Как через период найти радиус: Период, радиус и скорость

Содержание

Как найти радиус окружности — Лайфхакер

Выбирайте формулу в зависимости от известных величин.

Через площадь круга

  1. Разделите площадь круга на число пи.
  2. Найдите корень из результата.

Как найти радиус окружности через площадь кругаИллюстрация: Лайфхакер

  • R — искомый радиус окружности.
  • S — площадь круга. Напомним, кругом называют плоскость внутри окружности.
  • π (пи) — константа, равная 3,14.

Сейчас читают
🔥

Через длину окружности

  1. Умножьте число пи на два.
  2. Разделите длину окружности на результат.

Как найти радиус круга через длину окружностиИллюстрация: Лайфхакер

  • R — искомый радиус окружности.
  • P — длина окружности (периметр круга).
  • π (пи) — константа, равная 3,14.

Через диаметр окружности

Если вы вдруг забыли, радиус равняется половине диаметра. Поэтому, если диаметр известен, просто разделите его на два.

Как найти радиус окружности через диаметрИллюстрация: Лайфхакер

  • R — искомый радиус окружности.
  • D — диаметр.

Через диагональ вписанного прямоугольника

Диагональ прямоугольника является диаметром окружности, в которую он вписан. А диаметр, как мы уже вспомнили, в два раза больше радиуса. Поэтому достаточно разделить диагональ на два.

Как вычислить радиус окружности через диагональ вписанного прямоугольникаИллюстрация: Лайфхакер

  • R — искомый радиус окружности.
  • d — диагональ вписанного прямоугольника. Напомним, она делит фигуру на два прямоугольных треугольника и является их гипотенузой — стороной, лежащей напротив прямого угла. Поэтому, если диагональ неизвестна, её можно найти через соседние стороны прямоугольника с помощью теоремы Пифагора.
  • a, b — стороны вписанного прямоугольника.

Через сторону описанного квадрата

Сторона описанного квадрата равна диаметру окружности. А диаметр — повторимся — равен двум радиусам. Поэтому разделите сторону квадрата на два.

Как найти радиус круга через сторону описанного квадратаИллюстрация: Лайфхакер

  • r — искомый радиус окружности.
  • a — сторона описанного квадрата.

Через стороны и площадь вписанного треугольника

  1. Перемножьте три стороны треугольника.
  2. Разделите результат на четыре площади треугольника.

Как найти радиус окружности через стороны и площадь вписанного треугольникаИллюстрация: Лайфхакер

Через площадь и полупериметр описанного треугольника

Разделите площадь описанного треугольника на его полупериметр.

Как найти радиус окружности через площадь и полупериметр описанного треугольникаИллюстрация: Лайфхакер

  • r — искомый радиус окружности.
  • S — площадь треугольника.
  • p — полупериметр треугольника (равен половине от суммы всех сторон).

Через площадь сектора и его центральный угол

  1. Умножьте площадь сектора на 360 градусов.
  2. Разделите результат на произведение пи и центрального угла.
  3. Найдите корень из полученного числа.

Как найти радиус окружности через площадь сектора и его центральный уголИллюстрация: Лайфхакер

  • R — искомый радиус окружности.
  • S — площадь сектора круга.
  • α — центральный угол.
  • π (пи) — константа, равная 3,14.

Через сторону вписанного правильного многоугольника

  1. Разделите 180 градусов на количество сторон многоугольника.
  2. Найдите синус полученного числа.
  3. Умножьте результат на два.
  4. Разделите сторону многоугольника на результат всех предыдущих действий.

Как вычислить радиус круга через сторону вписанного правильного многоугольникаИллюстрация: Лайфхакер

  • R — искомый радиус окружности.
  • a — сторона правильного многоугольника. Напомним, в правильном многоугольнике все стороны равны.
  • N — количество сторон многоугольника. К примеру, если в задаче фигурирует пятиугольник, как на изображении выше, N будет равняться 5.

Читайте также
📐✂️📌

Период обращения | Все Формулы

    \[ \]

Период обращения — Время, за которое тело совершает один оборот, т.е. поворачивается на угол 2 пи, называется периодом обращения

    \[\LARGE T=\frac{2\pi }{\omega }=\frac{1}{n }\]

Сидерические периоды обращения планет Солнечной системы:

Период обращения (меркурий, венера, солнце, земля)

Найдем период обращения:

Если, например, за время t = 4 с тело, двигаясь по окружности, совершило n = 2 оборота, то легко сообразить, что один оборот длился 2 с. Это и есть период обращения. Обозначается он буквой Т и определяется по формуле

    \[\Large T=\frac{1}{n }\]

Найдем частоту обращения:

Если, например, за время t = 4 с тело совершило n = 20 оборотов,то за 1 с оно успевало совершить 5 оборотов. Это число и выражает частоту обращения. Обозначается она греческой буквой V (читается: ню) и определяется по формуле:

    \[\Large \omega =\frac{n}{T}\]

За единицу частоты обращения в СИ принимают частоту обращения, при которой за каждую секунду тело совершает один оборот. Эта единица обозначается так: 1/с или с-1 (читается: секунда в минус первой степени).

В формуле мы использовали :

T — Период обращения

    \[ \omega\]

— Частота обращения

n — Число оборотов

Равномерное движение тела по окружности – FIZI4KA

1. Движением тела по окружности называют движение, траекторией которого является окружность. По окружности движутся, например, конец стрелки часов, точки лопасти вращающейся турбины, вращающегося вала двигателя и др.

При движении по окружности направление скорости непрерывно изменяется. При этом модуль скорости тела может изменяться, а может оставаться неизменным. Движение, при котором изменяется только направление скорости, а её модуль сохраняется постоянным, называется равномерным движением тела по окружности. Под телом в данном случае имеют в виду материальную точку.

2. Движение тела по окружности характеризуется определёнными величинами. К ним относятся, прежде всего, период и частота обращения. Период обращения тела по окружности ​\( T \)​ — время, в течение которого тело совершает один полный оборот. Единица периода — ​\( [\,T\,] \)​ = 1 с.

Частота обращения ​\( (n) \)​ — число полных оборотов тела за одну секунду: ​\( n=N/t \)​. Единица частоты обращения — \( [\,n\,] \) = 1 с-1 = 1 Гц (герц). Один герц — это такая частота, при которой тело совершает один оборот за одну секунду.

Связь между частотой и периодом обращения выражается формулой: ​\( n=1/T \)​.

Пусть некоторое тело, движущееся по окружности, за время ​\( t \)​ переместилось из точки А в точку В. Радиус, соединяющий центр окружности с точкой А, называют радиусом-вектором. При перемещении тела из точки А в точку В радиус-вектор повернётся на угол ​\( \varphi \)​.

Быстроту обращения тела характеризуют угловая и линейная скорости.

Угловая скорость ​\( \omega \)​ — физическая величина, равная отношению угла поворота \( \varphi \) радиуса-вектора к промежутку времени, за которое этот поворот произошел: ​\( \omega=\varphi/t \)​. Единица угловой скорости — радиан в секунду, т.е. ​\( [\,\omega\,] \)​ = 1 рад/с. За время, равное периоду обращения, угол поворота радиуса-вектора равен ​\( 2\pi \)​. Поэтому ​\( \omega=2\pi/T \)​.

Линейная скорость тела ​\( v \)​ — скорость, с которой тело движется вдоль траектории. Линейная скорость при равномерном движении по окружности постоянна по модулю, меняется по направлению и направлена по касательной к траектории.

Линейная скорость равна отношению пути, пройденному телом вдоль траектории, ко времени, за которое этот путь пройден: ​\( \vec{v}=l/t \)​. За один оборот точка проходит путь, равный длине окружности. Поэтому ​\( \vec{v}=2\pi\!R/T \)​. Связь между линейной и угловой скоростью выражается формулой: ​\( v=\omega R \)​.

Из этого равенства следует, что чем дальше от центра окружности расположена точка вращающегося тела, тем больше её линейная скорость.

4. Ускорение тела равно отношению изменения его скорости ко времени, за которое оно произошло. При движении тела по окружности изменяется направление скорости, следовательно, разность скоростей не равна нулю, т.е. тело движется с ускорением. Оно определяется по формуле: ​\( \vec{a}=\frac{\Delta\vec{v}}{t} \)​ и направлено так же, как вектор изменения скорости. Это ускорение называется центростремительным ускорением.

Центростремительное ускорение при равномерном движении тела по окружности — физическая величина, равная отношению квадрата линейной скорости к радиусу окружности: ​\( a=\frac{v^2}{R} \)​. Так как ​\( v=\omega R \)​, то ​\( a=\omega^2R \)​.

При движении тела по окружности его центростремительное ускорение постоянно по модулю и направлено к центру окружности.

ПРИМЕРЫ ЗАДАНИЙ

Часть 1

1. При равномерном движении тела по окружности

1) изменяется только модуль его скорости
2) изменяется только направление его скорости
3) изменяются и модуль, и направление его скорости
4) не изменяется ни модуль, ни направление его скорости

2. Линейная скорость точки 1, находящейся на расстоянии ​\( R_1 \)​ от центра вращающегося колеса, равна ​\( v_1 \)​. Чему равна скорость ​\( v_2 \)​ точки 2, находящейся от центра на расстоянии ​\( R_2=4R_1 \)​?

1) ​\( v_2=v_1 \)​
2) ​\( v_2=2v_1 \)​
3) ​\( v_2=0,25v_1 \)​
4) ​\( v_2=4v_1 \)​

3. Период обращения точки по окружности можно вычислить по формуле:

1) ​\( T=2\pi\!Rv \)​
2) \( T=2\pi\!R/v \)​
3) \( T=2\pi v \)​
4) \( T=2\pi/v \)​

4. Угловая скорость вращения колеса автомобиля вычисляется по формуле:

1) ​\( \omega=a^2R \)​
2) \( \omega=vR^2 \)​
3) \( \omega=vR \)
4) \( \omega=v/R \)​

5. Угловая скорость вращения колеса велосипеда увеличилась в 2 раза. Как изменилась линейная скорость точек обода колеса?

1) увеличилась в 2 раза
2) уменьшилась в 2 раза
3) увеличилась в 4 раза
4) не изменилась

6. Линейная скорость точек лопасти винта вертолёта уменьшилась в 4 раза. Как изменилось их центростремительное ускорение?

1) не изменилось
2) уменьшилось в 16 раз
3) уменьшилось в 4 раза
4) уменьшилось в 2 раза

7. Радиус движения тела по окружности увеличили в 3 раза, не меняя его линейную скорость. Как изменилось центростремительное ускорение тела?

1) увеличилось в 9 раз
2) уменьшилось в 9 раз
3) уменьшилось в 3 раза
4) увеличилось в 3 раза

8. Чему равен период обращения коленчатого вала двигателя, если за 3 мин он совершил 600 000 оборотов?

1) 200 000 с
2) 3300 с
3) 3·10-4 с
4) 5·10-6 с

9. Чему равна частота вращения точки обода колеса, если период обращения составляет 0,05 с?

1) 0,05 Гц
2) 2 Гц
3) 20 Гц
4) 200 Гц

10. Линейная скорость точки обода велосипедного колеса радиусом 35 см равна 5 м/с. Чему равен период обращения колеса?

1) 14 с
2) 7 с
3) 0,07 с
4) 0,44 с

11. Установите соответствие между физическими величинами в левом столбце и формулами для их вычисления в правом столбце. В таблице под номером физической
величины левого столбца запишите соответствующий номер выбранной вами формулы из правого столбца.

ФИЗИЧЕСКАЯ ВЕЛИЧИНА
А) линейная скорость
Б) угловая скорость
В) частота обращения

ФОРМУЛА
1) ​\( 1/T \)​
2) ​\( v^2/R \)​
3) ​\( v/R \)​
4) ​\( \omega R \)​
5) ​\( 1/n \)​

12. Период обращения колеса увеличился. Как изменились угловая и линейная скорости точки обода колеса и её центростремительное ускорение. Установите соответствие между физическими величинами в левом столбце и характером их изменения в правом столбце.
В таблице под номером физической величины левого столбца запишите соответствующий номер выбранного вами элемента правого столбца.

ФИЗИЧЕСКАЯ ВЕЛИЧИНА
A) угловая скорость
Б) линейная скорость
B) центростремительное ускорение

ХАРАКТЕР ИЗМЕНЕНИЯ ВЕЛИЧИНЫ
1) увеличилась
2) уменьшилась
3) не изменилась

Часть 2

13. Какой путь пройдёт точка обода колеса за 10 с, если частота обращения колеса составляет 8 Гц, а радиус колеса 5 м?

Ответы

Равномерное движение тела по окружности

5 (100%) 1 vote

Радиус окружности — что такое, формула, как найти ⚪

Основные понятия

Прежде чем погружаться в последовательность расчетов, важно понять разницу между понятиями.

Окружность — замкнутая плоская кривая, все точки которой равноудалены от центра, которая лежит в той же плоскости. Если говорить проще, то это замкнутая линия, как, например, обруч и кольцо.

Круг — множество точек на плоскости, которые удалены от центра на расстоянии равном радиусу. Иначе говоря, плоская фигура, ограниченная окружностью, как мяч и блюдце.

Радиус — это отрезок, который соединяет центр окружности и любую точку на ней. Общепринятое обозначение радиуса — латинская буква R.

Формула радиуса окружности

Определить способ вычисления проще, отталкиваясь от исходных данных. Далее рассмотрим девять формул разной степени сложности.

Если известна площадь круга

R = √ S : π, где S — площадь круга, π — это константа, которая выражает отношение длины окружности к диаметру, она всегда равна 3,14.

Если известна длина

R = P : 2 * π, где P — длина (периметр круга).

Если известен диаметр окружности

R = D : 2, где D — диаметр.

Диаметр — отрезок, который соединяет две точки окружности и проходит через центр. Радиус всегда равен половине диаметра.

Если известна диагональ вписанного прямоугольника

R = d : 2, где d — диагональ.

Диагональ вписанного прямоугольник делит фигуру на два прямоугольных треугольника и является их гипотенузой — стороной, лежащей напротив прямого угла. Если диагональ неизвестна, теорема Пифагора поможет её вычислить:

d = √ a2 + b2, где a, b — стороны вписанного прямоугольника.

Если известна сторона описанного квадрата

R = a : 2, где a — сторона.

Сторона описанного квадрата равна диаметру окружности.

Если известны стороны и площадь вписанного треугольника

R = (a * b * c) : (4 * S), где a, b, с — стороны, S — площадь треугольника.

Если известна площадь и полупериметр описанного треугольника

R = S : p, где S — площадь треугольника, p — полупериметр треугольника.

Полупериметр треугольника — это сумма длин всех его сторон, деленная на два.

Если известна площадь сектора и его центральный угол

R = √ (360° * S) : (π * α), где S — площадь сектора круга, α — центральный угол.

Площадь сектора круга — это часть S всей фигуры, ограниченной окружностью с радиусом.

Если известна сторона вписанного правильного многоугольника

R = a : (2 * sin (180 : N)), где a — сторона правильного многоугольника, N — количество сторон.

В правильном многоугольнике все стороны равны.

Скачать онлайн таблицу

У каждой геометрической фигуры много формул — запомнить все сразу бывает действительно сложно. В этом деле поможет регулярное решение задач и частый просмотр формул. Можно распечатать эту таблицу и использовать, как закладку в тетрадке или учебнике, и обращаться к ней по необходимости.

Чтобы ребенок еще лучше учился в школе, запишите его на уроки математики в детскую школу Skysmart. Вместо скучных учебников ученики проходят интерактивные задания с автоматической проверкой, рисуют вместе с учителем на онлайн-доске и задают вопросы, которые бывает неловко спросить перед всем классом.

 

Период и частота обращения | Физика

Равномерное движение по окружности характеризуют периодом и частотой обращения.

Период обращения — это время, за которое совершается один оборот.

Если, например, за время t=4 с тело, двигаясь по окружности, совершило n = 2 оборота, то легко сообразить, что один оборот длился 2 с. Это и есть период обращения. Обозначается он буквой T и определяется по формуле
Формула периода обращения

Итак, чтобы найти период обращения, надо время, за которое совершено n оборотов, разделить на число оборотов.

Другой характеристикой равномерного движения по окружности является частота обращения.

Частота обращения — это число оборотов, совершаемых за 1 с. Если, например, за время t = 2 с тело совершило n = 10 оборотов, то легко сообразить, что за 1 с оно успевало совершить 5 оборотов. Это число и выражает частоту обращения. Обозначается она греческой буквой ν (читается: ню) и определяется по формуле
Формула частоты обращения

Итак, чтобы найти частоту обращения, надо число оборотов разделить на время, в течение которого они произошли.

За единицу частоты обращения в СИ принимают частоту обращения, при которой за каждую секунду тело совершает один оборот. Эта единица обозначается так: 1/с или с-1 (читается: секунда в минус первой степени). Раньше эту единицу называли «оборот в секунду», но теперь это название считается устаревшим.

Сравнивая формулы (6.1) и (6.2), можно заметить, что период и частота — величины взаимно обратные. Поэтому
Отношение периода и частоты обращения

Формулы (6.1) и (6.3) позволяют найти период обращения T, если известны число n и время оборотов t или частота обращения ν. Однако его можно найти и в том случае, когда ни одна из этих величин неизвестна. Вместо них достаточно знать скорость тела v и радиус окружности r, по которой оно движется. Для вывода новой формулы вспомним, что период обращения — это время, за которое тело совершает один оборот, т. е. проходит путь, равный длине окружности (lокр = 2πr, где π≈3,14— число «пи», известное из курса математики). Но мы знаем, что при равномерном движении время находится делением пройденного пути на скорость движения. Таким образом,
Период обращения, выраженный через длину окружности

Итак, чтобы найти период обращения тела, надо длину окружности, по которой оно движется, разделить на скорость его движения.

Видео, не по теме но интересно

1. Что такое период обращения? 2. Как можно найти период обращения, зная время и число оборотов? 3. Что такое частота обращения? 4. Как обозначается единица частоты? 5. Как можно найти частоту обращения, зная время и число оборотов? 6. Как связаны между собой период и частота обращения? 7. Как можно найти период обращения, зная радиус окружности и скорость движения тела?

Движение по окружности. Уравнение движения по окружности. Угловая скорость. Нормальное = центростремительное ускорение. Период, частота обращения (вращения). Связь линейной и угловой скорости







Движение по окружности.

Положение точки А, движущейся по окружности с постоянной по модулю скоростью v в любой момент времени t определяется углом φ между осью OX и радиус-ветором  :

Уравнение движения по окружности. Угловая скорость. Нормальное = центростремительное ускорение. Период, частота обращения (вращения). Связь линейной и угловой скорости:

Угловая скорость [ω] = 1 рад/с = 1 с-1это: Отношение углового перемещения Δφ за промежуток времени Δt к этому промежутку:

Кинематическое уравнение движения тела по окружности с постоянной по модулю скоростью : 

    • где: φ — угол, ω — угловая скорость

Нормальное (центростремительное) ускорение:   характеризует быстроту изменения вектора линейной скорости. Вектор  всегда направлен к центру окружности, выражается так:

Период обращения (вращения) [Т] = 1 с это: Время одного оборота. Если точка совершает N обращений за время t, то:

  • Период обращения [Т] = 1 с это: Время одн

ФИЗИКА: Задачи на Движение тела по окружности

Задачи на Движение тела по окружности с решениями

Формулы, используемые на уроках «Задачи на Движение тела по окружности».


ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ


Задача № 1.
 Какова линейная скорость тела, движущегося по окружности радиусом 40 м с ускорением 2,5 м/с2 ?


Задача № 2.
 С какой наибольшей скоростью может двигаться автомобиль массой 1 т на повороте радиусом 100 м, чтобы его не «занесло», если максимальная сила трения 4 кН?


Задача № 3.
 Вентилятор вращается с постоянной скоростью и за две минуты совершает 2400 оборотов. Определите частоту вращения вентилятора, период обращения и линейную скорость точки, расположенной на краю лопасти вентилятора на расстоянии 10 см от оси вращения.


Задача № 4.
 Во сколько раз линейная скорость точки обода колеса радиусом 8 см больше линейной скорости точки, расположенной на 3 см ближе к оси вращения колеса?


Задача № 5.
 Велосипедист ехал со скоростью 25,2 км/ч. Сколько оборотов совершило колесо диаметром 70 см за 10 мин?


Задача № 6.
 Минутная стрелка часов в 1,5 раза длиннее часовой. Определите, во сколько раз линейная скорость конца часовой стрелки меньше, чем линейная скорость конца минутной стрелки.


Задача № 7.
 Автомобиль движется по закруглению дороги, радиус которой равен 20 м. Определите скорость автомобиля, если центростремительное ускорение равно 5 м/с2.


Задача № 8.
 Шкив радиусом 30 см имеет частоту вращения 120 об/мин. Определите частоту, период обращения, угловую скорость шкива и центростремительное ускорение точек шкива, наиболее удаленных от оси вращения.


Задача № 9.
 Для точек земной поверхности на широте Санкт-Петербурга (60°) определите линейную скорость и ускорение, испытываемое ими вследствие суточного вращения Земли. Радиус Земли считайте равным 6370 км.


Задача № 10.
  ОГЭ
 Точка движется равномерно по окружности. Как изменится её центростремительное ускорение, если скорость возрастёт вдвое, а радиус окружности вдвое уменьшится?


Задача № 11.
   ЕГЭ
 Линейная скорость точек обода вращающегося диска v1 = 3 м/с, а точек, находящихся на l = 10 см ближе к оси вращения, v2 = 2 м/с. Найти частоту вращения диска.


Краткая теория для решения Задачи на Движение тела по окружности.

ЗАДАЧИ на Движение тела по окружности

 


Это конспект по теме «ЗАДАЧИ на Движение тела по окружности». Выберите дальнейшие действия:

 

2 ???

Для этого нам нужно заполнить квадрат по каждой переменной. Помните, что процесс заполнения квадрата требует от нас использования коэффициента при члене первой степени. Для ??? х ??? это ??? 2x ??? так что коэффициент ??? 2 ???; для тебя??? это ??? — 2г ??? так коэффициент ??? — 2 ???; для ??? z ??? это ??? — 6z ??? так что коэффициент ??? — 6 ???. Завершение квадрата говорит нам, что мы разделим каждый из этих коэффициентов на «2», а затем возьмем полученный результат и возведем его в квадрат.2 = 25 ???

??? r = 5 ???

Подводя итог нашим выводам, можно сказать, что сфера имеет центр ??? (- 1,1,3) ??? и радиус ??? r = 5 ???.

.

Определение радиуса круга и калькулятор

Определение радиуса круга и калькулятор — Math Open Reference

1. Линия от центра круга до точки на окружности.
2. Расстояние от центра круга до точки на окружности.

Попробуйте это Перетащите оранжевую точку. Синяя линия всегда остается радиусом круга.

Радиус круга — это длина линии от центра до любой точки на его крае.Форма множественного числа — радиусы (произносится как «луч-ди-глаз»).
На рисунке выше перетащите оранжевую точку и убедитесь, что радиус всегда постоянен в любой точке круга.

Иногда слово «радиус» используется для обозначения самой линии. В этом смысле вы можете увидеть «нарисовать радиус круга».
В более позднем смысле, это длина линии, поэтому ее называют «радиус круга 1,7 сантиметра».

Если известен диаметр

Учитывая диаметр круга, радиус просто равен половине диаметра:

где:
D — диаметр окружности

Если вы знаете окружность

Если вам известна длина окружности, радиус можно найти по формуле
, где:
C — длина окружности
π — Пи, приблизительно 3.142

Если вы знаете район

Если вам известна площадь круга, радиус можно найти по формуле
, где:
A — площадь круга
π — Пи, приблизительно 3,142

Калькулятор

Воспользуйтесь калькулятором выше, чтобы вычислить свойства круга.

Введите любое одно значение, и остальные три будут рассчитаны.
Например: введите радиус и нажмите «Рассчитать». Будут рассчитаны площадь, диаметр и окружность.

Точно так же, если вы войдете в область, будет вычислен радиус, необходимый для получения этой области, а также диаметр и окружность.

Сопутствующие товары

Диаметр Ширина круга. Диаметр в два раза больше радиуса.
Увидеть диаметр круга

Окружность
Окружность — это расстояние по краю круга. Видеть
Окружность круга подробнее.

Что попробовать

  1. На рисунке выше нажмите «Сброс» и перетащите оранжевую точку.Обратите внимание, что радиус имеет одинаковую длину в любой точке круга.
  2. Щелкните «Показать диаметр». Перетащите любую оранжевую точку на концах линии диаметра. Обратите внимание, что радиус всегда равен половине диаметра.
  3. Снимите флажок «фиксированный размер». Повторите описанное выше и обратите внимание, что радиус всегда равен половине диаметра, независимо от размера круга.

Другие темы кружка

Общие

Уравнения окружности

Углы по окружности

Дуги

(C) Открытый справочник по математике, 2011 г.
Все права защищены.

,

Почему атомный радиус уменьшается с течением времени?

Химия

Наука
  • Анатомия и физиология

  • астрономия

  • астрофизика

  • Биология

  • Химия

  • наука о планете Земля

  • Наука об окружающей среде

  • Органическая химия

  • физика

.

Круг с центром (0, 0) проходит через точку (5, 12). Как найти радиус круга?

тригонометрия и алгебра

Наука
  • Анатомия и физиология

  • астрономия

  • астрофизика

  • Биология

  • Химия

  • наука о планете Земля

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *