Как найти фи: Число «фи» — Мастерок.жж.рф — LiveJournal

Фи (число) Википедия

1,6180339887 4989484820 4586834365 6381177203 0917980576
2862135448 6227052604 6281890244 9707207204 1893911374
8475408807 5386891752 1266338622 2353693179 3180060766
7263544333 8908659593 9582905638 3226613199 2829026788
0675208766 8925017116 9620703222 1043216269 5486262963
1361443814 9758701220 3408058879 5445474924 6185695364
8644492410 4432077134 4947049565 8467885098 7433944221
2544877066 4780915884 6074998871 2400765217 0575179788
3416625624 9407589069 7040002812 1042762177 1117778053
1531714101 1704666599 1466979873 1761356006 7087480710
1317952368 9427521948 4353056783 0022878569 9782977834
7845878228 9110976250 0302696156 1700250464 3382437764
8610283831 2683303724 2926752631 1653392473 1671112115
8818638513 3162038400 5222165791 2866752946 5490681131
7159934323 5973494985 0904094762 1322298101 7261070596
1164562990 9816290555 2085247903 5240602017 2799747175
3427775927 7862561943 2082750513 1218156285 5122248093
9471234145 1702237358 0577278616 0086883829 5230459264
7878017889 9219902707 7690389532 1968198615 1437803149
9741106926 0886742962 2675756052 3172777520 3536139362


Первая тысяча знаков значения Φ[1].

Золотое сечение (золотая пропорция, деление в крайнем и среднем отношении, гармоническое деление) — соотношение двух величин a{\displaystyle a} и b{\displaystyle b}, при котором бо́льшая величина относится к меньшей так же как сумма величин к бо́льшей, то есть: ab=a+ba.{\displaystyle {\frac {a}{b}}={\frac {a+b}{a}}.}
Исторически изначально в древнегреческой математике золотым сечением именовалось деление отрезка AB{\displaystyle AB} точкой C{\displaystyle C} на две части так, что бо́льшая часть относится к меньшей, как весь отрезок к большей: BCAC=ABBC{\displaystyle {\frac {BC}{AC}}={\frac {AB}{BC}}}. Позже это понятие было распространено на произвольные величины.

Число, равное отношению a/b{\displaystyle a/b}, обычно обозначается прописной греческой буквой Φ{\displaystyle \Phi } (фи), в честь древнегреческого скульптора и архитектора Фидия[2], реже — греческой буквой τ{\displaystyle \tau }.

Из исходного равенства (например, представляя a или даже a/b независимой переменной и решая выводимое из исходного равенства квадратное уравнение) нетрудно получить, что число

Φ=5+12{\displaystyle \Phi ={\frac {{\sqrt {5}}+1}{2}}}

Обратное число, обозначаемое строчной буквой φ{\displaystyle \varphi }[2],

φ=1Φ=5−12≈0.61803{\displaystyle \varphi ={\frac {1}{\Phi }}={\frac {{\sqrt {5}}-1}{2}}\approx 0.61803}

Отсюда следует, что

φ=Φ−1{\displaystyle \varphi =\Phi -1}.

Число Φ{\displaystyle \Phi } называется также золотым числом.

Для практических целей ограничиваются приблизительным значением Φ{\displaystyle \Phi } = 1,618 или Φ{\displaystyle \Phi } = 1,62. В процентном округлённом значении золотое сечение — это деление какой-либо величины в отношении 62 % и 38 %.

Иллюстрация к определению

Золотое сечение имеет множество замечательных свойств (например, произведение 1,6180339… × 1,6180339… = 2,6180339…) но, кроме того, ему приписывают и многие вымышленные свойства[3][4][5].

История

В дошедшей до нас античной литературе деление отрезка в крайнем и среднем отношении (ἄκρος καὶ μέσος λόγος) впервые встречается в «Началах» Евклида (ок. 300 лет до н. э.), где оно применяется для построения правильного пятиугольника.

Лука Пачоли, современник и друг Леонардо да Винчи, усматривал в этом отношении «божественную суть», выражающую триединство Бога Отца, Сына и Святого Духа[6].

Неизвестно точно, кто и когда именно впервые ввел в обращение термин «золотое сечение». Несмотря на то, что некоторые авторитетные авторы связывают появление этого термина с Леонардо да Винчи в XV веке[7] или относят появление этого термина к XVI веку[8], самое раннее употребление этого термина находится у Мартина Ома в 1835 году в примечании ко второму изданию его книги «Чистая элементарная математика»[9], в котором Ом пишет, что это сечение часто называют золотым сечением (нем. goldener Schnitt). Из текста примечания Ома следует, что Ом не придумал этот термин сам[10][11], хотя некоторые авторы утверждают обратное[12]. Тем не менее, исходя из того, что Ом не употребляет этот термин в первом издании своей книги[13], Роджер Герц-Фишлер делает вывод о том, что этот термин, возможно, появился в первой четверти XIX века.[14]Марио Ливио считает, что он получил популярность в устной традиции около 1830 года.[15] В любом случае, этот термин стал распространён в немецкой математической литературе после Ома.[16]

Математические свойства

1Φ=φ=tg⁡(arctg⁡(2)2)=21+1+22=21+5=5−12.{\displaystyle {\frac {1}{\Phi }}=\varphi =\operatorname {tg} \left({\frac {\operatorname {arctg} (2)}{2}}\right)={\frac {2}{1+{\sqrt {1+2^{2}}}}}={\frac {2}{1+{\sqrt {5}}}}={\frac {{\sqrt {5}}-1}{2}}.}
  • Φ{\displaystyle \Phi } представляется в виде бесконечной цепочки квадратных корней:
    Φ=1+1+1+1+….{\displaystyle \Phi ={\sqrt {1+{\sqrt {1+{\sqrt {1+{\sqrt {1+\dots }}}}}}}}.}
  • Φ{\displaystyle \Phi \;} представляется в виде бесконечной цепной дроби
    Φ=1+11+11+11+…,{\displaystyle \Phi =1+{\cfrac {1}{1+{\cfrac {1}{1+{\cfrac {1}{1+\dots }}}}}},}
подходящими дробями которой служат отношения последовательных чисел Фибоначчи Fn+1Fn{\displaystyle {\frac {F_{n+1}}{F_{n}}}}. Таким образом,

Отрезание квадрата от прямоугольника, построенного по принципу золотого сечения

  • Отрезав квадрат от прямоугольника, построенного по принципу золотого сечения, мы получаем новый, уменьшенный прямоугольник с тем же отношением сторон Φ=a/b{\displaystyle \Phi =a/b}, что и у исходного прямоугольника Φ=(a+b)/a{\displaystyle \Phi =(a+b)/a}.

Золотое сечение в пятиконечной звезде

  • В правильной пятиконечной звезде каждый отрезок делится пересекающим его отрезком в золотом сечении. На приведённом рисунке отношения красного отрезка к зелёному, зелёного к синему и синего к пурпурному равны Φ{\displaystyle \Phi }. Кроме того, отношение красного отрезка к расстоянию между соседними вершинами звезды, которое равно зелёному отрезку, также равно Φ{\displaystyle \Phi }.

Построение золотого сечения

Φ=|AB||AE|=|AE||BE|.{\displaystyle \Phi ={\frac {|AB|}{|AE|}}={\frac {|AE|}{|BE|}}.}

Другой способ построить отрезок, равный по длине числу золотого сечения

  • Другой способ построить отрезок, равный по длине числу золотого сечения, — начертить сначала квадрат ABCD со стороной 1. После этого одну из сторон, например сторону AD, разделить точкой E пополам, так что AE=DE=1/2. От точки B или C до точки E провести гипотенузу треугольника АВЕ или DCE. Согласно теореме Пифагора ВE=СE=52{\displaystyle {\frac {\sqrt {5}}{2}}}. Затем провести дугу с центром в точке Е от точки В или точки С до момента её пересечения с продолжением стороны АD (точкой пересечения дуги и продолжения стороны АD пусть будет точка Н). Как радиусы круга BE=СЕ=ЕН. Так как АН=АЕ+ЕН, результатом будет отрезок АН длиной Φ{\displaystyle \Phi }. Так как DH=EH-ED, другим результатом будет отрезок DH длиной φ{\displaystyle \varphi }[17].
  • Отношение диагонали правильного пятиугольника к стороне равно золотому сечению.
  • Значения дроби после запятой для Φ{\displaystyle \Phi }, 1Φ{\displaystyle {\frac {1}{\Phi }}} и Φ2{\displaystyle \Phi ^{2}} в любой системе счисления будут равны[18].
  • ∑n=1∞(−1)n+1n2(2nn)=2ln2⁡φ{\displaystyle \sum _{n=1}^{\infty }{\frac {(-1)^{n+1}}{n^{2}{\binom {2n}{n}}}}=2\ln ^{2}\varphi }

Тогда как ∑n=1∞1n2(2nn)=π218{\displaystyle \sum _{n=1}^{\infty }{\frac {1}{n^{2}{\binom {2n}{n}}}}={\frac {\pi ^{2}}{18}}}[источник не указан 1720 дней]

Золотое сечение в науке

Общее сопротивление этой бесконечной цепи равно Фr.

Золотое число возникает в разных задачах, в том числе в физике. Например, бесконечная электрическая цепь, приведенная на рисунке, имеет общее сопротивление (между двумя левыми концами) Ф·r.

Отношение амплитуд колебаний и частот ~ Ф.

Существуют колебательные системы, физические характеристики которых (отношения частот, амплитуд и др.) пропорциональны золотому сечению. Самый простой пример — система из двух шариков, соединенных последовательно пружинами одинаковой жесткости (см. рисунок).

Полностью эти две задачи рассматриваются в книге «В поисках пятого порядка», глава «Две простые задачки»[19]. Более сложные примеры на механические колебания и их обобщения рассматриваются в этой же книге, в главе «Обобщения одной простой задачи по механике». В книге приведено много примеров проявления и применения золотого сечения в различных областях наук — небесной механике, физике, геофизике, биофизике, физической химии, биологии, физиологии.

Золотое сечение сильно связано с симметрией пятого порядка, наиболее известными трехмерными представителями которой являются додекаэдр и икосаэдр. Можно сказать, что всюду, где в структуре проявляются додекаэдр, икосаэдр или их производные, там в описании будет появляться и золотое сечение. Например, в пространственных группировках из Бора: В-12, В-50, В-78, В-84, В-90, …, В-1708, имеющих икосаэдрическую симметрию[20].
Молекула воды, у которой угол расхождения связей Н-О равен 104.70 , то есть близок к 108 градусам (угол в правильном пятиугольнике), может соединяться в плоские и трехмерные структуры с симметрией пятого порядка. Так в разреженной плазме был обнаружен Н+20)21, который представляет из себя ион Н30+, окруженный 20 молекулами воды, расположенными в вершинах додекаэдра[21]. В 80-х годах XX века были получены клатратные соединения, содержащие гексааквакомплекс кальция, окруженный 20 молекулами воды, расположенными в вершинах додекаэдра[22]. Есть и клатратные модели воды, в которых обыкновенная вода отчасти состоит из молекул воды, соединенных в структуры с симметрией пятого порядка. Такие структуры могут состоять из 20, 57, 912 молекул воды[23].

Золотое сечение и гармония в искусстве

Золотое сечение и зрительные центры

Некоторые из утверждений в доказательство гипотезы знания древними правила золотого сечения:

  • Пропорции пирамиды Хеопса, храмов, барельефов, предметов быта и украшений из гробницы Тутанхамона свидетельствуют, что египетские мастера пользовались соотношениями золотого сечения при их создании.
  • Согласно Ле Корбюзье, в рельефе из храма фараона Сети I в Абидосе и в рельефе, изображающем фараона Рамзеса, пропорции фигур соответствуют золотому сечению. В фасаде древнегреческого храма Парфенона также присутствуют золотые пропорции. В циркуле из древнеримского города Помпеи (музей в Неаполе) также заложены пропорции золотого деления, и т. д. При обсуждении оптимальных соотношений сторон прямоугольников (размеры листов бумаги A0 и кратные, размеры фотопластинок (6:9, 9:12) или кадров фотоплёнки (часто 2:3), размеры кино- и телевизионных экранов — например, 4:3 или 16:9) были испытаны самые разные варианты. Оказалось, что большинство людей не воспринимает золотое сечение как оптимальное и считает его пропорции «слишком вытянутыми»[источник не указан 4088 дней].
  • Следует отметить, что сама пропорция является, скорее, эталонным значением, матрицей, отклонения от которой у биологических видов, возможно, вызваны приспособлением к окружающей среде в процессе жизни. Примером таких «отклонений» может служить морская камбала.

Примеры сознательного использования

Начиная с Леонардо да Винчи, многие художники сознательно использовали пропорции «золотого сечения». Российский зодчий И. В. Жолтовский использовал золотое сечение в своих проектах[24].
Иоганн Себастьян Бах в своей трёхголосной инвенции E-dur № 6 BWV 792 использовал двухчастную форму, в которой соотношение размеров частей соответствует пропорциям золотого сечения. 1 часть — 17 тактов, 2 часть — 24 такта (небольшие несоответствия выравниваются за счёт ферматы в 34 такте)[источник не указан 1313 дней].

Современными примерами применения золотого сечения может служить мозаика Пенроуза и пропорции государственного флага Того.

Золотое сечение в биологии и медицине

Золотое сечение в природе

Живые системы также обладают свойствами, характерными для «золотого сечения». Например: пропорции тел, спиральные структуры или параметры биоритмов[25][неавторитетный источник?] и др.

См. также

Примечания

  1. ↑ Взята из примера результата компьютерного расчета (1996 года) с гораздо большим числом знаков, чем 1000 Golden ratio 1000 digits Архивная копия от 6 марта 2015 на Wayback Machine
  2. 1 2 Савин А. Число Фидия — золотое сечение (рус.) // «Квант» : Научно-популярный физико-математический журнал (издается с января 1970 года). — 1997. — № 6.
  3. ↑ Радзюкевич А. В. Красивая сказка о «золотом сечении»
  4. ↑ Mario Livio, The Golden Ratio: The Story of Phi, The World’s Most Astonishing Number
  5. ↑ Devlin’s Angle, The Myth That Will Not Go Away
  6. В. Лаврус, Золотое сечение
  7. François Lasserre. The birth of mathematics in the age of Plato. — American Research Council, 1964-01-01. — 200 с. — P. 76.
  8. Boyer, Carl B. (англ.)русск.. A History of Mathematics (неопр.). — Second Edition. — John Wiley & Sons, Inc., 1991. — С. 50. — ISBN 0-471-54397-7.
  9. Martin Ohm. Die reine Elementar-Mathematik. — 2-е изд. — Jonas Verlags-buchhandlung, 1835. — С. 194. — 454 с.
  10. ↑ Herz-Fischler, 2013, p. 168.
  11. ↑ Livio, 2008, p. 6-7.
  12. Василенко С. Л. Знак-символ золотого сечения // Академия Тринитаризма. — М., 05.02.2011. — № Эл № 77—6567, публ. 16335.
  13. Martin Ohm. Die reine Elementar-Mathematik. — 1-е изд.. — Berlin, 1826. — 492 с. — P. 188.
  14. ↑ Herz-Fischler, 2013, p. 169.
  15. ↑ Livio, 2008, p. 7.
  16. ↑ Herz-Fischler, 2013, p. 169-170.
  17. Тони Крилли. Математика: 50 идей, о которых нужно знать = 50 Mathematical Ideas you really need to know. — Phantom Press. — 209 с. — ISBN 9785864716700.
  18. ↑ Системы счисления (неопр.).
  19. Ковалев А.Н. В поисках пятого порядка. — 2017. — 374 с. — ISBN 978-5-4485-3753-0.
  20. ↑ Современная Кристаллография / под ред. Вайнштейна Б. К.. — Т.2. — М.: Мир, 1979.
  21. Holland P. M. Casteiman A. W. A model for the formation and stabilization of chorqed water cluthrates // J. Chem. Phys.. — 1980. — Т. 72, № 1(11). — С. 5984.
  22. ↑ Электромагнитные поля в биосфере. — Сборник трудов конференции, Т.2. — М., 1984. — С. 22.
  23. Зенин С.В. Структурированное состояние воды как основа управления поведением и безопасностью живых систем. — Диссертация докт. биол. наук. — М., 1999.
  24. ↑ Золотой запас зодчества Архивная копия от 29 января 2009 на Wayback Machine
  25. ↑ Цветков, В. Д. Сердце, золотое сечение и симметрия. — Пущино: ПНЦ РАН, 1997. — 170 с.

Литература

  • Аракелян Г. Б. Математика и история золотого сечения. — М.: Логос, 2014, 404 с. — ISBN 978-5-98704-663-0.
  • Бендукидзе А. Д. Золотое сечение «Квант» № 8, 1973
  • Васютинский Н. А. Золотая пропорция. — М.: Молодая гвардия, 1990. — 238[2]c. — (Эврика).
  • Власов В. Г. Золотое сечение, или Божественная пропорция // Власов В. Г. Новый энциклопедический словарь изобразительного искусства: В 10 т. — Т.3. — СПб.: Азбука-Классика, 2005. — С.725-732.
  • Власов В. Г. Приемы гармонизации пространства в классической архитектуре // Власов В. Г. Искусство России в пространстве Евразии. — Т.3. Классическое искусствознание и «русский мир». — СПб.: Дмитрий Буланин, 2012. — С.156-192.
  • Мазель, Л.А. Опыт исследования золотого сечения в музыкальных построениях в свете общего анализа форм // Музыкальное образование. – 1930. – № 2. – С. 24-33.
  • Сабанеев Л. Л. Этюды Шопена в освещении закона золотого сечения. Опыт позитивного обоснования законов формы // Искусство. — 1925. — № 2. — С. 132—145; 1927. — № 2-3. — С. 32-56.
  • Шмигевский Н. В. Формула совершенства // Страна знаний. — 2010. — № 4. — С.2-7.
  • Mario Livio. The Golden Ratio: The Story of PHI, the World’s Most Astonishing Number. — Crown/Archetype, 2008. — 303 с. — ISBN 9780307485526. Русский перевод в
Марио Ливио. φ – Число Бога. Золотое сечение – формула мироздания. — Litres, 2015-04-17. — 481 с. — ISBN 9785457762732.

Ссылки

  • В. С. Белнин, «Владел ли Платон кодом золотой пропорции? Анализ мифа»
  • А. В. Радзюкевич, К вопросу о научном изучении пропорций в архитектуре и искусстве.
  • А. В. Радзюкевич, Критический анализ Адольфа Цейзинга — основоположника гипотезы «золотого сечения».
  • Шевелев И. Ш., Марутаев М. А., Шмелев И. П. Золотое сечение: Три взгляда на природу гармонии. — М.: Стройиздат, 1990. — 343 с., ил.
  • Статья о золотом сечении в изобразительном искусстве, Золотое сечение в изобразительном искусстве
  • J. J. O’Connor, E. F. Robertson. Golden ratio (неопр.). MacTutor History of Mathematics archive. School of Mathematics and Statistics, University of St Andrews, Scotland.
  • Функция Фибоначчи в Wolfram alpha

«Удивительное число «Фи»»

«Удивительное число «Фи»»

Евсиков Г.Ю. 1


1МБОУ СОШ №3

Чернова Ф.В. 1


1МБОУ СОШ №3


Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке «Файлы работы» в формате PDF

1.Введение

Человек всегда стремился к идеалу везде и во всем. Идеальный дом, идеальная прическа, внешность, статуя, и многое другое. Человек, не задумываясь в таких моментах почти всегда обращается к числу «Фи».

Фибоначи, сам того не зная, сделал открытие, которое влияет на жизнь каждого из нас точно так же, как и воздух, земля и сама природа. Кому-то его открытие кажется бесполезным, кому-то сложным, а кому-то, как и мне прекрасным, но знать о нём должен каждый, ибо зная его человек может создать воистину прекрасные вещи.

2.Цели

Узнать что такое число «Фи».

Узнать кто и как открыл число «Фи».

Узнать что такое «золотое сечение».

Узнать о местах применения «золотого сечения и доказать, является ли оно эталоном красоты

3.Основная часть

3.1 Леонардо Пизанский

Леонардо Пизанский (около 1170-1250) – сын купца, путешествовавший вместе с ним. Гораздо более известен под прозвищем Фибоначи. Отец Фибоначчи по торговым делам часто бывал в Алжире, и Леонардо изучал там математику у арабских учителей. Позже Фибоначчи посетил Египет, Сирию, Византию, Сицилию. Он ознакомился с достижениями античных и индийских математиков в арабском переводе. На основе усвоенных им знаний Фибоначчи написал ряд математических трактатов, представляющих собой выдающееся явление средневековой западноевропейской науки. Труд Леонардо Фибоначчи «Книга абака» способствовал распространению в Европе позиционной системы счисления, более удобной для вычислений, чем римская нотация; в этой книге были подробно исследованы возможности применения индийских цифр, ранее остававшиеся неясными, и даны примеры решения практических задач, в частности, связанных с торговым делом. Позиционная система приобрела в Европе популярность в эпоху Возрождения.

В трактате «Цветок» (Flos, 1225 год) Фибоначчи исследовал кубическое уравнение x3+2x2+10x=20, предложенное ему Иоанном Палермским на математическом состязании при дворе императора Фридриха II. Сам Иоанн Палермский почти наверняка заимствовал это уравнение из трактата Омара Хайяма «О доказательствах задач алгебры», где оно приводится как пример одного из видов в классификации кубических уравнений. Леонардо Пизанский исследовал это уравнение, показав, что его корень не может быть рациональным или же иметь вид одной из квадратичных иррациональностей, встречающихся в X книге Начал Евклида, а затем нашёл приближённое значение корня в шестидесятеричных дробях, равное 1;22,07,42,33,04,40, не указывая, однако, способа своего решения.

«Книга квадратов» (Liber quadratorum, 1225 год) содержит ряд задач на решение неопределённых квадратных уравнений. Фибоначчи работал над поиском чисел, которые, будучи добавленными к квадратному числу, вновь дадут квадратное число. Он отметил, что числа x2+y2 и х2-y2 не могут быть квадратными одновременно, а также использовал для поиска квадратных чисел формулу x2+(2x+1)=(x+1)2. В одной из задач книги, также первоначально предложенной Иоанном Палермским, требовалось найти рациональное квадратное число, которое, будучи увеличено или уменьшено на 5, вновь даёт рациональные квадратные числа.

Среди не дошедших до нас произведений Фибоначчи трактат Di minor guisa по коммерческой арифметике, а также комментарии к книге X «Начал» Евклида.

Он прославился тем, что придумал задачу про размножение кроликов и получил последовательность чисел, которые потом были названы «последовательностью Фибоначи», а соотношение этих чисел равно 1,618 или же числу Фи.

3.2 Задача о кроликах

«Сколько пар кроликов рождается в год от одной пары кроликов, если через месяц пара кроликов производит на свет другую пару, а рожают кролики со второго месяца своего рождения?»

Ниже я составил таблицу для решения задачи:

Из этого можно сделать вывод что последовательность «чисел Фибоначи» есть соотношение двух величин b и a, a > b, когда справедливо a/b = (a+b)/a. А при выполнении данных действий мы получим число Фи. Пример: 144/89=(144+89)/144 = 1,618. И на таблице последний столбик и есть последовательность «чисел Фибоначи».

3.3 Точное значение числа «Фи» (1000 знаков после запятой)

1,6180339887 4989484820 4586834365 6381177203 0917980576 2862135448 6227052604 6281890244 9707207204 1893911374 8475408807 5386891752 1266338622 2353693179 3180060766 7263544333 8908659593 9582905638 3226613199 2829026788 0675208766 8925017116 9620703222 1043216269 5486262963 1361443814 9758701220 3408058879 5445474924 6185695364 8644492410 4432077134 4947049565 8467885098 7433944221 2544877066 4780915884 6074998871 2400765217 0575179788 3416625624 9407589069 7040002812 1042762177 1117778053 1531714101 1704666599 1466979873 1761356006 7087480710 1317952368 9427521948 4353056783 0022878569 9782977834 7845878228 9110976250 0302696156 1700250464 3382437764 8610283831 2683303724 2926752631 1653392473 1671112115 8818638513 3162038400 5222165791 2866752946 5490681131 7159934323 5973494985 0904094762 1322298101 7261070596 1164562990 9816290555 2085247903 5240602017 2799747175 3427775927 7862561943 2082750513 1218156285 5122248093 9471234145 1702237358 0577278616 0086883829 5230459264 7878017889 9219902707 7690389532 1968198615 1437803149 9741106926 0886742962 2675756052 3172777520 3536139362

3.4 Интересные математические свойства числа «Фи»

1) Каждое третье число Фибоначчи четно;

2) Каждое четвертое кратно 3;

3) Каждое пятнадцатое оканчивается нулем

Если мы разделим единицу на Ф, то получим число 0,61803… — те же самые десятичные знаки после запятой, что и у числа Ф. 1/Ф = Ф-1 1/1,618 = 0,618

1/Фи = Фи -1

1/1,618 = 0,618

3.5 Идеальная звезда, спираль и прямоугольник

Используя число «Фи» можно составить 3 идеальные фигуры.

Первая – идеальная звезда, в которой отрезки HF и FC, а так же другие стороны треугольников и соответствующие стороны внутреннего пятиугольника относятся как 1/1.618.

Вторая – идеальная спираль, которая образована ¼ окружностей вписанных в квадраты, стороны которых являются последовательностью «чисел Фибоначи» и относятся как 1/1.618.

Третья – идеальны прямоугольник, который состоит из квадрата и прямоугольника и меньшая сторона малого прямоугольника(b) относится к стороне квадрата(a) как 1/1.618, а так же сторона квадрата(a) относится к большей стороне большого прямоугольника(a+b) как 1/1.618.

Все эти идеальные фигуры представляют собой наяву «золотое сечение».

3.6 Число «Фи» или золотое сечение в природе

Число «Фи» Встречается на каждом шагу, но мы не всегда его замечаем.

Несколько примеров:

Семена подсолнуха расположены в виде идеальной спирали (спирали Фибоначи)

Так же число «Фи» есть в обычном курином яйце. По соотношению длин его половин.

Еще несколько примеров:

3.7 Живой пример числа «Фи».

Им является никто иной как человек.

Если вы измерите расстояние от плеча до кончиков пальцев, затем разделите его на расстояние от локтя до тех же кончиков пальцев. Получите число 1.618

Расстояние от верхней части бедра до пола, поделенное на расстояние от колена до пола — это снова число «Фи»

Сумма двух первых фаланг пальца в соотношении со всей длиной пальца = числу «Фи»

Из этого можно сделать вывод, что человек живой пример «божественной пропорции».

4.Выводы и заключение.

Я выполнил все поставленные задачи и благодаря этому узнал:

Что такое число «Фи».

Кто и как открыл число «Фи».

А так же:

Что такое «золотое сечение».

Узнал о местах применения «золотого сечения и доказать, является ли оно эталоном красоты

Надеюсь своей работой я донес до читателя важность открытия Леонардо Пизанского и его актуальность.

Список литературы и Интернет – ресурсов.

1.https://ru.wikipedia.org

2. «Цветок» (Flos, 1225 год) – Леонардо Пизанский.

3. «Практика геометрии» (Practica geometriae, 1220 год) – Леонардо Пизанский.

4. «Книга квадратов» (Liber quadratorum, 1225 год) – Леонардо Пизанский.

Просмотров работы: 4112

Фи — это… Что такое Фи?

Φ, φ (название: фи, греч. φι) — 21-я буква греческого алфавита. В системе греческой алфавитной записи чисел имеет числовое значение 500. От буквы «фи» произошла кириллическая буква Ф.

У строчной буквы начертание двоякое[1]: φ и ϕ; орфографического значения различие не несёт (определяется как правило типом шрифта, так же, как варианты начертания букв эпсилон и каппа).

В древнейших вариантах греческого алфавита буква фи отсутствовала. В отличие от большинства других греческих букв, которые присходят от финикийских, φ не имеет финикийского прообраза и её происхождение неясно.

В современном греческом языке буква φ обозначает глухой лабиодентальный (губно-зубной) фрикатив, [f]. В древнегреческом обозначала звук [pʰ], глухой билабиальный смычный согласный с придыханием, образовавшийся в протогреческом в результате оглушения придыхательных из bh; латинским алфавитом часто передаётся сочетанием ph.

Использование

Строчная φ

Прописная Φ

Кодировки

В Unicode представлено несколько форм буквы фи:

В некоторых старых шрифтах, не совместимых с Unicode 3.0 from 1998, U+03D5 GREEK PHI SYMBOL могло быть представлено «петлеобразным» символом .[2] Это более не считается корректным. U+03C6 GREEK SMALL LETTER PHI может быть представлен и «перечеркнутым» glyph вариантом, но предпочтительно — «петлеобразным» .[2]

В HTML/XHTML, прописное (upper case) и сторчное (lower case) фи — это Φ (Φ) и φ (φ) соответственно.

В LaTeX, имеются математический символы \Phi (), \phi (), и \varphi ().

Шаблон:lang-el2 позволяет получить начертание φ здесь.

Примечания

  1. В формулах также может выглядеть как .
  2. 1 2 3 Representative Glyphs for Greek Phi // UTR #25: Unicode support for mathematics.

φ — Греческая строчная буква фи: U+03C6 phi

Описание символа

Греческая строчная буква фи. Греческое и коптское письмо.

Символ «Греческая строчная буква фи» был утвержден как часть Юникода версии 1.1 в 1993 г.

Свойства

Версия 1.1
Блок Греческое и коптское письмо
Тип парной зеркальной скобки (bidi) Нет
Композиционное исключение Нет
Изменение регистра 03C6
Простое изменение регистра 03C6

Похожие символы

Кодировка

Кодировка hex dec (bytes) dec binary
UTF-8 CF 86 207 134 53126 11001111 10000110
UTF-16BE 03 C6 3 198 966 00000011 11000110
UTF-16LE C6 03 198 3 50691 11000110 00000011
UTF-32BE 00 00 03 C6 0 0 3 198 966 00000000 00000000 00000011 11000110
UTF-32LE C6 03 00 00 198 3 0 0 3322085376 11000110 00000011 00000000 00000000

Наборы с этим символом:

Формулы по физике для ЕГЭ и 7-11 класса

Рубрика: Подготовка к ЕГЭ по физике

Шпаргалка с формулами по физике для ЕГЭ

и не только (может понадобиться 7, 8, 9, 10 и 11 классам).

Для начала картинка, которую можно распечатать в компактном виде.

Механика

  1. Давление                      Р=F/S
  2. Плотность                   ρ=m/V
  3. Давление на глубине жидкости   P=ρ∙g∙h
  4. Сила тяжести                       Fт=mg
  5. 5. Архимедова сила                 Fa=ρж∙g∙Vт
  6. Уравнение движения  при равноускоренном  движении

X=X0+υ0∙t+(a∙t2)/2                    S= (υ2υ02)/2а         S= (υ+υ0) ∙t /2

  1. Уравнение скорости  при равноускоренном движении υ=υ0+a∙t
  2. Ускорение            a=(υυ 0)/t
  3. Скорость при движении по окружности υ=2πR/Т
  4. Центростремительное ускорение  a=υ2/R
  5. Связь периода с частотой ν=1/T=ω/2π
  6. II закон Ньютона                F=ma
  7. Закон Гука                          Fy=-kx
  8. Закон Всемирного тяготения  F=G∙M∙m/R2
  9. Вес тела, движущегося с ускорением а↑      Р=m(g+a)
  10. Вес тела, движущегося с ускорением а↓      Р=m(g-a)
  11. Сила трения                     Fтр=µN
  12. Импульс тела                       p=mυ
  13. Импульс силы                     Ft=∆p
  14. Момент силы                    M=F∙ℓ
  15. Потенциальная энергия тела, поднятого над землей Eп=mgh
  16. Потенциальная энергия упруго деформированного тела Eп=kx2/2
  17. Кинетическая энергия тела Ek=mυ2/2
  18. Работа            A=F∙S∙cosα
  19. Мощность     N=A/t=F∙υ
  20. Коэффициент полезного действия η=Aп/Аз
  21. Период колебаний математического маятника T=2π√ℓ/g
  22. Период колебаний пружинного маятника T=2 π √m/k
  23. Уравнение гармонических колебаний  Х=Хmax∙cos ωt
  24. Связь длины волны, ее скорости и периода λ= υТ

Молекулярная физика и термодинамика

  1. Количество вещества              ν=N/ Na
  2. Молярная масса                           М=m/ν
  3. Cр. кин. энергия молекул одноатомного газа Ek=3/2∙kT
  4. Основное уравнение МКТ      P=nkT=1/3nm0υ2
  5. Закон Гей – Люссака (изобарный процесс)    V/T =const
  6. Закон Шарля (изохорный процесс)    P/T =const
  7. Относительная влажность φ=P/P0∙100%
  8. Внутр. энергия идеал. одноатомного газа U=3/2∙M/µ∙RT
  9. Работа газа A=P∙ΔV
  10. Закон Бойля – Мариотта (изотермический процесс)    PV=const
  11. Количество теплоты при нагревании  Q=Cm(T2-T1)
  12. Количество теплоты при плавлении   Q=λm
  13. Количество теплоты при парообразовании  Q=Lm
  14. Количество теплоты при сгорании топлива  Q=qm
  15. Уравнение состояния идеального газа PV=m/M∙RT
  16. Первый закон термодинамики   ΔU=A+Q
  17. КПД тепловых двигателей         η= (Q1 — Q2)/ Q1
  18. КПД идеал. двигателей  (цикл Карно)     η= (Т1 — Т2)/ Т1

https://5-ege.ru/formuly-po-fizike-dlya-ege/

Электростатика и электродинамика – формулы по физике

  1. Закон Кулона F=k∙q1∙q2/R2
  2. Напряженность электрического поля E=F/q
  3. Напряженность эл. поля точечного заряда E=k∙q/R2
  4. Поверхностная плотность зарядов             σ = q/S
  5. Напряженность эл. поля бесконечной плоскости E=2πkσ
  6. Диэлектрическая проницаемость ε=E0/E
  7. Потенциальная энергия взаимод. зарядов W= k∙q1q2/R
  8. Потенциал φ=W/q
  9. Потенциал точечного заряда φ=k∙q/R
  10. Напряжение U=A/q
  11. Для однородного электрического поля U=E∙d
  12. Электроемкость C=q/U
  13. Электроемкость плоского конденсатора C=S∙εε0/d
  14. Энергия заряженного конденсатора W=qU/2=q²/2С=CU²/2
  15. Сила тока I=q/t
  16. Сопротивление проводника R=ρ∙ℓ/S
  17. Закон Ома для участка цепи I=U/R
  18. Законы послед. соединения I1=I2=I, U1+U2=U, R1+R2=R
  19. Законы паралл. соед.   U1=U2=U, I1+I2=I, 1/R1+1/R2=1/R
  20. Мощность электрического тока P=I∙U
  21. Закон Джоуля-Ленца Q=I2Rt
  22. Закон Ома для полной цепи I=ε/(R+r)
  23. Ток короткого замыкания (R=0)      I=ε/r
  24. Вектор магнитной индукции B=Fmax/ℓ∙I
  25. Сила Ампера Fa=IBℓsin α
  26. Сила Лоренца Fл=Bqυsin α
  27. Магнитный поток Ф=BSсos α      Ф=LI
  28. Закон электромагнитной индукции Ei=ΔФ/Δt
  29. ЭДС индукции в движ проводнике Ei=Вℓυsinα
  30. ЭДС самоиндукции Esi=-L∙ΔI/Δt
  31. Энергия магнитного поля катушки Wм=LI2/2
  32. Период колебаний кол. контура T=2π ∙√LC
  33. Индуктивное сопротивление XL=ωL=2πLν
  34. Емкостное сопротивление Xc=1/ωC
  35. Действующее значение силы тока Iд=Imax/√2,
  36. Действующее значение напряжения Uд=Umax/√2
  37. Полное сопротивление Z=√(Xc-XL)2+R2

Оптика

  1. Закон преломления света     n21=n2/n1= υ 1/ υ 2
  2. Показатель преломления      n21=sin α/sin γ
  3. Формула тонкой линзы       1/F=1/d + 1/f
  4. Оптическая сила линзы       D=1/F
  5. max интерференции: Δd=kλ,
  6. min интерференции: Δd=(2k+1)λ/2
  7. Диф.решетка             d∙sin φ=k λ

Квантовая физика

  1. Ф-ла Эйнштейна для фотоэффекта  hν=Aвых+Ek, Ek=Uзе
  2. Красная граница фотоэффекта νк = Aвых/h
  3. Импульс фотона P=mc=h/ λ=Е/с

Физика атомного ядра

  1. Закон радиоактивного распада N=N0∙2t/T
  2. Энергия связи атомных ядер

ECB=(Zmp+Nmn-Mя)∙c2

СТО

  1. t=t1/√1-υ2/c2
  2. ℓ=ℓ0∙√1-υ2/c2
  3. υ2=(υ1+υ)/1+ υ1∙υ/c2
  4. Е = mс2

Скачать эти формулы в doc: formuly-po-fizike-5-ege.ru (файл расположен на 5-ege.ru).

Рекомендуем:

Поиск файлов в командной строке (Как сделать)

К сожалению, в Linux, особенно в Ubuntu, поиск файлов с графическим интерфейсом пользователя по умолчанию — не самый удобный способ поиска файлов.

Приложив немного терпения, вы можете быстро и легко находить файлы с помощью командной строки, и ваши параметры для этого действительно эффективны, если вы хотите немного узнать об этом.

Найдите

Простая и быстрая команда называется «найти». Чтобы использовать эту команду в терминале, просто введите:

 $ locate -i searchstring 

Будет произведен поиск всех файлов и каталогов, в названии которых есть «строка поиска», а -i означает, что поиск не чувствителен к регистру (т.е.е. он найдет строку поиска, строку поиска, sEaRcHsTrInG и т. д.).

Результаты получаются мгновенно, потому что система создала базу данных (также известную как индекс), чтобы сообщить вам, где находятся файлы. Единственная проблема заключается в том, что недавно созданные или перемещенные файлы могут быть найдены неправильно до следующего обновления базы данных, и у вас не так много вариантов для поиска.

Принудительное обновление базы данных / индекса выполняется с помощью команды sudo updatedb , и это не занимает много времени.

Пример:

 $ найти -i omgubuntu.desktop 
Найдите

Вам доступна гораздо более мощная команда под названием «найти».

Вы можете указать «найти», где искать, какие критерии использовать при поиске и какие действия предпринять после того, как вы найдете то, что ищете.

Синтаксис «найти»:

 $ find <где начать поиск> <критерии поиска> <действия, которые необходимо предпринять> 

Если вы не добавите никаких параметров, find по умолчанию будет искать в текущем рабочем каталоге (или «. “), не использует никаких критериев поиска (по умолчанию показывает все файлы) и -print (который, несмотря на свое имя, отображает или« печатает »результаты на экране) как единственное действие, которое необходимо предпринять.

Два примера:

 $ sudo find / -type f -mmin -10 

Этот пример найдет (начиная с корневого каталога или / и рекурсивного поиска в подкаталогах) все нормальные файлы ( -тип f означает обычные файлы, без этого он найдет обычные файлы + специальные файлы + каталоги), которые были изменены меньше чем десять минут назад (-mmin -10), а затем отобразить результаты для вас.

Это может быть полезно, если вы знаете, что недавно редактировали файл, но не знаете, куда вы его поместили, или если вам нужно найти файл журнала для программы, в которой произошел сбой.

Вы можете добавить сюда sudo , потому что find не выполняет поиск файлов / каталогов, для которых текущий пользователь не имеет прав, и он будет возвращать сообщения об ошибках, если вы не sudoer — , просто будьте осторожны!

 $ find ~ -iname "* new *" -exec mv -v {} / media / current-projects / \; 

Это найдет все в вашем домашнем каталоге (~) с именем, нечувствительным к регистру (-iname), содержащим new («* new *») и выполнит (-exec) перемещение (mv) результатов ({}) в / media / current-projects / (\; требуется для -exec, чтобы показать конец выполняемой команды).Таким образом, все ваши файлы будут перемещены в одно место. mv -v отображает результаты команды перемещения с (-v) сообщениями erbose.

Еще одно предупреждение с -exec, хотя оно и мощное, при неосторожном использовании вы можете перезаписать весь домашний каталог или весь диск — так что будьте осторожны!

Catfish — это опция графического интерфейса

Для тех из вас, кто просто не может обойтись без графического интерфейса, вы можете найти программу Catfish в репозиториях — это позволяет запускать как locate , так и find из графического интерфейса, но это очень ограничено. в опциях.

Считайте Catfish эквивалентом Windows Search. Если вам нужны все возможности find, вам нужно будет запустить его из командной строки, следуя приведенным выше советам.

Установите Catfish из программного обеспечения Ubuntu

Какой метод поиска файлов вы предпочитаете? Ответьте ниже, и я пришлю его позже $ grep Nixie * . 😉

Главная »Как сделать» Поиск файлов в командной строке (Как сделать)

.

linux — Как я могу рекурсивно найти все файлы в текущей и подпапках на основе соответствия подстановочным знакам?

Переполнение стека

  1. Около
  2. Продукты

  3. Для команд
  1. Переполнение стека
    Общественные вопросы и ответы

  2. Переполнение стека для команд
    Где разработчики и технологи делятся частными знаниями с коллегами

  3. Вакансии
    Программирование и связанные с ним технические возможности карьерного роста

  4. Талант
    Нанимайте технических специалистов и создавайте свой бренд работодателя

  5. Реклама
    Обратитесь к разработчикам и технологам со всего мира

  6. О компании

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *