерения и реагирования на уровни тока.

стационарный автоматический выключатель — автоматический выключатель, установленный таким образом, что его нельзя снять без снятия первичных, а иногда и вторичных соединений и / или монтажных опор.

типоразмер — Наибольший номинальный ток, доступный в группе автоматических выключателей схожей физической конфигурации.

В начало

частота — Количество циклов в секунду для системы переменного тока.

номинальная частота — Диапазон частот, в котором может применяться продукт.

замыкание на землю — Непреднамеренный путь тока через землю обратно к источнику.

задержка замыкания на землю — Продолжительность времени, в течение которого расцепитель автоматического выключателя будет задерживать перед подачей сигнала отключения на автоматический выключатель после обнаружения замыкания на землю.

Модуль защиты от замыканий на землю — Электронный аксессуар, используемый в сочетании с термомагнитными автоматическими выключателями для обеспечения защиты от замыканий на землю в параллельных цепях и индикации замыканий на землю.

датчик замыкания на землю — Уровень тока замыкания на землю, при котором система отключения начинает отсчет времени.

номинальный ток ручки — См. Номинальный продолжительный ток .

колебания — Заметный медленный старт в разгоне контактов вплоть до размыкания в точке контакта части.

IDMTL — Кривая длительной задержки, наклон которой можно изменять для повышения селективности.

IEC — Международная электротехническая комиссия.

IEEE — Институт инженеров по электротехнике и радиоэлектронике.

Вернуться к началу

Ig — Датчик замыкания на землю.

Ii — Мгновенный захват.

In — номинал датчика.

Автоматический выключатель, устанавливаемый отдельно. — Автоматический выключатель установлен таким образом, что его нельзя снять без снятия первичных, а иногда и вторичных соединений и / или монтажных опор.

мгновенное срабатывание — уровень тока, при котором автоматический выключатель срабатывает без преднамеренной задержки по времени.

мгновенное отключение — Квалификационный термин, указывающий на то, что при отключении автоматического выключателя в условиях короткого замыкания задержка не вводится намеренно.

Автоматический выключатель с изолированным корпусом — (ICCB) = Включенный в список стандарта UL 489 автоматические выключатели в литом корпусе без предохранителей, в которых используется двухступенчатый механизм замыкания с накоплением энергии, электронная система отключения и выкатная конструкция.

встроенная защита оборудования от замыканий на землю. — Защита оборудования от замыканий на землю в системах с заземленной нейтралью, обеспечиваемая внутренними компонентами автоматического выключателя.

сменный расцепитель — Расцепитель, который может быть заменен пользователем среди автоматических выключателей той же конструкции.

отключающая способность — Максимальный ток при номинальном напряжении, доступный на входных клеммах автоматического выключателя. Если автоматический выключатель может использоваться более чем с одним напряжением, номинальное значение отключения будет указано на автоматическом выключателе для каждого уровня напряжения. Отключающая способность автоматического выключателя должна быть равна или превышать имеющийся ток короткого замыкания в точке, в которой автоматический выключатель подключен к системе.

обратное время — уточняющий термин, указывающий на намеренно введенную задержку срабатывания выключателя, которая уменьшается по мере увеличения величины тока.

Вернуться к началу

Ir — Долгосрочный датчик.

Isd — Кратковременный самовывоз.

I2t — См. Сквозной ток .

I2t IN — (I 2 t ON) Обратнозависимая характеристика задержки.

I2t OUT — (I 2 t OFF) Характеристика с постоянной выдержкой времени.

Переключатель проверки защелки — Переключатель с механическим управлением, который определяет, сброшена ли защелка отключения.

сквозной ток — Пиковый ток (измеряется в амперах), который проходит через устройство защиты от сверхтока во время прерывания.

сквозной I2t — Выражение, относящееся к энергии (измеряется в квадратичных ампер-секундах), которая проходит через устройство защиты от сверхтоков во время прерывания.

LI — Комбинация регулируемых функций отключения, включая длительный номинальный ток, длительную задержку и мгновенное срабатывание.

подъемный адаптер — Устройство, используемое с краном, цепным блоком или дополнительным подъемным механизмом, поставляемым с распределительным устройством, для снятия и установки выкатного выключателя или тележки с предохранителями.

LIG — Комбинация регулируемых функций отключения, включая длительную амперную нагрузку, длительную задержку, мгновенное срабатывание, срабатывание при замыкании на землю и задержку при замыкании на землю.

Вернуться к началу

Концевой выключатель — Выключатель, механически приводимый в действие движением части машины или присутствием объекта.

бак под напряжением — В выключателях с активным баком используется изолирующая колонна для размещения механизма и контактных узлов, поэтому они находятся под напряжением системы (под напряжением). Мертвые танковые выключатели заземлили танки.

местный измеритель тока — Амперметр, установленный как часть расцепителя.

длительный ток в амперах — Регулировка, которая в сочетании с установленным номинальным штекером устанавливает номинальный длительный ток полнофункционального электронного автоматического выключателя.

длительная задержка — Продолжительность времени, в течение которого автоматический выключатель будет выдерживать длительную перегрузку по току (больше, чем длительное срабатывание) перед подачей сигнала отключения.

долговременный срабатывание — Текущий уровень, при котором функция долговременной задержки автоматического выключателя начинает отсчет времени.

силовой выключатель низкого напряжения — (LVPCB) Выключатель, испытанный в соответствии со стандартами ANSI C37, с двухступенчатым механизмом накопления энергии, электронной системой отключения и выдвижной конструкцией.

LS — Комбинация регулируемых функций отключения, включая длительный номинальный ток, длительную задержку, кратковременное срабатывание, кратковременную задержку и отключаемый мгновенный срабатывание.

LSG — Комбинация регулируемых функций отключения, включая длительную амперную нагрузку, длительную задержку, кратковременное срабатывание, кратковременную задержку, отключаемое мгновенное срабатывание, срабатывание при замыкании на землю и задержку замыкания на землю.

LSI — Комбинация регулируемых функций отключения, включая длительный номинальный ток, длительную задержку, кратковременный срабатывание, кратковременную задержку и отключаемый мгновенный срабатывание.

LSIG — Комбинация регулируемых функций отключения, включая длительный номинальный ток, длительную задержку, кратковременное срабатывание, кратковременную задержку, отключаемый мгновенный срабатывание, срабатывание при замыкании на землю и задержку замыкания на землю.

Вернуться к началу

Главные разъединяющие контакты — Подпружиненный и самоустанавливающийся контакт, расположенный на задней стороне выкатного выключателя, который обеспечивает положительный электрический контакт, когда автоматический выключатель находится во включенном положении.

MCH — Электродвигатель пружинного взвода.

MDGF — Модифицированная дифференциальная система защиты от замыканий на землю.

Ручка с ручным управлением — Ручка с ручным управлением, которая заряжает замыкающие пружины автоматического выключателя.

ручной сброс — Относится к выключателям, в которых электрические контакты остаются разомкнутыми после отключения до тех пор, пока кто-либо физически не замкнет или не завершит цепь, нажав кнопку сброса или переключив переключатель ход контакта плюс расстояние перебега.

максимальное окончательное отключение — (должно отключиться) Номинальный ток, при котором устройство защиты цепи сработает в течение определенного периода времени при указанной температуре.

механический счетчик срабатываний — (CDM) Механическое устройство, показывающее общее количество срабатываний выключателя.

Миниатюрный автоматический выключатель — (MCB) Небольшой автоматический выключатель, собранный как единое целое в поддерживающем и закрытом корпусе из изоляционного материала, рассчитанный на 150 А или меньше и используемый в 120 В, 120/240 В, 240 В и 480 Y / Системы переменного тока 277 В и системы постоянного тока до 125 В постоянного тока.

минимальный динамический контактный зазор — установившийся ход контакта за вычетом расстояния отскока.

минимальное окончательное отключение — (должен удерживаться) Номинальный ток, при котором устройство защиты цепи не сработает в течение длительного периода времени при указанной температуре.

Вернуться к началу

MN — Расцепитель минимального напряжения.

Автоматический выключатель в литом корпусе — (MCCB) Автоматический выключатель, который собирается как единое целое в поддерживающем и закрытом корпусе из изоляционного материала, обычно с силой тока 20-3000 А и используется в системах до 600 В переменного тока и 500 В постоянного тока.

Устройство защиты двигателя — Признанный элемент конструкции, аналогичный автоматическому выключателю, за исключением того, что он не содержит тепловых элементов, поэтому он обеспечивает только защиту от короткого замыкания.

MX — Независимый расцепитель.

ложные отключения — Отключения, вызванные реакцией на неповреждающие броски тока или скачки пускового тока, в отличие от фактического отключения по перегрузке по току.

Трансформатор тока нейтрали — Трансформатор тока, охватывающий нейтральный проводник; требуется для автоматических выключателей с защитой от замыкания на землю, когда применяется в заземленной системе.

OF — Вспомогательный выключатель.

скорость открытия — Средняя скорость контакта от контактной части до 75% от полного открытого зазора.

Индикатор разомкнутого / замкнутого состояния — Отображает положение главных контактов автоматического выключателя (разомкнутый или замкнутый).

приводной механизм — внутренняя механическая система, которая размыкает и замыкает контакты выключателя.

OTS — Выключатель максимального тока (выключатель аварийной сигнализации, сирена).Механический выключатель, который срабатывает, когда автоматический выключатель срабатывает системой защиты от перегрузки по току.

Вернуться к началу

Перегрузка по току — Любой ток, превышающий номинальный постоянный ток оборудования или допустимую нагрузку на проводник.

механизм максимального тока — внутренняя механическая система, которая отключает автоматический выключатель во время перегрузки по току.

Максимальная токовая защита — Защита достигается ограничением продолжительности и величины воздействия сверхтока.

Расцепитель максимального тока — Устройство, которое обнаруживает перегрузку по току и передает энергию, необходимую для автоматического размыкания цепи (только UL).

выключатель максимального тока — (SDE) = выключатель с механическим управлением, который указывает, когда автоматический выключатель отключился из-за условий перегрузки по току.

перегрузка — Электрическая нагрузка или ток, превышающий те, на которые рассчитана схема.

перегрузочная способность — Максимальный уровень тока перегрузки, при котором устройства будут отключаться и оставаться в рабочем состоянии, способный устранить дополнительные перегрузки.

задержка перегрузки — Продолжительность времени, в течение которого автоматический выключатель будет выдерживать длительную перегрузку по току низкого уровня перед подачей сигнала отключения.

перебег — Максимальное смещение после положения покоя, которого достигают контакты во время работы.

Измерение пикового тока — Метод определения электрического тока посредством обнаружения пиков тока.

Пиковый сквозной ток — Максимальный пиковый ток, протекающий в цепи во время перегрузки по току.

Вернуться к началу

PF — Выключатель, используемый для индикации готовности выключателя к включению.

фазовый барьер — Барьер, обеспечивающий межфазную изоляцию или изоляцию между фазой и землей.

Контакты отключения первичной обмотки — Электрический вставной соединитель на пути основного тока между выкатными компонентами и подставкой, установленной в распределительном щите или распределительном устройстве.

трубка нагнетателя — Используется в высоковольтных выключателях для продувки воздуха через главные контакты во время отключения.Воздух помогает охлаждать и деионизировать газ в контактном зазоре, что приводит к быстрому восстановлению диэлектрика. Воздух можно сжимать в цилиндре за счет контактного движения.

кнопка включения — кнопка для ручного замыкания главных контактов после взведения замыкающих пружин.

Кнопка размыкания нажатием — Кнопка для отключения выключателя вручную.

кнопка отключения — Кнопка для ручного отключения автоматического выключателя.

заслонка выкатного устройства — См. Крышку выдвижного вала .

блокировка выкатывания — Предотвращает выкатывание выкатного выключателя при открытой дверце корпуса, не позволяя вставлять кривошипную рукоятку в выключатель.

штепсельная вилка — Компонент, который подключается к электронному расцепителю защиты, устанавливая максимальный номинальный длительный ток автоматического выключателя.

отскок — Расстояние, на которое контакты проходят через установившееся полностью открытое положение в конце хода размыкания при отскоке контактов в конце хода размыкания. (дистанционный сброс после сбоя) Компонент, который сбрасывает выключатель максимального тока (SDE) и механический привод после отключения.

Обнаружение остаточного замыкания на землю — средство обеспечения защиты оборудования от замыкания на землю с использованием датчиков на каждой отдельной фазе.

RMS — Среднеквадратичное значение.

Измерение среднеквадратичного значения тока — Метод определения истинного среднеквадратичного значения тока синусоидальных и несинусоидальных сигналов путем выборки текущего сигнала несколько раз за цикл с последующим вычислением истинного среднеквадратичного значения.

Фактор безопасности — Допуск, добавленный к установившемуся току приложения, чтобы гарантировать, что выбранное защитное устройство будет более чем достаточным для обработки приложения без ложных срабатываний.

Защитная шторка — Устройство, которое закрывается, чтобы заблокировать доступ к линейной шине, когда автоматический выключатель находится в отключенном, тестовом или выключенном положении.

SDE — Выключатель максимального тока.

вторичные размыкающие контакты — Электрический вставной разъем во вторичной (управляющей) цепи между выкатным выключателем и его держателем в распределительном щите или распределительном устройстве.

датчик — Чувствительный элемент тока в автоматическом выключателе, который обеспечивает функцию считывания для этого автоматического выключателя.

разъем датчика — Компонент, используемый для установки размера датчика автоматического выключателя.

размер датчика — Максимальный допустимый ток для конкретного автоматического выключателя в зависимости от размера датчика тока внутри автоматического выключателя. Размер сенсора меньше или равен размеру кадра.

Вернуться к началу

SGR — Система заземления источника.

задержка короткого замыкания — (STD) Продолжительность времени, в течение которого автоматический выключатель будет пропускать ток, превышающий срабатывание короткого замыкания, перед подачей сигнала отключения.

датчик короткого замыкания — текущий уровень, при котором функция задержки короткого замыкания начинает отсчет времени.

кратковременная задержка — Продолжительность времени, в течение которого автоматический выключатель будет пропускать ток, превышающий кратковременный срабатывание, перед подачей сигнала отключения.

кратковременный захват — Текущий уровень, на котором функция кратковременной задержки начинает отсчет времени.

замыкающий шунт — (замыкающая катушка) (XF) Принадлежность, которая замыкает автоматический выключатель из удаленного места с использованием внешнего источника напряжения.

независимый расцепитель — (MX) Принадлежность, отключающая автоматический выключатель из удаленного места с помощью внешнего источника напряжения.

Рукоятка взвода пружины — Рукоятка, расположенная на передней панели выключателя, используется для ручного подзарядки механизма накопленной энергии.

Двигатель взвода пружины — Двигатель, который электрически заряжает замыкающую пружину (и) выключателя с накопленной энергией.

STD — Кратковременная задержка.

механизм накопленной энергии — Пружинный механизм, который сжимается (или заряжается), а затем отпускается (или разряжается) для включения автоматического выключателя.

Вернуться к началу

клеммная колодка — точки подключения для управляющей проводки на выключателе.

tg — Задержка замыкания на землю.

тепловизионный — функция расцепителя, которая точно отображает эффекты нагрева и охлаждения в зависимости от нагрузки на номинальные проводники для обеспечения тепловой защиты без ложных срабатываний.

автомат термомагнитного выключателя — термин общего назначения для автоматических выключателей, в которых используются биметаллические элементы и электромагнитные узлы для обеспечения как тепловой, так и магнитной защиты от сверхтоков.

тепловая память — Обеспечивает состояние непрерывного повышения температуры проводки в течение определенного периода времени как до, так и после отключения устройства. Это позволяет автоматическому выключателю реагировать на серию состояний перегрузки, которые в противном случае остались бы незамеченными.

tr — Длительная задержка.

tsd — Кратковременная задержка.

трансформатор — Статическое устройство с первичной обмоткой, последовательно соединенное с проводником, по которому измеряется или регулируется ток в распределительном устройстве.

кнопка отключения — См. Кнопку отключения .

кривая отключения — графическое представление реакции автоматического выключателя на ток в течение определенного периода времени.

без отключения — Характеристика некоторых автоматических выключателей, которая обеспечивает независимость между механизмом защиты и кнопкой или ручкой управления, так что неисправность не может поддерживаться вручную (или удерживаться замкнутой) от перегрузки.

Вернуться к началу

Индикатор срабатывания — Модуль, который устанавливается непосредственно на расцепитель и показывает, сработал ли автоматический выключатель из-за перегрузки, короткого замыкания или замыкания на землю.

Сброс индикатора отключения — Кнопка на модуле индикатора отключения, используемая для сброса индикатора отключения.

расцепитель — Программируемое устройство, которое измеряет и измеряет ток, протекающий через автоматический выключатель, и при необходимости инициирует сигнал отключения.

UL — Underwriters Laboratories Inc.

Расцепитель минимального напряжения — (MN, UVR) Принадлежность, которая автоматически отключает автоматический выключатель, когда контролируемое напряжение цепи падает ниже заданного процента от заданного значения.

Underwriters Laboratories — Независимая некоммерческая организация по разработке стандартов, тестированию и сертификации продукции на безопасность.

автоматический выключатель для монтажа в шкафу — автоматический выключатель, установленный таким образом, что его нельзя снять без снятия первичных, а иногда и вторичных соединений или монтажных опор.

выдерживаемый рейтинг — Уровень среднеквадратичного симметричного тока, который автоматический выключатель может выдерживать с контактами в замкнутом положении в течение указанного периода времени, обычно указываемого в циклах.

Обнаружение замыкания на землю нулевой последовательности — Средство обеспечения защиты оборудования от замыкания на землю с использованием внешнего датчика (окружающего все фазные и нейтральные проводники).

зонно-селективная блокировка — (ZSI) Возможность связи между электронными системами отключения и реле защиты от замыканий на землю, которая позволяет изолировать короткое замыкание или замыкание на землю и устранить их ближайшим вышестоящим устройством без преднамеренной задержки по времени.

ZSI — Зонально-селективная блокировка.

Вернуться к началу


Список литературы

  • Бюллетень данных Square D 0600DB0201
  • Терминология автоматического выключателя EATON TF300-1
  • Основы автоматических выключателей SIEMENS STEP

Основные сведения об основном автоматическом выключателе в вашем доме

Выполнение электрического ремонта в вашем доме требует, чтобы вы знали, как использовать главный автоматический выключатель. Главный автоматический выключатель вашего дома контролирует распределение электричества в каждой комнате.Автоматический выключатель управляет соединением между вашим домом и вашей коммунальной компанией.

Коммунальная компания подает электроэнергию в ваш дом через линию электропередачи. Электроэнергия от вашего сервисного центра никогда не отключается, но ваш автоматический выключатель может остановить поток энергии в ваш дом. Итак, все необходимое для выполнения электромонтажных работ или восстановления питания после перегрузки находится в коробке выключателя.

Эта статья представляет собой полное руководство для понимания главного автоматического выключателя в вашем доме.Пошаговое справочное руководство, которое научит вас всему, что вы видите, когда смотрите на блок выключателя. И узнайте разницу между главным выключателем и выключателем ответвления.

Это руководство предназначено только для образовательных целей. Перед тем, как выполнять какой-либо ремонт электрооборудования самостоятельно, всегда следует проконсультироваться с ближайшим к вам профессиональным электриком.

Полное руководство по главному автоматическому выключателю для начинающих

Главный автоматический выключатель находится на распределительной коробке электрооборудования.Если вам интересно, где он находится в вашем доме, поищите коробку электрического щита в подвале или гараже. Иногда они находятся рядом с водонагревателем или рядом с прачечной.

В квартирах и некоторых старых зданиях сервисная панель встроена в стену. Это похоже на металлическую дверцу шкафа, и ее сначала сложно открыть. Когда вы открываете дверцу панели, вы видите ряд или два автоматических выключателя.

Переключатели могут быть пронумерованы, а если у вашего дома был предыдущий владелец, они могут быть даже помечены.Это ваши автоматические выключатели. Каждый выключатель ответвляется в какую-то область, например, коридор наверху, гостиную или подвал.

Посмотрите над выключателем ответвления и вы увидите другой выключатель, который больше, чем выключатели ответвления. Это ваш главный автоматический выключатель, который контролирует поток мощности к вашему выключателю ответвления.

Главный выключатель выключателя обычно обращен перпендикулярно выключателям выключателя ответвления. Иногда это выглядит как три или четыре выключателя вместе с одним выключателем включения / выключения.Выключите главный выключатель, и на панель выключателя не поступает питание.

Что такое автоматический выключатель?

Автоматические выключатели — это средство защиты от повреждения цепи в случае перегрузки по току. Другими словами, он гарантирует, что ничего не сломается, если у вас одновременно будет слишком много приборов, что приведет к короткому замыканию.

Автоматический выключатель сам по себе является электрическим выключателем. Он подключается к печатной плате и прерывает прохождение электрического тока, если обнаруживает неисправность в потоке.В случае неисправности автоматический выключатель автоматически срабатывает и прекращает прохождение электричества по цепи.

Автоматические выключатели

созданы в соответствии со спецификациями безопасности, чтобы гарантировать, что короткое замыкание не приведет к повреждению дома или здания. Раньше автоматические выключатели при скачке напряжения заменяли перегоревший предохранитель.

Предохранители также защищают от возгорания электрического тока, но только один раз, после чего необходимо заменить перегоревший предохранитель. С автоматическим выключателем все, что вам нужно сделать, это отключить некоторые приборы, которые вызвали скачок напряжения, и вернуть выключатель в положение «включено».

Автоматические выключатели

работают настолько хорошо, что бывают самых разных размеров и типов. Практически все автоматические выключатели для жилых помещений — низковольтные. В многоквартирном доме используется выключатель среднего напряжения, а выключатель высокого напряжения предназначен для коммунальных предприятий, которые снабжают электроэнергией весь город.

Как работает автоматический выключатель?

Различные типы автоматических выключателей работают по-разному, но каждый автоматический выключатель выполняет одинаковую функцию. Другие факторы, влияющие на способы работы выключателей, включают класс напряжения и номинальные значения тока.

По своей сути автоматический выключатель обнаруживает неисправности в токе в цепи и прерывает подачу энергии в цепи. Когда электрический ток проходит через два контакта, требуется значительная сила, чтобы разъединить соединение. По этой причине цепь должна быть разорвана силой, чтобы остановить передачу электричества.

Низковольтные автоматические выключатели на электрическом щите вашего дома — это простейшие типы автоматических выключателей. Они используют накопленную в пружине энергию для включения переключателя и разъединения контакта с цепью.Это позволяет вручную отключать и сбрасывать подачу питания щелчком переключателя.

Внутри контактов выключателя для подачи электричества. Они должны передавать нагрузку без перегрева из-за скачков напряжения или дуги. Слишком большой ток или высокая температура приводят к срабатыванию параметров неисправности и срабатыванию выключателя.

Дуга возникает, когда подача тока прерывается при срабатывании выключателя. Дуга очень горячая и разъедает контактный материал в цепи. Когда контакты выходят из строя, соединение должно быть разорвано — отсюда и название.

Контакты цепи изготовлены из металлов с высокой проводимостью, таких как сплав меди и серебра. Чем выше напряжение, тем дольше возникает дуга при разрыве соединения. Чем сильнее ток, тем горячее дуга при срабатывании выключателя.

Итак, выключатели и цепи согласованы, чтобы не превышать допустимые параметры тока и напряжения. В случае перегрузки цепи автоматический выключатель срабатывает с достаточной силой, чтобы разорвать текущее соединение и последующую дугу.

Автоматический выключатель прерывает электрическое соединение, если контакты сохраняют избыточное тепло или ток. Как только обнаруживается неисправность, выключатель срабатывает. Для восстановления прохождения тока прерванный контакт должен быть замкнут путем сброса выключателя.

Все автоматические выключатели предназначены для прерывания соединения между контактами цепи. Однако есть разница между автоматическим выключателем ответвления и главным выключателем.

Разрыватель ответвления против главного прерывателя

Прерыватели ответвления и главный прерыватель — это, по сути, одно и то же, но не совсем.Они работают одинаково, но прерыватели ответвлений меньше. Главный выключатель предназначен для отключения нагрузки с большей силой тока.

Две линии электропередач, которые подводят электричество к вашему дому, проходят через сервисную панель. Каждый из основных проводов передает 120 вольт электричества, что в сумме составляет 240 вольт. Главный прерыватель подключается непосредственно к этим двум проводам.

Под главным выключателем два провода подключаются к двум токопроводящим шинам, называемым шинами горячего питания. На горячих шинах вы прикрепляете отдельные автоматические выключатели ответвления, поэтому они часто отображаются в виде двух параллельных рядов.

Главный автоматический выключатель контролирует поток электричества от двух основных проводов к шинам горячей шины. Срабатывание главного выключателя прерывает подачу электричества на 240 В до того, как оно достигнет выключателей вашей ветви. Когда срабатывает главный выключатель, все в вашем доме выключено.

Как выполнить отключение системы главного автоматического выключателя

Если вам нужно провести в вашей системе серьезные электромонтажные работы, используйте главный выключатель для отключения системы. Не отключайте сразу главный автоматический выключатель.Во-первых, начните с верхней части прерывателя ответвления и отключите каждый прерыватель по отдельности.

Если вы уверены, что успешно отключили каждый выключатель ответвления, по одному, выполните отключение системы, переведя главный выключатель цепи в положение «выключено». Электроэнергия должна быть отключена на всей вашей собственности.

После того, как вы закончите свою работу и будете готовы снова включить питание, выполните процесс в обратном порядке. Перед включением автоматических выключателей ответвления переведите главный автоматический выключатель в положение «включено».Затем не торопитесь, по очереди вставляя каждый прерыватель ветвей.

Вы не хотите создавать скачок напряжения, предъявляя слишком высокие требования к вашей электрической системе одновременно. Так что делайте несколько секунд между каждым прерывателем ветки.

Как всегда, мы настоятельно рекомендуем обратиться к лицензированному электрику перед выполнением собственных электромонтажных работ.

Как сбросить сработавший главный автоматический выключатель

Главный автоматический выключатель может отключиться по нескольким причинам.Если энергокомпания вызовет скачок напряжения, она может отключить главный выключатель в каждом доме на улице. Неисправный прерыватель ответвления может вызвать срабатывание главного прерывателя в качестве дополнительной меры предосторожности.

Если сработал главный автоматический выключатель, вы должны правильно его сбросить, чтобы избежать скачка напряжения в вашей системе. Когда питание будет восстановлено, любой включенный выключатель ответвления включит приводной двигатель цепи. Если все двигатели включаются одновременно, это создает нагрузку на вашу систему и увеличивает вероятность короткого замыкания.

Прежде чем пытаться сбросить главный выключатель, наденьте защитные очки и перчатки. Иногда при повторном включении главного выключателя могут разлетаться искры. И стойте в стороне всякий раз, когда переворачиваете выключатели, чтобы избежать искр на лице.

Когда срабатывает ваш главный прерыватель, начните с перевода каждого отдельного прерывателя ответвления в положение «выключено». Когда все выключатели выключены, снова включите главный выключатель. Электропитание должно оставаться выключенным, поскольку выключатели ответвления отключены.

Теперь медленно включайте выключатели ответвлений по одному, чтобы избежать перегрузки.Каждый раз, когда вы переводите выключатель ответвления обратно в положение «включено», питание должно возвращаться в области вашего дома, контролируемые этой цепью.

Главный автоматический выключатель не должен срабатывать легко, и каждый раз, когда он срабатывает, соединения ослабевают. Если вы испытываете частые срабатывания главного выключателя, обратитесь за помощью к профессиональному электрику. Это может указывать на серьезную проблему с электрической системой или неисправную проводку в вашем доме.

Зачем вам главный автоматический выключатель?

Главный автоматический выключатель обеспечивает надежную меру безопасности.Без главного автоматического выключателя вы полагаетесь на то, что каждый из ваших выключателей ответвления выдержит гораздо большую нагрузку, чем они предназначены. А отключение электричества во всем доме пригодится, когда вы выполняете какие-либо электромонтажные работы.

В случае, если какая-либо отдельная ответвленная цепь потребляет слишком много энергии, она должна просто отключить прерыватель ответвления. Но если слишком много автоматических выключателей потребляют слишком много энергии, главный автоматический выключатель защитит вас от опасной перегрузки.

Очень важно отключать электроэнергию в вашем электрическом шкафу, когда вы выполняете электромонтажные работы дома. Разрезать провод под напряжением — это ошибка, которую нельзя повторить дважды, потому что у вас не будет возможности. Независимо от того, устанавливаете ли вы дорожное освещение или устанавливаете дополнительные розетки, главный автоматический выключатель защитит вас от поражения электрическим током.

Ни один из ваших автоматических выключателей не должен отключаться регулярно. Если вы обнаружите, что регулярно переустанавливаете выключатель, возможно, пришло время обновить электрическую панель.

Последние мысли

Систему распределения электроэнергии в вашем доме легко понять, если вы понимаете, как взаимодействуют ваши автоматические выключатели. Главный выключатель обеспечивает аварийное отключение, чтобы гарантировать, что отказ выключателя ответвления не приведет к перегрузке системы. Взгляните на свой автоматический выключатель дома, и вы увидите, насколько физически электричество течет внутри ваших стен.

Коробки выключателей, хотя и редко, производят вспышки и искры, поэтому всегда соблюдайте правильные меры безопасности при работе с электрикой.И всегда используйте инструменты и обувь с резиновым покрытием. Резина не проводит электричество и снижает ток электричества через ваше тело в случае аварии.

Если вам нравится эта статья о главном автоматическом выключателе, поделитесь ею в социальных сетях.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *