Конденсаторы параллельно: Схемы соединения конденсаторов — расчет емкости

Содержание

Параллельное соединение конденсаторов: необходимость и схема

Параллельное соединение конденсаторов – это батарея, где конденсаторы находятся под одинаковым напряжением, а суммарный ток равен полной алгебраической сумме токов указанных элементов.

Основные тезисы

При параллельном включении конденсаторов их ёмкости складываются, позволяя быстро вычислить результат. Рабочее напряжение конденсаторов одинаковое, а заряды складываются воедино. Это следует из формулы, выведенной Вольтой в XVIII веке:

C = q/U, тогда C1 + C2 + … = q1 + q2 + …/U.

Параллельное включение конденсаторов превращается в единственный конденсатор большой ёмкости.

Зачем включать конденсаторы параллельно

  • В радиоприёмниках подстройка под частоту волны выполняется коммутацией блоков конденсаторов, обеспечивая ввод резонансного контура в резонанс.
  • В фильтрах мощных блоков питания за рабочий цикл предстоит запасать массу энергии. Строить его на индуктивностях экономически нецелесообразно. Применяют параллельный набор из больших электролитических конденсаторов.
  • Параллельное включение конденсаторов встречается в измерительных схемах. Эталоны ответвляют на себя часть тока, по величине оценивается номинал – размер ёмкости исследуемого конденсатора.
  • Параллельно периодически устанавливаются компенсаторы реактивной мощности. Это устройства, блокирующие выход лишней энергии в питающую сеть. Что предотвращает образование помех, перегрузку генераторов, трансформаторов и избыточный нагрев проводки.

Реактивная мощность сети

Когда работает асинхронный двигатель, происходит расхождение тока и напряжения по фазе. Это отмечается по причине наличия обмотки, показывающей индуктивное сопротивление. Как результат, часть мощности отражается обратно в цепь. Эффект возможно устранить, если индуктивное сопротивление компенсировать ёмкостным. Иной способ – использование синхронных двигателей, эффективен при напряжениях 6 – 10 кВ.

По возможности предприятия должно потреблять всю произведённую собственную реактивную мощность. Но синхронные двигатели не всегда подходят условиям технологических процессов. Тогда ставят конденсаторные установки. Их реактивное сопротивление предвидится равным индуктивностям двигателей. Конечно, в идеале, ведь на производстве условия постоянно меняются и сложно отыскать золотую середину.

Если использовать параллельное соединение конденсаторов и коммутировать при помощи реле должным образом, задача просто решается. Отдельные предприятия за отражённую реактивную мощность тоже платят. При неиспользовании предвидятся экономические потери. Поставщиков энергии можно понять: реактивная мощность забивает линию ЛЭП, нагружает трансформаторы и тогда оборудование не способно выдавать полную нагрузку. Если каждое предприятие станет загружать канал лишним током, экономическое положение энергетиков немедленно пошатнётся.

Реле реактивной мощности массово распространены и помогут определить, какую часть конденсаторов включить в работу. Пример графика расчёта затрат приведён на рисунке. Имеется оптимальная точка, перешагивать которую экономически нецелесообразно. Но допускается сделать из-за иных мотивов.

Схема соединения компенсирующих установок

В трёхфазных сетях компенсирующие конденсаторы ставят тройками по двум общеизвестным схемам:

  1. Звезда.
  2. Треугольник.

Реактивная мощность в этих случаях вычисляется по формулам, представленным на рисунке. Через греческую омегу обозначена круговая частота сети (2 х Пи х 50 Гц). Из соотношений получается, что схема включения конденсаторов треугольником выгоднее: мощность выросла в 3 раза. Объяснение – звезда использует фазное напряжение, в 1,73 раза меньше линейного. Компенсируемая реактивная мощность зависит от квадрата этого параметра.

Из этих соображений трёхфазные конденсаторы всегда изготавливаются треугольником, а под звезду нужно выпросить индивидуальный заказ (три однофазных конденсатора). Есть оборотная сторона медали: на вольтаж 1,05; 3,15; 6,3; 10,5 кВ все конденсаторы однофазные. Допустимо соединять, как заблагорассудится. У звезды, к примеру, меньше рабочее напряжение, значит, каждый конденсатор в отдельности выйдет дешевле. Обе схемы нельзя отнести к параллельным включениям, подобные тройки, впрочем, объединяются в:

  • группы;
  • секции;
  • установки.

И внутри объединений однофазные конденсаторы могут включаться последовательно и параллельно, а трёхфазные – исключительно параллельно. Рекомендуется номиналы всех отдельных элементов выбирать одинаковы. Это упрощает расчёт, уравнивает нагрузку по частям электрической схемы. Известны установки, где присутствует смешанное соединение по каждой фазе. Образуются параллельные ветви последовательного включения конденсаторов.

Установки выполняют однофазными или трёхфазными. В сетях с напряжением 380 В всегда применяется параллельное соединение конденсаторов. Исключением признаётся случай использования оборудования с одной фазой на 220 В (фазное) и 380 В (линейное). Тогда под прибор ставится индивидуальная установка (или группа), компенсирующая реактивную мощность. В осветительных сетях конденсаторы по большей части ставят уже после выключателя по очевидным причинам. В прочих случаях – в зависимости от особенностей функционирования объекта.

Для напряжений 3, 6 и 10 кВ однофазные конденсаторы включаются обычной или двойной звездой (см. рис.). Один вывод бывает заземлен (глухозаземленная нейтраль). По этой причине допускается использование однофазных конденсаторов, включая с единственным изолированным выводом. В последнем случае нужно убедиться, что нулевой проводник выходит на корпус изделия.

Главный выключатель ставится в определённой секции защищаемого оборудования (территориально) и управляет цепью компенсации в общем, задействует или убирает дополнительное реактивное сопротивление. Если в конкретном секторе технологическое оборудование простаивает, главный выключатель разорвёт цепь компенсации. Конденсаторные установки обычно стоят в выделенном помещении вместе, электрически соединены параллельно. Перед каждой стоит выключатель цепи релейной регуляции для повышения или уменьшения общей ёмкости компенсаторов.

В зависимости от оборудования, используемого предприятием, объем реактивной мощности обусловливает помощь конденсаторных установок, гибко подстраиваемых под имеющиеся нужды. В итоге:

  1. Секции оборудования включены параллельно. Это легко понять, если представить бытовые приборы, питаемые одним удлинителем. Все включены параллельно. Но установлены, к примеру, в разных цехах, секторах и пр. Встречаются случаи, когда одна крупная энергетическая установка (допустим, генератор ГЭС) делится на сравнительно независимые секции.
  2. Конденсаторные установки включены параллельно, но, как правило, в одном месте, чтобы удавалось автоматически или вручную легко регулировать общую ёмкость посредством коммутации выключателей облегчённого типа. Один конденсатор может работать для компенсации реактивной мощности любой из секций либо сразу обеих.

Особенности конденсаторной защиты

Главные выключатели, как правило, используются при авариях и вырубают сразу целую секцию оборудования. Конденсаторные установки набираются в секции параллельным включением. Тогда главный выключатель сразу вырубит подобную «батарею». А прочие секции конденсаторных установок останутся в действии. Важно понять, что защитное оборудование, как и защищаемое, удаётся группировать разными методами. В зависимости от удобства и экономической обоснованности.

Облегчённые выключатели применяются, как правило, в цепях регуляции. Управляются через реле и повышают или понижают общую ёмкость конденсаторных установок. В качестве главного выключателя выбирается вакуумный или элегазовый.

Особенностью цепей выше 10 кВ считается использование однофазных конденсаторов, собираемых по схеме звезды или треугольника, в каждой ветви которых стоит параллельно-последовательная группа ёмкостей (см. рис.). При наличии изделий с высоким рабочим напряжением допустимо делать наоборот, применять последовательно-параллельно включение. Тогда рабочие напряжения конденсаторов выбираются так, чтобы количество групп, включенных друг за другом оказалось минимальным. Напряжение на каждом из элементов, естественно, увеличивается. Для справки: последовательное соединение конденсаторов.

Если сделать все по описанному распорядку, при выходе из строя любого элемента цепи компенсации реактивной мощности прочие продолжат работать в относительно щадящем режиме. Разумеется, параметры цепи нужно контролировать, а эксплуатирующий персонал, согласно методикам, ведёт проверку конденсаторных установок на исправность. При проектировании нужно учесть небольшую особенность:

Чем больше в цепи компенсации последовательных групп конденсаторов, тем сложнее для каждой обеспечить равномерное распределение напряжения. В частности, возможны частые перегрузки определённого сегмента.

Вдобавок сложные электрические соединения непросто проверять обслуживающему персоналу. Витиеватая схема плохо поддаётся монтажу, часты ошибки. Идеальным считается параллельное соединение конденсаторных блоков по каждой фазе. Тогда и монтировать легко, и методика проверки упрощается максимально.

Разряд конденсаторов

Включенные параллельно конденсаторы обладают большой ёмкостью, при прекращении работы на них остаётся заряд. Это возможно прочувствовать, если коснуться штекера только что выключенной старенькой дрели. В новых моделях фильтр устроен так, что цепь разряжается через резистор, и подобного не наблюдается.

Для снижения напряжения допустимо использовать и индуктивности, включенные параллельно конденсаторам. В этом случае сопротивление заземления переменному току весьма велико, а для постоянного – несложно преодолеть этот участок. В период работы оборудования ток здесь мал, потери невелики. После останова технологической линии заряд понемногу сливается через высокоомный резистор или индуктивность. Разумеется, не запрещено поставить в цепи заземления реле, замыкающее контакты только после выключения всех устройств. Конструкция дороже и требует автоматизации.

Процесс разряда цепи важен с точки зрения обеспечения безопасности. Представим: конденсатор, заряжённый от розетки, долго хранит разность потенциалов и представляет опасность для окружающих. В однофазных сетях с напряжением 220 В разряд выполняется через входные фильтры при условии, что корпус правильно заземлён. Сопротивление в цепи, включенной параллельно конденсаторам, определяется по формуле, представленной ниже.

Под Q подразумевается реактивная мощность установки в варах (ВАР), а Uф – фазное напряжение. Легко показать, что формула дана из расчёта времени разряда: Q зависит линейно от ёмкости, будучи перенесена в левую часть формулы, даст постоянную времени RC. За три таких периода батарея разряжается на 97%. Исходя из указанных условий можно найти и параметры индуктивности. А лучше – последовательно с нею включить резистор, как часто и делается в реальных схемах.

Параллельное соединение конденсаторов напряжение. Соединение конденсаторов Как правильно соединять конденсаторы

В электрических цепях применяются различные способы соединения конденсаторов
. Соединение конденсаторов
может производиться: последовательно
, параллельно
и последовательно-параллельно
(последнее иногда называют смешанное соединение конденсаторов). Существующие виды соединения конденсаторов показаны на рисунке 1.

Рисунок 1. Способы соединения конденсаторов.

Параллельное соединение конденсаторов.

Если группа конденсаторов включена в цепь таким обра­зом, что к точкам включения непосредственно присоединены пластины всех конденсаторов, то такое соединение называется параллельным соединением конденсаторов
(рисунок 2.).

Рисунок 2. Параллельное соединение конденсаторов.

При заряде группы конденсаторов, соединенных параллель­но, между пластинами всех конденсаторов будет одна и та же разность потенциалов, так как все они заряжаются от одного и того же источника тока. Общее же количе­ство электричества на всех конденсаторах будет равно сумме количеств электричества, помещающихся на каждом из кон­денсаторов, так как заряд каждого их конденсаторов проис­ходит независимо от заряда других конденсаторов данной группы. Исходя из этого, всю систему параллельно соединен­ных конденсаторов можно рассматривать как один эквива­лентный (равноценный) конденсатор. Тогда общая емкость конденсаторов при параллельном соединении равна сумме емкостей всех соединенных конденсаторов.

Обозначим суммарную емкость соединенных в батарею конденсаторов бук­вой Собщ, емкость первого конденсатора С1 емкость второго С2 и емкость третьего С3. Тогда для параллельного соединения конденсаторов будет справедлива следующая формула:

Последний знак + и многоточие указывают на то, что этой формулой можно пользоваться при четырех, пяти и во­обще при любом числе конденсаторов.

Последовательное соединение конденсаторов.

Если же соединение конденсаторов в батарею производится в виде цепочки и к точкам включения в цепь непосредственно присоединены пластины только первого и последнего конденсаторов, то такое соединение конденсаторов
называется последо­вательным
(рисунок 3).

Рисунок 2. Последовательное соединение конденсаторов.

При последовательном соединении все конденса­торы заряжаются одинаковым количеством электричества, так как непосредственно от источника тока заряжаются только крайние пластины (1 и 6), а остальные пластины (2, 3, 4 и 5) заря­жаются через влияние. При этом заряд пла­стины 2 будет равен по величине и противо­положен по знаку за­ряду пластины 1, заряд пластины 3 будет равен по величине и противоположен по знаку заряду пла­стины 2 и т. д.

Напряжения на различных конденсаторах будут, вообще говоря, различными, так как для заряда одним и тем же количеством электричества конденсаторов различной емкости всегда требуются различные напряжения. Чем меньше емкость конденсатора, тем большее напряжение необходимо для того, чтобы зарядить этот конденсатор требуемым количеством электричества, и наоборот.

Таким образом, при заряде группы конденсаторов, соединенных последовательно, на конденсаторах малой емкости напряжения будут больше, а на конденсаторах большой емкости — меньше.

Аналогично предыдущему случаю можно рассматривать всю группу конденсаторов, соединенных последовательно, как один эквивалентный конденсатор, между пластинами которого существует напряжение, равное сумме напряжений на всех конденсаторах группы, а заряд которого равен заряду любого из конденсаторов группы.

Возьмем самый маленький конденсатор в группе. На нем должно быть самое большое напряжение. Но напряжение на этом конденсаторе составляет только часть общего напряже­ния, существующего на всей группе конденсаторов. Напря­жение на всей группе больше напряжения на конденсаторе, имеющем самую малую емкость. А отсюда непосредственно следует, что общая емкость группы конденсаторов, соединен­ных последовательно, меньше емкости самого малого конден­сатора в группе.

Для вычисления общей емкости при последовательном со­единении конденсаторов удобнее всего пользоваться следую­щей формулой:

Для частного случая двух последовательно соединенных конденсаторов формула для вычисления их общей емкости будет иметь вид:

Последовательно-параллельное (смешанное) соединение конденсаторов

Последовательно-параллельным соединением конденсаторов
называется цепь имеющая в своем составе участки, как с параллельным, так и с последовательным соединением конденсаторов.

На рисунке 4 приведен пример участка цепи со смешанным соединением конденсаторов.

Рисунок 4. Последовательно-параллельное соединение конденсаторов.

При расчете общей емкости такого участка цепи с последовательно-параллельным соединением конденсаторов этот участок разбивают на простейшие участки, состоящие только из групп с последовательным или параллельным соединением конденсаторов. Дальше алгоритм расчета имеет вид:

1. Определяют эквивалентную емкость участков с последовательным соединением конденсаторов.

2. Если эти участки содержат последовательно соединенные конденсаторы, то сначала вычисляют их емкость.

3. После расчета эквивалентных емкостей конденсаторов перерисовывают схему. Обычно получается цепь из последовательно соединенных эквивалентных конденсаторов.

4. Рассчитывают емкость полученной схемы.

Один из примеров расчета емкости при смешанном соединении конденсаторов приведен на рисунке 5.

Рисунок 5. Пример расчета последовательно-параллельного соединения конденсаторов.

У начинающих электронщиков при сборке любого самодельного устройства могут возникнуть проблемы с соединением конденсатора. Ведь даже у заядлого любителя электроники может не оказаться под рукой конденсатора с нужным номиналом, особенно когда нужно срочно отремонтировать бытовой прибор. Из сложившейся проблемы легко выйти, соединив последовательно или параллельно несколько конденсаторов.

Приготовьте:

  • конденсаторы;
  • вольтметр;
  • провода;
  • кусачки.

Если последовательно соединяются два конденсатора с равными емкостями, то в результате получится общая емкость с меньшим значением в 2 раза, а напряжение — увеличится. В реальных случаях схемы с последовательным соединением встречается редко, в основном в высоковольтных источниках питания.
Для низковольтных источников питания применяется параллельное соединение, так как при этом сглаживается пульсация. Общая емкость соединенных параллельно конденсаторов будет складываться, а напряжение — равно значению напряжения того конденсатора, который имеет меньший параметр. Например, имеется три конденсатора по 30 микрофарад с напряженностью 100 В и соединяются параллельно. Значение всего набора будет вычисляться: 90 мкф * 100.

Существует комбинированный способ соединения — последовательно-параллельное, который встречается крайне редко. Для расчета общей емкости цепь разделяют на несколько участков и вычисляют каждую отдельно.

Параллельное соединение конденсаторов | Практическая электроника

Достаточно часто в электронных схемах применяют параллельное соединение конденсаторов в основном для получения большей общей емкости.
При параллельном соединении емкости складываются и результирующая емкость будет равна сумме емкостей объединенных конденсаторов.
Важно помнить, что максимальное напряжение которое выдержит эта сборка конденсаторов будет равно значению напряжения у самого низковольтного конденсатора.

Из того что было

Чаще всего параллелят конденсаторы на одинаковое напряжение, но от недостатка нужных компонентов под рукой можно изготовить и «икебану» подобрав разнородные конденсаторы на разные напряжения, емкость и род тока.
Главное помнить, что полярные конденсаторы можно использовать только на постоянном токе, причем нужно обязательно соблюдать полярность: чтобы на положительной обкладке конденсатора всегда был «+», а на отрицательной «-» . А вот неполярные конденсаторы можно применять как в цепях с переменным током, так и в цепях с постоянным.

Параллельно соединяем конденсаторы для борьбы с помехами

Чаще всего конденсатор используется для сглаживания и фильтрации напряжения в электронных схемах. Помехи с которыми должен бороться конденсатор могут иметь разные частоты.
Конденсаторы с маленькими значениями емкости (это обычно керамические и пленочные конденсаторы) лучше подавляют высокочастотные помехи, а конденсаторы с большими значениям емкости (танталовые, электролитические) низкочастотные помехи.
Казалось, бы ставь максимальную емкость и она отфильтрует коротенькие импульсы и достаточно длинные. Вот только в силу конструктивных особенностей конденсаторы с большими значениями емкости, имеют длинные выводы, длинные обкладки конденсаторов, все это создает распределенные индуктивности, которые в свою очередь мешают конденсатору фильтровать высокочастотные помехи.
Таким образом если нужно сгладить и отфильтровать сигнал, то нужно для сглаживания применять конденсатор с большим значением емкости, а для фильтрации помех — в параллель первому ставить второй высокочастотный.

Параллельное соединение конденсаторов формула — Всё о электрике

Способы подключения конденсаторов в электрическую цепь

Схемы в электротехнике состоят из электрических элементов, в которых способы соединения конденсаторов могут быть разными. Надо понимать, как правильно подключить конденсатор. Отдельные участки цепи с подключенными конденсаторами можно заменить одним эквивалентным элементом. Он заменит ряд конденсаторов, но должно выполняться обязательное условие: когда напряжение, подводимое к обкладкам эквивалентного конденсатора, равняется напряжению на входе и выходе группы заменяющихся конденсаторов, тогда заряд емкости будет такой же, как и на группе емкостей. Для понимания вопроса, как подключить конденсатор в любой схеме, рассмотрим виды его включения.

Параллельное включение конденсаторов в цепь

Параллельное соединение конденсаторов — это когда все пластины подключаются к точкам включения цепи, образовывая батарею емкостей.

Параллельное соединение конденсаторов:

Разность потенциалов на пластинах накопителей емкости будет одинаковая, так как они все заряжаются от одного источника тока. В этом случае каждый заряжающийся конденсатор имеет собственный заряд при одинаковой величине, подводимой к ним энергии.

Параллельные конденсаторы, общий параметр количества заряда полученной батареи накопителей, рассчитывается, как сумма всех зарядов, помещающихся на каждой емкости, потому что каждый заряд емкости не зависит от заряда другой емкости, входящей в группу конденсаторов, параллельно включенных в схему.

При параллельном соединении конденсаторов емкость равняется:

Из представленной формулы можно сделать вывод, что всю группу накопителей можно рассматривать как один равноценный им конденсатор.

Конденсаторы, соединенные параллельно, имеют напряжение:

Последовательное включение конденсаторов в цепь

Когда в схеме выполнено последовательное соединение конденсаторов, оно выглядит как цепочка емкостных накопителей, где пластина первого и последнего накопителя емкости (конденсатора) подключены к источнику тока.

Последовательное соединение конденсатора:

При последовательном соединении конденсаторов все устройства этого участка берут одинаковое количество электроэнергии, потому что в процессе участвует первая и последняя пластинка накопителей, а пластины 2, 3 и другие до N проходят зарядку посредством влияния. По этой причине заряд пластины 2 накопителя емкости равняется по значению заряду 1 пластины, но имеет обратный знак. Заряд пластины накопителя 3 равняется значению заряда пластины 2, но так же с обратным знаком, все последующие накопители имеет аналогичную систему заряда.

Формула нахождения заряда на конденсаторе, схема подключения конденсатора:

Когда выполняется последовательное соединение конденсаторов, напряжение на каждом накопители емкости будет различное, так как в зарядке одинаковым количеством электрической энергии участвуют разные емкости. Зависимость емкости от напряжения такова: чем она меньше, тем большее напряжение необходимо подать на пластины накопителя для его зарядки. И обратная величина: чем выше емкость накопителя, тем меньше требуется напряжения для его зарядки. Можно сделать вывод, что емкость последовательно соединенных накопителей имеет значение для величины напряжения на пластинах — чем она меньше, тем больше напряжения требуется, а также накопители большой емкости требуют меньшего напряжения.

Основное отличие схемы последовательного соединения накопителей емкости в том, что электроэнергия протекает только в одном направлении, а это означает, что в каждом накопителе емкости составленной батареи ток будет одинаковым. В этом виде соединений конденсаторов обеспечивается равномерное накопление энергии независимо от емкости накопителей.

Группу накопителей емкости можно также на схеме рассматривать как эквивалентный накопитель, на пластины которого подается напряжение, определяемое формулой:

Заряд общего (эквивалентного) накопителя группы емкостных накопителей последовательного соединения равен:

Общему значению емкости последовательно соединенных конденсаторов соответствует выражение:

Смешанное включение емкостных накопителей в схему

Параллельное и последовательное соединение конденсаторов на одном из участков цепи схемы называется специалистами смешанным соединением.

Участок цепи подсоединенных смешанным включением накопителей емкости:

Смешанное соединение конденсаторов в схеме рассчитывается в определенном порядке, который можно представить следующим образом:

  • разбивается схема на простые для вычисления участки, это последовательное и параллельное соединение конденсаторов;
  • вычисляем эквивалентную емкость для группы конденсаторов, последовательно включенных на участке параллельного соединения;
  • проводим нахождение эквивалентной емкости на параллельном участке;
  • когда эквивалентные емкости накопителей определены, схему рекомендуется перерисовать;
  • рассчитывается емкость получившейся после последовательного включения эквивалентных накопителей электрической энергии.

Накопители емкостей (двухполюсники) включены разными способами в цепь, это дает несколько преимуществ в решении электротехнических задач по сравнению с традиционными способами включения конденсаторов:

  1. Использование для подключения электрических двигателей и другого оборудования в цехах, в радиотехнических устройствах.
  2. Упрощение вычисления величин электросхемы. Монтаж выполняется отдельными участками.
  3. Технические свойства всех элементов не меняются, когда изменяется сила тока и магнитное поле, это применяется для включения разных накопителей. Характеризуется постоянной величиной емкости и напряжения, а заряд пропорционален потенциалу.

Вывод

Разного вида включения конденсаторов в цепь применяются для решения электротехнических задач, в частности, для получения полярных накопителей из нескольких неполярных двухполюсников. В этом случае решением будет соединение группы однополюсных накопителей емкости по встречно-параллельному способу (треугольником). В этой схеме минус соединяется с минусом, а плюс — с плюсом. Происходит увеличение емкости накопителя, и меняется работа двухполюсника.

Не отображаются имеющиеся вхождения: последовательное параллельное и смешанное соединение конденсаторов, последовательное и параллельное соединение конденсаторов, при параллельном соединении конденсаторов емкость.

Соединение конденсаторов

В электрических цепях применяются различные способы соединения конденсаторов. Соединение конденсаторов может производиться: последовательно, параллельно и последовательно-параллельно (последнее иногда называют смешанное соединение конденсаторов). Существующие виды соединения конденсаторов показаны на рисунке 1.

Рисунок 1. Способы соединения конденсаторов.

Параллельное соединение конденсаторов.

Если группа конденсаторов включена в цепь таким обра­зом, что к точкам включения непосредственно присоединены пластины всех конденсаторов, то такое соединение называется параллельным соединением конденсаторов (рисунок 2.).

Рисунок 2. Параллельное соединение конденсаторов.

При заряде группы конденсаторов, соединенных параллель­но, между пластинами всех конденсаторов будет одна и та же разность потенциалов, так как все они заряжаются от одного и того же источника тока. Общее же количе­ство электричества на всех конденсаторах будет равно сумме количеств электричества, помещающихся на каждом из кон­денсаторов, так как заряд каждого их конденсаторов проис­ходит независимо от заряда других конденсаторов данной группы. Исходя из этого, всю систему параллельно соединен­ных конденсаторов можно рассматривать как один эквива­лентный (равноценный) конденсатор. Тогда общая емкость конденсаторов при параллельном соединении равна сумме емкостей всех соединенных конденсаторов.

Обозначим суммарную емкость соединенных в батарею конденсаторов бук­вой Собщ, емкость первого конденсатора С1 емкость второго С2 и емкость третьего С3. Тогда для параллельного соединения конденсаторов будет справедлива следующая формула:

Последний знак + и многоточие указывают на то, что этой формулой можно пользоваться при четырех, пяти и во­обще при любом числе конденсаторов.

Последовательное соединение конденсаторов.

Если же соединение конденсаторов в батарею производится в виде цепочки и к точкам включения в цепь непосредственно присоединены пластины только первого и последнего конденсаторов, то такое соединение конденсаторов называется последо­вательным (рисунок 3).

Рисунок 2. Последовательное соединение конденсаторов.

При последовательном соединении все конденса­торы заряжаются одинаковым количеством электричества, так как непосредственно от источника тока заряжаются только крайние пластины (1 и 6), а остальные пластины (2, 3, 4 и 5) заря­жаются через влияние. При этом заряд пла­стины 2 будет равен по величине и противо­положен по знаку за­ряду пластины 1, заряд пластины 3 будет равен по величине и противоположен по знаку заряду пла­стины 2 и т. д.

Напряжения на различных конденсаторах будут, вообще говоря, различными, так как для заряда одним и тем же количеством электричества конденсаторов различной емкости всегда требуются различные напряжения. Чем меньше емкость конденсатора, тем большее напряжение необходимо для того, чтобы зарядить этот конденсатор требуемым количеством электричества, и наоборот.

Таким образом, при заряде группы конденсаторов, соединенных последовательно, на конденсаторах малой емкости напряжения будут больше, а на конденсаторах большой емкости — меньше.

Аналогично предыдущему случаю можно рассматривать всю группу конденсаторов, соединенных последовательно, как один эквивалентный конденсатор, между пластинами которого существует напряжение, равное сумме напряжений на всех конденсаторах группы, а заряд которого равен заряду любого из конденсаторов группы.

Возьмем самый маленький конденсатор в группе. На нем должно быть самое большое напряжение. Но напряжение на этом конденсаторе составляет только часть общего напряже­ния, существующего на всей группе конденсаторов. Напря­жение на всей группе больше напряжения на конденсаторе, имеющем самую малую емкость. А отсюда непосредственно следует, что общая емкость группы конденсаторов, соединен­ных последовательно, меньше емкости самого малого конден­сатора в группе.

Для вычисления общей емкости при последовательном со­единении конденсаторов удобнее всего пользоваться следую­щей формулой:

Для частного случая двух последовательно соединенных конденсаторов формула для вычисления их общей емкости будет иметь вид:

Последовательно-параллельное (смешанное) соединение конденсаторов

Последовательно-параллельным соединением конденсаторов называется цепь имеющая в своем составе участки, как с параллельным, так и с последовательным соединением конденсаторов.

На рисунке 4 приведен пример участка цепи со смешанным соединением конденсаторов.

Рисунок 4. Последовательно-параллельное соединение конденсаторов.

При расчете общей емкости такого участка цепи с последовательно-параллельным соединением конденсаторов этот участок разбивают на простейшие участки, состоящие только из групп с последовательным или параллельным соединением конденсаторов. Дальше алгоритм расчета имеет вид:

1. Определяют эквивалентную емкость участков с последовательным соединением конденсаторов.

2. Если эти участки содержат последовательно соединенные конденсаторы, то сначала вычисляют их емкость.

3. После расчета эквивалентных емкостей конденсаторов перерисовывают схему. Обычно получается цепь из последовательно соединенных эквивалентных конденсаторов.

4. Рассчитывают емкость полученной схемы.

Один из примеров расчета емкости при смешанном соединении конденсаторов приведен на рисунке 5.

Рисунок 5. Пример расчета последовательно-параллельного соединения конденсаторов.

Подробнее о расчетах соединения конденсаторов можно узнать в мультимедийном учебнике по основам электротехники и электроники:

ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!

Соединение конденсаторов Параллельное соединение конденсаторов

При параллельном соединении конденсаторов к каждому кон­денсатору приложено одинаковое напряжениеU, а величина за­ряда на обкладках каждого конденсатора Q пропорциональна его емкости (рис. 2).

Общий заряд Q всех конденсаторов

Общая емкость С, или емкость батареи, параллельно включенных конденсаторов равна сумме емкостей этих конденсаторов.

Параллельное подключение конденсатора к группе других включенных конденсаторов увеличивает общую емкость батареи этих конденсаторов. Следовательно, параллельное соединение конденсаторов при­меняется для увеличения емкости.

4)Если параллельно включены т одинаковых конденсаторов ем­костью С´ каждый, то общая (эквивалентная) емкость батареи этих конденсаторов может быть определена выражением

Последовательное соединение конденсаторов

На обкладках последовательно соединенных конденсаторов, подключенных к источнику постоянного тока с напряжением U, появятся заряды одинаковые по величине с противоположными знаками.

Напряжение на конденсаторах распределяется обратно пропорционально емкостям конденса­торов:

Обратная величина общей емкости последовательно соединенных конденсаторов равна сумме обратных величин емкостей этих кон­денсаторов.

При последовательном включении двух конденсаторов их об­щая емкость определяется следующим выражением:

Если в цепь включены последовательно п одинаковых конден­саторов емкостью С каждый, то общая емкость этих конденса­торов:

Из (14) видно, что, чем больше конденсаторов п соединено последовательно, тем меньше будет их общая емкость С, т. е. по­следовательное включение конденсаторов приводит к уменьше­нию общей емкости батареи конденсаторов.

На практике может оказаться , что допустимое ра­бочее напряжение Up конденсатора меньше напряжения, на кото­рое необходимо подключить конденсатор. Если этот конденсатор подключить на такое напряжение, то он выйдет из строя, так как будет пробит диэлектрик. Если же последовательно включить не­сколько конденсаторов, то напряжение распределится между ними и на каждом конденсаторе напряжение окажется мень­ше его допустимого рабочего Up. Следовательно, последовательное соединение конденсаторов применяют для того, чтобы напряжение на каждом конденсаторе не превышало его рабочего напряжения Up.

Смешанное соединение конденсаторов

Смешанное соединение (последовательно-параллельное) кон­денсаторов применяют тогда, когда необходимо увеличить ем­кость и рабочее напряжение батареи конденсаторов.

Рассмотрим смешанное соединение конденсаторов на ниже­приведенных примерах.

где Q — заряд конденсатора или конденсаторов, к которым при­ложено напряжение U; С — электрическая емкость конденсатора или батареи соединенных конденсаторов, к которой приложено напряжение U.

Таким образом, конденсаторы служат для накопления и сохра­нения электрического поля и его энергии.

15.Дайте определение понятиям трех лучевая звезда и треугольник сопротивлений. Запишите формулы для преобразования трех лучевой звезды сопротивлений в треугольник сопротивлений и наоборот. Преобразуйте схему к двум узлам (Рисунок 5)

Рисунок 5- Схема электрическая

Для облегчения расчета составляется схема замещения электрической цепи, т. е. схема, отображающая свойства цепи при определенных условиях.

На схеме замещения изображают все элементы, влиянием которых на результат расчета нельзя пренебречь, и указывают также электрические соединения между ними, которые имеются в цепи.

1.Схемы замещения элементов электрических цепей

На расчетных схемах источник энергии можно представить ЭДС без внутреннего сопротивления, если это сопротивление мало по сравнению с сопротивлением приемника (рис. 3.13,6).

Приr= 0 внутреннее падение напряженияUо = 0, поэтому

напряжение на зажимах источника при любом токе равно

В некоторых случаях источник электрической энергии на расчетной схеме заменяют другой (эквивалентной) схемой (рис. 3.14, а), где вместо ЭДСЕ источник характеризуется его током короткого замыканияIK, а вместо внутреннего со­противления в расчет вводится внутренняя проводимостьg=1/r.

Возможность такой замены можно доказать, разделив равенство (3.1) на r:

где U/r = Io—некоторый ток, равный отношению напряжения на зажимах источника к внутреннему сопротивлению;E/r = IK — ток короткого замыкания источника;

Вводя новые обозначения, получим равенство IK= Io + I, которому удовлетворяет эквивалентная схема рис. 3.14,а.

В этом случае при любой величине напряжения на зажимах; источника его ток остается равным току короткого замыкания (рис. 3.14,6):

Источник с неизменным током, не зависящим от внешнего сопротивления, называют источником тока.

Один и тот же источник электрической энергии может быть заменен в расчетной схеме источником ЭДС или источником тока.

{SOURCE}

Параллельное и последовательное соединение конденсаторов

Соединение конденсаторов

Как правильно соединять конденсаторы?

У многих начинающих любителей электроники в процессе сборки самодельного устройства возникает вопрос: “Как правильно соединять конденсаторы?”

Казалось бы, зачем это надо, ведь если на принципиальной схеме указано, что в данном месте схемы должен быть установлен конденсатор на 47 микрофарад, значит, берём и ставим. Но, согласитесь, что в мастерской даже заядлого электронщика может не оказаться конденсатора с необходимым номиналом!

Похожая ситуация может возникнуть и при ремонте какого-либо прибора. Например, необходим электролитический конденсатор ёмкостью 1000 микрофарад, а под рукой лишь два-три на 470 микрофарад. Ставить 470 микрофарад, вместо положенных 1000? Нет, это допустимо не всегда. Так как же быть? Ехать на радиорынок за несколько десятков километров и покупать недостающую деталь?

Как выйти из сложившейся ситуации? Можно соединить несколько конденсаторов и в результате получить необходимую нам ёмкость. В электронике существует два способа соединения конденсаторов: параллельное и последовательное.

В реальности это выглядит так:


Параллельное соединение


Принципиальная схема параллельного соединения


Последовательное соединение


Принципиальная схема последовательного соединения

Также можно комбинировать параллельное и последовательное соединение. Но на практике вам вряд ли это пригодиться.

Как рассчитать общую ёмкость соединённых конденсаторов?

Помогут нам в этом несколько простых формул. Не сомневайтесь, если вы будете заниматься электроникой, то эти простые формулы рано или поздно вас выручат.

Общая ёмкость параллельно соединённых конденсаторов:

С1 – ёмкость первого;

С2 – ёмкость второго;

С3 – ёмкость третьего;

СN – ёмкость N-ого конденсатора;

Cобщ – суммарная ёмкость составного конденсатора.

Как видим, при параллельном соединении ёмкости нужно всего-навсего сложить!

Внимание! Все расчёты необходимо производить в одних единицах. Если выполняем расчёты в микрофарадах, то нужно указывать ёмкость C1, C2 в микрофарадах. Результат также получим в микрофарадах. Это правило стоит соблюдать, иначе ошибки не избежать!

Чтобы не допустить ошибку при переводе микрофарад в пикофарады, а нанофарад в микрофарады, необходимо знать сокращённую запись численных величин. Также в этом вам поможет таблица. В ней указаны приставки, используемые для краткой записи и множители, с помощью которых можно производить пересчёт. Подробнее об этом читайте здесь.

Ёмкость двух последовательно соединённых конденсаторов можно рассчитать по другой формуле. Она будет чуть сложнее:

Внимание! Данная формула справедлива только для двух конденсаторов! Если их больше, то потребуется другая формула. Она более запутанная, да и на деле не всегда пригождается .

Или то же самое, но более понятно:

Если вы проведёте несколько расчётов, то увидите, что при последовательном соединении результирующая ёмкость будет всегда меньше наименьшей, включённой в данную цепочку. Что это значить? А это значит, что если соединить последовательно конденсаторы ёмкостью 5, 100 и 35 пикофарад, то общая ёмкость будет меньше 5.

В том случае, если для последовательного соединения применены конденсаторы одинаковой ёмкости, эта громоздкая формула волшебным образом упрощается и принимает вид:

Здесь, вместо буквы M ставиться количество конденсаторов, а C1 – его ёмкость.

Стоит также запомнить простое правило:

При последовательном соединении двух конденсаторов с одинаковой ёмкостью результирующая ёмкость будет в два раза меньше ёмкости каждого из них.

Таким образом, если вы последовательно соедините два конденсатора, ёмкость каждого из которых 10 нанофарад, то в результате она составит 5 нанофарад.

Не будем пускать слов по ветру, а проверим конденсатор, замерив ёмкость, и на практике подтвердим правильность показанных здесь формул.

Возьмём два плёночных конденсатора. Один на 15 нанофарад (0,015 мкф.),а другой на 10 нанофарад (0,01 мкф.) Соединим их последовательно. Теперь возьмём мультиметр Victor VC9805+ и замерим суммарную ёмкость двух конденсаторов. Вот что мы получим (см. фото).


Замер ёмкости при последовательном соединении

Ёмкость составного конденсатора составила 6 нанофарад (0,006 мкф.)

А теперь проделаем то же самое, но для параллельного соединения. Проверим результат с помощью того же тестера (см. фото).


Измерение ёмкости при параллельном соединении

Как видим, при параллельном соединении ёмкость двух конденсаторов сложилась и составляет 25 нанофарад (0,025 мкф.).

Что ещё необходимо знать, чтобы правильно соединять конденсаторы?

Во-первых, не стоит забывать, что есть ещё один немаловажный параметр, как номинальное напряжение.

При последовательном соединении конденсаторов напряжение между ними распределяется обратно пропорционально их ёмкостям. Поэтому, есть смысл при последовательном соединении применять конденсаторы с номинальным напряжением равным тому, которое имеет конденсатор, взамен которого мы ставим составной.

Если же используются конденсаторы с одинаковой ёмкостью, то напряжение между ними разделится поровну.

Для электролитических конденсаторов.

При соединении электролитических конденсаторов (электролитов) строго соблюдайте полярность! При параллельном соединении всегда подключайте минусовой вывод одного конденсатора к минусовому выводу другого,а плюсовой вывод с плюсовым.


Параллельное соединение электролитов


Схема параллельного соединения

В последовательном соединении электролитов ситуация обратная. Необходимо подключать плюсовой вывод к минусовому. Получается что-то вроде последовательного соединения батареек.


Последовательное соединение электролитов


Схема последовательного соединения

Также не забывайте про номинальное напряжение. При параллельном соединении каждый из задействованных конденсаторов должен иметь то номинальное напряжение, как если бы мы ставили в схему один конденсатор. То есть если в схему нужно установить конденсатор с номинальным напряжением на 35 вольт и ёмкостью, например, 200 микрофарад, то взамен его можно параллельно соединить два конденсатора на 100 микрофарад и 35 вольт. Если хоть один из них будет иметь меньшее номинальное напряжение (например, 25 вольт), то он вскоре выйдет из строя.

Желательно, чтобы для составного конденсатора подбирались конденсаторы одного типа (плёночные, керамические, слюдяные, металлобумажные). Лучше всего будет, если они взяты из одной партии, так как в таком случае разброс параметров у них будет небольшой.

Конечно, возможно и смешанное (комбинированное) соединение, но в практике оно не применяется (я не видел ). Расчёт ёмкости при смешанном соединении обычно достаётся тем, кто решает задачи по физике или сдаёт экзамены 🙂

Тем же, кто не на шутку увлёкся электроникой непременно надо знать, как правильно соединять резисторы и рассчитывать их общее сопротивление!

Последовательное и параллельное соединение конденсаторов

Для достижения нужной емкости или при напряжении, превышающем номинальное напряжение, конденсаторы, могут соединяться последовательно или параллельно. Любое же сложное соединение состоит из нескольких комбинаций последовательного и параллельного соединений.

Последовательное соединение конденсаторов

При последовательном соединении, конденсаторы подключены таким образом, что только первый и последний конденсатор подключены к источнику ЭДС/тока одной из своих пластин. Заряд одинаков на всех пластинах, но внешние заряжаются от источника, а внутренние образуются только за счет разделения зарядов ранее нейтрализовавших друг друга. При этом заряд конденсаторов в батарее меньше, чем, если бы каждый конденсатор подключался бы отдельно. Следовательно, и общая емкость батареи конденсаторов меньше.

Напряжение на данном участке цепи соотносятся следующим образом:

Зная, что напряжение конденсатора можно представить через заряд и емкость, запишем:

Сократив выражение на Q, получим знакомую формулу:

Откуда эквивалентная емкость батареи конденсаторов соединенных последовательно:

Параллельное соединение конденсаторов

При параллельном соединении конденсаторов напряжение на обкладках одинаковое, а заряды разные.

Величина общего заряда полученного конденсаторами, равна сумме зарядов всех параллельно подключенных конденсаторов. В случае батареи из двух конденсаторов:

Так как заряд конденсатора

А напряжения на каждом из конденсаторов равны, получаем следующее выражение для эквивалентной емкости двух параллельно соединенных конденсаторов

Пример 1

Какова результирующая емкость 4 конденсаторов включенных последовательно и параллельно, если известно что С1 = 10 мкФ, C2 = 2 мкФ, C3 = 5 мкФ, а C4 = 1 мкФ?

При последовательном соединении общая емкость равна:

При параллельном соединении общая емкость равна:

Пример 2

Определить результирующую емкость группы конденсаторов подключенных последовательно-параллельно, если известно, что С1 = 7 мкФ, С2 = 2 мкФ, С3 = 1 мкФ.

Сначала найдем общую емкость параллельного участка цепи:

Затем найдем общую емкость для всей цепи:

По сути, расчет общей емкости конденсаторов схож с расчетом общего сопротивления цепи в случае с последовательным или параллельным соединением, но при этом, зеркально противоположен.

Параллельное и последовательное соединение конденсаторов

Элементы цепи могут быть подключены двумя способами:

Проиллюстрируем данные подключения на примере двух конденсаторов (рис. 1).

  • последовательное соединение конденсаторов

Рис. 1. Последовательное соединение конденсаторов

Логическая зарядка конденсаторов происходит как показано на рис.1. Приходя из цепи, электрон останавливается на левой обкладке (пластине) конденсатора. При этом, благодаря своему электрическому полю (электризация через влияние), он выбивает другой электрон с правой обкладки, уходящий дальше в цепь (рис. 1.1). Этот образовавшийся электрон приходит на левую обкладку следующего конденсатора, соединённого последовательно. И всё повторяется снова. Таким образом, в результате «прохождения» через последовательную цепь конденсаторов «одного» электрона, мы получаем заряженную систему с одинаковыми по значению зарядами на каждом из конденсаторов (рис. 1.2).

Кроме того, напряжение на последовательно соединённой батареи конденсаторов есть сумма напряжений на каждом из элементов (аналог последовательного сопротивления проводников).

Рис. 2. Последовательное соединение конденсаторов

Часть задач школьной физики касается поиска общей электроёмкости участка цепи, логика такого поиска: найти такую электроёмкость, которым можно заменить цепь, чтобы параметры напряжения и заряда остались неизменными (рис. 2). Пусть заряд на обоих конденсаторах — (помним, что они одинаковы), электроёмкости — , и соответствующие напряжения — и .

  • где
    • — напряжение на первом конденсаторе,
    • — электроёмкость первого конденсатора,
    • — заряд конденсатора.
  • где
    • — напряжение на втором конденсаторе,
    • — электроёмкость второго конденсатора,
    • — заряд конденсатора.
  • где
    • — напряжение полной цепи,
    • — электроёмкость общего конденсатора,
    • — заряд общего конденсатора.

Памятуя о том, что конденсаторы соединены последовательно, получаем:

Или в общем виде:

  • где
    • — электроёмкость последовательно соединённых конденсаторов,
    • — сумма обратных емкостей.

Для цепи из двух последовательных соединений:

  • параллельное соединение конденсаторов

Рис. 3. Параллельное соединение конденсаторов

Параллельное подключение конденсаторов представлено на рисунке 3. При внесении электрона в систему, у него есть выбор: пойти на верхний или нижний конденсатор. При большом количестве электронов заполнение обкладок конденсатора происходит прямо пропорционально электроёмкости конденсаторов.

Рис. 4. Параллельное соединение конденсаторов. Поиск полной электроёмкости

Опять попробуем решить задачу по поиску полной ёмкости конденсаторов (рис. 4). Помним, что при параллельном подключении напряжения на элементах одинаковы, тогда:

  • где
    • — заряд на первом конденсаторе,
    • — электроёмкость первого конденсатора,
    • — напряжение на первом конденсаторе.
  • где
    • — заряд на втором конденсаторе,
    • — электроёмкость второго конденсатора,
    • — напряжение на втором конденсаторе.
  • где
    • — заряд на общем конденсаторе,
    • — электроёмкость полного конденсатора,
    • — напряжение на общем конденсаторе.

С учётом того, что , получим:

Или в общем виде:

  • где
    • — электроёмкость параллельно соединённых конденсаторов,
    • — сумма электроёмкостей последовательно соединённой цепи.

Вывод: в задачах, в которых присутствует цепь, необходимо рассмотреть, какое конкретно соединение рассматривается, а потом использовать соответствующую логику рассуждений:

  • для последовательного соединения
    • заряды всех конденсаторов одинаковы: .
    • напряжение во всей цепи есть сумма напряжений на каждом из элементов: ,
    • полная электроёмкость цепи конденсаторов, соединённых последовательно равна: .
  • для параллельного соединения
    • заряд системы конденсаторов есть сумма зарядов на каждом из них: ,
    • напряжение на каждом из элементов одинаково: ,
    • полная электроёмкость цепи конденсаторов, соединённых параллельно равна: .

Поделиться ссылкой:

Добавить комментарий Отменить ответ

Для отправки комментария вам необходимо авторизоваться.

{SOURCE}

Параллельное соединение резистора и конденсатора

Автор Aluarius На чтение 5 мин. Просмотров 373 Опубликовано

Для чего предназначены резисторы и конденсаторы

Резисторы – одни из наиболее распространённых элементов в электронике. Их главное назначение – сопротивление течению тока и преобразовывать его в тепло. Главной характеристикой данных элементов является значение R.

Чем больше величина R, тем большая часть электроэнергии сможет рассеется в тепло. В схемах, которые питаются небольшим напряжением от 5 до 12 В, чаще всего используют резисторы имеющие величину R от 100 Ом до 100 кОм.

Конденсаторы – устройства, главная задача которых накапливать электрические заряды. Стоит отметить, что эту же функцию выполняет и аккумулятор, но в отличие от батареи конденсатор сразу же отдаёт весь накопившийся заряд. Величина, которую способно накопить устройство, называют «ёмкость».

kondensator

Когда подсоединяется цепь к источнику электроэнергии: через конденсатор течет электрический ток. Сила тока в начале прохождения через устройство имеет наивысшее значение, в это же время напряжение станет низким.

После того, как устройство начнет накопление заряда, сила тока упадёт до нуля, а напряжение наоборот станет увеличиваться.

Особенности соединения резистора и конденсатора в цепи

Существует два типа соединения резисторов и конденсаторов: параллельное и последовательное.

Параллельное соединение резистора и конденсатора

Для того, чтобы осуществить параллельное соединение резистора и конденсатора, необходимо объединить все элементы цепи двумя узлами. Они не должны иметь связи с другими элементами.

При таком соединении, величина напряжения между обоими узлами станет падать, и оно станет равным для каждого элемента. А величина, которая обратна общему R, будет равняться сумме величин, которые обратны R всех проводников.

Когда осуществляется параллельное соединение резисторов, проводимость всех резисторов станет равняться проводимости цепи.

Если резистор соединить к заряженному конденсатору то вполне возможно короткое замыкание.

Последовательное соединение

Последовательное соединение – связка элементов между собой так, чтобы начальный участок цепи не имел ни одного узла. При таком соединении величина тока на проводниках станет равна между собой.

Когда осуществляется последовательное соединение всех элементов, то их общая ёмкость имеет формулу 1/Собщ = 1/С1 + 1/С2 + … + 1/Сn.

kondensator-rezistor

Как рассчитать импеданс в цепи

Импеданс – полное R тока, который обозначается Z. Этот параметр – отражение меняющегося во времени значения тока. Импеданс – векторная величина, которая состоит из двух значений: активное и реактивное сопротивление.

Активная часть импеданса, которая обозначается R – это мера степени, с которой материал будет противостоять движению электронов между атомными частицами. Чем легче атомные частицы освобождают или принимают электроны, тем ниже и сопротивление.

К материалам с минимальным сопротивлением можно отнести сталь, алюминий, золото. Самое большое значение R имеют стекло, слюда, полиэтилен и чаще всего их называют изоляторы или диэлектрики.

Стоит отметить! Активное R, имеет одно и тоже значение, как при последовательном, так и при параллельном соединении.

Если использовать резисторы в цепях синусоидального тока, то термин «импеданс» будет использоваться для обозначения сопротивления R=Z.

Практические расчеты импеданса чаще всего выполняются по следующей формуле:

Z = Um/Im.

Реактивное сопротивление обозначается X и является выражением степени, с которой электронный компонент схемы станет хранить или высвобождать электроэнергию, в то время, когда сила тока и значение напряжения станет колебаться при каждом цикле. Реактивное сопротивление выражается в числе Ом.

Энергия будет храниться и выделяться в двух типах:

  • Магнитного поля. Реактивная часть является индуктивной.
  • Электрического поля.

Как рассчитать время разряда и заряда конденсатора через резистор

Чтобы осуществить заряд устройства, нужно включить устройство в цепь и присоединить к зажимам генератора. Как вы уже знаете, генератор имеет внутреннее сопротивление.

Если резистор подключить к заряженному конденсатору то ключ будет замкнут и конденсатор начнёт зарядку до напряжения между обкладками, которая станет равна э.д.с генератора и равна Uc=E. При этом, обкладка которая соединена с положительным зажимом, получит положительный заряд, вторая же получит отрицательный заряд.

Чтобы обе обкладки устройства полностью зарядились, нужно, чтобы одни из них приобрела определенное количество электронов, а вторая столько же потеряла.

Зарядный ток в цепи будет протекать сотые доли секунды, пока величина напряжения на устройстве достигнет такой же уровня, что и на генераторе. В то время, пока конденсатор будет заряжаться, по всей цепи будет проходить зарядный ток. Вначале он будет иметь максимальную величину, т.к. величина напряжения станет равна 0.

По мере того как конденсатор станет заряжаться, величина R на нём будет падать.

Время процесса зарядки будет зависеть от следующих величин:

  1. Внутреннее сопротивление электрического генератора.
  2. Способность конденсатора принять количество тока.

Для того, чтобы разрядить устройство нужно отключить его от генератора переменного тока и присоединить к его обкладкам сопротивление. Дело в том, что на обкладках уже есть разность потенциалов, поэтому в цепи потечет ток.

Он будет проходить от одной обкладки через сопротивление к другой. Процесс разряда будет проходить до тех пор, пока обе обкладки не станут равны, т.е. пока напряжение между ними станет равно 0.

zaradka-kondensatora

razradka-kondensatora

В самом начале, напряжение будет максимальным, сила тока – наибольшая. Как только начнется разрядка, напряжение и сила тока будут уменьшаться.

Продолжительность разряда устройства имеет зависимость от:

  • Отношению заряда к разности потенциалов;
  • Удельному электрическому сопротивлению.

Чем значение сопротивления выше, тем дольше будет происходить разряд конденсатора. Это можно объяснить тем, что при максимальном сопротивлении, сила тока небольшая, а величина заряда станет медленно уменьшаться.

Важно! Заряженный конденсатор не станет пропускать постоянный ток, потому что диэлектрик между его положительной и отрицательной обкладками будет размыкать цепь.

Для того, чтобы рассчитать время заряда и разряда на устройстве, лучше всего воспользоваться онлайн калькулятором.

Параллельное включение конденсаторов | Техника и Программы

Иногда рекомендуют параллельное соединение конденсаторов в фильтрах. Причем предлагают следующие варианты:

а)         параллельно конденсатору большой емкости включать точно такой же конденсатор, но маленькой емкости;

б)         вместо одного конденсатора большой емкости включать два-три конденсатора меньшей емкости того же типа;

в)         вместо одного конденсатора большой емкости включать много конденсаторов небольшой емкости.

Естественно, включать надо параллельно, при этом емкости суммируются, и общая емкость во всех этих случаях получается одинаковой. Давайте разберемся в данном вопросе (вся необходимая информация есть в таблице 1 и рис. 47).

Вариант а). Говорят, что маленький конденсатор будет помогать работать большому.

Это не всегда так. У конденсатора меньшей емкости действительно паразитная индуктивность обычно меньше, поэтому частотные свойства зачастую могут быть лучше (а если у конденсатора малой емкости частотные свойства не лучше, то и говорить не о чем). Рассмотрим эту ситуацию. На рис. 48 показана зависимость модуля полного сопротивления конденсаторов разной емкости от частоты.

Максимальной рабочей частотой конденсатора можно считать ту частоту, на которой его сопротивление минимально. Дальше с ростом частоты полное сопротивление конденсатора начинает расти – это сказывается индуктивность конструкции конденсатора. При этом индуктивное сопротивление перевешивает емкостное, и конденсатор ведет себя как катушка индуктивности. То есть уже и не является конденсатором.

Для конденсатора малой емкости минимум сопротивления действительно наступает на большей частоте, но его сопротивление все равно больше, чем у конденсатора большой емкости (свойства которого на этой частоте уже ухудшаются). А ведь главная задача конденсатора на этих частотах – пропускать через себя ток нагрузки, как можно меньше на него влияя. Поэтому чем у конденсатора сопротивление меньше, тем лучше. И конденсатор малой емкости не очень-то и поможет «большому» конденсатору, слишком уж велико его сопротивление. Только в точке А сопротивления обоих конденсаторов становятся равными, и на более высокой частоте у конденсатора малой емкости сопротивление меньше, чем у «большого». Но посмотрите – в этой точке уже и конденсатор малой емкости работает плохо! В реальности эти графики показаны на рис. 47, где цифрами 1…5 обозначены конденсаторы меньшей емкости, а цифрами 8… 12 – конденсаторы большей емкости.

А вот если в системе присутствует керамический или пленочный конденсатор, то он хорошо работает и на этой частоте, и на более высоких частотах (рис. 48). Только емкость его должна быть достаточно большой,

чтобы на нужных частотах он имел низкое сопротивление.

Вывод: параллельное подключение электролитического конденсатора малой емкости заметной пользы не принесет (хоть и не навредит), гораздо выгоднее шунтирование электролита большой емкости хорошим пленочным конденсатором, который наверняка гораздо более высокочастотный.

Напрашивается вопрос: а для чего же так делают? И даже в промышленной аппаратуре? Ну, во-первых, иногда действительно можно подобрать условия, когда «маленький» конденсатор немного поможет. А главное

–               почему бы не поставить такой конденсатор, раз в него верят покупатели? Тем более что он очень дешевый.

Вариант б). Вместо одного конденсатора большой емкости включаем два конденсатора меньшей емкости того же типа. Рассмотрим эту ситуацию для конденсаторов, приведенных в двух последних строках таблицы 1. Допустим, мы ставим два конденсатора 4700 мкФ вместо одного 10000 мкФ. Тогда их сопротивление будет 0,071/2 = 0,0355 Ом, а допустимый ток 3-2=6 ампер. Получается, по ESR примерно то же самое, а по току так даже лучше, чем одиночный конденсатор. Только надо помнить, что у конденсаторов довольно большой разброс, так что можно вместо одного хорошего поставить два плохих. Или наоборот. Более длинные провода, соединяющие два конденсатора, будут иметь большее сопротивление, чем у одиночного. Да и токи заряда конденсаторов будут немного неодинаковыми. В результате это небольшое преимущество от удвоения конденсаторов, скорее всего, будет «съедено» неидеальностью остальных элементов схемы.

Так что в данном случае можно считать эти варианты выбора конденсаторов равноценными. И выбирать тот или иной вариант из каких-либо других соображений. Например, какие конденсаторы поместятся в ваш корпус. Или какие конденсаторы продаются в вашем городе.

Вариант в). Ставим 10 конденсаторов 1000 мкФ вместо одного на 10000 мкФ. Что говорит математика: ESR = 0,199/10 = 0,0199 Ом (по сравнению с 0,033 Ом для конденсатора 10000 мкФ), максимальный ток = 10-1,4= 14А (по сравнению с 5 А конденсатора 10000 мкФ). Вроде бы выигрыш по сопротивлению в 1,5 раза, а по току почти в 3 раза. Судя по полученным цифрам, много конденсаторов лучше, чем один.

Слышали когда-нибудь, как ругают теоретиков, говоря, что на практике получается все совсем не так, как у них в теории? Это про таких горе-теоретиков, которые просто умножат-разделят числа, и не подумают об остальных факторах, влияющих на ситуацию. Посмотрите на рис. 49. Индуктивности и резисторы – это сопротивление и индуктивность проводников, соединяющих всю эту кучу конденсаторов. Поскольку конденсаторов теперь много, то длина проводов существенно увеличивается, растут и индуктивности-сопротивления. Вот тут-то и теряются все преимущества, которые мы насчитали по формулам! Нет, формулы правильные! Только они не учитывают эти вот элементы – ведь мы написали эти формулы без их учета, не подумав про них.

В результате общее сопротивление может получиться даже больше, чем у одиночного конденсатора боль-

шой емкости, а ток распределяется очень неравномерно. Например, при заряде конденсаторов, заряд начинается с самого левого по схеме С1, и в него в самый первый момент времени течет весь максимальный ток (в С2 ток потечет только после того, как С1 уже немного зарядится), а конденсатор-то рассчитан всего на 1,4 ампера! Поэтому может случиться, что этот конденсатор будет перегружаться зарядным током, а значит, долго не проживет. Точно также, разряжается первым самый правый конденсатор СЮ, и он будет перегружаться разрядным током.

В общем, все преимущества обычно получаются только на бумаге. Это как раз та ситуация, когда «слишком хорошо – тоже не хорошо». Все всегда должно быть в разумных пределах, а здесь мы из них вышли. Собственно, «много маленьких» конденсаторов не всегда будет хуже, чем «один большой», но далеко и не всегда будет лучше. Хороший профессионал сможет извлечь пользу из такого включения (когда оно оправданно), а новичок скорее всего все испортит.

На самом деле, есть случай, когда параллельное включение двух-трех конденсаторов принесет пользу. Например, когда конденсатор фильтра установлен возле горячего диода и не удается его отодвинуть. Тогда при нескольких конденсаторов греться будет только один из них.

Или если у вас имеются конденсаторы LowESR, или Lowlmpedance, но их емкости недостаточно. Тогда вы ставите этот хороший конденсатор параллельно с «обыкновенным» и полностью используете его преимущества. Все равно ведь низкое-сопротивление получается на достаточно больших частотах, а там конденсатор даже не очень большой емкости хорошо сработает и принесет пользу. Я так сделал в одном своем блоке питания – поставил обычный конденсатор 10000 мкФ и параллельно ему низкоимедансный 4700 мкФ (интересно, что они оказались одинаковые по размерам). В результате получились хорошими и суммарная емкость, и высокочастотные свойства, и сопротивление. Лучше всего устанавливать высокочастотные и низкоимпе- дансные конденсаторы прямо на плате усилителя, где сведены к минимуму все паразитные индуктивности и сопротивления.

И еще. При любом наборе электролитов, подключение пленочного конденсатора только приветствуется.

Источник: Рогов И.Е. Конструирование источников питания звуковых усилителей. – Москва: Инфра- Инженерия, 2011. – 160 с.

Параллельно подключенные конденсаторы »Направляющая для конденсаторов

Конденсаторы, как и другие электрические элементы, могут подключаться к другим элементам последовательно или параллельно. Иногда бывает полезно подключить несколько конденсаторов параллельно, чтобы получился функциональный блок, подобный показанному на рисунке. В таких случаях важно знать эквивалентную емкость блока параллельного подключения. В этой статье мы сосредоточимся на анализе параллельного соединения конденсаторов и возможных сферах применения таких схем.

Анализ

Все конденсаторы в параллельном соединении имеют одинаковое напряжение на них, что означает:

, где от V 1 до V n представляют напряжение на каждом соответствующем конденсаторе. Это напряжение равно напряжению, приложенному к параллельному соединению конденсаторов через входные провода. Однако количество заряда, хранящегося на каждом конденсаторе, не одинаково и зависит от емкости каждого конденсатора по формуле:

, где Q n — количество заряда, накопленного на конденсаторе, C n — емкость конденсатора, а V n — напряжение, приложенное к конденсатору, которое равно напряжению, приложенному ко всей параллели. блок подключения.Общее количество заряда, которое хранится в блоке конденсаторов, обозначается Q и делится между всеми конденсаторами, присутствующими в этой цепи. Это представлено:

Следующее уравнение используется для определения эквивалентной емкости при параллельном соединении нескольких конденсаторов:

, где C eq — эквивалентная емкость при параллельном соединении конденсаторов, V — напряжение, приложенное к конденсаторам через входные провода, и Q 1 — Q n представляют собой заряды, накопленные на каждом соответствующем конденсаторе.Это подводит нас к важному выводу, что:

, что означает, что эквивалентная емкость при параллельном соединении конденсаторов равна сумме индивидуальных емкостей. Этот результат также интуитивно понятен — подключенные параллельно конденсаторы можно рассматривать как один конденсатор, площадь пластин которого равна сумме площадей пластин отдельных конденсаторов.

Приложения

Конденсаторы — это устройства, используемые для хранения электрической энергии в виде электрического заряда.При параллельном подключении нескольких конденсаторов полученная схема может хранить больше энергии, поскольку эквивалентная емкость является суммой индивидуальных емкостей всех задействованных конденсаторов. Этот эффект используется в некоторых приложениях.

Источники питания постоянного тока

Одним из примеров являются источники постоянного тока, которые иногда используют несколько параллельных конденсаторов, чтобы лучше фильтровать выходной сигнал и устранять пульсации переменного тока. Используя этот подход, можно использовать конденсаторы меньшего размера, которые имеют лучшие характеристики пульсации, при этом получая более высокие значения емкости.

Более высокие значения емкости

Для некоторых приложений просто требуются значения емкости, которые намного выше, чем могут предложить коммерчески доступные конденсаторы. В таких приложениях используются конденсаторные батареи. Одним из примеров являются конденсаторные батареи, используемые для коррекции коэффициента мощности с индуктивными нагрузками. Другим примером являются батареи накопителей энергии, которые заявлены для использования в автомобильной промышленности, а именно KERS (система рекуперации кинетической энергии), используемая для рекуперативного торможения в больших транспортных средствах, таких как трамваи, а также в гибридных автомобилях.

Импульсные нагрузки

Одна лаборатория с сильным магнитным полем приводит в действие самый мощный в мире магнит, способный создавать магнитное поле величиной почти 100 тесла за счет накопления энергии в конденсаторной батарее. Сохраненная энергия высвобождается через магнитную катушку за очень короткий промежуток времени, создавая очень мощное магнитное поле.

В любом случае конденсаторные батареи могут достигать очень высоких значений емкости. При использовании нескольких суперконденсаторов, соединенных параллельно, возможны емкости в несколько десятков килофарад, особенно с учетом того, что суперконденсаторы способны достигать значений емкости более 2000 фарад.

Ограничения конструкции

При параллельном подключении конденсаторов следует помнить о некоторых моментах. Во-первых, максимальное номинальное напряжение при параллельном соединении конденсаторов равно минимальному номинальному напряжению всех конденсаторов, используемых в системе. Таким образом, если несколько конденсаторов номиналом 500 В подключены параллельно конденсатору на 100 В, максимальное номинальное напряжение всей системы составляет всего 100 В, поскольку одинаковое напряжение применяется ко всем конденсаторам в параллельной цепи.

Безопасность

Еще один момент, о котором следует помнить, заключается в том, что батареи конденсаторов могут быть опасными из-за количества хранимой энергии и того факта, что конденсаторы могут высвобождать накопленную энергию за очень короткое время. Эта накопленная энергия иногда эффективна, чтобы вызвать серьезные травмы или повреждение электропроводки и устройств в случае случайного короткого замыкания.

,

Параллельно резисторов и конденсаторов

Введение

В этом последнем разделе мы исследуем частотную характеристику цепей, содержащих резисторы и конденсаторы в параллельных комбинациях. Как и в предыдущем разделе, мы можем использовать анализ постоянного тока параллельных цепей резисторов в качестве отправной точки, а затем учесть фазовое соотношение между током, протекающим через резистор и компоненты конденсатора.

Анализ параллельных цепей RC

Как мы видели ранее, в параллельной цепи у тока есть несколько альтернативных путей, и выбранный маршрут зависит от относительного «сопротивления» каждой ветви.На рисунке ниже показано параллельное соединение одного резистора и конденсатора между точками A и B .

Parallel circuit

Для расчета полного импеданса (сопротивления) этой цепи мы снова используем емкостное реактивное сопротивление Xc как эквивалентное сопротивление конденсатора. Затем мы используем те же правила, что и для последовательного суммирования резисторов, помня, что теперь мы имеем дело с векторными величинами. Вы помните, что правило суммирования резисторов, включенных параллельно, дает

.

, рассматривая приведенный выше R2 как емкостное реактивное сопротивление и немного алгебры комплексных чисел, мы можем показать, что величина импеданса и фазовый угол задаются следующим образом

Impedance calculation

Theta calculation

Теперь мы рассмотрим реакцию схемы, как указано выше, с емкостным сопротивлением 50 Ом и сопротивлением 100 Ом.

Z = 100 x 50 / (100 2 + 50 2) ½ = 44.7 °

и угол составляет -63,4 °. Частотная характеристика схемы этого типа показана ниже в виде векторов и боде.

Frequency response

Видно, что фазовый угол изменяется от 0 ° на низких частотах, когда ток почти полностью протекает через плечо резистора, до -90 ° на высоких частотах, когда ток протекает через ветвь, содержащую конденсатор.

,

Отправить ответ

avatar
  Подписаться  
Уведомление о