Индукция формулы: Электромагнитная индукция | Формулы по физике

Содержание

Формула индукции

В этом разделе мы рассмотрим только три вида индукции: электромагнитную индукцию, индукцию магнитного поля и электрическую индукцию и основные формулы, при помощи которых данные виды индукции вычисляют.

Формула индукции электрического поля

Электрическая индукция (или вектор электрического смещения ()) – это одна из основных векторных характеристик электрического поля. Формулой определяющей вектор электрической индукции является выражение:

   

где – вектор напряженности электрического поля; – вектор поляризации; – электрическая постоянная.

Для изотропного вещества индукция электрического поля связана с напряженность это поля как:

   

где – диэлектрическая проницаемость вещества.

Самой распространённой формулой, при помощи которой находят величину вектора индукции электростатического поля, является теорема Остроградского – Гаусса:

   

Поток () вектора электростатической индукции () в диэлектрике через произвольную замкнутую поверхность равен сумме свободных зарядов, которые находятся внутри рассматриваемой поверхности. В данной форме теорема Гаусса выполняется и для однородной и изотропной среды, так и для неоднородной анизотропной.

Формула вектора индукции магнитного поля

Модуль вектора равен частному от деления максимальной силы Ампера (), с которой магнитное поле оказывает воздействие на отрезок проводника с током (I) к произведению силы тока на длину проводника ():

   

На заряженную частицу, движущуюся в магнитном поле, действует сила Лоренца. По величине ее воздействия на заряд также можно установить модуль вектора :

   

где – модуль силы Лоренца; q – заряд частицы, движущейся со скоростью v в магнитном поле; – это угол между векторами и . Направления , векторов и связаны между собой правилом левой руки.

Формулой, которая определяет величину вектора магнитной индукции в конкретной точке магнитного поля можно считать следующее выражение:

   

где – максимальный вращающий момент, действующий на рамку, которая обладает магнитным моментом , равным единице, если нормаль к рамке перпендикулярна направлению поля.

Основными законами, которыми пользуются чаще всего для расчета магнитных полей, являются: закон Био-Савара-Лапласа и теорема о циркуляции вектора магнитной индукции.

Формула электромагнитной индукции

Если проводник помещен в переменное магнитное поле, то в нем возникает электродвижущая сила – это сущность явления электромагнитной индукции.

Основной закон электромагнитной индукции состоит в следующем: ЭДС электромагнитной индукции () в контуре, помещенном в переменное магнитное поле, равна по величине скорости изменения магнитного потока (), который проходит через поверхность, которую ограничивает рассматриваемый контур. При этом знаки ЭДС и скорости изменения магнитного потока противоположны.

В системе международных единиц (СИ) закон электромагнитной индукции записывают так:

   

где – скорость изменения магнитного потока сквозь площадь, которую ограничивает контур. (Часто индекс у магнитного потока опускают и обозначают его Ф). Когда вычисляют ЭДС индукции и магнитный поток, учитывают то, что направление нормали к плоскости контура () и направление его обода связаны. Вектор должен быть направлен так, чтобы из его конца обход контура проходил против часовой стрелки.

Примеры решения задач по теме «Индукция»

Формулы электромагнитной индукции

Если проводник замкнут, то есть является контуром, то в нем появляется ток индукции. Явление было открыто в 1831 г. М. Фарадеем.

Основной закон электромагнитной индукции

Основной формулой, при помощи которой определяют ЭДС индукции (), является закон Фарадея – Максвелла, больше известный как основной закон электромагнитной индукции (или закон Фарадея). В соответствии с данным законом, электродвижущая сила индукции в контуре, находящемся в переменном магнитном поле, равна по модулю и противоположна по знаку скорости изменения магнитного потока () через поверхность, которую ограничивает рассматриваемый контур:

   

где – скорость изменения магнитного потока. Полная производная присутствующая в формуле (1) охватывает весь спектр причин изменения магнитного потока через поверхность контура. Знак минус в формуле (1) отвечает правилу Ленца. В виде (1) формула ЭДС записана для международной системы единиц (СИ), в других системах вид закона может отличаться.

При равномерном изменении магнитного потока основной закон электромагнитной индукции записывают как:

   

Формулы ЭДС индукции для частных случаев

ЭДС индукции для контура имеющего N витков, находящегося в переменном магнитном поле можно найти как:

   

где – потокосцепление.

Если прямолинейный проводник движется в однородном магнитном поле, то в нем появляется ЭДС индукции, равная:

   

где v – скорость движения проводника; l – длина проводника; B – модуль вектора магнитной индукции поля; .

Разность потенциалов (U) на концах прямого проводника, движущегося в однородном магнитном поле с постоянной скоростью будет равна:

   

где – угол между направлениями векторов и .

При вращении плоского контура с постоянной скоростью в однородном магнитном поле вокруг оси, которая лежит в плоскости контура в нем появляется ЭДС индукции, которую можно вычислить как:

   

где S – площадь, которую ограничивает виток; – поток самоиндукции витка; — угловая скорость; () – угол поворота контура. Необходимо заметить, что формула (5) применима, в случае, если ось вращения составляет прямой угол с направлением вектора внешнего магнитного поля .

Если вращающаяся рамка обладает N витками, при этом самоиндукцией рассматриваемой системы можно пренебречь, то:

   

Если проводник неподвижен в переменном магнитном поле, то ЭДС индукции можно найти как:

   

Примеры решения задач по теме «Электромагнитная индукция»

Индуктивность: формула, единица измерения

Индуктивность – это элемент цепи, где происходит накопление энергии от магнитного поля. Так происходит запас поля или его преобразование в иные виды энергий. Самым идеальным примером служит катушка индуктивности. В ней происходит запасание поля и его дальнейшее преобразование в энергию других видов, в том числе и тепловую. Способность накапливать магнитное поле и является индуктивностью. Индуктивность напрямую связана с электромагнитной индукцией, статья о которой, также есть на нашем сайте. В данной статье будет описано данное физическое явление, как оно происходит, а также как используется на практике, в чем измеряется и как можно рассчитать физические характеристики. Дополнениями служат два ролика и одна статья, по выбранной теме.

Что такое индуктивность.

Что такое индуктивность.

 Индуктивность в цепи переменного тока

Прохождение электрического тока по проводнику или катушке сопровождается появлением магнитного поля. Рассмотрим электрическую цепь переменного тока, в которую включена катушка индуктивности, имеющая небольшое количество витков проволоки сравнительно большого сечения, активное сопротивление которой можно считать практически равным нулю. Под действием э. д. с. генератора в цепи протекает переменный ток, возбуждающий переменный магнитный поток. Этот поток пересекает «собственные» витки катушки и в ней возникает электродвижущая сила самоиндукции

Электродвижущая сила самоиндукции, согласно правилу Ленца, всегда противодействует причине, вызывающей ее. Так как э. д. с. самоиндукции всегда противодействует изменениям переменного тока, вызываемым э. д. с. генератора, то она препятствует прохождению переменного тока. При расчетах это учитывается по индуктивному сопротивлению, которое обозначается XL и измеряется в омах.

Измерение катушки индуктивности мультиметром

Измерение катушки индуктивности мультиметром

Таким образом, индуктивное сопротивление катушки XL, зависит от величины э. д. с. самоиндукции, а следовательно, оно, как и э. д. с. самоиндукции, зависит от скорости изменения тока в катушке (от частоты ω) и от индуктивности катушки L

XL = ωL,

  • где XL— индуктивное сопротивление, ом;
  • ω — угловая частота переменного тока, рад/сек;
  • L— индуктивность катушки, гн.

Так как угловая частота переменного тока ω = 2πf, то индуктивное сопротивление

XL = 2πf L,    (59)

где f — частота переменного тока, гц.

Индуктивностью называется идеализированный элемент электрической цепи, в котором происходит запасание энергии магнитного поля. Запасания энергии электрического поля или преобразования электрической энергии в другие виды энергии в ней не происходит.

Пример. Катушка, обладающая индуктивностью L = 0,5 гн, присоединена к источнику переменного тока, частота которого f = 50 гц. Определить:
1) индуктивное сопротивление катушки при частоте f = 50 гц;
2) индуктивное сопротивление этой катушки переменному току, частота которого f = 800 гц.
Решение. Индуктивное сопротивление переменному току при f = 50 гц

XL = 2πf L = 2 · 3,14 · 50 · 0,5 = 157 ом.

При частоте тока f = 800 гц

XL = 2πf L = 2 · 3,14 · 800 · 0,5 = 2512 ом.

Индуктивность сварочной дуги

Индуктивность сварочной дуги

Приведенный пример показывает, что индуктивное сопротивление катушки повышается с увеличением частоты переменного тока, протекающего по ней. По мере уменьшения частоты тока индуктивное сопротивление убывает. Для постоянного тока, когда ток в катушке не изменяется и магнитный поток не пересекает ее витки, э. д. с. самоиндукции не возникает, индуктивное сопротивление катушки XL равно нуло. Катушка индуктивности для постоянного тока представляет собой лишь сопротивление

Выясним, как изменяется з. д. с. самоиндукции, когда по катушке индуктивности протекает переменный ток. Известно, что при неизменной индуктивности катушки э. д. с. самоиндукции зависит от скорости изменения силы тока и она всегда направлена навстречу причине, вызвавшей ее.

В первую четверть периода сила тока возрастает от нулевого до максимального значения. Электродвижущая сила самоиндукции ес, согласно правилу Ленца, препятствует увеличению тока в цепи. Поэтому на графике (пунктирной линией) показано, что ес в это время имеет отрицательное значение. Во вторую четверть периода сила тока в катушке убывает до нуля. В это время э. д. с. самоиндукции изменяет свое направление и увеличивается, препятствуя убыванию силы тока. В третью четверть периода ток изменяет свое направление и постепенно увеличивается до максимального значения; э. д. с. самоиндукции имеет положительное значение и далее, когда сила тока убывает, э. д. с. самоиндукции опять меняет свое направление и вновь препятствует уменьшению силы тока в цепи.

Индуктивность

Индуктивность

Из сказанного следует, что ток в цепи и э. д. с. самоиндукции не совпадают по фазе. Ток опережает э. д. с. самоиндукции по фазе на четверть периода или на угол φ = 90°. Необходимо также иметь в виду, что в цепи с индуктивностью, не содержащей г, в каждый момент времени электродвижущая сила самоиндукции направлена навстречу напряжению генератора U. В связи с этим напряжение и э. д. с. самоиндукции ес также сдвинуты по фазе друг относительно друга на 180°.

Из изложенного следует, что в цепи переменного тока, содержащей только индуктивность, ток отстает от напряжения, вырабатываемого генератором, на угол φ = 90° (на четверть периода) и опережает э. д. с. самоиндукции на 90°. Можно также сказать, что в индуктивной цепи напряжение опережает по фазе ток на 90°. Построим векторную диаграмму тока и напряжения для цепи переменного тока с индуктивным сопротивлением. Для этого отложим вектор тока I по горизонтали в выбранном нами масштабе.

Чтобы на векторной диаграмме показать, что напряжение опережает по фазе ток на угол φ = 90°, откладываем вектор напряжения U вверх под углом 90°. Закон Ома для цепи с индуктивностью можно выразить так:

Что такое индуктивность

Следует подчеркнуть, что имеется существенное отличие между индуктивным и активным сопротивлением переменному току. Когда к генератору переменного тока подключена активная нагрузка, то энергия безвозвратно потребляется активным сопротивлением.

Если же к источнику переменного тока присоединено индуктивное сопротивление r = 0, то его энергия, пока сила тока возрастает, расходуется на возбуждение магнитного поля. Изменение этого поля вызывает возникновение э. д. с. самоиндукции. При уменьшении силы тока энергия, запасенная в магнитном поле, вследствие возникающей при этом э. д. с. самоиндукции возвращается обратно генератору.

  • В первую четверть периода сила тока в цепи с индуктивностью возрастает и энергия источника тока накапливается в магнитном поле. В это время э. д. с. самоиндукции направлена против напряжения.
  • Когда сила тока достигнет максимального значения и начинает во второй четверти периода убывать, то э. д. с. самоиндукции, изменив свое направление, стремится поддержать ток в цепи. Под действием э. д. с. самоиндукции энергия магнитного поля возвращается к источнику энергии — генератору. Генератор в это время работает в режиме двигателя, преобразуя электрическую энергию в механическую.
  • В третью четверть периода сила тока в цепи под действием э. д. с. генератора увеличивается, и при этом ток протекает в противоположном направлении. В это время энергия генератора вновь накапливается в магнитном поле индуктивности.
  • В четвертую четверть периода сила тока в цепи убывает, а накопленная в магнитном поле энергия при воздействии э. д. с. самоиндукции вновь возвращается генератору.

Таким образом, в первую и третью четверть каждого периода генератор переменного тока расходует свою энергию в цепи с индуктивностью на создание магнитного поля, а во вторую и четвертую четверть каждого периода энергия, запасенная в магнитном поле катушки в результате возникающей э. д. с. самоиндукции, возвращается обратно генератору.

Интересно по теме: Как проверить стабилитрон.

Из этого следует, что индуктивная нагрузка в отличие от активной в среднем не потребляет энергию, которую вырабатывает генератор, а в цепи с индуктивностью происходит «перекачивание» энергии от генератора в индуктивную нагрузку и обратно, т. е. возникают колебания энергии. Из сказанного следует, что индуктивное сопротивление является реактивным. В цепи, содержащей реактивное сопротивление, происходят колебания энергии от генератора к нагрузке и обратно.

Индуктивность и емкость в цепи переменного тока

Изменения силы тока, напряжения и э. д. с. в цепи переменного тока происходят с одинаковой частотой, но фазы этих изменений, вообще говоря, различны. Поэтому если начальную фазу силы тока условно принять за нуль, то начальные фазы напряжения и э. д. с. соответственно будут иметь некоторые значения ϕ и ψ. При таком условии мгновенные значения силы тока, напряжения и э. д. с. будут выражаться следующими формулами:

i = Iм sin ωt

u = Uм sin (ϕ + ωt),

e = Ɛm sin (ψ + ωt).

Сопротивление цепи, которое обусловливает безвозвратные потери электрической энергии на тепловое действие тока, называют активным. Это сопротивление для тока низкой частоты можно считать равным сопротивлению R этого же проводника постоянному току и находить по формуле:

R=(pl/S)(1 + at).

В цепи переменного тока, имеющей только активное сопротивление, например в лампах накаливания, нагревательных приборах и т. п., сдвиг фаз между напряжением и током равен нулю, т. е. ϕ=0. Это означает, что ток и напряжение в такой цепи изменяются в одинаковых фазах, а электрическая энергия полностью расходуется на тепловое действие тока.

График и схема подключения

График и схема подключения

Включение в цепь переменного тока катушки с индуктивностью L проявляется как увеличение сопротивления цепи. Объясняется это тем, что при переменном токе в катушке все время действует э. д. с. самоиндукции, ослабляющая ток. Сопротивление XL, которое обусловливается явлением самоиндукции, называют индуктивным сопротивлением. Так как э. д. с. самоиндукции тем больше, чем больше индуктивность цепи и чем быстрее изменяется ток, то индуктивное сопротивление прямо пропорционально индуктивности цепи L и круговой частоте переменного тока ω:

ХL = ωL.

Влияние индуктивного сопротивления на силу тока в цепи наглядно иллюстрируется опытом, изображенным на рис. 26.6. При опускании ферромагнитного сердечника в катушку лампа гаснет, а при его удалении вновь загорается. Это объясняется тем, что индуктивность катушки сильно возрастает при введении в нее сердечника. Следует отметить, что напряжение на индуктивном сопротивлении опережает по фазе ток.

Постоянный ток не проходит через конденсатор, так как между его обкладками находится диэлектрик. Если конденсатор включить в цепь постоянного тока, то после зарядки конденсатора ток в цепи прекратится.

Катушки индуктивности

Катушки индуктивности

Пусть конденсатор включен в цепь переменного тока. Заряд конденсатора (q=CU) вследствие изменения напряжения непрерывно изменяется, поэтому в цепи течет переменный ток. Сила тока будет тем больше, чем больше емкость конденсатора и чем чаще происходит его перезарядка, т. е. чем больше частота переменного тока. Сопротивление, обусловленное наличием электроемкости в цепи переменного тока, называют емкостным сопротивлением Хс. Оно обратно пропорционально емкости С и круговой частоте ω;

Хс = 1/ωС

Из сравнения формул (26.11) и (26.12) видно, что катушки индуктивности представляют собой очень большое сопротивление для тока высокой частоты и небольшое для тока низкой частоты, а конденсаторы — наоборот. Напряжение на емкостном сопротивлении Ха отстает по фазе от тока. Индуктивное XL и емкостное Хс сопротивления называют реактивными. В теории переменного тока доказывается, что при последовательном включении индуктивного и емкостного сопротивлений общее реактивное сопротивление равно их разности:

X = XL—XC

и имеет индуктивный характер при XL > Хс и емкостный характер при XL < Xc.

В заключение заметим, что средняя активная мощность переменного тока, показывающая, сколько энергии за единицу времени передается электрическим током данному участку цепи, определяется формулой:

P = IU cos ϕ.

Мощность, затрачиваемая только на тепловое действие тока, выражается формулой:

Р = I2R

Для увеличения активной мощности переменного тока нужно повышать cos ϕ. (Объясните, почему наибольшее значение cos ϕ имеет при XL=XC.)

Индуктивность

Индуктивность

Устройство катушки

Более близким к идеализированному элементу — индуктивности — является реальный элемент электронной цепи — индуктивная катушка. В отличие от индуктивности в индуктивной катушке имеют место также запасание энергии электронного поля и преобразование электронной энергии в другие виды энергии, а именно в термическую. Количественно способность реального и идеализированного частей электронной цепи припасать энергию магнитного поля характеризуется параметром, именуемым индуктивностью.

Таким макаром термин «индуктивность» применяется как заглавие идеализированного элемента электронной цепи, как заглавие параметра, количественно характеризующего характеристики этого элемента, и как заглавие основного параметра индуктивной катушки.

Связь меж напряжением и током в индуктивной катушке определяется законом электрической индукции, из которого следует, что при изменении магнитного потока, пронизывающего индуктивную катушку, в ней наводится электродвижущая сила е, пропорциональная скорости конфигурации потокосцепления катушки ψ и направленная таким макаром, чтоб вызываемый ею ток стремился воспрепятствовать изменению магнитного потока:

e = — dψ / dt

В системе единиц СИ магнитный поток и потокосцепление выражают в веберах (Вб).

Интересно почитать: инструкция как прозвонить транзистор.

Магнитный поток Ф, пронизывающий любой из витков катушки, в общем случае может содержать две составляющие: магнитный поток самоиндукции Фси и магнитный поток наружных полей Фвп: Ф — Фси + Фвп.

1-ая составляющая представляет собой магнитный поток, вызванный протекающим по катушке током, 2-ая — определяется магнитными полями, существование которых не связано с током катушки — магнитным полем Земли, магнитными полями других катушек и неизменных магнитов. Если 2-ая составляющая магнитного потока вызвана магнитным полем другой катушки, то ее именуют магнитным потоком взаимоиндукции.

Потокосцепление катушки ψ, так же как и магнитный поток Ф, может быть представлено в виде суммы 2-ух составляющих: потокосцепления самоиндукции ψси, и потокосцепления наружных полей ψвп

ψ= ψси + ψвп

Наведенная в индуктивной катушке ЭДС е, в свою очередь, может быть представлена в виде суммы ЭДС самоиндукции, которая вызвана конфигурацией магнитного потока самоиндукции, и ЭДС, вызванной конфигурацией магнитного потока наружных по отношению к катушке полей:

e = eси + eвп,

тут еси — ЭДС самоиндукции, евп — ЭДС наружных полей.

Если магнитные потоки наружных по отношению к индуктивной катушке полей равны нулю и катушку пронизывает только поток самоиндукции, то в катушке наводится только ЭДС самоиндукции.

Заключение

Рейтинг автора

Автор статьи

Инженер по специальности «Программное обеспечение вычислительной техники и автоматизированных систем», МИФИ, 2005–2010 гг.

Написано статей

Более подробно об индуктивности рассказано в статье Что такое катушка индуктивности. Если у вас остались вопросы, можно задать их в комментариях на сайте. Также в нашей группе ВК можно задавать вопросы и получать на них подробные ответы от профессионалов.

Также в нашей группе ВК можно задавать вопросы и получать на них подробные ответы от профессионалов. Для этого приглашаем читателей подписаться и вступить в группу. В завершение статьи хочу выразить благодарность источникам, откуда мы черпали информацию во время подготовки материала:

www.jasic.ua

www.tkexp.ru

www.elektrica.info

www.electricalschool.info

www.tehnar.net.ua

www.tehinfor.ru

Предыдущая

ТеорияЧто такое электромагнитная индукция?

Следующая

ТеорияЧто такое анод и катод, в чем их практическое применение

расчет электродвижущей силы по формуле

Электромагнитная индукция – генерирование электротоков магнитными полями, изменяющимися во времени. Открытие Фарадеем и Генри этого феномена ввело определенную симметрию в мир электромагнетизма. Максвеллу в одной теории удалось собрать знания об электричестве и магнетизме. Его исследования предсказывали существование электромагнитных волн перед экспериментальными наблюдениями. Герц доказал их существование и открыл человечеству эпоху телекоммуникаций.

Эксперименты Фарадея

Законы Фарадея и Ленца

Электрические токи создают магнитные эффекты. А возможно ли, чтобы магнитное поле порождало электрическое? Фарадей обнаружил, что искомые эффекты возникают вследствие изменения МП во времени.

Когда проводник пересекается переменным магнитным потоком, в нем индуцируется электродвижущая сила, вызывающая электроток. Системой, которая генерирует ток, может быть постоянный магнит или электромагнит.

Явление электромагнитной индукции регулируется двумя законами: Фарадея и Ленца.

Закон Ленца позволяет охарактеризовать электродвижущую силу относительно ее направленности.

Важно! Направление индуцированной ЭДС такое, что вызванный ею ток стремится противостоять создающей его причине.

Фарадей заметил, что интенсивность индуцированного тока растет, когда быстрее изменяется число силовых линий, пересекающих контур. Другими словами, ЭДС электромагнитной индукции находится в прямой зависимости от скорости движущегося магнитного потока.

ЭДС индукции

Формула ЭДС индукции определена как:

Е = — dФ/dt.

Знак «-» показывает, как полярность индуцированной ЭДС связана со знаком потока и меняющейся скоростью.

Получена общая формулировка закона электромагнитной индукции, из которой можно вывести выражения для частных случаев.

Движение провода в магнитном поле

Когда провод длиной l движется в МП, имеющем индукцию В, внутри него будет наводиться ЭДС, пропорциональная его линейной скорости v. Для расчета ЭДС применяется формула:

  • в случае движения проводника перпендикулярно направлению магнитного поля:

Е = — В x l x v;

  • в случае движения под другим углом α:

Е = — В x l x v х sin α.

Индуцированная ЭДС и ток будут направлены в сторону, которую находим, пользуясь правилом правой руки: расположив руку перпендикулярно силовым линиям магнитного поля и указывая большим пальцем в сторону перемещения проводника, можно узнать направление ЭДС по оставшимся четырем распрямленным пальцам.

Перемещение провода в МП

Вращающаяся катушка

Работа генератора электроэнергии основана на вращении контура в МП, имеющего N витков.

ЭДС индуцируется в электроцепи всегда, когда магнитный поток ее пересекает, в соответствии с определением магнитного потока Ф = B x S х cos α (магнитная индукция, умноженная на поверхностную площадь, через которую проходит МП, и косинус угла, образованного вектором В и перпендикулярной линией к плоскости S).

Из формулы следует, что Ф подвержен изменениям в следующих случаях:

  • меняется интенсивность МП – вектор В;
  • варьируется площадь, ограниченная контуром;
  • изменяется ориентация между ними, заданная углом.

В первых опытах Фарадея индуцированные токи были получены путем изменения магнитного поля В. Однако можно индуцировать ЭДС, не двигая магнит или не меняя ток, а просто вращая катушку вокруг своей оси в МП. В данном случае магнитный поток меняется из-за изменения угла α. Катушка при вращении пересекает линии МП, возникает ЭДС.

Если катушка вращается равномерно, это периодическое изменение приводит к периодическому изменению магнитного потока. Или количество силовых линий МП, пересекаемых каждую секунду, принимает равные значения с равными интервалами времени.

Вращение контура в МП

Важно! Наведенная ЭДС меняется вместе с ориентацией с течением времени от положительной до отрицательной и наоборот. Графическое представление ЭДС представляет собой синусоидальную линию.

Для формулы ЭДС электромагнитной индукции применяется выражение:

Е = В х ω х S x N x sin ωt, где:

  • S – площадь, ограниченная одним витком или рамкой;
  • N – количество витков;
  • ω – угловая скорость, с которой вращается катушка;
  • В – индукция МП;
  • угол α = ωt.

На практике в генераторах переменного тока часто катушка остается неподвижной (статор), а электромагнит вращается вокруг нее (ротор).

ЭДС самоиндукции

Когда через катушку проходит переменный ток, он генерирует переменное МП, обладающее изменяющимся магнитным потоком, индуцирующим ЭДС. Этот эффект называется самоиндукцией.

Поскольку МП пропорционально интенсивности тока, то:

Ф = L x I,

где L – индуктивность (Гн), определяемая геометрическими величинами: количеством витков на единицу длины и размерами их поперечного сечения.

Для ЭДС индукции формула принимает вид:

Е = — L x dI/dt.

Взаимоиндукция

Если две катушки расположены рядом, то в них наводится ЭДС взаимоиндукции, зависящая от геометрии обеих схем и их ориентации относительно друг друга. Когда разделение цепей возрастает, взаимоиндуктивность снижается, так как уменьшается соединяющий их магнитный поток.

Взаимоиндукция

Пусть имеется две катушки. По проводу одной катушки, обладающей N1 витками, протекает ток I1, создающий МП, проходящее через катушку с N2 витками. Тогда:

  1. Взаимоиндуктивность второй катушки относительно первой:

М21 = (N2 x F21)/I1;

  1. Магнитный поток:

Ф21 = (М21/N2) x I1;

  1. Найдем индуцированную ЭДС:

Е2 = — N2 x dФ21/dt = — M21x dI1/dt;

  1. Идентично в первой катушке индуцируется ЭДС:

Е1 = — M12 x dI2/dt;

Важно! Электродвижущая сила, вызванная взаимоиндукцией в одной катушке, всегда пропорциональна изменению электротока в другой.

Взаимную индуктивность можно признать равной:

М12 = М21 = М.

Соответственно, E1 = — M x dI2/dt и E2 = M x dI1/dt.

М = К √ (L1 x L2),

где К – коэффициент связи между двумя индуктивностями.

Явление взаимоиндукции используется в трансформаторах – электроаппаратах, позволяющих изменить значение напряжения переменного электротока. Аппарат представляет собой две катушки, намотанные вокруг одного сердечника. Ток, присутствующий в первой, создает меняющееся МП в магнитопроводе и электроток в другой катушке. Если количество витковых оборотов первой обмотки меньше, чем другой, напряжение увеличивается, и наоборот.

Кроме генерирования, трансформации электроэнергии магнитная индукция применяется в иных устройствах. Например, в магнитных левитационных поездах, которые двигаются не в непосредственном контакте с рельсами, а на несколько сантиметров выше из-за электромагнитной силы отталкивания.

Видео

Оцените статью:

формула. Измерение индуктивности. Индуктивность контура

Кто в школе не изучал физику? Для кого-то она была интересна и понятна, а кто-то корпел над учебниками, пытаясь выучить наизусть сложные понятия. Но каждый из нас запомнил, что мир основан на физических знаниях. Сегодня мы поговорим о таких понятиях, как индуктивность тока, индуктивность контура, и узнаем, какие бывают конденсаторы и что такое соленоид.

Электрическая цепь и индуктивность

индуктивность формулаИндуктивность служит для характеристики магнитных свойств электрической цепи. Ее определяют как коэффициент пропорциональности между текущим электрическим током и магнитным потоком в замкнутом контуре. Поток создается этим током через поверхность контура. Еще одно определение гласит, что индуктивность является параметром электрической цепи и определяет ЭДС самоиндукции. Термин применяется для указания элемента цепи и приходится характеристикой эффекта самоиндукции, который был открыт Д. Генри и М. Фарадеем независимо друг от друга. Индуктивность связана с формой, размером контура и значением магнитной проницаемости окружающей среды. В единице измерения СИ эта величина измеряется в генри и обозначается как L.

Самоиндукция и измерение индуктивности

Индуктивностью называется величина, которая равна отношению магнитного потока, проходящего по всем виткам контура к силе тока:

индуктивность катушки формула

Индуктивность контура находится в зависимости от формы, размеров контура и от магнитных свойств среды, в которой он находится. Если в замкнутом контуре протекает электрический ток, то возникает изменяющееся магнитное поле. Это впоследствии приведет к возникновению ЭДС. Рождение индукционного тока в замкнутом контуре носит название «самоиндукция». По правилу Ленца величина не дает изменяться току в контуре. Если обнаруживается самоиндукция, то можно применять электрическую цепь, в которой параллельно включены резистор и катушка с железным сердечником. Последовательно с ними подсоединены и электрические лампы. В этом случае сопротивление резистора равно сопротивлению на постоянном токе катушки. Результатом будет яркое горение ламп. Явление самоиндукции занимает одно из главных мест в радиотехнике и электротехнике.

Как найти индуктивность

Формула, которая является простейшей для нахождения величины, следующая:

где F – магнитный поток, I – ток в контуре.

Через индуктивность можно выразить ЭДС самоиндукции:

Из формулы напрашивается вывод о численном равенстве индукции с ЭДС, которое возникает в контуре при изменении силы тока на один амперметр за одну секунду.

Переменная индуктивность дает возможность найти и энергию магнитного поля:

«Катушка ниток»

Катушка индуктивности представляет собой намотанную изолированную медную проволоку на твердое основание. Что касается изоляции, то выбор материала широк – это и лак, и проводная изоляция, и ткань. Величина магнитного потока зависит от площади цилиндра. Если увеличить ток в катушке, то магнитное поле будет становиться все больше и наоборот.

индуктивность соленоида формула

Если подать электрический ток на катушку, то в ней возникнет напряжение, противоположное напряжению тока, но оно внезапно исчезает. Такого рода напряжение называется электродвижущей силой самоиндукции. В момент включения напряжения на катушку сила тока меняет свое значение от 0 до некоего числа. Напряжение в этот момент тоже меняет значение, согласно закону Ома:

где I характеризует силу тока, U – показывает напряжение, R – сопротивление катушки.

Еще одной особенной чертой катушки является следующий факт: если разомкнуть цепь «катушка – источник тока», то ЭДС добавится к напряжению. Ток тоже вначале вырастет, а потом пойдет на спад. Отсюда вытекает первый закон коммутации, в котором говорится, что сила тока в катушке индуктивности мгновенно не меняется.

Катушку можно разделить на два вида:

  1. С магнитным наконечником. В роли материала сердца выступают ферриты и железо. Сердечники служат для повышения индуктивности.
  2. С немагнитным. Используются в случаях, когда индуктивность не больше пяти миллиГенри.

Устройства различаются и по внешнему виду, и внутреннему строению. В зависимости от таких параметров находится индуктивность катушки. Формула в каждом случае разная. Например, для однослойной катушки индуктивность будет равна:

  • L = 10µ0ΠN2R2 : 9R + 10l.

А вот уже для многослойной другая формула:

  • L= µ0N2R2 :2Π(6R + 9l + 10w).

Основные выводы, связанные с работой катушек:

  1. На цилиндрическом феррите самая большая индуктивность возникает в середине.
  2. Для получения максимальной индуктивности необходимо близко наматывать витки на катушку.
  3. Индуктивность тем меньше, чем меньше количество витков.
  4. В тороидальном сердечнике расстояние между витками не играет роли катушки.
  5. Значение индуктивности зависит от «витков в квадрате».
  6. Если последовательно соединить индуктивности, то их общее значение равно сумме индуктивностей.
  7. При параллельном соединении нужно следить, чтобы индуктивности были разнесены на плате. В противном случае их показания будут неправильными за счет взаимного влияния магнитных полей.

Соленоид

Под этим понятием понимается цилиндрическая обмотка из провода, который может быть намотан в один или несколько слоев. Длина цилиндра значительно больше диаметра. За счет такой особенности при подаче электрического тока в полости соленоида рождается магнитное поле. Скорость изменения магнитного потока пропорциональна изменению тока. Индуктивность соленоида в этом случае рассчитывается следующим образом:

Еще эту разновидность катушек называют электромеханическим исполнительным механизмом с втягиваемым сердечником. В данном случае соленоид снабжается внешним ферромагнитным магнитопроводом – ярмом.

индуктивность контураВ наше время устройство может соединять в себе гидравлику и электронику. На этой основе созданы четыре модели:

  • Первая способна контролировать линейное давление.
  • Вторая модель отличается от других принудительным управлением блокировки муфты в гидротрансформаторах.
  • Третья модель содержит в своем составе регуляторы давления, отвечающие за работу переключения скоростей.
  • Четвертая управляется гидравлическим способом или клапанами.

Необходимые формулы для расчетов

Чтобы найти индуктивность соленоида, формула применяется следующая:

где µ0 показывает магнитную проницаемость вакуума, n – это число витков, V – объем соленоида.

Также провести расчет индуктивности соленоида можно и с помощью еще одной формулы:

где S – это площадь поперечного сечения, а l – длина соленоида.

Чтобы найти индуктивность соленоида, формула применяется любая, которая подходит по решению к данной задаче.

Работа на постоянном и переменном токе

Магнитное поле, которое создается внутри катушки, направлено вдоль оси, и равно:

где µ0 – это магнитная проницаемость вакуума, n – это число витков, а I – значение тока.

Когда ток движется по соленоиду, то катушка запасает энергию, которая равна работе, необходимая для установления тока. Чтобы вычислить в этом случае индуктивность, формула используется следующая:

где L показывает значение индуктивности, а E – запасающую энергию.

ЭДС самоиндукции возникает при изменении тока в соленоиде.

В случае работы на переменном токе появляется переменное магнитное поле. Направление силы притяжения может изменяться, а может оставаться неизменным. Первый случай возникает при использовании соленоида как электромагнита. А второй, когда якорь сделан из магнитомягкого материала. Соленоид на переменном токе имеет комплексное сопротивление, в которое включаются сопротивление обмотки и ее индуктивность.

Самое распространенное применение соленоидов первого типа (постоянного тока) — это в роли поступательного силового электропривода. Сила зависит от строения сердечника и корпуса. Примерами использования являются работа ножниц при отрезании чеков в кассовых аппаратах, клапаны в двигателях и гидравлических системах, язычки замков. Соленоиды второго типа применяются как индукторы для индукционного нагрева в тигельных печах.

Колебательные контуры

Простейшей резонансной цепью является последовательный колебательный контур, состоящий из включенных катушек индуктивности и конденсатора, через которые протекает переменный ток. Чтобы определить индуктивность катушки, формула используется следующая:

где XL показывает реактивное сопротивление катушки, а W — круговая частота.

Если используется реактивное сопротивление конденсатора, то формула будет выглядеть следующим образом:

Xc = 1 : W х C.

индуктивность колебательного контураВажными характеристиками колебательного контура являются резонансная частота, волновое сопротивление и добротность контура. Первая характеризует частоту, где сопротивление контура имеет активный характер. Вторая показывает, как проходит реактивное сопротивление на резонансной частоте между такими величинами, как емкость и индуктивность колебательного контура. Третья характеристика определяет амплитуду и ширину амплитудно-частотных характеристик (АЧХ) резонанса и показывает размеры запаса энергии в контуре по сравнению с потерями энергии за один период колебаний. В технике частотные свойства цепей оцениваются при помощи АЧХ. В этом случае цепь рассматривается как четырехполюсник. При изображении графиков используется значение коэффициента передачи цепи по напряжению (К). Эта величина показывает отношение выходного напряжения к входному. Для цепей, которые не содержат источников энергии и различных усилительных элементов, значение коэффициента не больше единицы. Оно стремится к нулю, когда на частотах, отличающихся от резонансной, сопротивление контура имеет высокое значение. Если же величина сопротивления минимальна, то коэффициент близок к единице.

При параллельном колебательном контуре включены два реактивных элемента с разной силой реактивности. Использование такого вида контура подразумевает знание, что при параллельном включении элементов нужно складывать только их проводимости, но не сопротивления. На резонансной частоте суммарная проводимость контура равна нулю, что говорит о бесконечно большом сопротивлении переменному току. Для контура, в котором параллельно включены емкость (C), сопротивление (R) и индуктивность, формула, объединяющая их и добротность (Q), следующая:

При работе параллельного контура за один период колебаний дважды происходит энергетический обмен между конденсатором и катушкой. В этом случае появляется контурный ток, который значительно больше значения тока во внешней цепи.

Работа конденсатора

Устройство представляет собой двухполюсник малой проводимости и с переменным или постоянным значением емкости. Когда конденсатор не заряжен, сопротивление его близко к нулю, в противном случае оно равно бесконечности. Если источник тока отсоединить от данного элемента, то он становится этим источником до своей разрядки. Использование конденсатора в электронике заключается в роли фильтров, которые удаляют помехи. Данное устройство в блоках питания на силовых цепях применяются для подпитки системы при больших нагрузках. Это основано на способности элемента пропускать переменную составляющую, но непостоянный ток. Чем выше частота составляющей, тем меньше у конденсатора сопротивление. В результате через конденсатор глушатся все помехи, которые идут поверх постоянного напряжения.

индуктивность конденсатора

Сопротивление элемента зависит от емкости. Исходя из этого, правильнее будет ставить конденсаторы с различным объемом, чтобы улавливать разного рода помехи. Благодаря способности устройства пропускать постоянный ток только в период заряда его используют как времязадающий элемент в генераторах или как формирующее звено импульса.

Конденсаторы бывают многих типов. В основном используется классификация по типу диэлектрика, так как этот параметр определяет стабильность емкости, сопротивление изоляции и так далее. Систематизация по данной величине следующая:

  1. Конденсаторы с газообразным диэлектриком.
  2. Вакуумные.
  3. С жидким диэлектриком.
  4. С твердым неорганическим диэлектриком.
  5. С твердым органическим диэлектриком.
  6. Твердотельные.
  7. Электролитические.

Существует классификация конденсаторов по назначению (общий или специальный), по характеру защиты от внешних факторов (защищенные и незащищенные, изолированные и неизолированные, уплотненные и герметизированные), по технике монтажа (для навесного, печатного, поверхностного, с выводами под винт, с защелкивающимися выводами). Также устройства можно различить по способности к изменению емкости:

  1. Постоянные конденсаторы, то есть у которых емкость остается всегда постоянной.
  2. Подстроечные. У них емкость не меняется при работе аппаратуры, но можно ее регулировать разово или периодически.
  3. Переменные. Это конденсаторы, которые допускают в процессе функционирования аппаратуры изменение ее емкости.

Индуктивность и конденсатор

Токоведущие элементы устройства способны создавать его собственную индуктивность. Это такие конструктивные части, как кладки, соединительные шины, токоотводы, выводы и предохранители. Можно создать дополнительную индуктивность конденсатора путем присоединения шин. Режим работы электрической цепи зависит от индуктивности, емкости и активного сопротивления. Формула расчета индуктивности, которая возникает при приближении к резонансной частоте, следующая:

где Ce определяет эффективную емкость конденсатора, C показывает действительную емкость, f – это частота, L – индуктивность.

Значение индуктивности всегда должно учитываться при работе с силовыми конденсаторами. Для импульсных конденсаторов наиболее важна величина собственной индуктивности. Их разряд приходится на индуктивный контур и имеет два вида – апериодический и колебательный.

Индуктивность в конденсаторе находится в зависимости от схемы соединения элементов в нем. Например, при параллельном соединении секций и шин эта величина равна сумме индуктивностей пакета главных шин и выводов. Чтобы найти такого рода индуктивность, формула следующая:

где Lk показывает индуктивность устройства, Lp –пакета, Lm – главных шин, а Lb – индуктивность выводов.

Если при параллельном соединении ток шины меняется по ее длине, то тогда эквивалентная индуктивность определяется так:

  • Lk = Lc : n + µ0 l х d : (3b) + Lb,

где l – длина шин, b – ее ширина, а d – расстояние между шинами.

индуктивность токаЧтобы снизить индуктивность устройства, необходимо токоведущие части конденсатора расположить так, чтобы взаимно компенсировались их магнитные поля. Иными словами, токоведущие части с одинаковым движением тока нужно удалять друг от друга как можно дальше, а с противоположным направлением сближать. При совмещении токоотводов с уменьшением толщины диэлектрика можно снизить индуктивность секции. Этого можно достигнуть еще путем деления одной секции с большим объемом на несколько с более мелкой емкостью.

Катушка индуктивности. Описание, характеристики, формула расчета

Катушка индуктивности является пассивным компонентом электронных схем, основное предназначение которой является сохранение энергии в виде магнитного поля. Свойство катушки индуктивности чем-то схоже с конденсатором, который хранит энергию в виде электрического поля.

Индуктивность (измеряется в Генри) — это эффект возникновения магнитного поля вокруг проводника с током. Ток, протекающий через катушку индуктивности, создает магнитное поле, которое имеет связь с электродвижущей силой (ЭДС) оказывающее противодействие приложенному напряжению.

Возникающая противодействующая сила (ЭДС) противостоит изменению переменного напряжения и силе тока в катушке индуктивности. Это свойство индуктивной катушки называется индуктивным сопротивлением. Следует отметить, что индуктивное сопротивление находится в противофазе к емкостному реактивному сопротивлению конденсатора в цепи переменного тока. Путем увеличения числа витков можно повысить индуктивность самой катушки.

Тестер транзисторов / ESR-метр / генератор

Многофункциональный прибор для проверки транзисторов, диодов, тиристоров…

Накопленная энергия в индуктивности

Как известно магнитное поле обладает энергией. Аналогично тому, как в полностью заряженном конденсаторе существует запас электрической энергии, в индуктивной катушке, по обмотке которой течет ток, тоже существует запас — только уже магнитной энергии.

Энергия, запасенная в катушке индуктивности равна затраченной энергии необходимой для обеспечения протекания тока I в противодействии ЭДС. Величина запасенной энергии в индуктивности можно рассчитать по следующей формуле:

где L — индуктивность, I — ток, протекающий через катушку индуктивности.

Гидравлическая модель

Работу катушки индуктивности можно сравнить с работой гидротурбины в потоке воды. Поток воды, направленный сквозь еще не раскрученную турбину, будет ощущать сопротивление до того момента, пока турбина полностью не раскрутится.

Далее турбина, имеющая определенную степень инерции, вращаясь в равномерном потоке, практически не оказывая влияния на скорость течения воды. В случае же если данный поток резко остановить, то турбина по инерции все еще будет вращаться, создавая движение воды. И чем выше инерция данной турбины, тем больше она будет оказывать сопротивление изменению потока.

Также и индуктивная катушка сопротивляется изменению электрического тока протекающего через неё.

Индуктивность в электрических цепях

В то время как конденсатор оказывает сопротивление изменению переменного напряжения, индуктивность же сопротивляется переменному тока. Идеальная индуктивность не будет оказывать сопротивление постоянному току, однако, в реальности все индуктивные катушки сами по себе обладают определенным сопротивлением.

В целом, отношение между изменяющимися во времени напряжением V(t) проходящим через катушку с индуктивностью L и изменяющимся во времени током I(t), проходящим через нее можно представить в виде дифференциального уравнения следующего вида:

Когда переменный синусоидальной ток (АС) протекает через катушку индуктивности, возникает синусоидальное переменное напряжение (ЭДС). Амплитуда ЭДС зависит от амплитуды тока и частоте синусоиды, которую можно выразить следующим уравнением:

где ω является угловой частотой резонансной частоты F:

Причем, фаза тока отстает от напряжения на 90 градусов. В конденсаторе же все наоборот, там ток опережает напряжение на 90 градусов. Когда индуктивная катушка соединена с конденсатором (последовательно либо параллельно), то образуется LC цепь, работающая на определенной резонансной частоте.

 Индуктивное сопротивление ХL определяется по формуле:

где ХL — индуктивное сопротивление, ω — угловая частота, F — частота в герцах, и L индуктивность в генри.

Индуктивное сопротивление — это положительная составляющая импеданса. Оно измеряется в омах. Импеданс катушки индуктивности (индуктивное сопротивление) вычисляется по формуле:

Схемы соединения катушек индуктивностей

Параллельное соединение индуктивностей

Напряжение на каждой из катушек индуктивностей, соединенных параллельно, одинаково. Эквивалентную (общую) индуктивность параллельно соединенных катушек можно определить по формуле:

Последовательное соединение индуктивностей

Ток, протекающий через катушки индуктивности соединенных последовательно, одинаков, но напряжение на каждой катушке индуктивности отличается. Сумма разностей потенциалов (напряжений) равна общему напряжению. Общая индуктивность последовательно соединенных катушек можно высчитать по формуле:

Эти уравнения справедливы при условии, что магнитное поле каждой из катушек не оказывает влияние на соседние катушки.

Добротность катушки индуктивности

На практике катушка индуктивности имеет последовательное сопротивление, созданное медной обмоткой самой катушки. Это последовательное сопротивление преобразует протекающий через катушку электрический ток  в тепло, что приводит к потере качества индукции, то есть добротности. Добротность является отношением индуктивности к сопротивлению.

Добротность катушки индуктивности может быть найдена через следующую формулу:

 где R является собственным сопротивлением обмотки.

Катушка индуктивности. Формула индуктивности

Базовая формула индуктивности катушки:

  • L = индуктивность в генри
  • μ 0 = проницаемость свободного пространства = 4π × 10 -7 Гн / м
  • μ г = относительная проницаемость материала сердечника
  • N = число витков
  • A = Площадь поперечного сечения катушки в квадратных метрах (м 2 )
  • l = длина катушки в метрах (м)

Индуктивность прямого проводника:

  • L = индуктивность в нГн
  • l = длина проводника
  • d = диаметр проводника в тех же единицах, что и l

Индуктивность катушки с воздушным сердечником:

  • L = индуктивность в мкГн
  • r = внешний радиус катушки
  • l = длина катушки
  • N = число витков

Индуктивность многослойной катушки с воздушным сердечником:

  • L = индуктивность в мкГн
  • r = средний радиус катушки
  • l = длина катушки
  • N = число витков
  • d = глубина катушки

Индуктивность плоской катушки:

  • L = индуктивность в мкГн
  • r = средний радиус катушки
  • N = число витков
  • d = глубина катушки

Конструкция катушки индуктивности

Катушка индуктивности представляет собой обмотку из проводящего материала, как правило, медной проволоки, намотанной вокруг либо железосодержащего сердечника, либо вообще без сердечника.

Применение в качестве сердечника материалов с высокой магнитной проницаемостью, более высокой чем воздух, способствует удержанию магнитного поля вблизи катушки, тем самым увеличивая ее индуктивность. Индуктивные катушки бывают разных форм и размеров.

Большинство изготавливаются путем намотки эмалированного медного провода поверх ферритового сердечника.

Некоторые индуктивные катушки имеют регулируемый сердечник, при помощи которого обеспечивается изменение индуктивности.

Миниатюрные катушки могут быть вытравлены непосредственно на печатной плате в виде спирали. Индуктивности с малым значением могут быть расположены в микросхемах с использованием тех же технологических процессов, которые используются при создании транзисторов.

Применение катушек индуктивности

Индуктивности широко используются в аналоговых схемах и схемах обработки сигналов. Они в сочетании с конденсаторами и другими радиокомпонентами образуют специальные схемы, которые могут усилить или отфильтровать сигналы определенной частоты.

Катушки индуктивности получили широкое применение начиная от больших катушек индуктивности, таких как дроссели в источниках питания, которые в сочетании с конденсаторами фильтра устраняют остаточные помехи и другие колебания на выходе источника питания, и до столь малых индуктивностей, которые располагаются внутри интегральных микросхем.

Две (или более) катушки индуктивности, которые соединены единым магнитным потоком, образуют трансформатор, являющимся основным компонентом схем работающих с электрической сетью электроснабжения. Эффективность трансформатора возрастает с увеличением частоты напряжения.

По этой причине, в самолетах используется переменное напряжение с частотой 400 герц вместо обычных 50 или 60 герц, что в свою очередь позволяет значительно сэкономить на массе используемых трансформаторов в электроснабжении самолета.

Так же индуктивности используются в качестве устройства для хранения энергии в импульсных стабилизаторах напряжения, в высоковольтных электрических системах передачи электроэнергии для преднамеренного снижения системного напряжения или ограничения ток короткого замыкания.

Формула индукции магнитного поля, B

Направлением вектора магнитной индукции считают направление на север магнитной стрелки, которая может свободно вращаться в магнитном поле. Такое же направление имеет положительная нормаль к замкнутому контуру, по которому течет ток. Положительная нормаль имеет направление, совпадающее с направлением перемещения правого винта (буравчика), если его вращают по направлению тока в контуре.

Модуль вектора магнитной индукции можно установить, используя силу, которая действует на проводники с током, помещенные в магнитное поле (силу Ампера). Тогда модуль вектора равен частному от деления максимальной силы (), с которой магнитное поле оказывает воздействие на отрезок проводника с током (I) к произведению силы тока на длину проводника ():

   

Рассматривая силу Лоренца, которая действует на заряженную частицу, движущуюся в магнитном поле, получают формулу для магнитной индукции в виде:

   

где – модуль силы Лоренца; q – заряд частицы, движущейся со скоростью v в магнитном поле; – это угол между векторами и . Направления , векторов и связаны между собой правилом левой руки.

Формулой, которая определяет величину вектора магнитной индукции в данной точке магнитного поля, считают так же следующее выражение:

   

где – максимальный вращающий момент, действующий на рамку, которая обладает магнитным моментом , равным единице, если нормаль к рамке перпендикулярна направлению поля. Вращающий момент (M), действующий на контур с током I в однородном магнитном поле можно вычислить как:

   

где S – площадь, которую обтекает ток I. Следует помнить, что максимальный вращающий момент получается тогда, когда плоскость контура параллельна линиям магнитной индукции поля ().

Принцип суперпозиции магнитных полей

Если магнитное поле получается в результат наложения нескольких магнитных полей то, магнитная индукция поля (), может быть найдена как векторная сумма магнитных индукций отдельных полей ():

   

Закон Био-Савара-Лапласа, как формула для вычисления величины индукции магнитного поля

Закон Био-Савара – Лапласа является одним из распространенных законов, который позволяет вычислить вектор магнитной индукции () в любой точке магнитного поля, создаваемого в вакууме элементарным проводником с током:

   

где I – сила тока; – вектор элементарный проводник по модулю он равен длине проводника, при этом его направление совпадает с направлением течения тока; – радиус-вектор, который проводят от элементарного проводника к точке, в которой находят поле; – магнитная постоянная. Вектор является перпендикулярным к плоскости, в которой расположены и , конкретное направление вектора магнитной индукции определяют при помощи правила буравчика (правого винта).

Для однородного и изотропного магнетика, заполняющего пространство, вектор магнитной индукции в вакууме( и в веществе (), при одинаковых условиях, связывает формула:

   

где – относительная магнитная проницаемость вещества.

Частные случаи формул для вычисления модуля вектора магнитной индукции

Формула для вычисления модуля вектора индукции в центре кругового витка с током (I):

   

где R – радиус витка.

Модуль вектора магнитной индукции поля, которое создает бесконечно длинный прямой проводник с током:

   

где r – расстояние от оси проводника до точки, в которой рассматривается поле.

В средней части соленоида магнитная индукция поля вычисляется при помощи формулы:

   

где n – количество витков соленоида на единицу длины; I – сила тока в витке.

Примеры решения задач по теме «Индукция магнитного поля»

Формула магнитной индукции — Физическая формула и решенные примеры.

    • Классы
      • Класс 1-3
      • Класс 4-5
      • Класс 6-10
      • Класс 11-12
    • КОНКУРЕНТНЫЙ ЭКЗАМЕН
      • BNAT 000 NC
        • BNAT 000 Книги
          • Книги NCERT для класса 5
          • Книги NCERT для класса 6
          • Книги NCERT для класса 7
          • Книги NCERT для класса 8
          • Книги NCERT для класса 9
          • Книги NCERT для класса 10
          • Книги NCERT для класса 11
          • Книги NCERT для класса 12
        • NCERT Exemplar
          • NCERT Exemplar Class 8
          • NCERT Exemplar Class 9
          • NCERT Exemplar Class 10
          • NCERT Exemplar Class 11
          • NCERT Exemplar Class 11
          • NCERT 9000 9000
          • NCERT
            • Решения RS Aggarwal, класс 12
            • Решения RS Aggarwal, класс 11
            • Решения RS Aggarwal, класс 10
            • 90 003 Решения RS Aggarwal класса 9

            • Решения RS Aggarwal класса 8
            • Решения RS Aggarwal класса 7
            • Решения RS Aggarwal класса 6
          • Решения RD Sharma
            • RD Sharma Class 6 Решения
            • Решения RD Sharma
            • Решения RD Sharma класса 8

            • Решения RD Sharma класса 9
            • Решения RD Sharma класса 10
            • Решения RD Sharma класса 11
            • Решения RD Sharma класса 12
          • PHYSICS
            • Механика
            • Оптика
            • Термодинамика Электромагнетизм
          • ХИМИЯ
            • Органическая химия
            • Неорганическая химия
            • Периодическая таблица
          • MATHS
            • Теорема Пифагора
            • 0003000300030004

            • Простые числа
            • Взаимосвязи и функции
            • Последовательности и серии
            • Таблицы умножения
            • Детерминанты и матрицы
            • Прибыль и убыток
            • Полиномиальные уравнения
            • Деление фракций
          • 000
          • 000
          • 000
          • 000
          • 000 BIOG3000
                FORMULAS

                • Математические формулы
                • Алгебраные формулы
                • Тригонометрические формулы
                • Геометрические формулы
              • КАЛЬКУЛЯТОРЫ
                • Математические калькуляторы
                • 000 PBS4000
                • 000
                • 000 Физические калькуляторы
                • 000
                • 000
                • 000 PBS4000
                • 000
                • 000 Калькуляторы для химии
                • Класс 6

                • Образцы бумаги CBSE для класса 7
                • Образцы бумаги CBSE для класса 8
                • Образцы бумаги CBSE для класса 9
                • Образцы бумаги CBSE для класса 10
                • Образцы бумаги CBSE для класса 11
                • Образцы бумаги CBSE чел. для класса 12
              • CBSE, вопросник за предыдущий год
                • CBSE, вопросник за предыдущий год, класс 10
                • CBSE, вопросник за предыдущий год, класс 12
              • HC Verma Solutions
                • HC Verma Solutions, класс 11, физика
                • Решения HC Verma, класс 12, физика
              • Решения Лахмира Сингха
                • Решения Лакмира Сингха, класс 9
                • Решения Лакмира Сингха, класс 10
                • Решения Лакмира Сингха, класс 8
              • Заметки CBSE
              • , класс
                  CBSE Notes

                    Примечания CBSE класса 7
                  • Примечания CBSE класса 8
                  • Примечания CBSE класса 9
                  • Примечания CBSE класса 10
                  • Примечания CBSE класса 11
                  • Примечания CBSE класса 12
                • Примечания к редакции CBSE
                  • Примечания к редакции
                    • CBSE Class
                      • Примечания к редакции класса 10 CBSE
                      • Примечания к редакции класса 11 CBSE 9000 4
                      • Примечания к редакции класса 12 CBSE
                    • Дополнительные вопросы CBSE
                      • Дополнительные вопросы по математике класса 8 CBSE
                      • Дополнительные вопросы по науке 8 класса CBSE
                      • Дополнительные вопросы по математике класса 9 CBSE
                      • Дополнительные вопросы по науке класса 9 CBSE
                      • Дополнительные вопросы по математике для класса 10

                      • Дополнительные вопросы по науке, класс 10 по CBSE
                    • CBSE, класс
                      • , класс 3
                      • , класс 4
                      • , класс 5
                      • , класс 6
                      • , класс 7
                      • , класс 8
                      • , класс 9 Класс 10
                      • Класс 11
                      • Класс 12
                    • Учебные решения
                  • Решения NCERT
                    • Решения NCERT для класса 11
                      • Решения NCERT для класса 11 по физике
                      • Решения NCERT для класса 11 Химия
                      • Решения для биологии класса 11

                      • Решения NCERT для математики класса 11
                      • 9 0003 NCERT Solutions Class 11 Accountancy

                      • NCERT Solutions Class 11 Business Studies
                      • NCERT Solutions Class 11 Economics
                      • NCERT Solutions Class 11 Statistics
                      • NCERT Solutions Class 11 Commerce
                    • NCERT Solutions For Class 12
                      • NCERT Solutions For Класс 12 по физике
                      • Решения NCERT для химии класса 12
                      • Решения NCERT для класса 12 по биологии
                      • Решения NCERT для класса 12 по математике
                      • Решения NCERT Бухгалтерский учет 12 класса
                      • Решения NCERT Класс 12 Бизнес-исследования
                      • Решения NCERT, класс 12 Экономика
                      • NCERT Solutions Class 12 Accountancy Part 1
                      • NCERT Solutions Class 12 Accountancy Part 2
                      • NCERT Solutions Class 12 Micro-Economics
                      • NCERT Solutions Class 12 Commerce
                      • NCERT Solutions Class 12 Macro-Economics
                    • NCERT Solutions For Класс 4
                      • Решения NCERT для математики класса 4
                      • Решения NCERT для класса 4 EVS
                    • Решения NCERT для класса 5
                      • Решения NCERT для математики класса 5
                      • Решения NCERT для класса 5 EVS
                    • Решения NCERT для класса 6
                      • Решения NCERT для математики 6 класса
                      • Решения NCERT для науки 6 класса
                      • Решения NCERT для 6 класса социальных наук
                      • Решения NCERT для 6 класса Английский
                    • Решения NCERT для класса 7
                      • Решения NCERT для класса 7 Математика
                      • Решения NCERT для класса 7 Наука
                      • Решения NCERT для класса 7 по социальным наукам
                      • Решения NCERT для класса 7 Английский
                    • Решения NCERT для класса 8
                      • Решения NCERT для класса 8 Математика
                      • Решения NCERT для класса 8 Наука
                      • Решения NCERT для социальных наук 8 класса
                      • Решение NCERT нс

              .

              Математическая индукция — Темы в предварительном исчислении

              27

              Принцип математической индукции

              НАТУРАЛЬНЫЕ ЧИСЛА — это подсчет
              числа: 1, 2, 3, 4 и т. д. Математическая индукция — это метод доказательства утверждения — теоремы или формулы — которое утверждается примерно в на каждые натуральных чисел.

              Под «каждым» или «всеми» натуральными числами мы подразумеваем любое имя, которое мы называем.

              Например,

              1 + 2 + 3 +. , , + n = ½ n ( n + 1).

              Утверждается, что сумма последовательных чисел от 1 до n дается формулой справа. Мы хотим доказать, что это будет верно для n = 1, n = 2, n = 3 и так далее. Теперь мы можем проверить формулу для любого с учетом числа , скажем, n = 3:

              .

              1 + 2 + 3 = ½ · 3 · 4 = 6

              — это правда.Это также верно для n = 4:

              1 + 2 + 3 + 4 = ½ · 4 · 5 = 10.

              Но как мы можем доказать это правило для через каждые значения n ?

              Метод доказательства следующий. Мы показываем, что , если утверждение — правило — верно для любого конкретного числа k (например, 104), то оно также будет верно для его преемника, k + 1 (например, 105). Затем мы покажем, что утверждение верно для 1.Из этого следует, что утверждение будет истинным для 2. Следовательно, оно будет истинным для 3. Оно будет истинным для любого натурального числа, которое мы назовем.

              Это называется принципом математической индукции.

              Если
              1), когда утверждение верно для натурального числа n = k ,
              , то оно также будет истинным для его преемника,
              n = k + 1;
              и
              2) утверждение верно для n = 1;
              , то утверждение будет истинным для любого натурального числа n .

              Чтобы доказать утверждение по индукции, мы должны доказать пункты 1) и 2) выше.

              Гипотеза шага 1) — « Утверждение верно для n = k » — называется предположением индукции или гипотезой индукции. Это то, что мы предполагаем , когда доказываем теорему по индукции.

              Пример 1.
              Докажите, что сумма первых n натуральных чисел дается следующей формулой:

              1 + 2 + 3 +., , + n = n ( n + 1)
              2
              .

              Доказательство . Мы выполним шаги 1) и 2) выше. Во-первых, мы предположим , что формула верна для n = k ; то есть примем:

              1 + 2 + 3 +. , , + к = к ( к + 1)
              2
              .(1)

              Это предположение индукции. Предполагая это, мы должны доказать, что формула верна для ее преемника, n = k + 1. То есть мы должны показать:

              1 + 2 + 3 +. , , + ( к + 1) = ( к + 1) ( к + 2)
              2
              . (2)

              Для этого мы просто добавим следующего члена ( k + 1) к обеим сторонам предположения индукции, линия (1):

              Это строка (2), это первое, что мы хотели показать.

              Далее мы должны показать, что формула верна для n = 1. У нас есть:

              1 = ½ · 1 · 2

              — это правда. Теперь мы выполнили оба условия принципа математической индукции. Таким образом, формула верна для любого натурального числа.

              (В Приложении к арифметике мы устанавливаем эту формулу напрямую.)

              Пример 2. Докажите, что это правило экспонент верно для любого натурального числа n :

              ( ab ) n = a n b n .

              Доказательство . Опять же, мы начинаем с , предполагая, что верно для n = k ; то есть мы предполагаем:

              ( ab ) k = a k b k . , , , , , , , (3)

              С этим предположением мы должны показать, что правило верно для его преемника, n = ( k + 1).Мы должны показать:

              ( ab ) k + 1 = a k + 1 b k + 1 . , , , , , , (4)

              (При использовании математической индукции ученик всегда должен писать именно то, что должно быть показано.)

              Теперь, учитывая предположение, строку (3), как мы можем из нее построить строку (4)?

              Просто умножив обе стороны прямой (3) на ab :

              ( ab ) k ab = a k b k ab
              = a k a b k b
              , поскольку порядок факторов не имеет значения,
              = a k + 1 b k + 1 .

              Это строка (4), которую мы хотели показать.

              Итак, мы показали, что если теорема верна для любого конкретного натурального числа k , то она верна и для его преемника, k + 1.

              Далее мы должны показать, что правило верно для n = 1; то есть

              ( ab ) 1 = a 1 b 1 .

              Но ( ab ) 1 = ab ; и a 1 b 1 = ab .

              Следовательно, это правило верно для любого натурального числа n .

              Пример 3. Сумма последовательных кубиков. Докажите этот замечательный арифметический факт:

              1 3 + 2 3 + 3 3 +. , , + n 3 = (1 + 2 + 3 +., , + n ) 2 .

              «Сумма n последовательных кубиков равна квадрату
              суммы первых n чисел».

              Другими словами, согласно Примеру 1:

              1 3 + 2 3 + 3 3 +. , , + n 3 = n ² ( n + 1) ²
              4

              Доказательство .Для удобства обозначим сумму до n через S ( n ). Мы предполагаем, что формула верна для n = k ; то есть

              S ( к ) = k ² ( k + 1) ²
              4
              (1)
              Теперь мы должны показать, что формула верна и для
              n = k + 1; что
              S ( k + 1) = ( к + 1) ² ( к + 2) ²
              4
              (2)
              Для этого добавьте следующий куб к S ( k ), строка (1):
              S ( k + 1) = S ( к ) + ( к + 1) 3
              = k ² ( k + 1) ²
              4
              + ( к + 1) 3
              = k ² ( k + 1) ² + 4 ( k + 1) ³
              4
              = ( k + 1) ² [ k ² + 4 ( k + 1)]
              4
              — принимая ( k + 1) 2 как общий множитель,
              = ( к + 1) ² ( к ² + 4 к + 4)
              4
              = ( к + 1) ² ( к + 2) ²
              4

              Это строка (2), которую мы хотели показать.

              Наконец, мы должны показать, что формула верна для n = 1.

              1 3 = ·
              4
              1 = 1 · 4
              4

              — это правда. Таким образом, формула верна для любого натурального числа.

              В Приложении к арифметике мы прямо показываем, что это правда.

              Задача 1. Согласно принципу математической индукции, чтобы доказать утверждение, которое утверждается в отношении каждого натурального числа n , нужно доказать две вещи.

              а) Что первое?

              Чтобы увидеть ответ, наведите указатель мыши на цветную область.
              Чтобы снова закрыть ответ, нажмите «Обновить» («Reload»).

              Если утверждение верно для n = k , то оно будет верно для его преемника k + 1.

              б) Что второе?

              Утверждение верно для n = 1.

              c) Часть a) содержит предположение индукции. Что это?

              Утверждение верно для n = k .

              Проблема 2.Пусть S ( n ) = 2 n — 1. Вычислить

              а) S ( к )
              = 2 к — 1

              б) Ю ( к + 1)
              = 2 ( k + 1) — 1 = 2 k + 2 — 1 = 2 k + 1

              Задача 3. Сумма первых n нечетных чисел равна n-му квадрату .

              1 + 3 + 5 + 7 +. , , + (2 n — 1) = n 2 .

              а) Чтобы доказать, что с помощью математической индукции, какова будет индукция

              а) предположение?

              Утверждение верно для n = k :

              1 + 3 + 5 + 7 +. , , + (2 k — 1) = k 2 .

              б) Что мы должны показать на основании этого предположения?

              Утверждение верно для его преемника, k + 1:

              1 + 3 + 5 + 7 +., , + (2 k — 1) + 2 k + 1 = ( k + 1) ².

              c) Покажи это.

              При добавлении 2 k + 1 к обеим сторонам предположения индукции:

              1 + 3 + 5 + 7 +. , , + (2 к — 1) + 2 к + 1 = к ² + 2 к + 1
              = ( к + 1) 2

              г) Что мы должны показать, чтобы завершить доказательство математической индукцией?

              Утверждение верно для n = 1.

              д) Покажи это.

              1 = 1 2

              Задача 4. Докажите математической индукцией:

              Если мы обозначим эту сумму как S ( n ), то предположим, что формула верна для n = k ; то есть предположим

              S ( к ) = к
              2 к + 1
              .

              Теперь покажите, что формула верна для n = k + 1; то есть показать:

              S ( к + 1) = к + 1
              2 к + 3
              .

              Начало:

              Далее,

              Формула верна для n = 1:

              Следовательно, это верно для всех натуральных чисел.

              Содержание | Дом


              Сделайте пожертвование, чтобы TheMathPage оставалась в сети.
              Даже 1 доллар поможет.


              Авторские права © 2020 Лоуренс Спектор

              Вопросы или комментарии?

              Эл. Почта: [email protected]

              .

              формула индукции — это … Что такое формула индукции?

            • Индукционная ковка — относится к использованию индукционного нагрева для предварительного нагрева металлов перед деформацией с помощью пресса или молотка. Обычно металлы нагревают до температуры от 1100 ° C до 1200 ° C, чтобы повысить их пластичность и улучшить поток в штампе. Ковка с индукционным нагревом…… Wikipedia

            • Формула 2 — автомобиль Марка Сурера, выигравший чемпионат 1979 года. Формула 2, сокращенно F2, является разновидностью гонок по формуле с открытыми колесами.В 1985 году его заменила Формула 3000, но в 2008 году FIA объявила, что Формула 2 вернется в 2009 году в виде…… Wikipedia

            • Двигатели Формулы-1 — С момента своего создания в 1947 году Формула-1 использовала множество правил для двигателей. Название Formula произошло от использования максимального объема двигателя и единого регулирования веса. Формулы, ограничивающие объем двигателя, использовались в…… Wikipedia

            • Формула де Муавра — В математике формула де Муавра (a.n = cosleft (nx ight) + isinleft (nx ight). Формула…… Wikipedia

            • Формула Эйлера – Маклорена — В математике формула Эйлера – Маклорена обеспечивает мощную связь между интегралами (см. Исчисление) и суммами. Его можно использовать для аппроксимации интегралов конечными суммами или, наоборот, для вычисления конечных сумм и бесконечных рядов с помощью…… Wikipedia

            • Австралийская Формула 2 — Австралийская Формула 2, иногда сокращенно AF2 или ANF2, является категорией гонок по формуле крыльев и сликов в Австралии.Эта категория является одной из старейших в Австралии и датируется 1964 годом. Текущий формат AF2 был представлен в 1978 году. Брайан Шид…… Wikipedia

            • Математическая индукция — может быть неформально проиллюстрирована ссылкой на последовательный эффект падения домино. Математическая индукция — это метод математического доказательства, обычно используемый для установления того, что данное утверждение истинно для всех натуральных чисел (положительные…… Wikipedia

            • Формула цепной дроби Эйлера — В аналитической теории цепных дробей формула цепной дроби Эйлера — это тождество, связывающее некоторый очень общий бесконечный ряд с бесконечной цепной дробью.Впервые опубликованный в 1748 году, он сначала рассматривался как простой…… Wikipedia

            • Детская смесь — Младенец, которого кормят из детской бутылочки. Детские смеси — это промышленные продукты питания, разработанные и продаваемые для кормления младенцев и младенцев в возрасте до 12 месяцев, обычно приготовленные для кормления из бутылочки или из чашки из порошка (смешанного с водой) или…… Wikipedia

            • Формула Бейкера-Кэмпбелла-Хаусдорфа — В математике формула Бейкера Кэмпбелла Хаусдорфа является решением: Z = log (e ^ X e ^ Y) для не коммутирующих X и Y.Он назван в честь Генри Фредерика Бейкера, Джона Эдварда Кэмпбелла и Феликса Хаусдорфа. Впервые это было отмечено в печати Кэмпбеллом,…… Wikipedia

            • ,

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *