Измерение электрической энергии: §102. Измерение мощности и электрической энергии

Содержание

§102. Измерение мощности и электрической энергии

Измерение мощности. В цепях постоянного тока мощность измеряют электро- или ферродинамическим ваттметром. Мощность может быть также подсчитана перемножением значений тока и напряжения, измеренных амперметром и вольтметром.

В цепях однофазного тока измерение мощности может быть осуществлено электродинамическим, ферродинамическим или индукционным ваттметром. Ваттметр 4 (рис. 336) имеет две катушки: токовую 2, которая включается в цепь последовательно, и напряжения 3, которая включается в цепь параллельно.

Ваттметр является прибором, требующим при включении соблюдения правильной полярности, поэтому его генераторные зажимы (зажимы, к которым присоединяют проводники, идущие со стороны источника 1) обозначают звездочками.

Рис. 336. Схема для измерения мощности

Для расширения пределов измерения ваттметров их токовые катушки включают в цепь при помощи шунтов или измерительных трансформаторов тока, а катушки напряжения — через добавочные резисторы или измерительные трансформаторы напряжения.

Измерение электрической энергии. Способ измерения. Для учета электрической энергии, получаемой потребителями или отдаваемой источниками тока, применяют счетчики электрической энергии. Счетчик электрической энергии по принципу своего действия аналогичен ваттметру. Однако в отличие от ваттметров вместо спиральной пружины, создающей противодействующий момент, в счетчиках предусматривают устройство, подобное электромагнитному демпферу, создающее тормозящее усилие, пропорциональное частоте вращения подвижной системы. Поэтому при включении прибора в электрическую цепь возникающий вращающий момент будет вызывать не отклонение подвижной системы на некоторый угол, а вращение ее с определенной частотой.

Число оборотов подвижной части прибора будет пропорционально произведению мощности электрического тока на время, в течение которого он действует, т. е. количеству электрической энергии, проходящей через прибор. Число оборотов счетчика фиксируется счетным механизмом. Передаточное число этого механизма выбирают так, чтобы по показаниям счетчика можно было отсчитывать не обороты, а непосредственно электрическую энергию в киловатт-часах.

Наибольшее распространение получили ферродинамические и индукционные счетчики; первые применяют в цепях постоянного тока, вторые — в цепях переменного тока. Счетчики электрической энергии включают в электрические цепи постоянного и переменного тока так же, как и ваттметры.

Ферродинамический счетчик (рис. 337) устанавливают на э. п. с. постоянного тока. Он имеет две катушки: неподвижную 4 и подвижную 6. Неподвижная токовая катушка 4 разделена на две части, которые охватывают ферромагнитный сердечник 5 (обычно из пермаллоя). Последний позволяет создать в приборе сильное магнитное поле и значительный вращающий момент, обеспечивающий нормальную работу счетчика в условиях тряски и вибраций. Применение пермаллоя способствует уменьшению погрешности счетного механизма 2 от гистерезиса магнитной системы (он имеет весьма узкую петлю гистерезиса).

Чтобы уменьшить влияние внешних магнитных полей на показания счетчика, магнитные потоки отдельных частей токовой катушки имеют взаимно противоположное направление (астатическая система). При этом внешнее поле, ослабляя поток одной части, соответственно усиливает поток другой части и оказывает в целом небольшое влияние на результирующий вращающий момент, создаваемый прибором. Подвижная катушка 6 счетчика (катушка напряжения) расположена на якоре, выполненном в виде диска из изоляционного материала или в виде алюминиевой чаши. Катушка состоит из отдельных секций, соединенных с пластинами коллектора 7 (эти соединения на рис. 337 не показаны), по которому скользят щетки из тонких серебряных пластин.

Ферродинамический счетчик работает принципиально как двигатель постоянного тока, обмотка якоря которого подключена параллельно, а обмотка возбуждения — последовательно с потребителем электроэнергии. Якорь вращается в воздушном зазоре между полюсами сердечника. Тормозной момент создается в результате взаимодействия потока постоянного магнита 1 с вихревыми токами, возникающими в алюминиевом диске 3 при его вращении.

Для компенсации влияния момента трения и уменьшения благодаря этому погрешности прибора в ферродинамических счетчиках устанавливают компенсационную катушку или в магнитном поле неподвижной (токовой) катушки помещают лепесток из пермаллоя, который имеет высокую магнитную проницаемость при малой напряженности поля. При небольших нагрузках этот лепесток усиливает магнитный поток токовой катушки, что приводит к увеличению вращающего момента и компенсации трения. При увеличении нагрузки индукция магнитного поля катушки увеличивается, лепесток насыщается и его компенсирующее действие перестает возрастать.

При работе счетчика на э. п. с. возможны сильные толчки и удары, при которых щетки могут отскакивать от коллекторных пластин. При этом под щетками будет возникать искрение. Для его предотвращения между щетками включают конденсатор С и резистор R1. Компенсация температурной погрешности осуществляется с помощью термистора Rт (полупроводникового прибора, сопротивление которого зависит от температуры). Он включается совместно с добавочным резистором R2 параллельно подвижной катушке. Чтобы уменьшить влияние тряски и вибраций на работу счетчиков, их устанавливают на э. п. с. на резинометаллических амортизаторах.

Индукционный счетчик имеет два электромагнита (рис. 338,а), между которыми расположен алюминиевый диск 7. Вращающий момент в приборе создается в результате взаимодействия переменных магнитных потоков Ф1 и Ф2, созданных катушками электромагнитов, с вихревыми токами Iв1 и Iв2, индуцируемыми ими в алюминиевом диске (так же, как и в обычном индукционном измерительном механизме, см. § 99).

В индукционном счетчике вращающий момент М должен быть пропорционален мощности P=UIcos?. Для этого катушку 6 одного из электромагнитов (токовую) включают последовательно с нагрузкой 5, а катушку 2 другого (катушку напряжения) — параллельно нагрузке. В этом случае магнитный поток Ф1 будет пропорционален току I в цепи нагрузки, а поток Ф2 — напряжению U, приложенному к нагрузке. Для обеспечения требуемого угла сдвига фаз ? между потоками Ф1 и Ф2 (чтобы sin? = cos?) в электромагните катушки напряжения предусмотрен магнитный шунт 3, через который часть потока Ф2 замыкается

Рис. 337. Ферродинамический счетчик электрической энергии

Рис. 338. Индукционный счетчик электрической энергии

помимо диска 7. Угол сдвига фаз между потоками Ф1 и Ф2 точно регулируется изменением положения металлического экрана 1, расположенного на пути потока, ответвляющегося через магнитный шунт 3.

Тормозной момент создается так же, как в ферродинамическом счетчике. Компенсация момента трения осуществляется путем создания небольшой несимметрии в магнитной цепи одного из электромагнитов с помощью стального винта.

Для предотвращения вращения якоря при отсутствии нагрузки под действием усилия, созданного устройством, компенсирующим трение, на оси счетчика укрепляется стальной тормозной крючок. Этот крючок притягивается к тормозному магниту 4, благодаря чему предотвращается возможность вращения подвижной системы без нагрузки.

При работе же счетчика под нагрузкой тормозной крючок практически не влияет на его показания.

Чтобы диск счетчика вращался в требуемом направлении, необходимо соблюдать определенный порядок подключения проводов к его зажимам. Нагрузочные зажимы прибора, к которым подключают провода, идущие от потребителя, обозначают буквами Я (рис. 338,б), генераторные зажимы, к которым подключают провода от источника тока или от сети переменного тока,— буквами Г.

Измерение электрической мощности

Довольно часто возникает необходимость измерять мощность, потребляемую из сети, или же генерируемую в сеть. Это необходимо для учета потребляемой или генерируемой энергии, а также для обеспечения нормальной работы энергосистемы (избежание перегрузок). Измерять мощность можно несколькими способами – прямым и косвенным. При прямом измерении применяют ваттметр, а при косвенном амперметр и вольтметр.

Измерение мощности в цепи постоянного тока

Из-за отсутствия реактивной и активной составляющей в цепях постоянного тока для измерения мощности ваттметр применяют очень редко. Как правило, величину потребляемой или отдаваемой энергии измеряют косвенным методом, с помощью последовательно включенного амперметра измеряют ток I в цепи, а с помощью параллельно подключенного вольтметра измеряют напряжение U нагрузки. После чего применив простую формулу P=UI и получают значение мощности.

Чтоб уменьшить погрешность измерений из-за влияний внутренних сопротивлений устройств, приборы могут подключать по различным схемам, а именно при относительно малом сопротивлении нагрузки R применяют такую схему включения:

Измерение мощности косвенным методом в цепи постоянного тока при малом сопротивлении нагрузки

А при большом значении R такую схему:

Измерение мощности косвенным методом в цепи постоянного тока при большом сопротивлении нагрузки

Измерение мощности в однофазных цепях переменного тока

Главным отличием цепей переменного тока от сетей постоянного тока, пожалуй, заключается в том, что в переменном напряжении существует несколько мощностей – полная, активная и реактивная. Полную измеряют зачастую тем же косвенным методом с помощью амперметра и вольтметра и значение ее равно S=UI.

Замер же активной P=UIcosφ и реактивной  Q=UIsinφ производится прямым методом, с помощью ваттметра. Для измерения ваттметр в цепь подключают по следующей схеме:

Схема подключения однофазного ваттметра

Где токовую обмотку необходимо подключить последовательно с нагрузкой Rн, и, соответственно, обмотку напряжения параллельно нагрузке.

Замер реактивной мощности в однофазных сетях не производится. Такие опыты зачастую ставятся только в лабораториях, где ваттметры включают по специальным схемам.

Измерение мощности в трехфазных цепях переменного тока

Как и в однофазных сетях, так же и в трехфазных полную энергию сети можно измерять косвенным методом, то есть с помощью вольтметра и амперметра по схемам показанным выше. Если нагрузка трехфазной цепи будет симметричной, то можно применить такую формулу:

Полная мощность трехфазной сети

Uл – напряжение линейное, I- фазный ток.

Если же фазная нагрузка не симметрична, то производят суммирование мощностей каждой из фаз:

Полная мощность нессиметричной трехфазной сети

При измерении активной энергии в четырехпроводной цепи при использовании трех ваттметров, как показано ниже:

Схема подключения трехфазного ваттметра с нулевым проводом

Общей энергией потребляемой из сети будет сумма показаний ваттметров:

Активная мощность при измерении ваттметром

Не меньшее распространение получил и метод измерения двумя ваттметрами (применим только для трехпроводных цепей):

Схема подключения трехфазного ваттметра с без нулевого провода

Сумму их показаний можно выразить следующим выражением:

Сумма показаний ваттметров для трехпроводной цепи

При симметричной нагрузке применима такая же формула как и для полной энергии:

Активная мощность трехфазной цепи

Где φ – сдвиг между током и напряжением (угол фазового сдвига).

Измерение реактивной составляющей производят по той же схеме (смотри рисунок в)) и в этом случае она будет равна разности алгебраической между показателями приборов:

Измерение реактивной мощности ваттметром

Измерение реактивной мощности ваттметром будет равна

Если сеть не симметрична, то для измерения реактивной составляющей применяют два или три ваттметра, которые подключают по различным схемам.

Процесс измерения активной и реактивной мощности

Счетчиками индукционными или электронными производят измерения активной мощности цепи переменного напряжения. Они подключаются по тем же схемам что и ваттметры. Учет реактивной энергии в однофазных потребителей в нашей стране не ведется. Ее учет производят в трехфазных цепях крупных промышленных предприятий, потребляющих большие объемы электроэнергии. Счетчики активной энергии имеют маркировку СА, реактивной СР. Также широкое применение получают электронные счетчики электроэнергии.

 

Урок «Измерение мощности и электрической энергии»

«УТВЕРЖДАЮ»

Зам по УР ЕПТК

_______ Сикало Н.С.

ПЛАН УРОКА № _6_

Предмет: Электротехнические материалы и измерения

Группа № 501

«____»_____________2017г.

Тема урока: _______Измерение мощности и электрической энергии.____

Цели урока:

1. Образовательная: Общее понятие об измерении мощности и электрической энергии.

2.Развивающая:

развитие мышления, быстрого решения задач, используя разные методы

3.Воспитательная:

воспитание уважения, терпения, добросовестности, ответственности и качественного выполнения задания.

Тип урока:

Комбинированный

Метод урока: объяснительно-иллюстративный

Наглядные пособия: учебники, карточки, плакаты и т.п.

Средства обучения: —

Межпредметная связь: физика, производственное обучение

ХОД УРОКА

1.Организационный момент:

1.Приветствие

2.Чистота аудитории.

3.Качество присутствия учащихся на уроке

3.Проверка учебных принадлежностей учащихся

2. Проверка выполнения домашнего задания__ Устный опрос учащихся по пройденному материалу

1.Основные параметры электрических цепей?

2.Прямой метод измерения?

3.Косвенный метод измерения?

3.Подготовка к усвоению нового материала: __история изучения измерении мощности и электрической энергии_____

4.Первичная проверка понимания: __ вопросы по изучаемой теме

1.Общее понятие о мощности?

2.Понятие об электрической энергии?

3.Параметры измерении?

5. Объяснение нового материала: Лекция прилагается.

6. Закрепление новой темы ___ Выяснение неясных вопросов _

1.Измерение мощности?

2.Порядок измерения ваттметром?

3.Способ измерения электрической энергии?

4.Счетный механизм?

5.Виды счетчиков электрической энергии?

7. Подведение итогов урока: Оценка ответов и работы учащихся___

1.__________________________________________

2.__________________________________________

3.__________________________________________

4.__________________________________________

5.__________________________________________

6.__________________________________________

8. Задание на дом ____ Повторить пройденный_материал. Конспект Барановский В.А.,Банников Е.А. «Электротехнические работы»_стр40

Лекция

Измерение мощности. В цепях постоянного тока мощность измеряют электро- или ферродинамическим ваттметром. Мощность может быть также подсчитана перемножением значений тока и напряжения, измеренных амперметром и вольтметром.

В цепях однофазного тока измерение мощности может быть осуществлено электродинамическим, ферродинамическим или индукционным ваттметром. Ваттметр 4 (рис. 1) имеет две катушки: токовую 2, которая включается в цепь последовательно, и напряжения 3, которая включается в цепь параллельно.

Ваттметр является прибором, требующим при включении соблюдения правильной полярности, поэтому его генераторные зажимы (зажимы, к которым присоединяют проводники, идущие со стороны источника 1) обозначают звездочками.

Рис. 1. Схема для измерения мощности

Для расширения пределов измерения ваттметров их токовые катушки включают в цепь при помощи шунтов или измерительных трансформаторов тока, а катушки напряжения — через добавочные резисторы или измерительные трансформаторы напряжения.

Измерение электрической энергии. Способ измерения. Для учета электрической энергии, получаемой потребителями или отдаваемой источниками тока, применяют счетчики электрической энергии. Счетчик электрической энергии по принципу своего действия аналогичен ваттметру. Однако в отличие от ваттметров вместо спиральной пружины, создающей противодействующий момент, в счетчиках предусматривают устройство, подобное электромагнитному демпферу, создающее тормозящее усилие, пропорциональное частоте вращения подвижной системы. Поэтому при включении прибора в электрическую цепь возникающий вращающий момент будет вызывать не отклонение подвижной системы на некоторый угол, а вращение ее с определенной частотой.

Число оборотов подвижной части прибора будет пропорционально произведению мощности электрического тока на время, в течение которого он действует, т. е. количеству электрической энергии, проходящей через прибор. Число оборотов счетчика фиксируется счетным механизмом. Передаточное число этого механизма выбирают так, чтобы по показаниям счетчика можно было отсчитывать не обороты, а непосредственно электрическую энергию в киловатт-часах.

Наибольшее распространение получили ферродинамические и индукционные счетчики; первые применяют в цепях постоянного тока, вторые — в цепях переменного тока. Счетчики электрической энергии включают в электрические цепи постоянного и переменного тока так же, как и ваттметры.

Ферродинамический счетчик (рис. 2) устанавливают на э. п. с. постоянного тока. Он имеет две катушки: неподвижную 4 и подвижную 6. Неподвижная токовая катушка 4 разделена на две части, которые охватывают ферромагнитный сердечник 5 (обычно из пермаллоя). Последний позволяет создать в приборе сильное магнитное поле и значительный вращающий момент, обеспечивающий нормальную работу счетчика в условиях тряски и вибраций. Применение пермаллоя способствует уменьшению погрешности счетного механизма 2 от гистерезиса магнитной системы (он имеет весьма узкую петлю гистерезиса).

Чтобы уменьшить влияние внешних магнитных полей на показания счетчика, магнитные потоки отдельных частей токовой катушки имеют взаимно противоположное направление (астатическая система). При этом внешнее поле, ослабляя поток одной части, соответственно усиливает поток другой части и оказывает в целом небольшое влияние на результирующий вращающий момент, создаваемый прибором. Подвижная катушка 6 счетчика (катушка напряжения) расположена на якоре, выполненном в виде диска из изоляционного материала или в виде алюминиевой чаши. Катушка состоит из отдельных секций, соединенных с пластинами коллектора 7 (эти соединения на рис. 337 не показаны), по которому скользят щетки из тонких серебряных пластин.

Ферродинамический счетчик работает принципиально как двигатель постоянного тока, обмотка якоря которого подключена параллельно, а обмотка возбуждения — последовательно с потребителем электроэнергии. Якорь вращается в воздушном зазоре между полюсами сердечника. Тормозной момент создается в результате взаимодействия потока постоянного магнита 1 с вихревыми токами, возникающими в алюминиевом диске 3 при его вращении.

Для компенсации влияния момента трения и уменьшения благодаря этому погрешности прибора в ферродинамических счетчиках устанавливают компенсационную катушку или в магнитном поле неподвижной (токовой) катушки помещают лепесток из пермаллоя, который имеет высокую магнитную проницаемость при малой напряженности поля. При небольших нагрузках этот лепесток усиливает магнитный поток токовой катушки, что приводит к увеличению вращающего момента и компенсации трения. При увеличении нагрузки индукция магнитного поля катушки увеличивается, лепесток насыщается и его компенсирующее действие перестает возрастать.

При работе счетчика на э. п. с. возможны сильные толчки и удары, при которых щетки могут отскакивать от коллекторных пластин. При этом под щетками будет возникать искрение. Для его предотвращения между щетками включают конденсатор С и резистор R1. Компенсация температурной погрешности осуществляется с помощью термистора Rт (полупроводникового прибора, сопротивление которого зависит от температуры). Он включается совместно с добавочным резистором R2 параллельно подвижной катушке. Чтобы уменьшить влияние тряски и вибраций на работу счетчиков, их устанавливают на э. п. с. на резинометаллических амортизаторах.

Индукционный счетчик имеет два электромагнита (рис. 3,а), между которыми расположен алюминиевый диск 7. Вращающий момент в приборе создается в результате взаимодействия переменных магнитных потоков Ф1 и Ф2, созданных катушками электромагнитов, с вихревыми токами Iв1 и Iв2, индуцируемыми ими в алюминиевом диске.

В индукционном счетчике вращающий момент М должен быть пропорционален мощности P=UIcos?. Для этого катушку 6 одного из электромагнитов (токовую) включают последовательно с нагрузкой 5, а катушку 2 другого (катушку напряжения) — параллельно нагрузке. В этом случае магнитный поток Ф1 будет пропорционален току I в цепи нагрузки, а поток Ф2 — напряжению U, приложенному к нагрузке. Для обеспечения требуемого угла сдвига фаз ? между потоками Ф1 и Ф2 (чтобы sin? = cos?) в электромагните катушки напряжения предусмотрен магнитный шунт 3, через который часть потока Ф2 замыкается

Рис. 2. Ферродинамический счетчик электрической энергии

Рис. 3. Индукционный счетчик электрической энергии

помимо диска 7. Угол сдвига фаз между потоками Ф1 и Ф2 точно регулируется изменением положения металлического экрана 1, расположенного на пути потока, ответвляющегося через магнитный шунт 3.

Тормозной момент создается так же, как в ферродинамическом счетчике. Компенсация момента трения осуществляется путем создания небольшой несимметрии в магнитной цепи одного из электромагнитов с помощью стального винта.

Для предотвращения вращения якоря при отсутствии нагрузки под действием усилия, созданного устройством, компенсирующим трение, на оси счетчика укрепляется стальной тормозной крючок. Этот крючок притягивается к тормозному магниту 4, благодаря чему предотвращается возможность вращения подвижной системы без нагрузки.

При работе же счетчика под нагрузкой тормозной крючок практически не влияет на его показания.

Чтобы диск счетчика вращался в требуемом направлении, необходимо соблюдать определенный порядок подключения проводов к его зажимам. Нагрузочные зажимы прибора, к которым подключают провода, идущие от потребителя, обозначают буквами Я (рис. 3, б), генераторные зажимы, к которым подключают провода от источника тока или от сети переменного тока, — буквами Г.

Измерение электрической энергии. Индукционные счетчики — Студопедия

Как известно, электрическая энергия определяется выражением

,

где Р – мощность, потребляемая нагрузкой.

Энергия измеряется электрическими счетчиками. Для счетчиков переменного тока используются индукционные измерительные механизмы. Устройство счетчика индукционной системы показано на рис. 12.4.

Рис.12.4. Упрощенная конструкция индукционного однофазного счетчика.

Схема (рис. 12.5) поясняет принцип действия этого прибора.

 
 

Основными элементами счетчика являются: электромагниты 1 и 2, называемые, соответственно, параллельным и последовательным электромагнитом; алюминиевый диск, укрепленный на оси; постоянный магнит; счетный механизм и др. Схемы включения счетчика и ваттметра одинаковы. Обмотка электромагнита 2 выполняется из небольшого числа витков относительно толстого провода и включается в цепь последовательно с нагрузкой. Обмотка электромагнита 1, имеющая большое число витков, выполняется из тонкого провода и включается параллельно нагрузке.

Ток I2 в последовательной цепи счетчика создает магнитный поток ФI, который проходит через сердечник электромагнита 2, через сердечник электромагнита 1 и дважды пересекает диск. Ток I1 в параллельной цепи счетчика создает потоки ФU и ФL. Первый пересекает диск в одном месте (в середине между полюсами электромагнита 2). Поток ФL замыкается через боковые стержни электромагнита 1, не пересекает диска и непосредственного участия в создании вращающего момента не принимает. Называется он нерабочим магнитным потоком параллельной цепи в отличие от потока ФU , называемого рабочим.



Из-за больших воздушных зазоров на пути потоков ФI и ФU можно с достаточным приближением считать зависимость между этими потоками и токами I2 и I1 линейной, т.е.

ФI = kI I2; ФU = kU I1 = kU .

где U1 – напряжение на параллельной обмотке; ZU полное сопротивление параллельной обмотки.

Ввиду малости активного сопротивления параллельной обмотки по сравнению с ее индуктивным сопротивлением ХU можно принять ZU ХU = 2pfLU, где LU — индуктивность обмотки.

Тогда

ФU = kU U1 / 2pfLU = .

Вращающие моменты от взаимодействия потока ФU и тока I1, и потока ФI и тока I2, определяют вращающий момент, действующий на подвижную часть. Вывод формулы вращающего момента давать не буду, а напишу сразу окончательную формулу вращающего момента, которая выглядит следующим образом:


Мвр = kврU1I2 sin y,

где kвр = с kI ; y — сдвиг фаз между магнитными потоками ФU и ФI .

Если вектор тока I2 в последовательной обмотке отстает (предполагается индуктивный характер нагрузки) от вектора напряжения сети U1 на угол j, то y = p / 2 — j и sin y = cos j (добиваются специальными конструктивными мерами).

Тогда можно записать:

Мвр = kврU1I2 cos j = kврР,

т.е. вращающий момент счетчика пропорционален мощности переменного тока.

Для создания противодействующего момента, называемого в счетчиках тормозным, применяется постоянный магнит, между полюсами которого находится диск. Тормозной момент Мт создается от взаимодействия поля постоянного магнита с током в диске, образующемся при вращении диска в поле магнита.

Мт = kт ,

где – угловая скорость диска.

При установившейся равномерной угловой скорости диска Мвр = Мт можно записать

kврР = kт или Рdt =( kт / kвр ) da .

Интегрируя это последнее равенство в пределах интервала времени Dt = t2t1, получим Pt = W = CN,

где W – энергия, израсходованная в цепи за интервал времени Dt; N – число оборотов диска за этот же интервал времени; С – постоянная счетчика энергии, равная:

С = 2p kт / kвр .

Отсчет энергии производится по показаниям счетного механизма – счетчика оборотов (рис. 12.4). Единице электрической энергии (обычно 1кВт ч), регистрируемой счетным механизмом, соответствует определенное число оборотов подвижной части счетчика. Это соотношение, называемое передаточным числом А, указывается на счетчике.

Величина, обратная передаточному числу, т.е. отношение зарегистрированной энергии к числу оборотов диска, называется номинальной постоянной счетчика Сн (Сн = W / N). Значения А и Сн зависят только от конструкции счетного механизма и для данного счетчика остаются неизменными.

Под действительной постоянной счетчика С понимается количество энергии, действительно израсходованной в цепи за один оборот подвижной части. Эта энергия может быть измерена образцовыми приборами, например, ваттметром и секундомером.

Действительная постоянная в отличие от номинальной, зависит от режима работы счетчика, а также от внешних условий, например, температуры, частоты и т.д. Зная значение постоянных С и Сн , можно определить относительную погрешность счетчика по формуле

,

где – энергия, измеренная счетчиком, а W – действительное значение энергии, израсходованной в цепи.

По точности счетчики активной энергии делятся на классы точности 0.5, 1.0, 2.0, 2.5.

Совокупность двух или трех однофазных измерительных механизмов образуют трехфазный счетчик.

Промышленностью выпускаются счетчики типов:

Счетчики активной энергии СА3 — для трехпроводных цепей и СА4 для четырехпроводных цепей.

Электронные счетчики электрической энергии (ЭС).

ЭС обладают лучшими метрологическими характеристиками. В основу их работы положено использование статического преобразователя мощности в постоянное напряжение. При этом применяется двойная модуляция с преобразованием напряжения в частоту электрических импульсов и последующим интегрированием. Структурная схема ЭС активной энергии переменного тока (рис.12.6) содержит преобразователь мощности в напряжение (ПМН), преобразователь напряжения в частоту (ПНЧ) и счетчик импульсов (СИ).

ПМН содержит блоки широтно-импульсной (ШИМ) и амплитудно-импульсной (АИМ) модуляции. На вход блока ШИМ поступает напряжение, пропорциональное току нагрузки Iн, а на вход блока АИМ – напряжение на нагрузке Uн. С помощью схемы ШИМ напряжение U1 преобразуется в последовательность прямоугольных импульсов переменной длительности. С изменением величины U1 изменяется отношение разности длительностей импульсов Ти и интервалов между ними Тп к их сумме, т.е.

,

где k – постоянный коэффициент; ; — период следования импульсов.

Так как амплитуда импульсов в схеме АИМ изменяется пропорционально напряжению на нагрузке, а их длительность функционально связана с током нагрузки, в блоке АИМ производится перемножение входных сигналов. Среднее значение напряжения U3 на выходе схемы АИМпропорционально активной мощности Рн. С помощью ПНЧнапряжение U3 преобразуется в частоту импуль­сов, которая, таким образом, пропорциональна мощности Рн.

Выходные импульсы ПНЧподсчитываются счетчиком импульсов СИ,т. е. тем самым производится их интегрирование. Следователь­но, показания СИпропорциональны активной энергии W.

Серийно выпускаемые в настоящее время электронные счетчики активной энергии переменного тока имеют класс точности 0,5 и выше.

Измерение показателей качества электрической энергии

  1. Измерение качества электрической энергии
  2. Государственные стандарты
  3. Принцип работы анализатора качества электроэнергии
  4. Кто проводит исследования?
  5. Цели проверки
  6. Классификация проверок
  7. Многофункциональные измерительные приборы
  8. Показатели частоты
  9. Медленные отклонения в напряжении
  10. Колебания в напряжении сети
  11. Быстрые одиночные отклонения напряжения
  12. Несинусоидальность
  13. Коэффициент несимметрии

Измерение качества электрической энергии

Измерение качества электрической энергии осуществляется с помощью специальных устройств и приборов. Во время исследования фиксируется значения трансформаторов, вторичных токов и напряжения сети. Существуют различные виды анализаторов электроэнергии. В процессе проверки выявляются параметры энергосистемы, которые анализируются на соответствие ГОСТам и нормативной документацией.

Государственные стандарты

ГОСТ определяет ряд показателей качества электрической энергии:

  • отклонения частоты;
  • провалы напряжения и колебания;
  • напряжение импульсивное;
  • несимметричность внутри трехфазных систем;
  • несинусоидальность кривой.

Отклонения от установленных значений указывает на проблемы в работе оборудования. В таких ситуациях наблюдается снижение мощности и надежности оборудования, повышение расхода энергии и нерациональности использования ресурсов.

Принцип работы анализатора качества электроэнергии

Прибор выполняет функцию проверки величин и уровень соответствия требованиям. Принцип его работы основан на измерителе электрических величин. Аппарат фиксирует значения тока и напряжения за короткие интервалы времени.

Современные технологии позволяют получить исчерпывающую информацию о работе системы:

  • постоянное отклонение напряжения;
  • пиковые нагрузки и токи;
  • природа переходных процессов в сети;
  • фиксация времени с наибольшими потреблениями электрической энергии;
  • искажения кривых тока;
  • падения и провалы.

Анализаторы выпускаются в мобильной и стационарной форме. Они могут использоваться систематически или эпизодически, в зависимости от поставленной цели. Комплексная проверка корректности работы оборудования – это залог длительной и эффективной работы техники на предприятии. Своевременное выявление неполадок позволяет устранить неисправность до возникновения серьезных проблем.

Контроль за работой техники осуществляется с целью выявления дефектов в электрической сети и их устранения. Для выполнения задания требуется подсоединить анализатор к системе. Места контроля – это точки подключения к потребительской сети. При работе с простыми системами допускается подсоединение в местах, расположенных максимально близко к этим точкам.

Полученная информация обрабатывается с помощью математических алгоритмов. Это позволяет достигнуть ряда целей:

  • рассчитать параметры работы;
  • проанализировать качество электроэнергии;
  • установить количество энергии.

Показатели измеряются на определенном отрезке времени. Низкое напряжение – это самая частая причина плохого качества энергии. Это значение анализируется дважды в год. Другие нормы определяются один раз в 12 месяцев.

Кто проводит исследования?

Право проводить измерения имеют лаборатории с аттестатами Ростехнадзор. В службах квалифицированные работники, использующие сертифицированное оборудование. Точность результатов гарантируется высоким качеством используемой измерительной техники.

Оборудование проходит многочисленные проверки, перед началом эксплуатации. Класс точности, определяется соответствующими специалистами и технологами.

Цели проверки

Полученные результаты позволяют добиться соблюдения заданных в договоре поставщика параметров. Анализ обеспечивает получение данных для составления развернутого отчета о работе системы. Экспертиза выявляет перечень отклонений или их отсутствие. Полученный документ дает основания, для предъявления поставщику обоснованных претензий о несоответствии качества энергии общепринятым нормам. В результате вторая сторона договора устранит все проблемы, и выявленные нарушения в оговоренный промежуток времени.

Измерения обеспечивают расчет коэффициента рациональности использования электричества. Благодаря этому производство выходит на технологичный уровень работы с минимальным расходом ресурсов. При необходимости, из электрической сети устраняются объекты, работающие неэффективно или во вред всей системе.

Проводить исследования стоит для реальных и запланированных систем энергоснабжения. Экспертизу приурочивают к энергетическому аудиту промышленного объекта. Итоги проверки, дают данные для повышения уровня энергетической эффективности в промышленной сфере.

Полученные значения сохраняются и используются при проведении следующего аудита. Специалисты сравнивают данные и делают соответствующие выводы о работе системы.

Классификация проверок

В зависимости от цели контроль качества распределяется на 4 вида:

  • оперативный;
  • инспекционный;
  • диагностический;
  • коммерческий учет.

Виды анализа имеют свои особенности, характеристики и целевое назначение. Необходимость проведения той или иной инспекции определяется узкими специалистами на основе общепринятых стандартов работы электрических сетей.

Диагностический вид контроля, предназначен для решения спорных вопросов между поставщиком и потребителем. Он проводится в местах распределения электричества между двумя сторонами договора. На основе полученных данных, создается официальный отчет, позволяющий доказать невыполнение правил соглашения. После рассмотрения отчета, виновная сторона будет обязана устранить нарушения и повысить качество электроэнергии.

Инспекционный контроль проводится сертифицированными службами с целью выявления отклонений от официальных требований и нормативов. Аудит является обязательным для всех сторон договора и проводится с определенной периодичностью.

При возникновении дефектов проводится оперативный контроль. Он выявляет реальные и потенциальные угрозы понижения качества электричества в сети. В результате проверки проводятся мероприятия по устранению нарушений работы и профилактические процедуры.

Коммерческий учет, предназначен для рассмотрения ставок и тарифов поставщика. Анализ осуществляется в местах раздела электросети между двумя сторонами договора. Исследование назначается при необходимости определения уровня надбавок и скидок за предоставленное качество ресурса.

Многофункциональные измерительные приборы

Современные многофункциональные приборы обеспечивают получение результатов не только в цифровом формате, но и в денежном эквиваленте. Модели отличаются рядом показателей:

  • задачи;
  • область применения;
  • функционал.

Модели нового поколения ускоряют процесс получения значений по прогнозированию, фиксации, устранению и предотвращению возникновения новых проблем в работе системы. С помощью специальных аппаратов, специалисты определяют механические и электрические параметры.

Отсутствие контроля приводит к частым неполадкам, сбоям энергосистемы и чрезмерным расходам электричества. Общего показателя эффективности работы сети недостаточно для проведения глубинного анализа. Большие предприятия обращаются в сертифицированные службы для осуществления контроля над всеми компонентами рабочей зоны.

Важно анализировать нагрузки в динамике. Это позволит выявить уровень износа электросети и своевременно провести мероприятия по устранению потенциальных угроз. При выявлении вины поставщика, потребитель будет лишен необходимости брать на себя обязанность по решению проблем.

Показатели частоты

Отклонения в диапазоне от 50 Гц и выше допускаются при серьезных авариях. По нормативам, показатель не должен превышать 0,4 Гц во время работы сети. При использовании автономных генераторов требования смягчаются (±1 Гц и ±5 Гц).

Эти сети не способны поддерживать высокую стабильность. В процентном соотношении предельно допустимое значение составляет 10%. Нормальный показатель не превышает 5%.

Медленные отклонения в напряжении

Интервал изменений превышает 1 минуту. При анализе определяется промежуток времени, на протяжении которого напряжение отклонялось на 10% от номинального показателя (220 и 380 для бытовых сетей). Дискретность при этом составляет 10 минут. Замеры проводятся на протяжении недели.

Колебания в напряжении сети

Основу оценки этого значения составляет понятие фликера. Он характеризует то, как человек воспринимает мерцания света от источника. Выделяют длительную и кратковременную фазу – 2 часа и 10 минут соответственно. Обе величины не должны превышать 1,38 и 1,0 в разрезе недельных измерений. Для расчета показателей применяются сложные формулы.

Быстрые одиночные отклонения напряжения

Одиночные колебания – это случайные изменения. Возникновения отклонений свидетельствуют о переключении электроустановок или незначительных нарушениях в работе сети (сбои или далекие короткие замыкания в системе). Эти колебания относят к провалам перенапряжения и напряжения. В таблице определены общепринятые нормативные показатели.

Несинусоидальность

Наличие импульсивного тока в сети, приводит к ряду изменений в системе параметров. Наблюдается изменение кривой напряжения, которая раскладывается на основную и частотную. Возникновение гармоник может нарушить работы полупроводниковых приборов. Для устранения такой угрозы следует контролировать уровень этого параметра.

Коэффициент несимметрии

Это один из основных параметров при оценке качества работы в трехфазных и двухфазных сетях. Превышение коэффициента, наблюдается при неравномерном распределении нагрузки по фазам. Параметр регламентирован ГОСТом и используется при проведении любых проверок сети.

Не все процессы происходят систематически. Существует ряд характеристик, которые фиксируются в случайных ситуациях. Для их возникновения требуются определенные условия и совпадения по сопутствующим изменениям.

Прерывание напряжения случается во время аварий или плановых ремонтных работ. Провалы возникают при подключении оборудования высокой мощности, или коротких замыканиях. Перенапряжения фиксируются по ряду причин:

  • короткие замыкания;
  • резкое снижение нагрузки;
  • обрывы нейтральных проводников;
  • замыкания на землю.

При воздействии молний происходят импульсивные перенапряжения.

Минимальный интервал измерений составляет неделю. За 7 дней прибор собирает достаточное количество информации для подготовки точных результатов. Математический алгоритм исключает риск ошибки и позволяет автоматизировать процесс измерений. В результате пользователь получает усредненные значения и определяет основные проблемы в работе сети.

Измерение основных электрических величин

1. Измерение электрического тока

Электрический ток измеряется амперметром.

Если измеряемый ток не превышает пределов измерения данного амперметра, то его можно измерить включением амперметра непосредственно в цепь (рис. 1).

Для измерения больших токов используются шунты на постоянном токе (рис. 2) и трансформаторы тока на переменном токе (рис. 3).

Рис. 1. Схема включения амперметра непосредственно в цепь

Рис. 2. Схема включения амперметра с шунтом

Рис. 3. Схема включения амперметра с помощью трансформаторов тока: Л1, Л2 — зажимы первичной обмотки трансформатора тока; И1, И2 — зажимы вторичной обмотки трансформатора

2. Измерение электрического напряжения

Электрическое напряжение измеряется вольтметром.

Если измеряемое напряжение не превышает пределов измерения данного вольтметра, то оно может быть измерено путем непосредственного включения вольтметра в сеть (рис. 4).

Для расширения пределов измерения применяют добавочное сопротивление при измерении постоянного напряжения и трансформаторы напряжения (можно использовать и добавочное сопротивление) при измерении переменного напряжения (рис. 5 и 46).

Необходимо иметь в виду, что должно быть использовано то добавочное сопротивление, которое предназначено для данного вольтметра.

Рис. 4. Схема включения вольтметра непосредственно в цепь

Рис. 5. Схема включения вольтметра с добавочным сопротивлением

Рис. 6. Схема включения вольтметра с помощью трансформатора напряжения: А, Х — зажимы первичной обмотки трансформатора напряжения; а, х — зажимы вторичной обмотки трансформатора напряжения; ПР — плавкие предохранители

3. Измерение электрической мощности

Электрическая мощность измеряется ваттметром — прибором, имеющим две обмотки: токовую и напряжения (рис. 7).

Шкала ваттметра проградуирована в ваттах или киловаттах.

Расширение пределов измерения на постоянном токе по напряжению производится с помощью добавочных сопротивлений — шунтов. При измерениях на переменном токе расширение пределов производится с помощью трансформаторов тока и напряжения (рис. 8). При этом необходимо соблюдать правильность включения генераторных клемм (*) ваттметра.

Измерение мощности в трехфазных трехпроводных сетях производится с помощью двух однофазных ваттметров, включенных в две фазы по схеме (рис. 9). В трехфазных четырехпроводных сетях измерение активной мощности производится с помощью трех однофазных ваттметров (рис. 10) или одним трехэлементным ваттметром.

Расширение пределов измерения производится с помощью трансформаторов тока и напряжения. В этих же сетях для измерения мощности применяется трехфазный ваттметр (рис. 11).

Рис. 7. Схема включения однофазного ваттметра: 1 — последовательная (токовая) катушка; 2 — параллельная (напряжения) катушка; rg — добавочное сопротивление

Рис. 8. Схема включения ваттметра с помощью трансформаторов тока и напряжения

Рис. 9. Схема измерения активной мощности в трехфазной трехпроводной сети двумя ваттметрами: Робщ = Р1 + Р2

Рис. 10. Схема измерения активной мощности в трехфазной четырехпроводной сети тремя ваттметрами: Робщ = Р1 + Р2 + Р3

Рис. 11. Схема включения трехфазного ферродинамического ваттметра

4. Измерение электроэнергии

Выбор приборов. Учет электроэнергии в сетях переменного тока производится с помощью счетчика индукционной системы. Индукционные счетчики выпускаются в однофазном и трехфазном исполнении, причем последние бывают двух модификаций — для трехи четырехпроводной сети.

Измерение расхода активной и реактивной энергии в трехфазной сети может в принципе производиться счетчиками одного и того же типа при включении их по соответствующим схемам.

Чтобы исключить возможность неправильного подключения счетчика и обеспечить правильный учет расхода активной и реактивной энергии, промышленностью выпускаются специальные счетчики активной и реактивной энергии.

Для измерения в трехфазных сетях активной энергии применяются счетчики типов СА3, СА4, СА4У; реактивной энергии — СР3, СР4, СР4У. Цифра 3 в обозначении типа счетчика указывает, что он предназначен для трехпроводной сети, 4 — для четырехпроводной.

Счетчики типов СА4У, СР4У — универсальные, выполняются для включения только с измерительными трансформаторами. Концы обмоток тока и напряжения этих счетчиков выведены на отдельные изолированные друг от друга зажимы. Благодаря этому имеется возможность включать токовые цепи счетчиков активной и реактивной энергии на общие трансформаторы тока.

Остальные типы трехфазных счетчиков Ч трансформаторного и непосредственного (прямого) включения.

Для учета энергии в цепях однофазного тока используются счетчики типа СО. Счетчики активной энергии выпускаются классов точности 1,0; 2,0; 2,5; счетчики реактивной энергии — классов точности 2,0; 2,5; 4,0.

Погрешности измерений электроэнергии, требования к измерительным трансформаторам. При непосредственном включении счетчика в сеть погрешность измерения расхода электроэнергии определяется классом точности самого счетчика. Включение счетчика через измерительные трансформаторы вносит дополнительную погрешность, и точность измерений уменьшается.

Для учета электроэнергии применяются трансформаторы тока класса 0,2; 0,5; 1. Обеспечить необходимую точность измерений можно при условии, что сопротивление токовых катушек всех счетчиков и соединительных проводов, включенных во вторичную цепь, не превышает допустимую номинальную нагрузку трансформаторов тока.

Для ориентировочных расчетов следует принимать сопротивление токовой катушки счетчика равным 0,05 Ом, а сопротивление соединительных проводов — 0,2 Ом.

Рассчитанные из этих соображений наименьшие допустимые сечения соединительных проводов указанных цепей приведены в таблице.

Таблица 4.1. Наименьшие допустимые сечения проводов от трансформаторов тока к счетчикам

Длина провода в один конец, м

До 10

10—15

15—25

25—35

35—50

Наименьшее сечение медных проводов, мм2

2,5

4

6

8

10

Трансформаторы напряжения, работающие в цепях учета электроэнергии, должны быть класса 0,5. Для питания счетчиков применяются трехфазные и однофазные трансформаторы напряжения. Последние включаются в звезду или по схеме открытого треугольника. Для защиты трансформаторов напряжения предохранители устанавливаются в цепь первичной высоковольтной обмотки; в цепь вторичной обмотки, питающей счетчики, ставить предохранители запрещается. Вторичные обмотки и корпус трансформаторов напряжения заземляются, также заземляются вторичные обмотки трансформаторов тока (одноименные зажимы). Класс точности счетчиков и измерительных трансформаторов, предназначенных для целей коммерческого и технического (контрольного) учета, должен быть

не ниже указанного в таблице.

Таблица 4.2. Выбор классов точности счетчиков и измерительных трансформаторов

Наименование счетчиков

Счетчики непосредственного включения

Счетчики, включаемые через разделительные трансформаторы

Класс точности измерительных трансформаторов для счетчиков

активный

реактивный

активный

реактивный

активный

реактивный

Коммерческий учет

2,5

2,5

2,0

2,5

0,5

0,5

Технический (контрольный) учет

2,5

2,5

2,0

2,5

0,5 и 1

0,5 и 1

Схемы включения счетчиков. С целью исключения ошибок учета, связанных с необходимостью пересчета показаний счетчика и введением коэффициентов, обусловленных схемой включения, рекомендуется использовать счетчики в строгом соответствии с назначением и подключать их по схемам, предусмотренным для данного типа счетчика и изображенным на крышке, закрывающей выводные зажимы прибора

Поскольку в основу схем включения счетчиков положены соответствующие схемы измерения мощности, счетчики будут обеспечивать точный учет расхода электроэнергии только для тех условий (равномерная или неравномерная нагрузка), в которых аналогичная схема подключения ваттметров обеспечивает необходимую точность.

Ниже в качестве примеров приведены несколько типов схем включения счетчиков. При подключении счетчика через трансформаторы тока следует помнить, что к генератору (сторона питания) первичная обмотка подключается зажимом Л1, а вторичная обмотка зажимом И1 включается на генераторный вход счетчика.

Рис. 12. Схема включения однофазного счетчика

Рис. 13. Схема прямого включения трехфазного счетчика активной энергии

Рис. 14. Схема включения трехфазного счетчика реактивной энергии

Рис. 15. Схема включения трехфазного счетчика активной энергии через трансформаторы тока

Рис. 16. Схема совместного включения универсальных счетчиков активной и реактивной энергии

Измерение мощности и энергии — Студопедия

Измерение мощности.В цепях постоянного тока мощность можно измерить косвенным методом с по­мощью амперметра и вольтметра

Р = UI,

 
 

но более точный резуль­тат дает измерение мощности электродинамическим ваттметром, которым измеряется мощность независимо от рода тока. Внешний вид (а) и схема включения ваттметра (б) показаны на рис.16. Ваттметр имеет четыре зажима для подключения подвижной и неподвижной катушек в цепь. Неподвижная катушка включается в цепь последовательно и называется токовой катушкой, а под­вижная катушка вместе с добавочным

Рис.16.1. Однофазный ваттметр: а —внешний вид; б —схема включения в электрическую цепь переменного тока.

сопротивлением гд — па­раллельно нагрузке и называется катушкой напряжения. Начало катушек отмечено звездочкой *I и *U, конец токо­вой катушки 5 А, а конец обмотки напряжения —150V. Так как направление отклонения указательной стрелки ваттметра зависит от взаимного направления токов в катушках, то выводы *I и *U подключаются к источнику тока, а выводы 5 А и 150V—к на­грузке. Ввиду того что выводы *I и *U подключаются к одному и тому же проводу, их можно соединить между собой проводником, что и делается на практике при измерении мощности в цепи по­стоянного тока и активной мощности в цепи переменного тока.

Измерение энергии.Различают следующие способы контроля расхода электроэнергии: 1. Косвенный способ. В этом случае измеряют косвенные параметры, а расход электроэнергии определяют расчетом. Так например, расход электроэнергии в цепях постоянного тока определяется по формуле:



W = U I t(16.1),

где U — напряжение на приемнике электроэнергии I — ток в приемнике t— время прохождения тока.

Т.о. для измерения расхода электроэнергии параллельно приемнику нужно включить вольтметр и измерить напряжение U, последовательно приемнику включить амперметр и измерить силу тока I . Время — t измеряется с помощью хронометра. Сняв показания с вольтметра, амперметра и хронометра расход электроэнергии определяют по формуле (16.1). В цепях переменного тока расход электроэнергии определяется по формуле (16.2)

W = U I t cosφ(16.2)

Т.о. для косвенного измерения расхода электроэнергии в данном случае, кроме вольтметра, амперметра и хронометра нужно включить фазометр для измерения коэффициента мощности cosφ.

2. Непосредственный способ. Этот способ используется в цепях переменного тока. В этом случае для измерения расхода электроэнергии используется индукционный счетчик электрической энергии. Счетчик представляет собой суммирующий прибор. Основное отличие его от стрелочного прибора состоит в том, что угол поворота его подвижной части не ограничиваемый пружиной, нарастает и показания счетчика суммируются. Каждому обороту подвижной части счетчика соответствует определенное количество израсходованной энергии. Счетчик включается в Рис. 16.2 электрическую цепь также как ваттметр (рис. 16, 1), т.е. его токовая обмотка (3) включается последовательно с нагрузкой и контролирует силу тока в нагрузке, а обмотка напряжения (2) включается параллельно нагрузке и контролирует напряжение на нагрузке. Время контролируется за счет количества оборотов диска.



Что такое счетчик энергии? — Определение, конструкция, работа и теория

Определение: Счетчик , который используется для измерения , энергия использует от электрической нагрузки известен как счетчик энергии. энергия — это общая мощность , потребляемая и используемая нагрузкой в ​​конкретном интервале из времени . Он используется в цепях переменного тока бытовых и промышленных переменного тока для измерения потребляемой мощности.Счетчик дешевле , дороже и точный .

Строительство счетчика энергии

Конструкция однофазного счетчика электроэнергии показана на рисунке ниже.

energymeter

Счетчик энергии состоит из четырех основных частей. Они

  1. Система привода
  2. Система перемещения
  3. Тормозная система
  4. Система регистрации

Подробное описание их частей написано ниже.

1.Система привода — Электромагнит является основным компонентом системы привода. Это временный магнит, который возбуждается током, протекающим через их катушку. Сердечник электромагнита состоит из слоистой кремнистой стали. Система привода имеет два электромагнита. Верхний называется шунтирующим электромагнитом, а нижний — последовательным электромагнитом.

Последовательный электромагнит возбуждается током нагрузки, протекающим через токовую катушку. Катушка шунтирующего электромагнита напрямую связана с источником питания и, следовательно, пропускает ток, пропорциональный шунтирующему напряжению.Этот змеевик называется змеевиком давления.

Центральный край магнита имеет медную ленту. Эти полосы регулируются. Основная функция медной ленты — выравнивать поток, создаваемый шунтирующим магнитом, таким образом, чтобы он был точно перпендикулярен подаваемому напряжению.

2. Система перемещения — Система перемещения представляет собой алюминиевый диск, установленный на валу из сплава. Диск помещен в воздушный зазор двух электромагнитов. Вихревой ток индуцируется в диске из-за изменения магнитного поля.Этот вихревой ток отсекается магнитным потоком. Взаимодействие магнитного потока и диска вызывает отклоняющий момент.

Когда устройства потребляют энергию, алюминиевый диск начинает вращаться, и после некоторого количества оборотов на диске отображается единица измерения, используемая нагрузкой. Число оборотов диска подсчитывается через определенный интервал времени. На диске измеряется энергопотребление в киловатт-часах.

3. Тормозная система — Постоянный магнит используется для уменьшения вращения алюминиевого диска.Алюминиевый диск индуцирует вихревые токи из-за их вращения. Вихревой ток сокращает магнитный поток постоянного магнита и, следовательно, создает тормозной момент.

Этот тормозной момент противодействует движению дисков, тем самым снижая их скорость. Постоянный магнит регулируется, благодаря чему тормозной момент также регулируется путем перемещения магнита в другое радиальное положение.

4. Регистрация (счетный механизм) — Основная функция регистрирующего или счетного механизма заключается в регистрации количества оборотов алюминиевого диска.Их вращение прямо пропорционально энергии, потребляемой нагрузками в киловатт-часах.

Вращение диска передается стрелкам на разных циферблатах для записи различных показаний. Показание в кВт · ч получается умножением числа оборотов диска на постоянную счетчика. Рисунок циферблата показан ниже.

pointer-type-register

Работа счетчика энергии

Счетчик энергии имеет алюминиевый диск, вращение которого определяет потребляемую мощность нагрузки.Диск помещается между воздушным зазором последовательного и шунтирующего электромагнита. Шунтирующий магнит имеет катушку давления, а последовательный магнит — катушку тока.

Катушка давления создает магнитное поле из-за напряжения питания, а катушка тока создает его из-за тока.

Поле, создаваемое катушкой напряжения, отстает на 90º от магнитного поля катушки тока, из-за чего в диске индуцируется вихревой ток. Взаимодействие вихревого тока и магнитного поля вызывает вращающий момент, который воздействует на диск.Таким образом, диск начинает вращаться.

Сила на диске пропорциональна току и напряжению катушки. Постоянный магнит контролирует Их вращение. Постоянный магнит препятствует движению диска и выравнивает его по потребляемой мощности. Циклометр считает вращение диска.

Теория счетчика энергии

Катушка давления имеет такое количество витков, которое делает ее более индуктивной. Из-за небольшого воздушного зазора длина пути их магнитного сопротивления очень меньше.Ток I p течет через катушку давления из-за напряжения питания и отстает на 90º.

energy-meter

I p производит два Φ p , которые снова делятся на Φ p1 и Φ p2 . Основная часть потока Φ p1 проходит через боковой зазор из-за низкого магнитного сопротивления. Поток Φ p2 проходит через диск и создает крутящий момент, который вращает алюминиевый диск.

Поток Φ p пропорционален приложенному напряжению, и он отстает на угол 90º.Поток переменный и, следовательно, индуцирует вихревой ток I ep в диске.

Ток нагрузки, проходящий через токовую катушку, индуцирует магнитный поток Φ с . Этот поток вызывает на диске вихревой ток I es . Вихревой ток I es взаимодействует с потоком Φ p , а вихревой ток I ep взаимодействует с Φ s для создания другого крутящего момента. Эти крутящие моменты противоположны по направлению, и чистый крутящий момент является разницей между ними.

Векторная диаграмма счетчика энергии представлена ​​на рисунке ниже.

phasor-diagram

Пусть
V — приложенное напряжение
I — ток нагрузки
∅ — фазовый угол тока нагрузки
I p — угол давления нагрузки
Δ — фазовый угол между напряжением питания и магнитным потоком катушки давления
f — частота
Z — импеданс вихревого тока
∝ — фазовый угол вихретоковых цепей
E ep — вихревой ток, индуцированный магнитным потоком
I ep — вихревой ток из-за магнитного потока
E ev — вихревой ток из-за потока
I es — вихревой ток из-за магнитного потока

Чистый крутящий момент привода выражается как

energy-meter-equation-1

где K 1 — постоянная

Φ 1 и Φ 2 — фазовый угол между потоками.Для счетчика энергии мы берем Φ p и Φ s .

β — фазовый угол между потоками Φ p и Φ p = (Δ — Φ), поэтому

energy-meter-equation-2 energy-meter-equation-3

Если f, Z и α постоянные,

equation-44

Если N постоянная скорость, тормозной момент

equation-6

В установившемся режиме скорость приводного момента равна тормозному моменту.

equation-7 Если Δ = 90º,

Скорость, equation-8

Скорость вращения прямо пропорциональна мощности.

equation-9

Если Δ = 90º, общее количество оборотов

equation-10

Трехфазный счетчик энергии используется для измерения большой потребляемой мощности.

.

Что такое электрическая энергия? Определение и Единица

Определение: Энергия, вызываемая движением электронов из одного места в другое. Такой тип энергии называется электрической энергией. Другими словами, электрическая энергия — это работа, совершаемая движущимися потоками электронов или зарядов. Электрическая энергия — это форма кинетической энергии, потому что она вырабатывается движением электрических зарядов. Чем быстрее движутся заряды, тем больше энергии они несут.

Рассмотрена схема, изображенная на рисунке ниже. Когда на цепь подается разность потенциалов P , через нее протекает ток (I ампер) в течение определенного периода t секунд. Напряжение, приложенное к цепи, равно отношению работы, совершаемой электрическим зарядом, к количеству электрических зарядов, присутствующих в цепи. Это выражается формулой, показанной ниже.

electrical-energy-

electrical-energy-equation-1 Таким образом, работа выполнена или увеличена электроэнергия

electrical-energy-equation-2 Единица электрической энергии

Базовая единица электрической энергии — джоуль (или ватт-секунда).
Если напряжение равно одному вольту, ток равен одному амперу, а время равно одной секунде, тогда электрическая энергия равна одному джоулю.

Следовательно, энергия, затрачиваемая в электрической цепи, считается равной одному джоулю (или ватт-секундам), если в цепи в течение одной секунды протекает ток в один ампер, когда к ней приложена разность потенциалов в один вольт.

Коммерческой или практической единицей энергии является киловатт-час ( кВтч), которая также известна как Торговая палата (B.О.Т.) шт.

electrical-energy-equation-3 Обычно один кВтч называется одной единицей.

.

2,521 Измерение электроэнергии Фото

Счетчик электроэнергии. Электрический блок. Счетчик электроэнергии. Блок обслуживания электрика

Набор электрических инструментов на деревянных фоне. Комплектующие для инженерных работ, энергетическая концепция. Набор электрического инструмента на деревянных фоне. Аксессуары для

Крупный план запертого электрического металлического светло-голубого шкафа с предупреждающим знаком снаружи на стене дома.Измерение. Концепция экономии инструмента и энергии

Электросчетчик, измеряющий потребление мощности. Инструмент измерения электрического счетчика ватт-часов на полюсе, уличное электричество для использования в доме. Монитор бытовой техники дома

Электросчетчик, измеряющий потребление мощности. Инструмент измерения электрического счетчика ватт-часов на полюсе, уличное электричество для использования в доме. Монитор бытовой техники дома

Счетчик электроэнергии.Блок обслуживания электрика

Счетчик электроэнергии. Пара электрических блоков. В ящике

Напряжение 24 В постоянного тока Возможность подключения для измерения на клеммах электрической панели управления, клеммы, измерение напряжения

Электрические измерения. Электрик выполняет измерения напряжения с помощью электрического мультиметра

Настройка расхода электроэнергии на майнинг.Программист настраивает установку для майнинга криптовалюты, держит ваттметр, измеряет электрические параметры

Измерение качества электроэнергии для электрической части. И аксессуары в шкафу управления

Измерение качества электроэнергии для электрической части. И аксессуары в шкафу управления

Счетчик электроэнергии. Блок техника-электрик.Счетчик электроэнергии. Блок обслуживания электрика

Электрооборудование. Счетчик энергии — это устройство, измеряющее количество электроэнергии, потребляемой жилым домом, предприятием или.

с электрическим приводом

Набор электрических инструментов на деревянных фоне. Комплектующие для инженерных работ, энергетическая концепция. Набор электрического инструмента на деревянных фоне. Аксессуары для

Измерение качества электроэнергии для электрической части.И аксессуары в шкафу управления

Электросчетчик для измерения напряжения и электрического сопротивления. Измерение проводимости стеклянных предохранителей. Светлый фон, черный, схема, крупный план, крупным планом

Измерение качества электроэнергии для электрической части. И аксессуары в шкафу управления

Электрооборудование. Счетчик энергии — это устройство, измеряющее количество электроэнергии, потребляемой жилым домом, предприятием или.

с электрическим приводом

Измерение качества электроэнергии для электрической части. И аксессуары в шкафу управления

Электрооборудование. Счетчик энергии — это устройство, измеряющее количество электроэнергии, потребляемой жилым домом, предприятием или.

с электрическим приводом

Измерение напряжения в розетке мультиметром на белом фоне

Измерение качества электроэнергии для электрической части.И аксессуары в шкафу управления

Счетчик электроэнергии. Электрический блок, изолированные на белом фоне

Набор электрических инструментов на деревянных фоне. Комплектующие для инженерных работ, энергетическая концепция. Набор электрического инструмента на деревянных фоне. Аксессуары для

Электрический прибор для промышленного измерения времени. Старый счетчик переключения электроприборов.Темный фон

Электрический прибор для промышленного измерения времени. Старый счетчик переключения электроприборов. Темный фон

Электрический прибор для промышленного измерения времени. Старый счетчик переключения электроприборов. Темный фон

Электрический прибор для промышленного измерения времени. Старый счетчик переключения электроприборов.Темный фон

Электрический прибор для промышленного измерения времени. Старый счетчик переключения электроприборов. Темный фон

Электрический прибор для промышленного измерения времени. Старый счетчик переключения электроприборов. Темный фон

Электрический прибор для промышленного измерения времени. Старый счетчик переключения электроприборов.Темный фон

Электрический прибор для промышленного измерения времени. Старый счетчик переключения электроприборов. Темный фон

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *