Как проверить ионистор: Покупки в Online-магазинах (DealExtreme.com, Ebay, Aliexpress): Нанотехнологичный суперконденсатор, ионистор, он же

Содержание

как определить напряжение, вольтаж конденсаторов

Ионистор — это суперконденсатор

Назначение ионистора — накапливать электрический заряд. И накапливает он его так же, как и обычный электрический конденсатор.
Из школьного курса физики: обычный конденсатор — это две пластины разделенный изолятором.
Когда на одной из платин появляется избыток электронов, а на другой — недостаток, электроны (-) с первой пластины устремляются поближе ко второй — положительно-заряженной (+).
И если отключить батарейку от конденсатора, то напряжение на нем останется, потому что на разных платинах разная плотность электронов.

Можно использовать обычный конденсатор для накопления энергии, но его емкость обычно очень мала.

Для чего используются конденсаторы?

Электростанции

Почти все электронные устройства имеют блок питания, который преобразует переменный ток, присутствующий в доме, в постоянный ток. Конденсаторы играют важную роль в преобразовании переменного тока в постоянный, устраняя электрические помехи. В источниках энергии используются электролитические конденсаторы различных размеров – от нескольких миллиметров до нескольких дюймов (или сантиметров).

Звуковые покрытия

Конденсаторы имеют множество применений в аудио оборудовании. Они блокируют постоянный ток на входе вс усилитель, предотвращая внезапные звуки или шумы, которые могут повредить колонки и наушники. Данные детали, используемые в аудиофильтрах, позволяют контролировать басы.

Компьютеры

Цифровые схемы в компьютерах передают электронные импульсы на высоких скоростях. Эти потоки в сети могут создавать помехи сигналам от соседней цепи, поэтому разработчики высокотехнологичного оборудования применяют конденсаторы для минимизации помех.

Высокотехнологичный конденсатор

Слайды презентации

Слайд 1

Урок физики в 11 классе Тема: Формула Томсона

Учитель физики Тетерина Н.В. МОУ « Красногорская СОШ №1» 2010 год

Слайд 3

Академик Мандельштам отмечал: “Теория колебаний объединяет, обобщает различные области физики… Каждая из областей физики — оптика, механика, акустика — говорит на своем “национальном” языке. Но есть “интернациональный” язык, и это — язык теории колебаний… Изучая одну область, вы получаете тем самым интуицию и знания совсем в другой области”.

Слайд 4

Лови ошибку!!!

Слайд 5

Проверь!!!

Слайд 6

Ключевые слова

Период Емкость Индуктивность Зависимость Электромагнитный контур

Слайд 7

Виртуальная лаборатория (видео эксперимент)

Слайд 8

Виртуальная лаборатория (интерактивная модель)

Слайд 9

Собственная частота контура

Слайд 10

Период свободных колебаний в контуре:

Слайд 11

ТОМСОН Уильям (Thomson William)

Лорд Кельвин (1824-1907), английский физик Заложил основы теории электромагнитных колебаний и в 1853 вывел формулу зависимости периода собственных колебаний контура от его емкости и индуктивности (формула Томсона).

Слайд 12

получил образование в университетах Глазго и Кембриджа .

с 1846 до 1899 г. был профессором натуральной философии в университете Глазго .

посвящен в рыцари в 1866 г

получил звание пэра и титул лорда Кельвина в 1892 г

Король викторианской физики

Слайд 13

Чему равен период собственных колебаний в контуре, если его индуктивность 2,5 Гн, а емкость 1,5 мкФ?

Т = 12,16 * 10-3с = 12,16мс

Слайд 14

Автобусная остановка

Слайд 15

Задачи:

Подставьте в формулу Томсона следующие значения: L = 0,5 Гн С = 0,5 мкФ Вычислите период, а затем частоту. Ответ: Т = 0,0031 с √ = 320 Гц

Слайд 16

Конденсатор какой электроемкости следует подключить к катушке индуктивности L= 20 мГн, чтобы в контуре возникли колебания с периодом Т=1 мс? Ответ: С= 1,27 мкФ

Слайд 17

Как изменится циклическая частота, если в колебательном контуре заменят конденсатор на другой меньшей в 36 раз емкостью? Ответ: частота увеличится в 6 раз

Слайд 18

Как изменится период свободных колебаний в электрическом контуре при увеличении электроемкости конденсатора в 2 раза? Ответ: увеличится в 1,4 раза

Слайд 19

ПОДВЕДЕНИЕ ИТОГОВ

«Счастливая случайность выпадает лишь на долю подготовленного ума» Л. — возведение в степень.
Допускаются также следующие функции: sqrt — квадратный корень, exp — e в указанной степени, lb — логарифм по основанию 2, lg — логарифм по основанию 10, ln — натуральный логарифм (по основанию e), sin — синус, cos — косинус, tg — тангенс, ctg — котангенс, sec — секанс, cosec — косеканс, arcsin — арксинус, arccos — арккосинус, arctg — арктангенс, arcctg — арккотангенс, arcsec — арксеканс, arccosec — арккосеканс, versin — версинус, vercos — коверсинус, haversin — гаверсинус, exsec— экссеканс, excsc — экскосеканс, sh — гиперболический синус, ch — гиперболический косинус, th — гиперболический тангенс, cth — гиперболический котангенс, sech — гиперболический секанс, csch — гиперболический косеканс, abs — абсолютное значение (модуль), sgn — сигнум (знак), logP — логарифм по основанию P, например log7(x) — логарифм по основанию 7, rootP — корень степени P, например root3(x) — кубический корень.

Таблица синтаксиса математических выражений

ГруппаКонстанты и переменныеОперацииТригонометрические функцииОбратные тригонометрические функцииГиперболические функции

Рассчитать

save Сохранить extension Виджет

Вычисление производной

Вычисление производной — дело нехитрое, достаточно знать несколько простых правил и формулы дифференцирования простых функций; сложнее в этом онлайн калькуляторе было сделать интерпретатор математических выражений и алгоритм упрощения полученного результата, но об этом как-нибудь в другой раз…

Правила дифференцирования

1) производная суммы:
2) производная произведения:
3) производная частного:
4) производная сложной функции равна произведению производных:

Таблица производных

Производная степенной функции:
Производная показательной функции:
Производная экспонециальной функции:
Производная логарифмической функции:
Производные тригонометрических функций:,,,
Производные обратных тригонометрических функций:,,,
Производные гиперболических функций:

Единица и формулы расчёта

Ёмкость в виде электрического свойства, способного хранить заряды, измеряется в фарадах (Ф) и обозначается С. Величина названа в честь английского физика Майкла Фарадея. Конденсатор ёмкостью 1 фарад способен хранить заряд в 1 кулон на пластинах с напряжением 1 вольт. Значение С всегда положительно.

Математическое выражение фарада

Ёмкость конденсатора — постоянная величина, означающая потенциальную способность хранить энергию. Количество заряда, хранимое в отдельно взятый момент, определяется уравнением Q=CV, где V — приложенное напряжение. Таким образом, регулируя напряжение на пластинах, можно увеличивать или уменьшать заряд. Эта формула ёмкости в виде C=Q/V в единичных значениях определяет, в чём измеряется ёмкость конденсатора в СИ, и является математическим выражением фарада.

Специалисты по электронике единицу в один фарад считают не совсем практичной, поскольку она представляет собой огромное значение. Даже 1/1000 F — это очень большая ёмкость. Как правило, для реальных электрических компонентов применяют следующие величины:

  • пикофарад — 10—12 Ф;
  • нанофарад — 10—9 Ф;
  • микрофарад — 10—6 Ф.

Диэлектрическая проницаемость

Фактор, благодаря которому изолятор определяет ёмкость конденсатора, называется диэлектрической проницаемостью. Обобщённая формула расчёта ёмкости конденсатора с параллельными пластинами представлена выражением C= ε (A / d), где:

  • А — площадь меньшей пластины;
  • d — расстояние между ними;
  • ε — абсолютная проницаемость используемого диэлектрического материала.

Диэлектрическая проницаемость вакуума ε0 является константой и имеет значение 8,84х10—12 фарад на метр. Как правило, проводящие пластины разделены слоем изоляционного материала, а не вакуума. Чтобы найти ёмкость конденсатора, пластины которого находятся в воздухе, можно воспользоваться значением ε0. Разницей диэлектрической проницаемости атмосферы и вакуума можно пренебречь, поскольку их значения очень близки.

На практике в формулах нахождения ёмкости конденсатора используется относительная диэлектрическая проницаемость в качестве коэффициента, означающая, насколько электрическое поле между зарядами уменьшается в диэлектрике по сравнению с вакуумом. Некоторые значения этой величины для различных материалов:

  • 1,0006 — воздух;
  • 2,5—3,5 — бумага;
  • 3—10 — стекло;
  • 5—7 — слюда.

Принцип работы RC цепи

Как вы помните, конденсатор представляет из себя две обкладки на некотором расстоянии друг от друга.

Вы, наверное, помните, что его емкость зависит от площади обкладок, от расстояния между ними, а также от вещества, которое находится между обкладками.  Или формулой для плоского конденсатора:

где

Ладно, ближе к делу. Пусть у нас имеется конденсатор. Что с ним можно сделать? Правильно, зарядить 😉  Для этого берем источник постоянного напряжения и подаем заряд на конденсатор, тем самым заряжая его:

В результате, у нас конденсатор зарядится. На одной обкладке будет положительный заряд, а на другой обкладке – отрицательный:

Даже если убрать батарею, у нас заряд на конденсаторе все равно сохранится в течение какого-то времени.

Сохранность заряда зависит от сопротивления материала между пластинами. Чем оно меньше, тем быстрее со временем будет разряжаться конденсатор, создавая ток утечки. Поэтому самыми плохими, в плане сохранности заряда, являются электролитические конденсаторы, или в народе – электролиты:

Но что произойдет, если к конденсатору мы подсоединим резистор?

Конденсатор разрядится, так как цепь станет замкнутой. Разряжаться он будет через резистор. В  разряде конденсатора через резистор и заложен весь принцип работы RC цепочки.

Основные формулы ёмкости

Базовый расчёт конденсатора предполагает выявление зависимости емкости и заряда, удерживаемого на элементе, а также напряжением на пластинах.

C=QVC=QV

C – емкость, или объём в Фарадах
Q – заряд, удерживаемый на пластинах в кулонах
V – разность потенциалов между пластинами в вольтах

Это уравнение используется для расчета работы, необходимой для зарядки конденсатора и энергии, хранящейся в нем.

Формула энергии

W=∫Q0V dQW=∫0QV dQ

W=∫Q0qC dQW=∫0QqC dQ

W=12CV2

Важно! Необходимо знать, какое влияние конденсатор будет оказывать на любую цепь, в которой он работает. Он не только предотвращает прохождение постоянной составляющей тока сигнала, но и оказывает влияние на любой переменный сигнал

Реактивное сопротивление

В цепи постоянного тока помимо батареи может присутствовать резистор, который оказывает сопротивление току в цепи. То же справедливо и для схемы переменного тока с элементом, накапливающим заряд. Конденсатор с небольшой площадью пластины позволяет хранить только небольшое количество заряда, и это будет препятствовать протеканию тока. Конденсатор имеет определенное реактивное сопротивление, и оно зависит от его величины, а также от частоты срабатывания. Чем выше частота, тем меньше реактивное сопротивление.

Фактическое реактивное сопротивление можно вычислить по формуле:

Xc = 1 / (2 pi f C)

где

Xc – ёмкостное реактивное сопротивление в Омах.
f – частота в Герцах.
C – ёмкость в Фарадах.

Текущий расчет

Реактивное сопротивление конденсатора, рассчитанное по приведенной выше формуле, измеряется в Омах. Затем ток, протекающий в цепи, может быть рассчитан обычным способом с использованием закона Ома:

V = I Xc

Главный показатель конденсатора

Оцените статью:

Конденсатор и емкость, использование конденсаторов, статьи начинающим радиолюбителям

Как проверить конденсатор, неисправности конденсаторов и их устранение

Рассмотрены возможные неисправности конденсаторов, способы проверки при помощи подручных средств и приборов. Как показывает практика ремонта за последние годы, наибольшее число отказов аппаратуры происходит по вине электролитических конденсаторов. При этом наблюдается снижение числа отказов по …

2
6143
0

Как определить емкость конденсатора

Маркировка конденсаторов при помощи цветового кода применяется достаточно редко. Значение емкости обычно пишется на корпусе прибора. Однако размер надписи на миниатюрных компонентах поверхностного монтажа столь мал, что ее невозможно прочесть. Иногда же маркировка неразборчива …

0
2533
0

Как узнать полярность электролитического конденсатора по минимуму тока утечки

Очень легко сделать ошибку при установке на плату электролитических конденсаторов, особенно импортного производства, так как справочную информацию по ним найти трудно, а на корпусе полярность не всегда указана. В этом случае удобно воспользоваться схемой, приведенной на рис. 1, которая позволит …

1
3908
0

Ионистор — конденсатор большой емкости

В последние годы появился новый класс приборов, функционально близких к конденсаторам очень большой емкости, по существу, занимающих положение между конденсаторами и источниками питания. Это — ионисторы, конденсаторы с двойным электрическим слоем. Номинальное напряжение ионистора зависит от вида…

0
2056
0

Использование неполярных конденсаторов

Довольно трудно найти неполярные конденсаторы (с изоляцией из слюды, бумаги или пленки) большой емкости с низким рабочим напряжением (менее 25 В). Однако иногда нужны именно такие компоненты, в частности при построении импульсных генераторов на логических вентилях с очень большим периодом…

2
3326
0

Применение электролитических конденсаторов

Конденсаторы могут применяться в цепях как постоянного, так и переменного тока. Для цепей постоянного тока используют в основном электролитические конденсаторы. При монтаже конденсатора его плюсовой вывод присоединяют к положительному полюсу цепи с учетом соответствия напряжений участков цепи, а…

0
2195
0

Как правильно выбрать конденсатор

В цепях с высокой стабильностью параметров, например в колебательных контурах, применяют керамические и воздушные конденсаторы с высоким классом точности. В цепях, к которым не предъявляются высокие требования по стабильности, например в цепях сглаживающих фильтров выпрямителей, фильтров развязки и…

0
2018
0

Радиодетали, электронные блоки и игрушки из китая:

Ионисторы Panasonic: физика, принцип работы, параметры — Компоненты и технологии

При реализации автономного питания довольно часто также необходимо реализовать начальные большие кратковременные токи (например, ручной электроинструмент с аккумуляторным питанием), и обойтись только аккумулятором не представляется возможным. Тогда используют комбинацию аккумулятор (или батарея)/электролитический конденсатор. Аккумулятор или батарея реализуют долговременное энергонезависимое питание, а электролитический конденсатор — кратковременный большой ток в нагрузку. Относительно недавно появился новый класс приборов — ионисторы. В отличие от батарей, аккумуляторов или электролитических конденсаторов, где используются необратимые, обратимые химические реакции или классический заряд конденсатора соответственно, в ионисторах применяется механизм образования «двойного электрического слоя». Ионисторы обладают рядом преимуществ по сравнению с вышеприведенными устройствами: это широкий температурный диапазон, большая емкость, высокое сопротивление изоляции (низкие токи утечки), длительный срок службы, отсутствие необходимости контроля процесса зарядки, до нескольких десятков тысяч циклов заряд/разряд.

Сегодня ионисторы выпускаются многими производителями, как отечественными, так и зарубежными. В данной статье использованы материалы компании Panasonic, и на примере ионисторов данной компании, получивших фирменное название Gold Capacitors (Gold Cap), мы рассмотрим их физику и принцип работы, возможные варианты конструкции и эквивалентной схемы, характеристики и параметры, а также рекомендации по возможному применению.

 

Физико-химические основы работы ионистора

Известно, что обычные конденсаторы имеют многослойный или монолитный диэлектрик между двумя обкладками. В алюминиевом электролитическом конденсаторе, например, в качестве диэлектрического слоя используется пленка оксида алюминия, а в танталовом конденсаторе — пленка оксида тантала. Ионистор же не имеет диэлектрического слоя, в нем применяется физический механизм образования двойного электрического слоя, который работает аналогично заряженному диэлектрику. Процесс зарядки/разрядки происходит в слое ионов, сформированном на поверхностях положительного и отрицательного электродов, к примеру, из активированного угля (рис. 1). Под действием приложенного напряжения анионы и катионы движутся к соответствующему электроду и накапливаются на поверхности электрода, образуя, таким образом, с зарядом электрода двойной электрический слой. Вследствие этого и появилось название «конденсатор с двойным электрическим слоем» (electric double layer capacitor — EDLC).

Рис. 1. Образование двойного электрического слоя на поверхностях положительного и отрицательного электродов, к примеру, из активированного угля

 

Принцип работы и возможные конструкции

Существует два типа электролитов, которые чаще всего используются сейчас производителями ионисторов: водные (водорастворимые) и органические (водонерастворимые). Безводный электролит позволяет прикладывать напряжение до 3 В к ячейке ионистора, что в два раза выше по сравнению с водорастворимым электролитом, для которого это напряжение не превышает 1,5 В. В данном случае двойной электрический слой работает как изолирующий и при приложении постоянного внешнего напряжения не позволяет протекать сквозному току. При конкретном уровне напряжения определенной полярности за счет электрохимических процессов начнет протекать ток. Величина этого напряжения названа «напряжением разложения» или «напряжением электрохимического распада электролита». Дальнейшее увеличение напряжения заставит электролит разлагаться более интенсивно, приводя к появлению дополнительного тока, и ионистор выйдет из строя. Поэтому при зарядке приложенное к ионистору напряжение ограничено напряжением разложения, вследствие чего довольно часто ионисторы соединяют последовательно.

Как было сказано выше, положительные и отрицательные заряды формируются на поверхности электрода, образуя, таким образом, с зарядом электрода двойной электрический слой. Границей раздела в этом случае будет двойной электрический слой (рис. 2а). Эта область увеличивается при приложении более высокого напряжения (рис. 2б), и накапливаемый заряд увеличивается. Толщина двойного электрического слоя очень мала и сопоставима с размером молекулы, то есть около 5–10 нм. В качестве электродов, например, в ионисторах Panasonic используется активированный уголь (в виде мелкодисперсной фракции), изготовленный по специальной порошковой технологии, и органический электролит. Электролит проникает между частицами активированного угля, и электрод, таким образом, «пропитан» электролитом. Общую емкость ионистора можно представить, как большое количество малых конденсаторов, где каждая частица из активированного угля — своеобразный электрод для малого конденсатора с емкостью, обусловленной двойным электрическим слоем.

Рис. 2. Образование двойного электрического слоя (а) и увеличение заряда при приложении напряжения (б)

Общая емкость ионистора может быть представлена как:

где d — толщина двойного электрического слоя 5–10 нм, S — общая площадь поверхности электрода из активированного угля.

Поскольку электрод ионистора представляет собой совокупность огромного количества частиц активированного угля, он имеет очень большую «развитую» площадь поверхности, приблизительно до 2500–3000 см²/г. Это позволяет получить емкость до нескольких десятков фарад.

На рис. 3 представлена одна из возможных конструкций ионистора в поперечном разрезе на примере EN серии Panasonic. Между электродами для предотвращения проникновения ионов расположен «сепаратор» с хорошими изоляционными свойствами, что позволяет не допустить короткого замыкания между электродами.

Рис. 3. Одна из возможных конструкций ионистора в поперечном разрезе на примере EN серии Panasonic

Эквивалентная схема

Поскольку двойной электрический слой сформирован на поверхности активированного угля, который находится в контакте с электролитом, для ионисторов может быть применена эквивалентная схема с использованием условных конденсаторов (рис. 4). Каждый малый конденсатор на основе структуры частица активированного угля/электролит будет обладать емкостью двойного электрического слоя — Cn. Значения сопротивлений заряда Rsn в процессе заряда и сопротивление нескомпенсированных ионов Rln могут увеличиваться или уменьшаться в зависимости от расстояния между «токоведущими» электродами, скоростью передвижения ионов, контактного сопротивления между частицами активированного угля и других параметров.

Рис. 4. Схематическое изображение многослойной структуры активированный уголь/электролит

Эквивалентная схема ионистора на основе параллельного соединения сопротивлений и емкостей малых конденсаторов приведена на рис. 5а. R1, R2 и Rn — сопротивления изоляции (внутреннее сопротивление частиц активированного угля), C1, C2 и Cn — соответствующая емкость двойного электрического слоя для сопротивлений R1, R2 и Rn.

Рис. 5. Варианты эквивалентной схемы ионистора на основе малых конденсаторов двойного электрического слоя от каждой частицы активированного угля и сопротивления изоляции (сопротивления частиц активированного угля) (а) и с учетом сопротивлений электродов и сепаратора (б)

Если приложить напряжение (V) к эквивалентной схеме, приведенной на рис. 5б, которая учитывает сопротивление электродов и сепаратора, то зарядный ток (i) можно описать согласно:

Необходимо отметить, что при уменьшении величины зарядного тока (i) время заряда увеличится. Зарядный ток, согласно уравнению (2), графически будет представлен как прямая линия. Однако фактически кривая зарядного тока носит экспоненциальный характер (рис. 6а, б). Ток (i) в пределах ионистора может быть представлен как сумма токов, протекающих через каждый из малых конденсаторов (рис. 6б, 7а). Также необходимо отметить, что, если значение постоянной времени CxR мало, время зарядки тоже будет мало, и наоборот, если значение CxR большое, время зарядки будет большое. То есть если время зарядки ограничено несколькими минутами или источник заряда ограничен, ионистор не может достаточно зарядиться, чтобы запасти заданную энергию в течение необходимого времени.

Рис. 6. Зависимость зарядного тока от времени заряда: а) расчетная и реальная зависимости; б) как сумма токов через малые конденсаторы

Рис. 7. Эквивалентная схема со значениями напряжений сразу после процесса заряда и после разряда (а) и понижение напряжения в начале работы вследствие недостаточного заряда малых конденсаторов (б)

Электрические, эксплуатационные и надежностные параметры ионисторов

Емкость

При аналогичных условиях эксплуатации и тестировании емкость ионистора подобна эффективной емкости батареи. Как было сказано ранее, ионистор можно представить в виде эквивалентной схемы из малых конденсаторов, имеющих различные значения сопротивления. Если начальное зарядное напряжение ниже напряжения полного заряда (V0), то в начале измерения емкости после снятия зарядного напряжения напряжение на ионисторе упадет вниз (рис. 8). Это связано с наличием не полностью заряженных малых конденсаторов с большим внутренним сопротивлением. Однако, увеличивая время зарядки, эти малые конденсаторы с большим внутренним сопротивлением зарядятся, что приведет к увеличению измеренной емкости.

Рис. 8. Зависимость напряжения для ионистора от времени

Емкость ионистора может быть оценена следующим образом:

где С — электростатическая емкость (Ф), I — тестовый ток (А), V1V2 — тестовый диапазон напряжений, (В) t — время (c). Емкость, конечно же, зависит от тока. Если ток разряда большой или конденсатор разряжался в течение длительного периода времени, результирующая емкость будет мала. И наоборот, если ток разряда мал или конденсатор разряжался в течение короткого периода времени, измеренная электростатическая емкость будет большая. Поэтому, чтобы иметь воспроизводимые измерения, используют стандартный ток разряда 1 мA/Ф.

Внутреннее сопротивление

Внутреннее сопротивление ионистора, например, по сравнению с электролитическими конденсаторами, велико, поскольку эквивалентная схема ионистора состоит из соединений большого количества малых конденсаторов, имеющих различные значения внутреннего сопротивления. Обычно значения этих сопротивлений могут быть представлены для постоянного напряжения. Но, чтобы получить их истинное значение, необходимо использовать комплексное сопротивление Z (к примеру на 1 кГц). Если измерять ток от 30 до 60 мин после приложения номинального напряжения, он будет довольно большой, до 10 мкА, вследствие того, что этот ток является суммой зарядных токов, протекающих через малые конденсаторы. Так как чрезвычайно трудно определить токи утечки в ионисторах, их чаще всего не указывают в документации. Требуется минимум 10 часов, чтобы полностьюзарядить ионистор так, чтобы появилась возможность оценить ток утечки.

Характеристика заряда

Характеристика зарядки ионистора при условии некоторых допущений может быть представлена выражением (4):

На рис. 9а приведена зависимость напряжения на ионисторе Panasonic EECF5R5U104 от времени заряда при различном сопротивлении нагрузки. С увеличением сопротивления характеристика становится более пологая, а время зарядки увеличивается.

Время разряда для постоянного тока и постоянного сопротивления нагрузки при разряде приведены в выражениях (5) и (6) соответственно:

где: t — время, С — емкость, V0 — внутреннее напряжение, V1 — напряжение после t(с), I — ток нагрузки, R — сопротивление нагрузки.

На рис. 9б приведена зависимость напряжения ионистора Panasonic EECF5R5U104 от времени разряда при различном времени процесса зарядки. Видно, что, например, при изменении времени процесса заряда с одного часа до 100 часов, напряжение фактически меняется с 2,5, до 2,8 В, то есть процесс зарядки ионистора может быть очень быстрым.

Рис. 9. Зависимость напряжения ионистора от времени заряда при различном сопротивлении (а) и времени разряда при различном времени заряда (б)

Характеристика разряда и саморазряда

Характеристика разряда ионистора с учетом (3) может быть представлена следующим образом:

Характеристика саморазряда ионистора может быть представлена следующим образом:

где RL — сопротивление изоляции (сумма сопротивлений частиц активированного угля электрода).

Предполагаемый срок эксплуатации, срок службы и tback-up

Предполагаемый срок эксплуатации может быть оценен следующим образом:

Срок службы ионистора, как правило, ограничен временем tback-up, которое задано по условиям эксплуатации. tback-up (Back-up time) — это время, когда ионистор работает как резервный источник питания между циклами заряда и разряда.

Например, оценим tback-up для F-типа ионистора Panasonic, EECF5R5h205 (5,5 В, 1,0 Ф), полный заряд при 5,0 В постоянного напряжения, разрядный ток 10 мкА. Температура при разряде –40 °C, напряжение, до которого разрядится ионистор, — 2 В.

Параметр tback-up может быть рассчитан следующим образом:

где C — емкость ионистора (Ф), i — ток в течение tback-up (A), iL — ток утечки (A), R — внутреннее сопротивление ионистора (Ом на 1 кГц), V1 — напряжение, до которого разрядится ионистор (В), V0 — приложенное напряжение (В).

Тогда C = 0,8 Ф (1,0 Ф – 20%), R = 50 Ом, V0 = 5 В, V1 = 2 В, i =10 мкA. Следовательно: tback-up = 0,8×(5–0,0005–2)/(10+2×10–6) = 55 часов.

Этот расчет показывает, что время, которое ионистор будет работать при приведенных условиях как резервный источник питания, составляет около 55 часов.

Если мы возьмем, например, реальное изменение емкости в 30% при четырехкратном изменении внутреннего сопротивления, при 85 °C и 5,5 В, то после 1000 часов эксплуатации tback-up изменится и составит около 38 часов.

Для учета температурного фактора для ионисторов можно использовать уравнение Аррениуса, согласно которому срок службы устройства удваивается при уменьшении температуры окружающей среды на каждые десять градусов.

При изменении напряжения с 5,5 до 5 В фактор напряжения для изменения емкости составит 1,1. Таким образом, предполагаемый срок эксплуатации = срок службы × температурный фактор × фактор напряжения = 1000 (ч)×22,6×1,1 = 24 800 (ч) = 2,8 года.

Приведенные оценки носят рекомендательный характер. При выборе ионистора, конечно, надо учитывать все необходимые условия и факторы.

Диапазон емкостей ионистора занимает промежуточное положение между емкостями алюминиевого электролитического конденсатора и аккумуляторами и батареями (рис. 10). Ионистор главным образом используется как резервное или автономное питание, а также как замена батарей или аккумуляторов.

Рис. 10. Диапазон емкостей ионистора, алюминиевого электролитического конденсатора, аккумуляторов и батарей

Срок службы. Срок службы ионисторов очень большой. Фактически, когда ионистор находится в надлежащих условиях, он может работать столь же долго, как и само оборудование, в котором он используется.

Широкий рабочий температурный диапазон. Батареи обычно восприимчивы к перепадам температуры и имеют тенденцию терять энергию в процессе нагревания или при низких температурах, например, ниже 0 °C. Некоторые ионисторы могут работать вплоть до индустриального температурного диапазона.

Нет необходимости в контроле заряда. Ni-Cd батареи выделяют тепло в процессе заряда или разряда, которое сокращает срок их службы, поэтому возникает необходимость в схеме контроля заряда и нагрузки. Ионисторы не имеют никакого ограничения по процессу заряда и разряда и не нуждаются в контроле процесса заряда.

Скорость заряда, повторный заряд/циклы разряда. Для ионисторов возможны быстрый заряд и большое количество циклов заряд/рязряд (до нескольких десятков тысяч), поскольку в них не происходит никаких внутренних химических реакций, как, например, в батареях. Ионисторы идеально подходят для схем, в которых необходимы быстрые процессы заряда.

Экологическая чистота. В ионисторах Panasonic не используется никаких токсичных материалов типа свинца, кадмия или ртути. Ионисторы Panasonic удовлетворяют всем требованиям RoHS.

Типы и характеристики ионисторов Panasonic

Компания Panasonic предлагает широкий диапазон типов ионисторов в различных корпусах. Эти устройства могут отличаться по рабочему температурному диапазону, емкости, напряжению и току, а также по применению (рис. 11, табл. 1). В зависимости от тока, ионисторы можно условно разделить на слабо-, средне- и сильноточные (табл. 2, 3). Ионисторы с небольшими токами, как правило, используются в схемах резервного питания, питания схем памяти, цифровых устройствах и т. д. Ионисторы с большими токами (например, HW-серия) используются в схемах управления электродвигателями, в автомобильной электронике и т. д.

Рис. 11. Различные семейства ионисторов Panasonic

Таблица 1. Рекомендуемые серии для типичных применений

Таблица 2. Диапазон емкостей

Код емкости: 223 = 0,022 Ф, 104 = 0,1 Ф, 106 = 10 Ф *EN224 = 0,2 Ф = 2,1 В

Таблица 3. Диапазон токов

Как говорилось ранее, процесс заряда ионистора с учетом некоторых допущений может быть описан выражением (4). На рис. 12а приведена характеристика заряда для ионистора EECF5R5U105 фирмы Panasonic при двух различных сопротивлениях. Поскольку зависимость экспоненциальна, фактически различия наблюдаются на начальном этапе зарядки, в течение 6–7 минут. На рис. 12б для этого же ионистора приведена характеристика саморазряда. Видно, что процесс заряда оптимален при времени заряда больше 24 часов, однако на процесс саморазряда время заряда влияет не сильно, поскольку внутреннее сопротивление ионистора в этом случае изменяется лишь за счет сопротивления перераспределенных ионов. Чем ниже температура работы ионистора, тем больше время саморазряда, и срок службы устройства будет существенно больше (рис. 13). Поскольку зависимость времени разряда от емкости и сопротивления нагрузки прямо пропорциональная, а от напряжения — логарифмическая (смотри зависимость 6), то при большей емкости ионистора и сопротивлении нагрузки, при прочих равных (температура, условия заряда и т. д.), время процесса разряда будет больше (рис. 14а, б). Характеристика разряда, в отличие от саморазряда, зависит от температуры меньше (рис. 15). Изменение емкости, например, для EECF5R5U104 (5,5 В, 0,1 Ф) (условия измерения: 5,5 В, +70 °С) от тока разряда, приложенного напряжения и температуры фактически начинают проявляться при времени, превышающем 1000 часов (рис. 16).

Рис. 12. Характеристика заряда (а) и саморазряда (б) для EECF5R5U105 (5,5 В, 1,0 Ф) при +20 °С

Рис. 13. Характеристика саморазряда в зависимости от температуры для EECS0HD104V (5,5 В, 0,1 Ф)
Условия заряда: 5 В, 24 часа

Рис. 14. Характеристика разряда для ионисторов различной емкости при сопротивлении 1 МОм (а) и в зависимости от сопротивления для EECS0HD473V (5,5 В, 0,047 Ф) (б). Условия заряда: 5 В, 24 часа, +20 °С

Рис. 15. Характеристика разряда в зависимости от температуры при сопротивлении 250 кОм для EECF5R5U104 (5,5 В, 0,1 Ф). Условия заряда : 5 В, 24 часа, +20 °C

Рис. 16. Зависимость между током разряда (а), приложенным напряжением (б), температурой (в) и изменением емкости для EECF5R5U104 (5,5 В, 0,1 Ф). Условия измерения: 5,5 В, +70 °С

Универсальные пробники-индикаторы CAVR.ru

Рассказать в:

С помощью пробника можно проверить наличие напряжения в контролируемой цепи, определить его вид (постоянное или переменное), а также проводить «прозвонку» цепей на исправность. Схема устройства показана на рис. 1 Светодиод HL2 индицирует наличие на входе (вилки ХР1 и ХР2) постоянного напряжения определенной полярности. Если на вилку ХР1 поступает плюсовое напряжение, а на ХР2 — минусовое, через токоограничивающий резистор R2, защитный диод VD2, стабилитрон VD3 и светодиод HL2 протекает ток, поэтому светодиод HL2 будет светить. Причем яркость его свечения зависит от входного напряжения. При обратной полярности входного напряжения он светить не будет.

Рис. 1

Светодиод HL1 индицирует наличие на входе устройства переменного напряжения. Он подключен через ограничивающие ток конденсатор С1 и резистор R3, диод VD1 защищает этот светодиод от минусовой полуволны переменного напряжения. Одновременно со светодиодом HL1 будет светить и HL2. Резистор R1 служит для разрядки конденсатора С1. Минимальное индицируемое напряжение — 8 В

В качестве источника постоянного напряжения для режима «прозвонки» соединительных проводов
применен ионистор С2 большой емкости. Перед проведением проверки необходимо его зарядить. Для этого устройство подключают к сети 220 В примерно на пятнадцать минут. Ионистор заряжается через элементы R2, VD2, HL2, напряжение на нем ограничено стабилитроном VD3. После этого вход устройства подключают к проверяемой цепи и нажимают на кнопку SB1. Если провод исисправен, через него, контакты этой кнопки, светодиод HL3, резисторы R4, R5 и плавкую вставку FU1 потечет ток и светодиод HL3 станет светить, сигнализируя об этом. Запаса энергии в ионисто-ре достаточно для непрерывного свечения этого светодиода около 20 мин.

Ограничительный диод VD4 (напряжение ограничения не превышает 10,5 В) совместно с плавкой вставкой FU1 защищает ионистор от высокого напряжения в случае, если при контроле входного напряжения или зарядке ионистора будет случайно нажата кнопка SB1. Плавкая вставка перегорит и потребуется ее замена.

В устройстве применены резисторы МЯТ, С2-23, конденсатор С1 — К73-17в, диоды 1 N4007 можно заменить на диоды 1 N4004, 1 N4005, 1N4006, стабилитрон 1 N4733 — на 1N5338B. Все детали смонтированы на макетной монтажной плате с применением проводного монтажа.

Еще один пробник в виде щупа собран на светодиодах и кроме «прозвонки» цепей позволяет определить тип напряжения (постоянное или переменное) и приближенно оценить его значение в интервале от 12 до 380 В. Автор этого устройства — А. ГОНЧАР из г. Рудный Кустанайской обл. Казахстана. Ему по роду своей деятельности часто приходится контролировать работоспособность и ремонтировать различные устройства, где примененяются различные по значению (36, 100, 220 и 380 В) постоянные и переменные напряжения. Для проверки подобных цепей предлагаемый пробник очень удобен, поскольку не требуется проводить переключений при различном контролируемом напряжении. При разработке этого устройства за основу был принят пробник, описание которого опубликовано в «Радио» № 4 за 2003 г на с. 57 (Сорокоумов В. «Универсальный пробник-индикатор»). С целью расширения функциональных возможностей он был доработан.

Рис. 2

Схема модернизированного пробника показана на рис. 2. Он содержит гасящий резистор R1, шкалу из двухцветных светодиодов HL1-HL5, накопительный конденсатор С1 и индикатор фазного провода на неоновой лампе HL7. Устройство может работать в трех режимах: индикатора напряжения,указателя фазного провода и «прозвонки» — индикатора проводимости электрической цепи.

Для индикации напряжения вход устройства — штырь ХР1, вставленный в гнездо XS2, и гнездо XS1 (с помощью гибкого изолированного провода), подключают к контролируемым точкам. В зависимости от разности потенциалов этих точек через резисторы R1-R6 и стабилитрон VD1 протекает различный ток. С увеличением входного напряжения возрастает и ток, что приводит к росту напряжения на резисторах R2- R6. Светодиоды HL1-HL5 поочередно загораются, сигнализируя о значении входного напряжения Номиналы резисторов R2-R6 подобраны так, чтобы при напряжении 12 В и более загорался светодиод HL5, 36 В и более — HL4, 127 В и более — HL3, 220 В и более — HL2 и 380 В и более — HL1.

В зависимости от полярности входного напряжения цвет свечения будет различным. Если на штыре ХР1 плюс относительно гнезда XS1 светодиоды горят красным цветом, если минус — зеленым. При переменном входном напряжении цвет свечения — желтый. Следует отметить, что при переменном или минусовом входном напряжении может гореть и светодиод HL6.

В режиме указателя фазного провода в сети любой из входов (ХР1 или XS2) подключают к контролируемой цепи и прикасаются пальцем к сенсору Е1. Неоновая индикаторная лампа зажжется, если эта цепь соединена с фазным проводом

Для использования устройства для «прозвонки» цепей необходимо предварительно зарядить накопительный конденсатор С1. Для этого вход устройства на 15…20 с подключают к сети 220 В или к источнику постоянного напряжения 12 В и более (плюсом на вилку ХР1) За это время конденсатор С1 успеет зарядиться через диод VD2 до напряжения, немного меньшего 5 В (оно ограничено стабилитроном VD1). При последующем подключении к контролируемой цепи, если она исправна, конденсатор будет разряжаться через нее, резистор R7 и светодиод HL6, который загорится. Если проверку проводить кратковременно, то зарядки конденсатора хватит на несколько проверок, после чего зарядку конденсатора следует повторить.

Применены постоянные резисторы R1 — ПЭВ-10, остальные — МЯТ, С2-23, конденсатор — К50-35 или импортный, диод КД102Б можно заменить на любой диод из серии 1N400x, стабилитрон КС147А — на КС156А, взамен двухцветных светодиодов можно применить по два разного цвета свечения, включив их встречно-параллельно, светодиод HL6 желательно применить с повышенной яркостью свечения. Следует отметить, что светодиоды разного цвета свечения имеют различные значения прямого напряжения, поэтому пороги их включения при разной полярности входного напряжения не будут одинаковыми.

Большинство деталей размещены на плате из текстолита или гетинакса, для их выводов сделаны отверстия и применен проводной монтаж. Светодиоды HL1-HL5 установлены в ряд. Поскольку в качестве корпуса пробника был использован корпус от неисправной газовой пьезозажигалки, плата рассчитана на установку в него (рис. 3). Отверстие в корпусе, предназначенное для кнопки пьезозажигалки, закрыто оргстеклом. Все светодиоды и неоновую лампу располагают на плате так, чтобы их было видно через это отверстие. Гнездо XS1 размещают на боковой стенке корпуса, XS2 — в торце. В качестве сенсора можно применить винт, расположенный также на боковой стенке. В гнездо XS1 вставляют вилку с гибким
проводом и зажимом «крокодил» на другом конце, а в гнездо XS2 — металлический штырь, заостренный на конце для более удобного подключения к малогабаритным контактам (рис. 4).
Рис. 4

При сборке, проверке и эксплуатации описанного устройства следует помнить о правилах безопасности при работе с высоким напряжением.

Автор: В. Гричко г. Краснода



Раздел:
[Конструкции простой сложности]

Сохрани статью в:

Оставь свой комментарий или вопрос:



▶▷▶▷ как сделать конденсатор на 1 фарад своими руками

▶▷▶▷ как сделать конденсатор на 1 фарад своими руками

Интерфейс Русский/Английский
Тип лицензия Free
Кол-во просмотров 257
Кол-во загрузок 132 раз
Обновление: 10-08-2019

как сделать конденсатор на 1 фарад своими руками — Делаем самодельный ионистор — суперконденсатор дома — сделай techclansu27- 1 -0-664 Cached Уже раз десять видел в интернете эту статью — как сделать ионистор своими руками ! Каждый идиот который её копирует ну не может хоть капли своего идиотизма в неё вписать! Как сделать конденсатор своими руками? uznay-kakrudom-sad-i-ogorodraznoekak-sdelat Cached Каждый техник или радио-любитель хотя бы раз в жизни задавался вопросом по поводу того, как сделать конденсатор своими руками и возможно ли это вообще Как Сделать Конденсатор На 1 Фарад Своими Руками — Image Results More Как Сделать Конденсатор На 1 Фарад Своими Руками images Самодельный Конденсатор — forumcxemnet forumcxemnetindexphp?topic67286 Cached Да, в 1 Фарад это было бы круто, можно было бы создать фарад 100 и подключить 220, и тогда напряжения хватило бы надолго, как резервный аккумулятор Как сделать СТЕДИКАМ своими — YouTube wwwyoutubecom watch?vqh971deAf4I Cached Как сделать газонокосилку своими руками Триммер на колёсах — Duration: 10:12 Александр Диковинный 39,039 views Снегоход своими руками — как сделать самодельный снегоход на wwwyoutubecom watch?src_vidVzJUPAjTJZQv3Q8 Cached Видео о том, как сделать снегоход своими руками Самодельный снегоход на гусенице в движении, обзор узлов и Cамодельный ионистор — суперконденсатор делаем своими руками folegionlivejournalcom11565html Cached Этому мешают силы притяжения молекул воды и металла По сути своей двойной электрический слой не что иное, как конденсатор Сосредоточенные на его поверхности заряды выполняют роль обкладок Ионистор своими руками: особенности элемента onlineelektrikrueoborudovaniekondensatorikak-sdelat Cached Так как предмет нашего разговора это ионистр своими руками , то необходимо в первую очередь разобраться с самим элементом, то есть, что он собой представляет Do it yourself DIY — YouTube myoutubecom playlist?listPL2SWmv7hzKONnhFSBy0 Cached This playlist posted a video on the theme of DIY And a video posted absolutely any subject affecting all aspects of peoples lives, their hobbies and ski Конденсатор (накопитель) для сабвуфера, мифы и реальность clippunetthreadskondensator-nakopitel-dlja-sabvufera Cached Конденсатор (накопитель) для сабвуфера, мифы и реальность О надобности накопителя в цепи питания, о его пользе, вреде и тд в интернете ведется масса Как сделать рельсотрон своими руками? wwwbolshoyvoprosruquestions2059126-kak-sdelat Cached Берем конденсатор , подсоединяем его к дальним концам рельс через рубильник (один вывод — на один рельс, второй — на второй) и кладем на рельсы снаряд у основания рельсов Promotional Results For You Free Download Mozilla Firefox Web Browser wwwmozillaorg Download Firefox — the faster, smarter, easier way to browse the web and all of 1 2 3 4 5 Next 1,930

  • Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от в
  • ерсии , проверенной 22 февраля 2016; проверки требует 1 правка .
    В таком случае подбирается емкость 1 Ф (фарад) на 1000 В. Очень популярны на рынке конденсаторы, производимые фирмами Mundorf, Mystery
  • 1 Ф (фарад) на 1000 В. Очень популярны на рынке конденсаторы, производимые фирмами Mundorf, Mystery, Prology, но их продукция имеет достаточно высокую цену. Шумоизоляция авто своими руками ВИДЕО.
    Безусловно, если под рукой есть мультиметр с возможностью измерения емкости или C-метр с подходящим диапазоном измерения емкостей, то проблема перестает быть таковой. Емкостное сопротивление Xc 16,28fC…
    1 транзистор перехода р- n -р (он должен быть мощным и высокочастотным, например кт805. Самая простая схема приведена на рисунке 1.
    ) Подробности для любознательных При напряжении более 1,2 В ионистор превращается в газовый аккумулятор. Самодельный ионистор На рисунке 1 изображена конструкция ионистора.
    На сей раз речь пойдет о менее сенсационной разработке, а именно о конденсаторах емкостью в 1200 фарад. Первые заявления об успешных испытаниях гетероэелектриков были сделаны дубнинскими учеными еще в 2006-м году.
    Вследствие чего, скорость отдачи электрического заряда параллельно подключенными конденсаторами в электрическую цепь усилителя будет быстрее, и звук от усилителя будет более качественным, по сравнению, если вы подключите 1 конденсатор с емкостью 2 Фарад. Мощный и качественный усилитель своими руками.
    Вы видели такие кондюки когда либо ранее?Если да то почему промолчали и не помогли нам хоть 1 подсказкой? хотя это уже не имеет большого значения, разобрались сами в данной…
    Page cannot be displayed. Please contact your service provider for more details. (30) Как сделать навес над входом в дом своими руками.
    Но даже 1 Фарад, это очень большая емкость, поэтому для обозначения обычно используют миллионные доли Фарад, микрофарады, а также еще более мелкие, нанофарады и пикофарады. СВЕТОДИОДНЫЙ ФОНАРЬ НА 1 ВАТТ…

то проблема перестает быть таковой. Емкостное сопротивление Xc 16

производимые фирмами Mundorf

  • 039 views Снегоход своими руками — как сделать самодельный снегоход на wwwyoutubecom watch?src_vidVzJUPAjTJZQv3Q8 Cached Видео о том
  • что он собой представляет Do it yourself DIY — YouTube myoutubecom playlist?listPL2SWmv7hzKONnhFSBy0 Cached This playlist posted a video on the theme of DIY And a video posted absolutely any subject affecting all aspects of peoples lives
  • можно было бы создать фарад 100 и подключить 220

Нажмите здесь , если переадресация не будет выполнена в течение нескольких секунд как сделать конденсатор на фарад своими руками Поиск в Все Картинки Ещё Видео Новости Покупки Карты Книги Все продукты КАК СДЕЛАТЬ СУПЕРКОНДЕНСАТОР ИОНИСТОР июл Купить суперконденсатор Ф Купить ион myoutubecom F фарадный конденсатор своими руками YouTube мар F фарадный конденсатор своими руками Бесплатное Электричество в Каждый дом Loading myoutubecom Как сделать ионистр своими руками onlineelektrikru kondensator ikaksde Как сделать ионистр своими руками Содержание Конструктивные особенности ионистра; Собираем Делаем самодельный ионистор суперконденсатор дома techclansusuper kondensator Рейтинг отзывов Обычный конденсатор такой емкости можно сравнить по весу и объему с кирпичом Сегодня можно купить в магазине ионистор размером с монету и Самодельный ионистор На рисунке изображена конструкция ионистора Картинки по запросу как сделать конденсатор на фарад своими руками Самодельный Конденсатор Мастерская радиолюбителя Форум по Здравствуйте Собираюсь сделать конденсатор небольшой ёмкости но Фото предоставлю позже Получается чтобы создать в фарад конденсатор , то площадь пластин Ионисторы или суперконденсаторы большой мощности Ионистор своими руками необходимые материалы и порядок Емкость конденсатора единица измерения В автомагазинах можно приобрести ионисторы ёмкостью фарад , для Украинские суперконденсаторы imbg LiveJournal апр Принципиальная схема конденсатора рис из статьи в New Scientist Ru В свое время вы FAQ Конденсаторы мифы и реальность Все что я driveru Купить машину на Дроме Автотека Аксиома Конденсатор является ПОТРЕБИТЕЛЕМ в сети То есть он НЕ ВСе качает, всем хватает, все довольны усь жмет вам руку праздник Пока все впорядке ему делать нечего Как сделать накопительконденсатор для автомобильного усилителя Много чего интересного можно сделать с помощью плат, радиодеталек и паяльника!!, а можно ли своими руками Как сделать ионистор своими руками Мои статьи Каталог Рейтинг отзыва июн Гостей достаточно, чтобы сделать ионистор своими руками , электрический конденсатор , Суперконденсаторы или Ионисторы вместо аккумулятора wwwinsidecarelectronicscom Ионисторы или Суперконденсаторы это конденсаторы с очень Фарада , Ампера t , Вольта этой фирмы достигают емкости в Фарад при напряжении , Вольта Так же Характеристики, структура, ФОТО Ионисторы фарада Суперконденсаторы! MYSKUru сен Ионисторы фарада Суперконденсаторы! Надо сказать, что емкость конденсатора это Arduino MEGA в UNO памяти не хватит Проще и дешевле в данному случае купить нвоый литий Конденсатор вместо аккумулятора Статьи и обзоры Элек elecru kondensator vmest фев Причина, по которой конденсаторы были вытеснены Можно сократить время зарядки до часа, но никак не Принципиальная схема источника бесперебойного питания Может ли ионистор заменить аккумулятор? Хабр Habr май Ионистор Panasonic Вольт и емкостью фарад и общая емкость составляет фарады Фото уже через минут конденсатор зарядился до , В Взял Если сделать достаточно умную зарядку, КОНДЕНСАТОР ! головняк своими руками МагнитолаФорум Автозвука magnitolaorg kondensator Усь JL саб Rка в ЗЯ Насчет кондеров КОНДЕНСАТОР ! головняк своими руками Если все сделать хорошо, то конденсатор и не понадобится скорее всего графеновый суперконденсатор емкостью тысяч ! Фарад схема графенового суперконденсатора Быстрая зарядка конденсаторы заряжаюются примерно в Ионистор Википедия Иони́стор суперконденсатор, ультраконденсатор, двухслойный электрохимический конденсатор электрохимическое Типичная ёмкость ионистора несколько фарад при номинальном напряжении вольт Нужен ли конденсатор для сабвуфера рассмотрим подробно Рейтинг голос мар Общая информация; Установка и зарядка большую электрическую емкость, выражаемую в фарадах Если электронная схема в конденсаторе , все же, Рассмотрим подробно из чего лучше сделать короб Опыты с конденсаторами МозгоЧины mozgochinyruopyityis мар Емкость одного современного конденсатора фарады , фото слева в тысячи раз превышает Подключение конденсатора емкости к автомагнитоле конденсатор нужен для сохранения поддержания потенциала произвести по формуле фарад емкости конденсатора на киловатт мощности нагрузки На рисунке показана такая схема Что мне нужно сделать ? Конденсатор Пикабу kondensator _ фев А бывает на одну хотя бы целую фараду ? шар диаметром в Солнц имеет емкость в Фарад Конденсатор Текст, Рассказ, Реальная история из жизни, Школа, Радиолюбители У тебя на фото ионистр Самый большой конденсатор в мире что такое ионистор май Ионистор Panasonic Вольт и емкостью фарад параллельно, и общая емкость составляет фарады Фото это сделать водитель оборудованного ионисторами шт фарад конденсатор , В F мм AliExpress Рейтинг , отзывов Дешевые конденсатор , купить качество v непосредственно из Китая конденсаторы супер Поставщики шт ФОНАРИК БЕЗ БАТАРЕЕК радиосхемы Емкости в фарад xватает на ти минутное свечение светодиода фонарик на ионисторах своими руками Заряжают конденсатор очень просто двигая фонарь вверx и вниз таким Конденсатор Емкость конденсатора Заряд конденсатора beamrobotruelectronicscapacitorph В радиоэлектронике используются конденсаторы , емкость которых составляет дробные единицы фарад Ионистор устройство, применение, характеристики asutppruionistorhtml Рейтинг голосов янв Ионисторы тем отличаются от конденсаторов , что их емкость, для ее измерения используется единица Фарад Ф; купить готовое, но сделать своими руками обойдется как сделать конденсатор на фарад своими руками wwwvkprukaksdelat kondensator n мар как сделать конденсатор на фарад своими руками Yahoo Search Results Yahoo Web Search Ионистор это Что такое Ионистор? Супер конденсаторы ионисторы серии MC фирмы Maxwell Электрохимическая схема NiH водный раствор КОН NiОOH ; СН в котором ионисторы общей ёмкостью фарад заряжаются , минуты Ионисторы купить в розницу и оптом Чип и Дип chipdiprusupercapacitors Функционально ионисторы это гибриды конденсаторов и химических источников Прво Murata Емкость, Ф Ионистор Что такое и зачем нужен? Goradioru goradioruionistorhtml Ионистор это некий гибрид конденсатора и аккумулятора DBRDT ёмкостью Фарада внутреннее сопротивление на частоте кГц составлет Ω Схема резервирования питания на ионисторе Что делать ? Светодиоды Фарад У Самоделкина окт два конденсатора на Фарад ; Dпринтерах, у нас же частенько приходится делать их самому Аккумуляторный велосипедный фонарь своими руками Правильно вскрываем задний фонарь MB Электроемкость конденсаторы , виды соединений, расчет kondensator shtml Рейтинг голосов ноя Что такое конденсатор ёмкость фарада это величина такой ёмкости, на которой имеет с мостовым соединением, схема которых показана на Как сделать наручные, настольные и настенные часы Конденсатор в схеме Конденсаторы назначение Квант kondensator v работы посмотрите статью про то, как сделать простой конденсатор своими руками Но есть такой компонент который может иметь емкость даже больше Фарады его называют Суперконденсатор в электромобиле ELECTRIC CAR ноя Обычный конденсатор такой емкости можно сравнить по Сегодня можно купить в магазине ионистор размером с Параметры первого вольт фарад товарищи время идет хочу сделать кондер для Суперконденсаторы Fishki ноя Суперконденсаторы фото Электронный проводник предлагалось сделать из пористого достигать значения в вольт, а емкость единиц фарад , ведь На фото использование суперкондесаторов в Конденсатор вместо аккумулятора? Вполне возможно suvorovcastomru kondensator vmesto дек Сейчас эти конденсаторы можно купить в любом ларьке типа, ёмкость которых составляет десятки тысяч фарад ! Легковой машине с двигателем в , , кубиков, Ионистор своими руками Gaussk Narodru gaussknarodrujabionistorhtm Ионистор своими руками АвторВладислав Сейчас в продаже появились конденсаторы очень большой емкости при Поэтому я решил привести здесь способ как сделать ионистор самому ИонисторУстройство и применениеРабота Автопусковое По сути дела ионистор является своеобразным гибридом аккумулятора и конденсатора Идеальные Ёмкость конденсатора единица измерения, как измерить дек Что такое емкость? Единицей емкости конденсатора в СИ является фарад Если этого не сделать , маломощный мультиметр выйдет из строя Ответ на Измеритель емкости конденсаторов своими руками Урок Конденсаторы Мастер Кит Фарад очень большая ёмкость земной шар имеет ёмкость менее Ф, поэтому для обозначения ёмкости в Поиск по блогу Как сделать самому конденсатор для airsoundrusearch_ Как изготовить автомобильный сабвуфер своими руками поражают своей настойчивостью и периодичностью Но как отличить ионистор от конденсатора Клуб electronicclubrunokakotlichitionistor дек Но как отличить ионистор от конденсатора Может кто делал датчик дождя своими руками на авто идет на фарады , а конденсаторы редко бывают более фарада Измеритель емкости конденсаторов своими руками Рейтинг голоса дек Принцип действия измерителя, схема Как измерить емкость конденсатора своими руками Ёмкость здесь в фарадах , напряжение вольтах, заряд Для ёмкости мкФ и сопротивления кОм, постоянная Учёные испытали тонкие конденсаторы с ёмкостью батарей wwwmembranaruparticle мар Схема нового суперконденсатора Вдобавок, учёные подобрали для своих конденсаторов Графен можно дома сделать на кухне из простого Челяб Университета фарад на кубсм теперь весь Батарея ВА на суперконденсаторах Рейтинг голос апр Как сделать батарею на суперконденсаторах, Солнечная батарея из диодов своими руками у усилителя тоже есть схема заряда этих конденсаторов , и при вопервых о сечении равно? фарад как сделать накопитель для сабвуфера своими руками gomelagrocomkaksdelatnakopitel мар как сделать накопитель для сабвуфера своими руками руками часто ищут конденсатор фарад своими руками конденсатор для сабвуфера как зарядить конденсатор для Формула емкости Последовательное соединение окт Это следует делать , если расстояние между пластинами мало в сравнении с их Единицей ёмкости в системе СИ является фарад F Схема устройства конденсатора Суперконденсаторы в электрической цепи тема научной Приведена схема включения ионистора в качестве резервного Особо выделено достоинство ионисторов и их отличие от обычных конденсаторов Емкость ионисторов измеряется уже в фарадах в одном фараде млн Самодельная точечная конденсаторная сварка RC Форум forumrcdesignrufthreadhtml дек Есть такой на , фарада , заявлено до в Давно уже Надо купить провода и сделать человеческие электроды wind это не конденсатор , это ионистор, у них токи Запросы, похожие на как сделать конденсатор на фарад своими руками суперконденсатор из графена своими руками практическое применение ионисторов ионистор где взять как проверить ионистор ионистор из зажигалки как отличить ионистор от конденсатора f фарадный конденсатор своими руками автомобильный конденсатор своими руками Суперконденсаторы Феникс Ионисторы Феникс Реклама wwwultracapacitorru Продажа, Производство, Разработка Все что связано с суперконденсаторами! Ионисторы для запуска Ионисторы устройство След Войти Версия Поиска Мобильная Полная Конфиденциальность Условия Настройки Отзыв Справка

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии , проверенной 22 февраля 2016; проверки требует 1 правка .
В таком случае подбирается емкость 1 Ф (фарад) на 1000 В. Очень популярны на рынке конденсаторы, производимые фирмами Mundorf, Mystery, Prology, но их продукция имеет достаточно высокую цену. Шумоизоляция авто своими руками ВИДЕО.
Безусловно, если под рукой есть мультиметр с возможностью измерения емкости или C-метр с подходящим диапазоном измерения емкостей, то проблема перестает быть таковой. Емкостное сопротивление Xc 16,28fC…
1 транзистор перехода р- n -р (он должен быть мощным и высокочастотным, например кт805. Самая простая схема приведена на рисунке 1.
) Подробности для любознательных При напряжении более 1,2 В ионистор превращается в газовый аккумулятор. Самодельный ионистор На рисунке 1 изображена конструкция ионистора.
На сей раз речь пойдет о менее сенсационной разработке, а именно о конденсаторах емкостью в 1200 фарад. Первые заявления об успешных испытаниях гетероэелектриков были сделаны дубнинскими учеными еще в 2006-м году.
Вследствие чего, скорость отдачи электрического заряда параллельно подключенными конденсаторами в электрическую цепь усилителя будет быстрее, и звук от усилителя будет более качественным, по сравнению, если вы подключите 1 конденсатор с емкостью 2 Фарад. Мощный и качественный усилитель своими руками.
Вы видели такие кондюки когда либо ранее?Если да то почему промолчали и не помогли нам хоть 1 подсказкой? хотя это уже не имеет большого значения, разобрались сами в данной…
Page cannot be displayed. Please contact your service provider for more details. (30) Как сделать навес над входом в дом своими руками.
Но даже 1 Фарад, это очень большая емкость, поэтому для обозначения обычно используют миллионные доли Фарад, микрофарады, а также еще более мелкие, нанофарады и пикофарады. СВЕТОДИОДНЫЙ ФОНАРЬ НА 1 ВАТТ…

Конденсатор для сабвуфера

Конденсатор для сабвуфера, что это, как установить, и зарядить

Работа мощных автомобильных сабвуферов может сопровождаться проблемами, связанными с большим потреблением тока этими устройствами. Заметить это можно на пиках НЧ, когда сабвуфер «захлебывается».

Это объясняется просадками напряжения на входе питания саба. Исправить проблему помогает накопитель энергии, роль которого играет емкость конденсатора, включенного в цепь питания сабвуфера.

Зачем нужен конденсатор для сабвуфера

Электрический конденсатор представляет собой двухполюсное устройство, способное накапливать, сохранять и отдавать электрический заряд. Конструктивно он состоит из двух пластин (обкладок), разделенных диэлектриком. Важнейшей характеристикой конденсатора является его емкость, отражающая величину энергии, которую он способен накопить. Единицей измерения емкости служит фарада. Из всех типов конденсаторов, наибольшей емкостью обладают электролитические конденсаторы, а также их дальнейшие усовершенствованные родственники – ионисторы.

Чтобы понять, для чего нужен конденсатор, разберемся, что происходит в электрической сети автомобиля при включении в нее низкочастотной автоакустики, имеющей мощность 1 кВт и более. Простой подсчет показывает, что ток, потребляемый такими устройствами, достигает 100 ампер и выше. Нагрузка имеет неравномерный характер, максимумы достигаются в моменты басовых ударов. Просадка напряжения в момент прохождения автозвуком пика громкости НЧ обусловлена двумя факторами:

  • Наличием внутреннего сопротивления аккумулятора, ограничивающим его способность к быстрой отдаче тока;
  • Влиянием сопротивления соединительных проводов, вызывающим падение напряжения.

Аккумулятор и конденсатор имеют функциональную схожесть. Оба устройства способны накапливать электрическую энергию, впоследствии отдавая ее нагрузке. Конденсатор это делает значительно быстрее и «охотнее» аккумулятора. Такое свойство и лежит в основе идеи его применения.

Конденсатор подсоединяется параллельно аккумулятору. При резком увеличении потребления тока увеличивается падение напряжения на внутреннем сопротивлении аккумулятора и, соответственно, уменьшается на выходных клеммах. В этот момент включается в работу конденсатор. Он отдаёт накопленную энергию, и тем самым компенсирует падение отдаваемой мощности.

Как подобрать конденсатор

Требуемая емкость конденсатора зависит от мощности сабвуфера. Чтобы не вдаваться в сложные вычисления, можно пользоваться простым эмпирическим правилом: на 1 кВт мощности необходима емкость 1 фарада. Превышение этого соотношения идет только на пользу. Поэтому, наиболее распространенный в продаже конденсатор большой емкости в 1 фараду, можно использовать и для сабвуферов мощностью менее 1 кВт. Рабочее напряжение конденсатора должно быть не менее 14 – 18 вольт. Некоторые модели оборудованы цифровым вольтметром – индикатором. Это создает дополнительные удобства в эксплуатации, а электроника, контролирующая заряд конденсатора, позволяет облегчить эту процедуру.

Как подключить конденсатор к сабвуферу

Установка конденсатора не относится к сложным процедурам, но при ее выполнении нужно быть внимательным и соблюдать некоторые правила:

  1. Чтобы избежать заметного падения напряжения, провода, соединяющие конденсатор и усилитель, не должны быть длиннее 50 см.По этой же причине, сечение проводов нужно выбрать достаточно большим;
  2. Следует соблюдать полярность. Плюсовой провод от аккумулятора соединяют с плюсовой клеммой питания усилителя саба и с выводом конденсатора, обозначенным знаком «+». Вывод конденсатора с обозначением «-», соединяется с кузовом автомобиля и с минусовой клеммой питания усилителя. Если усилитель до этого уже был подключен к «массе», минусовой вывод конденсатора можно зажать той же гайкой, соблюдая при этом длину проводов от конденсатора к усилителю в указанных пределах 50 см;
  3. Подключая конденсатор для усилителя, лучше воспользоваться штатными зажимами для присоединения проводов к его выводам. Если они не предусмотрены, можно воспользоваться пайкой. Следует избегать соединения скруткой, ток через конденсатор протекает значительный.



На рисунке 1 проиллюстрировано подключение конденсатора к сабвуферу.

Как зарядить конденсатор для сабвуфера

Подключать к электрической сети автомобиля, следует уже заряженный автомобильный конденсатор. Необходимость выполнения этого действия объясняется свойствами конденсатора, о которых упоминалось выше. Конденсатор заряжается так же быстро, как и разряжается. Поэтому, в момент включения разряженного конденсатора, токовая нагрузка будет чересчур велика.

Если купленный конденсатор на сабвуфер оснащен электроникой, контролирующей зарядный ток, можно не беспокоиться, смело подсоединяйте его к цепям питания. В противном случае, конденсатор следует заряжать до подключения, ограничивая ток. Удобно использовать для этого обыкновенную автомобильную лампочку, включив ее вразрез цепи питания. Рисунок 2 показывает, как правильно заряжать конденсаторы большой ёмкости.

В момент включения, лампа загорится в полный накал. Максимальный скачок тока будет ограничен при этом мощностью лампы и будет равен ее номинальному току. Далее, в процессе заряда, накал лампы будет ослабевать. По окончании процесса зарядки, лампа потухнет. После этого надо отключить конденсатор от зарядной цепи. Затем можно подключить заряженный конденсатор к цепи питания усилителя.

Если после прочтения статьи остались вопросы по подключению, советуем ознакомится со статьей «Как подключить усилитель в автомобиле».

Дополнительные плюсы установки конденсаторов в автомобилях

Кроме решения проблем с работой сабвуфера, подключаемый в сеть автомобиля конденсатор оказывает положительное влияние на режим работы электрооборудования в целом. Проявляется это следующим образом:

  • Конденсатор является хорошим фильтром высокочастотных составляющих сетевого напряжения, возникающих при коммутации нагрузок и работе некоторых электронных приборов, его функции благоприятно сказываются на работе всех систем автомобиля;
  • Применение конденсатора позволяет сгладить скачки напряжения, возникающие при включении и отключении потребителей бортовой сети, что позволяет генератору работать в более ровном режиме;
  • При запуске автомобиля стартером, конденсатор, безусловно, принимает в нем дополнительное участие, отдавая свой заряд в бортовую сеть. Особенно это актуально зимой, когда возможность аккумулятора отдавать ток снижается, а свойства конденсатора не изменяются.

Конденсатор установлен, и вы заметили, что ваш сабвуфер начал играть интересней. Но если маленько постараться можно заставить его играть еще лучше, предлагаем вам ознакомиться со статьей «Как настроить сабвуфер».

caraudioinfo.ru

Зачем нужен конденсатор для сабвуфера? — DRIVE2

Конденсаторы для сабвуфера все чаще применяются не только на эксклюзивных “хайэндовских” аудиоинсталяциях, но и в “классических” комплектах автомобильных аудиосистем, в которых используются усилители. Конденсатор улучшает параметры усилителя и качество звучания сабвуфера.

Дело в том, что современные сабвуферы на кратковременных “пиках” сигнала могут потреблять значительный ток, который не в состоянии мгновенно обеспечить даже самый мощный аккумулятор. И какими бы “толстыми” ни были “звуковые” провода, питающие усилитель сабвуфера, они все равно обладают сопротивлением, вызывающим в момент импульса падение напряжения. В результате в работе “усилка” могут возникать так называемые провалы.

Не стоит также сбрасывать со счетов и работающий в летнее время кондиционер, отбирающий до 30% энергии генератора. Поэтому, когда аудиосистема воспроизводит, например, мощные басы, возможны искажения звука, вызванные неспособностью батареи обеспечить необходимую скорость нарастания выходного сигнала (тока потребления).

Устранить это явление помогает так называемый конденсатор для сабвуфера, представляющий собой электролитический конденсатор большой емкости, подключаемый параллельно цепи питания усилителя. Внутреннее сопротивление такого конденсатора настолько мало, что импульсный ток “отдается” усилителю моментально, тем самым, сглаживая возможные провалы. С той же быстротой конденсатор снова заряжается, готовясь “выдать порцию” для нового баса из сабвуфера.

Большинство современных автомобильных конденсаторов для сабвуфера имеют огромную электрическую емкость – несколько фарад, сопоставимую с емкостью земного шара. Поскольку они конструктивно компонуются рядом с усилителями, то, помимо нарядного и современного дизайна, эти элементы нередко снабжаются цифровыми вольтметрами и световой индикацией заряда.

В комплектах, как правило, имеется все необходимое для удобной установки конденсатора вблизи усилителя, причем расстояние между ними не должно превышать 50 сантиметров. Мощные разъемы практически всех конденсаторов для сабвуфера имеют позолоту, уменьшающую сопротивление, а рабочее напряжение достигает 24 вольт.

www.drive2.ru

для чего нужен и как подключить

Конденсатор для машины на сабвуфер становится все более популярным у автовладельцев. Сейчас установку можно встретить не только в дорогих аудиосистемах, но и в простых комплектациях аудио оборудования, которые используют внешние усилители звука.

Нужен ли конденсатор на сабвуфер? Водители, понимающие значение и функциональность прибора, отвечают однозначно: конечно нужен. Так как это устройство значительно улучшает работу усилителя, а также, качество издаваемых звуков.

Принцип работы конденсатора

Для современных сабвуферов достаточно кратковременных пиков, чтобы начать потреблять большее количество тока. В результате он не может полноценно обеспечить энергией аккумулятор. Даже толстые провода, которые питают усилитель, не обладают таким сопротивлением, которое вызовет снижение напряжения в моменты импульсов.

Подключение сабвуфера к усилителю и конденсатору

Как следствие — функциональность усилителя снижается. Чтобы устранить такие явления, требуется установка накопителя в машину. Он представляет собой электролитический прибор, имеющий большую емкость. Подключается параллельно относительно цепей питания на усилителях. Сопротивление оборудования очень мало, и ток передается к усилителю молниеносно. Благодаря этому происхождение сбоев работы сабвуфера исключается. Так же быстро конденсатор подзаряжается снова и «выдает» порцию тока обратно.

Итак, для чего нужен конденсатор для сабвуфера? Простыми словами можно сказать так: устройство накапливает и быстро передает электроэнергию. В технике эта функция используется для улучшения звучания автомагнитолы.

Конденсатор

Существует мнение о том, что накопитель тока продлевает аккумулятору жизнь либо облегчает его работу. И некоторые автовладельцы устанавливают приборы исходя из этого соображения. Но это — доказанный миф! Накопитель не вырабатывает энергию. Он только накапливает электричество и отдает его потребителю.

Какие бывают автомобильные конденсаторы

Сегодня уже производится много различных конденсаторов для авто. От простейших и дешевых моделей, до элитных и дорогих, с большой емкостью в 20Ф. Такие емкие установки используются в мощной технике, которая обладает дистрибьютором и имеет возможность подключения больше двух усилителей одновременно.

Автомобильный конденсатор

Выбор прибора зависит от нескольких факторов. В основном нужно учитывать мощность аккумулятора машины. Никогда не покупайте оборудование, если оно сомнительно выглядит. Конденсаторы имеют «свойство» взрываться. И, даже малейшее нарушение целостности конструкции может привести к взрыву.

При осмотре прибора в магазине надо обращать внимание на присутствие защиты на клеммах. Они оберегают систему от случайных замыканий. Важно также изучить удобство подключения и установки.

Автомобильный конденсатор

Какая емкость оборудования необходима

Здесь точной формулы нет. Многие следуют такому правилу: 1 Квт. от мощности усилителя должен соответствовать 1 Ф емкости конденсатора. Это нормально и большинство пользователей приобретают конструкцию именно по такому соображению. Например, если на вашем автомобиле аудиосистема мощностью в 2 Квт., то приобретать накопитель надо с емкостью 2 Фарада. Но, специалисты рекомендуют выбирать прибор с большим запасом емкости.

Сабвуфер усилитель и конденсатор

В некоторых моделях вмонтированы вольтметры. Они контролируют уровень напряжения системы. Приборы с вольтметрами стоят дороже.

Как установить накопитель на авто

Установку обычно осуществляют близко к усилителю. Это предотвращает снижение амплитуды электричества. Так как соединительные провода всегда выдают сопротивление из-за малого сопротивления конденсатора. Важно знать, что от усилителя до конденсатора должно соблюдаться расстояние не более 60 см. Чем меньше данный промежуток, тем качественнее установка.

Подключение сабвуфера

Некоторые монтируют конструкцию прямо на усилителе. Это удобно, практично и аккуратно выглядит. Не занимает много места в салоне. Но существуют и другие способы расположения системы. Например, многие автолюбители приноровились помещать усилитель в багажный отсек, с боку на стене. А конденсатор — на противоположной стене. Смотрится красиво, но с технической точки зрения это не практично, так как расстояние слишком большое.

Важный момент: когда осуществляется установка накопителя тока, не допускается его подключение не заряженным к положительному и отрицательному проводам питания. Потому как при таком контакте, прибор будет «питаться» током от аккумулятора, а это приводит к сжиганию предохранителя.

Во избежание подобных неприятностей, производители стали прилагать к своему товару специальные схемы, по которым конденсаторы заряжаются постепенно. Если такая схема отсутствует, то нужно заранее зарядить оборудование через лампочку в 12 вольт. Если во время установки прибора лампочка гаснет, значит он достаточно заряжен.

Конденсатор для сабвуфера в автомобиле

Рекомендации по подключению

  1. Подключать систему допускается в схемы любых мощностей. Даже в тех случаях, когда работает один усилитель встроенный в головной прибор. Но при монтаже конденсатора в аудиосистему, оборудованную усилителем внешним, первым делом надо начинать с минимальной мощности системы (от 250 до 300 Вт.).
  2. Такое устройство не обязательно подсоединять только в звуковую систему, обладающую специальным аккумулятором. Просто подобный аккумулятор «звуковой» может быстро снабжать током и так же быстро разгружать сеть автомобиля.
  3. Если собираетесь самостоятельно подсоединять устройство, лучше иметь защитные схемы. Также, следует иметь под рукой приборы, контролирующие состояние бортовой сети.

Обязательно руководствуйтесь схемой при подсоединении элементов. На ней есть наглядные рисунки о местоположении электрических цепей. Вся важная информация тоже присутствует на схеме.

1avtozvuk.ru

Конденсатор (накопитель) для сабвуфера, мифы и реальность.

Конденсатор (накопитель) для сабвуфера, мифы и реальность.​

О надобности накопителя в цепи питания, о его пользе, вреде и т.д. в интернете ведется масса споров. К сожалению споры эти бесполезны ввиду того что их ведут люди абсолютно не знающие курс школьной физики и просто декламирующие рекламные лозунги и псевдонаучные статьи. В этой записи я хочу изложить все мои наработки по данному вопросу и предлагаю обсудить справедливость или же спорность моих выводов…Итак начнем.
Самое первое что нам стоит сделать это отбросить подальше познания из подобных статей: avtsound.net.ru/2008/06/0…tor.-mify-i-realnomt.html

Самая большая глупость этих статей- рекомендации установки конденсатора для сабвуфера из расчета столько то фарад на 1 киловатт. Откуда такие рекомендации остается загадкой.В том что такие опусы находятся также далеко от реальности как мы от Гоналулу мы убедимся ниже. Гораздо полезнее обратиться к тем начальным знаниям которые мы с вами получали на уроках физики.Попутно будем развеивать мифы о конденсаторах.

Аксиома №1 «Конденсатор для сабвуфера»является ПОТРЕБИТЕЛЕМ в сети. То есть он НЕ способен вырабатывать электроэнергию! Он способен ее НАКАПЛИВАТЬ и частично ПОТРЕБЛЯТЬ на собственные утечки и потери в конденсаторах. А это значит что он ПО ОПРЕДЕЛЕНИЮ не может ни продлить жизнь аккумулятору ни облегчить ему жизнь.

Аксиома №2 Конденсатор служит для накопления энергии и отдачи этой энергии потребителю. При этом обладая крайне низким внутренним сопротивлением он отдает энергию потребитель очень быстро и накапливает соответственно тоже. При этом он работает совсем не как аккумулятор. Пик отдачи приходится на первое мгновение потребления, после этого заряд начнет резко падать, скорость его отдачи падает вместе с зарядом.

Теперь давайте научимся отличать ИОНИСТОР от КОНДЕНСАТОРА.


Об этих терминах вы можете почитать в википедии, я же просто подытожу в двух словах. То что ездит в багажнике 90 процентов любителей звука под марками пролоджи, мистери, NRG и т.д. по вполне приемлимым ценам это есть ничто иное как ионистор. Отличается он от конденсатора тем что имеет гораздо большие потери внутри себя, имеет большое внутреннее сопротивление и гораздо линивее отдает заряд. Ну и тем что стоит в десятки раз дешевле от конденсатора той же емкости. Ввиду чрезвычайной распространенности ионисторов остановимся подробнее на нем. А конкретнее на мифе о том что конденсатор в цепи питания в случаях просадок обеспечит энергией усилитель саба. Причин просадок бывает много.Рассмотрим основные. Но перед этим прикинем на что ж способен то наш конденсатор для сабвуфера и сделаем эксперимент расчета в чистом виде. То есть зарядим и потом запустим от накопителя усилитель:

Из школьного курса физики

1ампер X 1сек = 1 кулон,
1ампер X 1вольт = 1 ватт,
1ампер X 1ом = 1 вольт,
1фарада X 1вольт = 1 кулон.

Таким образом в конденсаторе запасается
1фарад Х 12 вольт = 12 кулон

1000 ватт усилитель это 12 вольт Х 83 Ампер = то есть за 1 секунду 83 кулона 12 \ 83 = за 0,15 секунды разрядится ионистор до ноля.

Это и будет максимальное время работы ионистора. То есть в различных вариантах максимальной работа системы от него не превысит секунды. Но не стоит забывать что на 8.9 вольт усилитель прекратит работать. То есть время работы сократится втрое.

Теперь цепляем наш ионистор в систему на машину с просадками питания изза генератора и аккумулятора. заводим. напряжение на клеммах уся 13 вольт.Все впорядке. Теперь делаем на всю, напряжение садится до 10.9-11.5 вольт. На ионисторе осталось 13вольт то есть перепад порядка 2 вольта.На то чтоб посадить эту разницу уйдет порядка 0.1-0.2 секунды максимум. Удар баса длится гораздо дольше. То есть в первый же удар баса заряд сольется и ионистор превратится в пассивный элемент питания посколько он живет только тогда когда его заряд больше напряжения сети. Дальше он начнет заряжаться за счет просаженой сети. Безусловно между ударами баса сеть будет приподнимать напряжение но подъем этот будет очень незначительный в пределах 0.3-0.5в. изза того что фронт, мидбасы да и сам саб продолжают работать в это время и этот перепад на конденсаторе будет расходоваться практически мгновенно не оставляя ощутимой пользы для питания.

В случае если вы используете в питании тонкие провода питания и массы или толстый дешевый обмедненный аллюминий производства мистери и Ко то ваш случай еще тяжелее. в этом случае к вашей просадке сети добавится просадка кабеля. В котором при резком возрастании потребления возникает реактивное сопротивление. То есть чем быстрее и больше вы попытаетесь взять с кабеля энергии и чем он длиннее и тоньше тем сильнее он этому будет препятствовать. В этом случае ионистор разрядившись не сможет даже зарядится! Ведб как мы знаем он и разряжается и заряжается достаточно быстро а этому будет провод оочень сопротмвлятся. Кроме того не забываем что ионистор потребляет какое то количество энергии которой нам и так не хватает. Ну и конечно стоит заметить что нагрузкой ионистора является не только усилитель а и ВСЯ бортовая сеть, включая всех потребителей и сам аккумулятор который в просадке питания тоже птпытается зарядиться за счет бедолаги ионистора.Естественно что НИКАКИХ проблем питания накопитель не решил.

Делаем вывод: питалово должно быть шикарным! и туда втулим наш накопитель! Решено. Меняем или ремонтируем генератор, прокидываем от генератора толстую массу и плюс. Ставим новый аккумулятор, меняем и зачищаем ВСЕ клеммы, прокидываем силовой провод из хорошей меди достаточного сечения, включаем, меряем- КРАСОТА! На выключенном звуке на клеммах уся 14 вольт. Усь на всю на клеммах 13.2! Все качает, всем хватает, все довольны усь жмет вам руку, праздник. Ну теперь саме время поставить то наш кондер. Ставим, включаем, меряем. 14в и 13.3в. Хмм а ведь не удивительно. Цепь живая, питания хватает, кондер просто ждет спокойно своего часа. Пока все впорядке ему делать нечего.

Заблуждение теоретическое третье и заключительное: конденсатор нужен в системах с большой громкостью и на соревнованиях эс пи эль. Ионистор ввиду своей ленивости тут по любому отпадает. И оно казалось бы верно. На кратковременный замер конденсатору самое место.

НО!

1. Замер достаточно долго длится чтоб проснулся даже кислотный аккум и отдал свой максимум.
2. Распространенные среди эс пи эльного братства гелиевые аккумуляторы являются практически фундаметном данных соревнований. А все потому что гелиевывй аккум способел стрелять сотнями ампер с такой скоростью что и скорости конденсаторов чувтвует себя не так комфортно. И этой скорости с лихвой хватает.
3. Конденсатро как мы помним является потребителем энергии, а в эс пи эль любые лишние потребители это зло.

В итоге сейчас в эс пи эль (SPL) никто не использует ни конденсаторы не накопители.

Фуух с теорией разобрались. Теперь к практике. Конденсатро был одним из первых автозвуковых девайсов который у меня появился.Вернее ионистором пролоджи 1.5 фарада в старом исполнении когда вместо вольтметра на накопители устанавливали дистрибьюторы питания. Соответственно на его веку у меня уже сменилась одна машина и несколько раз полный состав системы включая питание. Расскажу жизни своей системы с нашим сегондяшним героем.

9-ка. Карбюратор 95 года выпуска. родной генератор и аккумулятор 50ач. Усилитель пролоджи контроль 3004 + мистери 2.75. Провода мистери. На раскачке просадка напряжения была конской. вплоть до 10в с 12.5 на заведенной машине. Диод в цепь регулятора дал прибавку в 1 в но все равно не хватало. На клеммах усилителя с заглушеной машиной было 12в без музыки 10.6 с музыкой на всю. на заведенной 12.9 без музыки. до 10в на музыке. в среднем 11.3в. Устанавливаю накопитель как можно ближе к усилителю. Замеры. заглушеная машина 12.1в без музыки. с музыкой 10.6в. На заведенной без музыки 13.2 без музыки. С музыкой до9.9. в среднем 11.4в. То есть никак он не спасал положение о чем красноречиво говорила отсутствие разницы в звуке и вялый бас.
Замена проводов мистери на кг-16. остальная аппаратура таже. замеры Заглушеная машина 12. 6в, с музыкой 10.9. Заведенная машина без музыки 13.3, с музыкой до 10.1, в среднем 11.7в. То есть замена провода дала чуть ли не втрое больше толку чем накопитель. Но это все было не то. Хотя после замены разница в звуке была ощутимо заметна.Также провод музыки уже нельзя было просто так никинуть на клемму аккума. Пролетала дикая искра от заряда накопителя говорящая об координальном увеличении пропускной способности силы.

12-шка. Аккум 55а, родной генератор. Музыка таже практически. И поскольку система питания в ней мало отличалась от девятошной то и цифры были схожи. заглушеная машина 12.3. С музыкой 10.7. На заведеной 13.6в. С музыкой 11в. в среднем 11.9в. Небольшое улучшение ситуации было изза того что инжектор на заведенной машине контролирует обороты движка не давая им падать, тем самым поддерживая обороты генератора в тонусе. Установка конденсатора в систему во всех случаях дала прирост на работающей музыке 0.1-0.3в. что никак не спасало ситуацию.

Такое положение вещей меня никак не устраивало так как я уже начал в ней строить систему «на вырост». Тут помог случай, вернее неприятность. В генераторе на ходу оторвало крыльчатку которой размолотило весь генератор а короткое замыкание с генератора осыпало пластины на уставшем аккумуляторе.

Оба ушли под замену. На их места стали аккумулятор 62ач и генератор 95а. с повышеной производительностью на низких оборотах. Первые тесты: заглушеная машина без особых изменений. Заведенная машина 14.0в без музыки, 13.9в С МУЗЫКОЙ НА ВСЮ! С музыкой на всю, включенными фарами, дворниками и печкой на всю 13.4в! Вот где прибавка. После произошло пополнение аппаратуры. Установил сабовый усь кикс 27. Вместе с ним под замену ушли все клеммы. Переделал массу питания на усилителях. разнес ее с общего болта на разные. Установил силовой провод кг-35, таким же проводом проложил массу от уха генератора на кузов в место соединения минуса аккума с кузовом. После каждого апгрейда мерял прибавки.

Чистая установка уся: 13.9в без музыки, 12.2в с музыкой на всю.
Замена провода на кг-35 13.9в и 13.0в соответственно.
Замена всех клемм + 0.1в.
Разнесение массы +0.3в.
Установка дополнительного провода массы на генератор: + 0.2в.
Итого на заведенной машине с музыкой на всю 3 усилителя дают просадку с 14.0 до 13.5-13.6в.
Максимальная просадка на злых неграх с постоянными синусами порядка 30гц кратковременно до 12.9в, при этом холостые обороты падают на 100-150 об/мин. в правильный 1 вольт просадки практически уложился
Вот такая вот практика.

Теперь напишу о пользе конденсаторов и ионисторов. Да да в них есть польза! правда со звуком она имеет мало общего.

1)Например если у вас слабое питание и от музыки моргают фары. На самом деле это очень раздражает. Установка кондера устранит моргание. Проблему это не решит. Фары перестанут моргать но притухнут на среднем значении просадок. Проблема решится но это не выход.

2) Накопитель является мощным фильтром сетевых помех. Установив его вы не услышите в динамиках щелчки на включении вентиляторов и другой аппаратуры авто. Фильтры конечно устанавливаются щас во многих усилках но если у вас есть такая проблема накопитель ее решит.

3) машина со слабым аккумулятором с кондером в мороз заводится гораздо охотнее чем без него. Это не противоречит теории и доказано на практике лично мной. в -15 на 9ку ставили аккум не способный провернуть стартер, цепляли конденсатор и машина заводилась. Фишка в том что своим зарядом с большой скоростью накопитель помогает замерзшему аккуму сорвать стартер с места, а мы ведь знаем что максимальный ток есть стартер пока стоит, потом потребление падает раз в 10 и с ним уже аккум справляется и без накопителя.

4) с накопителем в сети ремню генератора живется гораздо комфортнее. Он сглаживает рывки генератора на ударах баса. Например в 12шке я сменил 2 ремня генератора без накопителя. третий после установки живет до сих пор.

Рассказы о псевдопользе накопителя также встречаются в интернете но они не несут систематичный или обоснованый характер. Например многие утверждают что при установке конденсатора на слабое питание бас становится лучше. На самом же деле может просто менятся характер искажений возникающий от нехватки питания. Но этот измененный бас будет также далек от правильного как и тот который качал до накопителя. Также многие утверждают что просадки уменьшились втрое! Но нсли уточнить у них то оказыается что напряжение они смотрели на конденсатроном вольтметре. Но во перых за достовернось его измерений никто не ручается во второых он показывает просадки на клеммах накопителя а вовсе не реальные. Реальные будут непосредственно на клеммах усилителя и только там!

Из всего вышеизложенного пусть каждый делает выводы для себя сам, я лишь рекомендую поставить кондер в сеть если вам он достается за недорого и с питанием все в порядке. Но если есть выбор то потратьте эту сумму на улучшение элементов питания авто и на провода. Это будет куда полезнее.

P.S. Тема открыта для обновления и обсуждения. С удовольствием выслушаю ваши наблюдения, возражения, дополнения.Спасибо что дочитали эту кучу букаф до конца

+ дополнение
…хочу сказать что в роли потребителей в ионисторах являются схемы вольтметра и автозаряда. Кароче брать, если брать, стоит ТОЛЬКО ПУСТОЙ конденсатор и обращаться с ним очень осторожно (правильно заряжать и т.п).

+ дополнение к пользе накопителя
Когда необходимо заменить аккумулятор то при снятии клемм с него магнитола, часы в панели и настройки бортового компа не сбрасываются. Накопитель будет их держать минут 10 точно. За это время вы спокойнее все поменяете. Еще одного заряда накопителя зватает чтоб закрыть или открыть 4 центральных замка от брелка сигналки мож кому сгодится

+ к инфе.
Как зарядить накопитель не имеющий системы заряда. Просто между плюсовым проводом питания и конденсатором подкльчите лампочку с габаритов например. Она загорится и тут же начнет гаснуть, как погасла полность. тогда соединяйте напрямую кондер заряжен. Тоже самое нужно делать если вы надолго скидывали клемму с аккумулятора.

clippu.net

Конденсатор для сабвуфера — правильное использование

Что такое конденсатор

Конденсатор для сабвуфера предназначен для того чтобы накапливать (конденсировать) энергию, а в нужный момент отдавать ее потребителю. Накопитель имеет низкое внутреннее сопротивление и по этому довольно быстро  накопленную энергию отдает. Пик отдачи приходится на первый момент, а потом заряд резко падает, как и исходящая скорость.

Если быть точным, то конденсатор (накопитель) используется не для сабвуфера, а для усилителя который этим сабом управляет.

Важно понимать, что конденсатор это потребитель и сам он энергию не вырабатывает.

Нужен ли конденсатор для сабвуфера?

Сглаживание провалов напряжения в моменты пиковых нагрузок, вот для чего нужен конденсатор для сабвуфера. Казалось бы вещь полезная, но только на первый взгляд.

Дело в том что под словом «конденсатор» большинство подразумевает  ионистор. Определение слова можно загуглить, но если просто, то это что-то среднее между конденсатором и химическим источником тока.

Типичный «конденсатор»

К сожалению в таком виде, в каком нам предлагают аудиопроизводители ионисторы имеют ряд недостатков:

  • большие потери
  • высокое сопротивление в сравнении с конденсатором
  • низкая скорость отдачи в сравнении с конденсатором

К плюсам относится низкая стоимость, опять же в сравнении с конденсатором такой же емкости.

Конденсатор в системе не нужен, если он исправляет какие-то проблемы, это означает что питание организовано неправильно!

В связи с последним утверждением разберём несколько ситуаций.

Если у вас средняя система в районе 1 кВт на сабовый усилитель или  меньше, то при хорошем аккумуляторе, достаточном сечении питающих проводов и хороших контактах у вас не будет проблем с морганием фар и неустойчивой работой усилителя.
Если вы ловите просады, то нужно искать причину проверив всё вышеперечисленное, а не устанавливать еще один потребитель в виде светящейся колбочки  mystery, prology и т.п.

Пример плохой проводки

В случае если у вас очень мощное сабовое звено, громкая система и вы хотите колыхать округу или даже участвовать в соревнованиях по звуковому давлению, то  такие накопители вам не помогут, в этой ситуации нужно ставить настоящие качественные продукты стоимость которых начинается от 300 $. И если вы на таком уровне, то намного эффективнее будет потратить деньги на прокладку проводки максимального сечения, замену кислотного аккумулятора на AGM или установку дополнительных АКБ.

Дополнительное питание

Применение конденсатора

Выходит, что практически всегда использование конденсатора не имеет смысла. Но тогда для чего же они вообще нужны? К тому же их можно встретить в системах высокого уровня!

Brax IPC 27000р.

Дело в том что настоящий качественный конденсатор хорошо подавляет высокочастотные и низкочастотные помехи, изменения напряжения при включении вентиляторов, электрический шум и тому подобное, поэтому высокоуровневых  проектах (чаще ориентированных на качество звучания) с большим количеством оборудования применение данных приборов оправдано, а иногда необходимо.

PS: Внимательно относитесь к заказным статьям и их бездумным копиям о пользе и необходимости конденсаторов в повседневной системе.

Читать еще:

Facebook

Twitter

Вконтакте

Одноклассники

doctorbass.ru

Стоит ли ставить конденсатор? — KIA Rio, 1.4 л., 2012 года на DRIVE2

Лазил в нете в поисках ответа! Нужен ли мне конденсатор или нет?
И наткнулся вот на такую так сказать статью!
Что скажите?)
Если конечно кто то дочитает до конца!)
Цитирую:

Конденсатор для сабвуфера

О надобности накопителя в цепи питания, о его пользе, вреде и т. д. в интернете ведется масса споров. К сожалению споры эти бесполезны ввиду того что их ведут люди абсолютно не знающие курс школьной физики и просто декламирующие рекламные лозунги и псевдонаучные статьи. В этой записи я хочу изложить все мои наработки по данному вопросу и предлагаю обсудить справедливость или же спорность моих выводов…Итак начнем.
Самое первое что нам стоит сделать это отбросить подальше познания из подобных статей: avtsound.net.ru/2008/06/0…tor.-mify-i-realnomt.html
Самая большая глупость этих статей- рекомендации установки конденсатора для сабвуфера из расчета столько то фарад на 1 киловатт. Откуда такие рекомендации остается загадкой.В том что такие опусы находятся также далеко от реальности как мы от Гоналулу мы убедимся ниже. Гораздо полезнее обратиться к тем начальным знаниям которые мы с вами получали на уроках физики.Попутно будем развеивать мифы о конденсаторах.

Аксиома №1 «Конденсатор для сабвуфера»является ПОТРЕБИТЕЛЕМ в сети. То есть он НЕ способен вырабатывать электроэнергию! Он способен ее НАКАПЛИВАТЬ и частично ПОТРЕБЛЯТЬ на собственные утечки и потери в конденсаторах. А это значит что он ПО ОПРЕДЕЛЕНИЮ не может ни продлить жизнь аккумулятору ни облегчить ему жизнь.

Аксиома №2 Конденсатор служит для накопления энергии и отдачи этой энергии потребителю. При этом обладая крайне низким внутренним сопротивлением он отдает энергию потребитель очень быстро и накапливает соответственно тоже. При этом он работает совсем не как аккумулятор. Пик отдачи приходится на первое мгновение потребления, после этого заряд начнет резко падать, скорость его отдачи падает вместе с зарядом.

Теперь давайте научимся отличать ИОНИСТОР от КОНДЕНСАТОРА.

Об этих терминах вы можете почитать в википедии, я же просто подытожу в двух словах. То что ездит в багажнике 90 процентов любителей звука под марками пролоджи, мистери, NRG и т.д. по вполне приемлимым ценам это есть ничто иное как ионистор. Отличается он от конденсатора тем что имеет гораздо большие потери внутри себя, имеет большое внутреннее сопротивление и гораздо линивее отдает заряд. Ну и тем что стоит в десятки раз дешевле от конденсатора той же емкости. Ввиду чрезвычайной распространенности ионисторов остановимся подробнее на нем. А конкретнее на мифе о том что конденсатор в цепи питания в случаях просадок обеспечит энергией усилитель саба. Причин просадок бывает много.Рассмотрим основные. Но перед этим прикинем на что ж способен то наш конденсатор для сабвуфера и сделаем эксперимент расчета в чистом виде. то есть зарядим и потом запустим от накопителя усилитель:
Цитата из википедии:magnitola.info/index.php?..8%D1%81%D1%82%D0%BE%D1%80

» Из школьного курса физики
1ампер X 1сек = 1 кулон,
1ампер X 1вольт = 1 ватт,
1ампер X 1ом = 1 вольт,
1фарада X 1вольт = 1 кулон.

Таким образом в конденсаторе запасается
1фарад Х 12 вольт = 12 кулон

1000 ватт усилитель это 12 вольт Х 83 Ампер = то есть за 1 секунду 83 кулона 12 \ 83 = за 0,15 секунды разрядится ионистор до ноля».

Это и будет максимальное время работы ионистора. То есть в различных вариантах максимальной работа системы от него не превысит секунды. Но не стоит забывать что на 8.9 вольт усилитель прекратит работать. То есть время работы сократится втрое.

Теперь цепляем наш ионистор в систему на машину с просадками питания изза генератора и аккумулятора. заводим. напряжение на клеммах уся 13 вольт.Все впорядке. Теперь делаем на всю, напряжение садится до 10.9-11.5 вольт. На ионисторе осталось 13вольт то есть перепад порядка 2 вольта.На то чтоб посадить эту разницу уйдет порядка 0.1-0.2 секунды максимум. Удар баса длится гораздо дольше. То есть в первый же удар баса заряд сольется и ионистор превратится в пассивный элемент питания посколько он живет только тогда когда его заряд больше напряжения сети. Дальше он начнет заряжаться за счет просаженой сети. Безусловно между ударами баса сеть будет приподнимать напряжение но подъем этот будет очень незначительный в пределах 0.3-0.5в. изза того что фронт, мидбасы да и сам саб продолжают работать в это время и этот перепад на конденсаторе будет расходоваться практически мгновенно не оставляя ощутимой пользы для питания.

В случае если вы используете в питании тонкие провода питания и массы или толстый дешевый обмедненный аллюминий производства мистери и Ко то ваш случай еще тяжелее. в этом случае к вашей просадке сети добавится просадка кабеля. В котором при резком возрастании потребления возникает реактивное сопротивление. То есть чем быстрее и больше вы попытаетесь взять с кабеля энергии и чем он длиннее и тоньше тем сильнее он этому будет препятствовать. В этом случае ионистор разрядившись не сможет даже зарядится! Ведб как мы знаем он и разряжается и заряжается достаточно быстро а этому будет провод оочень сопротмвлятся. Кроме того не забываем что ионистор потребляет какое то количество энергии которой нам и так не хватает. Ну и конечно стоит заметить что нагрузкой ионистора является не только усилитель а и ВСЯ бортовая сеть, включая всех потребителей и сам аккумулятор который в просадке питания тоже птпытается зарядиться за счет бедолаги ионистора.Естественно что НИКАКИХ проблем питания накопитель не ршеил.
Делаем вывод: питалово должно быть шикарным! и туда втулим наш накопитель! Решено. Меняем или ремонтируем генераторБ прокидываем от генератора толстую массу и плюс. Ставим новый аккумулятор, меняем и зачищаем ВСЕ клеммы, прокидываем силовой провод из хорошей меди достаточного сечения, включаем, меряем- КРАСОТА! На выключеном звуке на клеммах уся 14 вольт. Усь на всю на клеммах 13.2! ВСе качает, всем хватает, все довольны усь жмет вам руку. праздник. Ну теперь саме время поставить то наш кондер. СТавим, включаем, меряем. 14в и 13.3в. Хмм а ведь не удивительно. Цепи живая, питания хватает, кондер просто ждет спокойно своего часа.Пока все впорядке ему делать нечего.
Заблуждение теоретическое третье и заключительное: конденсатор нужен в системах с большой громкостью и на соревнованиях эс пи эль.Ионистор ввиду своей ленивости тут по любому отпадает. И оно казалось бы верно. На кратковременный замер конденсатору самое место. . НО
1.замер достаточно долго длится чтоб проснулся даже кислотный аккум и отдал свой максимум.
2. распространенные среди эс пи эльного братства гелиевые аккумуляторы являются практически фундаметном данных соревнований. А все потому что гелиевывй аккум способел стрелять сотнями ампер с такой скоростью что и скорости конденсаторов чувтвует себя не так комфортно. И этой скорости с лихвой хватает.
3. конденсатро как мы помним является потребителем энергии, а в эс пи эль любые лишние потребители это зло.
В итоге сейчас в эс пи эль никто не использует ни конденсаторы ни накопители.

Фуух с теорией разобрались. Теперь к практике. Конденсатро был одним из первых автозвуковых девайсов который у меня появился.Вернее ионистором пролоджи 1.5 фарада в старом исполнении когда вместо вольтметра на накопители устанавливали дистрибьюторы питания. Соответственно на его веку у меня уже сменилась одна машина и несколько раз полный состав системы включая питание. Расскажу жизни своей системы с нашим сегондяшним героем.

9ка карбюратор 95 года выпуска. родной генератор и аккумулятор 50ач. Усилитель пролоджи контроль 3004 + мистери 2.75. Провода мистери. На раскачке просадка напряжения была конской. вплоть до 10в с 12.5 на заведенной машине. Диод в цепь регулятора дал прибавку в 1 в но все равно не хватало. На клеммах усилителя с заглушеной машиной было 12в без музыки 10.6 с музыкой на всю. на заведенной 12.9 без музыки. до 10в на музыке. в среднем 11.3в. Устанавливаю накопитель как можно ближе к усилителю. Замеры. заглушеная машина 12.1в без музыки. с музыкой 10.6в. На заведенной без музыки 13.2 без музыки. С музыкой до9.9. в среднем 11.4в. То есть никак он не спасал положение о чем красноречиво говорила отсутствие разницы в звуке и вялый бас.
Замена проводов мистери на кг-16. остальная аппаратура таже. замеры Заглушеная машина 12.6в, с музыкой 10.9. За

www.drive2.ru

Накопитель для сабвуфера, мифы и реальность

Накопитель для сабвуфера, мифы и реальность

Подробности

Опубликовано 07.10.2016 12:10

Просмотров: 9305

Всем привет 🙂

Не буду Вас сильно грузить техническими понятиями и терминами напишу обобщенную полезную информацию из интернета + знания из личного опыта.

Итак, поехали. У кого есть сабвуфер в машине наверняка задавались вопросом «что такое накопитель (конденсатор) и зачем он вообще нужен? может можно музыку слушать и без него». Давайте разбираться.

На самом деле в качестве накопителя, особенно бюджетного служит ни что иное как ионистор супер конденсатор, да звучит впечатляюще :)) на самом деле это такое устройство которое способно быстро накапливать и отдавать энергию, применяется при больших нагрузках по току это если в вкратце. Интернет наполнен всякого рода информацией, в частности преобладают «советчики» люди которое забыли или не знают курс физики начальной школы или не понимающие вообще о чем речь. Запомните пожалуйста две аксиомы:

Аксиома №1. Накопитель для сабвуфера является ПОТРЕБИТЕЛЕМ в сети. То есть он НЕ способен сам вырабатывать электроэнергию! Он способен ее НАКАПЛИВАТЬ и совсем чуть потреблять на собственные нужды различного рода потери и утечки в конденсаторах но это совсем мизер. Это значит что ПО ОПРЕДЕЛЕНИЮ  он не может как бы не старался 🙂 продлить жизнь аккумулятору или как-то облегчить ему жизнь.

Аксиома №2. Накопитель для сабвуфера служит для накопления энергии и отдачи ее потребителю. При этом обладает очень низким внутренним сопротивлением — очень быстро отдает и так же быстро ее накапливает. При этом он работает совсем не как аккумулятор это не одно и тоже. Дело в том что пик отдачи приходится на первое мгновение потребления, после этого заряд резко начинает падать вместе со скоростью отдачи.

Исходя из выше сказанного гораздо больше пользы будет если Вы вместо покупки накопителя купите хороший кабель питания например КГ-35. Отличное питание — это самое главное в автозвуке!!! Но что-бы питание было наиотличнейшим 🙂 желательно использовать в совокупности систему: Аккумулятор + хороший генератор + хорошие контакты + качественная проводка = залог качественного звука в Вашем авто.

Поверьте, гораздо лучше если есть возможность непосредственно по близости усилителя установить дополнительный аккумулятор(-ы) — это будет намного лучше любых китаезных «примочек» накопителей потому что полезных свойств в акуме гораздо больше чем непонятно в чем в красивой коробочке.

Но все же польза от накопителей есть, правда со звуком почти не имеет ничего общего 🙂

1) Например у Вас слабая тонкая проводка и при большой громкости музыки моргают фары. Довольно таки неприятный и раздражительный момент думаю со мной согласится любой водитель. Установка накопителя поможет, хотя полностью не устранит проблему, потому что нужно менять проводку на нормальную или пересматривать/менять/делать профилактику генератору и другому электрооборудованию в авто.

2) Накопитель является мощным фильтром от помех, установив его Вы избавитесь от щелчков реле и помех при включении вентилятора и другого электрооборудования в авто.

3) Машина со слабым аккумулятором в мороз заводится гораздо лучше, чем без накопителя. Шустрая поддержка мощным импульсом энергии аккумулятору в ответственный момент не помешает.

4) С Накопителем в борт сети ремень генератора живет как «миллионер» на вилле :)) он (накопитель) сглаживает рывки генератора на ударах баса, т. е ремень однозначно дольше проживет с энергопомощником в виде накопителя.

Еще товарищи внимание! 🙂 При первом включении или же Вы надолго снимали аккумулятор с машины, а накопитель разряжен в ноль его нужно зарядить. Как это сделать?! есть два способа:

1 способ. По сложнее. Взять резистор на 10-20 Ом номинал не особо важен главное мощность выбрать в пределах 10-20 Ватт вполне будет достаточно, соединяете «минус» от аккума сразу на накопитель, а «плюс» подключаете к резистору с одной стороны, а с другой от резистора к «+» накопителя то есть последовательно между «+» аккумулятора и «+» накопителя.

2 способ. Простой. Взять автомобильную лампочку на 20 Ватт можно чуть больше 40 Ватт например на 12 Вольт и точно также подключить постом выше последовательно, ждать пока лампочка не потухнет по началу она вспыхнет и по мере зарядки будет угасать, как потухнет практически полностью можете убрать нашу «приблуду» и подключить как положено сразу «+» от аккумулятора.

Для чего это нужно, во первых не заряженный накопитель — это короткое замыкание для аккумулятора при подключении в «наглую», во вторых плавное включение самого накопителя тоже благотворно скажется на его счастливой жизни 🙂

Дополнено: 26.09.2017

Свою точку зрения насчет применения накопителей озвучил известный мастер c Астаны Алексей Филин в соц. сети ВКонтакте в группе «Автозвук б/у Казахстан» за что ему большое спасибо!

Цитирую:

«Этот конденсатор много чего дает, но только для магнитолы и для слабого усилителя, он сглаживает помехи которые создает генератор и катушки зажигания, для мафона самое оно, а вот для мощных усилителей он приносит только вред, так как на пиках мощности усилитель высасывает с него весь накопившийся ток, а зарядится этому кондеру нужно время причем не малое порядка нескольких секунд, и получается что он всегда пытается зарядится создавая просад, примерно как то так»

 

Добавить комментарий

avtousilok. kz

зачем нужен, как выбрать, рейтинг лучших моделей

У некоторых автолюбителей желание иметь в машине хороший звук превращается в погоню за рекордами. Существуют даже сообщества, участники которых нацелены на построение систем с огромной мощностью. Здесь считается уровнем начинающего акустика в киловатт. Не редкость — система с мощностью в 5 и более тысяч Ватт. На такое потребление не рассчитана ни одна бортовая система автомобиля. Поэтому нужен конденсатор для сабвуфера, который в моменты пикового отбора мощности способен компенсировать просадку напряжения в сети.

Зачем нужен конденсатор для сабвуфера

Чтобы понять, зачем машина оснащается емким конденсатором, стоит вспомнить закон Ома для полной цепи. Именно он поможет понять, что происходит, когда сабвуфер резко выходит на максимальную громкость.

  1. У каждого аккумулятора есть параметр электродвижущей силы, который зависит от емкости устройства, его внутреннего сопротивления и других характеристик.
  2. До момента, когда усилитель и вся звуковая установка в целом не превышают по потреблению возможности аккумулятора, проводка работает в нормальном режиме.
  3. В периоды, когда сабвуфер резко наращивает громкость и потребление мощности — аккумулятор физически не способен удовлетворить потребности. Его электродвижущей силы недостаточно для поддержки стабильного напряжения.

В результате интенсивного отбора мощности для звука происходит следующее: растут рабочие токи, аккумулятор не может обеспечить потребности и напряжение бортовой сети резко падает. Как следствие, наблюдается просадка саба (динамики захлебываются), становится нештатным функционирование усилителя.

Именно для стабилизации работы бортовой сети нужны электролитические конденсаторы, которые отдают мощность в момент пиковой нагрузки. Стоит понимать, что среднестатистическая колонка в машине, как и вся аудиосистема в целом, не всегда работают даже на номинальной мощности. В эти периоды низкого потребления и токов машина своим генератором заряжает не только аккумулятор, но и установленный накопитель.

В периоды роста потребления конденсатор разряжается. Это позволяет получить действительно лучший звук без падений мощности и отказа набора фронта громкости звучания.

На что обращать внимание при покупке?

Главное, что следует учитывать автовладельцу, желающему купить электролитический конденсатор для сабвуфера — соотношение его емкости и мощности системы. Правило достаточно простое. Минимальный предел составляет от 650 до 850 мкФ на киловатт. Для упрощения расчетов рекомендуется принимать 1Ф на 1 кВт мощности звуковой системы.

Идеально, если в автомобиль производится установка конденсатора с емкостью, превышающей номинальные показатели. Другие черты хорошего элемента выглядят следующим образом:

  • комплект поставки должен включать все, что нужно для того, чтобы установить электролитический конденсатор в машину. Это и провода, которым подключается усилитель, и специальные защищенные кронштейны, исключающие повреждение оболочки элемента и появление других нештатных ситуаций;
  • импульсное напряжение конденсатора должно составлять 24 В. Это достаточный запас (соответствующий параметр работы бортовой сети составляет от 12 до 18 В), чтобы во время зарядки накопитель не перегревался;
  • для резкой отдачи большой мощности, формирования больших токов, конденсатор обязан иметь мощные разъемы с толстыми подводами и большой площадью. Ответственные компании предлагают изделия с позолоченными контактами;
  • огромным подспорьем, в том числе для удобства контроля состояния накопителя во время эксплуатации, выступают индикаторы заряда. Это может быть простейшая схема с рядом светодиодов или цифровое табло;
  • если нужен накопитель, который можно просто подключать и рассчитывать на долговременную стабильную работу — рекомендуется покупать изделия, оснащенные системой контроля заряда и состояния. Такие модели обязательно комплектуются индикатором.

Последнее, но одно из главных, замечание: экономить на покупке электролитического конденсатора для сабвуфера не стоит. На специализированных форумах можно найти множество примеров, видео и фото разборки дешевых изделий. Они явно и точно показывают несоответствие реальных характеристик заявленным, а также описывают опасность использования подобного типа накопителей.

Перед покупкой электролитического конденсатора стоит обязательно поискать отзывы на специализированных ресурсах. Или — полистать рейтинги и ознакомиться с характеристиками подходящих изделий на сайте их производителей. Сегодня на массовом рынке предлагаются как электролитические конденсаторы, так и достаточно чувствительные к колебаниям температуры ионисторы.

Установка конденсатора в бортовую сеть, кроме сугубо утилитарных результатов в виде стабильной работы акустической системы, имеет еще несколько достоинств. В частности, сглаживаются броски тока при работе системы зажигания. Также, улучшается режим эксплуатации бортового генератора, так как он начинает меньше испытывать броски потребления. И самое главное: установленный конденсатор отлично помогает работе стартера зимой, отдавая мощность в общую сеть.

Как установить конденсатор?

Сложнее всего устанавливать простой конденсатор, не оснащенный системой контроля заряда. Пустой накопитель, подключаемый в сеть, в некоторых случаях может сжечь подключенный усилитель. Происходит следующее:

  • пустой конденсатор с очень малым внутренним сопротивлением замыкает цепь;
  • проходящие токи резко возрастают до максимума, зависящего от технических характеристик накопителя;
  • токи в цепи падают по мере роста заряда накопителя.

Первичный скачок тока настолько высок, что подвергать усилитель и другие компоненты акустики такому испытанию явно не рекомендуется. Поэтому конденсатор без системы контроля заряда перед включением в бортовую систему заряжают. Для этого собирают простую схему.

Минусовая клемма конденсатора присоединяется к массе, корпусу автомобиля. К плюсовой припаивают стандартную лампу накаливания для машины, второй ее контакт соединяют с плюсовой клеммой аккумулятора. Минусовой отвод автомобильной батареи также коммутируют на массу, корпус.

При включении схемы происходит следующее: нить лампы рывком разогревается до максимума. По мере накопления заряда, светимость падает. Когда лампа гаснет полностью — это означает, что напряжение на конденсаторе сравнялось с аккумулятором, нет разницы потенциалов. Заряд накопителя полный, его аккуратно отсоединяют, не допуская замыкания контактов. Работать нужно в резиновых перчатках.

С накопителями, которые оснащены системой контроля заряда — можно не колдовать. Они включаются в общую цепь без предосторожностей. Встроенная электроника блокирует первичный скачок тока. Такое удобство накопителя компенсируется некоторым недостатком. Конденсатор может выдать ток, ограниченный параметром электронного блока контроля заряда. Это нужно учитывать при покупке устройства.

Топ 5 устройств 2019 года

На основании отзывов потребителей выбраны 5 лучших конденсаторов для сабвуфера, показывающих хорошие результаты и длительный срок службы. Среди них изделия известных брендов, пригодные для использования как начинающими, так и опытными инженерами автомобильных звуковых систем.

Kicx flc 1.5

Плюсы

  • хорошая комплектация
  • контакты для кольцевых клеммных зажимов
  • защита от переполюсовки
  • индикация уровня заряда

Минусы

  • масса, габариты
  • емкость только 1.5 Ф
  • малый запас по рабочему напряжению

Главное достоинство данного конденсатора — полное удобство монтажа. Предусмотрены удобные комплектные кронштейны и надежная контактная группа. Изделие показывает отличный срок службы благодаря электронной защите и специальной сетке.

MD.Lab PC-E1.0

Плюсы

  • емкость 1Ф с малой погрешностью измерения
  • компактный алюминиевый корпус
  • встроенный вольтметр

Минусы

  • нет защиты от переполюсовки
  • малый запас по максимальному напряжению
  • скудная комплектация (только конденсатор)

Данный накопитель может обеспечить только 18 В импульсного напряжения. Если этого достаточно — устройство понравится опытным конструкторам аудиосистем. Конденсатор может работать при температурах от -40 до 60 градусов Цельсия, имеет малые токи утечки.

ACV CAP-5.0F

Плюсы

  • защита от перегрузки
  • защита от неправильного включения
  • опция интеграции с усилителем
  • возможность подключения нескольких последовательно соединенных единиц нагрузки
  • расширенная электронная система контроля параметров
  • световой индикатор и встроенный вольтметр

Минусы

  • габариты
  • малое значение импульсного напряжения
  • собственная схема подключения
  • неудобные клеммные колодки

Самый полный на сегодня контроль напряжения и параметров работы, а также возможность прямого управления со стороны усилителя — две яркие черты, которые выделяют данную модель конденсатора. Она понравится пользователям, желающим создать действительно мощную систему. Емкости в 5Ф хватит для акустики в 5 кВт.

Kicx DPC 2,0F

Плюсы

  • отличное соотношение мощности и габаритов
  • встроенный индикатор заряда
  • встроенное реле отключения в режиме покоя
  • хороший запас импульсного напряжения

Минусы

  • клеммы с малой площадью
  • скудная комплектация (только конденсатор)
  • малое рабочее напряжение 12В

Данный конденсатор очень неприхотлив. При некоторых недостатках, он допускает перегрев до 95 градусов Цельсия и сохранит заряд на стоянке без использования специальных схем подключения. Устройство понравится начинающим, способно выдавать импульс в 24В.

tehnopanorama.ru

Схема подключения конденсатора к сабвуферу: рассмотрим подробно

Схема подключения конденсаторов для сабвуфера с магнитолой, усилителем и другими потребителями

Как подключить конденсатор к сабвуферу и зачем он нужен, знают только те, кто уже сталкивался с работой по улучшению автозвука, потому что, когда самостоятельно устанавливаете аудиосистему, поневоле приходится изучить множество различных материалов.
Среди материалов, встречаются те, что рекомендуют совместно с усилителем обязательно установить накопитель либо конденсатор своими руками. Действительно ли необходим конденсатор, или это очередная выдумка, а если нужен, то для чего, сейчас разберемся.

Немного о конденсаторах

Вот так выглядит современный накопитель для сабвуфера

В наши дни все чаще встречаются накопители для сабвуфера, в устройстве которых применяются конденсаторы, фото выше (от латинского Condense — накапливать):

  • Раньше подобные фильтры для сабвуферов встречались лишь в навороченных системах топового уровня, однако сегодня все чаще они встречаются и среди бюджетных вариантов инсталляций
  • Сейчас подробно разберемся для чего так необходим конденсатор (далее кондер) в аудио системе автомобиля
  • Сегодня современный активный сабвуфер при воспроизведении музыки на кратковременных пиках звучания потребляет значительный (повышенный) ток
  • Однако необходимую мощность тока сегодня не в состоянии будут обеспечить даже наиболее мощные аккумуляторы
  • Без применения кондеров в эти моменты появляется ощутимые провалы при работе сабвуфера, что значительно снижает качество его звучания
    Чтобы решить проблемы с накоплением дополнительного напряжения и применяются накопители
  • Главным назначением этой детали в схеме является аккумулирование заряда, который, в случае необходимости отдается в сеть к усилителю для сабвуфера
  • Сразу после отдачи заряда, конденсатор заряжается вновь (см. Как зарядить конденсатор для сабвуфера самостоятельно) для обеспечения нового пика баса сабвуфера
  • Схема установки сабвуфера и конденсатора показана на первом рисунке
  • Происходит весь процесс за долю секунды, что позволяет постоянно обеспечивать качественное звучание
  • При этом даже в дешевых инсталляциях с использованием сабвуфера качество звучания улучшается кардинальным образом
  • Сразу исчезает столь неприятное каждому невнятное бубнение, которое возникает при провалах (недостатке) напряжения
  • Так ли нужен этот конденсатор?
  • Ведь известно, что цена за него увы, не маленькая, поэтому не далеко не каждый автомобилист, даже среди любители качественного звука, может себе позволить подобную роскошь
  • Но с другой стороны, практически каждый меломан обзаводится рано или поздно мощной музыкальной аппаратурой и доводит её звучание до совершенства
  • Мощность звучания – это хорошо, однако, чем мощнее ваша система, тем больше она требует энергии

Примечание: Еще одно распространенное заблуждение по поводу конденсаторов, якобы они нужны в системах, где вам необходима максимальная громкость либо на соревнованиях в мощности звучания, для фанатов эс пи эль. На самом деле, при обычных случаях, он будет удачно заменять ионистор.

Доказать что кондер необходим в обычных акустических автомобильных системах можно:

  • Замеры накопителя могут длиться долго, при этом «проснется» даже кислотный аккумулятор, и сумеет отдать свой потенциал
  • Среди фанатов звучания (так называемого братства эс пи эль «SPL») более принято применение гелеевых батарей, которые способны «стрелять» с поразительной скоростью сотнями ампер
  • Поэтому как бы ни был хорош кондер, однако такой скорости он не выдержит и окажется не у дел
  • Опять же, в «SPL» конденсатор будет потребителем, а для таких систем, это явное зло
  • Проще говоря в системах эс пи эль никакой конденсатор либо иной накопитель не применяется
  • Сегодня на рынке накопителей, и любой другой звуковой продукции очень много
  • Некоторые из производители усилителей, заранее предусматривают в аппаратуре клеммы, специально для подключения накопителей, и выпускают сами кондеры для своей аппаратуры

Производитель Focal

Вот, например, известный производитель высококачественной аудиотехники и усилителей из Франции, Фокал, использует в своих моделях такое решение:

  • Для кондеров в них предусматривается место, сразу после блока питания в усилителе
  • Именно в них, по утверждению экспертов, эффективность применениям дополнительных накопителей выше во много раз

Примечание: Единственным недостатком этого фирменного конденсатора, является то обстоятельство, что он подходит исключительно к усилителям марки Фокал.

Особенности кондера Фокал следующие:

  • Он значительно повышает характеристики звучания
  • Модуль состоит из нескольких кондеров, работающих параллельно

Примечание: Количество кондеров в модуле соответствует количеству блоков питания в усилителях.

  • Осуществляется подключение через комплектный кабель и специальный разъем
  • При сложных режимах работы стабильность усилителя повышается за счет встроенной технологии High-Cap
  • Схемы подключения конденсатора для сабвуфера прилагаются
  • Как становится понятно, накопитель в системе необходим, он эффективнее ионистора, но и гораздо дороже, выбирать лучше той же фирмы, что и усилитель, чтобы не было проблем
  • Подключать нужно качественными медными проводами, с хорошим сечением, чтобы не появилась просадка из-за проводов
  • Не забывайте про хороший контакт, зачищайте клеммы и про мощный аккумулятор
  • Применяйте исправный генератор
  • Тогда звучание будет просто супер

Остается пожелать вам успешного подключения и порекомендовать видео, для успешного выполнения работы.

avtozvuk-info.ru

Как подключить конденсатор для сабвуфера своими руками

Сегодня найти данное устройство несложно. Оно есть во многих магазинах, которые занимаются продажей аксессуаров и других предметов для автомобиля. При этом, выбор их огромный. Они отличаются как качественными характеристиками, так и наличием дополнительных функций. Каждый может выбрать тот вариант, который будет ему по душе.

Что касается подключений устройства, то можно воспользоваться помощью специалистов. Они быстро и качественно выполнят необходимую работу, но за это потребуется заплатить определенную сумму денег. Если вы хотите сэкономить, то подключить сабвуфер и все его составляющие можно и своими руками. Это совершенно не сложно, поэтому каждому под силу. Но есть некоторые нюансы и тонкости, которые важно знать. В противном случае ошибки неизбежны.

Конденсатор

Конденсатор на сабвуфер: для чего он нужен?

Сабвуфер представлен в виде сложной системы, которая состоит из разных элементов. Особенно важными являются конденсаторы. Также их называют накопителями. Они выполняют роль фильтра и ранее устанавливались только на дорогостоящих устройствах. Сегодня же их можно встретить и на бюджетных вариантах.

Конденсатор на сабвуфере обеспечивает аккумулирование заряда. Он передается усилителю, что приводит к улучшению качества звучания аудиосистемы. После того как разряд передан, конденсатор возвращается в свое первоначальное состояние разряженности. Таким образом он готов к принятию нового баса. При этом данная процедура проходит за доли секунды. Заметить человек ее не может, но сразу заметит изменения звучания в лучшую сторону.

У многих возникает вопрос, нужен ли конденсатор для сабвуфера? Ответ прост. Да. Наличие конденсатора на сабвуфере препятствует появлению невнятного бубнения устройства. Последнее образуется в результате провала напряжения. Касается это даже дешевых музыкальных устройств. В итоге музыкальная композиция воспроизводится чисто и без посторонних шумов.

Сабвуфер: какой динамик выбрать?

Прежде чем приступить к обустройству аудиосистемы в автомобиле, а также установке сабвуфера, необходимо продумать, какие динамики будут использоваться, так как они являются важным ее элементом и тоже определяют качество звучания. В машинах используются разные колонки, но, как показывает практика, самый лучший их размер 11-12 дюймов. Более высокие значения могут не только не поместиться в машину, но и будут искажать звуковой сигнал.

Мощность динамиков может быть разная. Нет общего принципа ее выбора, но стоит обратить внимание на данный показатель усилителя. В динамике мощность должна быть выше. Если же это правило не соблюдать, то при высокой громкости возможно искажение звука.

Сабвуфер и усилитель

Если подключение сабвуфера проводится своими руками, то не стоит забывать и об усилителе. Он может быть устроен в системе или подсоединяться отдельно. Усилитель не является основным компонентом, но все же рекомендуется, особенно если сабвуфер подключается к штатной магнитоле.

Усилитель – это колонка, воспроизводящая низкие частоты. Она имеет вид деревянной коробки. Такая конструкция обеспечивает дополнительные возможности устройству. Они касаются мощного баса на выходе. Как показывает практика, лучше использовать отдельный усилитель, так как он самостоятельно подключается к магнитоле и является связующим звеном между колонкой и самим устройством. Передает сигналы, которые отвечают за воспроизведение низких частот. Если же его не будет, то возможно замыкание системы. Поэтому стоит побеспокоиться о его наличии, особенно если он не встроенный.

Как подключить конденсатор для сабвуфера?

Подключение конденсатора к сабвуферу – несложный процесс, но трудоемкий. Важно выполнить его правильно, так как от этого напрямую зависит работа устройства. Первое, что понадобится, – схема подключения. Ее стоит изучить и только после этого приступать к основной работе.

Судя по схеме, кабель плюсовой клеммы подсоединяется к плюсу конденсатора. А от последнего к плюсу, который есть на усилителе. Потом проводится подключение минусового кабеля АКБ. Он, соответственно, соединяется с минусом конденсатора, затем и с усилителем, причем тоже с минусом. Подсоединение конденсатора проводится параллельно.

Рекомендации специалистов

В данном вопросе важны рекомендации специалистов. Ими пренебрегать не стоит. Первое, на что следует обратить внимание, – это расположение конденсатора. Он должен находиться как можно ближе к усилителю. Длинна провода, который их соединяет, составляет не более 45 см. Таким образом польза от устройства будет больше.

Также стоит отметить, что перед установкой конденсатор необходимо зарядить. Особенно это касается устройств большой емкости. В противном случае горячее подключение может привести к реакции, подобной замыканию. Но вот последствия будут намного серьезнее и печальнее. Зарядить конденсатор можно при помощи специального устройства, которое идет с ним в комплекте. Если его нет, то отлично подойдет и лампочка, которая предназначена для использования в автомобиле.

После того, как схема собрана, можно подсоединять провод АКБ и аккумулятор. Что касается минусовой клеммы, то сначала должна пройти полная зарядка конденсатора. Только после этого ее подключают к аккумулятору.

Если вся работа выполнена правильно, то и музыкальная система будет работать качественно с отличным звучанием. В противном случае ошибки дадут о себе знать. Исправить ситуацию можно будет лишь повторным проведением данной работы. Если с ней возникают  трудности, то стоит обратиться к специалистам, так как повреждение устройства или его составных частей может привести к новым проблемам, а иногда и необходимости приобретения нового конденсатора и сабвуфера.

1avtozvuk.ru

Зачем нужен конденсатор для сабвуфера — Audi 80, 1.8 л., 1988 года на DRIVE2

Конденсаторы для сабвуфера в последнее время все чаще встречаются не только в эксклюзивных “хайэндовских” аудиоинсталяциях, но и в “классических” комплектах автомобильных аудиосистем, использующих внешний усилитель звука. Такой конденсатор улучшает параметры усилителя и качество звучания сабвуфера.

Дело в том, что современные сабвуферы на кратковременных “пиках” сигнала могут потреблять значительный ток, который не в состоянии мгновенно обеспечить даже самый мощный аккумулятор. И какими бы “толстыми” ни были “звуковые” провода, питающие усилитель сабвуфера, они все равно обладают сопротивлением, вызывающим в момент импульса падение напряжения. В результате этого в работе “усилка” могут возникать так называемые провалы.
Не стоит также сбрасывать со счетов и работающий в летнее время кондиционер, «съедающий» до 30% энергии генератора, если он, конечно же, исправен. Поэтому, когда аудиосистема воспроизводит, например, мощные басы, возможны искажения звука, вызванные неспособностью батареи обеспечить необходимую скорость нарастания выходного сигнала (тока потребления).
Для устранения этого явления и нужен так называемый конденсатор для сабвуфера, представляющий собой электролитический конденсатор большой емкости, подключаемый параллельно цепи питания усилителя. Внутреннее сопротивление такого конденсатора настолько мало, что импульсный ток “отдается” усилителю моментально, тем самым, сглаживая возможные провалы. С той же быстротой конденсатор снова заряжается, готовясь “выдать порцию” для нового баса из сабвуфера. Большинство современных автомобильных конденсаторов для сабвуфера имеют огромную электрическую емкость – несколько фарад, сопоставимую с емкостью земного шара. Поскольку они конструктивно компонуются рядом с усилителями, то, помимо нарядного и современного дизайна, эти элементы нередко снабжаются цифровыми вольтметрами и световой индикацией заряда. В комплектах, как правило, имеется все необходимое для удобной установки конденсатора вблизи «усилка», причем расстояние между ними не должно превышать пятидесяти сантиметров. Мощные разъемы практически всех конденсаторов для сабвуфера имеют позолоту, уменьшающую сопротивление, а рабочее напряжение достигает 24 вольт.
Если же вас не устраивает звучание вашей штатной аудиосистемы, рекомендуем задуматься над заменой автомагнитолы на более современную подключением к ней внешнего усилителя и качественной акустики с мощным сабвуфером.

www.drive2.ru

Ионистор вместо аккумулятора в видеорегистраторе

Среди последних новинок науки и техники необходимо отметить появление конденсатора нового типа – ионистор, который также называют суперконденсатор. Что же это за зверь, и можно ли его использовать в автомобильном видеорегистраторе и других электронных приборах в качестве резервного источника питания?

Может ли ионистор заменить аккумулятор?

Из школьного курса физики известно, что конденсатор может запасать энергию, накапливая заряд электричества. Вот только величина этого заряда очень мала, поэтому его хватает только на хорошую искру при коротком замыкании. Также школьники используют металлобумажные конденсаторы переменного тока на 400…1000 Вольт для того, чтобы лупить друг друга электротоком, предварительно зарядив его в розетке 220 В. А в основном конденсаторы используют как радиокомпонент в электронных приборах.

Форм-фактор ионисторов, которые используются в качестве резервных аккумуляторов

Но в конце прошлого века в секретных лабораториях был придуман новый тип конденсатора, в котором вместо металлической ленты используется электролит и другие хитрые химические вещества. Благодаря такой конструкции новый тип конденсатора при малых размерах имеет громадную емкость, которую уже можно использовать для накопления заряда, достаточного для кратковременной работы электронных устройств с малым потреблением тока. Он получил название ионистор из-за того, что функционирует благодаря ионному переносу в химической среде между электродами.

Вот такой мощный ионистор на 3000 Фарад может завести автомобиль

В наше время ионисторы используются как резервный источник питания. Например, на Алиэкспресс за 5…10 баксов можно купить 5-вольтовый ионистор, который получает полную зарядку всего за 10…100 секунд. Однако он может питать средний светодиодный фонарик в течение 20…30 минут.

Обзор китайского ионистора

Теперь разберемся, сможет ли суперконденсатор заменить аккумулятор в автомобильном видеорегистраторе? В регике нет компонентов, которые бы потребляют большой ток – сервоприводы, электродвигатели, мощные лампы освещения. Поэтому расход тока достаточно мал – 50…100 мА. Средней паршивости ионистор сможет обеспечить работу видеорегистратора в течение 3…10 минут. Это более чем достаточно, чтобы дописать до конца видеоролик и корректно завершить работу.

В этом видеорегистраторе установлен суперконденсатор на 7,5 Фарад вместо аккумулятора

Так что, если вы колеблетесь — покупать ли видеорегистратор с суперконденсатором вместо встроенного аккумулятора, то все сомнения напрасны. Этот прибор выполнит все необходимые функции в вашем автомобиле, даже если в случае ДТП будет отключена бортовая сеть. Однако регистратор такого типа нельзя будет использовать как обычную переносную видеокамеру вне салона автомобиля – для уличной видеосъемки потребуется внешний источник питания.

Среди последних новинок науки и техники необходимо отметить появление конденсатора нового типа – ионистор, который также называют суперконденсатор. Что же это за зверь, и можно ли его использовать в автомобильном видеорегистраторе и других электронных приборах в качестве резервного источника питания?

Может ли ионистор заменить аккумулятор?

Из школьного курса физики известно, что конденсатор может запасать энергию, накапливая заряд электричества. Вот только величина этого заряда очень мала, поэтому его хватает только на хорошую искру при коротком замыкании. Также школьники используют металлобумажные конденсаторы переменного тока на 400…1000 Вольт для того, чтобы лупить друг друга электротоком, предварительно зарядив его в розетке 220 В. А в основном конденсаторы используют как радиокомпонент в электронных приборах.

Форм-фактор ионисторов, которые используются в качестве резервных аккумуляторов

Но в конце прошлого века в секретных лабораториях был придуман новый тип конденсатора, в котором вместо металлической ленты используется электролит и другие хитрые химические вещества. Благодаря такой конструкции новый тип конденсатора при малых размерах имеет громадную емкость, которую уже можно использовать для накопления заряда, достаточного для кратковременной работы электронных устройств с малым потреблением тока. Он получил название ионистор из-за того, что функционирует благодаря ионному переносу в химической среде между электродами.

Вот такой мощный ионистор на 3000 Фарад может завести автомобиль

В наше время ионисторы используются как резервный источник питания. Например, на Алиэкспресс за 5…10 баксов можно купить 5-вольтовый ионистор, который получает полную зарядку всего за 10…100 секунд. Однако он может питать средний светодиодный фонарик в течение 20…30 минут.

Обзор китайского ионистора

Теперь разберемся, сможет ли суперконденсатор заменить аккумулятор в автомобильном видеорегистраторе? В регике нет компонентов, которые бы потребляют большой ток – сервоприводы, электродвигатели, мощные лампы освещения. Поэтому расход тока достаточно мал – 50…100 мА. Средней паршивости ионистор сможет обеспечить работу видеорегистратора в течение 3…10 минут. Это более чем достаточно, чтобы дописать до конца видеоролик и корректно завершить работу.

В этом видеорегистраторе установлен суперконденсатор на 7,5 Фарад вместо аккумулятора

Так что, если вы колеблетесь — покупать ли видеорегистратор с суперконденсатором вместо встроенного аккумулятора, то все сомнения напрасны. Этот прибор выполнит все необходимые функции в вашем автомобиле, даже если в случае ДТП будет отключена бортовая сеть. Однако регистратор такого типа нельзя будет использовать как обычную переносную видеокамеру вне салона автомобиля – для уличной видеосъемки потребуется внешний источник питания.

Если вы собираетесь купить видеорегистратор для автомобиля, не повторяйте чужих ошибок. Собрали самые популярные из них в нашей статье.

Несмотря на то, что в интернете можно найти десятки инструкций по правильному выбору видеорегистраторов, покупатели продолжают совершать одни и те же ошибки. Кстати, иногда и сами инструкции провоцируют их на это. Мы побеседовали с продавцами и производителями таких устройств и попытались выяснить: что именно делают не так покупатели. Можно сказать, наш рейтинг составлен на основе типичных ошибок — учитесь на чужом опыте!

Лучше брать устройство с записью в 4К

Казалось бы, какие тут могут быть вопросы – 4К всяко лучше SHD и уж тем более HD. Но на самом деле это не так: большинство устройств просто интерполируют изображение в более высокое разрешение. Проверить «честность» формата 4К можно нехитрым путем.

Кстати, та же ситуация и с форматом Super HD. Производитель может сэкономить на матрице и программным путем увеличить разрешение с HD до SHD. Вот как можно вычислить такие фокусы.

Допустим, в характеристиках видеорегистратора указано разрешение SHD (2304*1296). Считаем, сколько мегапикселей понадобится матрице в этом случае: 2304*1296 = 2 985 984, то есть 3 Мп. Если в устройстве установлена матрица 2 Мп, значит, мы имеем дело с интерполяцией.

Вот в этой модели все честно: разрешение 2304×1296 поддержано 4-мегапиксельной матрицей.

Угол обзора: чем шире — тем лучше

Какое устройство вы выберете: с углом обзора 120°, 140° или 170°? Правильное решение – 140°. Угол в 120° будет недостаточен для захвата пространства перед автомобилем: если вас ударят в переднее крыло, инцидент может просто не попасть в объектив камеры. Но 170° тоже плохо: изображение будет слишком искаженным эффектом «рыбьего глаза». К тому же чем больше угол обзора, тем больше деталей нужно отразить на одном пикселе матрицы. Мелкие детали (а в частности госномера) могут просто теряться на видео, хотя они не менее важны. Оптимальный угол составляет приблизительно равен 140°-150° по диагонали.

Вот пример хорошего видеорегистратора с углом 140°, улучшенной контрастностью и антибликовым фильтром.

Встроенный аккумулятор лучше конденсатора

Аккумуляторы для пользователей привычнее: многие даже не знают, что такое конденсаторы в видеорегистраторах. А между тем, это отличная альтернатива. Основной недостаток аккумулятора заключается в том, что внутри автомобиля в зависимости от сезона, температура может изменяться условно от -50 °С на севере до +70 °С на юге. Любой используемый в регистраторах аккумулятор крайне отрицательно реагирует на такие изменения и достаточно быстро выходит из строя. Обычно он находится внутри корпуса регистратора в очень узком пространстве, т. е. при высокой внешней температуре может начать разрушаться, вздуваться и просто выламывать, например, линзу из корпуса. Может понадобиться не просто замена батареи, а ремонт всего устройства.

Альтернативой является ионистор, то есть конденсатор, который накапливает определенное количество энергии для корректного завершения работы и эффективно работает в очень широком диапазоне температур, что актуально для России с ее огромной территорией. Правда, его хватает лишь на корректное завершение работы устройства, зато никаких проблем с перегревом.

Вот модель с суперконденсатором, которая не боится даже +70 °С:

Wi-Fi не так уж и нужен

Еще одно ошибочное мнение. Считается, что модуль Wi-Fi нужен в том случае, если регистратор не оснащен дисплеем, иначе владелец не сможет его настроить. Но представьте себе ситуацию: у вас произошло ДТП и инспектор предлагает приобщить видеозапись (читайте, карту памяти) к протоколу. По сути, вы лишаетесь всех видеодоказательств: карта может просто пропасть в недрах ГИБДД (или, например, выпасть еще до поступления в недры). Есть видеорегистраторы с двумя картами памяти, но такие модели слишком дорогие.

Выход — как раз задействовать Wi-Fi и передать запись на смартфон. Тогда вы со спокойной душой можете пожертвовать картой памяти.

У этого устройства есть модуль Wi-Fi, а само оно похоже на смартфон, еще и экран 5-дюймовый.

Крепление должно быть на присоске

Некоторые автомобили ночуют во дворах – понятно, что владельцам не хочется оставлять дорогое устройство под ветровым стеклом. Поэтому после парковки они уносят регистраторы домой, а утром устанавливают снова. Соответственно, при выборе крепления на стекло автовладельцы предпочитают присоски: вариант со скотчем для них не подходит. Но не многие знают о том, что есть и третий способ крепления: на магнитах. То есть основание у вас все-таки приклеено к стеклу, а само устройство легко снимается и надевается, причем магнитное крепление обеспечивает еще и зарядку.

Вот современная модель с магнитным типом крепления.

Больше полезного о видеорегистраторах:

Как тестировать суперконденсаторы: 5 шагов (с изображениями)

Это большой кахуна нашей системы измерений. Все дело в мощности ребенка! Ну, это и деньги, но это другое поучительно. Не знаю, как вы, но если я закажу пиво, а стакан наполнен чуть более чем на 3/4, у нас возникнут проблемы. Но именно это могут сделать некоторые производители конденсаторов. Прежде чем потратить свои кровно заработанные деньги на суперкэп, зайдите на веб-сайт производителя и проверьте данные.Узнайте, каково допустимое отклонение для значения емкости, и используйте наименьшее значение для расчетов конструкции. Было бы разумнее потратить пару дополнительных долларов на покупку капитализации с рейтингом -5%, + 10%, чем с рейтингом + -20%. Предел + -20% в 500 Фарад может фактически быть пределом в 400 Фарад даже до того, как он начнет ухудшаться с возрастом и использованием.

Итак, мы знаем диапазон допустимых значений для нашего конденсатора. В моем случае у меня шесть конденсаторов по 100 Фарад с номиналом + -20%. Это дает мне приемлемый диапазон значений от 80 до 120 Фарад.Но как это измерить. Ваш конденсаторный измеритель взорвется от смеха, если вы попытаетесь измерить что-нибудь хоть немного близкое к этому. Я предполагаю, что мы застряли с косвенным значением емкости, основанным на энергии, которую мы можем вложить или извлечь из нашего конденсатора.

Хорошо, ненавижу это делать, но мне нужно немного математики. Ты знаешь, я из тех, кто любит бить камнем и ткнуть палкой, так что мне это больнее, чем тебе.

Средний ток в конденсаторе i = C (dV / dt) с C = Фарады, V = Вольт, t = секунды

Решение для C = i (dt / dV)

Так как мы собираемся использовать ток 1A и измерить время изменения напряжения на 1 вольт, это дает наше окончательное уравнение

C = dt

Таким образом, другими словами, чтобы определить значение емкости моего конденсатора, мне просто нужно измерить временной интервал в секундах во время зарядки или разрядки при 1А между 1 и 2 вольт. Или 1,5 В и 2,5 В, любой перепад в 1 В должен дать тот же результат (пока мой зарядный ток постоянен) Таким образом, моему конденсатору 100 Фарад + -20% потребуется от 80 до 120 секунд, чтобы перейти от 1 В до 2. Вольт. И здесь DSO — предпочтительный инструмент для тестирования, но старый простой цифровой мультиметр и секундомер будут работать почти так же. Кусок пирога!

Ну и что, если вы действительно ленивы, как я, или просто не верите математике и хотите увидеть полную энергию, запасенную в конденсаторе. Тогда вам, мой друг, понадобится Re: load Pro от Arachnid Labs.2)

Помните, что ваш конденсатор должен быть заряжен до 2,7 В и разряжен до 0,0 В для точного измерения. Что может быть проще? Полезно помнить, что для конденсатора 2,7 В 1 Фарад примерно равен 0,001 Втч или 1 мВтч накопленной энергии.

Испытательное оборудование суперконденсаторов — Arbin Instruments

Важность точности

Этот график иллюстрирует разницу между Arbin и другим ведущим производителем. Два отчетливых провала на графике могли быть пропущены при использовании более низкого тестера. В то время как многие компании пытаются продавать одно и то же устаревшее оборудование более десяти лет, Арбин усердно работает над улучшением наших конструкций, чтобы удовлетворить будущие потребности отрасли. Мы многому научились в ходе нашего трехлетнего проекта ARPA-E и внедрили эту новую технологию в наши серии продуктов LBT и HPT. Системы HPT представляют собой наш продукт премиум-класса, но LBT превосходит все другие стандартные тестеры на рынке.
Пожалуйста, ознакомьтесь с нашей серией продуктов HPT, чтобы узнать больше.

Что влияет на точность тестера
Разрешение ЦАП
Разрешение АЦП
Нелинейность калибровки
Кратковременный дрейф (температура)
Долгосрочный дрейф (характеристики материала)

Усовершенствования тестера Arbin
Повышенное разрешение
Улучшенные программные алгоритмы
Новые способы управления температурой
Новая запатентованная конструкция шунта
Новый метод учета времени
Новые материалы

Точность измерений более важна для долгосрочного тестирования и долгосрочных прогнозов, чем точность контроля только. Большинство других систем тестирования батарей неправильно определяют их точность и / или имеют относительно низкую точность, что затрудняет выводы, сделанные на основе данных результатов. Важные тенденции и электрохимические показатели могут остаться незамеченными; теряется в шумах измерения, как показано выше.

Мы надеемся, что эти более высокие степени точности измерений приведут к новым открытиям и характеристикам показателей в отрасли хранения энергии для всех организаций, а не только тех, которые рассматривают кулоновскую эффективность как ключевой показатель.

Тестирование производительности суперконденсаторов: важные вопросы и неопределенности

Основные моменты

Сравниваются различные процедуры тестирования по всему миру.

Сопротивление особенно сложно и важно измерить.

Мощность является наиболее неопределенной и зависит от процедуры испытания.

Гибридные суперконденсаторы требуют особого внимания при тестировании.

Аннотация

Суперконденсаторы — многообещающая технология для хранения энергии большой мощности, которая использовалась в некоторых промышленных и транспортных приложениях. Следовательно, важно, чтобы информация о характеристиках суперконденсаторов была подробной и надежной, чтобы разработчики систем могли принимать рациональные решения относительно выбора компонентов накопителя энергии. Этот документ касается важных вопросов и неопределенностей, касающихся тестирования производительности суперконденсаторов.Изучено влияние различных процедур испытаний на измеряемые характеристики как коммерческих, так и опытных суперконденсаторов, включая гибридные суперконденсаторы. Было обнаружено, что процедура испытания относительно незначительно влияет на емкость углеродных / углеродных устройств и более существенно влияет на емкость гибридных суперконденсаторов. Характеристикой устройства с наибольшей неопределенностью является сопротивление и, следовательно, заявленная мощность устройства. Плотность энергии следует измерять путем выполнения разрядов постоянной мощности между соответствующими пределами напряжения.Это особенно важно в случае гибридных суперконденсаторов, для которых плотность энергии зависит от скорости, и простое соотношение E = ½CV 2 не дает точных оценок запасенной энергии. В целом, большинство важных вопросов для тестирования углеродных / углеродных устройств становятся более серьезными для гибридных суперконденсаторов.

Ключевые слова

Суперконденсаторы

Гибридные

Процедуры испытаний

Сопротивление

Мощность

Плотность энергии

Рекомендуемые статьи Цитирующие статьи (0)

Полный текст

© 2017 Опубликовано Elsevier B.V.

Рекомендуемые статьи

Ссылки на статьи

Тестирование суперконденсаторов | Подробности | Hackaday.io

Мои суперконденсаторы прибыли вчера, и я имел возможность провести с ними несколько тестов. Я установил испытательный стенд, на котором могу записывать данные во время зарядки аккумуляторов. У меня еще нет плат баланса заряда от OSH Park, поэтому я тестировал единственный конденсатор.

Испытательная установка включает три цифровых мультиметра с последовательным портом и стальную банку с боеприпасами, в которую помещается монетный элемент на случай, если он лопнет во время высокоскоростной разрядки.

Вот интересная мелочь: батарейка CR2477 рассчитана на выработку 10 800 Дж энергии. 7,62-миллиметровые патроны НАТО, изначально хранящиеся в боеприпасах, могут иметь дульную энергию 3304 Дж, поэтому монетный элемент может выдавать столько же энергии, сколько три пули винтовки 30-го калибра. Просто гораздо менее быстро.

Вот шесть конденсаторов по 400Ф каждый:

Я купил восемь из них, полагая, что несколько дополнительных, с которыми можно поиграть, может быть интересно 🙂 Я, вероятно, соединю их вместе таким образом, чтобы выходные клеммы были расположены близко к тому месту, где они были бы на автомобильный аккумулятор; это упростит подключение кабелей аккумуляторной батареи автомобиля к блоку конденсаторов. Я могу напечатать для них футляр просто для удовольствия.

Я устроил за ночь простой тест, чтобы измерить емкость и скорость саморазряда одного конденсатора. Я зарядил конденсатор на некоторое время, затем записал данные, пока он «сам» разряжен. Этот разряд произошел из-за комбинации истинного саморазряда, утечки через диод 1N5817 и схемы защиты от перенапряжения, которая представляет собой подстроечный резистор 10 кОм и шунтирующий стабилизатор TL431. В качестве первого подхода я решил смоделировать все утечки как параллельный R, рассматривая все это как одну RC-цепь.

Если бы я знал фактическое значение емкости, я мог бы определить Req по кривой разряда. Итак, чтобы найти как Req, так и значение емкости C, я добавил к конденсатору дополнительный резистор 10 Ом и продолжил регистрировать напряжение. Результатом является пара экспоненциальных кривых:

Для каждой кривой я оценил постоянную времени RC методом линейной регрессии; Для этого можно переставить уравнение:

чтобы получить:

, который легко распознается как форма (y = a x + b), поэтому его можно подогнать с помощью линейной регрессии.

Для первой части кривой это дает оценку 330 914 для постоянной времени RC. Для второй части (с добавленным параллельно резистором 10 Ом) постоянная времени RC теперь намного ниже, 4298. Объединение этих двух измерений позволяет нам определить Req и C, поскольку у нас есть два уравнения для двух неизвестных:

Решение этих уравнений одновременно (я использовал максимумы) дает C = 435F и R = 760 Ом.

Емкость кажется разумной для части 400F -10 / + 30%, но эквивалентное сопротивление кажется низким — это будет означать ток утечки 3.5 мА при полностью заряженном 2,7 В. Сам конденсатор имеет максимальную утечку 1 мА, диод Шоттки 1 мА (при обратном напряжении 20 В, поэтому здесь оно должно быть ниже), а потенциометр и регулятор должны быть максимум на несколько десятков мкА. Если посмотреть с другой стороны, при RC = 4298 конденсатор потеряет 10% своей энергии за 3,7 часа или половину своей энергии за 25 часов.

Я измерю ток утечки TL431 и диода Шоттки по отдельности и посмотрю, как они выглядят.

Это не обязательно ужасная новость, поскольку я не собираюсь оставлять конденсаторы подключенными к зарядному устройству, когда оно не работает.Теперь мне нужно повторить этот эксперимент без подключенного зарядного устройства, чтобы лучше оценить саморазряд только конденсатора.

РЕДАКТИРОВАТЬ: некоторые из «дополнительных утечек», которые я обнаружил, вероятно, связаны с проблемами диэлектрического поглощения. Я вижу, что в таблице указана максимальная утечка 1 мА через 72 часа — я интерпретирую это как означающее, что конденсатор «пропитан» максимальным напряжением в течение 72 часов, чтобы обеспечить полное насыщение всех теоретических небольших RC внутри перед проверкой утечки. Я действительно заметил, что есть быстрое «ступенчатое изменение» напряжения конденсатора при первом приложении заряда или нагрузки — вероятно, отражающее неглубокую зарядку или разрядку.Вероятно, я смогу избежать большинства проблем саморазряда, если устрою тест запуска двигателя прямо в конце зарядки.

Суперконденсатор | Типы | Конденсаторная направляющая

Что такое суперконденсаторы?

Суперконденсаторы — это электронные устройства, которые используются для хранения чрезвычайно большого количества электрического заряда. Они также известны как двухслойные конденсаторы или ультраконденсаторы. Вместо использования обычного диэлектрика в суперконденсаторах используются два механизма для хранения электрической энергии: емкость двойного слоя и псевдоемкость.Емкость двойного слоя имеет электростатическое происхождение, в то время как псевдоемкость является электрохимической, что означает, что суперконденсаторы сочетают работу обычных конденсаторов с работой обычной батареи. Емкости, достигаемые с помощью этой технологии, могут достигать 12000 F. Для сравнения, собственная емкость всей планеты Земля составляет всего около 710 мкФ, что более чем в 15 миллионов раз меньше, чем емкость суперконденсатора. В то время как обычный электростатический конденсатор может иметь высокое максимальное рабочее напряжение, типичное максимальное напряжение заряда суперконденсатора находится в пределах 2. 5 и 2,7 вольт. Суперконденсаторы — это полярные устройства, а это означает, что они должны быть подключены к цепи правильно, как и электролитические конденсаторы. Электрические свойства этих устройств, особенно их быстрое время зарядки и разрядки, очень интересны для некоторых приложений, где суперконденсаторы могут полностью заменить батареи.

Определение суперконденсатора

Суперконденсатор — это специально разработанный конденсатор с очень большой емкостью. Суперконденсаторы объединяют в одном устройстве свойства конденсаторов и батарей.

Характеристики

Время зарядки

Суперконденсаторы

имеют время заряда и разряда, сопоставимое со временем заряда обычных конденсаторов. Благодаря их низкому внутреннему сопротивлению можно добиться высоких зарядных и разрядных токов. Батареям обычно требуется до нескольких часов для достижения полностью заряженного состояния — хорошим примером является аккумулятор сотового телефона, в то время как суперконденсаторы могут быть доведены до такого же уровня заряда менее чем за две минуты.

Удельная мощность

Удельная мощность батареи или суперконденсатора — это мера, используемая для сравнения различных технологий с точки зрения максимальной выходной мощности, деленной на общую массу устройства.Удельная мощность суперконденсаторов в 5-10 раз больше, чем у батарей. Например, в то время как литий-ионные батареи имеют удельную мощность 1–3 кВт / кг, удельная мощность типичного суперконденсатора составляет около 10 кВт / кг. Это свойство особенно важно в приложениях, где требуется быстрое высвобождение энергии из запоминающего устройства.

Жизненный цикл и безопасность

Суперконденсаторные батареи при неправильном обращении безопаснее, чем обычные батареи. В то время как батареи, как известно, взрываются из-за чрезмерного нагрева при коротком замыкании, суперконденсаторы не нагреваются так сильно из-за их низкого внутреннего сопротивления.Замыкание полностью заряженного суперконденсатора вызовет быстрое высвобождение накопленной энергии, что может вызвать электрическую дугу и может вызвать повреждение устройства, но, в отличие от батарей, выделяемое тепло не вызывает беспокойства.

Суперконденсаторы

могут заряжаться и разряжаться миллионы раз и имеют практически неограниченный срок службы, в то время как батареи имеют срок службы 500 раз и выше. Это делает суперконденсаторы очень полезными в приложениях, где требуется частое накопление и выделение энергии.

Недостатки

У суперконденсаторов

есть и недостатки. Один из недостатков — относительно низкая удельная энергия. Удельная энергия — это мера общего количества энергии, хранящейся в устройстве, деленное на его вес. В то время как литий-ионные батареи, обычно используемые в сотовых телефонах, имеют удельную энергию 100-200 Втч / кг, суперконденсаторы обычно могут хранить только 5 Втч / кг. Это означает, что суперконденсатор, имеющий ту же емкость (не емкость), что и обычная батарея, будет весить до 40 раз больше.Удельную энергию не следует путать с удельной мощностью, которая является мерой максимальной выходной мощности устройства на единицу веса.

Еще один недостаток — линейное напряжение разряда. Например, батарея с номинальным напряжением 2,7 В при 50% заряда по-прежнему будет выдавать напряжение, близкое к 2,7 В, в то время как суперконденсатор с номиналом 2,7 В при 50% заряда будет выдавать ровно половину своего максимального напряжения заряда — 1,35 В. Это означает, что выходное напряжение упадет ниже минимального рабочего напряжения устройства, работающего на суперконденсаторе, например мобильного телефона, и устройству придется отключиться, прежде чем израсходовать весь заряд конденсатора.Решение этой проблемы — использование преобразователей постоянного тока в постоянный. Этот подход создает новые трудности, такие как эффективность и шум мощности.

Стоимость — третий серьезный недостаток имеющихся в настоящее время суперконденсаторов. Стоимость 1 Втч суперконденсатора более чем в 20 раз выше, чем у литий-ионных аккумуляторов. Однако стоимость может быть снижена за счет новых технологий и массового производства суперконденсаторных батарей.

Низкая удельная энергия, линейное напряжение разряда и высокая стоимость — основные причины, по которым суперконденсаторы не могут заменять батареи в большинстве приложений.

Конструкция и свойства суперконденсаторов

Конструкция суперконденсатора аналогична конструкции электролитических конденсаторов в том, что они состоят из двух фольговых электродов, электролита и фольгового сепаратора. Сепаратор помещается между электродами, а фольга скручивается или складывается в форму, обычно цилиндрическую или прямоугольную. Сложенная форма помещается в корпус, пропитанный электролитом и герметично закрытый. Электролит, используемый в конструкции суперконденсаторов, а также электроды, отличается от тех, что используются в обычных электролитических конденсаторах.

Для хранения электрического заряда суперконденсатор использует пористые материалы в качестве разделителей, чтобы хранить ионы в этих порах на атомном уровне. Наиболее часто используемый материал в современных суперконденсаторах — это активированный уголь. Тот факт, что углерод не является хорошим изолятором, приводит к тому, что максимальное рабочее напряжение ограничивается до 3 В. Активированный уголь не является идеальным материалом по другой причине: носители заряда сопоставимы по размеру с порами в материале, а некоторые из них не могут вписываются в более мелкие поры, что приводит к уменьшению емкости хранения.

Графен — один из самых интересных материалов, используемых в исследованиях суперконденсаторов. Графен — это вещество, состоящее из чистого углерода, расположенного в виде плоского листа толщиной всего в один атом. Он чрезвычайно пористый и действует как ионная «губка». Плотности энергии, достижимые при использовании графена в суперконденсаторах, сопоставимы с плотностями энергии, обнаруженными в батареях. Однако, несмотря на то, что прототипы графеновых суперконденсаторов были сделаны в качестве доказательства концепции, производство графена в промышленных количествах затруднено и дорого, что откладывает использование этой технологии.Тем не менее, графеновые суперконденсаторы являются наиболее многообещающим кандидатом для будущих достижений в технологии суперконденсаторов.

Приложения для суперконденсаторов

Поскольку суперконденсаторы заполняют промежуток между батареями и конденсаторами, они могут использоваться в самых разных приложениях. Одним из интересных приложений является хранение энергии в KERS или динамических тормозных системах (система рекуперации кинетической энергии) в автомобильной промышленности. Основная проблема в таких системах — создание накопителя энергии, способного быстро накапливать большое количество энергии.Один из подходов заключается в использовании электрического генератора, который преобразует кинетическую энергию в электрическую и хранит ее в суперконденсаторе. Эта энергия позже может быть повторно использована для обеспечения мощности для ускорения.

Другой пример — приложения с низким энергопотреблением, где высокая емкость не обязательна, но важен длительный жизненный цикл или быстрая подзарядка. Такими приложениями являются фотографическая вспышка, MP3-плееры, статические запоминающие устройства (SRAM), которым для сохранения информации требуется источник постоянного напряжения малой мощности и т. Д.

Возможные будущие применения суперконденсаторов в сотовых телефонах, ноутбуках, электромобилях и всех других устройствах, которые в настоящее время работают от батарей. Наиболее захватывающим преимуществом с практической точки зрения является их очень высокая скорость перезарядки, что означает, что подключения электромобиля к зарядному устройству на несколько минут будет достаточно для полной зарядки аккумулятора.

Выбор подходящего суперконденсатора для вашего приложения

Батареи и суперконденсаторы часто сравнивают по их энергии и мощности .Аккумуляторы имеют более высокую плотность (это означает, что они могут хранить больше энергии на единицу массы), но суперконденсаторы имеют более высокую плотность мощности (что означает, что они могут выделять энергию быстрее). Это делает суперконденсаторы лучшими для более быстрого хранения и высвобождения большого количества энергии, но батареи по-прежнему являются мастерами для хранения большого количества энергии в течение длительных периодов времени.

Суперконденсаторы

имеют гораздо более высокие значения емкости по сравнению с другими конденсаторами (но более низкие пределы напряжения), поэтому они в основном являются мостом между конденсаторами и батареями.Они могут хранить намного больше энергии на единицу массы по сравнению с конденсаторами. Благодаря тому, что они работают электростатически, их можно заряжать и разряжать любое количество раз. Поскольку они имеют низкое внутреннее сопротивление по сравнению с батареями, они работают с эффективностью около 98%.

Суперконденсаторы лучше всего подходят для резервных устройств для отключения питания микрокомпьютеров и RAM, интеллектуальных счетчиков, сетевых устройств POE, систем сигнализации, насосов нагревателя и т. Д. В зависимости от резервного тока для источника питания суперконденсаторы имеют разное время резервного копирования.На рисунке ниже показано основное приложение.

Решение KEMET

Перед выбором необходимого конденсатора необходимо определить следующие параметры.

  • необходимое время поддержки
  • требуется резервный ток
  • минимальное и максимальное рабочее напряжение
  • рабочая температура
  • требуемые размеры
  • тип монтажа (поверхностный или сквозной)

Пример проекта

Заказчику потребуется суперконденсатор, который сможет выдержать 150 часов резервного питания при следующих условиях:

➢ 𝑽𝒎𝒊𝒏 = 2.5 В
➢ 𝑽𝒎𝒂𝒙 = 5,5 В
➢ 𝑰𝒃𝒂𝒄𝒌𝒖𝒑 = 540𝑛𝐴
➢ требуемое время поддержки T> 150 часов,
➢ Температура окружающей среды 85 ° C + дополнительная система охлаждения (-15 ° C) ➢ Требуется суперконденсатор SMD

Раствор:

Основное уравнение для требуемой емкости:

После расчета всех остальных параметров заказчику, похоже, понадобится суперконденсатор с емкостью около 0,1Ф.
Kemet предлагает суперконденсаторы следующей серии:

Поскольку наша серия FC — единственная серия с монтажом SMD, нам придется выбрать эту серию.

Согласно нашему каталогу, максимальное рабочее напряжение для этой серии составляет 5,5 В постоянного тока, что соответствует максимальному рабочему напряжению.
Поскольку серия FC имеет температуру до 70 ° C, для системы потребуется дополнительное охлаждение.

Наиболее логично выбрать FC0h204ZFTBR24 с разрядным конденсатором 0,1Ф.

НО !!

Есть дополнительные параметры, которые необходимо учитывать при выборе правильного суперконденсатора.

➢ Падение напряжения

Падение напряжения на суперконденсаторе определяется сопротивлением постоянному току и резервным током.Значения сопротивления постоянному току для каждого номера детали приведены в наших таблицах данных.

Приблизительное падение напряжения можно рассчитать по следующей формуле:

Где 𝑹𝑫𝑪 — сопротивление суперконденсатора постоянному току [Ом], 𝑰𝒃𝒂𝒄𝒌𝒖𝒑 — резервный ток [𝑨]

Когда резервный ток составляет 1 мА и ниже, нет никакого потенциального падения напряжения, это означает, что мы можем пренебречь падением напряжения в этом случае, поскольку резервный ток составляет всего 540 нА.

Ток утечки

Рабочая температура должна быть фактором, который больше всего влияет на срок службы суперконденсаторов.Как показано на приведенном ниже графике (графики доступны для всех частей), ток утечки значительно возрастает с увеличением рабочей температуры.

Поскольку ток утечки является дополнительным потреблением тока, вам нужно будет взять сумму резервного тока и тока утечки при вычислении времени поддержки.

Поскольку в приложении возможно охлаждение, мы будем считать, что рабочая температура будет 70 ° C. Мы видим, что ток утечки в этом случае составляет 4 мкА.

Затем вы можете рассчитать, как долго хватит энергии, используя расчет ниже:

Теперь, принимая во внимание ток утечки, мы видим, что вместо требуемых 150 часов время поддержки будет значительно сокращено до 18 часов.При этом необходимо будет выбрать конденсатор с более высоким значением емкости (почти в 10 раз выше).
Выбрав FC0h205ZFTBR44, значение емкости разряда которого составляет 1Ф, мы можем пересчитать время поддержки:

Время поддержки в этом случае составляет 183 часа, что больше запрошенных 150 часов. Даже если рассчитать запас в 15% по емкости, мы получаем почти 155 часов автономной работы.

Не стоит также забывать об «оценке срока службы» суперконденсаторов. Срок службы суперконденсатора определяется как точка, в которой емкость снижается до 70% от начального значения, как показано на графике ниже:

Заключение

Требуемая необходимая емкость суперконденсатора должна быть рассчитана с помощью приведенного ниже уравнения с учетом падения напряжения, тока утечки и 15% допуска емкости.

Как измерить и составить отчет о емкости двойных электрохимических слоев, суперконденсаторов и их электродных материалов

  • 1.

    Zhi M, Xiang C, Li J, Li M, Wu N (2013) Наноструктурированные композитные электроды на основе оксида углерода и металла для суперконденсаторов : Обзор. Наноразмер 5 (1): 72–88

    CAS

    Google ученый

  • 2.

    Lippmann G (1875) Отношения между электрическими феноменами и капиллярами. Энн Чим Физ 5: 494–549

    Google ученый

  • 3.

    см. Также: Bockris JO’M, Reddy AKN, Gamboa-Aldeco M (2000) Modern electrochemistry, vol. 2А. Kluwer-Plenum, New York, p 858, 875

  • 4.

    Perrin JB (1903) Traité de chimie Physique. Принципы

  • 5.

    Штерн О. (1924) Теория двойного электролитического слоя. Z Elektrochem 30: 508–516

    CAS

    Google ученый

  • 6.

    Гуи Г. (1909) Создание электрического заряда на поверхности электролита.CR Acad Sci 149: 654–657

    CAS

    Google ученый

  • 7.

    Gouy G (1906) Sur la fonction électrocapillaire III. Энн Чим Физ 9: 75–139

    Google ученый

  • 8.

    Gouy G (1910) О строении электрического заряда на поверхности электролита (О строении электрического заряда на поверхности электролита). J Phys 9: 457–468

    CAS

    Google ученый

  • 9.

    Чепмен Д.Л. (1913) Вклад теории капиллярности. Philos Mag 25: 475–481

    Google ученый

  • 10.

    de Levie R (2000) Что в имени? J Chem Educ 77 (5): 610–612

    Google ученый

  • 11.

    Helmholtz HLF (1879) Studien über electrische Grenzschichten (Исследования электрических пограничных слоев). Wied Ann 7: 337–382

    Google ученый

  • 12.

    Grahame DC (1947) Двойной электрический слой и теория электрокапиллярности. Chem Rev 41 (3): 441–501

    CAS
    PubMed

    Google ученый

  • 13.

    Электрохимический двойной слой, Proceedings volume 97-17 (1997) (C. Korzeniewski, BE Conway Eds.) The Electrochemical Society, Inc., Pennington

  • 14.

    Schmickler W (2020) Двойной слой теория. J Solid State Electrochem. https://doi.org/10.1007/s10008-020-04597-z

  • 15.

    Базант М.З., Торнтон К., Аждари А. (2004) Динамика диффузного заряда в электрохимических системах. Phys Rev B 70 (2): 021506

    Google ученый

  • 16.

    Ян Х, Бо З., Шуай Х, Ян Дж., Цен К. (2019) Влияние смачиваемости на динамику заряда электрических двухслойных конденсаторов. Acta Phys -Chim Sin 35 (2): 200–207

    CAS

    Google ученый

  • 17.

    Xie X, Holze R Кинетические данные электрода: геометрия vs.реальная площадь поверхности, представленная

  • 18.

    Leiva E, Schmickler W (1986) Новые теории двойного электрического слоя на границе раздела металл / раствор электролита. Proc Indian Acad Sci Chem Sci 97: 267–296

    CAS

    Google ученый

  • 19.

    Парсонс Р. (1990) Двойной электрический слой: последние экспериментальные и теоретические разработки. Chem Rev 90 (5): 813–826

    CAS

    Google ученый

  • 20.

    Conway BE, Birss V, Wojtowicz J (1997) Роль и использование псевдоемкости для хранения энергии суперконденсаторами. J Источники питания 66 (1-2): 1–14

    CAS

    Google ученый

  • 21.

    Мойнихан Дж. Д. (1982) Теория, конструкция и применение электролитических конденсаторов

  • 22.

    Thiesbürger KH (1991) Der Elektrolyt-Kondensator, 4-е изд. Roederstein, Ландсхут

    Google ученый

  • 23.

    Becker HI Патент США US2800616, 23.07.1957

  • 24.

    Rightmire RA Патент США US3288641, 29.11.1966

  • 25.

    Currie JC DiFranco LF, Bennett PD (1988) Патент США 08.03. 1988

  • 26.

    Wang W, Guo S, Lee I, Ahmed K, Zhong J, Favors Z, Zaera F, Ozkan M, Ozkan CS (2014) Наночастицы водного оксида рутения, прикрепленные к гибридной пене графена и углеродных нанотрубок для суперконденсаторов . Научный доклад 4: 4452

    PubMed
    PubMed Central

    Google ученый

  • 27.

    Holze R (2017) От пиков тока до волн и емкостных токов — об истоках поведения конденсаторных электродов. J Solid State Electrochem 21 (9): 2601–2607

    CAS

    Google ученый

  • 28.

    Рагойша Г.А., Анискевич Ю.М. (н.о.) Ложная емкость суперконденсаторов. arXiv1604.08154v1

  • 29.

    Бард А.Дж., Фолкнер Л.Р. (2001) Электрохимические методы, 2-е изд. Уайли, Нью-Йорк

    Google ученый

  • 30.

    Пламбек Дж. А. (1982) Электроаналитическая химия. Уайли, Нью-Йорк

    Google ученый

  • 31.

    Ван Дж. (2006) Аналитическая электрохимия. WILEY-VCH, Хобокен

    Google ученый

  • 32.

    Anonymous (2011) Примечания по применению Autolab SC01, 01.07.2011

  • 33.

    Ardizzone S, Fregonara G, Trasatti S (1990) «Внутренняя» и «внешняя» активная поверхность RuO 2 электродов .Electrochim Acta 35 (1): 263–269

    CAS

    Google ученый

  • 34.

    Vogt H (1994) Примечание о методе взаимосвязи внутренних и внешних электродных поверхностей. Electrochim Acta 39 (13): 1981–1983

    CAS

    Google ученый

  • 35.

    Baronetto D, Krstajic N, Trasatti S (1994) Ответ на «Заметку о методе взаимосвязи внутренних и внешних областей электродов» Х. Фогта. Electrochim Acta 39 (16): 2359–2362

    CAS

    Google ученый

  • 36.

    Аноним (2017) Техническая записка PS-5502 Eaton, Cleveland

  • 37.

    Кундерт К. (2007) Моделирование диэлектрической абсорбции в конденсаторах. www.designers-guide.org, дата обращения 25.04.2020

  • 38.

    Pease RA (1982) Понимание выдержки конденсатора для оптимизации аналоговых систем. EDN 13.10.1982: 125-129; также на www.national.com/rap. Доступ 25 апреля 2020 г.

  • 39.

    Krishnan SG, Harilal M, Pal B, Misnon II, Karuppiah C, Yang CC, Jose R (2017) J Electroanal Chem 805: 126–132

    CAS

    Google ученый

  • 40.

    Gogotsi Y, Simon P (2001) Истинные показатели производительности в электрохимическом накоплении энергии. Наука 334: 917–918

    Google ученый

  • 41.

    Jorne J (2018) Рейтинг аккумуляторов C: вводящая в заблуждение концепция Поток C, а не коэффициент C. Интерфейс 27 (2): 42–43

    CAS

    Google ученый

  • 42.

    Ge Y, Liu Z, Wu Y, Holze R (2020) Об использовании материалов электродов суперконденсаторов.Представлено в Electrochim Acta

  • 43.

    Stoller MD, Ruoff RS (2010) Лучшие практические методы определения характеристик материала электродов для ультраконденсаторов. Energy Environ Sci 3 (9): 1294–1301

    CAS

    Google ученый

  • 44.

    Lämmel C, Schneider M, Weiser M, Michaelis A (2013) Исследования материалов электрохимических конденсаторов с двойным слоем (EDLC) — сравнение методов испытаний. Mater Werkst 44 (7): 641–649

    Google ученый

  • 45.

    Zhang S, Pan N (2015) Оценка производительности суперконденсаторов. Adv Energy Mater 5 (6): 1401401

    Google ученый

  • 46.

    Balducci A, Belanger D, Brousse T, Long JW, Sugimoto W. (2017) Руководство по составлению отчетов о показателях производительности электрохимических конденсаторов: от материалов электродов до полноценных устройств. J Electrochem Soc 164 (7): A1487 – A1488

    CAS

    Google ученый

  • 47.

    Ratha S, Samantara AK (2018) Суперконденсатор: методы измерения, измерения и оценки характеристик. Springer, Singapore

  • 48.

    Kampouris DK, Ji X, Randviir EP, Banks CE (2015) Новый подход к улучшенной интерпретации измерений емкости для материалов, используемых в накоплении энергии. RSC Adv 5 (17): 12782–12791

    CAS

    Google ученый

  • 49.

    Vielstich W, Schmickler W (1976) Elektrochemie II: Kinetik elektrochemischer Systeme (R.Haase Ed.). Steinkopff, Darmstadt

  • 50.

    Gileadi E, Kirowa-Eisner E, Penciner J (1975) Interfacial Electrochemistry. Addison Wesley, London

  • 51.

    Holze R, Schneider J, Hamann CH (1988) Eine neue Methode zur Untersuchung der Elektrosorption reaktiver Verbindungen. Ber Bunsenges Phys Chem 92 (11): 1319–1325

    CAS

    Google ученый

  • 52.

    Doss KSG, Kalyanasundaram A (1952) Влияние поверхностно-активных веществ на емкость двойного электрического слоя.Proc Indian Acad Sci 35A: 27–33

    CAS

    Google ученый

  • 53.

    Брейер Б., Акобиан С. (1952) Тензамметрия: метод исследования поверхностных явлений с помощью измерений переменного тока. Aust J Sci Res Ser A 5: 500–520

    Google ученый

  • 54.

    Holze R (2007) Landolt-Börnstein: Численные данные и функциональные взаимосвязи в науке и технике, Новая серия, Группа IV: Физическая химия, Том 9: Электрохимия, Подтом A: Электрохимическая термодинамика и кинетика, Martienssen W, Lechner MD, Eds., Springer, Berlin

  • 55.

    Jehring H (1975) Elektrosorptionsanalyse mit der Wechselstrompolarographie. Akademie-Verlag, Берлин

    Google ученый

  • 56.

    Burke LD, Murphy OJ (1979) Циклическая вольтамперометрия как метод определения площади поверхности электродов RuO 2 . J Electroanal Chem 96 (1): 19–27

    CAS

    Google ученый

  • 57.

    Hu CC, Chang KH, Lin MC, Wu YT (2006) Разработка и адаптация структуры нанотрубчатой ​​матрицы из водного RuO 2 для суперконденсаторов следующего поколения. Nano Lett 6 (12): 2690–2695

    CAS
    PubMed

    Google ученый

  • 58.

    Ван Дж., Полле Дж., Лим Дж., Данн Б. (2007) Псевдокомпактные вклады в электрохимическое накопление энергии в наночастицах TiO 2 (Анатаз). J Phys Chem C 111 (40): 14925–14931

    CAS

    Google ученый

  • 59.

    Сатья М., Пракаш А.С., Рамеша К., Тараскон Дж. М., Шукла А.К. (2011) V 2 O 5 -заякоренные углеродные нанотрубки для улучшенного электрохимического накопления энергии. J Am Chem Soc 133 (40): 16291–16299

    CAS
    PubMed

    Google ученый

  • 60.

    Ghosh A, Ra EJ, Jin M, Jeong HK, Kim TH, Biswas C, Lee YH (2011) Высокая псевдоемкость из ультратонкого V 2 O 5 пленок, электроосажденных на автономном углеродном нановолокне бумага.Adv Funct Mater 21 (13): 2541–2547

    CAS

    Google ученый

  • 61.

    Августин В., Ком Дж., Лоу М.А., Ким Дж. В., Таберна П.Л., Толберт С.Х., Абрунья HD, Саймон П., Данн Б. (2013) Высокоскоростное электрохимическое накопление энергии через интеркаляционную псевдоемкость Li + . Nat Mater 12: 518–522

    CAS
    PubMed

    Google ученый

  • 62.

    Lindström H, Södergren S, Solbrand A, Rensmo H, Hjelm J, Hagfeldt A, Lindquist SE (1997) Введение иона Li + в TiO2 (анатаз).2. Вольтамперометрия на нанопористых пленках. J Phys Chem B 101 (39): 7717–7722

    Google ученый

  • 63.

    Sun HT, Mei L, Liang JF, Zhao ZP, Lee C, Fei HL, Ding MN, Lau J, Li MF, Wang C, Xu X, Hao GL, Papandrea B, Shakir I, Dunn B , Huang Y, Duan XF (2017) Трехмерные композитные архитектуры дырчатого графена / ниобии для сверхвысокого энергопотребления. Science 356 (6338): 599–604

    CAS
    PubMed

    Google ученый

  • 64.

    Августин В., Саймон П., Данн Б. (2014) Псевдоемкостные оксидные материалы для высокоскоростного электрохимического накопления энергии. Energy Environ Sci 7 (5): 1597–1614

    CAS

    Google ученый

  • 65.

    Chen X, Lv LP, Sun W, Hu Y, Tao X, Wang Y (2018) Ультрамалые наночастицы MoC, встроенные в трехмерные каркасы из пористого углерода, легированного азотом, в качестве анодных материалов для эффективного хранения лития с псевдоемкостью. J Mater Chem A 6 (28): 13705–13716

    CAS

    Google ученый

  • 66.

    Hou BH, Wang YY, Liu DS, Gu ZY, Feng X, Fan H, Zhang T, Changli L, Wu XL (2018) N-легированный никель с углеродным покрытием 1,8 Co 1,2 Se 4 Инкапсулированные наноагрегаты в углеродных нанобоксах, легированных азотом, в качестве усовершенствованного анода с выдающимися характеристиками при высоких скоростях и низких температурах для натрий-ионных полу / полностью заряженных батарей. Adv Funct Mater 28: 1805444

    Google ученый

  • 67.

    Hu X, Peng Q, Zeng T, Shang B, Jiao X, Xi G (2019) Рекламная роль нано-TiO 2 для гранатоподобного SnS 2 @C сфер для улучшения хранения ионов натрия .Chem Eng J 363: 213–223

    CAS

    Google ученый

  • 68.

    Fang G, Wu Z, Zhou J, Zhu C, Cao X, Lin T, Chen Y, Wang C, Pan A, Liang S (2018) Наблюдение псевдокемкостного эффекта и быстрой диффузии ионов в биметаллических сульфидах как усовершенствованный анод для натриево-ионной батареи. Adv Energy Mater 8 (19): 1703155

    Google ученый

  • 69.

    Lou S, Cheng X, Gao J, Li Q, Wang L, Cao Y, Ma Y, Zuo P, Gao Y, Du C, Huo H, Yin G (2018) Псевдокемкостный Li + интеркаляция в пористом Ti 2 Nb 10 O 29 наносферы обеспечивают сверхбыстрое хранение лития.Материал по хранению энергии 11: 57–66

    Google ученый

  • 70.

    Opitz M, Yue J, Wallauer J, Smarsly B, Roling B (2015) Механизмы накопления заряда в наночастицах TiO 2 и Li 4 Ti 5 O 12 анодов: новые идеи из зависящей от скорости сканирования циклической вольтамперометрии. Electrochim Acta 168: 125–132

    CAS

    Google ученый

  • 71.

    Ван Х., Пилон Л. (2012) Физическая интерпретация циклической вольтамперометрии для измерения емкости двойного электрического слоя.Electrochim Acta 64: 130–139

    CAS

    Google ученый

  • 72.

    Brousse T, Belanger D, Long JW (2015) Быть или не быть псевдоемкостным? J Electrochem Soc 162 (5): A5185 – A5189

    CAS

    Google ученый

  • 73.

    Саймон П., Гогоци Й, Данн Б. (2014) Где заканчиваются батареи и начинаются суперконденсаторы? Наука 343 (6176): 1210–2111

    CAS
    PubMed

    Google ученый

  • 74.

    Dubal DP, Wu Y, Holze R (2016) Суперконденсаторы: от лейденской банки до электрических автобусов. ChemTexts 2:13

    Google ученый

  • 75.

    Fu L, Qu Q, Holze R, Кондратьев В.В., Wu Y (2019) Композиты оксидов металлов и собственно проводящих полимеров в качестве электродных материалов суперконденсатора: лучшее из обоих миров? J Mater Chem A 7 (25): 14937–14970

    CAS

    Google ученый

  • 76.

    Оразем М.Е., Триболлет Б (2017) Спектроскопия электрохимического импеданса, 2-е изд. Уайли, Хобокен

    Google ученый

  • 77.

    Lasia A (2014) Электрохимическая импедансная спектроскопия и ее приложения. Спрингер, Нью-Йорк

    Google ученый

  • 78.

    Юань XZ, Song C, Wang H, Zhang J (2010) Электрохимическая импедансная спектроскопия в топливных элементах PEM. Спрингер, Лондон

    Google ученый

  • 79.

    Мей Б.А., Мунтешари О., Лау Дж., Данн Б., Пилон Л. (2018) Физическая интерпретация графиков Найквиста для электродов и устройств EDLC. J Phys Chem C 122 (1): 194–206

    CAS

    Google ученый

  • 80.

    Holze R (1983) Impedanzmessungen an porösen Elektroden; Кандидатская диссертация; Universität Bonn

  • 81.

    Holze R (1994) Измерение импеданса электродов: универсальный инструмент для электрохимиков. Bull Electrochem 10: 56–67

    CAS

    Google ученый

  • 82.

    Fu L, Qu Q, Holze R, Wu Y (2019) Комментарий о необходимости различать импеданс ячейки и электрода. J Solid State Electrochem 23 (3): 717–724

    CAS

    Google ученый

  • 83.

    Li Z, Yao Y, Zheng Y, Gao T, Liu Z, Zhou G (2018) Изготовление микросфер Core-Shell Fe3O4 @ C @ MnO2 и их применение в суперконденсаторах. J Electrochem Soc 165 (2): E58 – E63

    CAS

    Google ученый

  • 84.

    Ван Х., Пилон Л. (2012) Внутренние ограничения измерений импеданса при определении емкости двойного электрического слоя. Electrochim Acta 63: 55–63

    CAS

    Google ученый

  • 85.

    Roling B, Drüschler M (2012) Комментарии на «Внутренние ограничения измерений импеданса при определении емкости двойного электрического слоя» Х. Ванга и Л. Пилона [Electrochim. Acta 63 (2012) 55]. Electrochim Acta 76: 526–528

    CAS

    Google ученый

  • 86.

    Wang H, Pilon L (2012) Ответ на комментарии Х. Ванга, Л. Пилона «Внутренние ограничения измерений импеданса при определении емкости двойного электрического слоя» [Electrochimica Acta 63 (2012) 55]. Electrochim Acta 76: 529–531

    CAS

    Google ученый

  • 87.

    Седлакова В., Сикула Дж., Мазнер Дж., Седлак П., Купаровц Т., Бюрглер Б., Васина П. (2015) Модель эквивалентной электрической схемы суперконденсатора, основанная на перераспределении зарядов путем диффузии.J Power Sources 286: 58–65

    CAS

    Google ученый

  • 88.

    Burke A, Miller M (2010) Тестирование электрохимических конденсаторов: емкость, сопротивление, плотность энергии и мощность. Electrochim Acta 55 (25): 7538–7548

    CAS

    Google ученый

  • 89.

    Zhang L, Wang Z, Hu X, Dorrell DG (2015) Экспериментальное исследование характеристик импеданса ультраконденсатора.Энергетическая процедура 75: 1888–1894

    Google ученый

  • 90.

    DIN EN 62391-1: 2016-09

  • 91.

    Аноним (2015) Примечание по применению Ред. 2.0 27 апреля 2015 г. Gamry Instruments, Inc

  • 92.

    ELV-Journal 13 / 1982 г., https://www.elv.de/controller.aspx?cid=726&rol_id=4&spr_id=1&detail=0&detail2=2&PAGE=12&SORT=&search=&filter_anfangsbuchstabe=d&filter_jahr=&filter_ausgabe.Проверено 02 апреля 2020 г.

  • 93.

    Карден Э, Буллер С., Де Донкер Р. В. (2002) Подход к динамическому моделированию электрохимических источников энергии в частотной области. ElectrochimActa 47 (13-14): 2347–2356

    CAS

    Google ученый

  • 94.

    Stoller MD, Stoller SA, Quarles N, Suk JW, Murali S, Zhu Y, Zhu X, Ruoff RS (2011) Использование плоских ячеек для испытания материала электродов ультраконденсатора. J Appl Electrochem 41 (6): 681–686

    CAS

    Google ученый

  • 95.

    Hu CC, Tsou TW (2002) Идеальное емкостное поведение водного оксида марганца, полученного анодным осаждением. Electrochem Commun 4 (2): 105–109

    CAS

    Google ученый

  • 96.

    Winkler S, Holze R, неопубликованные результаты

  • 97.

    Randles JEB (1947) Кинетика быстрых электродных реакций. Фарадей Обсудить 1: 11–19

    Google ученый

  • 98.

    Fletcher S, Black VJ, Kirkpatrick I (2014) Универсальная эквивалентная схема для суперконденсаторов на основе углерода.J Solid State Electrochem 18 (5): 1377–1387

    CAS

    Google ученый

  • 99.

    Sakthivel M, Sukanya R, Chen SM, Pandi K, Ho KC (2019) Синтез и характеристика биметаллических никель-кобальтовых халькогенидов (NiCoSe 2 , NiCo 2 S 4 и NiCo и NiCo 2 O 4 ) для неферментативного сенсора перекиси водорода и накопителя энергии: Зависимость электрохимических свойств от состава халькогенов и металлов.Renew Energy 138: 139–151

    CAS

    Google ученый

  • 100.

    Йович В.Д. Определение правильного значения C дл по результатам импеданса, полученным с помощью имеющегося в продаже программного обеспечения. https://www.gamry.com/assets/Application-Notes/Determination-of-Double-Layer-Capacitance-from-a-CPE.pdf; см. также: https://www.gamry.com/application-notes/EIS/correct-value-of-cdl/. По состоянию на 02 апреля 2020 г.

  • 101.

    Holze R, Vielstich W (1984) Измерение емкости двойного слоя как метод определения характеристик пористых электродов топливных элементов. Electrochim Acta 29 (5): 607–610

    CAS

    Google ученый

  • 102.

    Мей Б.А., Лау Дж., Лин Т., Толберт С.Х., Данн Б.С., Пилон Л. (2018) Физические интерпретации спектроскопии электрохимического импеданса окислительно-восстановительных активных электродов для накопления электрической энергии. J Phys Chem C 122 (43): 24499–24511

    CAS

    Google ученый

  • 103.

    Holze R, Wu YP (2014) Электропроводящие полимеры в электрохимической энергетической технологии: тенденции и прогресс. Electrochim Acta 122: 93–107

    CAS

    Google ученый

  • 104.

    Bandeira MCE, Holze R (2006) Измерения импеданса тонких полианилиновых пленок — влияние морфологии пленки. Microchim Acta 156 (1-2): 125–131

    CAS

    Google ученый

  • 105.

    Йович В.Д., Йович Б.М. (2003) Измерения EIS и дифференциальной емкости на гранях монокристалла в различных растворах: Часть I — Ag (111) в 0,01 М NaCl. J Electroanal Chem 541: 1–11

    Google ученый

  • 106.
  • Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *