Какой ток в розетках: какое напряжение в розетке, почему в розетке переменный ток

Содержание

какое напряжение в розетке, почему в розетке переменный ток

Людям, знающим основы электротехники известно, что в розетке возникает переменный ток. Подобным типом электроэнергии намного проще управлять, в том числе передавать его на дальние расстояния.

В розетке ток или напряжение (+ какое напряжение)

Существует три основных параметра электрической сети:

  • Ток – измеряется в Амперах (А).
  • 2. Частота – в Герцах (Гц).
  • 3. Напряжение – в Вольтах (В).

Что такое сила тока

Величина частоты зависит от генерирующих устройств, поэтому остается постоянной. Напряжение в сети может отличаться от номинального из-за возникновения помех. На показатель оказывает влияние состояние оборудования, нагрузка, а также загруженность трансформаторной подстанции. Параметр может отклоняться от основного в пределах 20 – 25 Вольт.

Важно! Если в электрической сети отмечаются скачки напряжения, то от этого страдает работоспособность техники, и без подключения стабилизаторов не обойтись.

Какое напряжение (постоянное или переменное) и сила тока в квартире, можно узнать по соответствующим маркировкам на розетках заводов-изготовителей.

На розетках указывается символика, по которой можно понять, какая допустимая нагрузка может проходить через устройство. Для того, чтобы исключить выход из строя технического оборудования, необходимо придерживаться предельно допустимых значений. Приборами, потребляющими большое количество электроэнергии, являются кондиционеры, печи СВЧ, плиты и стиральные агрегаты. В связи с этим обстоятельством обойтись без розетки номиналом меньшим, чем 16А, не представляется возможным.
Измерение напряжения в розетке возможно с помощью индикатора, тестера либо посредством эмпирического отслеживания. Стандартное напряжение в бытовой сети составляет 220 Вольт – какой ток? В данном случае речь идёт о номинальном показателе для жилых помещений при однофазной проводке.

Проводник

Как определить, какой ток в розетке

Какое напряжение в розетке и сила тока – постоянное или переменное, можно определить несколькими способами:

  • Амперметром. Это специализированный прибор для измерения силы показателя. Значения можно увидеть на шкале посредством соединения розетки, потребителя и амперметра.

Амперметр

  • Мультиметр. Это комбинированное устройство, объединяющее в своей цепи омметр, вольтметр и амперметр.
  • Расчетным способом. Для того, чтобы определить, какой ток в розетке, необходимо знать показатель мощности прибора. В сеть подается ток с напряжением в 220В, поэтому расчет силы прост: значение мощности разделить на напряжение. Так несложно вычислить ток при включении утюга, мощностью 2,0 кВт, получается, 9.09 Ампер. Таким образом, если напряжение в сети 220 В, то какой по показателю ток протекает в сети, зависит от мощности.

Стоит отметить! Погрешность при измерениях зависит от класса точности устройств, перечисленных в пунктах 1 и 2.

Переменный

Почти 98% электроэнергии вырабатываемой домашней электросетью – переменный ток. Этот ток изменяет как направление, так и величину. При передаче электроэнергии внутри сети, напряжение либо увеличивается, либо уменьшается, в связи чем розетки выпускаются для переменного показателя. Существуют электроприборы, питающиеся от источника постоянного показателя, поэтому их следует привести к одному типу с использованием преобразователей.

Закон Ома

Основные преимущества переменного тока:

  • Передача на длинные расстояния.
  • Позволяет использовать стандартное генераторное оборудование.
  • Отсутствует полярность при подключении.

Однако у данного тока также имеется ряд недостатков:

  • Потери в цепи обязывают подбирать розетки с учётом понижающего коэффициента 0,7.
  • Возникает электромагнитная индукция, в связи, с чем электричество не всегда распределяется равномерно.
  • Проверка и измерение значений осуществляются по сложной схеме.
  • Увеличение показателя сопротивления, так как кабель не задействован в полном объеме.

Переменное значение

Постоянный

При упорядоченном движении заряженных частиц в едином направлении, ток называется постоянным, и возникает он в сети с неизменным напряжением при стабильной полярности зарядов. Используется в промышленных автономных установках, что исключает необходимость передачи электроэнергии на большие расстояния.

Использование постоянного показателя предусматривается в автономных системах, к примеру, в автотранспорте, летательных средствах, морской технике и электропоездах. Широкое использование он получил при организации питания микросхем электроники, средств связи и иной техники, где количество помех максимально сводится к минимуму, вплоть до их полной ликвидации.

В некоторых случаях он нашел применение в сварочных агрегатах, а также в железнодорожных локомотивах, медицине при введении в организм лекарственных препаратов посредством электрофореза.

Постоянный ток

Почему в розетке переменный ток

Еще в позапрошлом веке Тесла выдвинул гипотезу, что электричество в жилых помещениях (квартирах и домах) должно быть переменным. Ученый обосновал, что применение токов этого вида наиболее приемлемо, исходя из следующих заключений:

  • Передается по проводам с наименьшими потерями.
  • Легко поддается трансформации.
  • Намного безопаснее по отношению к постоянному.

Постоянный ток отличают противоположные свойства:

  • Проходит по проводке с большими потерями.
  • Процесс трансформации из одного напряжения в иное проходит сложно.

Основной вывод – использование тока переменного значения непосредственно связано с безопасностью и потерями в линиях электрических проводов. Для снижения расходов на электроэнергии напряженье должно быть высоким. На вышках электропередач проходит ток высокого напряжения 1000В, 10000В, а также 500000В. Хотя это и представляет опасность для жизни, но обуславливает экономичность. Для трансформации электроэнергии обустраивают трансформаторные будки, откуда ток на выходе имеет напряжение 380В или 220В.

Можно привести пример: в качестве трансформатора берется зарядное устройство для мобильного телефона, и она полностью безопасна, так как в ней встроен преобразователь.

Стоит лишь закоротить розетку, то ток с переменным значением автоматически перекрывается и электрической дуги не образовывается. По этим причинам использование переменного показателя гораздо выгоднее и безопаснее.

Количество электричества

Какой ток в батарейках

Из розетки выходит ток переменного значения, так как направление потока электронов меняется. У такого рода тока частота и напряжение разных значений. Следовательно, в розетках – 220В при 50Гц. Нагляднее это выглядит так: в одну секунду поток электронов меняется 50 раз, при этом заряды тоже изменяются с положительных на отрицательные.

Особенно это заметно при включении или подаче электричества в флуоресцентные лампы. При разгоне электронов лампа мерцает, а это означает, что это меняется поток. Максимальный напор потенциала напряжения составляет 220В, при котором осуществляется движение электронов.

Батарейки

Заряд изменяется при переменном токе. Получается, что напряжение бывает либо 100% или 0%. При показателе 100 % необходимо, чтобы провод был большого диаметра, а если заряд непостоянный, то достаточно провода небольшого сечения. По такому проводнику можно переправить большое количество вольт, после чего трансформатор забирает в себя излишки, и остается 220В на выходе.

Внимание! В батарейках или в аккумуляторах постоянный ток, так как направление электронов не изменяется. Зарядка предназначена для его трансформации из переменного в постоянный, в таком виде его выдают аккумуляторы.

Гальванический элемент

Какой ток в 220В и больше

Значение проходящей электроэнергии из розетки определяется в Амперах, при этом напряжение на выходе составляет 220 В.  Получается, что сила тока – физическая величина, равная отношению заряда, который проходит через проводник за определенное время. Если к розетке нет подключения, то электрическая цепь считается разорванной.

Электрооборудование

Когда проводка не защищена автоматикой, то мощность находится под контролем, поэтому значение Ампер в розетке разное при напряжении 220В. Показатель силы в этом случае постоянно растёт до тех пор, пока электрическое оборудование не выйдет из строя.

Профессионалы советуют выбирать розетки на 16 и более Ампер, так как они надежнее, проводка выполняется из кабеля на 2,5 мм2. При выборе розетки, рассчитанной на меньшее количество Ампер, защита может не срабатывать, что нередко приводит к авариям на линии.

Какой ток в розетке 220В: постоянный или переменный

Какой ток в розетке 220В: постоянный или переменный

Какой ток в розетке 220В

Любой грамотный инженер должен без запинки ответить какой ток в розетке — постоянный или переменный. Физике в технических ВУЗах уделяют особое внимание! А вот большинство обычных граждан может прожить всю жизнь и не знать этого. И абсолютно зря! В наше время есть необходимый минимум знаний, которым должен обладать любой современный образованный человек. Какой тип тока в розетке нужно знать так же, как таблицу умножения.

Виды электрического тока в быту

Для полного понимания картины приведу немного теории, которую будет очень полезно знать. Электрический ток — это направленное движение электрических зарядов. Он может возникать в замкнутой электрической цепи. Различают:

Постоянный ток или DC — Direct Current. Международное  обозначение (—).
Постоянный ток течёт в одном направлении, а величина его слабо меняется со временем. Яркий пример, который Вы можете встретить у себя дома или в квартире — ток от электрических батареек или аккумуляторов.

Переменный ток. обозначение или AC — Alternating Current. Международное  обозначение (~).
Переменный ток периодически изменяется по величине и направлению. Один период изменения в секунду — это Герц. Соответственно частота переменного тока — это количество периодов в секунду. В России и Европе используемая частота — 50 Гц, в США — 60 Гц. Переменный ток используется для работы различных электроприборов.

Какой ток в бытовых розетках

Разобравшись в теории — перейдём непосредственно к ответу на вопрос — какой ток в розетке — переменный или постоянный? Думаю Вы уже и сами догадались — конечно же переменный ток. Рабочее напряжение в сети — 220-240 Вольт. Сила переменного тока в обычных квартирах ограничивается величиной в 16 А (Ампер), но в некоторых случаях встречается и до 25 А. По мощности тока стандартное ограничение — 3,5 кВт.

какой ток в розетке переменный или постоянный

Для более мощной электрической техники используют уже трехфазные сети с напряжением 380 Вольт с силой тока до 32А.

 


Поделитесть полезным с друзьями:

Какой ток в розетке

переменный и постоянный ток

Современные электроприборы сконструированы максимально дружелюбными к пользователю и чтобы их использовать совершенно не обязательно знать какой ток в розетке, куда они подключаются. Подобные познания могут никогда не пригодится в повседневной жизни – обычно достаточно знать, что в розетке есть ток, благодаря которому работают все бытовые приборы.

Где могут пригодиться знания по электричеству

Хорошо если вопросы о принципах работы электроприборов возникают просто из «спортивного интереса». Хуже бывает в случае поездки в другую страну, где неподготовленные путешественники с удивлением обнаруживают розетки незнакомого типа. Если до этого человек обращал внимание на надписи возле «своих» розеток, то в «чужих» может оказаться другая частота и напряжение. Для понимания почему так происходит, надо хотя бы в общих чертах ознакомиться с основами электротехники.

Сразу необходимо оговориться, что все рассказанное ниже дано в очень упрощенном и утрированном виде. Некоторые аналогии могут полностью не отражать все происходящие в электропроводке процессы и даны исключительно для общего их понимания.

Постоянный и переменный ток

принципиальная схема получения переменного тока

Это одна из важнейших характеристик электрического тока. Каждый электроприбор рассчитан под определенный его вид и при неправильном подключении в лучшем случае просто не будет работать.

Любой из этих токов создается электромагнитным полем, что заставляет двигаться свободные электроны в металлах или других проводниках. Но при постоянном они все время летят в одну сторону, а переменный ток дергает их туда-сюда. В любом случае они двигаются и совершают работу, но устройства для преобразования электрической энергии в механическую приходится делать разными. То есть электродвигатель, к примеру, можно сделать как от постоянного, так и от переменного тока, но первый нельзя включать во вторую цепь.

Если большинство электроприборов работает от постоянного тока, то для передачи электроэнергии на большие расстояния выгоднее использовать переменный – он не так чувствителен к сопротивлению проводников. Поэтому не может быть двух мнений по поводу какой ток в бытовой розетке: постоянный или переменный – всегда используется второй вариант.

В этом видео описываются исторические предпосылки использования переменного тока в электросетях:

Фаза и ноль

Эти понятия относятся исключительно к переменному току. Принято считать, что фаза в розетке является аналогом плюса постоянного тока, а ноль – минуса, поэтому ноль «не бьется», если до него дотронуться. На самом деле все несколько сложнее – в переменном токе плюс и минус постоянно меняются местами, поэтому в замкнутой цепи (при подключенной нагрузке) по нолю тоже протекает ток. Но дело в том, что он действительно не бьется, даже если брать его голыми руками – при электромонтажных работах ищут где находится фаза в розетке и в обязательном порядке изолируют этот провод, а остальные без особой опаски оставляют оголенными.

определение фазы индикаторной отверткой

В правильно подключенной и нормально работающей электропроводке ноль не бьет человека током потому что применяется так называемая схема подключения потребителей с глухозаземленной нейтралью. Это значит, что нулевой провод на подстанции и в месте ввода в дом заземлены и ток, если он есть в проводе, проходит «мимо» человека.

Есть ряд условий, при которых нулевой провод может ударить током. Если нет соответствующего опыта обращения с электропроводкой, не стоит рассчитывать на то, что нуль всегда безопасен.

Заземление

контур заземления в частном доме

Розетка без провода заземления не редкость для старых домов, потому что раньше в быту практически не использовались мощные электроприборы. Современные требования к безопасности электроприборов гораздо жестче, поэтому розетки устанавливаемые без заземления просто не могут быть использованы даже в проекте.

Смысл заземления в дополнительной защите. Если используется розетка без защитного заземления, то в большинстве случаев корпус приборов подключен к рабочему нолю. Как итог – если фаза попадает на корпус устройства (при пробое изоляции), то происходит короткое замыкание и выбивает защитные пробки. Это приводит к порче прибора, и сравнительно безопасно для человека, при одном условии – если он на момент замыкания не касался устройства. В противном случае, пока не сработает защита, человека бьет ток короткого замыкания, который в десятки раз выше номинального.

Розетки с заземлением разделяют ноль на рабочий, необходимый для функционирования устройства, и защитный. Корпус теперь, соединен с заземлением, а ноль работает в штатном режиме. Если на корпус попадает фаза, то розеточный заземляющий контакт «уводит» ее от человека, даже если он на этот момент касается устройства, а защитная автоматика выключает питание. Человека током не бьет, короткого замыкания не происходит и устройство по возможности остается в сохранности. Остается только найти место где повредилась изоляция и устранить неисправность.

Розетка без исправного заземления будет работать точно так же как и с ним, но при возникновении нештатной ситуации не сможет обеспечить должную защиту подключенным устройствам и человеку.

Как итог, вопроса что лучше ставить – розетки работающие без заземления или все-таки с ним, не существует – ПУЭ однозначно требуют поставить устройство второго типа.

Напряжение электрического тока

путь тока от электростанции

путь тока от электростанции (кликните для увеличения)

Если не использовать такие научные термины как «напряженность электрического поля» и «разность потенциалов», то понять какое напряжение в сети и почему оно именно такое помогут следующие аналогии:

Потенциальная и кинетическая энергия – пример очень упрощенный, но смысл в том, что напряжение показывает, какие силы могут быть задействованы при перемещении электрического заряда. Главное отличие в том, что потенциальная энергия переходит в кинетическую, а напряжение всегда стабильно. Использовать эту аналогию можно потому, что пока в розетку не включен никакой прибор, то в ней есть напряжение, готовое начать двигать заряженные частицы, но нет электрического тока. Движение электрического тока начинается только при подключении к проводам нагрузки (или при замыкании ноля и фазы).

Чем больше напряжение, тем выше его «проталкивающая» способность – это значит, что при достаточно больших его значениях ток «пробьет» диэлектрик между проводами. В обычных условиях диэлектриком между проводами является воздух, поэтому чем больше напряжение, тем выше вероятность возникновения молнии (замыкания) между ними. Это свойство используется в пьезозажигалках и механизмах розжига промышленных печей, только в первых расстояние между контактами 0,5 мм и напряжение в несколько Вольт, а во втором случае – между контактами 10-15 сантиметров, а напряжение около 10 тысяч Вольт.

От напряжения зависит насколько удобно передавать ток на большие расстояния – чем оно больше, тем меньше потерь.

Для линий электропередач между городами используется напряжение 150-600 тыс. Вольт, в пригороде это 4-30 тыс. Вольт, а у потребителей напряжение в розетке уже 100-380 Вольт. В разных странах действуют свои стандарты, поэтому перед поездкой стоит уточнять этот момент.

Частота электрического тока

цифровой частотомерОдин из параметров переменного тока, показывающий сколько раз за секунду он поменяет направление движения от плюса к минусу. Полный цикл изменений – от ноля к плюсу, затем к минусу и обратно к нолю называется Герц. Во всем мире используется два стандарта частоты – 50 и 60 Герц.

От частоты, как и от напряжения, зависят потери тока при его передаче – чем выше частота, тем меньше потерь. Поэтому первый вариант используется при напряжении сети около 220 Вольт, а второй – при 110.

Частота тока зависит от того, с какой скоростью крутятся генераторы на вырабатывающих электричество станциях. Она всегда остается неизменной – в отличие от напряжения допускается погрешность в 0,5-1 Герц.

Сила тока

розетка 16 ампер

розетка на 16а (кликните чтобы увидеть надпись на крышке)

На крышке розетки можно увидеть надпись 6, 10 или 16А. Это не значит, что сила тока в розетке будет достигать таких величин – это максимальные его значения, на которые рассчитаны розеточные контакты. Соответственно, чтобы узнать, какая сила тока, а точнее – сколько ампер в розетке на данный момент, следует установить в электрическую цепь измерительное устройство – амперметр.

Примерно силу тока можно высчитать, если известна мощность устройства – по формуле I=P/U (напряжение в сети известно – на постсоветском пространстве это 220 Вольт).

К примеру, если электрочайник потребляет 2000 Ватт, то надо 2000 разделить на 220. Получается примерно 9 Ампер – сила тока, в 18 раз большая чем нужно, чтобы убить человека.

Сложнее подсчитать ампераж, к примеру, компьютера. Во-первых, при его работе в сеть включено сразу несколько устройств. Во вторых – энергосберегающие технологии используют ресурсы процессора по минимуму, разгоняя его только при решении сложных задач. Поэтому сила тока будет периодически изменяться.

Это все основные характеристики электрического тока, которые достаточно знать, чтобы получить про него хотя бы общее представление. При поездке в другую страну, где могу действовать иные нормативы, достаточно будет выяснить какие там в сети напряжение и частота. Если они отличаются от тех, на которые рассчитана зарядка телефона (или другие устройства, которые могут быть взяты в поездку), то дополнительно придется решать, как быть в этой ситуации.

Какой ток в розетке: постоянный или переменный

Электричество является одной из главных составляющих обеспечения повседневной жизни современного человека, но далеко не каждый обыватель имеет представление хотя бы о том, какой ток в розетке постоянный или переменный, не говоря уже о его других основных параметрах и свойствах, о которых надо знать.

Виды тока

Для того чтобы иметь представление о том, какой ток в розетке вашего дома, не стоит останавливаться на изучении физического понятия этого явления, эти данные можно получить из различной справочной литературы или из школьных учебников. Достаточно ограничиться знаниями, что человечество пользуется двумя его видами:

  1. Постоянный ток, источниками которого, как правило, являются аккумуляторы, гальванические элементы (электрические батарейки различных видов), солнечные батареи, термопары. Он находит широкое применение в бортовых сетях автомобильного и воздушного транспорта, электронных схемах компьютеров, систем автоматики, радио и телеаппаратуры. Постоянным током запитаны контактные сети железных дорог, он обеспечивает работу энергетических установок ряда кораблей и судов.
  2. Переменный ток. Более 90% всей электроэнергии, которая генерируется для нужд человечества, вырабатывается генераторами переменного тока. Столь широкое распространение объясняется тем, что переменный ток, в отличие от постоянного, имеет способность передаваться на большие расстояния, а трансформаторные подстанции изменять величины его напряжения до необходимых значений, без ощутимых потерь.

Вышеуказанное свойство переменного тока дает ответ на вопрос, почему основной вариант энергообеспечения выбран в его пользу. При этом нельзя принижать значение постоянного тока, он выполняет другие, но не менее значимые функции, главная из которых обеспечение работы электроники.

Параметры домашней электрической сети

После выяснения того, что ток в розетке наших домов переменный, необходимо знать его главные параметры, которым относятся величина напряжения, и частота. Напряжение домашних электрических сетей составляет 220в. Весь мир пользуется электричеством с частотой 50 Герц, за исключением США, где этот параметр имеет значение 60 Гц.

По проводу фактических значений напряжения и частоты необходимо знать:

  1. Частота 50 Гц задается генерирующим устройством электростанции и всегда соответствует заданному значению.
  2. Напряжение в отдельно взятом доме или квартире может отличаться от номинального значения 220 В. На это могут оказывать влияние техническое состояние, величина и распределение нагрузки сети, питающей многоквартирный дом или жилой район, степень загруженности ее трансформаторной подстанции. Эти отклонения, могут быть весьма значительными и достигать 20-25 Вольт. В этом случае целесообразно подключение домашней электросети производить через стабилизатор напряжения.

Токовая нагрузка

Каждая электрическая розетка снабжена маркировкой, ограничивающей ее токовую нагрузку. К примеру, «5 А» означает, что сила тока, возникающая в результате работы подключенного потребителя, не должна превышать 5 Ампер. Это очень важно, ибо невыполнение данных условий может преждевременно вывести из строя розетку или же вызвать ее возгорание.

Маркировки на розетках

Электрические приборы, выпускаемые промышленностью, снабжены паспортом с указанием потребляемой мощности, или же номинальной токовой нагрузки. К наиболее энергоемким бытовым потребителям относятся СВЧ-печи, сплит системы, автоматизированные стиральные машины, электрические кухонные плиты и духовые шкафы, подключение данных приборов необходимо производить к розеткам, обеспечивающим работу с нагрузкой не менее 16 Ампер.

Как быть, если некоторые электротехнические изделия снабжены только данными о мощности, а сведений о потребляемых амперах изготовитель не указывает. Определить приблизительные величины токовых значений очень просто при помощи формулы электрической мощности

W = U x I

Где W – мощность, U – напряжение, I – сила тока.

Мощность (указана в паспорте) и напряжение сети известны, для того чтобы найти потребляемый ток, необходимо значение мощности в Ваттах (не в килоВаттах) разделить на величину напряжения 220в.

Как трехфазный ток преобразуется в однофазный

Осталось разобраться, почему мы пользуемся однофазным током с напряжением, величина которого составляет именно 220 Вольт. Для этого необходимо проследить путь, и трансформацию электроэнергии от электростанции до розетки в доме потребителя.

Мощные электростанции вырабатывают напряжение порядка 200 300 тысяч вольт, затем эта электроэнергия передается по высоковольтным ЛЭП на групповые распределительные подстанции, обслуживающие города, районы, крупные промышленные предприятия. Здесь происходит понижение напряжения, как правило, до 6000 Вольт и дальнейшая подача электричества на понижающие подстанции, трансформаторы которых снижают высокое напряжение до 380 Вольт.

Схема распределения электроэнергии между домами

Низковольтная сторона понижающей трансформаторной подстанции 6000/380 выдает три фазы и нейтральный или, как говорят, нулевой провод. Напряжение, замеренное между фазами, называется линейным (Uл), в данном случае она имеет величину 380 В. Подключение отдельно взятых потребителей производится от одной фаза и нейтрального провода, в результате чего в дом поступает переменный однофазный ток с фазным напряжением 220в.

Схема распределения электроэнергии между домами

Сила тока и величина напряжения в розетке

Для того, чтобы разобраться в данном вопросе, необходимо для начала отыскать в книгах или чертогах разума следующую информацию:

  • закон Ома
  • сопротивление амперметра, вольтметра, мультиметра
  • подключение амперметра, мультиметра в цепь для измерения силы тока

Хоть электрика опасная и строгая наука, но опытные, умудренные опытом спецы любят шутить на профессиональные темы. Например, в кабинетах или мастерских можно встретить различные смешные и не очень плакаты, относящиеся к теме электрики:

  • “не чапай — лясне”
  • “электрик! не трогай оголенные провода мокрыми руками, от этого они ржавеют и портятся”

Пару слов о физике процесса и законе Ома

Так вот, закон Ома. Закон Ома — сиди дома. Основополагающий закон, зная который, можно уже что-то сообразить. ПрименИм для цепей постоянного и переменного тока. Разница лишь в сопротивлении: для переменного тока это будет полное сопротивление Z, в которое входит активная, индуктивная и емкостная составляющие. Для постоянного тока сопротивление только активное. Сама формула следующая: I=U/R для постоянки, и I=U/Z для переменки. Хотя переменки это в школе, а у нас переменный ток. Более подробно про закон Ома в другом материале. У нас все же тема про розетки.

Значит розетка — это источник переменного напряжения в домашней сети, к которому мы подключаем нагрузку (чайник, стиралка, утюг, фен или удлинитель, к которому подключено несколько приборов разом). Ток появляется, когда есть напряжение и есть нагрузка. Если выключить в квартире освещение и все приборы, то счетчик не будет вращаться, так как отсутствует ток и мощность равна нулю. Если мы включаем бытовой прибор, то “деньги начинают кАпать”. Напряжение же в розетке есть всегда, если оно приходит от щитка и включен питающий автомат.

Вводная про подключение амперметра, вольтметра и измерения мультиметром

Следующим пунктом разберемся с нашими измерительными приборами, которыми мы измеряем ток или напряжение.

Для измерения тока используется амперметр. Амперметр включается последовательно с нагрузкой. И это не пустые слова. Сопротивление амперметра ничтожно мало — это необходимо, чтобы не вносить погрешности в измерения тока, потребляемого нашими приборами. Чтобы использовать амперметр для измерения большего тока, можно произвести его шунтирование.

Для измерения напряжения в цепи уже используется вольтметр. Вольтметр подключается параллельно цепи и имеет большое внутреннее сопротивление. Это сопротивление необходимо для того, чтобы уменьшить ток, протекающий через прибор. Ведь по закону Ома мы уже понимаем, что при постоянстве величины напряжения, чем больше сопротивление, тем меньше ток.

Мультиметр — это прибор, которым можно производить различные измерения электрических и не только величин. Так вот, мультиметром можно замерять и ток и напряжение. Важно при этом вставить измерительные концы в нужные гнезда и выставить нужный предел. А далее уже пользоваться им как вольтметром или амперметром.

Еще важным пунктом является предел измеряемых величин на приборах. То есть до измерения, желательно знать порядок величины, которая будет замерена.

Как измерить напряжение в розетке

Что мы будем делать дальше? Берем вольтметр или мультиметр, собранный для измерения переменного или постоянного напряжения. Одним концом тыкаем в одну дырку розетки, а вторым в другую дырку розетки. Что у нас получится?

  • прибор сгорит, если у вас выставлен предел меньше 220 вольт, или шкала прибора рассчитана вольт на 50. Это произойдет из-за того, что внутреннее сопротивление прибора окажется мало, и большАя величина тока вызовет порчу прибора (это может быть перегрев, оплавление, перегорание предохранителя и прочие неприятности)
  • прибор покажет примерно 220 В, и тем самым вы произведете нормальное такое измерение электрической величины

Какой величины ток в розетке и как его измерить

Теперь то, что делать нельзя!!! А то вдруг, вы сразу читаете и делаете. Потом претензии. Поэтому чисто теоретически. Берем мультиметр, подготовленный для измерения силы тока, или амперметр и один конец тыкаем в одну дырку розетки, второй во вторую. Что у нас произойдет?

  • Прибор сгорит. Так как его сопротивление мало, нагрузки нет, и ток будет настолько велик, что и прибор спалится и Вам может достаться, вплоть до больничной койки. Не стоит так делать, ей богу. По братски прошу, не стОит.
  • Прибор не сгорит, но только при условии, что у вас обесточена сеть. поэтому скорее достаем концы из розетки, чтобы сохранить материальную ценность от порчи.

Далее берем нагрузку. Нагрузка это любая штука, которая имеет сопротивление (активное, индуктивное, емкостное). Или же это прибор, который имеет свою электрическую схему (которая и есть сопротивление) и для работы ему необходимо подать питание на выходы ноль и фаза или плюс и минус. Схем огромное количество, как и приборов, где они применяются.

Суть вот в чем, у нас есть провод фазы и провод земли. Амперметр нам надо подключить в разрыв провода фазы. То есть либо перекусить его, либо через клеммник. Делать подключение надо при отсутствии напряжения, а то “лясне”. Сначала собираем измерительную схему — потом подаем на неё напряжение. Фаза пойдет через амперметр и прибор. Что получится:

  • Нагрузка у нас складывается последовательно. Сопротивление амперметра ничтожно мало, и ток, протекающий через прибор, пропорционален суммарному сопротивлению приборов. Стрелка на амперметре отклониться до величины потребляемого тока, или же на экране загориться значение, если измерительный прибор цифровой.
  • Прибор сгорит, если он предназначен для измерения постоянного тока, а мы включаем в цепь переменного тока, где нагрузка имеет активную и реактивную составляющие. Реактивная допустим большАя, активная — малипусенькая. Прибор постоянного тока видит только активную составляющую. Сопротивление суммарное будет ничтожным, а значит ток будет гигантским и прибор сгорит, да и измерителю может достаться
  • Прибор сгорит, если у нас выставлен предел на значение допустим 5А, а мы замеряем 20 ампер. Поэтому важно следить за величинами тока, которые мы измеряем.

Самый простой способ измерения силы тока — подключаем нагрузку в цепь, берем токоизмерительные клещи. Цепляем на провод по которому течет ток и замеряем его величину. Саааамый простой способ.

В общем измерение тока и напряжения это занятие, которое требует практической и теоретической подготовки от человека. Всегда лучше перестраховаться и вызвать специалиста, который разбирается в данных вопросах. Или хотя бы проконсультироваться.

За какой провод можно браться в розетке под напряжением? Фазный или нулевой?

Раз уж мы в разделе электробезопасность, то обсудим и вопрос касания нулевого и фазного провода в розетке. Случайно или специально электричество разбираться не будет, результат будет одинаков.

Коснулись сразу фазного и нулевого

Ток протек через Вас такой величины, как U/R. Где R — Ваше внутреннее сопротивление, которое зависит от различных факторов. То есть ток потечет и Вам будет печально или посмертно. Путей протекания тока через человека несколько.

Коснулись фазного проводника:

Если Вы парите в воздухе как птичка или стоите на сухой деревянной подставке плюс не касаетесь другими частями тела заземленных предметов, плюс еще куча факторов, которые вы “учли” (хотя скорее всего не учли, а просто так сложились обстоятельства) => Тогда Вас не ударит током.

Замечание: Допусти, ситуация сложилась так, что Вы выжили. И вы всем говорите, что вот так можно делать. Кто-то Вас послушает и повторит, но с более печальным исходом. То ли из-за влажного пола или рук, то ли из-за случайного касания заземленного корпуса оборудования. Значит, Вы обрекли человека на беду, только лишь, потому, что использовали “эффект выжившего”. Это не круто.

Коснулись рабочего нуля:

С вами ничего не случится, только если нагрузка в сети симметричная по всем трем фазам, и ток в нулевом проводе не течет (подробнее про смещение нейтрали), а это редкий случай, который иногда может встретиться на производстве.


Всегда проще обесточить сеть и произвести необходимые работы, чем подвергать свою жизнь риску. Как говорится, правила техники безопасности пишутся кровью. Но я не отрицаю, что находились люди, которые брались за фазный, нулевой провода и ничего им не было. Просто игры с электричеством не приведут ни к чему хорошему. Это как идти с закрытыми глазами через автобан ночью без опознавательных знаков.

Лично я всегда использую следующее правило: хочешь ковыряться в розетках или выключателях в квартире — отключи вводной автомат и следи, чтобы его никто не включил.

Сохраните в закладки или поделитесь с друзьями

Самое популярное


как выбрать трансформатор тока

Сколько ампер в розетке?

С точки зрения специалистов в области электротехники вопрос «какой ток в розетке?» является не совсем корректным. Дело в том, что если к  электросети не подключен потребитель, то в ней не протекает ток, поскольку в этом случае электрическая цепь разомкнута.

Ток в розеткеТок в розетке

Однако если не вдаваться в споры о принятой терминологии, то номинальный ток является важнейшим параметром любого электротехнического оборудования. Выбор элементов электрической сети, способов их монтажа, а также характеристик потребителей должен осуществляться с учетом этих параметров.

Основные характеристики электроэнергии в бытовых сетях

На сегодняшний день существует несколько критериев, определяющих качество электроэнергии бытовых электрических сетей, имеющих напряжение 220 В. Все эти характеристики четко определены в ГОСТ 32144-2013. К наиболее важным из них относятся:

  1. Отклонение частоты.
  2. Медленные изменения, а также колебания и провалы напряжения.
  3. Несинусоидальность напряжения.
  4. Несимметрия напряжения в трехфазных сетях.

При обустройстве электрической проводки собственной квартиры нет нужды учитывать все параметры качества электроэнергии. Достаточно знать основные ее характеристики, проверить которые можно с использованием несложных и достаточно дешевых измерительных приборов.

характеристики электроэнергии

характеристики электроэнергии

К таким параметрам относится частота питающей сети (постоянный или переменный ток), величина напряжения, а также мощность подключаемых потребителей.

Частота электрической сети

В настоящее время для питания большинства потребителей используется переменное напряжение. Его широкому распространению способствовала возможность передачи такой энергии на большие расстояния. Это качество обеспечивается способностью переменного тока протекать в электрических цепях, содержащих емкостные сопротивления, которые неизбежно присутствуют в протяженных линиях электропередач. Как известно из общего курса физики, постоянный ток не обладает способностью протекать по цепи, имеющей в своем составе конденсаторы.

Поскольку в розетках используется переменный ток, то одной из важнейших его характеристик является частота.

Частота электрической сетиЧастота электрической сети

В нашей стране принято использование электроэнергии переменного напряжения с частотой 50 Гц.

Стоит отметить. Некоторые потребители работают от напряжения повышенной частоты. Это позволяет значительно снизить их массо-габаритные показатели и улучшить некоторые специфические технические характеристики. Для питания подобных устройств используются частотные преобразователи, которые являются встроенными или приобретаются отдельно.

Проверить частоту в сети можно с использованием специальных приборов – частотомеров, однако для практических целей такие измерения используются достаточно редко. Гораздо важнее знать, сколько ампер протекает в электрической сети и какова величина ее напряжения.

Напряжение сети

Большинству людей известно, в обычной электрической розетке используется переменное напряжение 220 В.

напряжение в сетинапряжение в сети

Для питания более мощных потребителей может быть использована трехфазная сеть. В этом случае разность потенциалов между фазами составляет 380 В, а между фазой и нулем – те же 220 В. Собственно говоря, государственная энергосистема построена на использовании именно трехфазных электросетей. Разделение их на однофазные линии происходит непосредственно перед подключением потребителей.

Вследствие неравномерной нагрузки на разных фазах может возникнуть перекос, вызывающий протекание тока в общем нулевом проводе, а также снижение или повышение напряжения на отдельных потребителях.

Важно! Если напряжение в розетке выходит за пределы допустимых значений, то могут возникнуть существенные сложности в работе электрооборудования, вплоть до отключения его встроенной автоматической защитой или выхода электроустановки из строя.

Номинальный ток потребителя

Любое устройство, используемое в электрических сетях постоянного или переменного напряжения, имеет определенные параметры. Одним из них является номинальный ток.

Эта характеристика показывает, сколько ампер может быть пропущено через основную электрическую цепь устройства в течение длительного времени.

В этом плане электрические розетки не составляют исключения из правил. Их также можно разделить в зависимости от номинального тока. Стандартными значениями для однофазных устройств бытового назначения являются 6, 10, 16, 25 и 32 ампер.

Разновидности розеток в зависимости от номинального токаРазновидности розеток в зависимости от номинального тока

Розетки на 6 – 16 ампер используются наиболее часто и могут быть объединены в группы, получающие питание по выделенной линии от квартирного электрощитка. Устройства с номинальным током 25 ампер предназначены для питания более мощных потребителей.

Что же касается розеток на 32 ампера, то они выпускаются в большинстве случаев в трехфазном исполнении и предназначены для подключения особенно мощных потребителей, таких как электрические плиты или варочные поверхности.

Расчет номинального тока

При протекании электрического тока проводник существенно нагревается, что зачастую является причиной выхода из строя элементов электросети и даже приводит к пожару. Интенсивность нагрева зависит от двух факторов: квадрата величины тока, а также электрического сопротивления нагрузки. Несложно догадаться, что наиболее мощные потребители имеют минимальное сопротивление, позволяющее пропускать значительные токи.

Рассчитать какой ток в розетке можно, исходя из мощности подключаемого в нее устройства. В этом случае:

I = P/U, (А).

где Р – активная мощность потребителя, Вт.

U – напряжение сети, В.

Эта формула одинаково подходит для определения тока при переменном и постоянном напряжении.

Способы измерения напряжения и тока

Чтобы проверить соответствие величины напряжения электросети установленным требованиям, а также выяснить, сколько ампер протекает через тот или иной ее элемент, используются различные приборы для измерения тока и напряжения.

Индикаторная отвертка

Наиболее дешевым устройством, позволяющим проверить наличие потенциала на контактах розетки, является обыкновенная индикаторная отвертка. При этом узнать, сколько вольт приложено между контактами нельзя.

индикаторные отверткииндикаторные отвертки

В нормально работающей сети при касании индикатора к фазному контакту розетки встроенный в рукоятку указателя напряжения светодиод ярко светится, при касании к нулевому проводу такое свечение отсутствует. Этот способ может применяться только для определения наличия напряжения в фазном проводе.

Существенными его недостатками являются невозможность контроля целостности нулевого проводника, величины напряжения, а также подверженность точности измерений влиянию «наводок», создаваемых магнитными полями проходящих рядом электрических проводов. Таким образом, индикатор может светиться даже при отсутствии номинального напряжения на фазном контакте розетки.

Тестер

Более точным способом измерения напряжения является использование специальных приборов – вольтметров (часто применяются тестеры или мультиметры, позволяющие измерять несколько величин: напряжение, ток, сопротивление, емкость конденсаторов и т.д).

ТестерТестер

Такой прибор подключается параллельно к сети (его щупы вставляются в розетку при отсутствии подключенных к ней потребителей). Используя подобные устройства можно выяснить, сколько вольт постоянного или переменного напряжения приложено к контактам розетки.

Сила тока в розетке может быть измерена с использованием мультиметра, подключенного последовательно в сети в качестве амперметра.

Важно! Прибор, настроенный на измерение тока, нельзя подключать параллельно к сети. Он может выйти из строя.

Измерительные клещи

Главный недостаток использования амперметра – это сложность его подключения. Поэтому во многих случаях для того чтобы проверить, сколько ампер протекает в проводе, можно использовать измерительные клещи. Главным достоинством этого устройства является отсутствие необходимости размыкания цепи и отключения электрооборудования при его использовании.

измерительные клещиизмерительные клещи

Таким образом, среди всех характеристик электроэнергии бытовых электрических сетей, наиболее важными являются частота, напряжение, а также номинальный ток.

Узнать какой ток в розетке можно с использованием измерительных приборов или аналитическим путем с помощью формулы.

Какой ток в розетке: постоянный или переменный

Автор Aluarius На чтение 4 мин. Просмотров 570 Опубликовано

На форумах встречаются разные вопросы, даже самые необычные и порой даже глупые. Но они требуют своего ответа. К примеру, вопрос, какой ток в розетке: переменный или постоянный? Странность вопроса заключается в том, что всем известно – в подающих сетях линий электропередач проходит переменный ток. А это значит, что и в розетке он будет переменным.

На этом можно было бы и остановиться, но давайте разберем, чем отличается ток переменный от постоянного, и почему именно первый используется в быту и на производстве.

Отличие переменного и постоянного тока

Что такое электрический ток

Со школьной программы физики известно всем, что ток – это направленное движение электронов. Во всех электростанциях принцип образования электроэнергии одинаковый. Для этого необходимо, чтобы вращался вал роторной установки. По сути, это пучок меди, который расположен между двумя магнитами. Вращать вал можно при помощи воды, ветра, горячего воздуха (пара) и так далее. Вот почему электростанции делятся на виды: гидро-, ветро-, тепловые и так далее.

Для чего необходимы магниты? С их помощью электроны внутри меди начинают двигаться за счет образованного магнитного поля, образуя направленное движение, то есть, токовый поток. Чтобы выделять электроны, к меди подключают провод, который и отводит ток от установки.

Но почему ток, выработанный электростанцией, называется переменным? Все дело в изменении направления движения электронов. Существуют такие показатели, как частота тока и его напряжение. Так вот в отечественных электрических сетях токовая частота равна 50 Гц, а напряжение 220 вольт. Частота говорит о том, что за одну секунду ток меняет свое направление 50 раз, а соответственно заряды частиц с положительного на отрицательный. Что касается напряжения, то, по сути, это давление или напор электронов в сети.

Итак, переменный ток – это смена зарядов. Поэтому напряжение в течение одной секунды меняется от максимума до минимума и наоборот 50 раз, в сумме получается 100 раз. То оно становится максимальным (100%), то минимальным (0%). И этот цикл все время повторяется. Если напряжение в сети было всегда постоянным, да к тому же максимальным, то для его проводки потребовался бы электрический кабель огромного сечения. С переменным этого не нужно. Небольшого диаметра провод может передавать миллионы вольт.

Принцип работы переменного токаПринцип работы переменного тока

Так что, отвечая на вопрос, какой ток в розетке, нужно знать, почему он переменный, а не постоянный. И все же, почему постоянный ток так называется. Во-первых, он никогда не меняет своего направления, не скачет и не имеет частоты. Во-вторых, он присутствует только в батарейках и аккумуляторах, а также в генераторных установках.

Розетки

Итак, движемся дальше по теме, какой ток в розетке используется: постоянный или переменный. Переходим к розеткам, потому что в вопросе они встречаются. Так вот, есть ли розетки на напряжение постоянное, и на переменное? Сразу скажем, есть. Чем же они отличаются друг от друга?

Начнем с того, что розетки, в которых присутствует переменное напряжение, обозначаются символом (~) или буквами латинского алфавита (AC), то есть Alternating Current, что с английского языка так и переводится – переменный ток.

Розетки для постоянного напряжения обозначаются символом (–) или буквами DC (Direct Current – постоянный ток). На схемах такие розетки обозначаются плюсом и минусом со стрелкой. Сразу же оговоримся, что в розетку, где есть постоянное напряжение включать обычные бытовые приборы бесполезно. Работать все равно не будут. Обратите внимание на рисунок ниже, где указаны пиктограммы.

Какой ток в розетке

Так вот, многие производители их наносят на розетки для удобства распознания, то есть, для какого напряжения они предназначены. Как видите, даже чисто визуально можно определить, какое напряжение находится в розетке: постоянное или переменное. Конечно, все это нюансы, ведь отечественные сети поставляют только переменный ток, так что нет необходимости даже смотреть, какая маркировка у розетки, есть ли специальные символы или нет.

Подведем итоги

Электричество – это та энергия, которая задействована повсюду. Это основной источник жизнедеятельности человека, без которого сегодня невозможно выжить. Особенно это касается городов и больших поселков. Люди привыкли, что электричество присутствует в их жизни, как неотъемлемая часть бытия. Поэтому краткосрочные отключения воспринимаются многими, как катастрофа. Поэтому одна рекомендация для всех – экономьте электроэнергию, как показывает жизнь, все не вечно под луной.

Вот почему ученые мужи сегодня ищут новые альтернативные источники электроэнергии, вот почему в настоящее время повсюду устанавливаются солнечные, ветровые, водяные станции, которые могут вырабатывать электричество. Сегодня производители предлагают небольшие установки по выработке электроэнергии, с помощью которых можно отключиться от линий электропередач. Конечно, еще не все так усовершенствовано, как хотелось бы. Но это уже продвижение вперед, так что в недалеком будущем можно ожидать совершенно другой подход к выработке электричества.

ведер розеток | Выучите Erlang на благо!

Привет, похоже, ваш Javascript отключен. Ничего страшного, сайт без него работает. Однако вы можете предпочесть читать его с подсветкой синтаксиса, для чего требуется Javascript!

Ковши розеток

A

Пока что мы немного повеселились, имея дело с самим Erlang, почти не общаясь с внешним миром, хотя бы с помощью текстовых файлов, которые мы читаем здесь и там. Поскольку отношения с самим собой могут приносить удовольствие, пора выбраться из нашего логова и начать разговаривать с остальным миром.

В этой главе рассматриваются три компонента использования сокетов: списки ввода-вывода, сокеты UDP и сокеты TCP. Списки ввода-вывода не являются такой уж сложной темой. Это просто умный способ эффективно создавать строки для отправки через сокеты и другие драйверы Erlang.

Списки ввода-вывода

Ранее в этом руководстве я упоминал, что для текста мы можем использовать либо строки (списки целых чисел), либо двоичные файлы (двоичная структура данных, содержащая данные). Отправка сообщений по сети, таких как «Hello World», может выполняться в виде строки как «Hello World» и в виде двоичного файла как << «Hello World» >> .Аналогичные обозначения, аналогичные результаты.

Отличие состоит в том, как можно собирать вещи. Строка немного похожа на связанный список целых чисел: для каждого символа вы должны сохранить сам символ плюс ссылку на остальную часть списка. Более того, если вы хотите добавить элементы в список, либо в середине, либо в конце, вам нужно пройти весь список до точки, которую вы изменяете, а затем добавить свои элементы. Однако это не тот случай, когда вы добавляете:

А = [а]
B = [b | A] = [b, a]
C = [c | B] = [c, b, a]
 

В случае предварительного добавления, как указано выше, все, что хранится в A или B или C , никогда не нужно переписывать.Представление C можно рассматривать как [c, b, a] , [c | B] или [c, | [b | [a]]] , среди других. В последнем случае вы можете видеть, что форма A в конце списка такая же, как при объявлении. Аналогично для B . Вот как это выглядит с добавлением:

А = [а]
B = A ++ [b] = [a] ++ [b] = [a | [b]]
C = B ++ [c] = [a | [b]] ++ [c] = [a | [b | [c]]]]
 

Вы видите все это переписывание? Когда мы создаем B , мы должны перезаписать A .Когда мы пишем C , мы должны переписать B (включая содержащуюся в нем часть [a | ...] ). Если бы мы добавили D аналогичным образом, нам пришлось бы переписать C . Для длинных строк это становится слишком неэффективным и создает много мусора, который нужно очистить виртуальной машиной Erlang.

С двоичными файлами дела обстоят не так плохо:

A = << "a" >>
B = << A / двоичный, "b" >> = << "ab" >>
C = << B / двоичный, "c" >> = << "abc" >>
 

В этом случае двоичные файлы знают свою длину, и данные могут быть объединены за постоянное время.Это хорошо, намного лучше, чем списки. К тому же они более компактные. По этим причинам мы часто пытаемся придерживаться двоичных файлов при использовании текста в будущем.

Однако есть несколько недостатков. Двоичные файлы были предназначены для обработки вещей определенным образом, и все еще существует стоимость изменения двоичных файлов, их разделения и т. Д. Более того, иногда мы будем работать с кодом, который взаимозаменяемо использует строки, двоичные файлы и отдельные символы. Постоянное преобразование между типами было бы проблемой.

В этих случаях списков ввода-вывода — наш спаситель.Списки ввода-вывода — это странная структура данных. Это списки байтов (целые числа от 0 до 255), двоичных файлов или других списков ввода-вывода. Это означает, что функции, которые принимают списки ввода-вывода, могут принимать такие элементы, как [$ H, $ e, [$ l, << "lo" >>, ""], [[["W", "o"], < <"rl" >>]] | [<< "d" >>]] . Когда это происходит, виртуальная машина Erlang просто сглаживает список, поскольку это необходимо для получения последовательности символов Hello World .

Какие функции принимают такие списки ввода-вывода? Большинство функций, связанных с выводом данных, работают.Любая функция из модуля io, файлового модуля, сокетов TCP и UDP сможет их обрабатывать. Некоторые библиотечные функции, такие как некоторые из модуля unicode и все функции из модуля re (для r egular e xpressions), также будут обрабатывать их, чтобы назвать несколько.

Попробуйте предыдущий Hello World IO List в оболочке с io: format ("~ s ~ n", [IoList]) , просто чтобы увидеть. Он должен работать без проблем.

A guido with an RJ-45 connection head

В общем, это довольно умный способ построения строк, позволяющий избежать проблем с неизменяемыми структурами данных, когда дело доходит до динамического построения содержимого для вывода.

TCP и UDP: Bro-tocols

Первый тип сокетов, который мы можем использовать в Erlang, основан на протоколе UDP. UDP — это протокол, построенный поверх уровня IP, который предоставляет несколько абстракций поверх него, таких как номера портов. UDP считается протоколом без сохранения состояния. Данные, полученные с порта UDP, разбиваются на мелкие части, без тегов, без сеанса, и нет гарантии, что полученные фрагменты были отправлены в том же порядке, что и вы. На самом деле нет никакой гарантии, что если кто-то отправит пакет, вы его вообще получите.По этим причинам люди склонны использовать UDP, когда пакеты маленькие, иногда могут быть потеряны с небольшими последствиями, когда не происходит слишком много сложных обменов или когда низкая задержка абсолютно необходима.

Это что-то, что можно увидеть в отличие от протоколов с отслеживанием состояния, таких как TCP, где протокол заботится об обработке потерянных пакетов, их переупорядочивании, поддержании изолированных сеансов между несколькими отправителями и получателями и т. Д. TCP позволит надежный обмен информацией, но рискнет быть медленнее и тяжелее в установке.UDP будет быстрым, но менее надежным. Тщательно выбирайте в зависимости от того, что вам нужно.

В любом случае использовать UDP в Erlang относительно просто. Мы настраиваем сокет для данного порта, и этот сокет может как отправлять, так и получать данные:

Diagram showing a Host A that has ports A, B and C, which can all send and receive packets to other hosts

Для плохой аналогии это похоже на наличие кучи почтовых ящиков в вашем доме (каждый почтовый ящик является портом) и получение в каждом из них крошечных листков бумаги с небольшими сообщениями. В них может быть любой контент, от «Мне нравится, как ты выглядишь в этих штанах» до «Слип из внутри дома!».Когда некоторые сообщения слишком велики для клочка бумаги, многие из них сбрасываются в почтовый ящик. Ваша задача — собрать их так, чтобы это имело смысл, затем подъехать к какому-нибудь дому и после этого сбросить бланки в качестве ответа. Если сообщения чисто информативные («привет, ваша дверь не заперта») или очень маленькие («Что на тебе надето? -Рон»), все будет в порядке, и вы можете использовать один почтовый ящик для всех запросов. Однако, если бы они были сложными, мы могли бы использовать один порт на сеанс, верно? Ух нет! Используйте TCP!

В случае TCP протокол называется протоколом с отслеживанием состояния и основанным на соединении.Прежде чем отправлять сообщения, вы должны пожать друг другу руки. Это означает, что кто-то берет почтовый ящик (аналогично тому, что у нас есть в аналогии с UDP), и отправляет сообщение со словами «эй, чувак, это звонок по IP 94.25.12.37». Хотите поболтать? », На что вы отвечаете чем-то похожим на« Конечно. Отметьте свои сообщения номером N, а затем добавьте к ним увеличивающееся число ». С этого момента, когда вы или IP 92.25.12.37 захотите общаться друг с другом, можно будет заказывать листки бумаги, запрашивать недостающие, отвечать на них и так далее осмысленно.

Таким образом, мы можем использовать один почтовый ящик (или порт) и поддерживать все наши коммуникации в порядке. Это отличная вещь в TCP. Это добавляет некоторые накладные расходы, но гарантирует, что все будет заказано, правильно доставлено и так далее.

Если вам не нравятся эти аналогии, не отчаивайтесь, потому что мы перейдем к делу, посмотрев, как использовать сокеты TCP и UDP с Erlang прямо сейчас. Это должно быть проще.

UDP сокеты

Существует всего несколько основных операций с UDP: настройка сокета, отправка сообщений, получение сообщений и закрытие соединения.Возможности примерно такие:

A graph showing that Opening a socket can lead to 3 options: sending data, receiving data, or closing a socket. Sending can lead to receiving data or closing a socket, receiving data can lead to sending data or closing a socket. Finally, closing a socket does nothing

Первая операция, несмотря ни на что, — открыть сокет. Это делается путем вызова gen_udp: open / 1-2 . Самая простая форма выполняется путем вызова {ok, Socket} = gen_udp: open (PortNumber) .

Номер порта будет любым целым числом от 1 до 65535. От 0 до 1023 порты известны как системные порты . В большинстве случаев ваша операционная система делает невозможным прослушивание системного порта без прав администратора.Порты с 1024 по 49151 являются зарегистрированными портами. Обычно они не требуют разрешений и бесплатны для использования, хотя некоторые из них зарегистрированы в хорошо известных сервисах. Остальные порты называются динамическими или частными . Они часто используются для временных портов . Для наших тестов мы возьмем несколько безопасных номеров портов, например, 8789 , которые вряд ли будут приняты.

А до этого что насчет gen_udp: open / 2 ? Второй аргумент может быть списком опций, определяющих, какого типа мы хотим получать данные ( список или двоичный ), как мы хотим их получать; как сообщения ( {active, true} ) или как результаты вызова функции ( {active, false} ).Есть больше вариантов, например, должен ли сокет быть установлен с IPv4 ( inet4 ) или IPv6 ( inet6 ), может ли сокет UDP использоваться для широковещательной передачи информации ( {broadcast, true | false} ), размер буферов и т. д. Доступно больше вариантов, но пока мы будем придерживаться простых вещей, потому что понимание остального зависит от вас. Тема может быстро стать сложной, и это руководство, к сожалению, посвящено Erlang, а не TCP и UDP.

Итак, откроем сокет.Сначала запустите данную оболочку Erlang:

1> {ok, Socket} = gen_udp: open (8789, [двоичный, {active, true}]).
{хорошо, # порт <0,676>}
2> gen_udp: open (8789, [двоичный, {активный, истинный}]).
{error, eaddrinuse}
 

В первой команде я открываю сокет, приказываю ему вернуть мне двоичные данные, и я хочу, чтобы он был активен. Вы можете увидеть, что возвращается новая структура данных: #Port <0.676> . Это представление только что открытого сокета. Их можно использовать так же, как Pid: вы даже можете настроить на них ссылки, чтобы в случае сбоя сбой распространялся на сокеты! Второй вызов функции пытается снова открыть тот же сокет, что невозможно.Вот почему возвращается {error, eaddrinuse} . К счастью, первый сокет Socket все еще открыт.

В любом случае запустим вторую оболочку Erlang. В нем мы откроем второй сокет UDP с другим номером порта:

.

1> {ok, Socket} = gen_udp: open (8790).
{хорошо, # порт <0,587>}
2> gen_udp: send (Socket, {127,0,0,1}, 8789, «привет!»).
в порядке
 

Ах, новая функция! Во втором вызове для отправки сообщений используется gen_udp: send / 4 (какое чудесное описательное имя).Аргументы в следующем порядке: gen_udp: send (OwnSocket, RemoteAddress, RemotePort, Message) . RemoteAddress может быть либо строкой, либо атомом, содержащим доменное имя («example.org»), кортежем из 4 элементов, описывающим адрес IPv4, или кортежем из 8 элементов, описывающим адрес IPv6. Затем мы указываем номер порта получателя (в какой почтовый ящик мы собираемся уронить наш листок бумаги?), А затем сообщение, которое может быть строкой, двоичным кодом или списком ввода-вывода.

Было ли отправлено сообщение? Вернитесь к своей первой оболочке и попробуйте сбросить данные:

3> промывка ().Оболочка 

.

Как купить правильный процессор: руководство на 2020 год — Tom’s Hardware

ЦП имеет большое значение, независимо от того, обновляете ли вы существующую систему или собираете новый ПК. Более высокие тактовые частоты и количество ядер могут существенно повлиять на производительность, обеспечивая более быструю систему, более плавный игровой процесс и более быстрое выполнение интенсивных задач, таких как редактирование видео и перекодирование. Кроме того, выбранный вами ЦП также будет определять параметры вашей материнской платы, поскольку каждый процессор работает только с определенным разъемом ЦП и набором микросхем.

Кроме того, как и в большинстве аспектов потребительских технологий, вам придется решить купить лучший процессор, который доступен прямо сейчас, или подождать, чтобы увидеть, что принесут чипы следующего поколения. Процессоры AMD Ryzen 3000 в целом продолжали впечатлять, в то время как Intel продолжает совершенствовать свою 14-нм архитектуру на основе Skylake. Это означает, что, несмотря на снижение цен на ядро, Intel Core i9-10900K не так уж и впечатляет, хотя Core i5-10600K гораздо более привлекателен для тех, кто в первую очередь озабочен игровыми и массовыми вычислительными задачами.Тем не менее, эти процессоры Intel было трудно найти на складе с момента запуска, в то время как очень хорошие альтернативы, такие как Ryzen 7 37000X и 3800X, легко доступны и поставляются с кулерами в коробке. 16-ядерный Ryzen 9 3950X обеспечивает еще большую производительность на рынке «массовых» процессоров, легко впечатляя нас больше, чем топовый массовый процессор Intel 10900K.

(Изображение предоставлено: Connect world / Shutterstock)

Если вы уже много знаете о спецификациях ЦП и хотите получить рекомендации, ознакомьтесь с нашими подборками лучших ЦП для игр и лучших ЦП для производительности / настольных приложений и лучших дешевых ЦП 2020 года , протестированы и оценены.Но независимо от того, какой процессор для настольного компьютера вы приобретете, следует помнить о некоторых вещах.

TL; DR:

  • AMD обогнала Intel (в некоторых отношениях): В наши дни вы обычно получаете больше за меньшие деньги с процессором AMD, включая хороший кулер в коробке и больше ядер / потоков. Если вы в первую очередь заботитесь об играх, Intel, как правило, немного лучше справляется с играми с разрешением 1080p в некоторых играх (в основном из-за более высоких тактовых частот). И быстрее справляется с такими задачами, как редактирование видео. Во многих ценовых категориях, если вас не интересуют только игры, AMD предлагает больше ядер и общую производительность (плюс PCIe 4.0 на своих последних чипах) по более выгодной цене.
  • Для многих задач тактовая частота важнее количества ядер: Более высокие тактовые частоты обеспечивают более быструю производительность в простых, распространенных задачах, таких как игры, в то время как большее количество ядер поможет вам быстрее справляться с трудоемкими рабочими нагрузками.
  • Получите последнее поколение: Вы не сэкономите много денег в долгосрочной перспективе, выбрав более старый чип предыдущего поколения, если только этот чип предыдущего поколения не является Ryzen, который не был заменен текущим Деталь серии 3000.
  • Бюджет полной системы: Не сочетайте мощный ЦП со слабым хранилищем, ОЗУ и графикой.

AMD или Intel: что выбрать?

До 2017 года AMD была явным аутсайдером. Но с чипами серии Ryzen / Threadripper компания неуклонно движется к паритету производительности с Intel. А в рабочих нагрузках, требующих большого количества ядер, последние процессоры AMD Ryzen 3000 вырвались вперед, особенно если учесть исправления безопасности, выпущенные за последний год или около того.Некоторые фанаты будут иметь твердое мнение, но если вы не привязаны к одному или другому бренду, вы должны быть открыты для любого из них.

Intel по-прежнему имеет небольшое преимущество в играх с разрешением 1080p в некоторых играх, если вы хотите извлечь из видеокарты как можно больше кадров в секунду для отображения на мониторе с высокой частотой обновления. Но AMD значительно сократила этот разрыв с помощью своей новой архитектуры Zen2 и, как правило, предлагает больше ядер и потоков, что делает ее процессоры лучше для редактирования видео и анимации профессионального уровня.

Подробнее об этом см. В нашей статье Intel против AMD: Кто делает лучшие процессоры? особенность.

Что вы хотите делать со своим процессором?

Заманчиво просто потратить столько, сколько вы можете себе позволить, на ЦП, но, возможно, вам лучше сэкономить часть денег на других компонентах. Определите тип процессора и максимальный бюджет в зависимости от того, для чего вам нужен компьютер.

  • Основные задачи: диапазон от 50 до 100 долларов (35-80 фунтов). Если вам нужен только чип, который позволит вам смотреть видео, просматривать веб-страницы и выполнять базовые задачи производительности, такие как обработка текста и легкая работа с электронными таблицами, то чип начального уровня с двумя или четырьмя ядрами может быть именно тем, что вам нужно. .Но если вы часто обнаруживаете, что выполняете несколько из этих основных задач одновременно, было бы лучше активизировать модель или две. Рассмотрим Ryzen 3, например AMD Ryzen 3 1300X или AMD Ryzen 3 2200G, или Intel Pentium на верхнем уровне этого ценового диапазона и Intel Celeron или такие чипы, как AMD Athlon 200GE, на нижнем уровне.
  • Игры: диапазон от 150 до 250 долларов (120–220 фунтов стерлингов). Если вы в первую очередь заинтересованы в игровой производительности высокого класса, вам следует выбрать процессор Intel Core i5 или AMD Ryzen 5 среднего уровня.Учитывая, что видеокарта важнее для игр, чем процессор, вы можете сэкономить, не приобретая более мощный чип Core i7 или Ryzen 7.
  • Работа с творческими средствами массовой информации или разгон: диапазон от 250 до 350 долларов (220–320 фунтов стерлингов). Если вам нужно больше ядер или скорости для таких вещей, как редактирование видео, или вам просто нужна быстрая, функциональная система с дополнительными накладными расходами для будущих вычислительных задач, потратитесь на чип Ryzen 7.
  • Workstation Muscle: 400+ долларов США (370 фунтов стерлингов). Если вам часто приходится ждать минуты или часы, пока ваша текущая система визуализирует 3D-анимацию или видео 4K, или вы имеете дело с огромными базами данных и сложной математикой, подумайте о процессоре Intel Core X или AMD Threadripper. Эти звери предлагают огромное количество физических ядер (до 64 на момент написания этой статьи) для экстремальной многозадачности (например, игры с высокими настройками при потоковой передаче и редактировании) или трудоемких вычислительных задач. Бизнес-пользователи могут рассмотреть процессор Intel Xeon (например, недавний Xeon W-3175X) или AMD EPYC, но они не удобны для потребителя или относительно доступны по цене.Для тех, кто не совсем готов переходить на процессоры и платформы стоимостью в несколько тысяч долларов, 16-ядерный Ryzen 9 3950X или 12-ядерный Ryzen 9 3900X от AMD являются отличными альтернативами, которые в основном обеспечивают производительность класса рабочих станций на основной платформе.

ЦП какого поколения вам нужен?

Процессоры Intel Core и AMD Ryzen

Каждый год или около того Intel и AMD обновляют свои линейки процессоров новой архитектурой. Текущее поколение Intel — это «серия Core 10-го поколения», такая как Core i5-10600K и Core i9 10900K более высокого уровня.Последние чипы AMD являются частью линейки Ryzen 3000, например AMD Ryzen 9 3900X, Ryzen 7 3800X и Ryzen 7 3700X, или, совсем недавно, Ryzen 3 3300X и 3100. Если посмотреть на номер модели, вы увидите, что поколение первая цифра из четырех чисел (например, 8 в Core i7-8400 или 3 в Ryzen 7 3700X).

Как вы читаете названия и номера моделей?

Путаница марок и цифр, составляющих название продукта ЦП, может сбивать с толку. Intel и AMD подразделяют большинство своих чипов на три категории «хорошо, лучше, лучше», начиная с Core i3 / Ryzen 3, заканчивая Core i5 / Ryzen 5, Core i7 / Ryzen 7 и Core i9 / Ryzen 9. .Intel имеет Core i9-10900K на вершине своего основного стека продуктов, а также экстремальный / премиальный уровень, такой как Core i9-10980XE, по цене около 1000 долларов. Но для подавляющего большинства пользователей эти чипы не нужны и выходят за рамки ценового диапазона большинства людей.

Для пользователей с ограниченным бюджетом Intel предлагает чипы Celeron и Pentium (Pentium немного быстрее), а AMD предлагает линейку Athlon. На самом высоком уровне вы найдете AMD Threadripper и Intel Core X серии, а также Core X / i9 и Xeon W (оба упомянуты выше).

А как насчет номеров моделей, которые идут после 3, 5 или 7? Первая цифра обозначает поколение продукта (Intel Core i7-8700 — это процессор Core 8-го поколения, а AMD Ryzen 5 2600 — это процессор Ryzen 2-го поколения). Остальные числа просто обозначают различные модели в линейке: чем больше, тем лучше (с большим количеством ядер и / или более высокими тактовыми частотами), а буква «K» в конце чипа Intel означает, что он разблокирован для разгона. Лишь небольшая часть массовых чипов Intel имеет код «K», в то время как почти все процессоры AMD Ryzen разблокированы для разгона (обозначение «K» не требуется).X в конце номеров моделей AMD означает более высокие стандартные тактовые частоты.

Стоит ли разгонять?

Разгон, практика доведения процессора до предела его возможностей, заставляя его работать на тактовых частотах, превышающих заявленные, — это искусство, которое нравится многим энтузиастам. Но если вы не хотите видеть, насколько быстро вы сможете заставить свой чип работать без сбоев, разгон может не стоить времени или денег для обычного пользователя.

Чтобы ваш процессор достиг значительно более высоких тактовых частот, чем он рассчитан из коробки, вы, вероятно, потратите дополнительные средства на улучшенную систему охлаждения и материнскую плату, удобную для разгона.Хотя почти все последние чипы AMD в какой-то степени можно разогнать, если вы хотите подключиться к чипу Intel, вам придется доплатить за один из его процессоров серии K (которые вообще не поставляются с кулерами). К тому времени, когда вы учтете все эти дополнительные расходы, если вы еще не делаете покупки в верхней части стека ЦП, вам лучше выделить в бюджет еще 50–100 долларов (30–70 фунтов стерлингов) на ЦП, который поставляется с более высокие тактовые частоты из коробки. И помните, даже если у вас есть все необходимое оборудование, вы все равно можете получить чип, который плохо разгоняется.Или, что еще хуже, если вы не знаете, что делаете, вы можете повредить процессор или сократить срок его службы, подав на него слишком большое напряжение.

Каковы основные характеристики ЦП и о чем мне следует заботиться?

Если вы посмотрите спецификацию для данного процессора, вы увидите много цифр. Вот на что нужно обратить внимание.

  • Тактовые частоты: Измеряется в гигагерцах (ГГц). Это скорость, с которой работает чип, поэтому чем выше, тем быстрее. Большинство современных процессоров регулируют свою тактовую частоту вверх или вниз в зависимости от задачи и своей температуры, поэтому вы увидите базовую (минимальную) тактовую частоту и турбо (максимальную) скорость.
  • Ядра: Это процессоры внутри процессора. Современные процессоры имеют от двух до 64 ядер, а большинство процессоров содержат от четырех до восьми. Каждый способен решать свои задачи. В наши дни в большинстве случаев вам понадобится как минимум четыре ядра или как минимум четыре потока (см. Ниже).
  • Потоки: Это количество независимых процессов, которые чип может обрабатывать одновременно, что теоретически будет таким же, как количество ядер.Однако многие процессоры имеют возможность многопоточности, что позволяет одному ядру создавать два потока. Intel называет это Hyper-Threading, а AMD — SMT (одновременная многопоточность). Больше потоков означает лучшую многозадачность и повышенную производительность в многопоточных приложениях, таких как видеоредакторы и транскодеры.
  • TDP: Профиль теплового расчета / мощность (TDP) — это максимальное количество тепла, которое чип выделяет (или должен генерировать) на стандартных скоростях, измеряется в ваттах.Зная, что, например, Intel Core i7-8700K имеет TDP 95 Вт, вы можете быть уверены, что у вас есть кулер для процессора, который может справиться с таким количеством рассеивания тепла, а также что ваш блок питания может обеспечить достаточно энергии. Но учтите, что процессоры при разгоне выделяют значительно больше тепла. Хорошо знать, каков ваш TDP, чтобы вы могли получить правильное оборудование для охлаждения и питания для поддержки вашего процессора. Кроме того, более высокий TDP обычно совпадает с более высокой производительностью, хотя такие вещи, как размер узла процесса и общая эффективность архитектуры, также имеют значение.
  • Кэш: Встроенный кэш процессора используется для ускорения доступа к данным и инструкциям между процессором и ОЗУ. Существует три типа кэша: L1 — самый быстрый, но тесный, L2 — более просторный, но медленный, а L3 — просторный, но сравнительно медлительный. Когда данные, необходимые процессору, недоступны ни в одном из этих мест, он обращается к оперативной памяти, которая работает намного медленнее — отчасти потому, что физически она находится дальше, чем кеш-память процессора.

Не стоит уделять слишком много внимания размеру кэша, потому что его трудно приравнять к реальной производительности, и есть более важные факторы, которые следует учитывать.

  • IPC: Даже если у вас есть два процессора с одинаковой тактовой частотой и количеством потоков, если они от разных компаний или построены на разных архитектурах от одной компании, они будут производить разное количество IPC. (инструкций за такт). IPC сильно зависит от архитектуры процессора, поэтому чипы новых поколений (например, Ryzen 7 3700X с Zen2 против Ryzen 7 2700X с Zen +) будут лучше, чем старые.

IPC обычно не указывается в качестве спецификации и обычно измеряется с помощью тестов производительности, поэтому лучший способ узнать об этом — прочитать обзоры.

Что вам еще нужно: тактовая частота, количество ядер или потоков?

Ответ на этот вопрос действительно зависит от ваших обычных вычислительных задач. Более высокие тактовые частоты приводят к более быстрому реагированию и времени загрузки программы (хотя оперативная память и скорость хранения также являются ключевыми факторами). Более высокие тактовые частоты также означают, что однопоточные задачи (например, редактирование звука и некоторые старые приложения) могут выполняться быстрее. Многие популярные игры по-прежнему слабо многопоточны.

Но многие современные программы могут использовать преимущества большого количества ядер и потоков.Если вы занимаетесь многозадачностью или редактируете видео с высоким разрешением, или выполняете другие сложные, отнимающие много времени задачи, нагружающие процессор, вам следует расставить приоритеты по количеству ядер. Но для подавляющего большинства геймеров и пользователей компьютеров общего назначения, тактовая частота от 3-4 ГГц с четырьмя-восемью ядрами вполне достаточна.

Какой разъем нужен моей материнской плате для этого процессора?

Разъем материнской платы для процессора.

Для разных процессоров требуются разные типы сокетов. Если у вас уже есть материнская плата и вы не хотите ее заменять, вам необходимо приобрести процессор, соответствующий сокету вашей платы.В качестве альтернативы вам необходимо убедиться, что материнская плата, которую вы покупаете, совместима с вашим новым процессором.

Чтобы узнать, как выбрать материнскую плату, см. Наше руководство по покупке материнской платы 2020 года.

В своих компонентах Ryzen и Athlon текущего поколения (за исключением Threadripper) AMD использует единственный сокет — AM4. Это означает, что после обновления BIOS вы сможете установить чип Ryzen первого поколения на материнскую плату Ryzen второго поколения и наоборот. Но из-за ограничений, связанных с размером доступных данных, хранящихся внутри микросхем BIOS, и огромного количества процессоров, которые AMD выпустила на AM4, в последнее время эта проблема значительно усложнилась.

Intel, с другой стороны, в последние годы имеет тенденцию не поддерживать обратную совместимость со своими новыми чипами и старыми материнскими платами, даже если сокеты фактически такие же. Например, сокеты Intel LGA 1150 и 1151 отличаются одним выводом, а версия 1551, разработанная специально для чипов Core 8-го поколения, физически такая же, как и для предыдущих процессоров Core 6-го и 7-го поколений. Но эти старые материнские платы с разъемом 1151 не работают с новыми процессорами с разъемом 1151 разъем, потому что (по словам Intel) новые чипы (с большим числом ядер) имеют другие потребности в подсистеме подачи питания.Обратите внимание, что это снова произошло с переходом от ядра 9-го поколения (разъем LGA 1151) к 10-му поколению (разъем LGA 1200).

Эта сложность расстраивает как с точки зрения будущего обновления, так и означает, что вам придется покупать более новую и более дорогую материнскую плату для чипа текущего поколения, даже если более доступная плата предыдущего поколения имеет все необходимые функции. . Вот список всех текущих сокетов и соответствующих наборов микросхем для справки.

Таблица разъемов и чипсетов

16

05 B365, B360, h410

Intel Mainstream Intel Mainstream AMD Mainstream Intel HEDT AMD HEDT (Threadripper)
9016 Разъемы ЦП LGA 1200 LGA 1151 AM4 LGA 2066 TR4
Совместимые наборы микросхем Z490, h570, B460, Z370 Z370, h470 Z370 X570, X470, X370, B550, B450, B350, B450, A320, X300, A300 X299 X399

Нижняя строка CPU

Когда вы выбираете процессор, сначала спрашивайте собираемся с ним делать, а затем посмотрим, сколько вы можете выделить для этого, после того, как выясните, сколько вы тратите на другие компоненты, такие как SSD, RAM, GPU и PSU.Хотя процессоры важны, нет смысла сочетать высокоскоростной чип со слабой графикой (если вы не геймер) или медленным, вращающимся механическим жестким диском. Хотя чтение о таких спецификациях, как тактовая частота и количество потоков, полезно, лучший показатель производительности процессора — это объективные обзоры, подобные тем, которые мы пишем здесь о Tom’s Hardware.

БОЛЬШЕ: Иерархия процессоров: сравнение процессоров AMD и Intel

БОЛЬШЕ: Все обзоры процессоров

БОЛЬШЕ: Как выбрать материнскую плату

БОЛЬШЕ: Как продать бывшие в употреблении комплектующие для ПК

.

node.js — Как узнать количество текущих открытых сокетов в Node?

Переполнение стека

  1. Около
  2. Продукты

  3. Для команд
  1. Переполнение стека
    Общественные вопросы и ответы

  2. Переполнение стека для команд
    Где разработчики и технологи делятся частными знаниями с коллегами

  3. Вакансии
    Программирование и связанные с ним технические возможности карьерного роста

  4. Талант
    Нанимайте технических специалистов и создавайте свой бренд работодателя

  5. Реклама
    Обратитесь к разработчикам и технологам со всего мира

  6. О компании

.

Что такое сокет процессора? Базовое определение

Гнездо ЦП (Изображение предоставлено Mastermilmar / Shutterstock)

Гнездо ЦП использует ряд контактов для подключения процессора ЦП к материнской плате ПК. Если ЦП подключен через гнездо ЦП, он не припаивается и поэтому может быть заменен. Разъемы ЦП чаще встречаются на настольных ПК, чем на ноутбуках.

Когда покупает материнскую плату , поиск лучшей материнской платы — это не только обеспечение необходимых вам функций.Первый шаг — убедиться, что на материнской плате установлено правильное гнездо ЦП (и поддерживаемый набор микросхем ) для вашей модели ЦП.

Даже если у вас самый лучший процессор, он не будет работать с любым сокетом. Intel, как и AMD, предлагает разные типы сокетов для своих основных процессоров и для своих высокопроизводительных настольных ПК (HEDT).

Разъемы ЦП Intel и AMD

Ниже мы разбиваем разъемы ЦП потребителей для настольных ЦП Intel и AMD текущего и предыдущего поколений .

Бренд ЦП Название сокета ЦП ЦП Совместимые наборы микросхем Рынок
Intel LGA 2066 Ядро 10-го поколения X299 HEDT
Intel LGA 1200 Core 10-го поколения Z490, h570, B460, h510 Mainstream
Intel LGA 1151 Core 9-го поколения, Core 8-го поколения Z390, Z370, Z370, Q370, h470, B365 , B360, h410 Mainstream
AMD sTRX4 Ryzen Threadripper 3000 TRX40 HEDT
AMD TR4 Ryzen Threadripper 2000 и 1000 X399 HEDT

AMD AM4 Ryzen 3000, 2000 и 1000 X570, X470, X370, B550, B450, B350, B450, A320, X300, A300 Основной

Пользователи

Intel могут также определить, какой сокет процессора использует их чип, с помощью указаний Intel на этой странице и использовать инструмент Intel Product Compatibility Tool, чтобы узнать, какая материнская плата подходит для вашего процессора.

Эта статья является частью Tom’s Hardware Glossary .

Дополнительная литература:

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *