Кпд элемента пельтье в качестве генератора: Генератор на элементе Пельтье. — Генераторы и преобразователи — Электроника — Каталог статей

Содержание

Мощный генератор на 12 элементах Пельтье

Лучшее время для работы термогенератора на основе элементов пельтье, это конечно же зима. Потому что их нужно хорошо охлаждать, чтобы хоть что-то получить.

В эксперименте с испытанием мощного генератора использованы 12 модулей Пельтье TEC1-12706. Самые дешевые и популярные, продаются в этом китайском магазине. Для него есть кулер охлаждения.

Охлаждение в показанном примере осуществлялось вентилятором мощностью 5,4 ватта, 12 вольт.

О том, что это такое элемент Пельтье, какие у него характеристики и как работает, конструкции рабочих моделей, описано в нескольких статьях на нашем сайте, которые вы легко сможете найти через строку удобного поиска.

Цель эксперимента узнать, какую максимальную мощность может выдать обычный китайский самый дешевый термоэлемент в зимнее время года.
Итак, с началом эксперимента печь растоплена, когда дрова немного разгорелись, термогенератор начал работать и запустился вентилятор. Он охлаждает холодную сторону термоэлементов. Схема простейшая. В конце видео показано, как собирается такой термогенератор.


В ходе эксперимента будет достигнуто максимальное напряжение холостого хода этого генератора. Потом при помощи потенциометра это напряжение будет понижено ровно вполовину. Тем самым уровняется сопротивление генератора и сопротивление нагрузки. Тогда в генераторе и в нагрузке рассеивается одна и та же величина мощности. Это даст 50 процентную мощность, точнее кпд 50% отдаваемой мощности. Это соответствует эффективности всего лишь 50%. Но зато выход такой мощности будет максимальным в таком соотношении. Но передача максимальной мощности имеет место только при таком соотношении!
По мере разогрева печи растет напряжение, выдаваемое электрогенератором. Вентилятор набрал обороты, это довольно мощный вентилятор мощностью 5,5 ватт. Поэтому часть мощности он будет отбирать на себя. Та мощность, которую сейчас будет определена, это будет полезная мощность. Больше 26 вольт напряжение не поднимается. Подключаем потенциометр и начинаем добавлять сопротивление.

generator_Peltier

Теперь плавно доводим напряжение до 13 вольт. Зафиксирована мощность 9 ватт. Пока шли настройки, генератор прогрелся и мощность упала на 1,5 ватт.
Кратковременно удалось получить до 9 ватт. Но потом мощность упала и остановилась в пределах 7,5 ватт. Но этот показатель держался стабильно. Этой мощности хватит для зарядки любого телефона, смартфона или планшета.

Из 12 элементов пельтье получается 0,5 ватт и более на один элемент. При температуре воздуха ноль градусов это неплохой показатель на воздушном охлаждении. При температуре -20 результат был бы на порядок выше. Поэтому вполне возможно получить даже до одного ватта на один элемент пельтье, но при большом морозе.
Теперь вентилятор будет подключен через ваттметр для того, чтобы посмотреть, сколько полезной энергии расходуется на его работу. Прибор показал 6 ватт. Если бы не этот вентилятор, можно было бы добавить еще 5-6 ватт к мощности этого термогенератора.
В продолжение эксперимента вентилятор планировалось отключить, чтобы охлаждение делать с помощью снега. После того, как вентилятор сброшен, радиатор будет обильно покрыт снегом. Однако, в эксперименте произошла неожиданная авария. После того, как был снят вентилятор, печка перегрелась и вышел из строя какой-то из элементов пельтье, расплавившись без охлаждения. В системе произошло разъединение контактов. Поэтому вентилятор является в данном устройстве полезным элементом. Для безопасности же необходимо использовать защитные решетки.

Вывод следующий: порядка 1 ватта на элемент пельтье можно получить при хорошем морозе. Есть места, например якутия или дальний север, температура доходит до минус 50 градусов цельсия. Так что там 1 ватт с элемента получить будет просто. Представьте, в юрте печка, а за ней стена размером 1 x 2 м. Теплый стороной внутрь печки, а холодный наружу, где мороз и ветер. С одного квадратного метра таких элементов можно снять до 0,5 киловатта электричества. То есть, с 2 квадратных метров можно получить до одного киловатта электроэнергии.

Такие мощные печи на основе элементов Пельтье производятся в России. Называются они “Электрогенерирующая печь Индигирка”. Купить их можно в этом магазине, скидочный промокод 11920924.

Конструкция такого термогенератора предельно проста. 12 самых дешевых китайских элементах пельтье зажимаются между двумя алюминиевыми радиаторами, которые должны иметь ровные, в идеале полированные, поверхности. Естественно, на каждую сторону термоэлемента наносится термопаста.  Скручиваем радиаторы болтами и соединяем проводами. Крепим кулер, желательно мощнее. Ну и сама печка. Это кусок оцинковки, лучше нержавейки. Крепится к горячему радиатору болтами. Потом делается дно с отверстиями 7-8 миллиметров для забора воздуха.

Есть продолжение этого эксперимента. Чтобы найти его, напишите в поиске по сайту:  Пельтье на воздушном охлаждении.

Элемент Пельтье как генератор электроэнергии

Для понимания законов электродинамики, электрики и физики, нужно знать, что такое элемент, модуль Пельтье как генератор электрической энергии. О понятии, технических характеристиках, принципе работы и правильном применении модуля для генератора рассказано далее.

Что такое элемент и термогенератор Пельтье

Элементом Пельтье называется термоэлектрический тип преобразователя, который базируется на температурной разности при протекании электричества. Суть открытого в 1834 г. эффекта в том, что тепло выделяется или поглощается в участке контактирования разнородных проводников, подключенных к электричеству.

 Что собой представляет элемент Пельтье

К сведению! По этой теории электрический ток осуществляет перенос электронов между металлами. Если увеличить кинетическую энергию, то она превратится в тепловую.

 Устройство, преобразующее кинетическую энергию в тепловую

Элемент Пельтье в качестве генератора энергии

Термоэлектрический модуль Pelty может выступать как электрогенератор Пельтье при принудительном нагревании одной из его частей. Чем больше показатель температурной разности, тем выше показатель тока источника.

Предельный температурный показатель ограничен, но может быть выше, чем точка припойного плавления, используемая в конструкции модуля. Несоблюдение данного требования приводит к тому, что элемент Пельтье ломается.

Для термогенераторного производства применяют специальный тип модулей, где есть тугоплавкий припой. Их можно подогревать до температурного показателя 300 °С. По сравнению с обычным генератором эта температура в два раза больше. Потому коэффициент полезного действия в подобных устройствах невысок, их используют лишь тогда, когда невозможно применить результативный электроисточник.

 Генератор электроэнергии популярен среди путешественников

Обратите внимание! Генераторы с мощностью 10 В популярны у туристов, путешествующих на дальние расстояния. Крупные, мощные постоянные устройства, которые работают от высокого температурного топлива, применяют, чтобы питать газораспределительные узлы, метеорологическую аппаратуру.

Технические характеристики элемента Пельтье

Термические электрические модули обладают следующими характеристиками:

  • производительность холода;
  • максимальный температурный перепад;
  • допустимая сила тока, которая нужна, чтобы обеспечить максимальный температурный перепад;
  • предельное напряжение в киловаттах, которое необходимо току для достижения пиковой разницы;
  • внутренний показатель сопротивления модуля resestance, указываемый в Омах;
  • коэффициент эффективности или КПД устройства, которое показывает отношения охлаждения к мощности.

 Усредненные технические характеристики

Обратите внимание! Подобные характеристики распространяются и на миниатюрные установки, малые электрогенераторы, холодильные системы охлаждения персональных компьютеров, охлаждающие/нагревающие водные кулеры и осушители воздуха.

Принцип работы элемента Пельтье

Любой термоэлектрический модуль работает на разности электронной энергии, то есть один проводник — область, где есть высокая проводимость, а второй — место, где низкая проводимость. Если соединить такие источники вместе и пропустить через них заряд, то электрону для прохождения низкоэнергетической области в высокую, нужно подкопить электроэнергии. Та область, где осуществляется энергопоглощение электроном, охлаждается.

 Принцип работы

Важно! При изменении полярности подключения элемента вместо охлаждения будет происходить нагревание. Данный эффект наблюдается у любого элемента, но конкретные следы элемента Пельтье будут видны на полупроводниках.

Как правильно применять модуль Пельтье для генератора

Применять модуль Пельтье можно, как термоэлектрогенератор Teksan Colorful, для охлаждения процессора, комнаты, воды. Используется он нередко как кислородный осушитель. Подключить модуль несложно. На провода нужно осуществить подачу постоянного напряжения, значение которого есть на элементе. Красный проводник следует подключить к полюсу, а черный — к нулевому проводнику. Таким образом прибор начнет работу на охлаждение. Если поменять полярность оборудования, то поменяется местами охлаждаемая и нагреваемая поверхности.

 Правильное применение модуля для генератора

Обратите внимание! Проверить, функционирует элемент или нет, несложно. До него нужно прикоснуться к нему с разных сторон. Работающий аппарат будет иметь одну горячую, а вторую — холодную область.

Таким образом, элементом Пельтье называется термоэлектрический преобразователь, который работает на температурной разности при протекании электрической энергии. Термогенератор, построенный на технических характеристиках и принципе его функционирования, имеет широкое применение на производстве и в жизни. Использовать его можно по приведенной выше инструкции.

Как сделать своими руками генератор из термоэлектрического элемента Пельтье

Элемент Пельтье стал известен миру давно. Еще в 18 веке французский часовщик Жан-Шарль Пельтье совсем случайно для самого себя открыл новый эффект на границе двух металлов: висмута и сурьмы. Он заключался в резком изменении температуры помещенной между контактами капли воды, которая при подведении тока превратилась в лед. Это свойство стало новым для часовщика, потому что до того момента еще ни один ученый мира не излагал в своих материалах подобной информации.

Эффект хоть и был интересен, но не нашел практического применения в то время, что было связано с небольшим количеством электронной техники, которой требовалось бы интенсивное охлаждение. Спустя 2 столетия об открытии ученого вспомнили, потому что возникла острая необходимость изготовить устройство, которое могло бы обеспечить качественное охлаждение кристалла греющегося микропроцессора.

В результате многочисленных исследований в этой области и огромного количества практических опытов ученые выяснили, что термоэлектрическая пара может вырабатывать достаточное количество холода для нормальной работы практически любого микропроцессора. А благодаря небольшим размерам их научились встраивать в корпуса микросхем, обеспечивая, таким образом, собственный внутренний генератор холода.

Открытие Жан-Шарля Пельте стало огромным толчком для целой отрасли по производству мобильных холодильных установок. Сегодня свойство термоэлектрического элемента используется в следующей технике:

  • переносные холодильники;
  • автомобильные кондиционеры;
  • портативные охладители;
  • фотоаппараты, телескопы и многое другое.

Активно используют для охлаждения микропроцессоров и прочих элементов электронной техники. Кроме прямого эффекта охлаждения, элемент Пельтье многие стали использовать в качестве генератора. Примером чего может стать фонарик на 3 элементах.

Знают немногие, что для осуществления радиосвязи с командованием солдаты ставили на огонь специальный котелок и заваривали чай, готовили кашу и прочие бытовые вещи, а в это время осуществляли передачу необходимой информации по переносной радиостанции.

Как изготовить элемент Пельтье своими руками?

Многих интересует вопрос, что такое Пельтье элемент своими руками, как сделать его в домашних условиях? Для этого потребуется высокоточное дозированное добавление разных веществ и материалов. Изготовить в домашних условиях подобное устройство невозможно, потому что требуется иметь технологии и обладать необходимыми методами обработки металлов. Также требуются особо чистые материалы в таких же лабораториях, чего в домашних условиях добиться невозможно. Поэтому на вопрос, как сделать термоэлектрический модуль Пельтье, можно ответить однозначно. Никак. Но для построения эффективной системы охлаждения вполне достаточно имеющихся навыков.

Изготовление элемента Пельтье из диодов

Существует мнение о том, что можно сделать термоэлектрический модуль на диодах. Дело в том, что каждая пара разнородных полупроводников – это два материала с p и n -проводимостями. А диод как раз таковым и является. Чтобы выявить изменение проводимости при нагреве, необходимо выбирать определенные элементы. Но для получения низкой температуры на поверхности устройства никакие диоды не помогут. При подаче большого тока можно добиться лишь разогрева.

Радиолюбители используют в качестве датчика температуры диоды малой мощности в стеклянном корпусе. При подключении их в обратном направлении и разогреве переход начинает открываться и пропускать ток в обратном направлении. Но при этом вырабатывать электричество он не будет.

Как устроен элемент Пельте?

Термоэлектрический модуль Пельтье в упрощенном виде представляет собой пару пластин из разных металлов, которыми могут быть висмут, сурьма, теллур или селен. Между ними расположена пара полупроводников с разной проводимостью n и p -типа. Все образованные разными металлами термоэлектрические пары соединены последовательно в единую цепь. В результате образуется своего рода матрица из большого количества отдельных термопар, расположенных между двумя керамическими пластинами.

Образованный термопарами термоэлектрический модуль изготовлен в едином корпусе небольших размеров. При их последовательном или параллельном соединении можно добиться усиления эффекта охлаждения или выработки электрической энергии. В режиме охладителя положительный вывод матрицы подключается к первой паре с проводником n -типа, отрицательный контакт подведен к проводникам p -типа. В качестве внешних обкладок используется специальная керамика, изготовленная на основе оксида и нитрида алюминия. Это обеспечивает наилучшие показатели теплоотдачи на обеих сторон как при высоких, так и при низких температурах.

Число термопар в модуле ничем не ограничено и может быть до нескольких сотен. Чем их больше, тем лучше ощущается эффект охлаждения. Для повышения эффективности работы элемента Пельтье к его холодной стороне крепится радиатор с наибольшей площадью теплоотдачи. Разница в температуре между обкладками должна составлять не менее двух десятков градусов.

При подаче напряжения на обкладки одна из сторон становится горячей, а другая холодной. При смене полярности питающего напряжения температура пластин меняется местами.

Учитывая сложность и технологичность, сделать своими руками термоэлектрический элемент не представляется возможным. Но все же встречаются умельцы, которые предлагают свои разработки. Эффект наблюдается, но для повышения КПД без специальной исследовательской лаборатории получить невозможно. Даже можно найти видео по этой теме с пошаговым руководством.

Особенности элемента Пельтье

К особенностям элемента на основе биметаллических пар следует отнести:

  • Компактность. По сравнению с термоэлектрическим эффектом, которым обладает устройство, элемент Пельтье имеет незначительные габариты, но при этом позволяет на десятки градусов понизить температуру микропроцессора, что существенно упрощает системы охлаждения.
  • Не требует использования вентиляторов. Благодаря отсутствию движущихся и вращающихся компонентов все устройство не создает лишнего шума и помех, которые могут сильно повлиять на работу компонентов.
  • Благодаря каскадному соединению нескольких термоэлементов можно добиться повышенной эффективности охлаждения процессора с минимальными затратами.
  • Кроме охладителя, элемент Пельтье можно также использовать в качестве устройства экстренного нагрева, если поменять полярность на обкладках.

Формульное отображение

Эффект Пельтье заключается в протекании тока через контакт двух металлов с разной проводимостью. В результате выделяется тепло или холод, что зависит от направления протекания тока.

В формульном выражении эффект Пельтье можно изобразить:

Q п=П12 j , где П12 – это коэффициент Пельтье. Показатель зависит от типа используемого металла, его термоэлектрических свойств.

Кроме преимуществ, в устройстве можно выделить и некоторые недостатки, к которым следует отнести:

Невысокий КПД. Для того чтобы получить значительный перепад температур, необходимо к обкладкам подводить достаточно большой ток.

Для эффективного отвода тепловой энергии необходимо предусматривать радиатор.

Генераторный режим элемента Пельтье

Открытие Жака-Шарля Пельтье буквально перевернуло мир, так как устройство может использоваться в качестве универсального генератора тепла и холода. Кроме этих функций, был отмечен еще один немаловажный эффект – генераторный режим. Если теплую сторону устройства нагревать, а холодную охлаждать, то на выводах возникает разница потенциалов, и при замыкании цепи начинает течь ток.

Генератор на основе элемента Пельтье можно сделать своими руками и для этого не потребуется особых навыков. Но стоит понимать, что используемый китайскими разработчиками материал не обладает идеальными характеристиками, позволяющими получать максимум энергии. Доступных термоэлектрических модулей в продаже хватит для:

  • зарядки мобильных устройств;
  • питания светодиодного освещения;
  • изготовления автономного радиоприемника и прочих целей.

По этой теме можно найти массу видео с подробным описанием всех этапов. Поэтому если вы хотите сделать термоэлектрический модуль для получения энергии, то это вполне реально.

Первым делом необходимо заказать необходимое количество элементов Пельтье с учетом их характеристик. Устройство с мощностью 10 Вт на том же e — Bay стоит 15$. И этого вполне достаточно будет для зарядки смартфонов. Далее, необходимо обеспечить эффективное теплоотведение. Для этих целей можно сконструировать систему жидкостного охлаждения с естественной циркуляцией. А горячую сторону нагревать любым источником тепла, в том числе открытым огнем. В результате любой радиолюбитель может сделать сам великолепный термоэлектрический генератор, который можно взять с собой в поход, на рыбалку или дачу.

Один стандартный элемент-ячейка вырабатывает 5 В и 1 Вт мощности, чего вполне достаточно для небольшого освещения. Например, для изготовления фонарика с подогревом от тепла рук. В продаже имеются и готовые элементы с выходным напряжением до 12 В.

Переносная термоэлектрическая печка с генераторным режимом

Сегодня можно найти массу способов, как сделать своими руками достаточно эффективный термоэлектрический генератор на основе элемента Пельтье. Как один из них – портативная печка с топкой из старого компьютерного блока питания. К одной из сторон корпуса прикрепляется сам термоэлектрический элемент Пельтье через термопасту с радиатором внушительных размеров. Такая установка позволит получить тепло в любом удобном месте, приготовить пищу и зарядить телефон.

Походный генератор на элементах Пельтье

Здравствуйте! Сейчас мы соберем походный генератор на элементах Пельтье, который заменит множество запасных аккумуляторов.
Использование самодельных теплоэлектрогенераторов применяется уже давно. В 1943 году в Ленинградском физико-техническом институте построили полупроводниковый термоэлектрический генератор в виде походного котелка, его КПД достигало 2%, что позволяло подключить к нему полевую радиостанцию.

С появлением элементов Пельтье стало возможным сделать генератор самостоятельно.

Для этого нам понадобятся:

1. Материалы
-радиатор от компьютера
-два алюминиевых профиля
-термопаста
-элементы Пельтье (2 шт.) ТЕС1-12706
-повышающий преобразователь электрического тока ( вход. 2В )
-провода
-мебельные болты

2. Инструменты
-ножовка по металлу
-паяльник
-шуруповерт
-сверла
-молоток
-плоскогубцы
-отвертка

1 Шаг
Приступим к сборке. С начало отогнем крайние пластины радиатора охлаждения и сделаем 4 отверстия для крепления.

2 Шаг
Отрезаем два алюминиевых профиля для радиатора нагрева. Длинна и ширина профиля равна длине и ширине радиатора, в моем случае 100*100 мм.
(Можно разогнуть два алюминиевых уголка 25*25 мм)

3 Шаг
Между радиаторами помещаем элементы Пельтье, предварительно смазав места соприкосновения термопастой для максимального контакта. Стягиваем всю конструкцию по углам мебельными болтами.

4 Шаг
Подключаем провода элементов Пельтье последовательно друг к другу. В нашем случае элемент Пельтье будет вырабатывать напряжение, около 2 вольта, для зарядки аккумулятора телефона этого мало. Поэтому мы будем использовать повышающий преобразователь, который повысит и стабилизирует выходное напряжение до 5 В. Подключаем его в соответствии с маркировкой на повышающем преобразователе. ( Можно использовать любой повышающий преобразователь не обязательно как у меня, главное чтобы он подходил по характеристикам)
Припаиваем к повышающему преобразователю штекер, который вам необходим. Так же можно залить повышающий преобразователь термоклеем для герметичности.

И все походный генератор готов, с помощью которого можно зарядить телефон или другой гаджет просто повесив его над костром.

Элемент Пельтье или делаем термогенератор.

Как осветить стадион одной икеевской свечкой? Конечно же, осветить стадион с одной икеевской свечки не получится. Это недостижимый идеал, но к идеалам принято стремиться.

Сегодня расскажу о поделке-самоделке термоэлектрической кружке.

Много читал об устройствах вырабатывающих электрический ток из тепла, даже пробовал собрать простой термогенератор. К сожалению, не получилось получить более 1,2 вольта — поэтому идея термоэлектричества была отложена до лучших времен. Как то, просматривая список товаров в китайских магазинах увидел недорогой преобразователь напряжения работающий в диапазоне 1-5 вольт и выдающий 5 вольт. Сразу же пришло в голову использовать данный преобразователь в генераторе термоэлектричества.

Ранее, для постройки термогенератора были использованы два радиатора от компьютера подходящего размера, и элемент Пельтье приобретенный на ebay. Конструкция представляла из себя сэндвич из радиаторов, посредине элемент Пельтье посаженный на компьютерную термопасту и зафиксированный по периметру автомобильным высокотемпературным силиконовым герметиком (380 С). Но данная конструкция оказалась громоздкой. К сожалению фото не сохранилось. Получить свыше 1,2 в. не удалось, даже при прогреве нижнего радиатора портативной газовой горелкой.

Для нового термогенератора было решено использовать идею термоэлектрической посуды. Было приобретено две подходящие по размеру кружки из нержавейки, автомобильный высокотемпературный герметик и преобразователь напряжения с 1 в до 5 в. В кружку с более широким дном, на термопасту, был посажен элемент Пельтье и залит по периметру герметиком. Затем была вставлена кружка с менее широким дном, и данная заготовка осталась сохнуть в течении 24 часов под грузом. На следующий день, когда герметик схватился, к выводам элемента Пельтье был припаян преобразователь напряжения. Неожиданно возникла проблема: провода от элемента Пельтье касались внешней кружки, и при использовании кружки на костре, изоляция могла быть расплавлена, что грозило коротким замыканием на корпус кружки, и выходом из строя термогенератора. Не долго думая, зафиксировал провода спичками, прижав их к внутренней кружке и залил оставшееся пространство между кружками гипсом. Конечно же, можно было бы обойтись тем же автомобильным герметиком, но он оказался не настолько текуч, чтобы гарантированно приклеить провода к внутренней кружке, где температура не должна повышаться более 100 С благодаря охладителю-воде. Так же, можно было использовать негорючие изоляторы типа керамических чашечек, что используют в электроплитках, но таковых не оказалось. Вес термогенератора-кружки получился 276,5 гр.

Скорее всего, в походы его брать не буду, есть идеи для v.3.

фото:
термогенератор на элемене Пельтье

Видео генератора в работе, выдает около 100 ма.

Элемент Пельтье как электрогенератор

Сначала материал про термогенератор на основе одного модуля. Во второй части более мощный источник электроэнергии, использованные 12 Пельтье.

Peter Dmitriev. В первом видео показано, как мастер создал довольно мощный генератор электроэнергии на основе 12 элементов пельтье.

В чём состоит идея? Приезжаем на дачу, затапливаем печь. И у нас появляется освещение в доме от тепла и зарядка аккумуляторов. В конструкции холодильник. Это радиатор. Размер 24 x 25 сантиметров. Нагревательный элемент – труба 40 x 20. Она немного неплотно подходит к элементом пельтье. Но использование пасты решает эту проблему. Элемент будет прижиматься квадратной трубой 15 x 15.На радиаторе размещается 12 модулей пельтье. Сверху будет устанавливаться профильная труба.

Элемент Пельтье как генератор электроэнергии

Всё готово к сборке. Болты. Пружинки. Нагревательные элементы. Холодильник. Термоэлектрические модули.Можно начинать процесс сборки.

В ходе работы мастер сделал небольшие изменения. Радиатор поставил на снег в тазик. Закрыл, чтобы не попадал горячий воздух. Промежуток между трубами тоже закрыл.

Итоги эксперимента, по мнению мастера, удался. Получено 12 вольт.

Как сделать термоэлектрический двигатель

Предлагаем сделать небольшой эксперимент. Сегодня понадобится элемент пельтье 12706. Подходит под радиатор. Хорошее проверенное термоклей. Двигатели используются в квадрокоптерах. Скорость измеряется в тысячах оборотов в минуту. Батарейка на полтора вольта.

Готовим радиатор. Закрепляем мотор.

Применение элементов Пельтье

Три варианта использования.
1. Охлаждение. Между радиатором и пластиной термопаста. Радиатор опускаем в воду. Красный провод на плюс аккумулятора 12 вольт. Чёрный – минус. Вода застывает.

2. Нагрев. Поменяем местами провода. Вода начала кипеть.

3. Выработка электричества. Для нагрева используем сухое горючее.

О том, что сделать из элементов Пельтье.

Alex_EXE » Элемент пельтье, режим электрогенератора

В прошлых статьях было рассказано об элементах пельтье и как они себя ведут в режиме теплового насоса. В этой, заключительной статье, расскажу вам о том, что эти модули не только способны прилично кушая электричество обеспечивать разность температур на своих сторонах, но и сами способны вырабатывать электроэнергию, если одну сторону элемента принудительно охлаждать, а вторую нагревать.

Без нагрузки, перепад температур ~100°С

В этих испытаниях добровольцем выступил небольшой модуль TB109-0.6-0.8, с площадью поверхности всего 3,12кв.см., напомню вам его ро.., вид и характеристики:

TB109-0.6-0.8

Imax = 2,1А
Umax = 13,4В
dTmax = 68К
Qmax = 16,9Вт
R = 5Ом
t рабочая -50 +80 °C
t max = 130°C
t плавления припоя = 139°C
Размеры 26х12мм

Для испытаний пельтье в режиме электрогенератора был собран небольшой стенд, который содержит следующие приборы: нагреватель, вольтметр, амперметр и нагрузку, так же понадобился радиатор и кусочек льда в водонепропускаемом пакете, ну и конечно сам подопытный TB109-0.6-0.8. В качестве нагревателя выступил 20Вт резистор на 5,6Ом, который был разогрет примерно до 80-90 градусов. Для улучшения теплового контакта элемента пельтье с нагревателем была применена намакондовская термопроводящая прокладка, вытащенная из какого то отмучавшегося компьютерного блока питания.

Собранный испытательный стенд

Приступим к тестам.

Первый тест был проведён с 1Омной нагрузкой, подключенной к выводам пельтье, в качестве охладителя был использован радиатор комнатной температуры.

Нагрузка 1Ом, перепад температур ~60°С

С модуля удалось получить 0,117В при токе 119,5мА или 14мВт, при разности температур примерно в 60 градусов.

Дальше было решено охлаждать подопытного более кардинальными мерами, для этого в дело пошли кусочки льда из морозильника.

Нагрузка 1Ом, перепад температур ~100°С

При разности температур в 100 градусов модуль выдал результаты получше, а именно: 0,21В 0,22А или 46мВт.

Следующий тест был проведен с нагрузкой в 20Ом.

Нагрузка 20Ом, перепад температур ~100°С

Модуль выдал 1,31В при токе 66мА или 86мВт.

На холостом ходу, первое фото, модуль выдал 2,19В.

Вывод – модули пельтье можно с успехом использовать для генерации электричества. Если модуль в 109 термопар, площадью 3,12кв.см. при разности температур в 100 градусов смог выдать 86мВт при полутора вольтах и более 2-х В на холостом ходу, то модуль с гораздо большей площадью и разностью температур хватит на питания небольшого светодиодного осветителя или радиоприёмника, или же для зарядки аккумуляторов. Но, к сожалению, такое их применение сильно ограничивается их ценой.

Примеры применения: различные ТЭГи, от портативных туристических, которые можно прикрепить к котелку у костра и слушать радио, до РИТЭГов, которые применяются для питания удалённых труднодоступных автономных объектов (например – маяки) или на космических спутниках.

Благодарность за предоставленные модули фирме – Радиоэлектроника.

Эффективность элемента Пельтье

Эффективность применения элемента Пельтье зависит от коэффициента полезного действия (COP), который зависит от рабочей точки, теплового дизайна и типа питания контроллера TEC. Все три пункта обсуждаются в этой статье. Контроллеры
TEC используются для термоэлектрического охлаждения и нагрева в сочетании с элементами Пельтье. Элементы Пельтье — это тепловые насосы, которые передают тепло от одной стороны к другой в зависимости от направления электрического тока.

TEC Controller Обзор продукта

Коэффициент полезного действия (COP)

Эффективность самого элемента Пельтье определяется значением COP = Q C / P el . Подробнее об определении COP здесь.

Соотношение COP в зависимости от текущего отношения элемента Пельтье для различных dT.

Оптимальная рабочая точка элемента Пельтье — это максимальное значение COP. Максимальный КПД сильно зависит от разницы температур (dT) между теплой и холодной стороной.Как можно видеть, при увеличении dT максимум COP смещается в сторону более высоких токов. Ток не должен превышать 0,7 I max , потому что тогда COP становится слишком маленьким — элемент Пельтье очень неэффективен.

Тепловой расчет

Thermal Design имеет решающее значение, поскольку позволяет пользователю напрямую влиять на эффективность и производительность системы. Три наиболее распространенных способа повышения эффективности элемента Пельтье в случае охлаждения:

  1. Уменьшение dT — оптимизация радиатора и вентилятора
  2. Минимизируйте потери мощности — изолируйте охлаждаемую область
  3. Optimize COP — Выбрать элемент Пельтье соответствующей мощности

1.Разница температур (dT) между холодной и теплой стороной должна быть минимизирована. Небольшое значение dT приведет к смещению максимума COP, как это видно на диаграмме 5, вправо, что означает необходимость меньшего тока. Тепло, которое должно рассеиваться на теплой стороне, складывается следующим образом: Q h = Q C + P el .

Следующая схема представляет систему охлаждения и соответствующую диаграмму температуры справа. Объект охлаждается до -5 ° C холодной стороной элемента Пельтье.Горячая сторона элемента Пельтье имеет температуру 35 ° C. Радиатор отводит тепло в окружающий воздух, имеющий температуру 25 ° C. Таким образом, радиатор рассеивает 10 ° C, поэтому новый dT составляет 30 К.

Более упрощенная схема процесса проектирования и соответствующая диаграмма температур

2. Часто бывает полезно изолировать охлаждаемый объект и все другие охлаждаемые поверхности. Таким образом, температура окружающей среды оказывает меньшее влияние на элемент Пельтье, и в систему поступает меньше тепла окружающей среды.Это снижает общую рассеиваемую мощность, что приводит к меньшей входной мощности элемента Пельтье и, следовательно, лучшему COP.

3. Следует оптимизировать COP за счет использования достаточной мощности элемента Пельтье. Это необходимо, потому что максимальное значение COP соответствует низкому току и помехи могут быть поглощены. Если мощность элементов Пельтье слишком мала, возможно создание нагревателя.

В качестве примера: если dT составляет 30 K, вы можете увидеть на диаграмме зависимости COP от тока, что максимальное значение COP при I = 0.3 * I макс . На диаграмме теплового насоса против тока мы получаем, что при значениях dT = 30 K и I = 0,3 * I max , Q c / Q max равны 20%. Для охлаждения мощностью 10 Вт элемент Пельтье должен иметь мощность 50 Вт.

DC в сравнении с PWM (Тип источника питания TEC)

В следующей главе обсуждаются преимущества постоянного тока (DC) и недостатки ШИМ в качестве режимов питания для управления элементами Пельтье с контроллерами ТЕС. Термоэлектрические охладители работают за счет эффекта Пельтье и перекачивают тепло от одной стороны к другой.Для поддержания направления теплового потока требуется постоянный ток.

Во многих контроллерах ТЕС ШИМ используется для управления элементами Пельтье. В целом это означает упрощенное оборудование и логическое управление выходом. Для высоких частот ток ШИМ можно рассматривать как постоянный ток того же значения амплитуды. Однако модули ТЕС, управляемые ШИМ, всегда менее эффективны, чем приложения ТЕС, управляемые постоянным током. Использование ТЕС с ШИМ напрямую делает схему более подверженной помехам, может привести к высоким переходным напряжениям и, как правило, менее эффективно.

Другая проблема заключается в том, что ШИМ может вызывать электромагнитные помехи (EMI) в проводке к устройству ТЕС. Этот эффект может нарушить работу измерительных систем или камер, например при использовании для охлаждения ПЗС-сенсоров.

Рекомендации производителей

Производители элементов Пельтье предлагают использовать постоянный ток и ограничивающие пульсации тока для регулирования выходного тока. Они категорически не рекомендуют использовать прямое ШИМ-управление элементами Пельтье:

  • Ferrotec: «Тем не менее, мы рекомендуем ограничить пульсации источника питания максимум до 10 процентов с предпочтительным значением <5%.«
  • RMT: «TEC [элементы Пельтье], управляемые PWM, работают менее эффективно, чем при постоянном токе. PWM-управление всегда менее эффективно, чем работа TEC при том же среднем постоянном токе и потребляемой мощности».
  • Marlow: «Для оптимальной работы термоэлектрическим охладителям требуется плавный постоянный ток. Коэффициент пульсации менее 10% приведет к снижению ∆T менее чем на 1%. […] Marlow не рекомендует управление ВКЛ / ВЫКЛ».

Сравнение двух контроллеров ТЕС

Мы сравнили контроллер TEC Meerstetter Engineering с постоянным током (случай 1) с контроллером PWM TEC (случай 2) от другого производителя, чтобы подчеркнуть разницу между термоэлектрическими системами охлаждения, работающими от постоянного тока, и системами, использующими ШИМ.Цель состоит в том, чтобы сравнить общую энергоэффективность.
Оба контроллера выполняют одну и ту же задачу, но с точки зрения эффективности разница весьма разительна.

Установка состоит из следующих компонентов:

  • Блок питания для контроллера ТЕС
  • Контроллер ТЕС
  • Охлаждаемый объект (нагрузка 1 Вт)
  • Элемент Пельтье
  • Радиатор
  • Вентилятор для охлаждения радиатора

В качестве целевой температуры для нагрузки мощностью 1 Вт в качестве охлаждаемого объекта мы выбрали в обоих случаях 10 ° C при температуре окружающей среды 24.5 ° С.

Результаты представлены на следующей иллюстрации и обсуждаются ниже.

Сравнение двух контроллеров ТЕС

Замечательные отличия и наблюдения:

  • Мощность, необходимая для охлаждения объекта до 10 ° C, была в 2 раза больше, чем в шесть раз (56 Вт против 9 Вт).
  • Температура радиатора в корпусе 2 была на 5 ° C выше. Это может привести к повышению температуры термоэлектрической системы охлаждения, особенно когда она заключена в корпус.
  • Повышение температуры радиатора на 5 K также приводит к более высокому dT элемента Пельтье:
    dT = T HS — T O = T amb + ΔT HS — T O
  • Другими словами, общее количество тепла, рассеиваемого системой с помощью ШИМ-контроллера, более чем в 4 раза больше. Следовательно, это приводит к необходимости гораздо большего радиатора для корпуса 2.
  • Более эффективная система позволяет также использовать более мелкие компоненты, такие как блок питания, радиатор и т. Д.

Линейные и SMPS контроллеры TEC

Существует два обычно используемых способа генерации постоянного тока для управления ТЕС. Один из способов — использовать линейный источник питания, а другой — SMPS.

Линейные контроллеры ТЕС обеспечивают постоянный ток, обеспечивая оптимальную работу ТЕС. Однако сами они очень неэффективны и генерируют большие тепловые потери.

SMPS Контроллеры ТЕС также управляют ТЕС постоянным током, но они намного более эффективны, что приводит к значительно меньшим тепловым потерям.

Контроллеры

SMPS TEC имеют высокий КПД (> 90%), электроника генерирует мало потерь.

.

Руководство по проектированию элементов ТЕС / Пельтье

Контроллеры ТЕС используются для термоэлектрического охлаждения и нагрева в сочетании с элементами Пельтье или резистивными нагревателями. Элементы Пельтье — это тепловые насосы, которые передают тепло от одной стороны к другой в зависимости от направления электрического тока. Контроллеры TEC используются для управления элементами Пельтье.
В данном руководстве по проектированию системы содержится информация о том, как разработать простую систему термоэлектрического охлаждения с использованием контроллеров ТЕС и элементов Пельтье.При разработке термоэлектрических устройств охлаждение является критической частью. Итак, мы возьмем случай охлаждения объекта в качестве примера для руководства по дизайну.

TEC Controller Обзор продукта

Содержание

Проектирование полной термоэлектрической системы может быть большой сложной задачей. Однако для более простой системы не следует теряться в деталях. Это руководство является отправной точкой для оценки проектных параметров с некоторыми упрощениями для нового приложения термоэлектрического охлаждения.
Шаг за шагом мы проходим все необходимые этапы проектирования, выделяем важные моменты и, наконец, рассчитываем пример приложения. Мы обрабатываем систему одноступенчатым элементом Пельтье. Многоступенчатые элементы Пельтье достигают более низких температур, но их сложнее проектировать.

Консультации по сложным тепловым расчетам

Мы сотрудничаем с Elinter AG, поставщиком полных, более сложных решений в области теплового проектирования. Elinter может помочь вам в разработке вашего термоэлектрического приложения.Сюда входит моделирование, проектирование, механическое строительство, а также выбор подходящей электроники, радиаторов и тепловых трубок.

Видео с термоэлектрическим охлаждением

Это видео объясняет основы термоэлектрического охлаждения. Мы приводим примеры важных шагов проектирования для успешного проектирования термоэлектрического приложения с использованием контроллеров TEC и элементов Пельтье.

Справочная информация

Термоэлектрическое охлаждение и обогрев используется для различных целей, даже при активном охлаждении ниже температуры окружающей среды или высокой точности (стабильность <0.01 ° C). Контроллер TEC - источник тока для элемента Пельтье - в сочетании с элементом Пельтье активно регулирует температуру данного объекта. Это делается без акустических и электрических шумов, вибраций и механических движущихся частей. Переход от охлаждения к нагреву возможен путем изменения направления тока без каких-либо механических изменений.

При работе с элементами Пельтье существуют температурные пределы. Они доступны с максимальной рабочей температурой 200 ° C, где этот предел определяется температурой оплавления припоя и уплотнения.Другой предел — максимальная температура между горячей и холодной сторонами элемента Пельтье. В обычных приложениях разница около 50 К может быть реализована с помощью одноступенчатого элемента.
При использовании элемента Пельтье в качестве термоэлектрического охладителя существует предел, при котором температура снова поднимется при увеличении тока. Это происходит из-за рассеиваемой мощности (I 2 R) внутри элемента Пельтье при потреблении большего тока, чем I max .

Типовая термоэлектрическая система

Основными частями термоэлектрической системы охлаждения, которые имеют отношение к нашему процессу проектирования, являются следующие:

  • Контроллер ТЕС
  • Элемент Пельтье
  • Радиатор

Другая важная деталь, напарник радиатора, не видна напрямую.Это окружающий воздух с его температурой, в которой рассеивается тепло.
Помимо вышеупомянутых частей, для всего приложения важны другие компоненты. Это, например, датчики температуры, программное обеспечение для настройки и контроля контроллера ТЕС, вентилятор и, конечно же, источник питания.

Пожалуйста, посмотрите следующее видео, чтобы получить обзор контроллеров семейства TEC и их функций.

Тепловая схема

На этой схеме простой термоэлектрической системы показаны объекты, участвующие в пути теплового потока от объекта к окружающему воздуху.Это упрощенная схема, где мы предполагаем идеальную теплоизоляцию объектов, например на температуру предметов не влияет конвекция. (Q — теплоемкость каждой детали.)

Упрощенная схема системы охлаждения

Следующая — еще более упрощенная схема — представляет систему охлаждения и соответствующую температурную диаграмму справа. В этом случае объект охлаждается до -5 ° C холодной стороной элемента Пельтье.Горячая сторона элемента Пельтье имеет температуру 35 ° C. Радиатор отводит тепло в окружающий воздух, имеющий температуру 25 ° C.

Более упрощенная схема процесса проектирования и соответствующая температурная диаграмма

Процесс проектирования

При проектировании термоэлектрического охлаждающего устройства необходимы следующие шаги:

  1. Оценить тепловую нагрузку охлаждаемого объекта
  2. Определить рабочий диапазон температуры объекта и радиатора
  3. Выберите элемент Пельтье, соответствующий требованиям
  4. Выберите контроллер ТЕС с подходящим диапазоном мощности
  5. Выбрать радиатор для элемента Пельтье
  6. Выберите вентилятор для вентиляции радиатора (дополнительно)
  7. Выберите датчик температуры объекта и дополнительный датчик раковины
  8. Выберите источник питания для контроллера ТЕС

Это итеративный процесс.Протестируйте экспериментальную установку, улучшите ее, повторите описанные выше шаги.

1. Оценка тепловых нагрузок

Важным параметром является количество тепла, которое должно быть поглощено от объекта холодной поверхностью ПЭМ или элемента Пельтье. (Q C [Вт])
В зависимости от области применения необходимо учитывать различные типы тепловой нагрузки:

  • Рассеиваемая мощность
  • Радиация
  • Конвективный
  • Проводящий
  • динамический (dQ / dt)

Эти нагрузки суммированы в тепловой нагрузке Q C , которая передается с холодной стороны на горячую, где расположен радиатор.

2. Определение температуры

Обычно задача состоит в том, чтобы охладить объект до заданной температуры. Если охлаждаемый объект находится в контакте с холодной поверхностью термоэлектрического модуля, температуру объекта можно считать равной температуре холодной стороны элемента Пельтье через определенное время.

При описании термоэлектрического охлаждения важны два конструктивных параметра.

  • T O Температура объекта (температура холодной стороны) [° C]
  • T HS температура радиатора (температура горячей стороны) [° C] = T окр. + ΔT HS
    См. Раздел 5.Радиатор для получения дополнительной информации.

Разница между T O и T HS известна как dT (ΔT или deltaT) [K]:
dT = T HS — T O = T amb + ΔT HS — Т О

3. Выбор элемента Пельтье / ТЕМ-модуля

Элемент Пельтье создает разницу температур между его обеими сторонами из-за протекания тока. Этот раздел основан на справочной информации со следующих страниц:

Одним из важных критериев при выборе элемента Пельтье является коэффициент полезного действия (COP).Определение COP — это тепло, поглощенное на холодной стороне, деленное на входную мощность элемента Пельтье: COP = Q C / P el
Результатом максимального COP является минимальная входная мощность Пельтье, таким образом, минимальная общая тепло отводится радиатором. (Q h = Q C + P el ) Следовательно, мы пытаемся найти рабочий ток, который в сочетании с определенным dT дает оптимальный COP.

Наконец, мы получаем оценку Q max , которая позволяет нам выбрать элемент Пельтье.

Добавляем расчетную маржу на

  • выбор элемента Пельтье с мощностью теплового насоса выше требуемой,
  • , разработав систему с рабочим током значительно ниже I max элемента Пельтье,
  • или в качестве третьего варианта, увеличив размер радиатора или добавив к нему вентилятор, чтобы поддерживать низкую температуру горячей стороны.

При применении этих мер изменение температуры окружающей среды или активной тепловой нагрузки не приводит к тепловому разгоне.

Список дистрибьюторов см. На странице Элементы Пельтье.

4. Выбор контроллера ТЕС

Контроллер ТЕС регулирует ток, подаваемый на элемент Пельтье, в соответствии с желаемой температурой объекта и фактической измеренной температурой объекта.

Мы выбираем рабочий ток для достижения оптимального COP. На основе этого тока мы выбираем контроллер TEC, а не на основе I max .

Одноканальные контроллеры ТЕС:

Двухканальные контроллеры ТЕС в параллельном режиме:

Пожалуйста, обратитесь к странице продукта контроллера TEC для обзора.

5. Радиатор

Радиатор поглощает тепловую нагрузку с горячей стороны элемента Пельтье и отводит ее в окружающий воздух.

При подборе радиатора необходимо добавить некоторый запас, чтобы его температура не стала слишком высокой. На следующей диаграмме показано, что тепло Q h , отклоняемое элементом Пельтье, может быть до 2,6 раз больше Q max . Это происходит из-за внутреннего тепла в элементе Пельтье во время перекачки тепла.Следовательно, общее тепло, которое должно рассеиваться на радиаторе, состоит из тепла объекта и тепла, производимого внутри элемента Пельтье.

На приведенном ниже графике показана взаимосвязь между теплотой, отклоняемой элементом Пельтье, в зависимости от тока для различных dT. Используйте графики, предоставленные производителем элемента Пельтье, чтобы оценить тепло, рассеиваемое радиатором.

Поскольку радиатор должен вписываться в приложение по своей форме и размерам, эффективность контроллера ТЕС также играет решающую роль, поскольку размер радиатора зависит от него.В зависимости от ваших требований решением может быть изготовленный на заказ радиатор или тепловая трубка.

Тепловое сопротивление рассчитывается по формуле: R thHS = ΔT HS / Q h [K / W]
ΔT HS = разница температур между радиатором и температурой окружающего воздуха [K]
Q h = Общая тепловая нагрузка (объект + потеря элемента Пельтье) [Вт]

Чтобы оценить ΔT HS , рассмотрите максимально возможную температуру окружающей среды, чтобы в этом случае ваши расчеты были верны.

Зависимость отклоненного тепла от dT

На следующем графике показано соотношение между Q h и Q C для различных dT. Отношение экспоненциально возрастает с каждым увеличением dT. Это означает, что при большом dT большое количество тепла рассеивается радиатором, а на холодной стороне элемента Пельтье поглощается сравнительно небольшое количество тепла.

Мы также можем использовать этот график для оценки результирующего теплоотвода на основе количества переносимого тепла Q C , даже до выбора элемента Пельтье.

Для расчета теплового сопротивления мы принимаем реальное значение для dT HS . Поскольку нам еще неизвестен реальный Q h , мы оцениваем его по приведенному выше графику.

Найдите отношение Q h / Q C при заданном токе и dT.

Выберите желаемую разницу температур между радиатором и температурой окружающего воздуха ΔT HS .

Теперь мы можем заменить в приведенной выше формуле для R thHS Q h нашим соотношением Q h / Q C .

R thHS = ΔT HS / (отношение * Q C )

Конечно, размеры сохраняются только в том случае, если мы позже задействуем элемент Пельтье в выбранной рабочей точке (т. Е. Выбранном токе).

Выбор теплового сопротивления радиатора может влиять на dT = T amb + ΔT HS — T O .
(ΔT HS = Q h / R thHS )

Дистрибьюторы / Производители

6.Вентилятор

Вентиляторное охлаждение радиатора снижает тепловое сопротивление радиатора окружающему воздуху.

Следовательно, вентилятор увеличивает тепловую производительность. Это уменьшает разницу температур dT или позволяет использовать радиаторы меньшего размера.

Контроллеры TEC позволяют управлять максимум двумя вентиляторами, которые поддерживают следующие функции:

  • Входной сигнал управления ШИМ для управления скоростью вентилятора. TEC генерирует ШИМ-сигнал 1 кГц или 25 кГц от 0 до 100%.
  • Выходной сигнал генератора частоты, который представляет скорость вращения. На выходе должен быть выходной сигнал с открытым коллектором.

Рекомендуется использовать вентилятор с таким же напряжением питания, что и напряжение питания контроллера ТЕС.

Рекомендации для поклонников

Для получения подробной информации о предлагаемых вентиляторах и оптимальных настройках, пожалуйста, обратитесь к главе 6.3 Руководства пользователя TEC Family (PDF).

Подключение вентилятора к контроллеру ТЕС

См. Страницу с примечаниями к контроллеру TEC, чтобы узнать, как подключить вентилятор.

7. Примеры расчетов

Рассчитаем для примера расчетные параметры термоэлектрической системы охлаждения.

Для выбора элемента Пельтье необходимы два тепловых параметра .

  • Максимальная холодопроизводительность Q max
  • Разница температур dT
Оценка тепловых нагрузок и определение температуры

Мы предполагаем, что объект с тепловой нагрузкой Q C = 10 Вт должен быть охлажден до нуля градусов Цельсия.(T O = 0 ° C) Предположим, что температура в помещении составляет 25 ° C, а температура радиатора T S ожидается на уровне 30 ° C. Таким образом, разница температур между холодной и горячей сторонами элемента Пельтье dT составляет 30 К. Важно помнить, что было бы неправильно рассчитывать dT как разницу между температурой окружающего воздуха и заданной температурой объекта.

Выбор модуля Пельтье / ТЕМ

Наша цель — найти Q max , который был бы достаточно большим, чтобы покрыть необходимый Q C и дать лучший COP.

На графике зависимости производительности от тока мы находим максимум кривой dT = 30 K при токе I / I max = 0,45 . Как правило, это соотношение не должно быть выше 0,7.

Используя этот коэффициент для тока, мы находим на графике тепловой насос в зависимости от тока значение Q C / Q max = 0,25 для данной разницы температур dT = 30 K и относительного тока 0,45.

Теперь мы можем рассчитать Q max для элемента Пельтье. Q макс = Q C / 0,25 = 10 Вт / 0,25 = 40 Вт

На графике зависимости производительности от тока мы находим COP = 0,6 для нашего ранее считанного I / I max . Это позволяет нам рассчитать P el = Q C / COP = 10 Вт / 0,6 = 16,7 Вт .

Производители элементов Пельтье предлагают широкий ассортимент элементов. В их линейке продукции мы ищем элемент с Q max 40 Вт.Поскольку у нас есть разница температур dT = 30 K, достаточно одноступенчатого элемента Пельтье.

В качестве примера мы выбираем элемент Пельтье с Q max = 41 Вт, dT max = 68 K, I max = 5 A и V max = 15,4 В.

Рабочий ток и напряжение рассчитываются следующим образом:
I = I макс * (I / I макс ) = 5 A * 0,45 = 2,25 A
В = P el / I = 16,7 Вт / 3.83A = 7,42 В

Выбор контроллера ТЕС

Исходя из рассчитанных значений, мы выбираем TEC-контроллер TEC-1091 с выходным током 4 А и выходным напряжением 21 В. Хорошо добавить некоторый расчетный запас, выбрав контроллер ТЕС с более высоким, чем требуется, выходным током. Позже, когда производительность системы станет общеизвестной, может быть достаточно другого контроллера с меньшей производительностью.

Радиатор

Чтобы найти радиатор для элемента Пельтье, нам необходимо знать необходимое тепловое сопротивление радиатора.На графике отклонения тепла от тока мы находим Q h / Q max = 0,6 для выбранных нами тока и dT. Таким образом, Q h = Q max * 0,6 = 41 Вт * 0,6 = 24,6 Вт.

Расчет теплового сопротивления радиатора:
R thHS = ΔT HS / Q h = 5 K / 24,6 Вт = 0,2 K / Вт
Нам нужен радиатор с меньшим тепловым сопротивлением чем 0,2 К / Вт.

Приведенные выше расчеты являются первой оценкой параметров термоэлектрической системы охлаждения.Для определения оптимальных параметров системы необходимо тестирование реальной системы и повторение этапов проектирования.

8. Датчики температуры

Датчики температуры используются контроллером ТЕС для измерения температуры объектов и температуры радиатора.

Измерение температуры объекта

Чтобы иметь возможность контролировать температуру объекта, необходимо разместить на объекте датчик температуры (датчик). Обратите внимание, что важно разместить датчик как можно ближе к критической точке на объекте, где вам нужна желаемая температура.

Поскольку измерение температуры объекта требует более высокой точности и большего диапазона, мы предлагаем использовать датчики Pt100. Чтобы иметь возможность измерять температуры намного ниже 0 ° C, необходимы зонды Pt100 / 1000. Это связано с тем, что, если температура становится слишком низкой, датчики NTC нельзя использовать, поскольку значение сопротивления становится слишком большим. Значение сопротивления датчика должно быть меньше эталонного сопротивления в контроллере ТЕС.

При использовании датчиков Pt100 / 1000 температура объекта измеряется с использованием метода измерения с четырьмя контактами (4-проводное измерение) для достижения более высокой точности при низких сопротивлениях.Для измерения NTC используется двухпроводная технология.

Термин 4-проводной не означает, что необходим датчик с четырьмя контактами. Используются отдельные пары токоведущих и чувствительных электродов. (Подробнее о четырехконтактном считывании)

Диапазон измерения температуры контроллера ТЕС зависит как от датчика температуры, так и от конфигурации оборудования. Пожалуйста, обратитесь к соответствующему техническому описанию для получения подробной информации.

Подключение датчика температуры

См. Страницу с примечаниями к контроллеру TEC, чтобы узнать, как подключить датчик температуры.

9. Требования к источникам питания

Блок питания является источником питания для контроллера ТЕС.

В зависимости от выбранного контроллера ТЕС необходимо выбрать источник питания. Убедитесь, что источник питания может обеспечить питание, необходимое для управления контроллером ТЕС с элементом Пельтье. (Как правило, вы можете добавить 10% резерва. Умножьте необходимую выходную мощность ТЕС на 1,1). Информацию о соотношении входного и выходного напряжения см. В таблице данных контроллера.

Рекомендации по источникам питания

10. Проверьте свою настройку

Теперь, когда вы выбрали компоненты системы, вы настраиваете приложение и начинаете тестирование и оптимизацию. Чтобы упростить сборку и первоначальную настройку с использованием нашего сервисного программного обеспечения, обратитесь к нашему пошаговому руководству по настройке контроллера TEC.
Комплексное сервисное программное обеспечение можно загрузить и протестировать бесплатно.

11. Узлы термоэлектрического охлаждения

Существуют также универсальные предварительно собранные термоэлектрические охлаждающие устройства, если вы не хотите строить систему с нуля.Эти модули обычно содержат металлическую пластину для крепления объекта, элемент Пельтье, радиатор и вентилятор. Использование таких сборок представляет интерес на этапе прототипирования для первых экспериментов.

.

Генератор костра Пельтье, погасший 14 Вт (вид)

Это оборудование для управления и мониторинга, которое [Джек] построил для своего генератора костра. Он проделал потрясающую работу, чтобы зайти так далеко. Вы можете видеть, что он вытаскивает из системы 1 ампер при 14,2 вольт. Но есть одна проблема, которая его до сих пор беспокоит.

В установке используется большая металлическая пластина в качестве радиатора над костром (который моделируется варочной плитой для тестирования). На обратной стороне этой пластины находится ряд кулеров Пельтье, которые вырабатывают электричество на основе разницы температур от одной стороны к другой — это та же теория, что и свечные генераторы.На холодной стороне установлен радиатор, через который протекает вода. Выше вы видите три реле, которые переключаются между последовательным или параллельным использованием Пельтье в зависимости от их выходного напряжения. Вы действительно не можете добраться туда, но справа есть радиатор и рециркуляционный насос, которые используются для охлаждения воды. Мы упомянули о том, что радиатор не справляется с жарой огня. Чтобы получить результаты, показанные выше, [Джек] пропускает холодную воду из-под крана через радиатор.Но возможно, если бы это использовалось зимой, вода могла бы циркулировать через большой ящик, полный снега. Просто продолжайте закапывать его, чтобы поддерживать электрический потенциал!

После перерыва мы встроили четвертую часть видео проекта, так как она хорошо демонстрирует набор кулеров Пельтье. Вы также увидите пятую часть (тестирование радиатора и рециркуляционного насоса), из которой было взято это изображение.

Часть четвертая — Испытание электроплит

Часть пятая — испытание радиатора и рециркуляционного насоса

.

Термоэлектрический генератор энергии | Британника

Термоэлектрический генератор энергии , любой из класса твердотельных устройств, которые либо преобразуют тепло непосредственно в электричество, либо преобразуют электрическую энергию в тепловую энергию для нагрева или охлаждения. Такие устройства основаны на термоэлектрических эффектах, включающих взаимодействие между потоками тепла и электричества через твердые тела.

Британская викторина

Тест по электронике и гаджетам

Кто производитель iPhone?

Все термоэлектрические генераторы имеют одинаковую базовую конфигурацию, как показано на рисунке.Источник тепла обеспечивает высокую температуру, и тепло течет через термоэлектрический преобразователь к радиатору, который поддерживается на уровне ниже температуры источника. Разность температур на преобразователе создает постоянный ток (DC) к нагрузке ( R L ), имеющей напряжение на клеммах ( В, ) и ток на клеммах ( I ). Промежуточного процесса преобразования энергии нет. По этой причине производство термоэлектрической энергии классифицируется как прямое преобразование энергии.Количество произведенной электроэнергии определяется по формуле I 2 R L или V I .

Детали термоэлектрического генератора. Encyclopædia Britannica, Inc.

Уникальным аспектом термоэлектрического преобразования энергии является то, что направление потока энергии является обратимым. Так, например, если нагрузочный резистор удален и заменен источник питания постоянного тока, термоэлектрическое устройство, показанное на рисунке, можно использовать для отвода тепла от элемента «источника тепла» и снижения его температуры.В этой конфигурации запускается обратный процесс преобразования энергии термоэлектрических устройств, в котором электроэнергия используется для перекачки тепла и создания холода.

Эта обратимость отличает термоэлектрические преобразователи энергии от многих других систем преобразования, таких как термоэлектронные преобразователи энергии. Входная электрическая мощность может быть напрямую преобразована в перекачиваемую тепловую энергию для обогрева или охлаждения, или входная тепловая мощность может быть преобразована непосредственно в электрическую энергию для освещения, эксплуатации электрического оборудования и других работ.Любое термоэлектрическое устройство может применяться в любом режиме работы, хотя конструкция конкретного устройства обычно оптимизируется для его конкретного назначения.

Получите эксклюзивный доступ к контенту из нашего первого издания 1768 с вашей подпиской.
Подпишитесь сегодня

Систематические исследования термоэлектричества начались примерно между 1885 и 1910 годами. К 1910 году немецкий ученый Эдмунд Альтенкирх успешно рассчитал потенциальную эффективность термоэлектрических генераторов и очертил параметры материалов, необходимых для создания практических устройств.К сожалению, металлические проводники были единственным доступным материалом в то время, что делало невозможным создание термоэлектрических генераторов с эффективностью более 0,5 процента. К 1940 году был разработан полупроводниковый генератор с коэффициентом преобразования 4%. После 1950 года, несмотря на активизацию исследований и разработок, повышение эффективности производства термоэлектрической энергии было относительно небольшим: к концу 1980-х годов КПД не превышал 10 процентов. Потребуются более качественные термоэлектрические материалы, чтобы выйти за пределы этого уровня производительности.Тем не менее, некоторые маломощные разновидности термоэлектрических генераторов зарекомендовали себя как имеющие большое практическое значение. Источники, работающие на радиоактивных изотопах, являются наиболее универсальными, надежными и обычно используемыми источниками энергии для изолированных или удаленных объектов, например для записи и передачи данных из космоса.

Основные типы термоэлектрических генераторов

Термоэлектрические генераторы энергии различаются по геометрии в зависимости от типа источника тепла и теплоотвода, требований к мощности и предполагаемого использования.Во время Второй мировой войны некоторые термоэлектрические генераторы использовались для питания портативных передатчиков связи. В период с 1955 по 1965 год в полупроводниковых материалах и электрических контактах были внесены существенные улучшения, которые расширили практический диапазон применения. На практике для многих устройств требуется стабилизатор мощности для преобразования выходного сигнала генератора в пригодное для использования напряжение.

Генераторы были построены для использования природного газа, пропана, бутана, керосина, топлива для реактивных двигателей и древесины, и это лишь некоторые из источников тепла.Коммерческие блоки обычно имеют диапазон выходной мощности от 10 до 100 Вт. Они предназначены для использования в отдаленных районах в таких приложениях, как навигационные средства, системы сбора данных и связи, а также катодная защита, которая предотвращает коррозию металлических трубопроводов и морских сооружений электролизом.

Солнечные термоэлектрические генераторы с некоторым успехом использовались для питания небольших ирригационных насосов в отдаленных и слаборазвитых регионах мира. Была описана экспериментальная система, в которой теплая поверхностная вода океана используется в качестве источника тепла, а более холодная вода глубинного океана — в качестве поглотителя тепла.Солнечные термоэлектрические генераторы были разработаны для снабжения электроэнергией орбитальных космических аппаратов, хотя они не смогли конкурировать с кремниевыми солнечными элементами, которые имеют более высокий КПД и меньший удельный вес. Однако были рассмотрены системы с тепловым насосом и генерацией энергии для теплового контроля орбитальных космических аппаратов. Используя солнечное тепло со стороны космического корабля, ориентированной на Солнце, термоэлектрические устройства могут генерировать электроэнергию для использования другими термоэлектрическими устройствами в темных областях космического корабля и для рассеивания тепла от корабля.

Генераторы на ядерном топливе

Продукты распада радиоактивных изотопов могут быть использованы в качестве источника высокотемпературного тепла для термоэлектрических генераторов. Поскольку материалы термоэлектрических устройств относительно невосприимчивы к ядерному излучению и поскольку источник может работать в течение длительного периода времени, такие генераторы являются полезным источником энергии для многих необслуживаемых и удаленных приложений. Например, радиоизотопные термоэлектрические генераторы обеспечивают электроэнергией изолированные станции мониторинга погоды, для сбора глубоководных данных, для различных систем предупреждения и связи, а также для космических аппаратов.Кроме того, еще в 1970 году был разработан маломощный радиоизотопный термоэлектрический генератор, который использовался для питания кардиостимуляторов. Диапазон мощности радиоизотопных термоэлектрических генераторов обычно составляет от 10 –6 до 100 Вт.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *