Измерительные трансформаторы: Измерительные трансформаторы тока и напряжения, назначение, принцип работы

Содержание

Измерительные трансформаторы — Знаешь как

Измерительные трансформаторыВ цепях высокого напряжения для безопасности обслуживания измерительных приборов, а также там, где надо расширить их пределы измерений, применяются специальные измерительны е трансформаторы,

На рис. 9-22 показана схема включения электроизмерительных приборов с измерительными трансформаторами.

Рис. 9-22. Включение измерительных трансформаторов и приборов

Все параллельные измерительные цепи ваттметров, счетчиков, вольтметры и др. включаются на вторичную обмотку трансформатора напряжения 1, первичная обмотка которого приключена к питающей, сети. Трансформатор напряжения работает аналогично силовым трансформаторам рассмотренным ранее. Вторичная обмотка его рассчитана на 100 в. Трансформатор нельзя перегружать; выше его номинальной мощности, так как его коэффициент трансформации ƦU = U1 : U2 = ɯ1 : ɯ2 остается постоянным только при этом условии. Тогда первичное напряжение

U1 = ƦUU2

измеряется без ошибка. Внешний вид трансформатора напряжения показан на рис. 9-23.

Измерительный трансформатор напряжения

Рис. 9-23. Измерительный трансформатор напряжения.

Первичная обмотка трансформатора тока (1, рис. 9-24) включается в рассечку линии как амперметр и имеет малое число витков, иногда один-два, или является частью шино-провода (рис. 9-24). Вторичная обмотка его (2, рис. 9-22, 9-24) имеет большее число витков, рассчитывается на 5 а и включается последовательно с обмотками тока ваттметров, счетчиков, амперметрами и др. Как было выяснено ранее , коэффициент трансформации.

Если сопротивление соединительных проводов и подключенных обмоток измерительных приборов не выше допустимой для трансформатора величины, то Ʀ = const.

Тогда

I1 = Ʀ1I2

На измерительных приборах, предназначенных для постоянной работы с измерительными трансформаторами, что написано на приборах, на шкале показаны значения тока, напряжения, мощности и других величин первичной цепи.

Измерительный трансформатор тока

Рис. 9-24. Измерительный трансформатор тока.

Когда измерительные трансформаторы включаются в цепь высокого напряжения, их вторичные обмотки и корпус заземляются (3, рис. 922) для безопасности, на случай повреждения изоляции обмоток. Для защиты от коротких замыканий трансформатор напряжения защищается предохранителями. В цепи трансформатора тока, наоборот, предохранители ставить нельзя по следующим причинам.

Измерительные клещи Измерительные клещи

Рис. 9-25. Измерительные клещи.

Намагничивающая сила трансформатора Fx ничтожно мала (рис. 9-8), а н. с. первичной обмотки Fx благодаря включению ее последовательно с потребителем остается постоянной при неизменном токе первичной цепи и не зависит от н. с. вторичной обмотки F2. Когда сопротивление вторичной цепи увеличивается, а ток I2 падает, то F2 уменьшается, a Fx растет. Если разомкнуть вторичную цепь, то F2 обращается в нуль, a Fx возрастает до величины F1. Магнитный поток трансформатора, а с ним и э. д. с. вторичной,обмотки Е2 недопустимо возрастают, что вызывает перегрев сердечника трансформатора, опасность пробоя изоляции обмотки и поражений током обслуживающего персонала.

На рис. 9-25 показаны измерительные клещи.  Это — трансформатор тока с разъемным сердечником и с амперметром, подключенным к вторичной обмотке. Первичной обмоткой служит провод, ток в котором измеряют.

 

Статья на тему Измерительные трансформаторы

Измерительные трансформаторы напряжения. Устройство и работа

Измерительные трансформаторы напряжения предназначены для возможности измерения высокого напряжения электроустановок переменного тока путем снижения этого напряжения для подачи на защитные реле, приборы измерения и системы автоматики.

При отсутствии измерительных трансформаторов понадобилось бы применять приборы и реле с большими габаритными размерами, так как необходима надежная изоляция от высокого напряжения, которая увеличивает размеры устройств. Изготовить такое оборудование практически невозможно, так как напряжения линий могут достигать величины 110 киловольт.

Измерительные трансформаторы для замера напряжения дают возможность применять стандартные обычные приборы для измерений электрических параметров, при этом увеличивая их диапазон измерения. Защитные реле, подключаемые через эти трансформаторы, могут применяться обычного исполнения.

Гальваническая развязка, которую обеспечивают трансформаторы путем отделения измерительной цепи от высокого напряжения, позволяет создать необходимый уровень безопасности обслуживающего персонала.

Такие трансформаторы нашли свою популярность в устройствах высокого напряжения. От их качественного функционирования зависит степень точности учета расхода электрической энергии и электрических измерений, а также автоматических аварийных систем и защитных реле.

Устройство и работа

Измерительные трансформаторы устроены аналогично понижающим силовым трансформаторам, и состоят из металлического сердечника, выполненного из электротехнической листовой стали, первичной и вторичной обмоток. Трансформаторы могут оснащаться несколькими вторичными обмотками, в зависимости от конструкции и предъявляемых требований к трансформатору.

К первичной обмотке подключается высокое напряжение, а с вторичной обмотки снимается напряжение измерительными устройствами. Коэффициент трансформации такого устройства равен отношению первичного высокого напряжения к номинальному значению вторичного напряжения.

Если бы трансформатор функционировал абсолютно без потерь и с абсолютной точностью, то оба напряжения на обеих обмотках совпадали бы по фазе, и коэффициент трансформации был бы равен единице. Однако на практике коэффициент трансформации всегда меньше единицы, так как всегда имеются некоторые потери энергии при работе трансформатора.

Погрешность измерительного трансформатора зависит от:
  • Величины вторичной нагрузки.
  • Магнитной проницаемости сердечника.
  • Устройства магнитопровода.

Существуют методы снижения погрешности по напряжению путем снижения числа витков первичной обмотки, добавления различных компенсирующих обмоток.

Число витков первичной обмотки намного больше, чем вторичной. Измеряемое напряжение подается на первичную обмотку, к вторичной обмотке подключают различные измерительные приборы: вольтметры, ваттметры, фазометры и т.д.

Трансформаторы напряжения эксплуатируются в режимах, подобных холостому ходу. Это объясняется тем, что подключенный к вторичной обмотке прибор, например, вольтметр, обладает большим сопротивлением, и ток, протекающий по этой обмотке, очень незначителен.

Особенности подключения

Трансформаторы могут устанавливаться как на шинах подстанции, так и на каждом отдельном объекте. Перед электрическим монтажом необходимо осмотреть трансформатор на предмет необходимого уровня масла для масляных моделей, исправности армированных швов, целостности изоляции.

При проведении монтажа обе обмотки трансформатора должны быть завернуты в изоляцию, так как случайное касание выводов вторичной обмотки с проводами, находящимися под напряжением, может привести к возникновению на первичной обмотке опасного для жизни напряжения.

Для безопасности вторичную обмотку перед подключением заземляют. Это предотвращает возможность попадания высокого напряжения в цепи низкого напряжения при возможном пробивании изоляции.

Необходимо учитывать, что если к вторичной цепи подключить слишком много измерительных и других приборов, то величина тока вторичной цепи значительно увеличится, так же как и погрешность измерения. Вследствие этого необходимо следить, чтобы общая мощность присоединенных приборов не превзошла наибольший допустимый предел мощности, определенный инструкцией или паспортом трансформатора.

При превышении общей мощности допустимой величины целесообразно подключить дополнительный трансформатор, и переключить на него несколько приборов от первого трансформатора.

Трансформаторы должны иметь защиту от короткого замыкания, в противном случае при коротком замыкании обмотки перегреются, и изоляция будет повреждена. Для этого в цепях всех незаземленных проводников подключают электрические автоматы, а также рубильники (для образования видимого разрыва цепи при ее отключении). Первичную обмотку трансформатора чаще всего защищают путем установки предохранителей.

Разновидности

Измерительные трансформаторы классифицируются по нескольким признакам и параметрам. Рассмотрим основные из таких признаков и параметров.

По числу фаз:
  • Однофазные.
  • Трехфазные.
По количеству обмоток:
  • Трехобмоточные.
  • Двухобмоточные.
По методу охлаждения:
  • С воздушным охлаждением (сухие).
  • С масляным охлаждением.
По месту монтажа:
  • Внутренние (для монтажа внутри помещений).
  • Внешние (для установки снаружи помещений).
  • Для распределительных устройств.
По классам точности: 0,2; 0,5; 1; 3.
Измерительные трансформаторы с несколькими обмотками

К таким трансформаторам есть возможность подключения сигнализирующих устройств, которые подают сигнал о замыкании цепи с изолированной нейтралью, а также защитных устройств, защищающих от замыканий в цепи с заземленной нейтралью.

На рисунке «а» изображена схема с 2-мя вторичными обмотками. На рисунке «б» показана схема 3-х трехфазных трансформаторов. В них первичные и основные вторичные обмотки соединены по схеме звезды, а нейтральный проводник соединен с землей. На приборы измерения могут подключаться три фазы и ноль от основных вторичных обмоток. Вспомогательные вторичные обмотки соединены «треугольником». От этих обмоток поступает сумма напряжений фаз на дополнительные устройства: сигнальные, защитные и другие.

Основные схемы подключения

Наиболее простая схема с применением однофазного трансформатора изображена на рисунке 4 «а». Она используется в панелях запуска электродвигателей, на пунктах переключения напряжением до 10 киловольт, для подключения реле напряжения и вольтметра.

Схема по рисунку 4 «б» используется для неразветвленных цепей в электроустановках от 0,4 до 10 киловольт. Это дает возможность установить заземление вторичных цепей возле трансформаторов.

Во вторичной цепи, изображенной на рисунке 4 «в», подключен двухполюсный автомат вместо предохранителей. При срабатывании автомата его контакт замкнет сигнальную цепь «обрыв цепи». Вторичные обмотки заземлены в фазе В на щите. Рубильником можно выключить вторичную цепь, и обеспечить при этом видимый разрыв. Такая схема используется в электроустановках от 6 до 35 киловольт при разветвленных вторичных цепях.

На рисунке 4 «г» измерительные трансформаторы подключены схемой «треугольник-звезда». Это позволяет создать вторичное напряжение, необходимое для приборов автоматической регулировки возбуждения компенсаторов. Для надежности функционирования этих приборов предохранители во вторичных цепях не подключают.

Похожие темы:

классификация и устройство преобразователей напряжения и тока

Применение измерительных трансформаторов токаИзмерительный трансформатор — электромагнитное устройство, установленное в контролируемую электрическую цепь и предназначенное для измерения и наблюдения за показаниями напряжения, тока или фазы. В основном применяется в случаях, когда невозможно произвести измерения электрических показателей непосредственным подключением измерительных приборов. Рассчитывают их таким образом, чтобы обеспечить минимальное влияние на измеряемую цепь.

Устройство электрических аппаратов

Устройство электрических трансформаторов токаОсновным назначением измерительных трансформаторов является понижение первичного тока до значения, позволяющего осуществить подключение электрических измерительных приборов, защитных систем и т. д.

Кроме этого, они обеспечивают гальваническую развязку между высоким и низким напряжением, позволяющую безопасно работать обслуживающему персоналу. Состоит этот аппарат из следующих составляющих:

  • первичной обмотки с рассчитанным количеством витков;
  • вторичной обмотки;
  • изготовленного из специальной стали сердечника.

Электрические провода первичной обмотки подключают последовательно к эксплуатируемой цепи, в которой проводят проверку показаний. К проводам вторичной обмотки подключают измерительные приборы, комплекс автоматических устройств для защиты цепи от повреждений, различные системы автоматики и т. д.

Чтобы не происходило коротких замыканий между обмотками и витками в них, обязательно наличие изоляции. А также проводят обязательное заземление вторичной обмотки на случай замыкания между катушками.

Классификация агрегатов

Все аппараты разделяют на измерительные трансформаторы тока и напряжения. Причем токовые устройства существуют двух видов: для постоянного и переменного тока. По методу трансформации их разделяют на преобразователи тока в ток, тока в напряжение и тока в не относящуюся к электричеству функцию (например, световой поток).

Виды измерительных трансформаторов тока и напряжения

При этом трансформаторы разделяют на аналоговые и дискретные (в зависимости от метода получения информации). Все измерительные аппараты классифицируются по следующим признакам:

  • по виду установки;
  • по ее способу;
  • по числу коэффициентов трансформации;
  • по количеству ступеней преобразования;
  • по виду первичной обмотки;
  • по роду изоляции;
  • по принципу трансформации тока.

Эти агрегаты предназначены для работы под открытым небом, в закрытых помещениях. Они бывают непосредственно встроены в электрооборудование и специальные установки (на судах, в шахтах, электровозах и др.).

Непосредственно их устанавливают в проемах стен, потолков или в специальных металлических конструкциях, если они предназначены для использования в качестве ввода. Опорные измерительные преобразователи монтируются на ровную плоскость, а встроенные трансформаторы устанавливают непосредственно в плоскость электрооборудования.

Существуют разновидности аппаратов как с одним коэффициентом трансформации, так и с несколькими, которые получают методом изменения количества витков первичной или вторичной обмотки.

Различают их и по способу изготовления изоляции, которая бывает твердой, вязкой и комбинированной. Все измерительные трансформаторы делятся на электромагнитные и оптико-электронные, в зависимости от способа преобразования тока.

Преобразователи для измерения напряжения

Каскадные трансформаторы токаИспользуются такие аппараты для понижения напряжения в первичном контуре от 6 кВ и выше, до 100 В во вторичной обмотке. Они способны преобразовывать эти показания в первичном контуре в стандартный электрический ток и обеспечивать защиту подключенных электроприборов от перегрузок.

Кроме этого, такие агрегаты обеспечивают обслуживающему персоналу безопасную работу. Эта техника взаимодействует с переменным и постоянным током, а по своему функционированию она приближается к режиму холостого хода, так как не происходит передачи мощности. По своим функциональным действиям эти аппараты практически ничем не отличаются от силовых трансформаторов. Различают несколько их видов:

  1. Заземляемый аппарат — представляет собой преобразователь с одной фазой, находящейся под напряжением и заземленным одним концом первичного контура. В трехфазных агрегатах заземляется нейтральный провод первичной катушки.
  2. Трансформаторы без заземления — все части первичной катушки, в том числе и контакты, изолированы от соединения с землей до рекомендуемого уровня, соответствующего классу напряжения.
  3. Емкостные аппараты — в конструкцию включены конденсаторы, обеспечивающие понижение напряжения.
  4. Каскадные трансформаторы — первичный контур обладает несколькими частями, соединяющимися со вторичным контуром связующими и выравнивающими обмотками.

А также существуют аппараты как с одним вторичным контуром, так и с двумя: основным и дополнительным.

Трансформаторы тока

Этими измерительными преобразователями выполняют ряд особых функций. К ним подключают измерительные приборы, способные снимать показания в различных режимах.

Монтаж измерительных трансформаторов тока

Основными функциями агрегата являются:

  1. Преобразование переменного тока к значениям в 1 или 5 А.
  2. В обычном режиме предохраняет вторичный контур от высоковольтной первичной обмотки.
  3. Работа осуществляется в защитном режиме вторичного контура от перегрузок.

Помимо этого, такие трансформаторы имеют в своей конструкции выпрямители, а вторичные цепи обязательно заземляются в одной точке. Конструктивные особенности этого агрегата запрещают разрывать вторичную цепь, находящуюся под напряжением, так как в этот момент происходит нарушение изоляции, сердечник нагревается и происходит нарушение нормального режима работы.

Перед установкой и запуском измерительного преобразователя, обязательно проводят его проверку. Производят диагностику его работы на всех режимах и проверяют состояние изоляции. В условиях длительной эксплуатации периодически проводят техническое обслуживание агрегатов, что позволяет избежать непредвиденных поломок.

Измерительный трансформатор тока. Что это и зачем он нужен?

Введение

Одновременно с входом в нашу жизнь электричества остро встали некоторые вопросы, тесно связанные с его эксплуатацией. Одним из них стал вопрос организации токовой защиты цепи. Появилась необходимость в разделении силовых цепей и цепей защиты, а также в создании и организации сложных защит, которые невозможно собрать,  используя аппараты только в силовых цепях.

Дело в том, что защита электропроводки в обычных квартирах сводится к применению автоматических выключателей или предохранителей, а защита от поражения электрическим током — к применению УЗО или АВДТ. Вышеперечисленные аппараты встраиваются непосредственно в защищаемую цепь и, как правило, не имеют дистанционных органов управления.

В сетях с более высокими мощностями и токами, где уже требуется релейная защита, работающая по определенным алгоритмам, (например, АПВ — автоматическое повторное включение) требуется организовать питание целого ряда устройств и реле цепей защиты. Для этого применяется трансформатор тока — электротехническое устройство, предназначенное для уменьшения первичного тока (тока измеряемой рабочей цепи) до значений, наиболее удобных для измерительных приборов и реле, находящихся во вторничной цепи. К нему подключаются следующие устройства: амперметры, преобразователи тока, обмотки токовых реле, счетчиков, ваттметров и другие.

Технические характеристики и режим работы

Основным параметром трансформатора тока является его коэффициент трансформации, то есть кратность первичного тока ко вторичному. Ряд первичных токов включает следующие значения: 5; 10; 15; 20; 30; 40; 50; 75; 80; 100; 150; 200; 300; 400; 500; 600; 750; 800; 1000; 1200; 1500; 2000; 3000; 4000; 5000 (А).

С целью унификации и стандартизации всего выпускаемого измерительного и защитного оборудования существует стандартная величина вторичного тока — это 5 А. Соответственно, коэффициент трансформации определяется так: Kт= 400/5= 80.

Трансформатор тока работает в режиме близкому к короткому замыканию, т.к. сумма сопротивлений последовательно подключенных приборов защиты не превышает несколько десятых долей Ом. 

Не менее важной задачей, которую как раз и решает трансформатор тока (ТТ) является отделение вторичных цепей измерения и защиты от силовых цепей высокого напряжения и, следовательно, обеспечение безопасности работы с устройствами измерения и защиты.

Применение

Кроме основных задач, описанных выше, трансформаторы тока применяются при косвенном подключении счетчиков электрической энергии. Это обусловлено тем, что счетчики при прямом включении в сеть с большими рабочими токами выйдут из строя. Поэтому возникает необходимость в снижении измеряемых рабочих токов до приемлемых величин, например,  до стандартных 5 Ампер.

Современный рынок предлагает решения совместимые как с  проводами, так и с шинами.

Важное замечание

Размыкание вторичной обмотки трансформатора тока не допускается при протекании рабочих токов в первичной обмотке. При разомкнутой вторичной цепи ТТ ЭДС может достигать 1000 В и более, что крайне опасно для обслуживающего персонала. Поэтому при замене  аппарата, включенного в цепь трансформатора тока, необходимо сначала замкнуть накоротко (шунтировать) измерительную обмотку ТТ, а затем производить отключение вышедшего из строя прибора. Поэтому измерительную (вторичную) обмотку трансформатора тока необходимо заземлить для исключения появления высокого напряжения на выводах И1 И2.

Трансформаторы тока выполняют не только важные задачи  отделения защитных цепей от силовых и унификации оборудования, но и применяются при подключении счетчиков электроэнергии в сетях с большими рабочими токами, где прямое включение невозможно.

Трансформаторы тока в переходных режимах / Статьи и обзоры / Элек.ру

Измерительные трансформаторы являются неотъемлемой частью любой энергоустановки. С помощью измерительных трансформаторов осуществляется учет электроэнергии, измерения параметров сети, они являются первичными источниками сигнала для релейных защит, устройств телемеханики и автоматики. Мы уже затрагивали тему выбора трансформаторов тока в целях учета электрической энергии, сегодня уделим внимание общим принципам их классификации и конструкции, а также нормативно-технической базе в части обеспечения функционала релейных защит.

В первую очередь нужно отметить, что важным аспектом работы современных микропроцессорных релейных защит является их быстродействие, которое должно обеспечиваться не только собственными возможностями программно-технических комплексов устройств РЗА, но и возможностями первичных аналоговых преобразователей, таких как трансформаторы тока.

Токовые цепи релейных защит, как правило, питаются таким же образом, как приборы учета и устройства измерения — источником аналогового сигнала для них являются трансформаторы тока. Отличие состоит в условиях работы: измерительные приборы работают в классе точности при фактическом первичном токе, не превышающем номинального, тогда как устройства релейной защиты рассчитаны на работу в режимах короткого замыкания или перегрузки, когда фактический ток значительно превышает номинальный ток трансформатора. К тому же, такие режимы являются переходными — в составе первичного тока появляются свободные апериодические составляющие.

Как известно, работа трансформатора тока характеризуется уравнением намагничивающих сил: I1 • w1 + I2 • w2 = Iнам • w1

Где:

I1 ток в первичной обмотке;
w1количество витков первичной обмотки;
I2 ток во вторичной обмотке;
w2 количество витков вторичной обмотки;
Iнамток намагничивания.

Из приведенного выражения видно, что первичный ток трансформируется во вторичную обмотку не полностью — часть его уходит на формирование тока намагничивания, создающего рабочий магнитный поток в сердечнике ТТ (поток, формирующий ЭДС во вторичной обмотке, под воздествием которой там и протекает ток). Это происходит как в установившихся, так и в переходных режимах. В переходном процессе каждая составляющая, протекая по первичной обмотке трансформатора тока, делится на две части: одна трансформируется во вторичную обмотку, а вторая идет на намагничивание сердечника. В связи с тем, что скорость изменения апериодической составляющей гораздо меньше скорости изменения переменной составляющей, а периодическая составляющая плохо трансформируется во вторичную цепь и большая ее часть идет на насыщение сердечника. Это, в свою очередь, ухудшает трансформацию периодической составляющей во вторичную цепь и также повышает долю этого тока в токе намагничивания. Возникает так называемое, «подмагничивающее действие». Учитывая, что в сердечниках ТТ во многих случаях имеет место остаточная магнитная индукция, которая сохраняется в течение длительного времени (дни, недели и даже месяцы), наихудший режим работы возникает в случае, если остаточный магнитный поток в сердечнике совпадает по направлению с магнитным потоком, создаваемым апериодической составляющей тока намагничивания.

В результате трансформатор начинает работать в режиме насыщения, т.е. когда ток намагничивания растет значительно быстрее рабочего магнитного потока.

Все вышеописанное вносит искажения в величину и фазу вторичного тока, создавая тем самым погрешность (именно величина тока намагничивания определяет точность работы ТТ). И, несмотря на то, что в релейных защитах точность траснформации имеет гораздо меньшее значение, чем в измерительной технике, погрешности могут быть настолько велики, что могут вызвать существенную задержку срабатывания устройств РЗА, а также их ложное действие или отказ. Это особенно актуально для дифференциальных защит, т.к. вместе с токами намагничивания ТТ возрастают и токи небаланса в схеме защиты. Также ситуацию может ухудшить применение промежуточных быстронасыщающихся трансформаторов тока.

Существует несколько способов борьбы с остаточной намагниченностью сердечника, как с одной из основных причин возникновения насыщения. Один из методов — применение трансформаторов тока с сердечниками без стали, обладающих линейными свойствами. Но использование таких трансформаторов тока может быть весьма ограниченным, в связи с небольшой мощностью вторичных обмоток. Второй метод (наиболее распостраненный) — изготовление сердечников из электротехнической стали, имеющих немагнитные зазоры. Этот метод по сравнению с использованием сердечников без стали позволяет конструировать сердечники меньшего сечения. Однако в России трансформаторы тока с такими сердечниками не выпускались и не выпускаются. Нужно отметить, что европейские производители успешно производят такие изделия в вполне приемлемых габаритах, размещая в корпусе трансформатора как обмотки с привычными нам классами точности, так и специализированные обмотки для работы РЗА в переходных процессах. Почему же сложилась такая ситуация? Наверное, отнюдь не потому, что российские конструкторы гораздо хуже европейских знают свое дело и не потому, что эксплуатирующие организации не желают располагать таким оборудованием.

Рассмотрим действующую нормативную базу, регламентирующую производство трансформаторов тока. Действующий сегодня ГОСТ 7746-2001 «Трансформаторы тока. Общие технические условия» включает в себя два класса точности релейных защит — 5Р и 10Р (пределы допускаемых погрешностей — см. Таблицу 1). Ни в одном из этих классов не нормируется работа ТТ в переходных режимах — указанные в ГОСТ погрешности имеют место при нормальных режимах и токе предельной кратности (также в установившемся режиме).

Таблица 1. Пределы допускаемых погрешностей вторичных обмоток для защиты в установившемся режиме при номинальной вторичной нагрузке

Класс точности

Предел допускаемой погрешности

При номинальном первичном токе

При токе номинальной предельной кратности

Токовой, %

Угловой

Полной, %

±1

±60’

±1,8 срад.

5

10Р

±3

Не нормируют

10

Здесь предполагается традиционный способ выбора ТТ для релейных защит — по кривой 10% погрешности — зависимости отношения максимального первичного тока к номинальному и сопротивлению (мощности) вторичной обмотки.

Вроде бы, глядя на кривую можно сказать, что достаточная кратность обеспечинвается в широких пределах вторичных нагрузок. Однако такой способ не является точным даже с учетом коэффициента, учитывающего влияние апериодической составляющей (1,2–2), ведь как уже описывалось выше, ток намагничивания в переходном режиме может многократно отличаться от тока намагничивания в установившемся режиме.

В этой связи существует необходимость внедрения в эксплуатацию специальных трансформаторов тока для работы РЗА в переходных режимах, а также новых классов точности для них. Данный факт был отмечен еще в 60–70-е года прошлого столетия отечественными специалистами, а сегодня реализован экспертами МЭК. Следует обратить внимание, что и в России с 1 января 2014 года действует новый стандарт — ГОСТ IEC 60044-1-2013 «Трансформаторы измерительные. Часть 1. Трансформаторы тока», но он совсем не для России, ведь распространяется только на трансформаторы тока для экспортных поставок. Кроме того, данный стандарт является переведенным IEC 60044-1:2003, который был принят за рубежом в 2003 году, то есть более 10 лет назад, где теперь вместо серии 60044 внедряется серия стандартов 61869.

При переходе от IEC 60044 к IEC 61869 состав документа претерпел некоторые изменения, поэтому ГОСТ IEC 60044-1-2013 для экспорта можно назвать, как минимум, не совсем актуальным. Кроме того, ГОСТ IEC 60044-1-2013 содержит ссылки на международные стандарты, которые официально не переведены на русский язык и не введены в действие на территории РФ, даже для продукции на экспорт. Иными словами, ситуация на сегодняшний день в плане стандартизации абсолютно такая же, как и несколько лет назад — имеются только планы и структуры предлагаемой нормативно-технической базы в области измерительных трансформаторов. А заказчикам требуются трансформаторы тока с нормируемыми метрологическими характеристиками в переходных режимах. Но в связи с отсутствием нормативной базы заказчики, например ОАО «ФСК ЕЭС», вынуждены формулировать требования «своими словами» и ссылаться на нелигитимный в стране стандарт, например: «трансформаторы должны обеспечивать с заданным классом точности предел погрешности в переходных режимах, включая цикл АПВ, в том числе и неуспешное АПВ «КЗ — отключение — пауза 1 сек. — включение» согласно требованиям МЭК 44-6», а не указывать требуемый конкретный класс точности, определенный действующим нормативным документом. Справедливости ради надо отметить, что стандарт организации СТО 56947007-29.180.085-2011 «Типовые технические требования к трансформаторам тока 110 и 220 кВ», создан исключительно в соответствии с действующими ГОСТами.

С отечественным ГОСТ 7746-2001 все понятно, теперь предлагаю разобраться «как у них». IEC 61869-2, кроме традиционных 5Р и 10Р (допускаемые погрешности соответствуют ГОСТ 7746-2001) нормирует следующие классы точности трансформаторов тока для релейной защиты:

  • PR — трансформатор с лимитированным значением остаточной магнитной индукции (<10%). Для него в некоторых случаях может указываться значение постоянной времени намагничивания, а также предел значения сопротивления обмотки. Величина допустимых погрешностей соответствует Таблице 1 и измеряется при токе номинальной предельной кратности.
  • PX — трансформатор с низким значением индуктивного сопротивления, для которого известна вторичная характеристика намагничивания, сопротивление вторичной обмотки, сопротивление вторичной нагрузки и витковый коэффициент трансформации, а также учтены характеристики защитных устройств с которыми он будет использоваться.
  • PXR — соответствует классу точности PX, но с ограничением остаточной магнитной индукции (<10%).

Также, в состав IEC 61869-2 вошли требования к классам точности трансформаторов тока для переходных режимов:

  • TPX — метрологические характеристики определяеются максимальным мнгновеннным значением погрешности в течение заданного цикла переходного процесса. Остаточный магнитный поток не ограничивается.
  • TPY — метрологические характеристики определяются максимальным мнгновенным значением погрешности в течение заданного цикла переходного процесса. Остаточный магнитный поток не должен превышать 10% потока насыщения.
  • TPZ — метрологические характеристики определяются аплитудным мнгновенным значением переменной составляющей тока в течение однократной подачи питания при максимальной постоянной составляющей и при заданной постоянной времени вторичной цепи. Требования по ограничению погрешности постоянной составляющей отсутствуют. Остаточный магнитный поток фактически должен отсутствовать.

Таблица 2. Погрешности трансформаторов тока классов TPX, TPY, TPZ

Класс

При номинальном первичном токе

При предельном значении первичного тока

Токовая погрешность, %

Угловая погрешность

Максимальное значение величины мгновенной погрешности в %

минуты

сантирадианты

TPX

±1,0

±60

±1,8

ε = 10

TPY

±1,0

±60

±1,8

ε = 10

TPZ

±1,0

180±18

5,3±0,6

εас = 10

При изготовлении трансформаторов тока классов TPX, TPY, TPZ на табличку с техническими данными трансформаторов тока дополнительно наносится следующая информация (Таблица 3).

Таблица 3. Дополнительная информация для трансформаторов тока классов TPX, TPY, TPZ

Класс ТТ

TPX

TPY

TPZ

Номинальный первичный ток

да

да

да

Номинальный вторичный ток

да

да

да

Номинальная частота

да

да

да

Наибольшее напряжение оборудования и номинальный уровень изоляции

да

да

да

Ith

да

да

да

Idyn

да

да

да

KТТ, к которому относится данная спецификация

да

да

да

KSCC

да

да

да

Tp

да

да

да

Ts

//

да

-//-

Временные характеристики рабочего цикла (однократного, двойного)

да

да

да

Rb

да

да

да

Где:

Ith— номинальный ток термической стойкости трансформатора тока.
Idyn— номинальный ток электродинамической стойкости трансформатора тока.
KТТ
— коэффициент трансформации.
KSCC
— коэффициент номинального симметричного тока короткого замыкания (отношение номинального первичного тока короткого замыкания к номинальному первичному току. Номинальный первичный ток КЗ — среднеквадратичное значение симметричного первичного тока КЗ, на основе которого определяются номинальные метрологические характеристики ТТ). Tp — заданная постоянная времени первичной цепи.
Ts — номинальная постоянная времени вторичной цепи (сумма индуктивности намагничивания и индуктивности рассеяния, отнесенное к активному сопротивлению вторичной цепи).
Временные характеристики рабочего цикла — временные параметры цикла «включение-отключение» или «включение-отключение-включение-отключение» — длительности первого и второго протекания тока, время запаздывания во время АПВ.
Rb — номинальная активная вторичная нагрузка.

Таким образом, в стандартах IEC имеется четыре варианта классов точности ( P, PX, PR, PXR), нормируемых для установившихся режимов. Также имеется три варианта классов точности (TPX, TPY, TPZ) для переходных процессов, что по моему мнению является более чем достаточным для организации правильной работы современных микропроцессорных релейных защит с максимально возможным быстродействием, в том числе в переходных режимах. Конечно, для получения столь подробных характеристик обмоток требуется приложить некоторые усилия как проектной организации, выбирающей трансформатор тока, так и производителю при конструировании ТТ. К счастью, на сегодняшний день методики расчета переходных процессов доступны, имеются программы для математического и графического моделирования, способные вычислить необходимые параметры сети и трансформатора тока. Предприятия, производящие трансформаторы тока по стандартам IEC, производят такие расчеты автоматизированным способом.

Учитывая набирающую с каждым годом обороты политику импортозамещения, сложные текущие отношения с европейскими государствами, а также растущий курс европейской валюты, на мой взгляд, отечественным производителям трансформаторов тока было бы не лишним перенять опыт западных коллег и наладить производство вышеописанных ТТ, а органам стандартизации — предварительно обеспечить соответствующую нормативно-техническую базу.

А. А. СЕРЯКОВ,
Группа компаний «РусЭнергоМир»

Список используемой литературы:

  1. ГОСТ 7746-2001. Трансформаторы тока. Общие технические условия.
  2. ГОСТ IEC 60044-1-2013. Трансформаторы измерительные. Часть 1. Трансформаторы тока.
  3. IEC 61869-2 Instrument Transformers. Part 2: Current Transformers.
  4. IEC 60044-6 Instrument Transformers. Part 6: Requirements for Protective Current Transformers for Transient Performance.
  5. Н.В. Чернобровов. «Релейная защита», изд. «Энергия», 1971 г.
  6. В.В. Афанасьев, Н.М. Адоньев, В.М. Кибель, И.М. Сирота, Б.С. Стогний. «Трансформаторы тока», изд. Энергоатомиздат, 1989 г.
  7. И.М. Сирота. «Переходные режимы работы трансформаторов тока», Издательство Академии Наук Украинской ССР, 1961 г.
  8. Стандарт организации ОАО «ФСК ЕЭС» СТО 56947007-29. 180.085-2011. Типовые технические требования к трансформаторам тока 110 и 220 кВ (с изменениями от 24.05.2013 г.).
  9. И. Матюхов. «Измерительные трансформаторы. Нормативно-техническая документация», Новости Электротехники, №1 (85) 2014 г.

Статья опубликована в журнале «Электротехнический рынок», № 3 (57), 2014

ИЗМЕРИТЕЛЬНЫЕ ТРАНСФОРМАТОРЫ — Студопедия

Для расширения пределов измерения измерительных приборов в цепях переменного тока высокого напряжения используются трансформаторы напряжения и трансформаторы тока. Расширение пределов измерения с помощью добавочных резисторов и шунтов в этих цепях неприемлемо по той причине, что обмотки измерительных приборов находились бы под высоким напряжением и эксплуатация их представляла бы большую опасность для обслуживающего персонала. Возникли бы большие трудности по выполнению надежной изоляции измерительных приборов.

Для защиты высоковольтных сетей и оборудования используются всякого рода реле защиты, которые включаются в сеть так же, как и измерительные приборы,— с помощью трансформаторов тока и напряжения.

При использовании измерительных трансформаторов измерительные приборы и реле подключаются к вторичной обмотке измерительного трансформатора, надежно изолированной от первичной высоковольтной обмотки. Вторичные обмотки выполняются на малые напряжения, не опасные для обслуживающего персонала. Расширение пределов измерения амперметров при использовании шунтов в цепях переменного тока приводит к существенным погрешностям из-за индуктивностей обмотки амперметра и шунта. По этой причине для расширения пределов измерения амперметров всегда используются трансформаторы тока независимо от значения напряжения измеряемой цепи.

Схема включения вольтметра с трансформатором напряжения изображена на рис. 8.31. Трансформатор напряжения устроен так же, как и обычный трансформатор. Для него справедливы соотношения



U1 E1 = w1 = KU, откуда U2≈ U1 w2
U2 E2 w2 w1

Если трансформатор напряжения выполнен как обычный трансформатор, то возникают значительные погрешности измерения из-за того, что U1E1 и U2Е2 по причине падения напряжения в его обмотках. Для повышения точности измерения необходимо уменьшить падение напряжения в обмотках трансформатора.

Достигается это следующим образом. К вторичной обмотке трансформатора напряжения подключаются обмотки вольтметров, обмотки напряжения ваттметров и счетчиков, обмотки реле защиты. Указанные обмотки обладают значительными сопротивлениями, и если их количество ограничено, то трансформатор работает практически в режиме холостого хода. Падение напряжения во вторичной обмотке столь мало, что U2 = Е2. Так как I2 ≈ 0, падение напряжения в первичной обмотке обусловлено только током холостого хода


I10 = √Ip2 + Ia2.

Таким образом, повышение точности измерений сводится к уменьшению тока холостого хода трансформатора.

Реактивная составляющая тока холостого хода Iр определяется из уравнения Ipw1 = Hстlст + H0l0. Ее уменьшение достигается тем, что магнитопровод выполняется из высококачественной электротехнической стали с высокой магнитной проницаемостью μаст. Кроме того, трансформатор рассчитывается для работы с малым значением амплитуды магнитной индукцииВm — около 0,4 — 0,8 Тл. Все это существенно снижает напряженность магнитного поля в сталиНст = Васт и в воздушном зазоре Н0 = В0 магнитопровода и, естественно, снижает реактивную составляющую тока холостого хода. С той же целью магнитопровод трансформатора выполняется с минимальным значением воздушного зазора, что достигается высококачественной обработкой пластин и сборкой магнитопровода. Активная составляющая Iа обусловлена потерями в стали магнитопровода. Ее уменьшение достигается тем, что для магнитопровода используется сталь с малыми значениями удельных потерь ΔP10, ΔP15 и, как уже было сказано, трансформатор работает при малых значениях Вm .

При выполнении указанных выше условий вторичное напряжение трансформатора пропорционально первичному:

Однако абсолютной точности получить невозможно, и трансформаторы напряжения имеют определенную погрешность, так же как и измерительные приборы. По точности измерений трансформаторы делятся на классы точности: 0,2; 0,5; 1 и 3.

Трансформаторы напряжения бывают однофазные и трехфазные. На паспорте трансформатора указываются номинальная мощность, номинальное первичное U1ном и вторичное U2номнапряжения, класс точности. Вторичное напряжение (у трехфазных линейное) всех трансформаторов 100 В. Начало первичной обмотки обозначено буквой А, конец — X, начало — вторичной а, конец — х.

Рис. 8.31. Схема включения вольтметра с трансформатором напряжения

Схема включения амперметра с трансформатором тока изображена на рис. 8.32, в. Первичная обмотка трансформатора включена в электрическую цепь, и ток в ней определяется сопротивлением приемников и, естественно, не зависит от тока во вторичной цепи, где включен амперметр. Обмотка имеет несколько витков и выполнена из провода значительного сечения (соответственно току цепи). К выводам вторичной обмотки, имеющей значительно большее количество витков, чем первичная, и рассчитанной на ток 5 А, подключаются последовательно обмотки амперметра, токовые обмотки ваттметра, счетчика, реле защиты. Сопротивление обмоток незначительное, и если их количество невелико, то трансформатор работает в режиме короткого замыкания. Из уравнения МДС

I1w1 + I2w2 = I10w1

следует, что если бы намагничивающий ток I10 был равен нулю, то

I1w1 = I2w2 и I2= I1 w1 = I1KI .
w2

Так как трансформатор тока работает в режиме короткого замыкания, то для создания тока во вторичной цепи 5 А требуется небольшая ЭДС и, следовательно, небольшой магнитный поток и создающий его намагничивающий ток. Однако для повышения точности измерения принимаются дополнительные меры к его снижению. Эти меры аналогичны тем, что были рассмотрены применительно к трансформатору напряжения, но в этом случае достаточная точность измерений при выполнении рассмотренных выше мер получается, если амплитуда магнитной индукции для трансформатора тока выбирается в пределах 0,06 — 0,1 Тл.

Рис. 8.32. Трансформатор тока (а), обозначение трансформатора тока (б), схема включения амперметра с трансформатором тока (в)

Необходимо отметить, что точность измерений существенно снижается при возрастании сопротивления вторичной цепи трансформатора. Действительно, для создания того же тока во вторичной обмотке потребуются большие ЭДС и, следовательно, магнитный поток и намагничивающий ток. Возросший намагничивающий ток нарушит пропорциональность между первичным и вторичным токами. Обрыв вторичной цепи представляет серьезную опасность для обслуживающего персонала вследствие появления на вторичной обмотке большого напряжения и возможности выхода из строя трансформатора.

Рис. 8.33. К пояснению работы трансформатора тока при разомкнутой вторичной обмотке

Это объясняется тем, что МДС первичной обмотки определяется током приемников энергии и не зависит от того, замкнута или разомк­нута вторичная обмотка. Когда вторичная обмотка замкнута, она соз­дает МДС I2w2, направленную противI1w1, и результирующая МДС, которая практически равна их разности, будет создавать магнитную индукцию всего в 0,06 — 0,1 Тл (точка а, рис. 8.33). При разомкнутой вторичной обмотке (I2w2 = 0) магнитная индукция возрастает до значений 1,5 — 2,0 Тл, что соответствует точке б.Магнитная индукция возрастает в 10 — 20 раз, что приведет к появлению большого напряжения на вторичной обмотке и резкому возрастанию (в 100 — 400 раз) потерь в магнитопроводе. Для предотвращения отмеченных неприятностей перед тем как отсоединить на ремонт или проверку измерительный прибор, вторичную обмотку трансформатора тока необходимо замкнуть накоротко перемычкой.

В паспорте трансформатора тока указываются номинальные токи первичной I1ном и вторичной I2ном (он обычно 5 А) обмоток, класс точности, максимальное значение сопротивления и минимальное значение коэффициента мощности обмоток приборов, включаемых во вторичную обмотку, при которых гарантируется указанный класс точности, а также напряжение, на которое рассчитана его изоляция. Начало первичной обмотки трансформатора тока обозначается буквой Л1, конец — буквой Л2, вторичной: начало — И1, конец — И2.

Рис 8.34 Схема включения амперметра, вольтметра, ваттметра с трансформаторами напряжения и тока

Необходимо отметить, что кроме погрешности измерения по коэффициенту трансформации (по модулю измеряемой величины) есть и погрешность по углу по той же причине: падение напряжения в обмотках. Погрешность объясняется тем, что направление вектора приведенного вторичного напряжения не совпадает с направлением вектора первичного напряжения трансформатора напряжения и направление вектора приведенного тока вторичной обмотки не совпадает с направлением вектора первичного тока трансформатора. Угловая погрешность составляет всего несколько минут и проявляет себя только при измерении мощности, энергии и фазы.

На рис 8.34 изображена схема включения измерительных приборов и измерительных трансформаторов для измерения тока, напряжения и активной мощности. Для защиты обслуживающего персонала от действия высокого напряжения в случае пробоя изоляции между обмотками или высоковольтной обмоткой и корпусом корпус и один конец вторичной обмотки измерительных трансформаторов надежно заземляются. Цена деления измерительных приборов определяется следующим образом.

Необходимо отметить, что при определении цены деления измерительных приборов под коэффициентом трансформации измерительных трансформаторов понимают отношения:

для трансформатора напряжения — номинальных значений напряжений первичной и вторичной обмоток

КU = U = w1 = n;
U w2

для трансформатора тока — номинальных значений токов

первичной и вторичной обмоток

kI = I = w2 =
I w1 n

Цена деления амперметра

С’A = CAkI = CA w2 = CA I .
w1 I

где СА — цена деления амперметра; С’A — цена деления амперметра с трансформатором тока.

Цена деления вольтметра

С’B = СBkU = СB w1 = CB U .
w2 U

где СB — цена деления вольтметра; С’B — цена деления вольтметра с трансформатором напряжения.

Цена деления ваттметра

С’Вт = СВтkIkU = СВт I   U
I U

где СВт — цена деления ваттметра; С’Вт — цена деления ваттметра с трансформаторами тока и напряжения.

Измерительные трансформаторы — Студопедия

Измерительные трансформаторы используются главным образом для подключения электроизмерительных приборов в цепи переменного тока высокого, напряжения. При этом электроизмерительные приборы оказываются изолированными от цепей высокого напряже­ний, что обеспечивает безопасность работы обслуживающего персонала. Кроме того, измерительные трансформаторы дают возможность расширять пределы измерения приборов, т. е. измерять большие токи и напряжения с помощью сравнительно несложных приборов, рассчитанных для измерения малых токов и напряжений. В ряде случаев измерительные трансформаторы служат для подключения к цепям высокого напряжения обмоток реле, обеспечивающих защиту электри­ческих установок от аварийных режимов.

Измерительные трансформаторы подразделяются на два типа: трансформаторы напряжения и трансформаторы тока. Первые служат для включения вольтметров, а также других приборов, реагирующих на величину напряжения, например катушек напряжения ваттметров, счетчиков, фазометров и различных реле. Вторые служат для вклю­чения амперметров и токовых катушек указанных приборов. Измери­тельные трансформаторы изготовляют мощностью от пяти до несколь­ких сот вольт-ампер, они рассчитаны для работы совместно со стан­дартными приборами (амперметрами на 1 и 5 а, вольтметрами до 100 в).

Трансформатор напряжения. Выполняется как обычный двухобмоточный понижающий трансформатор (рис. 1.19). Для обеспечения безопасности работы обслуживающего персонала вторичную обмотку тщательно изолируют от первичной и заземляют. Так как сопротивление обмоток вольтметров и других приборов, подключаемых к трансформатору напряжения, велико, то он фактически работает в режиме холостого хода. В этом режиме можно с достаточной степенью точности считать, что



, (1.77)

Рис. 1.19. Схема включения трансформатора напряжения

В действительности ток холостого хода (а также небольшой ток нагрузки) создает в трансформаторе падение напряжения; поэтому и между векторами этих напряжений имеется некоторый сдвиг по фазе . В ре­зультате этого при измерениях создаются некоторые погрешности.

В измерительных трансформаторах напряжения различают два вида погрешностей:

а) относительная погрешность коэффициента трансформации, или погрешность напряжения; величина ее

(1.78)

б) угловая погрешность ; за величину ее принимается угол между векторами и .Она влияет на результаты измерений, выполненных с помощью ваттметров, счетчиков, фазометров и прочих приборов, показания которых зависят не только от величины тока и напряжения, но и от угла сдвига фаз между ними. Угловая погрешность считается положительной, если вектор опережает вектор .


В зависимости от величины допускаемых погрешностей трансформаторы напряжения подразделяются на четыре класса точности: 0,2; 0,5; 1 и 3. Обозначение класса соответствует величине относительной погрешности при номинальном напряжении . Угловая погрешность составляет 10-40 минут (для 3-го класса она не нормируется). Для уменьшения погрешностей и сопротив­ления обмоток трансформатора z1и z2 делают по возможности малыми, а сердечник выполняют из высококачественной стали достаточно большого поперечного сечения, чтобы в рабочем режиме он был не насыщен (B 0,6 — 0,8 тл). Благодаря этому обеспечивается значительное уменьшение тока холостого хода.

Трансформатор тока. Выполняется в виде обычного двухобмоточного повышающего трансформатора (рис. 1.20, а) или в виде проходного трансформатора, у которого первичной обмоткой служит провод, проходящий через окно магнитопровода. В некоторых конструкциях магнитопровод и вторичная обмотка смонтированы на проходном изоляторе, служащем для ввода высокого напряжения в силовой трансформатор или другую электрическую установку; роль первичной обмотки трансформатора выполняет медный стержень, проходящий внутри изолятора (рис. 1.20, б).

Рис. 1.20. Схема включения трансформатора тока (а), общий вид проходного трансформатора (б)

Сопротивление обмоток амперметров и других приборов, подклю­чаемых к трансформатору тока, обычно мало. Поэтому он практически работает в режиме короткого замыкания, в котором токи и во много раз больше тока , и с достаточной степенью точности можно считать, что

(1.79)

В действительности из-за наличия тока холостого хода в рас­сматриваемом трансформаторе и между векторами этих токов имеется некоторый угол, отличный от 180°. Это создает токовую по­грешность

(1.80)

и угловую погрешность, измеряемую углом между векторами и . Погрешность считается положительной, если вектор опережает вектор .

В зависимости от величины допускаемых погрешностей трансформаторы тока подразделяются на пять классов точности: 0,2: 0,5; 1; 3 и 10. Эти цифры соответствуют допускаемой для данного класса токовой погрешности при номинальной величине тока. Угловая по­грешность для первых трех классов составляет 10 – 80 мин, а для двух последних не нормируется. Для уменьшения указанных погрешностей сердечник трансформатора тока изготовляют из высококачественной стали достаточно большого сечения, чтобы в рабочем режиме он был не насыщен (B = 0,06 — 0,1 тл). При этих условиях ток холостого хода будет мал.

Следует отметить, что размыкание цепи вторичной обмотки тран­сформатора тока недопустимо. В этом случае трансформатор переходит в режим холостого хода и его результирующая м.д.с., которая в рабочем режиме была равна становится равной . В результате резко (в десятки и сотни раз) возрастает магнитный поток Фт в сердечнике, и индукция в стали достигает значения более 2 тл. Соответственно с этим резко возрастают потери в стали и трансформатор может сгореть. Еще большую опасность представляет резкое повышение напряжения на зажимах вторичной обмотки до нескольких сот и даже тысяч вольт. Для предотвращения режима холостого хода при отключении приборов нужно замыкать вторичную обмотку трансформатора тока накоротко.

Измерительные трансформаторы (ТТ, ТН) в системе

Instrument transformers from ABB Instrument transformers from ABB Измерительные трансформаторы от ABB

Три основные задачи ТТ и ТН

Три основные задачи измерительных трансформаторов:

  1. Для преобразования токов или напряжений от обычно высокого значения до значения, удобного для использования в реле и приборах.
  2. Для изоляции измерительной цепи от первичной системы высокого напряжения.
  3. Для обеспечения возможности стандартизации приборов и реле на несколько номинальных токов и напряжений.

Измерительные трансформаторы — это специальные типы трансформаторов, предназначенные для измерения токов и напряжений. Действуют общие законы для трансформаторов.

Здесь мы рассмотрим шесть важных аспектов использования измерительного трансформатора в энергосистеме:

  1. Обозначения клемм трансформаторов тока
  2. Вторичное заземление трансформаторов тока
  3. Вторичное заземление трансформаторов напряжения
  4. Подключение для получения остаточного напряжения
  5. Предохранители вторичных цепей трансформатора напряжения
  6. Размещение трансформаторов тока и напряжения на подстанциях

1.Обозначения клемм трансформаторов тока

В соответствии с публикацией IEC 60044-1 клеммы должны быть обозначены, как показано на следующих схемах. Все клеммы с маркировкой P1 , S1 и C1 должны иметь одинаковую полярность.

Figure 1 left - Transformer with one secondary winding; Figure 2 right - Transformer with two secondary windings Figure 1 left - Transformer with one secondary winding; Figure 2 right - Transformer with two secondary windings Рисунок 1 слева — трансформатор с одной вторичной обмоткой; Рисунок 2 справа — Трансформатор с двумя вторичными обмотками
Figure 3 left - Transformer with one secondary winding which has an extra tapping; Figure 4 right - Transformer with two primary windings and one secondary winding Figure 3 left - Transformer with one secondary winding which has an extra tapping; Figure 4 right - Transformer with two primary windings and one secondary winding Рисунок 3 слева — Трансформатор с одной вторичной обмоткой с дополнительным ответвлением; Рисунок 4 справа — Трансформатор с двумя первичными обмотками и одной вторичной обмоткой

Вернуться к основным аспектам ↑

2.Вторичное заземление трансформаторов тока

Для предотвращения достижения во вторичных цепях опасно высокого потенциала относительно земли, эти цепи должны быть заземлены. Подключите клемму S1 или клемму S2 к заземлению.

Для реле защиты заземлите ближайшую к защищаемому объекту клемму. Для счетчиков и приборов заземляйте ближайший к потребителю терминал.

Когда измерительные приборы и реле защиты подключены к одной обмотке, реле защиты определяет точку заземления.

  • Если на вторичной обмотке есть неиспользуемые отводы, их необходимо оставить открытыми.
  • Если имеется гальваническое соединение между более чем одним трансформатором тока, они должны быть заземлены только в одной точке (например, дифференциальная защита).
  • Если сердечники не используются в трансформаторе тока, они должны быть короткозамкнуты между ответвлениями с самым высоким коэффициентом передачи и должны быть заземлены.

Опасно размыкание вторичной цепи при работе ТТ. Будет индуцировано высокое напряжение.

Figure 5 left - Transformer; Figure 6 right - Cables Figure 5 left - Transformer; Figure 6 right - Cables Рисунок 5 слева — трансформатор; Рисунок 6 справа — кабели
Figure 7 - Busbars Figure 7 - Busbars Рисунок 7 — Сборные шины

Вернуться к основным аспектам ↑

3. Вторичное заземление трансформаторов напряжения

Чтобы предотвратить достижение опасного потенциала вторичных цепей, цепи должны быть заземлены . Заземление должно выполняться только в одной точке вторичной цепи трансформатора напряжения или гальванически связанных цепей.

Трансформатор напряжения, который на первичной обмотке соединен фазой с землей, должен иметь вторичное заземление на клемме .

Трансформатор напряжения с первичной обмоткой, соединенной между двумя фазами, должен иметь вторичную цепь, напряжение которой отстает от другой клеммы на 120 градусов. Неиспользуемые обмотки должны быть заземлены .

Figure 8 - Voltage transformers connected between phases Figure 8 - Voltage transformers connected between phases Рисунок 8 — Трансформаторы напряжения, включенные между фазами
Figure 9 - set of voltage transformers Figure 9 - set of voltage transformers Рисунок 9 — Комплект трансформаторов напряжения

Вернуться к основным аспектам ↑

4.Подключение для получения остаточного напряжения

Остаточное напряжение (напряжение смещения нейтрали, напряжение поляризации) для реле защиты от замыканий на землю можно получить от трансформатора напряжения между нейтралью и землей , например, на нейтрали силового трансформатора.

Его также можно получить из трехфазного комплекта трансформаторов напряжения, у которых первичная обмотка соединена фазой с землей, а одна из вторичных обмоток соединена треугольником.

Рисунок 10 иллюстрирует принцип измерения для разрыва соединения треугольником во время замыкания на землю в высокоомной заземленной (или незаземленной) и эффективно заземленной энергосистеме соответственно.

Из рисунка видно, что сплошное замыкание на землю дает выходное напряжение

U RSD = 3 x U 2n

в системе с высокоомным заземлением и

U RSD = U 2n

в эффективно заземленной системе. Поэтому трансформатор напряжения вторичного напряжения из

U 2n = 110/3 В

часто используется в системах с высокоомным заземлением, а U 2n = 110 В — в системах с эффективным заземлением.Остаточное напряжение равно 110 В получается в обоих случаях. Трансформаторы напряжения с двумя вторичными обмотками, одна для подключения по Y, а другая с разомкнутым треугольником, могут тогда иметь соотношение:

Voltage transformers ratio formulas

Voltage transformers ratio formulas

для высокоомных и эффективно заземленных систем соответственно. Номинальное напряжение, отличное от 110 В, например 100 В или 115 В также используются в зависимости от национальных стандартов и практики.

Figure 10 - Residual voltage (neutral displacement voltage) from a broken delta circuit Figure 10 - Residual voltage (neutral displacement voltage) from a broken delta circuit Рисунок 10 — Остаточное напряжение (напряжение смещения нейтрали) при разрыве цепи треугольником

5.Предохранители вторичных цепей трансформатора напряжения

Предохранители должны быть предоставлены в первой коробке, где три фазы соединены вместе. Цепь от клеммной коробки до первой коробки построена так, чтобы минимизировать риск неисправностей в цепи.

Предпочтительно не использовать предохранители в клеммной коробке трансформатора напряжения , так как это затруднит наблюдение за трансформаторами напряжения. Предохранители в трехфазной коробке позволяют дифференцированно подключать цепи к различным нагрузкам, таким как цепи защиты и измерения.

Предохранители должны быть выбраны таким образом, чтобы обеспечить быстрое и надежное устранение неисправностей даже в случае неисправности на конце кабеля. Следует проверять замыкания на землю и двухфазные замыкания.

Вернуться к основным аспектам ↑

6. Размещение трансформаторов тока и напряжения на подстанциях

Измерительные трансформаторы используются для подачи измеренных величин тока и напряжения в соответствующей форме в управляющее и защитное оборудование, такое как счетчики энергии, показывающие приборы, защитные реле, локаторы неисправностей, регистраторы неисправностей и синхронизаторы.

Измерительные трансформаторы , таким образом, устанавливаются, когда необходимо получить измеряемые величины для вышеупомянутых целей.

Типичными местами установки являются распределительные устройства для линий, фидеров, трансформаторов, шинных соединителей и т. Д. На соединениях нейтрали трансформатора и на сборных шинах.

Figure 11 - Current and voltage transformers in a substation Figure 11 - Current and voltage transformers in a substation Рисунок 11 — Трансформаторы тока и напряжения на подстанции

Вернуться к основным аспектам ↑

Расположение в различных схемах подстанции

Ниже приведены некоторые примеры подходящих мест для трансформаторов тока и напряжения в нескольких различных распределительных устройствах.

Figure 12 - Double busbar station Figure 12 - Double busbar station Рисунок 12 — Станция двойной сборной шины
Figure 13 - Station with transfer busbar Figure 13 - Station with transfer busbar Рисунок 13 — Станция с промежуточной сборной шиной
Figure 14 - Double breaker and double busbar station Figure 14 - Double breaker and double busbar station Рисунок 14 — Станция с двойным выключателем и двойной сборной шиной
Figure 15 - Sectionalized single busbar station Figure 15 - Sectionalized single busbar station Рисунок 15 — Секционная станция с одной сборной шиной

Вернуться к основным аспектам ↑

Ссылка: Руководство по применению измерительных трансформаторов — ABB

,

Функции измерительных трансформаторов (ТТ и ТТ) Инструментальные средства

Реле защиты переменного тока приводятся в действие током и напряжением, подаваемым трансформаторами тока и напряжения (напряжения), которые обычно классифицируются как измерительные трансформаторы. Обычно измерительные трансформаторы используются в основном для двух целей. Для измерения, который понижается и отображает уровни напряжения и тока от кВ до (0–110 вольт в случае PT) и от нескольких килоампер до (0-5 ампер в случае CT).Вторая цель — подавать значения тока и напряжения на реле для выполнения функций защиты.

Основными функциями измерительных трансформаторов являются:

  • Измерительные трансформаторы (трансформаторы тока и напряжения) обеспечивают изоляцию от высоких напряжений силовой цепи и защищают оборудование и обслуживающий персонал от контакта с высоким напряжением силовые цепи
  • Измерительные трансформаторы (ТТ и ТТ) питают защитные реле током и напряжением, величина которых пропорциональна силовым цепям.Эти величины тока и напряжения, подаваемые измерительными трансформаторами, достаточно уменьшены, так что реле можно сделать относительно небольшими и недорогими
  • Измерительные трансформаторы помогают в достижении различных типов вторичных соединений для получения требуемых тока и напряжений

Для правильного применения Необходимо учитывать следующие требования к трансформаторам тока и трансформатору тока:

Механическая конструкция, тип изоляции (сухая или жидкая), соотношение первичных и вторичных токов или напряжений, длительные термические характеристики, кратковременные термические и механические характеристики, класс изоляции, уровень импульсов, срок службы условия, точность и подключения

В целях безопасности вторичные обмотки трансформаторов тока и напряжения (ТТ и ТТ) заземлены.

Почему используются измерительные трансформаторы и их преимущества

Вольтметры и амперметры используются для измерения напряжения и тока в цепях. Используя измерительные трансформаторы, диапазоны измерения этих устройств можно увеличить. Трансформатор тока в основном является понижающим трансформатором, следовательно, он понижает ток. При использовании вместе с амперметром нижнего диапазона трансформатор тока (ТТ) увеличивает диапазон амперметра. Таким образом, амперметр 0-5 А можно использовать для измерения нескольких сотен или тысяч ампер тока.Точно так же трансформатор напряжения (PT), который по сути является понижающим трансформатором, может увеличить диапазон вольтметра низкого напряжения. Таким образом, вольтметр, предназначенный для измерения напряжения до 110 В, может измерять гораздо более высокие напряжения (несколько тысяч вольт) при использовании вместе с подходящим трансформатором напряжения.

Измерительные трансформаторы

имеют много преимуществ. Некоторые из преимуществ приведены ниже:

Преимущества:

  • Амперметры и вольтметры с одним диапазоном могут измерять широкий диапазон токов и напряжений, если используются вместе с подходящими трансформаторами тока (CT) и трансформаторами напряжения (PT)
  • Измерительные приборы, такие как амперметр, вольтметр, ваттметры и т. Д., Включены во вторичную цепь и, следовательно, они полностью изолированы от высокого напряжения, тем самым обеспечивая безопасность оператора и наблюдателя.
  • Измеритель не нужно изолировать от высоких напряжений, которые могут случай, если они непосредственно включены в цепь высокого напряжения.
  • Используя трансформатор тока с подходящим разъемным и шарнирным сердечником, легко измерять большие токи в сборной шине без необходимости разрывать провод, по которому проходит ток.Сердечник трансформатора тока (ТТ) открывается на шарнире, токопроводящий проводник вводится в центр сердечника через сделанное отверстие, и сердечник снова плотно закрывается. Сам проводник действует как однооборотная первичная обмотка трансформатора тока

.Измерительный трансформатор

| Статья об измерительном трансформаторе в Free Dictionary

электрический трансформатор, в котором измеряемый ток или напряжение действует на первичную обмотку трансформатора; вторичная (понижающая) обмотка подключена к измерительным приборам и реле защиты. Измерительные трансформаторы используются в основном в силовых распределительных щитах и ​​в высоковольтных цепях переменного тока для обеспечения безопасности при измерении силы тока, напряжения, мощности и энергии. Один из выводов вторичной обмотки заземлен в качестве защитной меры в случае пробоя изоляции на стороне высокого напряжения.Измерительные трансформаторы позволяют измерять различные величины электрических величин с помощью устройств, диапазон измерения которых достигает 100 Вт (Вт) и 5 ​​ампер (A).

Различают приборный потенциал (используется с вольтметрами, частотомерами, параллельными цепями ваттметров, счетчиков энергии, фазометров и реле напряжения) и измерительными трансформаторами тока (используются с амперметрами, последовательными цепями ваттметров, счетчиками энергии, фазными счетчиков и реле тока).Схемы подключения измерительных трансформаторов в электрических цепях показаны на рисунках 1 и 2.

Рисунок 1. Схема подключения измерительного трансформатора напряжения

Рисунок 2. Схема подключения измерительного трансформатора тока

В измерительный трансформатор потенциала (рисунок 1), измеряемое напряжение U 1 подается на выводы первичной обмотки; обмотка Вт 1 подключена параллельно нагрузке.Вторичное напряжение U, , 2, подается с обмотки W 2 на вольтметр или на цепи напряжения измерительных приборов и реле защиты. Точность измерения определяется ошибкой в ​​процентах, которая определяет точность воспроизведения амплитуды измеряемого напряжения, и угловой ошибкой в ​​градусах. Угловая погрешность равна углу между вектором первичного напряжения и вектором вторичного напряжения, повернутого на 180 °; он определяет точность воспроизведения фазы.Большинство измерительных трансформаторов напряжения для высоких напряжений изготавливаются в секционном маслонаполненном исполнении.

Первичная обмотка Вт 1 измерительного трансформатора тока (рисунок 2) подключена последовательно с цепью управления, по которой проходит переменный ток I 1 вторичная обмотка Вт 2 является соединены последовательно с амперметром или другим измерительным прибором. Точность измерительного трансформатора тока определяется процентным соотношением между разницей значения уменьшенного вторичного тока и значения фактического первичного тока к значению фактического первичного тока.

Для измерения мощности в высоковольтных цепях требуются измерительные трансформаторы как тока, так и напряжения, если используется ваттметр (см. Рисунок 3).

Рисунок 3. Схема подключения ваттметра в однофазной высоковольтной цепи через измерительные трансформаторы тока и напряжения: (В) вольтметр, (A) амперметр , (Вт) ваттметр

Трансформаторы постоянного тока специальной конструкции используются в высоковольтных цепях постоянного тока или в цепях, пропускающих постоянный ток большой величины (рисунок 4).Работа такого измерительного трансформатора основана на насыщении сердечника из ферромагнитного материала при низких значениях напряженности магнитного поля. В результате среднее значение переменного тока во вспомогательной обмотке становится зависимым от измеряемого постоянного тока.

Рисунок 4. Схема измерительного трансформатора постоянного тока: (1) сердечник, (2) шина (провод постоянного тока), (3) вспомогательная обмотка, (4) диоды выпрямительного моста; (F) магнитный поток, (R) выпрямитель, (A) амперметр, (W) первичная обмотка (шина), (U∽) вспомогательный источник переменного тока, (I) измеряемый ток

СПИСОК ЛИТЕРАТУРЫ

Электрические измерения: Общий курс , 2-е изд.Под редакцией А. В. Фремке. Москва-Ленинград, 1954.
Арутюнов В.О. Электрические измерительные приборы и измерения . Москва-Ленинград, 1958.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *