Электричество для чайников физика: Электрика для чайников — общие понятия и условные обозначения

Содержание

Электричество. Основные понятия


2013-05-13 Теория  


В этой статье предлагаю вам вспомнить базовые понятия в электрике, без которых любая работа, связанная с электричеством становится проблематичной.

Итак, любая электрическая цепь представляет собой совокупность различных устройств, образующих путь для прохождения электрического тока. Простейшая электрическая цепь может состоять из источника энергии, нагрузки и проводников.

Проводники — вещества, проводящие электрический ток. Они обладают малым удельным сопротивлением( т.е оказывают наименьшее сопротивление прохождению тока) и способны проводить электрический ток практически без потерь. Лучшими проводниками являются золото, серебро, медь и алюминий. Наибольшее распространение, вследствии дороговизны золота и серебра, получили медь и алюминий. Медь наиболее часто встречающийся проводник, в отличии от алюминия, обладающий большей устойчивостью к окислению и физическим воздействиям: изгибу, скручеванию. Недостатком меди, по сравнению с алюминием, является более высокая стоимость.

Помимо проводников существуют также диэлектрики — вещества которые обладают большим удельным сопротивлением электрическому току (т.е являются непроводящими электрический ток). К ним относятся пластмассы, дерево, текстолит и т.д

Также надо отметить и еще один тип — полупроводники. По своему удельному сопротивлению они занимают промежуточное положение между проводниками и диэлектриками. Проводимость этих материалов существенно меняется под влиянием внешних факторов. К числу полупроводников относятся многие химические элементы, но наибольшее распространение получили кремний и германий.

Источник энергии — это устройство, преобразующее механическую, химическую, тепловую и другие виды энергии в электрическую.

Нагрузка — потребитель электрической энергии, т.е любой электроприбор, который преобразовывает электрическую энергию в механическую, тепловую, химическую и т. д

Прохождение электрического тока возможно только при замкнутой цепи.

Электрическим током в электротехнике называют направленное движение заряженных частиц под действием электрического поля, создаваемого источником питания. Величина, характеризующая ток называется сила тока. Сила тока измеряется в Амперах и обозначается буквой А. Различают постоянный и переменный токи.

Постоянный ток ( DC, по-английски Direct Current) — это ток, свойства которого  и направление не меняются с течением времени. Обозначается постоянный ток и напряжение в виде короткой горизонтальной черточки или двух параллельных, одна из которых штриховая.

Переменный ток (AC по-английски Alternating Current) — это ток, который изменяется по величине и направлению с течением времени. На электроприборах обозначается отрезком синусоиды « ~ ». Основными параметрами переменного тока являются период, амплитуда и частота.

 

Период — промежуток времени, в течение которого ток совершает одно полное колебание.

Частота — величина, обратная периоду, число периодов в секунду, измеряется в герцах (Гц).

Ток и напряжение в нагрузке увеличиваются и уменьшаются, а разница между минимальным и максимальным их значением называется амплитудой.

Измерение тока проводится амперметром, который подключается последовательно нагрузке.

Любой проводник в цепи, в зависимости от сечения, длины, материала, оказывает сопротивление прохождению электрического тока. Свойство проводника препятствовать прохождению электрического тока называют сопротивлением. Сопротивление измеряется в Омах (Ом).

Разность потенциалов на концах источника питания называется напряжением. Напряжение измеряют в Вольтах и обозначают буквой В (V). В трехфазной электрической сети различают такие понятия, как линейное и фазное напряжения. Линейное напряжение ( или иначе межфазное) — это напряжение между двумя фазными проводами (380V). Фазное напряжение — это напряжение между нулевым проводом и одним из фазных (220V). Измеряется напряжение вольтметром, который подключается параллельно нагрузке.

Еще одним важным понятием в электротехнике является понятие мощности. Мощность источника характеризует скорость передачи или преобразования электроэнергии. Мощность измеряется в Ваттах (Вт, W).

Суммарная мощность всех подключенных потребителей равна сумме потребляемых мощностей каждым потребителем. Робщ = Р1+Р2+…Рn

Различают понятия активной и реактивной мощности. P – активная мощность (эффективная), связана с той электрической энергией, которая может быть преобразована в другие виды энергии – тепловую, световую, механическую и др., измеряется в ваттах (Вт), представляет собой полезную мощность, которую можно использовать для выполнения работы.

P = IUcosф – для однофазной цепи, P = √3IUcosф – для трехфазной цепи, P = U*I — в цепи, где есть только активное сопротивление.

Q – реактивная мощность, связана с обменом электрической энергией между источником и потребителем, измеряется в вольт-амперах реактивных (вар), когда среднее значение мощности за период равно нулю, активная мощность равна нулю, энергия накопленная магнитным полем индуктивности, возвращается назад к источнику, ток в цепи не совершает работы, реактивный ток бесполезно загружает источники энергии и провода линии передач. Источниками реактивной энергии могут являться элементы, обладающие индуктивностью — электродвигатели, трансформаторы. Для того, чтобы уменьшить реактивную мощность на зажимах потребителей подключают конденсаторы (последовательно или параллельно).

Q = IUsinф – для однофазной цепи, Q = √3IUsinф – для трехфазной цепи

Сдвиг по фазе между током и напряжением обозначается углом φ. Коэффициент мощности — это соотношение активной мощности к полной, величина cosф равная углу сдвига фаз между напряжением и током. Чем выше cos φ, тем меньше тока требуется для преобразования электроэнергии в другие виды энергии. Это приводит к уменьшению потерь электроэнергии, ее экономии.

На этом пока все, а в следующей части познакомимся с основными законами электротехники, которые необходимо знать любому человеку, связанному с электричеством.

Физика электричества: определение, опыты, единица измерения

Физика электричества — это то, с чем приходится сталкиваться каждому из нас. В статье мы рассмотрим основные понятия, связанные с ней.

Что такое электричество? Для человека непосвященного оно ассоциируется со вспышкой молнии или с энергией, питающей телевизор и стиральную машину. Он знает, что электропоезда используют электрическую энергию. О чем еще он может рассказать? О нашей зависимости от электричества ему напоминают линии электропередач. Кто-то сможет привести и несколько других примеров.

Однако с электричеством связано немало других, не столь очевидных, но повседневных явлений. Со всеми ними нас знакомит физика. Электричество (задачи, определения и формулы) мы начинаем изучать еще в школе. И узнаем много интересного. Оказывается, бьющееся сердце, бегущий спортсмен, спящий ребенок и плавающая рыба — все вырабатывает электрическую энергию.

Электроны и протоны

Определим основные понятия. С точки зрения ученого, физика электричества связана с движением электронов и других заряженных частиц в различных веществах. Поэтому научное понимание природы интересующего нас явления зависит от уровня знаний об атомах и составляющих их субатомных частицах. Ключом к этому пониманию служит крошечный электрон. Атомы любого вещества содержат один или более электронов, движущихся по различным орбитам вокруг ядра подобно тому, как планеты вращаются вокруг Солнца. Обычно число электронов в атоме равно количеству протонов в ядре. Однако протоны, будучи значительно тяжелее электронов, можно считать как бы закрепленными в центре атома. Этой предельно упрощенной модели атома вполне достаточно, чтобы объяснить основы такого явления, как физика электричества.

О чем еще необходимо знать? Электроны и протоны имеют одинаковый по величине электрический заряд (но разного знака), поэтому они притягиваются друг к другу. Заряд протона является положительным, а электрона — отрицательным. Атом, имеющий электронов больше или меньше, чем обычно, называется ионом. Если в атоме их недостаточно, то он называется положительным ионом. Если же он содержит их избыток, то его называют отрицательным ионом.

Когда электрон покидает атом, тот приобретает некоторый положительный заряд. Электрон, лишенный своей противоположности — протона, либо движется к другому атому, либо возвращается к прежнему.

Почему электроны покидают атомы?

Это объясняется несколькими причинами. Наиболее общая состоит в том, что под воздействием импульса света или какого-то внешнего электрона движущийся в атоме электрон может быть выбит со своей орбиты. Тепло заставляет атомы колебаться быстрее. Это означает, что электроны могут вылететь из своего атома. При химических реакциях они также перемещаются от атома к атому.

Хороший пример взаимосвязи химической и электрической активности дают нам мышцы. Их волокна сокращаются при воздействии электрического сигнала, поступающего из нервной системы. Электрический ток стимулирует химические реакции. Они-то и приводят к сокращению мышцы. Внешние электрические сигналы нередко используются для искусственного стимулирования мышечной активности.

Проводимость

В некоторых веществах электроны под действием внешнего электрического поля движутся более свободно, чем в других. Говорят, что такие вещества обладают хорошей проводимостью. Их называют проводниками. К ним относится большинство металлов, нагретые газы и некоторые жидкости. Воздух, резина, масло, полиэтилен и стекло плохо проводят электричество. Их называют диэлектриками и используют для изоляции хороших проводников. Идеальных изоляторов (абсолютно не проводящих тока) не существует. При определенных условиях электроны можно удалить из любого атома. Однако обычно эти условия столь трудно выполнить, что с практической точки зрения подобные вещества можно считать непроводящими.

Знакомясь с такой наукой, как физика (раздел «Электричество»), мы узнаем, что существует особая группа веществ. Это полупроводники. Они ведут себя отчасти как диэлектрики, а отчасти — как проводники. К ним, в частности, относятся: германий, кремний, окись меди. Благодаря своим свойствам полупроводник находит множество применений. Например, он может служить электрическим вентилем: подобно клапану велосипедной шины он позволяет зарядам двигаться только в одном направлении. Такие устройства называются выпрямителями. Они используются и в миниатюрных радиоприемниках, и на больших электростанциях для преобразования переменного тока в постоянный.

Тепло представляет собой хаотичную форму движения молекул или атомов, а температура — мера интенсивности этого движения (у большинства металлов с понижением температуры движение электронов становится более свободным). Это означает, что сопротивление свободному движению электронов падает с уменьшением температуры. Другими словами, проводимость металлов возрастает.

Сверхпроводимость

В некоторых веществах при очень низких температурах сопротивление потоку электронов исчезает полностью, и электроны, начав движение, продолжают его неограниченно. Это явление называется сверхпроводимостью. При температуре несколько градусов выше абсолютного нуля (— 273 °С) она наблюдается в таких металлах, как олово, свинец, алюминий и ниобий.

Генераторы Ван де Граафа

В школьную программу входят различные опыты с электричеством. Существует можество видов генераторов, об одном из которых нам хотелось бы подробнее рассказать. Генератор Ван де Граафа используется для получения сверхвысоких напряжений. Если предмет, содержащий избыток положительных ионов, поместить внутрь контейнера, то на внутренней поверхности последнего появятся электроны, а на внешней — такое же количество положительных ионов. Если теперь коснуться внутренней поверхности заряженным предметом, то на него перейдут все свободные электроны. На внешней же положительные заряды останутся.

В генераторе Ван де Граафа положительные ионы от источника наносятся на ленту конвейера, проходящего внутри металлической сферы. Лента связана с внутренней поверхностью сферы с помощью проводника в виде гребня. Электроны стекают с внутренней поверхности сферы. На внешней же стороне ее появляются положительные ионы. Эффект можно усилить, используя два генератора.

Электрический ток

В школьный курс физики входит и такое понятие, как электрический ток. Что же это такое? Электрический ток обусловлен движением электрических зарядов. Когда электрическая лампа, соединенная с батареей, включена, ток течет по проводу от одного полюса батареи к лампе, затем через ее волосок, вызывая его свечение, и возвращается назад по второму проводу к другому полюсу батареи. Если выключатель повернуть, то цепь разомкнется — движение тока прекратится, и лампа погаснет.

Движение электронов

Ток в большинстве случаев представляет собой упорядоченное движение электронов в металле, служащем проводником. Во всех проводниках и некоторых других веществах всегда происходит какое-то случайное их движение, даже если ток не протекает. Электроны в веществе могут быть относительно свободны или сильно связаны. Хорошие проводники имеют свободные электроны, способные перемещаться. А вот в плохих проводниках, или изоляторах, большинство этих частиц достаточно прочно связано с атомами, что препятствует их движению.

Иногда естественным или искусственным путем в проводнике создается движение электронов в определенном направлении. Этот поток и называют электрическим током. Он измеряется в амперах (А). Носителями тока могут служить также ионы (в газах или растворах) и «дырки» (нехватка электронов в некоторых видах полупроводников. Последние ведут себя как положительно заряженные носители электрического тока. Чтобы заставить электроны двигаться в том или ином направлении, необходима некая сила. В природе ее источниками могут быть: воздействие солнечного света, магнитные эффекты и химические реакции. Некоторые из них используются для получения электрического тока. Обычно для этой цели служат: генератор, использующий магнитные эффекты, и элемент (батарея), действие которого обусловлено химическими реакциями. Оба устройства, создавая электродвижущую силу (ЭДС), заставляют электроны двигаться в одном направлении по цепи. Величина ЭДС измеряется в вольтах (В). Таковы основные единицы измерения электричества.

Величина ЭДС и сила тока связаны между собой, как давление и поток в жидкости. Водопроводные трубы всегда заполнены водой под определенным давлением, но вода начинает течь, только когда открывают кран.

Аналогично электрическая цепь может быть соединена с источником ЭДС, но ток в ней не потечет до тех пор, пока не будет создан путь, по которому могут двигаться электроны. Им может быть, скажем, электрическая лампа или пылесос, выключатель здесь играет роль крана, «выпускающего» ток.

Соотношение между током и напряжением

По мере роста напряжения в цепи растет и ток. Изучая курс физики, мы узнаем, что электрические цепи состоят из нескольких различных участков: обычно это выключатель, проводники и прибор — потребитель электричества. Все они, соединенные вместе, создают сопротивление электрическому току, которое (при условии постоянства температуры) для этих компонентов не изменяется со временем, но для каждого из них различно. Поэтому, если одно и то же напряжение применить к лампочке и к утюгу, то поток электронов в каждом из приборов будет различен, поскольку различны их сопротивления. Следовательно, сила тока, протекающего через определенный участок цепи, определяется не только напряжением, но и сопротивлением проводников и приборов.

Закон Ома

Величина электрического сопротивления измеряется в омах (Ом) в такой науке, как физика. Электричество (формулы, определения, опыты) — обширная тема. Мы не будем выводить сложные формулы. Для первого знакомства с темой достаточно того, что было сказано выше. Однако одну формулу все-таки стоит вывести. Она совсем несложная. Для любого проводника или системы проводников и приборов соотношение между напряжением, током и сопротивлением задается формулой: напряжение = ток х сопротивление. Это математическое выражение закона Ома, названного так в честь Георга Ома (1787-1854 гг.), который первым установил взаимосвязь этих трех параметров.

Физика электричества — очень интересный раздел науки. Мы рассмотрели лишь основные понятия, связанные с ней. Вы узнали, что такое электричество, как оно образуется. Надеемся, эта информация вам пригодится.

Физика для чайников — Класс!ная физика

Физика для чайников

Подробности
Просмотров: 447

«Не так уж твёрд гранит науки» — телекурс для начинающих или наука для «чайников».

Не обижайтесь на «чайников»!

Здесь все будет на понятном языке, просто, доходчиво и увлекательно!

Годится для старшеклассников, абитуриентов, студентов, преподавателей и всех заинтересованных лиц….

Ведет занятия на первом образовательном канале Борис Сергеевич Бояршинов — доцент, кандидат физико-математических наук.

Итак, физика для чайников

1. Физика — наука о природе ………………………смотреть

2. Азы стихосложения: кинематика ………………………смотреть

3. Главное об ускорении ………………………смотреть

4. Наложение движений: принцип независимости движений ………………………смотреть

5. Куда кривая вывезет: криволинейное движение ………………………смотреть

6. Познание силы: механика ………………………смотреть

7. Движение по наклонной плоскости ………………………смотреть

8. Интегралы движения. Закон сохранения энергии ………………………смотреть

9. Закон сохранения импульса ………………………смотреть

10. Сложение сил ………………………смотреть

11. Моменты сил ………………………смотреть

12. «Потусторонние» силы. Силы инерции ………………………смотреть

13. Волчки. Гироскопы ………………………смотреть

14. Сила, что движет мирами. Всемирное тяготение ………………………смотреть

15. Изо всех сил. Сила, рычаг, путь ………………………смотреть

16. Новое о колебаниях ………………………смотреть

17. Затухающие колебания ………………………смотреть

18. Резонанс ………………………смотреть

19. Гидростатика ………………………смотреть

20. О течении жидкости. Гидродинамика ………………………смотреть

21. Почему ткань после стирки «садится»? Поверхностное натяжение ………………………смотреть

22. Аэродинамика ………………………смотреть

23. Волны. Волновые процессы ………………………смотреть

24. Упругое тело. Растяжение. Сжатие ………………………смотреть

25. Почему рельсы зимой стучат? Тепловое расширение тел ………………………смотреть

26. Закон Бойля-Мариотта ………………………смотреть

27. Теплоемкость газов ………………………смотреть

28. Ближе к реальности. Реальные газы ………………………смотреть

29. Цикл инженера Карно. Идеальная паровая машина ………………………смотреть

30. Потрясающая вещь: число Авогадро ………………………смотреть

31. Вероятностный мир. Азы статистической физики ………………………смотреть

32. Энтропия ………………………смотреть

33. Электростатика ………………………смотреть

34. Напряженность и потенциал ………………………смотреть

35. Диполи, квадруполи, диэлектрики ………………………смотреть

36. Конденсаторы ………………………смотреть

37. Игры с конденсаторами ………………………смотреть

38. Пироэлектрики, сегнетоэлектрики и другие электрики ………………………смотреть

39. Закон Ома ………………………смотреть

40. Закон Джоуля-Ленца и правила Кирхгофа ………………………смотреть

41. Магнетизм ………………………смотреть

42. Молекулярные токи ………………………смотреть

43. Электромагнитная индукция ………………………смотреть

44. Движение заряда в магнитном поле ………………………смотреть

45. Переменный ток и напряжение ………………………смотреть

46. Электрические колебания ………………………смотреть

47. Классическая модель проводника ………………………смотреть

48. Подлинная история электронов. Квантомеханическое представление ………………………смотреть

49. Электроны в пустоте. Электровакуумные приборы ………………………смотреть

50. Явления в электрических контактах ………………………смотреть

51. Оптика. Принцип Ферма ………………………смотреть

52. Фокусы с линзами ………………………смотреть

53. Интерференция света ………………………смотреть

54. Волновая теория. Принцип Гюйгенса-Френеля ………………………смотреть

55. Дифракция ………………………смотреть

56. Поляризация света ………………………смотреть

57. Скорость света ………………………смотреть

58. Теория относительности ………………………смотреть

59. Абсолютно черное тело ………………………смотреть

60. Фотоны ………………………смотреть

61. Квантовая механика. Теория относительности ………………………смотреть

62. Волна-частица. Волна де Бройля ………………………смотреть

63. Проход сквозь стену. Туннельный эффект ………………………смотреть

64. Луч лазера. Вынужденное излучение ………………………смотреть

65. Ядро изнутри. Атомное ядро и его модели ………………………смотреть

66. Мы не люди и не птицы, нас в науке называют «виртуальные частицы» ………………………смотреть

67. Земные чудеса. Элементарные частицы ………………………смотреть

68. Творение. Рождение пространства, времени и материи ………………………смотреть

69. Чудеса небесные. Физика и астрономия ………………………смотреть

70. Прощание с физикой ………………………
смотреть

Справочник электрика для чайников — советы электрика

Электротехника для начинающих

Главная > Теория > Электротехника для начинающих

Электричество применяется во многих областях, оно окружает нас практически повсюду. Электроэнергия позволяет получать безопасное освещение дома и на работе, кипятить воду, готовить пищу, работать на компьютере и станках.

Вместе с тем, обращаться с электричеством необходимо уметь, иначе можно не только получить травмы, но и нанести вред имуществу.

Как правильно прокладывать проводку, организовывать снабжение объектов электричеством, изучает такая наука, как электротехника.

Зачем нужно знать электротехнику

Понятие электричества

Все вещества состоят из молекул, которые, в свою очередь, состоят из атомов. У атома есть ядро и движущиеся вокруг него положительно и отрицательно заряженные частицы (протоны и электроны).

При нахождении двух материалов рядом друг с другом между ними возникает разность потенциалов (у атомов одного вещества электронов всегда меньше, чем у другого), что приводит к появлению электрического заряда – электроны начинают перемещаться от одного материала к другому. Так возникает электричество.

Другими словами, электричество – это энергия, возникающая в результате перемещения отрицательно заряженных частиц из одного вещества в другое.

Что такое электричество

Обратите внимание

Скорость перемещения может быть разной. Чтобы движение было в нужном направлении и с нужной скоростью, используются проводники. Если движение электронов по проводнику осуществляется только в одном направлении, такой ток называется постоянным.

Если же направление перемещения с определенной частотой меняется, то ток будет переменным. Самым известным и простым источником постоянного тока является батарейка или автомобильный аккумулятор. Переменный ток активно используется в бытовом хозяйстве и в промышленности.

На нем работают практически все устройства и оборудование.

К сведению. Движением электрической энергии можно управлять. Способы такого управления изучает курс «Основы электротехники», который необходим всем электрикам, чтобы правильно проложить проводку в доме, не допустить пожара или травм в период работ.

Что изучает электротехника

Радиотехника для начинающих

Данная наука знает практически все об электричестве. Изучить ее необходимо всем, кто хочет получить диплом или квалификацию электрика. В большинстве учебных заведений курс, на котором изучают все, что связано с электроэнергией, называется «Теоретические основы электротехники» или, сокращенно ТОЭ.

Данная наука получила развитие в XIX веке, когда был изобретен источник постоянного тока, и появилась возможность строить электрические цепи. Дальнейшее развитие электротехника получила в процессе новых открытий в области физики электромагнитных излучений. Чтобы без проблем осваивать науку в настоящее время, необходимо иметь знания не только в области физики, но также химии и математики.

В первую очередь, на курсе ТОЭ изучаются основы электричества, дается определение тока, исследуются его свойства, характеристики и направления применения. Далее изучаются электромагнитные поля и возможности их практического использования. Завершается курс, как правило, изучением устройств, в которых используется электрическая энергия.

Предмет изучения электротехники

Чтобы разобраться с электричеством, не обязательно поступать в высшее или среднее учебное заведение, достаточно воспользоваться самоучителем или пройти видеоуроки «для чайников».

Полученных знаний вполне хватит, чтобы разобраться с проводкой, заменить лампочку или повесить люстру дома. Но, если планируется профессионально работать с электричеством (например, в должности электромонтера или энергетика), то соответствующее образование будет обязательным.

Оно позволяет получить специальный допуск на работу с приборами и устройствами, работающими от источника тока.

Основные понятия электротехники

Изучая электричество для начинающих, главное разобраться с тремя основными терминами:

  • Сила тока;
  • Напряжение;
  • Сопротивление.

Под силой тока понимается количество электрического заряда, протекающего через проводник с определенным сечением за единицу времени. Другими словами, количество электронов, которые переместились из одного конца проводника в другой за некоторое время.

Сила тока является самой опасной для жизни и здоровья человека. Если взяться за оголенный провод (а человек – это тоже проводник), то электроны пройдут через него.

Чем больше их пройдет, тем больше будут повреждения, поскольку в процессе своего движения они выделяют тепло и запускают различные химические реакции.

Однако чтобы ток шел по проводникам, между одним и другим концом проводника должно быть напряжение или разность потенциалов. Причем она должна быть постоянной, чтобы движение электронов не прекращалось. Для этого электрическую цепь обязательно замыкают, а на одном конце цепи обязательно ставят источник тока, который обеспечивает в цепи постоянное движение электронов.

Электрическая цепь

Сопротивление – это физическая характеристика проводника, его способность к проведению электронов. Чем ниже сопротивление проводника, тем большее количество электронов по нему пройдет за единицу времени, тем выше сила тока. Высокое сопротивление, наоборот, уменьшает силу тока, но влечет за собой нагревание проводника (если напряжение достаточно высоко), что может привести к возгоранию.

Подбор оптимальных соотношений между напряжением, сопротивлением и силой тока в электрической цепи является одной из основных задач электротехники.

Электротехника и электромеханика

Сварочные работы для начинающих

Электромеханика является разделом электротехники. Она изучает принципы функционирования устройств и оборудования, которые работают от источника электрического тока. Изучив основы электромеханики, можно научиться ремонтировать различное оборудование или даже проектировать его.

В рамках уроков по электромеханике, как правило, изучаются правила преобразования электрической энергии в механическую (каким образом функционирует электродвигатель, принципы работы любого станка и так далее). Также исследуются и обратные процессы, в частности, принципы действия трансформаторов и генераторов тока.

Предмет изучения электромеханики

Таким образом, без понимания того, как составляются электрические цепи, принципов их функционирования и других вопросов, которые изучает электротехника, осваивать электромеханику невозможно.

С другой стороны, электромеханика является более сложной дисциплиной и носит прикладной характер, поскольку результаты ее изучения применяются непосредственно при конструировании и ремонте машин, оборудования и различных электрических устройств.

Безопасность и практика

Осваивая курс электротехники для начинающих, необходимо уделить особое внимание вопросам безопасности, поскольку несоблюдение определенных правил может привести к трагическим последствиям.

Первое правило, которому необходимо следовать, – обязательно знакомиться с инструкцией. У всех электроприборов в руководстве по эксплуатации всегда имеется раздел, который посвящен вопросам безопасности.

Важно! Выполнение рекомендаций позволит избежать травм и нанесения вреда имуществу.

Второе правило заключается в контроле состояния изоляции проводников. Все провода обязательно должны покрываться специальными материалами, не проводящими электричество (диэлектриками).

Важно

Если изоляционный слой нарушен, в первую очередь, следует его восстановить, иначе возможно нанесение вреда здоровью.

Кроме того, работу в целях безопасности с проводами и электрооборудованием следует производить только в специальной одежде, которая не проводит электричество (резиновые перчатки и диэлектрические боты).

Третье правило состоит в использовании для диагностики параметров электросети только специальных приборов. Ни в коем случае не стоит делать этого голыми руками или пробовать «на язык».

Обратите внимание! Пренебрежение данными элементарными правилами является основной причиной травм и несчастных случаев в работе электриков и электромонтеров.

Правила безопасности при работе с электричеством

Советы начинающим

Чтобы получить начальное представление об электричестве и принципах работы устройств с его применением, рекомендуется пройти специальный курс или изучить пособие «Электротехника для начинающих». Подобные материалы разработаны специально для тех, кто пытается с нуля освоить данную науку и получить необходимые навыки для работы с электрооборудованием в быту.

Советы начинающим электрикам

В пособии и видеоуроках подробно рассказывается, как устроена электрическая цепь, что такое фаза, а что такое ноль, чем отличается сопротивление от напряжения и силы тока и так далее. Отдельное внимание уделяется технике безопасности, чтобы избежать травм при работе с электроприборами.

Конечно, изучение курсов или чтение пособий не позволит стать профессиональным электриком или электромонтером, но решить большинство бытовых вопросов по итогам освоения материала будет вполне по силам.

Для профессиональной работы требуется уже получение специального допуска и наличие профильного образования. Без этого выполнять должностные обязанности запрещается различными инструкциями.

Если же предприятие допустит человека без необходимого образования к работе с электрооборудованием, и он получит травму, руководитель понесет серьезное наказание, вплоть до уголовного.

Видео

Источник: https://elquanta.ru/teoriya/ehlektrotekhnika-dlya-nachinayushhikh.html

Уроки электричества: азы для начинающих электриков, сила тока и напряжение, как рассчитать

При выходе из строя какого-нибудь электроблока правильным решением будет вызвать специалиста, который быстро устранит проблему.

Если такой возможности нет, уроки для электриков помогут самостоятельно устранить ту или иную поломку.

При этом стоит помнить о технике безопасности, дабы избежать серьезных увечий.

Техника безопасности

Правила безопасности нужно выучить наизусть — это сохранит здоровье и жизнь при устранении проблем с электричеством. Вот самые важные азы электрики для начинающих:

  • Первые работы с сетями лучше всего проводить под присмотром опытного электрика.
  • Не рекомендуется работать с высоким напряжением одному. Рядом всегда должен кто-то быть, кто подстрахует в случае проблем — обесточит сеть, вызовет экстренные службы и окажет первую помощь.
  • Все работы следует проводить с обесточенными сетями. Также нужно убедиться, что никто не подключит электричество во время монтажа.

Для выполнения монтажных работ необходимо приобрести датчик (индикатор фазы), похожий на отвертку или шило. Это устройство позволяет найти провод, находящийся под напряжением — при его обнаружении на датчике загорается индикатор. Приборы работают по-разному, например, когда пальцем прижат соответствующий контакт.

Дело в том, что иногда проводку прокладывают неправильно — автомат на входе отключает только один провод, не обесточивая всю сеть. Такая ошибка может привести к печальным последствиям, ведь человек надеется на полное отключение системы, в то время как некоторый участок может все еще быть активным.

Виды цепей, напряжение и сила тока

Электрические цепи могут быть связаны параллельно либо последовательно. В первом случае электрический ток распределяется по всем цепям, которые соединяются параллельно. Получается, что суммарная единица будет равна сумме тока в любой из цепей.

Параллельные соединения имеют одинаковое напряжение. В последовательной комбинации ток переходит из одной системы в другую. В итоге в каждой линии протекает одинаковый ток.

Не имеет смысла останавливаться на технических определениях напряжения и силы тока (А). Гораздо понятнее будет пояснение на примерах. Так, первый параметр влияет на то, насколько хорошо нужно изолировать различные участки.

Совет

Чем оно больше, тем выше вероятность того, что в каком-то месте случится пробой. Из этого следует, что высокому напряжению необходима качественная изоляция.

Оголенные соединения необходимо держать подальше друг от друга, от других материалов и от земли.

Более мощное напряжение несет большую угрозу для жизни. Но не стоит полагать, будто низкое абсолютно безопасно. Опасность для человека зависит и от силы тока, которая проходит через организм.

А этот параметр уже напрямую подчиняется сопротивлению и напряжению. При этом сопротивление организма связано с сопротивлением кожи, которое может меняться в зависимости от морального и физического состояния человека, влажности и многих других факторов.

Бывали случаи, когда человек умирал от удара током всего 12 вольт.

Кроме того, в зависимости от силы тока подбираются различные провода. Чем выше A, тем толще нужен провод.

Переменная и постоянная величины

Когда электричество только зарождалось, потребителям поставляли постоянный ток. Однако выяснилось, что стандартную величину 220 вольт практически невозможно передать на большое расстояние.

С другой стороны, нельзя подводить тысячи вольт — во-первых, это опасно, во-вторых, тяжело и дорого изготавливать приборы, работающие на таком высоком напряжении. В результате было решено преобразовывать напряжение — до города доходит 10 вольт, а в дома уже попадает 220. Преобразование происходит при помощи трансформатора.

Что касается частоты напряжения, то она составляет 50 Герц. Это значит, что напряжение меняет свое состояние 50 раз в минуту.

Обратите внимание

Оно стартует с нуля и вырастает до отметки в 310 вольт, затем падает до нуля, затем до -310 вольт и опять поднимается до нуля. Все работа протекает в циклическом ключе.

В таких случаях напряжение в сети равняется 220 вольт — почему не 310, будет рассказано дальше. За границей встречаются разные параметры — 220, 127 и 110 вольт, а частота может быть 60 герц.

Мощность и другие параметры

Электрический ток необходим для выполнения какой-либо работы, например, для вращения двигателя или нагрева батарей. Можно вычислить, какую работу он совершит, умножая силу тока на напряжение. Например, электронагреватель, имеющий 220 вольт, и обладающий мощностью 2.2 кВт, будет расходовать ток в 10 А.

Стандартное измерение мощности происходит в ваттах (Вт). Электрический ток силой 1 ампер с напряжением 1 вольт может выделить мощность 1 ватт.

Вышеприведенная формула используется для обоих видов тока. Однако вычисление первого имеет некоторую сложность, — необходимо умножить силу тока на U в каждую единицу времени. А если учесть, что у переменного тока все время меняются показатели напряжения и силы, то придется брать интеграл. Поэтому было применено понятие действующего значения.

Переменный и постоянный ток имеет амплитудное и действующее состояние. Амплитудный параметр — максимальная единица, до которой может подниматься напряжение. Для переменного вида амплитудное число равняется действующему, умноженному на √ 2. Этим объясняются показатели напряжения 310 и 220 В.

Закон Ома

Следующим понятием в основах электрики для начинающих является закон Ома. Он утверждает, что сила тока равна напряжению, поделенному на сопротивление. Этот закон действует как для переменного тока, так и для постоянного.

Сопротивление измеряют в омах. Так, сквозь проводник с сопротивлением 1 ом при напряжении 1 вольт проходит ток 1 ампер. Закон Ома порождает два интересных следствия:

  • Если известна A, протекающая через систему, и сопротивление цепи, то можно вычислить мощность.
  • Мощность также можно посчитать, зная действующее сопротивление и U.

При этом для определения мощности берется не напряжение сети, а U, примененное к проводнику. Получается, если какой-либо прибор включен в систему через удлинитель, то действие будет применено как к прибору, так и к проводам удлинительного устройства. В результате провода будут нагреваться.

Однако основные проблемы заключаются не в самом проводе, а в различных местах соединения. В этих точках сопротивление бывает в десятки раз выше, чем по периметру провода. Со временем в результате окисления сопротивление может лишь повышаться.

Особенно опасными являются места соединения различных металлов. В них процессы окисления проходят гораздо быстрее. Самые частые зоны соединений:

  • Места скручивания проводов.
  • Клеммы выключателей, розеток.
  • Зажимные контакты.
  • Контакты в распределительных щитках.
  • Вилки и розетки.

Поэтому при ремонте первым делом стоит обратить внимание на эти участки. Они должны быть доступными для монтажа и контроля.

Выполняя вышеописанные правила, можно самостоятельно решать некоторые бытовые вопросы, связанные с электрикой в доме. Главное — помнить о технике безопасности.

Источник: https://220v.guru/elementy-elektriki/lampy/uroki-dlya-elektrikov-osnovy-elektrichestva.html

Список топ 10 лучших книг по электрике

Книги по электрике необходимы как новичку, который хочет стать квалифицированным специалистом, так и профессионалу, ищущему ответы на наиболее трудные вопросы в достоверных источниках. Наша подборка подойдет всем, кто работает с электричеством. Здесь представлены наиболее информативные и полные издания авторитетных авторов. Представляем вам список из 10 самых лучших книг по электрике. 

Большая энциклопедия электрика (2016)

Автор: Ю.М. Черничкин

Книга будет полезна тем, кто занимается домовой электрикой. Материал дается от азов к профессиональному уровню. Простое объяснение сложных процессов. Книга снабжена иллюстрациями.

В ней раскрыты проблемы, с которыми сталкивается электрик при работе с электричеством и электрооборудованием. Виды кабелей, шнуров и проводов, монтаж и ремонт проводки – все это вы найдете в энциклопедии.

Книга предназначена как для профессионалов, так и для мастеров-самоучек.

Скачать

Главная книга электрика. Самое полное руководство (2014)

Автор: В.М. Жабцев

Данное издание поможет тем, кто решил самостоятельно заняться ремонтом электропроводки у себя дома, не прибегая к помощи профессионального электрика.

Здесь вы найдете всю необходимую информацию про инструменты, необходимые для ремонта или других работ; про провода и то, как их правильно выбрать; про то, как рассчитать домашнюю сеть; про личную безопасность при работе с электричеством и иные процессы, связанные с электричеством. Информативное издание, оснащенное иллюстрациями.

Монтаж и эксплуатация электропроводки (2011)

Автор: В.И. Назарова

Книга нужна тем, кто столкнется с электромонтажными работами в ходе строительства или перепланировки коттеджа, жилого дома или дачи. Всё о том, как правильно выполнить монтаж электропроводки, розеток, выключателей, щитков и светильников. Незаменимая книга в работе профессионального электрика и домашнего умельца.

Скачать

Современный справочник электрика (2016)

Автор: А.В. Суворин

Книга предназначена для инженеров и техников по специальности электроснабжение (по отраслям), для электриков и электромонтеров. В справочнике представлена огромная теоретическая база по общетехническим положениям, необходимым электрику.

В книге имеются сведения по электротехнике и материалам, необходимым для работы, краткое описание осветительного оборудования, трансформаторов, машин постоянного тока. Также здесь представлена информация по работе с электронными приборами и их применению.

Информация в справочнике изложена доступным языком.

Справочник электрика для профи и не только… Современные технологии XXI века (2013)

Авторы: С.Л. Корякин-Черняк, М.А. Шустов, О.Н. Партала, А.В. Повный, С.Б. Шмаков, В.Я. Володин, Е.А. Мукомол

Справочник электрика нужен тем, кто ищет всю необходимую информацию в одном месте.

Физические и технические характеристики, понятийный аппарат, название приборов и материалов, маркировок, обозначений – все это вы найдете здесь.

Книга содержит большой объем электротехнической информации, которая организована по разделам и направлениям деятельности профессионального электрика. Справочник необходим как профессионалу, так и тому, кто только учится.

Электрика вашего дома (2014)

Автор: О.К. Костко

Книга посвящена проектированию и монтажу электрики в доме и квартире своими руками без помощи квалифицированного мастера. Следуя советам из данного издания, вы легко сможете это сделать своими руками. В книге представлены только безопасные и проверенные советы профессиональных электриков.

Скачать

Домашний электрик и не только (2003)

Автор: В.М. Пестриков

Популярный двухтомник. Первая книга охватывает вопросы, связанные с работой над электричеством в городе, а вторая – на даче, садовом участке и просто на досуге.

В занимательной и простой форме рассмотрены основные вопросы в области электричества, а также в смежных областях: радиоэлектронике, в области телевидения и сотовой связи, охранных систем.

Цель книги – помочь любому желающему научиться ремонту электросети и электрооборудования, а также – созданию простых электроприборов.

Электрика в вашем доме (2008)

Автор: Н. Г. Коршевер

Практическое пособие по прокладке электропроводки в квартире, доме, подсобных сооружениях. В книге описаны особенности ремонта электроприборов. Отдельное внимание уделено системам безопасности дома и квартиры, начиная с сигнализации и заканчивая средствами видеонаблюдения.

Все об электрике (2016)

Авторы: М. Черничкин, С. Степанов, И. Екимов

Книга, предназначена для тех, кто сталкивается с ремонтом электропроводки в квартире. Пошаговое объяснение решения проблем, связанных с электрикой. Материал снабжен большим количеством иллюстраций.

Из нее вы узнаете о материалах и инструментах, необходимых в работе мастера, об особенностях электрооснащения квартиры и улицы. Также дается информация об электрификации санузла и кухни.

Книга будет полезна не только новичку, но и профессионалу.

Скачать

Электрооснащение дома и участка (2006)

Автор: В.С. Левадный

Книга предназначена для домашнего мастера. В ней описаны все процессы, связанные с электрооснащением дома: работа с проводкой, прокладка линий, установка бытовых электроприборов. Данная книга – путеводитель по электрооснащению жилища по собственному вкусу.

Источник: https://topspiski.com/spisok-top-10-luchshix-knig-po-elektrike/

Электрика для начинающих

В наше время каждый желающий может ознакомиться с азами электрики, даже не покидая пределов своего дома.

Начать это увлекательное занятие лучше всего со знакомства с упрощённой электрической схемой разводки и подключения выключателей, розеток и осветительных приборов в вашей собственной квартире.

Подобные схемы относятся к стандартным проектным решениям и широко применяются при электроснабжении типовых промышленных и жилых помещений, а также при временном подключении к питающей электросети ряда строительных объектов.

Важно

Первым (в то же время самым крупным и наиболее важным) элементом в длинной цепочке оборудования типовой квартирной электропроводки является электрический щиток, к которому через защитный автомат (или пробковый предохранитель) подводится питание от основного распределительного щитка, расположенного на подъездной площадке. В состав квартирного щитка входят, как правило, электросчётчик, несколько автоматических выключателей, устройство защитного отключения (УЗО), крепёжная DIN-рейка и ещё ряд вспомогательных шин. Именно с такого вводного щитка и организуется электроснабжение всех комнат в вашей квартире.

Несколько линии электропитания (их количество зависит от числа комнат и мощности электрических нагрузок), состоящие из двух проводов – фазного и нулевого (или из трех, если есть линия заземления), через предназначенные для них автоматические выключатели разводятся по отдельным комнатам квартиры.

Разводка электропроводки по всей квартире проводится путём организации ответвлений от основной линии проводки, которые необходимы для подключения отдельных потребителей – электрического звонка, групп штепсельных розеток или выключателей.

Для этих целей используются монтажные распределительные коробки, представляющие собой пластмассовые стаканы, снабжённые входными и выходными отверстиями для проводов и крышкой. Внутри коробок размещены специальные винтовые зажимы для подключения коммутируемых установочных проводов.

Но как правило провода в коробке просто скручиваются (так называемая скрутка) и изолируются друг от друга (обычно обматываются изолентой или термоусадочной трубкой).

Рекомендуется также использовать зажимы (у нас большое распространение получили зажимы Wago), либо соединительные зажимы СИЗ (колпачки с пружинкой внутри).

Следует отметить, что все внутриквартирные потребители электроэнергии (звонки, различные осветители вкупе с выключателями, бытовые приборы, кондиционеры и т.п.), подключаются к квартирной проводке параллельно.

Совет

При подобной схеме подключения неисправность или отключение одного из этих потребителей не вызовет «обесточивания» остальных приборов, которое неизбежно в случае их последовательного соединения.

Примером последовательного соединения отдельных элементов электрической проводки является соединение любого осветительного прибора и его выключателя.

Таким образом, линии электропроводки подводятся сначала к расположенным в каждой комнате распределительным коробкам и только после них расходятся по отдельным нагрузкам (осветительным приборам с выключателями, к розеткам и т.п.).

Из схемы подключения выключателей и ламп мы видим, что к распределительной коробке подходят и от неё ответвляются фазные провода (красного цвета) и нулевые провода (синего цвета). Именно отходящий фазный провод (ни в коем случае ни нулевой!) должен подключаться к одному из контактов выключателя.

Нулевой же провод должен идти на общий контакт ламп, из которых состоит светильник. Провода, отходящие от выключателя (на рисунке – зелёного цвета) подводятся к общему контакту каждой из двух групп ламп рассматриваемого светильника.

Обратите внимание – на рисунке изображён вариант двухклавишного выключателя с двумя группами ламп и вариант одноклавишного выключателя.

Подключение розеток после распредкоробки производится более простым способом – фазовый и нулевой проводники (и заземление если есть) подсоединяются напрямую к соответствующим (произвольно выбранным) контактам самой розетки. Пара этих проводников от уже подключённой розетки ведётся ко второй, а, в случае необходимости – и к третьей розетке (такое вид соединения называется соединение «шлейфом»).

Очень важно учесть тот факт, что при параллельной схеме подключения потребителей не допускается увеличивать их общее количество выше определённого значения.

При параллельном питании каждый вновь добавленный электроприбор (новая розетка) увеличивает нагрузку на общую для всей квартиры часть электропроводки.

Обратите внимание

При предельном значении суммарного тока в цепи (в случае, когда все приборы будут включены) обязательно сработает устройство защиты по максимальному току – тот самый автоматический выключатель на щитке, от которого запитывается данная линия. Он просто отключит эту ветку от общей цепи питания квартиры.

Если ваш автомат подобран неправильно (имеет завышенное значение тока срабатывания по перегрузке), то последствия могут оказаться куда более плачевными – провода могут просто не выдержать силы проходящего по ним тока и от перегрева загореться. Вот почему так важно научиться правильно выбирать автоматический выключатель для каждой линии нагрузки и точно рассчитывать сечение проводов, работающих в этих линиях.

Как правило при типичной квартирной разводке на линии освещения закладывают медный провод сечением 1.5мм2, а на розеточные линии 2.5мм2.

Источник: http://cxem.net/electric/electric38.php

Основы теоретической электротехники для начинающих

Сейчас без электричества невозможно представить жизнь. Это не только свет и обогреватели, но и вся электронная аппаратура начиная с самых первых электронных ламп и заканчивая мобильными телефонами и компьютерами.

Их работа описывается самыми разными, иногда очень сложными формулами.

Но даже самые сложные законы электротехники и электроники в основе своей имеют законы электротехники, которые в институтах, техникумах и училищах изучает предмет «Теоретические основы электротехники» (ТОЭ).

Основные законы электротехники

  • Закон Ома
  • Закон Джоуля — Ленца
  • Первый закон Кирхгофа
  • Второй закон Кирхгофа

Закон Ома — с этого закона начинается изучение ТОЭ и без него не может обойтись ни один электрик.

Он гласит, что сила тока прямо пропорциональна напряжению и обратно пропорциональна сопротивлению Это значит, что чем выше напряжение, поданное на сопротивление, электродвигатель, конденсатор или катушку (при соблюдении других условий неизменными), тем выше ток, протекающий по цепи.

И наоборот, чем выше сопротивление, тем ниже ток.

Закон Джоуля — Ленца. С помощью этого закона можно определить количество тепла, выделившегося на нагревателе, кабеле, мощность электродвигателя или другие виды работ, выполненных электрическим током.

Этот закон гласит, что количество тепла, выделяемого при протекании электрического тока по проводнику, прямо пропорциональна квадрату силы тока, сопротивлению этого проводника и времени протекания тока.

С помощью этого закона определяется фактическая мощность электродвигателей, а также на основе этого закона работает электросчётчик, по которому мы платим за потреблённую электроэнергию.

Первый закон Кирхгофа. С его помощью рассчитываются кабеля и автоматы защиты при расчёте схем электроснабжения. Он гласит, что сумма токов, приходящих

Как работает электричество? | New-Science.ru

Возможно, современная жизнь настолько переплетена с электричеством, что все это воспринимается как должное. Люди включают лампы и другие электрические устройства, думая, что как только цепь подключена, один электрон прыгает от переключателя к лампе со скоростью света, и лампа включается. Они очень ошибаются.

Как работает электричество? Проще говоря, электричество — это результат цепочки электронов, движущихся на месте и толкающих другие электроны, сталкивая их со следующим. Однако распространено мнение, что электроны на самом деле перемещаются с одного места на другое и переносят электрический заряд. Чтобы понять это, следует сначала узнать о мифах об электричестве.

Скорость электронов

В примере с включением света задержки нет между щелчком выключателя и получением света от лампы. Некоторые люди считают, что электроны движутся со скоростью света, но это не подтверждается наукой.

Если электроны хотят двигаться по проводу, впереди у них есть миллиарды препятствий: другие атомы и электроны. Например, медная проволока — это цепочка атомов меди, сидящих на месте и не очень сильно перемещающихся. Некоторые электроны вокруг каждого атома могут свободно перемещаться и перепрыгивать с одного атома на другой. Эти электроны создают электрический ток. Когда батарея вставляется в цепь или включается лампа, электрон движется вперед, но сразу же попадает в следующий атом и отклоняется. Это происходит постоянно, поэтому электрон не может легко двигаться вперед. Таким образом, скорость электрона в типичном домашнем проводе составляет менее одной десятой миллиметра в секунду. Другими словами, электрону требуется десять секунд, чтобы сдвинуться на один миллиметр.

В простом 15 сантиметровом фонарике электрон должен пройти 30 сантиметров, чтобы совершить полный кругооборот. Это займет 50 минут. В обычной комнате электрон должен пройти около десяти метров, а это займет 28 часов. Тем не менее электрические приборы срабатывают немедленно.

Как создается ток

В батарее ток создается движением электронов к проводу. Однако, как объяснялось в предыдущем разделе, электроны не могут быстро двигаться из-за всех атомов провода.

Когда электрон движется вне батареи, он попадает в другой свободный электрон в проводе. Вновь попавший электрон движется вперед и натыкается на следующий электрон, и так далее. Таким образом, ток является результатом того, что электроны движутся на месте и бьют своих соседей. Это означает, что все электроны в проволоке остаются там, где они были, и ни один электрон в действительности не выбрасывается из цепочки.

Итак, почему цепи работают так быстро? Пример поможет легко ответить. Если поезд со 100 вагонами и локомотив сзади начинает движение, ему требуется много времени, чтобы добраться до места, где находится первый вагон. Однако первый вагон трогается с места почти сразу же, как и двигатель, потому что толчок от двигателя передается через все вагоны на первый. То же самое происходит и в цепи с электронами.

Электричество в батарее отличается от электричества в доме. Батарея всегда выталкивает электроны из отрицательной стороны. Но в доме электричество толкает и оттягивает назад снова и снова. В Соединенных Штатах электричество выталкивается и втягивается в дом 60 раз в секунду. В Европе это происходит 50 раз в секунду. Другие страны используют один из этих стандартов.

Независимо от типа электричества — электроны не бегают по проводам и цепям. Они просто посылают энергию движения первому электрону в электроне, и возникает ток.

Физика для чайников. Что происходит у нас на кухне с точки зрения науки | ОБЩЕСТВО

С какими физическими и химическими явлениями мы сталкиваемся практически каждый день, в специальной подборке «АиФ-НН».

Нагревание чайника

Явление: конвекция и теплопередача.

В основе нагревания воды в чайнике лежит физическое явление — конвекция. Теплота передаётся чайнику снизу, а вода — плохой проводник тепла. Именно благодаря конвекции энергия переносится струями жидкости, и вода нагревается по всему объёму.

Закрываем чайник при кипении мы тоже не случайно. При открытой крышке часть молекул, имеющих большую кинетическую энергию, будет улетать, унося энергию, поэтому вода быстрее закипит, если крышку закрыть.

Присутствует в чайной церемонии и такое физическое явление, как теплопередача. Не зря ручки у самоваров всегда были деревянными — дерево не самый лучший проводник тепла. Как, впрочем, и пластмасса, из которой сегодня делают электрические чайники.

Хорошая хозяйка также знает, что, если положить в стакан металлическую ложку, та примет часть тепла, и температура воды станет ниже. Тепловое расширение внутренних стенок будет меньше, и деформация не окажется разрушительной для стакана. Хорошо охладит чай и металлический подстаканник, поскольку он сам быстро нагревается и забирает тепло.

Заваривание чая

Явление: диффузия.

А если бросить в кипяток крупинки чая или заварной пакетик, не размешивая, можно увидеть, как распространяется чайный настой в чистой воде. Происходит диффузия жидкостей. Конечно, все мы знаем, что чай надо заваривать кипятком. Оказывается, при высокой температуре диффузия в жидкостях происходит быстрее. Примером диффузии в твёрдом теле может быть консервация. Кристаллы соли в воде распадаются на ионы, которые, хаотически двигаясь, проникают между молекулами веществ в составе тех же овощей или грибов.

На кухне можно наблюдать и физическое явление диффузии газов. Благодаря ему, сидя в другой комнате, можно понять, что готовится. Диффузия в газах может быть крайне опасной, из-за этого явления можно отравиться угарным и другими ядовитыми газами.

Гашение соды уксусом

Явление: реакция нейтрализации.

Без этого явления не было бы у хозяек вкусной выпечки. Когда мы гасим соду в ложке уксуса, происходит химическая реакция нейтрализации. Её результат — углекислый газ. Он стремится покинуть тесто и изменяет его структуру, делая пористым и рыхлым.

Правда, любой химик вам скажет: гасить соду вовсе не обязательно. При температуре от 60 градусов (а лучше 200) происходит разложение соды на карбонат натрия, воду и всё тот же углекислый газ. Однако реакция будет проходить несколько хуже, чем при гашении соды, а значит, хуже может оказаться и вкус готовых изделий из теста.

Варка курицы и пельменей

Явление: гидростатика — закон Архимеда.

Приготовившись сварить курицу, мы наполняем кастрюлю водой примерно наполовину или на три четверти — в зависимости от размера курицы. Погружённая в кастрюлю курица заметно уменьшается в весе, а вода поднимается к краям кастрюли. Это явление объясняется выталкивающей силой, или законом Архимеда. В этом случае на тело, погружённое в жидкость, действует выталкивающая сила, равная весу жидкости в объёме погружённой части тела. Тот же принцип действует и при варке пельменей. Они вытеснят часть воды наверх ровно в том объёме, который занимают сами.

Собственно, свой закон Архимед придумал, занимаясь будничным делом — принимая ванну. Легенда гласит, что нагой Архимед бежал по улице и кричал «Эврика!» («Нашёл!»).

Проверка агрегатного состояния яиц

Явление: сохранение момента импульса.

Если раскрутить покрытое скорлупой варёное и сырое яйцо, то первое начнёт вращаться, а второе останется неподвижным. Всё потому, что внутри сырого яйца есть жидкость. Постоянно смещающийся внутри центр тяжести быстро замедляет вращение. У варёного же яйца центр тяжести остаётся в одной точке.

Добавляя при варке яиц соль, можно запустить химический процесс. Оказывается, именно в солёной воде белок «свёртывается» быстрее. Такая мгновенная реакция предотвращает яйца от растрескивания в кипятке.

Опускать яйца вариться именно в холодную воду тоже надо из научных соображений. Вещества, содержащиеся в яйце, при охлаждении сжимаются по-разному: белок уменьшается в объёме гораздо существеннее, чём скорлупа. Тогда мембрана, окружающая белок, отрывается от внутренней поверхности скорлупы и легко отходит.

Работа микроволновой печи

Явление: электромагнитное излучение.

Обычная микроволновая или СВЧ-печь с точки зрения физики носит устрашающее название — магнетрон. Это основной элемент каждой микроволновки, по сути, вакуумная лампа, которая создаёт СВЧ-излучение частотой 2,45 ГГц. Такое излучение необычно воздействует на обычную воду, которая содержится в любой пище, а также на молекулы жиров и сахара.

При облучении электромагнитными волнами эти молекулы начинают колебаться. Из-за этого между ними возникает трение, за счёт него выделяется тепло. Оно-то и разогревает пищу изнутри.

Расширим картину мира

Научный сотрудник Института прикладной физики РАН, популяризатор науки Артём Коржиманов, кандидат физико-математических наук:

«Конечно, окружающие нас бытовые приборы инженеры делают так, чтобы мы не разбирались особо, как это всё действует. Мы приходим в магазин, покупаем вещь, в случае поломки несем её в мастерскую. Но знание, как всё это устроено, в некотором смысле расширяет наши потребительские возможности — например, по управлению автомобилем, выбору марки машины. Если вы понимаете, как это работает, вы сможете более обоснованно и аргументированно сделать покупку. Это экономит время и деньги.

Знание, как вселенная устроена с точки зрения физических и химических явлений, расширяет картину мира, делает её более полной. Такая информация позволяет нам быть более мобильными в восприятии всего нового. Потом, просто понимая, что гроза — это электричество, можно обезопасить себя от неё».

Интересный факт

В быту мы часто сталкиваемся со статическим электричеством. Именно из-за него во все стороны торчат волосы после соприкосновения с пластиковой расчёской, «трещат» и липнут к телу синтетические вещи.

Если рассматривать эффект с физической точки зрения, то это самопроизвольно образующийся электрический заряд, возникающий из-за трения поверхностей друг о друга. Причиной тому — соприкосновение двух различных веществ самого диэлектрика. Атомы одного вещества отрывают электроны другого. После их разъединения каждое из тел сохраняет свой разряд, но при этом разность потенциалов растёт.

Электростатический разряд происходит при очень высоком напряжении и чрезвычайно низких токах. Они не дают статическому заряду нанести человеку вред после мгновенного разряда.

Статическое электричество отлично снимает обычная вода. Вода — хороший проводник и при небольшом начальном напряжении «принимает» весь заряд на себя.

Physics4Kids.com: Электричество и магнетизм: электрические поля

Ученые поняли, почему силы действуют так, как они действуют при соприкосновении объектов. Их смущали силы, действующие на расстоянии, не касаясь друг друга. Подумайте о таких примерах, как гравитационная сила, электрическая сила и магнитная сила. Чтобы помочь им объяснить, что происходит, они использовали идею « поле ». Они представили себе, что вокруг объекта есть область, и все, что входит в нее, ощущает силу.Мы говорим, например, что вокруг Луны есть гравитационное поле , и если вы приблизитесь к Луне, оно притянет вас к своей поверхности.

Электрическое поле описывает причудливую область возле любого электрически заряженного объекта. Ученые не используют слово «фанки», но оно работает. Его также можно было бы назвать электростатическим полем . Любой другой заряд, попавший в эту область, будет ощущать силу, и исходный объект также почувствует эту силу (Третий закон Ньютона). Это похоже на паука, сидящего в центре паутины.

Нормальное поле — это вектор, представленный стрелками. Гравитационное поле Земли (или любой планеты) можно было бы нарисовать в виде стрелок, указывающих на землю. Вектор поля показывает направление воздействия на объект, входящий в поле. Гравитация действует вниз.

Для электрического поля все немного сложнее, поскольку существует два вида зарядов, и некоторые комбинации притягивают , а другие отталкивают . Чтобы быть в согласии друг с другом, физики решили, что они всегда будут использовать положительные заряды для определения направления действия поля.Итак, если центральный заряд был положительным, и вы поместили рядом с ним другой положительный заряд, этот второй заряд будет отталкиваться наружу. Таким образом, векторы поля центрального положительного заряда направлены наружу. Если центральный заряд отрицательный, положительный заряд, расположенный поблизости, будет притягиваться к центральному заряду, поэтому векторы поля для центрального отрицательного заряда направлены внутрь.

Поскольку поля напрямую связаны с силами, которые они оказывают, их сила уменьшается с расстоянием и увеличивается с размером заряда, создающего поле.Когда вы кладете заряды рядом друг с другом, их поля взаимодействуют и меняют форму. Это приводит к изменению PE объектов и генерирует силы отталкивания или притяжения.

Электрические поля также могут создаваться магнитными полями. Магнетизм и электричество всегда связаны. Мы поговорим о магнитных полях в следующем разделе.






Или выполните поиск на сайтах по определенной теме.


Текущее электричество — MCQ NEET Physics, Учебные заметки, важные темы, Учебные советы

Текущее электричество Вопросы NEET — Важные текущие электрические MCQ и учебные заметки для подготовки NEET.Учитесь и практикуйтесь с помощью викторины Current Electricity, заметок и советов по обучению, которые помогут вам в подготовке к NEET Physics.

Current Electricity — важная, но легко оцениваемая глава для медицинских экзаменов, таких как NEET и AIIMS. Вот несколько важных вопросов и связанных с этим примечаний.

В статье приведены некоторые вопросы, которые задавались на вступительных экзаменах предыдущего года.

NEET 2018 Syllabus

Текущий опрос по электричеству

Таблица времени NEET Toppers

NEET 2018 Образцы документов с Решения

Важные темы электрического тока в NEET

В этом разделе задаются вопросы по следующим темам

  1. Электрический ток
  2. Закон Ома и его ограничения
  3. Удельное сопротивление различных материалов и его зависимость от температуры.Последовательные и параллельные резисторы. Последовательные и параллельные элементы
  4. Электрическая энергия, мощность
  5. Ячейки, ЭДС, внутреннее сопротивление
  6. Законы Кирхгофа
  7. Мост Уитстона и измерительный мост

Как подготовиться к NEET и платам

Текущее электричество — NEET Physics Учебные заметки

Study Notes Courtesy — ncert.nic.in

Советы по изучению текущего электричества для NEET

Советы, которые помогут вам подготовиться к текущему электричеству для экзамена NEET Physics.Вы должны очень четко знать следующие концепции

  • Расчет среднего тока и мгновенного тока по данному графику
  • Связь Vrms с температурой
  • Средняя скорость свободного электрона при отсутствии напряжения на клеммах и скорость дрейфа
  • Соотношение между (a) проводимостью и удельной проводимостью или проводимостью, (b) проводимостью и подвижностью, (c) магнитным дипольным моментом и током, (d) угловым моментом и удельным зарядом, (e) магнитным дипольным моментом и угловым моментом

Как для подготовки к NEET и платам

Видеоурок по текущему электричеству

Если у вас есть какие-либо вопросы о текущем электричестве в подготовке к NEET или по любой другой теме, дайте нам знать в разделе комментариев ниже.Мы постараемся помочь вам как можно скорее.

NEET 2018 Образцы документов с решениями

Если вам нравятся эти NEET Current Electricity и исследования, скажите спасибо сейчас !!!

Если вы найдете эти вопросы по NEET Physics полезными, не забудьте поделиться ими, потому что делиться ими — это забота.

Связанные темы для NEET Physics

Магнитный эффект электрического тока: NEET Physics MCQs & Study Notes

Вопросы по электронным устройствам: NEET Physics MCQs & Study Notes

Магнетизм: NEET Physics MCQs & Study Notes

Электростатика — NEET Physics MCQs и примечания к исследованиям

Двойная природа материи и излучения — NEET Physics MCQs и исследования

Physical World and Measurement — NEET Physics MCQs & Study Notes

Oscillations Вопросы и заметки по NEET Physics

Modern Physics MCQs & Study Notes

Дополнительные материалы по теме

Получите полный учебный материал NEET

NEET 2018 Syllabus

Таблица времени NEET

Вопросы NEET за предыдущий год

NEET 2018 Образцы документов с решениями

NEET 2017 Вопросник и решение Скачать

Chapter Wise Weightage для NEET 2018 Pdf

Лучшие книги для подготовки NEET

Как подготовиться к NEET и платам

Вопросник AIIMS

Вопросник JIPMER pdf Download

Физические манекены | Два манекена обсуждают физику в приложении к окружающему миру

SpartaKUs Последние несколько дней мы говорили о нашем интересе к конденсаторам.Мы очень, очень серьезно относимся к конденсаторам во многих сферах своей деятельности.

KUbar Для меня вся причина моего существования связана с микрофонами в ушах. Меня заставили слушать! Эти высокоточные микрофоны исследовательского класса представляют собой просто точно настроенные переменные конденсаторы. Внутри микрофона есть небольшая фиксированная металлическая пластинка, и параллельно этой пластине находится очень тонкая гибкая мембрана, покрытая металлической пленкой. Когда звуковая волна проходит, она заставляет эту мембрану изгибаться дальше от неподвижной пластины и приближаться к ней.

SpartaKUs Итак, если расстояние между мембраной и пластиной меняется, это должно приводить к какому-то сигналу, который компьютер или другое записывающее устройство может отследить. Здесь мы начинаем говорить о емкости . Этот термин происходит от основ физики электричества, изучения электрических зарядов — положительных и отрицательных — и того, как они взаимодействуют.

KUbar Конечно, все состоит из атомов, включая протоны (положительный заряд) в крошечном ядре и электроны (отрицательные), окружающие ядро.У металлов есть атомы, которые легко разделяют эти электроны, позволяя им перемещаться от атома к атому. Именно потому, что эти электроны легко перемещаются, металлы проводят электричество.

SpartaKUs Кусок металла также может вместить дополнительные электроны, придавая ему общий отрицательный заряд. Но эти дополнительные электроны, должно быть, откуда-то пришли, и часто их просто вытягивают из атомов второго куска металла. Если вы зарядите пару металлических предметов таким образом, одну отрицательную, а другую положительную, вы, по сути, получите заряженный конденсатор.

KUbar В двух словах, конденсатор — это любая пара электродов (обычно куски металла), которые могут использоваться для хранения разделенных положительного и отрицательного электрического заряда.

SpartaKUs Чтобы разделить эти положительные и отрицательные заряды, вам понадобится толчок. Дополнительные отрицательные электроны не хотят попадать на уже отрицательную пластину (например, отталкиваются заряды), поэтому требуется аккумулятор. Батарея обеспечивает «умф» для разделения этих зарядов.Используйте аккумулятор с более высоким напряжением, и вы сможете отделить больше заряда. Числовое значение емкости равно количеству разделенного заряда, деленному на напряжение между электродами.

KUbar Давайте вернемся к моим точным ушам исследовательского уровня. Эти микрофоны либо преполяризованы (несут положительный и отрицательный заряд), либо заряжены, как правило, 200 В. Скажем, мембрана имеет отрицательный заряд. Когда он изгибается из-за звуковой волны, этот отрицательный заряд может приближаться к положительному заряду на неподвижной пластине или дальше от него.Если они сближаются, это позволяет большему количеству отрицательных электронов покинуть положительную пластину и перетечь на мембрану.

SpartaKUs Это проще, потому что привлекают противоположные обвинения. Поток электронов либо на отрицательную мембрану, либо от мембраны обратно к положительной пластине — это то, что можно измерить или записать. На интересном сайте Hyperphysics есть схема такого емкостного микрофона, а также некоторые математические данные. Компания PCB производит эти микрофоны, также известные как конденсаторные микрофоны, и предлагает Справочник по микрофонам со своей страницы литературы для тех, кто хотел бы узнать о них больше.

KUbar Теперь я знаю, что у вас установлено много акселерометров, SpartaKUs. Как они используют емкость?

СпартаКУС Прав. Емкость можно использовать для определения ускорения. Во-первых, замечали ли вы когда-нибудь во время езды, слушая звук в автомобиле, что вы никогда не чувствуете движения автомобиля? Вместо этого вы чувствуете это, когда движение меняется. Это изменение скорости или направления и есть ускорение. Так же, как вы чувствуете эти эффекты, одна сторона крошечного конденсатора также может изгибаться при ускорении.

KUbar Насколько велики эти крошечные конденсаторы, используемые в акселерометрах?

SpartaKUs На самом деле они настолько малы, что их можно разместить на кремниевом кристалле. Они классифицируются как микроэлектромеханические системы (МЭМС), и их снижение цены недавно сделало их гораздо более доступными. Они есть в ноутбуках, мобильных телефонах и даже удобны для любителей. Краткое введение в эти акселерометры, включая красивые фотографии и иллюстрации, представлено в статье, в которой показано, как акселерометры могут использоваться в качестве датчика для записи музыкальных инструментов.

KUbar Похоже, что хотя эти переменные конденсаторы составляют большую часть тестов с манекенами для краш-тестов, они могут быть довольно маленькими по размеру — всего несколько миллиметров в полной упаковке. Микрофоны в моих ушах всего четверть дюйма в диаметре, но это кажется огромным по сравнению с крошечными конденсаторными пальцами в акселерометре на микросхеме MEMS.

Написание научных статей: Руководство для чайников

Публикация результатов — жизненно важный шаг в жизненном цикле исследования, так как он позволяет сделать вашу работу доступной для научного сообщества и обмениваться идеями во всем мире.Но написание научной статьи — это не только творчество, но также хорошая структура и следование некоторым ключевым правилам. Если вы не соблюдаете эти правила, ваша статья может оказаться скучной или неполной, а это значит, что на нее не будут ссылаться. Джеффри Робенс, менеджер по развитию Springer Nature Journal, провел открытый семинар в Университете ИТМО, где поделился советами, как написать хорошую научную статью.

Четыре вопроса, на которые вы должны ответить в своей статье

Примите во внимание следующие вопросы, думая о структуре статьи:

  1. Почему это исследование важно? Ответьте на этот вопрос во введении к своей статье.
  2. Чем вы занимались во время исследования? Напишите об этом в разделе методологии.
  3. Каких результатов вы достигли?
  4. Как ваше исследование внесет вклад в дискуссию в вашей научной области? Здесь вы описываете, как полученные вами результаты будут способствовать дальнейшему развитию этой области исследований, как они могут быть применены и какие дальнейшие исследования могут быть проведены в результате.

Джеффри Робенс

Как четко выразить свою мотивацию для проведения этого исследования

Есть три основные причины для исследования:

  1. , чтобы узнать что-то новое;
  2. для преодоления некоторых ограничений в физических, химических или любых других системах;
  3. , чтобы внести свой вклад в обсуждение и накопить знания по некоторым вопросам.

Кроме того, вы должны указать цель вашего исследования, то есть ответить на вопрос, какие проблемы вы хотите решить, и прийти к какому-либо выводу. Некоторые люди думают, что заключение — это просто краткое изложение того, о чем они написали, но это не так просто. Заключение — это ответ на вопрос, который вы задали во введении. Не отвечать на этот вопрос — все равно что писать историю с открытым концом. Люди, читающие вашу статью, хотят знать, каких результатов вы достигли.

Найдите журнал для публикации статьи в

Заранее подумайте о том, в каком журнале вы собираетесь опубликовать свою статью. Не отправляйте статью в самый престижный журнал только потому, что он самый престижный. Зачем? Потому что они не опубликуют вашу статью, если она не соответствует их целевой аудитории. Издателям нужно, чтобы их статьи загружали, обсуждали и цитировали, иначе они не получат прибыли. Некоторые факторы, которые следует учитывать при выборе журнала для отправки, включают:

  1. Целевая аудитория журнала.Если вы отправляете свою статью во всемирно известный журнал, вы должны объяснить, почему ваша тема интересна. С другой стороны, если ваше исследование, вероятно, захотят прочитать только местные исследователи, то местный журнал будет более уместным.
  2. Темы, публикуемые журналом. Есть определенные журналы, которые специализируются во многих областях, и есть журналы, специализирующиеся на определенных темах.

Springer Nature. Предоставлено: meritocracy.is

. Отправка рукописи в неподходящий журнал приведет к тому, что редакторы отклонят статью.Это напрасная трата вашего времени и времени редакции. Поэтому выбор журнала, который соответствует вашему исследованию, очень важен, потому что это увеличивает вероятность того, что ваша рукопись будет принята.

Как написать введение

Самое главное — рассказать читателю о цели вашего исследования. Вы также должны предоставить читателям справочную информацию, необходимую для понимания вашего исследования. Убедитесь, что вы цитируете все ссылки в своей статье. Описывая предысторию, вы пишете о существующих проблемах в данной области и выбираете одну конкретную проблему, которую собираетесь решить в своем исследовании.

Как написать о методологии

Авторы часто говорят, что описание методологии — самая легкая часть исследования, так как вам нужно только описать то, что вы сделали. Но этого недостаточно. Вам нужно не только описать процесс исследования, но и продемонстрировать, что вы являетесь экспертом в этой области. Как ты можешь это сделать?

  1. Напишите о своих ожиданиях от исследования и своей рабочей гипотезе.
  2. Расскажите о трудностях, с которыми вы столкнулись во время исследования, и о том, как вы их решали.Это поможет другим ученым не повторять тех же ошибок и завоевать ваше уважение.
  3. Предоставьте читателям ссылки на базы данных и всю другую необходимую информацию, которая может оказаться полезной.

Springer Nature Workshop

Как описать свои результаты

Важно, чтобы вы четко интерпретировали результаты своего исследования. Не стесняйтесь писать обо всех последствиях достигнутых вами результатов. Какие еще приложения могут иметь ваши результаты?

Не бойтесь описывать отрицательные результаты, даже если они опровергают вашу гипотезу.Это также поможет другим ученым избежать повторения тех же ошибок.

Springer Nature. Кредит: group.springernature.com

Как написать заключение

Самое важное при написании заключения — еще раз подчеркнуть важность вашего исследования. Вам также следует придумать несколько ключевых слов и написать о результатах исследования. Важно написать только о двух ключевых моментах. Люди все равно больше не вспомнят.

Как написать заголовок

Название вашей статьи — это обычно первое знакомство читателей с вашей работой.Написание хорошего названия для рукописи может оказаться сложной задачей. Вы должны описать все свои исследования одним предложением. Убедитесь, что ваш заголовок охватывает три следующих аспекта:

  1. состояния, влияющие на предмет исследования;
  2. какие характеристики анализировались;
  3. предмет исследования.

Например, в предложении «Влияние влажности на шероховатость поверхности диоксида кремния» «влажность» означает условия, «шероховатость поверхности» означает характеристики, а «диоксид кремния» означает предмет исследования.Итак, тема статьи ясна, и есть несколько ключевых слов, которые помогают читателям понять, о чем статья.

Советы: не делайте заголовок длиннее 20 слов. Избегайте использования сокращений. Не используйте слово «новый», так как уже ясно, что вы пишете о каких-то новых результатах. Постарайтесь, чтобы название было коротким и точным.

Springer Nature Workshop

Как написать реферат

Аннотация — это то, что ваши коллеги прочтут в первую очередь. Это ваш единственный шанс заставить их прочитать статью целиком.Вот почему вы должны абстрактно доказать, что вашу статью стоит прочитать. Многие читатели будут читать только аннотацию вашей рукописи. Следовательно, он должен выделяться. Постарайтесь сделать его как можно короче и точнее.

Как написать хорошее сопроводительное письмо редактору журнала

Редакторы журналов — очень занятые люди, и им обычно приходится быстро принимать решение о пригодности статьи. Поэтому очень важно произвести хорошее впечатление, и убедительное сопроводительное письмо поможет вам в этом.В сопроводительном письме необходимо:

  1. обратитесь к редактору, который будет оценивать вашу рукопись по своему имени;
  2. укажите название вашей статьи;
  3. уточнить, что это за бумага;
  4. кратко в трех или четырех предложениях объясняет, что было сделано;
  5. подтверждают, что ваша статья нигде не публиковалась, и все авторы согласны с ее отправкой в ​​журнал;
  6. добавьте расширенную подпись, то есть четко объясните, кто вы и все ваши связи;
  7. Сопроводительное письмо не должно быть длиннее одной страницы A4 и шрифтом 10–12 пунктов.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *