Как определить частоту вращения ротора: Формула расчета частоты вращений

Содержание

Формула расчета частоты вращений

При проектировании оборудования необходимо знать число оборотов электродвигателя. Для расчёта частоты вращения есть специальные формулы, различные для двигателей переменного и постоянного напряжения.

Тахометр

Синхронные и асинхронные электромашины

Двигатели переменного напряжения есть трёх типов: синхронные, угловая скорость ротора которых совпадает с угловой частотой магнитного поля статора; асинхронные – в них вращение ротора отстаёт от вращения поля; коллекторные, конструкция и принцип действия которых аналогичны двигателям постоянного напряжения.

Синхронная скорость

Скорость вращения электромашины переменного тока зависит от угловой частоты магнитного поля статора. Эта скорость называется синхронной. В синхронных двигателях вал вращается с той же быстротой, что является преимуществом этих электромашин.

Для этого в роторе машин большой мощности есть обмотка, на которую подаётся постоянное напряжение, создающее магнитное поле. В устройствах малой мощности в ротор вставлены постоянные магниты, или есть явно выраженные полюса.

Скольжение

В асинхронных машинах число оборотов вала меньше синхронной угловой частоты. Эта разница называется скольжение «S». Благодаря скольжению в роторе наводится электрический ток, и вал вращается. Чем больше S, тем выше вращающий момент и меньше скорость. Однако при превышении скольжения выше определённой величины электродвигатель останавливается, начинает перегреваться и может выйти из строя. Частота вращения таких устройств рассчитывается по формуле на рисунке ниже, где:

  • n – число оборотов в минуту,
  • f – частота сети,
  • p – число пар полюсов,
  • s – скольжение.

Формула расчёта скорости асинхронного двигателя

Такие устройства есть двух типов:

  • С короткозамкнутым ротором. Обмотка в нём отливается из алюминия в процессе изготовления;
  • С фазным ротором. Обмотки выполнены из провода и подключаются к дополнительным сопротивлениям.

Регулировка частоты вращения

В процессе работы появляется необходимость регулировки числа оборотов электрических машин. Она осуществляется тремя способами:

  • Увеличение добавочного сопротивления в цепи ротора электродвигателей с фазным ротором. При необходимости сильно понизить обороты допускается подключение не трёх, а двух сопротивлений;
  • Подключение дополнительных сопротивлений в цепи статора. Применяется для запуска электрических машин большой мощности и для регулировки скорости маленьких электродвигателей. Например, число оборотов настольного вентилятора можно уменьшить, включив последовательно с ним лампу накаливания или конденсатор. Такой же результат даёт уменьшение питающего напряжения;
  • Изменение частоты сети. Подходит для синхронных и асинхронных двигателей.

Внимание! Скорость вращения коллекторных электродвигателей, работающих от сети переменного тока, не зависит от частоты сети.

Двигатели постоянного тока

Кроме машин переменного напряжения есть электродвигатели, подключающиеся к сети постоянного тока. Число оборотов таких устройств рассчитывается по совершенно другим формулам.

Номинальная скорость вращения

Число оборотов аппарата постоянного тока рассчитывается по формуле на рисунке ниже, где:

  • n – число оборотов в минуту,
  • U – напряжение сети,
  • Rя и Iя – сопротивление и ток якоря,
  • Ce – константа двигателя (зависит от типа электромашины),
  • Ф – магнитное поле статора.

Эти данные соответствуют номинальным значениям параметров электромашины, напряжению на обмотке возбуждения и якоре или вращательному моменту на валу двигателя. Их изменение позволяет регулировать частоту вращения. Определить магнитный поток в реальном двигателе очень сложно, поэтому для расчетов пользуются силой тока, протекающего через обмотку возбуждения или напряжения на якоре.

Формула расчёта числа оборотов двигателя постоянного тока

Число оборотов коллекторных электродвигателей переменного тока можно найти по той же формуле.

Регулировка скорости

Регулировка скорости электродвигателя, работающего от сети постоянного тока, возможна в широких пределах. Она возможна в двух диапазонах:

  1. Вверх от номинальной. Для этого уменьшается магнитный поток при помощи добавочных сопротивлений или регулятора напряжения;
  2. Вниз от номинальной. Для этого необходимо уменьшить напряжение на якоре электромотора или включить последовательно с ним сопротивление. Кроме снижения числа оборотов это делается при запуске электродвигателя.

Знание того, по каким формулам вычисляется скорость вращения электродвигателя, необходимо при проектировании и наладке оборудования.

Видео

Оцените статью:

Частота вращения ротора — Студопедия

Из выражения видно, что частоту вращения ротора можно регулировать изменением любой из трех величин, определяющих частоту вращения ротора: изменением частоты тока сети числа пар полюсов, и скольжения .

Регулирование частоты асинхронных двигателей изменением частоты тока сети сложно, так как для этого необходим какой-либо регулируемый преобразователь частоты или генератор. Этот способ не имел широкого использования, но сейчас — достаточно широко.

Изменение числа полюсов машины возможно либо выполнением на статоре нескольких (обычно двух) обмоток с различным числом полюсов, либо выполнением одной обмотки, допускающей переключение на различное число полюсов.

На статоре может быть помещено две обмотки, каждая из которых допускает переключение на различное число полюсов. Фаза обмотки статора состоит из двух последовательно соединенных катушек и . При соединении проводника с проводником , ток при включении обмотки в сеть в какой-либо момент протекает так, как показано на рисунке 33.1, а.

На статоре получается четыре полюса ( ). При переключении второй катушки (рисунок 33.1,б) изменяется направление тока в этой катушке и

а) б)

Рисунок 33.1 Схема переключения на различное число полюсов одной фазы обмотки статора

число полюсов окажется равным двум ( ). При изменении числа полюсов статора меняются частоты вращения поля статора и ротора. Заводы выпускают двух-, трех- и четырехскоростные асинхронные двигатели.



Такой способ регулирования частоты вращения является экономичным, но имеет тот недостаток, что регулирование частоты получается ступенчатым и регулирование частоты изменением числа полюсов возможно только для двигателей с короткозамкнутым ротором.

В двигателях с фазным ротором число полюсов статора всегда должно быть равно числу полюсов ротора, и при изменении числа полюсов на статоре надо было бы в той же мере изменить число полюсов на роторе, что очень сложно в конструктивном отношении. Более сложное выполнение обмотки статора значительно повышает стоимость и габариты многоскоростных двигателей.

Включение в цепь ротора регулировочного реостата и изменение напряжения сети изменяют скольжение и момент, развиваемый двигателем, который пропорционален квадрату напряжения. Изменение вращающего момента вызовет изменение частоты.

Предположим, что при напряжении сети рабочий процесс двигателя соответствовал точке (рисунок 33.2, а), в которой развиваемый двигателем момент равен тормозному моменту на валу.

а) б)

Рисунок 33.2 – Регулирование частоты вращения измерением скольжения :

а — при изменении напряжения сети;

б – при изменении сопротивления в цепи ротора

Если уменьшить напряжение сети до величины , то кривая момента пройдет ниже, равновесие моментов нарушится и частота уменьшится, то есть новый установившийся режим будет в точке при большем значении скольжения. Этот способ регулирования экономичен но не эффективен, так как дает возможность менять частоту лишь в малых пределах до 10 — 15%. При значительном снижении напряжения врашаюший момент резко уменьшается и двигатель не может устойчиво работать.

Регулировочный реостат включают в цепь обмотки фазного ротора подобно пусковому реостату, но в отличие от пускового его рассчитывают на длительное прохождение тока.

Положим, что без регулировочного реостата двигатель работает при частоте, ссоответствующей точке (рисунок 33.2, б). При включении регулировочного реостата ток в роторе уменьшится и уменьшит вращающий момент двигателя и частоту вращения или увеличит скольжение.

При увеличении скольжения повышаются э.д.с. и ток в роторе. Изменение частоты вращения или скольжения будет происходить до восстановления равновесия моментов, то есть пока ток в роторе не примет своего начального значения. При увеличении активного сопротивления в роторе максимальный момент, не изменяясь по величине, сместится в

область больших скольжений и равновесие моментов, то есть новый установившийся режим работы машины, будет в точке , соответствующей меньшей частоте вращения. Этот способ регулирования частоты вращения может быть использован только в двигателях с фазным ротором и несмотря на то, что он неэкономичен (в регулировочном реостате происходит значительная потеря энергии), имеет широкое применение.

Расчетные формулы основных параметров асинхронных двигателей

В таблице 1 представлены расчетные формулы для определения основных параметров асинхронных двигателей.

В данной таблице собраны все формулы, которые касаются расчета параметров асинхронных двигателей.

Используя формулы из данной таблицы, вам больше не придется искать нужную формулу в различных справочниках.

Таблица 1 — Расчетные формулы для определения основных параметров асинхронных двигателей

Наименование величинФормулыПринятые обозначения
Потребляемая активная мощность из сети, кВт

U1, I1 – линейные значения напряжения, В и тока двигателя, А;
cosϕ – коэффициент мощности;
Потребляемая реактивная мощность, квар

Полезная мощность на валу, кВт

Ƞ — КПД двигателя;
Потребляемый двигателем ток, А

Вращающий момент двигателя, кГм

nном. – номинальная скорость вращения ротора, об/мин;
Синхронная скорость вращения магнитного поля, об/мин

f1 – частота питающего тока, Гц;
р – число пар полюсов машины;
Скольжение двигателя

Скорость вращения ротора при нагрузке, об/мин

ЭДС обмоток статора и ротора, В

kоб.1, kоб.2 – обмоточные коэффициенты статора и ротора, равные произведению коэффициентов укорочения kу шага и распределения обмотки kw;
kоб. = kу* kw;
Коэффициенты трансформации по напряжению и по току

w1, w2 – числа витков обмоток статора и ротора;
m1, m2 – числа фаз в обмотках статора и ротора. У двигателей с фазным ротором.
m2 = 3 у двигателей с короткозамкнутым ротором;
m2 = z2, т.е. числу пазов в роторе.
Параметры схемы замещения

zк, rк, хк – полное, активное и индуктивное сопротивления при КЗ двигателя, Ом;
Iп – пусковой ток двигателя, А;
∆Рк – суммарные потери в меди статора и ротора двигателя, Вт;
r1, x1 – активное и индуктивное сопротивления обмотки статора, Ом;
r2’, x2’ – активные и индуктивные сопротивления ротора, приведенные к обмотке статора, Ом;
Ток холостого хода, А

Iном. – номинальный ток двигателя, А
Критическое скольжение

sinϕ – коэффициент реактивной мощности;
kм – коэффициент перегрузочной способности;
Уравнение вращающего момента

Sном. – скольжение при номинальной нагрузке
Скольжение двигателя s2 при введении добавочного сопротивления в ротор

КПД двигателя при введении добавочного сопротивления в ротор

Критический максимальный момент, развиваемый в двигательном (+) и генераторном (-) режимах, кГм

U1ф – фазное напряжение, В
Уравнение вращающего момента при добавочном сопротивлении в цепи ротора

Литература:

1. Справочная книга электрика. В.И. Григорьева, 2004 г.

активное сопротивление двигателя, полное сопротивление двигателя, реактивное сопротивление двигателя, ток двигателя

Поделиться в социальных сетях

Благодарность:

Если вы нашли ответ на свой вопрос и у вас есть желание отблагодарить автора статьи за его труд, можете воспользоваться платформой для перевода средств «WebMoney Funding».

Данный проект поддерживается и развивается исключительно на средства от добровольных пожертвований.

Проявив лояльность к сайту, Вы можете перечислить любую сумму денег, тем самым вы поможете улучшить данный сайт, повысить регулярность появления новых интересных статей и оплатить регулярные расходы, такие как: оплата хостинга, доменного имени, SSL-сертификата, зарплата нашим авторам.

Частота асинхронного генератора. Формулы. Расчёт. Теория

Частота асинхронного генератора при холостом ходе и нагрузке


Разница между частотой вращения магнитного поля и ротора в асинхронных генераторах определяется коэффициентом s, называемым скольжением, который выражается соотношением:


s = (n — nr )/n .


Здесь:
n — частота вращения магнитного поля.
nr — частота вращения ротора.



Связь между угловой частотой вращения магнитного поля ω и угловой частотой вращения ротора ωr асинхронной машины можно выразить следующим образом:


ω = ωr /(1 — s) ,


что следует из определения скольжения.

В общем случае угловая частота вращения магнитного поля


ω = 2πn .


Так как частота генерируемых колебаний


f = pn ,


где р — число пар полюсов, то


ω = 2πf/p .


Аналогично угловая частота вращения ротора


ωr = 2πnr или ωr = 2πfr /p ,


где fr = pnr — электрическая частота вращения ротора.

Электрическая угловая частота вращения ротора


ωr p = 2πfr


В режиме автономного асинхронного генератора частота вращения магнитного поля, определяющая частоту генерируемых колебаний, зависит от частоты вращения ротора и от нагрузки, характеризуемой скольжением. Если нагрузка отсутствует, а включенная емкость и частота вращения ротора остаются постоянными, т.е. C = cоnst и ωr = cоnst, то частоту генерируемых колебаний можно выразить через параметры колебательного контура, который образуется собственной индуктивностью статорной обмотки и емкостью конденсатора.


При отмеченных условиях уравнение электрического равновесия, выраженное через мгновенные значения напряжений на синхронном индуктивном сопротивлении XL = ωL и на конденсаторе XC = ωC, принимает вид:


uL + uC = 0 .


После подстановок:


uL = Ldi/dt и di/dt = C d 2u/dt 2

где


i = C duC /dt ,


и преобразований, уравнение примет вид


d 2uC /dt 2 + uC /LC = 0


Примем, что напряжение на конденсаторе изменяется по синусоидальному закону:


uC = UC sinωt ,


тогда


d 2uC /dt 2 = -ω 2UC sinωt ,


С учетом последних соотношений из дифференциального уравнения находим:


ω = 1/√LC ,


откуда


f = 1/2π√LC


Таким образом, частота генерируемых колебаний при холостом ходе автономного асинхронного генератора определяется из условия резонанса емкости конденсатора и собственной индуктивности обмотки статора.

Если принять, что при холостом ходе скольжение s = 0, то получим


ω ≈ ωr


Тогда


f ≈ pnr = fr


Последнее выражение можно представить в виде


fr1/2π√LC


Следовательно, при холостом ходе асинхронного самовозбуждающегося генератора параметры колебательного контура автоматически
настраиваются на частоту, равную электрической частоте вращения ротора
.


Изменение значения включенной емкости при ωr = cоnst или частоты вращения ротора при С = cоnst не нарушает вышеописанных равенств, если генератор остается в области устойчивой работы. В первом случае мы имеем одну характеристику намагничивания машины, соответствующую данному значению частоты вращения и семейство вольтамперных характеристик возбуждающей емкости, причем каждая из характеристик составляет с положительным направлением оси абсцисс угол


αk = arctg(1/ωCk ) ,


где k = 1, 2, 3 …
Произведение собственных индуктивностей статорной обмотки и емкости конденсаторов остается практически постоянным, т.е.


LkCk = cоnst ,


так как вследствие нелинейности кривой намагничивания происходит соответствующее изменение индуктивности. Так с увеличением емкости ток холостого хода и степень насыщения магнитной цепи возрастают, а индуктивность уменьшается. Значение установившегося напряжения определяется точкой пересечения кривой намагничивания и вольтамперной характеристики конденсаторов.


Во втором случае, т.е. при переходе к новым значениям установившихся частот вращения с емкостью С = cоnst, мы имеем семейство кривых намагничивания и семейство вольтамперных характеристик возбуждающей емкости. Углы наклона последних к положительному направлению оси абсцисс находятся теперь по соотношению


αk = arctg(1/ωC) ,


Значение установившегося напряжения в каждом случае определяется точкой пересечения кривой намагничивания и вольтампер ной характеристики конденсаторов для данной угловой частоты ωk .


Получим теперь выражение для частоты генерируемых колебаний при нагрузке, полагая, что емкость конденсаторов и частота вращения ротора не изменяются. Выполнив необходимые преобразования из вышеописанных формул, получим:


f = fr /(1 — s ) ,


или


f = pnr /(1 — s ) ,


Заметим, что частота вращения ротора в большинстве случаев выражается в об/мин а не в сек/мин, тогда запишем


f = pnr /60(1 — s ) ,


Частота генерируемых колебаний при постоянной частоте вращения ротора и возрастающей нагрузке несколько уменьшается, так как на устойчивой части механической характеристики асинхронной машины скольжение пропорционально нагрузке.
С другой стороны, уменьшение частоты f при С = cоnst объясняется увеличением собственной индуктивности фазы статора вследствие возрастания коэффициента взаимоиндукции. Последнее вызывается размагничивающим действием тока ротора.


Продолжение следует.


Ещё статьи для ознакомления:
Синхронный и асинхронный генератор. Отличия.
Асинхронный генератор. Характеристики.
Дизель-генераторы.


Замечания и предложения принимаются и приветствуются!

Частота — вращение — ротор — асинхронный двигатель

Частота — вращение — ротор — асинхронный двигатель

Cтраница 1

Частота вращения ротора асинхронных двигателей определяется выражением п2 ( 1 — s) ( 60 / / р), Откуда следует, что обороты ротора можно регулировать: изменяя скольжение, число пар полюсов или частоту тока питающей сети. Регулировка частоты вращения двигателя изменением скольжения производится введением регулировочного сопротивления в цепь фазного ротора. В этом случае активное сопротивление ротора и скольжение увеличиваются, а обороты уменьшаются. Недостатком этого способа является то, что в реостате происходит значительная потеря мощности.
 [1]

Частота вращения ротора асинхронного двигателя никогда не может сравняться с частотой вращения магнитного поля, создаваемого обмоткой статора, так как в этом случае провода ротора были бы неподвижны относительно вращающегося поля, отсутствовало бы явление пересечения вращающимся магнитным полем статора проводов обмотки ротора, тока в этой обмотке не было бы, не возникал бы вращающий электромагнитный момент, и ротор должен был бы остановиться. Ротор при вращении всегда отстает от вращающегося магнитного поля статора, поэтому такие двигатели называются асинхронными. Отставание ротора от вращающегося магнитного поля статора называют скольжением.
 [2]

Частота вращения ротора асинхронных двигателей — 2950 об / мин, синхронных — 3000 об / мин.
 [3]

Частота вращения ротора асинхронного двигателя относительно вращающегося магнитного поля 60 об / мин.
 [4]

Какими способами регулируют частоту вращения ротора асинхронного двигателя.
 [5]

Обозначим через п2 частоту вращения ротора асинхронного двигателя.
 [6]

Рассмотрим вначале возможные способы регулирования частоты вращения ротора асинхронного двигателя с коротко-замкнутым ротором. Как известно, частота вращения ротора в нормальном режиме работы несколько меньше ( на 2 — 8 %) частоты вращения магнитного поля. Поэтому изменение частоты вращения магнитного поля вызывает изменение в той же степени и частоты вращения ротора двигателя.
 [7]

В табл. 18.2 приведены основные способы регулирования частоты вращения ротора асинхронного двигателя.
 [8]

Происходит увеличение скольжения ротора, а следовательно, уменьшение частоты вращения ротора асинхронного двигателя.
 [9]

В пределах устойчивой работы двигателя изменение напряжения мало меняет скольжение ( рис. 2.11) и, следовательно, частоту вращения ротора асинхронного двигателя.
 [11]

Такое устройство позволяет изменять активное сопротивление электрической цепи ротора асинхронного двигателя в процессе его вращения, что необходимо для уменьшения значительного пускового тока, а также для регулирования частоты вращения ротора асинхронного двигателя при работе и изменения пускового момента двигателя.
 [12]

Такое устройство позволяет изменять активное сопротивление электрической цепи ротора асинхронного двигателя в процессе его вращения, что необходимо для уменьшения значительного пускового тока, возникаемого при пуске, а также для целей регулирования частоты вращения ротора асинхронного двигателя при работе и изменения пускового момента двигателя.
 [13]

Рпом, которую они могут отдавать длительное время, не нагреваясь свыше допустимой температуры, и номинальной частотой враще

Принцип работы асинхронного двигателя | Заметки электрика

Здравствуйте, уважаемые посетители сайта http://zametkielectrika.ru.

Электрические машины переменного тока нашли широкое распространение, как в сфере промышленности (шаровые мельницы, дробилки, вентиляторы, компрессоры), так и в домашних условиях (сверлильный и наждачный станки, циркулярная пила).

Основная их часть является бесколлекторными машинами, которые в свою очередь разделяются на асинхронные и синхронные.

Асинхронные и синхронные электрические машины обладают одним замечательным свойством под названием обратимость, т.е. они могут работать как в двигательном режиме, так и в генераторном.

Но чтобы дальше перейти к более подробному их рассмотрению и изучению, необходимо знать принцип их работы. Поэтому в сегодняшней статье я расскажу Вам про принцип работы асинхронного двигателя. После прочтения данного материала Вы узнаете про электромагнитные процессы, протекающие в электродвигателях.

Итак, поехали.

Принцип работы трехфазного асинхронного двигателя

С устройством асинхронного двигателя мы уже знакомились, поэтому повторяться второй раз не будем. Кому интересно, то переходите по ссылочке и читайте.

При подключении асинхронного двигателя в сеть необходимо его обмотки соединить звездой или треугольником. Если вдруг на выводах в клеммнике отсутствует маркировка, то необходимо самостоятельно определить начала и концы обмоток электродвигателя.

При включении обмоток статора асинхронного двигателя в сеть трехфазного переменного напряжения образуется вращающееся магнитное поле статора, которое имеет частоту вращения n1. Частота его вращения определяется по следующей формуле:

  • f — частота питающей сети, Гц
  • р — число пар полюсов

Это вращающееся магнитное поле статора пронизывает, как обмотку статора, так и обмотку ротора, и индуцирует (наводит) в них ЭДС (Е1 и Е2). В обмотке статора наводится ЭДС самоиндукции (Е1), которая направлена навстречу приложенному напряжению сети и ограничивает величину тока в обмотке статора.

Как Вы уже знаете, обмотка ротора замкнута накоротко, у электродвигателей с короткозамкнутым ротором, или через сопротивление, у электродвигателей с фазным ротором, поэтому под действием ЭДС ротора (Е2) в ней появляется ток. Так вот взаимодействие индуцируемого тока в обмотке ротора с вращающимся магнитным полем статора создает электромагнитную силу Fэм.

Направление электромагнитной силы Fэм можно легко найти по правилу левой руки.

Правило левой руки для определения направления электромагнитной силы

На рисунке ниже показан принцип работы асинхронного двигателя. Полюса вращающегося магнитного поля статора в определенный период обозначены N1 и S1. Эти полюса в нашем случае вращаются против часовой стрелки. И в другой момент времени они будут находится в другом пространственном положении. Т.е. мы как бы зафиксировали (остановили) время и видим следующую картину.

Токи в обмотках статора и ротора изображены в виде крестиков и точек. Поясню. Если стоит крестик, то значит ток в этой обмотке направлен от нас. И наоборот, если точка, то ток в этой обмотке направлен к нам. Пунктирными линиями показаны силовые магнитные линии вращающегося магнитного поля статора.

Устанавливаем ладонь руки так, чтобы силовые магнитные линии входили в нашу ладонь. Вытянутые 4 пальца нужно направить вдоль направления тока в обмотке. Отведенный большой палец покажет нам направление электромагнитной силы Fэм для конкретного проводника с током.

На рисунке показаны только две силы Fэм, которые создаются от проводников ротора с током, направленным от нас (крестик) и к нам (точка). И как мы видим, электромагнитные силы Fэм пытаются повернуть ротор в сторону вращения вращающегося магнитного поля статора.

Поясняющий рисунок для определения электромагнитной силы Fэм для проводника с током, который направлен от нас (крестик).

Поясняющий рисунок для определения электромагнитной силы Fэм для проводника с током, который направлен к нам (точка).

Совокупность этих электромагнитных сил от каждого проводника с током создает общий электромагнитный момент М, который приводит во вращение вал электродвигателя с частотой n.

Эта частота называется, асинхронной.

Отсюда и произошло название асинхронный двигатель. Частота вращения ротора n всегда меньше частоты вращающегося магнитного поля статора n1, т.е. отстает от нее. Для определения величины отставания введен термин «скольжение», который определяется по следующей формуле:

Выразим из этой формулы частоту вращения ротора:

Пример расчета частоты вращения двигателя

Например, у меня есть двигатель типа АИР71А4У2 мощностью 0,55 (кВт):

  • число пар полюсов у него равно 4 (2р=4, р=2)
  • частота вращения ротора составляет 1360 (об/мин)

Вот его бирка.

Определим частоту вращения поля статора этого двигателя при частоте питающей сети 50 (Гц):

Найдем величину скольжения для этого двигателя:

Кстати, направление движения вращающегося магнитного поля статора, а следовательно, и направление вращения вала электродвигателя, можно изменить. Для этого необходимо поменять местами любые два вывода источника питающего трехфазного напряжения. Об этом я упоминал Вам в статьях про реверс электродвигателя и чередование фаз.

Принцип работы асинхронного двигателя. Выводы

Зная принцип работы асинхронного двигателя, можно сделать вывод, что электрическая энергия преобразуется в механическую энергию вращения вала электродвигателя.

Частота вращения магнитного поля статора, а следовательно и ротора, напрямую зависит от числа пар полюсов и частоты питающей сети. Если число пар полюсов ограничивается типом двигателя (р = 1, 2, 3 и 4), то частоту питающей сети можно изменить в большем диапазоне, например, с помощью частотного преобразователя.

Если в нашем примере частоту питающей сети увеличить всего на 10 (Гц), то частота вращения магнитного поля статора увеличится на 300 (об/мин).

Опыт по установке и монтажу частотных преобразователей у меня есть, но не большой. Несколько лет назад на городском водоканале мы проводили замену двух высоковольтных двигателей насосов холодной воды на низковольтные двигатели с частотными преобразователями. Но это уже отдельная тема для разговора. Сейчас покажу Вам несколько фотографий.

Вот фотография старого высоковольтного двигателя напряжением 6 (кВ).

А это новые двигатели напряжением 400 (В), установленные вместо старых высоковольтных.

Вот шкафы частотных преобразователей. На каждый двигатель свой шкаф. К сожалению, изнутри сфотографировать не успел.

Подписывайтесь на рассылку новостей с моего сайта, чтобы не пропустить самое интересное. В ближайшее время я расскажу Вам про пуск и способы регулирования частоты вращения трехфазных асинхронных двигателей двигателей, схемы их подключения и многое другое.

P.S. На этом статью про принцип работы асинхронного двигателя я завершаю. Спасибо за внимание.

Если статья была Вам полезна, то поделитесь ей со своими друзьями:


Зависимость частоты от числа пар полюсов

Дата публикации: .
Категория: Электротехника.

При рассмотрении вопроса о получении переменного тока указывают, что за один оборот ротора индуктированная в проводниках обмотки генератора электродвижущая сила (ЭДС) имела один период. Если ротор генератора делает, например 5 об/сек, то ЭДС будет иметь 5 пер/сек или частота тока генератора будет равна 5 Гц. Следовательно, число оборотов в секунду ротора генератора численно равно частоте тока.

Частота тока f выражается следующим соотношением:

Зависимость частоты тока от числа полюсов

где n – число оборотов ротора в минуту.

Для получения от генератора стандартной частоты тока – 50 Гц ротор должен делать 3000 об/мин, то есть

Зависимость частоты тока от числа полюсов

Однако наши рассуждения были справедливы только для двухполюсного генератора, то есть для машины с одной парой полюсов p.

Если машина четырехполюсная, то есть число пар полюсов равно двум: p = 2 (рисунок 1), то один полный период изменения тока будет иметь место за пол-оборота ротора (1 – 5 положения проводника на чертеже). За второй полуоборот ротора ток будет иметь еще один период. Следовательно, за один оборот ротора четырехполюсной машины ток в проводнике имеет два периода. В шестиполюсной машине (p = 3) ток в проводнике за один оборот ротора будет иметь три периода.

Изменение переменного тока в проводнике ротора четырехполюсного генератора

Рисунок 1. Изменение переменного тока в проводнике ротора четырехполюсного генератора

Таким образом, для машин, имеющих p пар полюсов, частота тока при Изменение переменного тока в проводнике ротора четырехполюсного генератора об/сек будет в p раз больше, чем для двухполюсной машины, то есть

Зависимость частоты тока от скорости вращения ротора и числа пар полюсов статора

Отсюда формула зависимости скорости вращения от частоты и числа пар полюсов будет иметь следующий вид:

Зависимость скорости вращения ротора от частоты тока и числа пар полюсов статора

Пример 1. Определить частоту переменного тока, получаемого от генератора с восемью полюсами (p = 4), скорость вращения ротора которого n = 750 об/мин. Подставляя в формулу для определения частоты тока значение p и n получим:

Зависимость скорости вращения ротора от частоты тока и числа пар полюсов статора

Пример 2. Определить скорость вращения ротора двадцатиполюсного генератора (p = 10), если частотомер показал частоту тока f = 25 Гц. Подставляя в формулу для определения числа оборотов ротора n значения p и f, получим:

Зависимость скорости вращения ротора от частоты тока и числа пар полюсов статора

Зависимость скорости вращения ротора от частоты тока и числа пар полюсов статора

Пример 3. Скорость вращения ротора асинхронного двигателя, составляет 250 об/мин. Определить число пар полюсов асинхронного двигателя, если частота тока питающей сети равна 50 Гц:

Зависимость скорости вращения ротора от частоты тока и числа пар полюсов статора

Зависимость скорости вращения ротора от частоты тока и числа пар полюсов статора

Следовательно, двигатель имеет 24 полюса.

Источник: Кузнецов М. И., «Основы электротехники» — 9-е издание, исправленное — Москва: Высшая школа, 1964 — 560 с.

Как определить требования к крутящему моменту и скорости двигателя

Диапазон рабочих скоростей

Требуемый диапазон скоростей может быть затруднен в зависимости от типа приложения. Как правило, в зависимости от размера двигателя и типа нагрузки для очень широкого диапазона может потребоваться специальный двигатель.

How to determine motor torque and speed requirements How to determine motor torque and speed requirements Как определить требования к крутящему моменту и скорости двигателя

Работа на очень низких скоростях , требующих, чтобы двигатель работал на очень низкой частоте (ниже примерно 6 Гц) или очень высоких скоростях требующих, чтобы двигатель работал на очень высоких частотах (выше 90 Гц) может потребоваться специальный двигатель .

Синхронная скорость двигателя напрямую зависит от управляющей выходной частоты . Следовательно, частота, необходимая для достижения желаемой скорости приложения, может быть приблизительно определена путем деления желаемой скорости на номинальную скорость двигателя, а затем умножения на номинальную частоту двигателя.

Если минимальная или максимальная частота близка или выходит за пределы, указанные выше, то перед продолжением следует проконсультироваться с производителем двигателя.

Примеры диапазонов скоростей перечислены ниже, выраженные как отношение базовой скорости двигателя к минимальной скорости .

Примеры диапазона постоянной и переменной скорости вращения

(базовая скорость = 2500 об / мин)

Минимальная скорость (об / мин)% Базовая скорость двигателя Коэффициент диапазона скоростей
1250 50 2: 1
625 25 4: 1
250 10 10: 1
125 5 20: 1
25 1 100: 1

Приложения с постоянной мощностью имеют диапазон скоростей, в котором базовой скоростью является самая низкая скорость, а не максимальная скорость
.

Примеры диапазона постоянной мощности в лошадиных силах

(базовая скорость = 2500 об / мин)

Минимальная скорость (об / мин)% Базовая скорость двигателя Коэффициент диапазона скоростей
3750 150 1,5: 1
5000 200 2: 1
7500 300 3: 1

Примечание: Эти примеры диапазонов скоростей приведены только для иллюстрации.Не все двигатели могут работать в этих диапазонах.

Момент отрыва

Двигатель должен иметь крутящий момент отрыва , достаточный для запуска нагрузки.

Это не относится к заблокированному ротору двигателя или пусковому крутящему моменту, опубликованному для прямого пуска. Пусковой момент ограничивается двигателем, доступным током от регулятора и настройкой регулятора.

Если статический крутящий момент , необходимый для запуска перемещения нагрузки, превышает 140 процентов крутящего момента двигателя при полной нагрузке, может потребоваться регулирование большего размера и двигатель с достаточным крутящим моментом.

Существует несколько методов, которые можно использовать для достижения необходимого крутящего момента в пределах возможностей используемых компонентов. Эти методы следует обсудить с производителем двигателя для достижения оптимальной конфигурации.

Ресурс: NEMA VSD Guide

,

Как работают бесщеточный двигатель и ESC

В этом руководстве мы узнаем, как работают бесщеточный двигатель и ESC. Эта статья является первой частью следующего видео, где мы узнаем принцип работы бесщеточного двигателя постоянного тока и ESC (электронный контроллер скорости), а во второй части мы узнаем, как управлять двигателем BLDC с помощью Arduino.

Как это работает


Двигатель BLDC состоит из двух основных частей: статора и ротора.На этом рисунке ротор представляет собой постоянный магнит с двумя полюсами, а статор состоит из катушек, расположенных, как показано на рисунке ниже.

Brushless motor main parts - a stator and a rotor

Все мы знаем, что если мы подаем ток через катушку, это создаст магнитное поле, а силовые линии или полюса магнитного поля зависят от направления тока.

Magnetic field generated by current running through a coil

Итак, если мы подаем соответствующий ток, катушка будет генерировать магнитное поле, которое будет притягивать постоянный магнит ротора.Теперь, если мы активируем каждую катушку одну за другой, ротор будет продолжать вращаться из-за силового взаимодействия между перманентом и электромагнитом.

Force interaction between permanent and electromagnet in BLDC Motor

Чтобы повысить эффективность двигателя, мы можем намотать две противоположные катушки как одну катушку таким образом, чтобы генерировать противоположные полюса по отношению к полюсам роторов, таким образом, мы получим двойную силу притяжения.

Brushless motor coils electromagnets force interaction

В этой конфигурации мы можем сформировать шесть полюсов статора с помощью всего трех катушек или фаз.Мы можем еще больше повысить эффективность, запитав две катушки одновременно. Таким образом, одна катушка будет притягиваться, а другая — отталкивать ротор.

BLDC motor working principle

Для того, чтобы ротор совершил полный цикл в 360 градусов, ему необходимо шесть шагов или интервалов.

BLDC Motor current waveform

Если мы посмотрим на форму сигнала тока, мы можем заметить, что в каждом интервале есть одна фаза с положительным током, одна фаза с отрицательным током и третья фаза выключена. Это дает представление о том, что мы можем соединить свободные конечные точки каждой из трех фаз вместе, и поэтому мы можем разделить ток между ними или использовать один ток для одновременного питания двух фаз.

Вот пример. Если мы поднимем фазу A High или подключим ее к положительному постоянному напряжению с помощью какого-либо переключателя, например MOSFET, а с другой стороны подключим фазу B к земле, тогда ток будет течь от VCC через фазу A, нейтральную точку и фазу B, на землю. Таким образом, с помощью всего лишь одного потока тока мы создали четыре разных полюса, которые заставляют ротор двигаться.

Generating 4 magnetic poles with just a single current flow - Brushless motor working principle

С этой конфигурацией мы фактически имеем соединение фаз двигателя звездой, где нейтральная точка соединена внутри, а три других конца фаз выходят из двигателя, и поэтому у бесщеточного двигателя три провода выходят из Это.

Brushless motor star connection

Итак, для того, чтобы ротор совершал полный цикл, нам просто нужно активировать два правильных МОП-транзистора в каждом из 6 интервалов, и это то, что на самом деле все ESC.

Brushless motor star connection

Как работает шаговый двигатель

В этом руководстве вы узнаете, как работает шаговый двигатель. Мы рассмотрим основные принципы работы шаговых двигателей, их режимы движения и…

ESC или электронный контроллер скорости управляет движением или скоростью бесщеточного двигателя, активируя соответствующие полевые МОП-транзисторы для создания вращающегося магнитного поля, так что двигатель вращается.Чем выше частота или чем быстрее ESC проходит через 6 интервалов, тем выше будет скорость двигателя.

How does an ESC Work - Electronic Speed Controller

Однако возникает важный вопрос: как узнать, когда активировать какую фазу. Ответ заключается в том, что нам нужно знать положение ротора, и есть два общих метода, используемых для определения положения ротора.

Первый распространенный метод заключается в использовании датчиков Холла, встроенных в статор, расположенных одинаково на 120 или 60 градусов друг от друга.

Brushless motor rotor position using Hall-effect sensors

Когда постоянные магниты роторов вращаются, датчики на эффекте Холла определяют магнитное поле и генерируют логический «высокий» для одного магнитного полюса или логический «низкий» для противоположного полюса. Согласно этой информации ESC знает, когда активировать следующую последовательность коммутации или интервал.

Второй распространенный метод, используемый для определения положения ротора, заключается в измерении обратной электродвижущей силы или обратной ЭДС. Обратная ЭДС возникает в результате прямо противоположного процесса генерации магнитного поля, или когда движущееся или изменяющееся магнитное поле проходит через катушку, оно индуцирует в катушке ток.

Back EMF in Brushless motor

Итак, когда движущееся магнитное поле ротора проходит через свободную катушку или ту, которая не активна, оно вызывает ток в катушке, и в результате в этой катушке происходит падение напряжения. ESC фиксирует эти падения напряжения по мере их возникновения и на их основе предсказывает или рассчитывает, когда должен произойти следующий интервал.

Итак, это основной принцип работы бесщеточных двигателей постоянного тока и ESC, и он тот же самый, даже если мы увеличим количество полюсов как ротора, так и статора.У нас по-прежнему будет трехфазный двигатель, только количество интервалов увеличится, чтобы завершить полный цикл.

Back EMF in Brushless motor

Здесь мы также можем упомянуть, что двигатели BLDC могут быть с опусканием или опережением. Бесщеточный двигатель с внутренним ходом имеет постоянные магниты внутри электромагнитов, и наоборот, двигатель с внешним подъёмником имеет постоянные магниты вне электромагнитов. Опять же, они используют один и тот же принцип работы, и у каждого из них есть свои сильные и слабые стороны.

Inrunner vs outrunner brushless motor

Хорошо, хватит теории, теперь давайте продемонстрируем и посмотрим в реальной жизни то, что мы объяснили выше.Для этого мы подключим три фазы бесщеточного двигателя к осциллографу. Я соединил 3 резистора в одной точке, чтобы создать виртуальную нейтральную точку, а с другой стороны я подключил их к трем фазам двигателя BLDC.

connecting a brushless motor to an oscilloscope Первое, что мы можем здесь заметить, — это три синусоидальные волны. Эти синусоидальные волны на самом деле являются обратным EFM, генерируемым в неактивных фазах.

BLDC motor Phases and Back EMF displayed on an Oscilloscope

Мы можем видеть, что по мере изменения частоты вращения двигателя частота синусоидальных волн изменяется, а также их амплитуда.Чем выше частота вращения, тем выше частота и амплитуда синусоидальных волн обратной ЭДС. Однако на самом деле двигателем движут эти пики, активные фазы, которые генерируют изменяющееся магнитное поле.

BLDC motor phases activations displayed on a Rigol DS1054Z Oscilloscope

Мы можем заметить, что в каждом интервале есть две активные и одна неактивная фазы. Например, здесь активны фазы A и B, а фаза C неактивна. Затем у нас активны фазы A и C, в то время как фаза B неактивна, и так далее.

Здесь я хотел бы отдать должное Banggood.com за предоставленный мне осциллограф. Это Rigol DS1054Z, и это один из лучших осциллографов начального уровня в своей ценовой категории. Он имеет четыре входных канала, полосу пропускания 50 МГц, которая может быть взломана до 100 МГц, имеет частоту дискретизации 1 Гвыб / с и относительно большую глубину памяти 24 Мбайт.

Rigol DS1054Z SPI and I2C decoding

Дисплей 7 дюймов, он действительно красивый и яркий. Он имеет различные математические функции, фильтры нижних и верхних частот, декодирование SPI и I2C и многое другое. Итак, еще раз большое спасибо Banggood.com и не забудьте проверить этот осциллограф в их магазине.

Тем не менее, это основной принцип работы бесщеточного двигателя. Если вам нужны более реальные живые примеры и вы узнаете, как управлять моторами с помощью Arduino, вам следует проверить вторую часть этого руководства.

Controlling brushless motor using Arduino and ESC

Надеюсь, вам понравилось это руководство и вы узнали что-то новое. Не стесняйтесь задавать любой вопрос в разделе комментариев ниже и не забудьте проверить мою коллекцию проектов Arduino.

Controlling brushless motor using Arduino and ESC.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *