Эдс единица измерения: Электродвижущая сила — Википедия

Содержание

Электродвижущая сила — Википедия

Электродвижущая сила (ЭДС) — скалярная физическая величина, характеризующая работу сторонних сил, то есть любых сил неэлектрического происхождения, действующих в квазистационарных цепях постоянного или переменного тока. В замкнутом проводящем контуре ЭДС равна работе этих сил по перемещению единичного положительного заряда вдоль всего контура[1][2].

По аналогии с напряжённостью электрического поля вводят понятие напряжённость сторонних сил E→ex{\displaystyle {\vec {E}}_{ex}}, под которой понимают векторную физическую величину, равную отношению сторонней силы, действующей на пробный электрический заряд к величине этого заряда. Тогда в замкнутом контуре L{\displaystyle L} ЭДС будет равна:

E=∮L⁡E→ex⋅dl→,{\displaystyle {\mathcal {E}}=\oint \limits _{L}{\vec {E}}_{ex}\cdot {\vec {dl}},}

где dl→{\displaystyle {\vec {dl}}} — элемент контура.

ЭДС так же, как и напряжение, в Международной системе единиц (СИ) измеряется в вольтах.
Можно говорить об электродвижущей силе на любом участке цепи. Это удельная работа сторонних сил не во всем контуре, а только на данном участке. ЭДС гальванического элемента есть работа сторонних сил при перемещении единичного положительного заряда внутри элемента от одного полюса к другому. Работа сторонних сил не может быть выражена через разность потенциалов, так как сторонние силы непотенциальны и их работа зависит от формы траектории. Так, например, работа сторонних сил при перемещении заряда между клеммами источника тока вне самого́ источника равна нулю.

ЭДС и закон Ома

Электродвижущая сила источника связана с электрическим током, протекающим в цепи, соотношениями закона Ома. Закон Ома для неоднородного участка цепи имеет вид[1]:

φ1−φ2+E=IR,{\displaystyle \varphi _{1}-\varphi _{2}+{\mathcal {E}}=IR,}

где φ1−φ2{\displaystyle \varphi _{1}-\varphi _{2}} — разность между значениями потенциала в начале и в конце участка цепи, I{\displaystyle I} — сила тока, текущего по участку, а R{\displaystyle R} — сопротивление участка.

Если точки 1 и 2 совпадают (цепь замкнута), то φ1−φ2=0{\displaystyle \varphi _{1}-\varphi _{2}=0} и предыдущая формула переходит в формулу закона Ома для замкнутой цепи[1]:

E=IR,{\displaystyle {\mathcal {E}}=IR,}

где теперь R{\displaystyle R} — полное сопротивление всей цепи.

В общем случае полное сопротивление цепи складывается из сопротивления внешнего по отношению к источнику тока участка цепи (Re{\displaystyle R_{e}}) и внутреннего сопротивления самого́ источника тока (r{\displaystyle r}). С учётом этого следует:

E=IRe+Ir.{\displaystyle {\mathcal {E}}=IR_{e}+Ir.}

ЭДС источника тока

Если на участке цепи не действуют сторонние силы (однородный участок цепи) и, значит, источника тока на нём нет, то, как это следует из закона Ома для неоднородного участка цепи, выполняется:

φ1−φ2=IR.{\displaystyle \varphi _{1}-\varphi _{2}=IR.}

Значит, если в качестве точки 1 выбрать анод источника, а в качестве точки 2 — его катод, то для разности между потенциалами анода φa{\displaystyle \varphi _{a}} и катода φk{\displaystyle \varphi _{k}} можно записать:

φa−φk=IRe,{\displaystyle \varphi _{a}-\varphi _{k}=IR_{e},}

где как и ранее Re{\displaystyle R_{e}} — сопротивление внешнего участка цепи.

Из этого соотношения и закона Ома для замкнутой цепи, записанного в виде E=IRe+Ir{\displaystyle {\mathcal {E}}=IR_{e}+Ir} нетрудно получить

φa−φkE=ReRe+r{\displaystyle {\frac {\varphi _{a}-\varphi _{k}}{\mathcal {E}}}={\frac {R_{e}}{R_{e}+r}}} и затем φa−φk=ReRe+rE.{\displaystyle \varphi _{a}-\varphi _{k}={\frac {R_{e}}{R_{e}+r}}{\mathcal {E}}.}

Из полученного соотношения следуют два вывода:

  1. Во всех случаях, когда по цепи течёт ток, разность потенциалов между клеммами источника тока φa−φk{\displaystyle \varphi _{a}-\varphi _{k}} меньше, чем ЭДС источника.
  2. В предельном случае, когда Re{\displaystyle R_{e}} бесконечно (цепь разорвана), выполняется E=φa−φk.{\displaystyle {\mathcal {E}}=\varphi _{a}-\varphi _{k}.}

Таким образом, ЭДС источника тока равна разности потенциалов между его клеммами в состоянии, когда источник отключён от цепи[1].

ЭДС индукции

Причиной возникновения электродвижущей силы в замкнутом контуре может стать изменение потока магнитного поля, пронизывающего поверхность, ограниченную данным контуром. Это явление называется электромагнитной индукцией. Величина ЭДС индукции в контуре определяется выражением

E=−dΦdt,{\displaystyle {\mathcal {E}}=-{\frac {d\Phi }{dt}},}

где Φ{\displaystyle \Phi } — поток магнитного поля через замкнутую поверхность, ограниченную контуром. Знак «−» перед выражением показывает, что индукционный ток, созданный ЭДС индукции, препятствует изменению магнитного потока в контуре (см. правило Ленца).
В свою очередь причиной изменения магнитного потока может быть как изменение магнитного поля, так и движение контура в целом или его отдельных частей.

Неэлектрический характер ЭДС

Внутри источника ЭДС ток течёт в направлении, противоположном нормальному. Это невозможно без дополнительной силы неэлектрической природы, преодолевающей силу электрического отталкивания

Как показано на рисунке, электрический ток, нормальное направление которого — от «плюса» к «минусу», внутри источника ЭДС (например, внутри гальванического элемента) течёт в противоположном направлении. Направление от «плюса» к «минусу» совпадает с направлением электрической силы, действующей на положительные заряды. Поэтому для того, чтобы заставить ток течь в противоположном направлении, необходима дополнительная сила неэлектрической природы (центробежная сила, сила Лоренца, силы химической природы) которая бы преодолевала электрическую силу.

Сторонние силы

Сторонними силами называются силы, вызывающие перемещение электрических зарядов внутри источника постоянного тока против направления действия сил электростатического поля. Например, в гальваническом элементе или аккумуляторе сторонние силы возникают в результате электрохимических процессов, происходящих на границе соприкосновения электрода с электролитом; в электрическом генераторе постоянного тока сторонней силой является сила Лоренца[3].

См. также

Примечания

Что такое ЭДС — объяснение простыми словами

Что такое ЭДС в физике, химии, электротехнике и как она возникает. Определение понятия и формулы. Отличие ЭДС от напряжения в электрической цепи.

Под ЭДС понимается удельная работа сторонних сил по перемещению единичного заряда в контуре электрической цепи. Это понятие в электричестве предполагает множество физических толкований, относящихся к различным областям технических знаний. В электротехнике — это удельная работа сторонних сил, появляющаяся в индуктивных обмотках при наведении в них переменного поля. В химии она означает разность потенциалов, возникающее при электролизе, а также при реакциях, сопровождающихся разделением электрических зарядов. В физике она соответствует электродвижущей силе, создаваемой на концах электрической термопары, например. Чтобы объяснить суть ЭДС простыми словами – потребуется рассмотреть каждый из вариантов ее трактовки.

Прежде чем перейти к основной части статьи отметим, что ЭДС и напряжение очень близкие по смыслу понятия, но всё же несколько отличаются. Если сказать кратко, то ЭДС — на источнике питания без нагрузки, а когда к нему подключают нагрузку — это уже напряжение. Потому что количество вольт на ИП под нагрузкой почти всегда несколько меньше, чем без неё. Это связано с наличием внутреннего сопротивления таких источников питания, как трансформаторы и гальванические элементы.

Содержание:

Электромагнитная индукция (самоиндукция)

Начнем с электромагнитной индукции. Это явление описывает закон электромагнитной индукции Фарадея. Физический смысл этого явления состоит в способности электромагнитного поля наводить ЭДС в находящемся рядом проводнике. При этом или поле должно изменяться, например, по величине и направлению векторов, или перемещаться относительно проводника, или должен двигаться проводник относительно этого поля. На концах проводника в этом случае возникает разность потенциалов.

Есть и другое похожее по смыслу явление — взаимоиндукция. Оно заключается в том, что изменение направления и силы тока одной катушки индуцирует ЭДС на выводах расположенной рядом катушки, широко применяется в различных областях техники, включая электрику и электронику. Оно лежит в основе работы трансформаторов, где магнитный поток одной обмотки наводит ток и напряжение во второй.

В электрике физический эффект под названием ЭДС используется при изготовлении специальных преобразователей переменного тока, обеспечивающих получение нужных значений действующих величин (тока и напряжения). Благодаря явлениям индукции и самоиндукции инженерам удалось разработать множество электротехнических устройств: от обычной катушки индуктивности (дросселя) и вплоть до трансформатора.

Понятие взаимоиндукции касается только переменного тока, при протекании которого в контуре или проводнике меняется магнитный поток.

Для электрического тока постоянной направленности характерны другие проявления этой силы, такие, например, как разность потенциалов на полюсах гальванического элемента, о чем мы расскажем далее.

ЭДС в быту и единицы измерения

Другие примеры встречаются в практической жизни любого рядового человека. Под эту категорию попадают такие привычные вещи, как малогабаритные батарейки, а также другие миниатюрные элементы питания. В этом случае рабочая ЭДС формируется за счет химических процессов, протекающих внутри источников постоянного напряжения.

Когда оно возникает на клеммах (полюсах) батареи вследствие внутренних изменений – элемент полностью готов к работе. Со временем величина ЭДС несколько снижается, а внутреннее сопротивление заметно возрастает.

В результате если вы измеряете напряжение на не подключенной ни к чему пальчиковой батарейке вы видите нормальные для неё 1.5В (или около того), но когда к батарейке подключается нагрузка, допустим, вы установили её в какой-то прибор — он не работает.

Почему? Потому что если предположить, что у вольтметра внутреннее сопротивление во много раз выше, чем внутреннее сопротивлении батарейки — то вы измеряли её ЭДС. Когда батарейка начала отдавать ток в нагрузке на её выводах стало не 1.5В, а, допустим, 1.2В — прибору недостаточно ни напряжения, ни тока для нормальной работы. Как раз вот эти 0.3В и упали на внутреннем сопротивлении гальванического элемента. Если батарейка совсем старая и её электроды разрушены, то на клеммах батареи может не быть вообще никакой электродвижущей силы или напряжения — т.е. ноль.

Этот пример наглядно демонстрирует в чем отличие ЭДС и напряжения. То же рассказывает автор в конце видеоролика, который вы видите ниже.

Подробнее о том, как возникает ЭДС гальванического элемента и в чем оно измеряется вы можете узнать в следующем ролике:

Совсем небольшая по величине электродвижущая сила наводится и в рамках антенны приемника, которая усиливается затем специальными каскадами, и мы получаем наш телевизионный, радио и даже Wi-Fi сигнал.

Заключение

Давайте подведем итоги и еще раз кратко напомним, что такое ЭДС и в каких единицах СИ выражается эта величина.

  1. ЭДС характеризует работу сторонних сил (химических или физических) неэлектрического происхождения в электрической цепи. Эта сила выполняет работу по переносу электрических зарядов ней.
  2. ЭДС, как и напряжение измеряется в Вольтах.
  3. Отличия ЭДС от напряжения состоят в том, что первое измеряется без нагрузки, а второе с нагрузкой, при этом учитывается и оказывает влияние внутреннее сопротивление источника питания.

И наконец, для закрепления пройденного материала, советую посмотреть еще одно хорошее видео на эту тему:

Материалы по теме:

  • Чем отличается переменный ток от постоянного
  • Что такое электрический заряд
  • Как понизить постоянное и переменное напряжение

Опубликовано: 20.07.2019 Обновлено: 20.07.2019 нет комментариев

Что такое ЭДС (электродвижущая сила)

Электродвижущая сила, в народе ЭДС, также как и напряжение измеряется в вольтах, но носит совсем иной характер.

ЭДС с точки зрения гидравлики

Думаю, вам уже знакома водонапорная башня из прошлой статьи про напряжение

Что такое ЭДС (электродвижущая сила)

Допустим, что башня полностью заполнена водой. Снизу башни мы просверлили отверстие и врезали туда трубу, по которой вода бежит к вам домой.

Что такое ЭДС (электродвижущая сила)

Сосед захотел полить огурцы, вы решили помыть автомобиль, мать затеяла стирку и вуаля! Поток воды стал меньше и меньше, и вскоре совсем иссяк… Что случилось? Закончилась вода в башне…

 

пустая башня

Время, которое потребуется, чтобы опустошить башню, зависит от емкости самой башни, а также от того, сколько потребителей будут пользоваться водой.

Все то же самое можно сказать и про радиоэлемент конденсатор:

Допустим мы его зарядили от батарейки 1,5 вольта и он принял заряд.  Нарисуем заряженный конденсатор вот так:

Но как только мы цепляем к нему нагрузку (пусть нагрузкой будет светодиод) с помощью замыкания ключа S, в первые доли секунд светодиод будет светиться ярко, а потом тихонько угасать… и пока полностью не потухнет. Время угасания светодиода будет зависеть от емкости конденсатора, а также от того, какую нагрузку мы цепляем к  заряженному конденсатору.

Как я уже сказал, это равносильно простой наполненной башне и потребителям, которые пользуются водой.

Но почему тогда в наших башнях вода никогда не заканчивается? Да потому что работает насос подачи воды! А откуда этот насос берет воду? Из скважины, которая пробурена для добычи подземных вод. Иногда ее еще называют артезианской.

башня с водонасосом

Как только башня полностью наполнится водой, насос выключается. В наших водобашнях насос всегда поддерживает максимальный уровень воды.

Итак, давайте вспомним, что  такое напряжение? По аналогии с гидравликой – это уровень воды в водобашне. Полная башня – это максимальный уровень воды, значит максимальное напряжение. Нет в башне воды – напряжение ноль.

ЭДС электрического тока

Как вы помните из прошлых статей, молекулы воды – это “электроны”. Для возникновения электрического тока, электроны должны двигаться в одном направлении. Но чтобы они двигались в одном направлении, должно быть напряжение и какая-нибудь нагрузка. То есть вода в башне – это напряжение, а люди, которые тратят воду для своих нужд – это нагрузка, так как они создают поток воды из трубы, которая находится у подножия водобашни. А поток – это не что иное, как сила тока.

Также должно соблюдаться условие, что вода должна всегда быть на максимальной отметке, независимо от того, сколько людей тратит ее для своих нужд одновременно, иначе башня опустошится. Для водобашни этим спасительным средством является водонасос. А для электрического тока?

Для электрического тока должна быть какая-то сила, которая бы толкала электроны в одном направлении в течение продолжительного времени. То есть эта сила должна двигать электроны! Электродвижущая сила! Да, именно так! ЭЛЕКТРОДВИЖУЩАЯ СИЛА!  Можно назвать ее сокращенно ЭДС – Электро Движущая Сила. Измеряется она в вольтах, как и напряжение, и обозначается в основном буквой E.

Значит, в наших батарейках тоже есть такой “насос”? Есть, и правильней было бы его назвать “насос подачи электронов”). Но, конечно, так никто не говорит.  Говорят просто  – ЭДС. Интересно, а где спрятан этот насос в батарейке? Это просто-напросто электрохимическая реакция, из-за которой держится “уровень воды” в батарейке, но потом все-таки этот насос изнашивается и напряжение в батарейке начинает проседать, потому как “насос” не успевает качать воду. В конце концов он полностью ломается и напряжение на батарейке стает практически ноль.

Реальный источник ЭДС

Источник электрической энергии  – это источник ЭДС с внутренним сопротивлением Rвн. Это могут быть какие-либо химические элементы питания, наподобие  батареек и аккумуляторов

батарейка

Их внутреннее строение с точки зрения ЭДС выглядит примерно вот так:

батарейка как реальный источник ЭДС

Где E – это ЭДС, а Rвн  – это внутреннее сопротивление батарейки

Итак, какие выводы можно сделать из этого?

Если к батарейке не цепляется никакая нагрузка, типа лампы накаливания и тд, то в результате сила тока в такой цепи будет равняться нулю. Упрощенная схема будет такой:

внутреннее сопротивление батарейки

Но если мы все-таки присоединим к нашей батарейке лампочку накаливания, то у нас цепь станет замкнутой и в цепи будет течь ток:

Что такое ЭДС (электродвижущая сила)

В результате у нас в цепи побежит электрический ток, а на внутреннем сопротивлении упадет какое-то напряжение, так как в результате у нас получился делитель напряжения, так как нить лампы накаливания также имеет какое-то свое сопротивление. По закону Ома, чем больше сила тока в цепи, тем больше будет падение напряжения на внутреннем сопротивлении Rвн. Более подробно об этом эффекте можно прочитать в статье закон Ома для полной цепи, а также про входное и выходное сопротивление.

Если начертить график зависимости силы в цепи тока от напряжения на батарейке, то он будет выглядеть вот так:

реальный источник ЭДС

Какой напрашивается вывод? Для того, чтобы замерить ЭДС батарейки, нам достаточно просто взять хороший мультиметр с высоким входным сопротивлением и замерять напряжение на клеммах батарейки.

То есть мы увидим, чем больше сила тока в цепи, то тем меньше напряжение на клеммах батарейки. Об этом более подробно я говорил в статье закон Ома для полной цепи.

Идеальный источник ЭДС

Допустим, пусть наша батарейка обладает нулевым внутренним сопротивлением, тогда получается, что Rвн=0.

Нетрудно догадаться, что в этом случае падение напряжение на нулевом сопротивлении также будет равняться нулю. В результате, наш график примет вот такой вид:

идеальный источник ЭДС

В результате мы получили просто источник ЭДС.  Следовательно, источник ЭДС – это идеальный источник питания, у которого напряжение на клеммах не зависит от силы тока в цепи. То есть, какую нагрузку мы бы не цепляли на такой источник ЭДС, у нас он  все равно будет выдавать положенное напряжение без просадки. Сам источник ЭДС обозначается вот так:

обозначение ЭДС

На практике идеального источника ЭДС не существует.

Типы ЭДС

электрохимическая  (ЭДС батареек и аккумуляторов)

фотоэффекта (получение электрического тока от солнечной энергии)

индукции (генераторы, использующие принцип электромагнитной индукции)

Эффект Зеебека или термоЭДС (возникновение электрического тока в замкнутой цепи, состоящей из последовательно соединённых разнородных проводников, контакты между которыми находятся при различных температурах)

пьезоЭДС (получение ЭДС от пьезоэлектриков)

ЭДС, мощность. Единицы измерения.





ЭДС. Численно электродвижущая сила измеряется работой, совершаемой источником электрической энергии при переносе единичного положительного заряда по всей замкнутой цепи. Если источник энергии, совершая работу A, обеспечивает перенос по всей замкнутой цепи заряда q, то его электродвижущая сила (Е) будет равна

E=A/q

За единицу измерения электродвижущей силы в системе СИ принимается вольт (в). Источник электрической энергии обладает эдс в 1 вольт, если при перемещении по всей замкнутой цепи заряда в 1 кулон совершается работа, равная 1 джоулю. Физическая природа электродвижущих сил в разных источниках весьма различна.

Самоиндукция — возникновение ЭДС индукции в замкнутом проводящем контуре при изменении тока, протекающего по контуру. При изменении тока I в контуре пропорционально меняется и магнитный поток Bчерез поверхность, ограниченную этим контуром. Изменение этого магнитного потока, в силу закона электромагнитной индукции, приводит к возбуждению в этом контуре индуктивной ЭДС E. Это явление и называется самоиндукцией.

Понятие родственно понятию взаимоиндукции, являясь его частным случаем.

Мощность. Мощность – это работа производимая единицу времени.Мощность-это работа производимая в еденицу времени, т.е для переноса заряда в эл. цепи или в замкнутой затрачивается энергия, которая равна А=U*Q так как кол-во электричества равна произведению силы тока , то Q=I*t отсюда следует что A=U*I*t. P=A/t=U*Q/t=U*I=I*t*R=P=U*I(И)

1Вт=1000мВ, 1кВт=1000В, Pr=Pп+Po-формула баланса мощности. Pr-мощность генератора(ЭДС)

Pr=Е*I,Pп=I*U полезная мощность, т.е мощность которая расходуется без потерь. Po=I^2*R-теряемая мощность. Для того что бы цепь функционировала необходимо соблюдать баланс мощности в эл.цепи.

12.Закон Ома для участка цепи.

Сила тока в участке цепи прямо пропорциональна напряжению на концах этого проводника и обратно пропорциональна его сопротивлению:
I = U / R; [A = В / Ом]

1)U=I*R, 2)R=U/R

 

 

13.Закон Ома для полной цепи.

Сила тока в цепи пропорциональна действующей в цепи ЭДС и обратно пропорциональна сумме сопротивлений цепи и внутреннего сопротивления источника.

— ЭДС источника напряжения(В), — сила тока в цепи (А), — сопротивление всех внешних элементов цепи(Ом), — внутреннее сопротивление источника напряжения(Ом) .1)E=I(R+r)? 2)R+r=E/I

14.Последовательное, параллельное соединение резисторов, эквивалентное сопротивление. Распределение токов и напряжения.

При последовательном соединении нескольких резисторов конец первого резисторасоединяют с началом второго, конец второго — с началом третьего и т. д. При таком соединении по всем элементам последовательной цепи проходит
один и тот же ток I.



Uэ=U1+U2+U3. Следовательно, напряжение U на зажимах источника равно сумме напряжений на каждом из последовательно включенных резисторов.

Rэ=R1+R2+R3, Iэ=I1=I2=I3, Uэ=U1+U2+U3.

При последовательном соединении сопротивление цепи увеличивается.

Параллельное соединение резисторов. Параллельным соединением сопротивлений называется такое соединение, при котором к одному зажиму источника подключаются начала сопротивлений, а к другому зажиму — концы.

Общее сопротивление параллельно включенных сопротивлений определяется по формуле

Общее сопротивление параллельно включенных сопротивлений всегда меньше наименьшего сопротивления, входящего в данное соединение.

при параллельном соединении сопротивлений напряжения на них равны между собой. Uэ=U1=U2=U3 В цепи притекает ток I, а токи I1, I2, I3 утекают из нее. Так как движущиеся электрические заряды не скапливаются в точке, то очевидно, что суммарный заряд, притекающий к точке разветвления, равен суммарному заряду утекающему от нее:Iэ=I1+I2+I3 Следовательно, третье свойство параллельного соединения может сформулирована так: Величина тока в не разветвленной части цепи равна сумме токов в параллельных ветвях. Для двух парал.резисторов:





Читайте также:

Рекомендуемые страницы:

Поиск по сайту











Электродвижущая сила — это… Что такое Электродвижущая сила?

Электродвижущая сила (ЭДС) — скалярная физическая величина, характеризующая работу сторонних (непотенциальных) сил в источниках постоянного или переменного тока. В замкнутом проводящем контуре ЭДС равна работе этих сил по перемещению единичного положительного заряда вдоль контура.

ЭДС можно выразить через напряжённость электрического поля сторонних сил (). В замкнутом контуре () тогда ЭДС будет равна:

, где  — элемент длины контура.

ЭДС так же, как и напряжение, измеряется в вольтах. Можно говорить об электродвижущей силе на любом участке цепи. Это удельная работа сторонних сил не во всем контуре, а только на данном участке. ЭДС гальванического элемента есть работа сторонних сил при перемещении единичного положительного заряда внутри элемента от одного полюса к другому. Работа сторонних сил не может быть выражена через разность потенциалов, так как сторонние силы непотенциальны и их работа зависит от формы траектории. Так, например, работа сторонних сил при перемещении заряда между клеммами тока вне самого источника равна нулю.

ЭДС индукции

Причиной электродвижущей силы может стать изменение магнитного поля в окружающем пространстве. Это явление называется электромагнитной индукцией. Величина ЭДС индукции в контуре определяется выражением

где  — поток магнитного поля через замкнутую поверхность , ограниченную контуром. Знак «−» перед выражением показывает, что индукционный ток, созданный ЭДС индукции, препятствует изменению магнитного потока в контуре (см. правило Ленца).

См. также

Электродвижущая сила (ЭДС) источника энергии

  

Для поддержания электрического тока в проводнике требуется внешний источник энергии, создающий все время разность потенциалов между концами этого проводника. Такие источники энергии получили название источников электрической энергии (или источников тока).

Источники электрической энергии обладают определенной электродвижущей силой (сокращенно ЭДС), которая создает и длительное время поддерживает разность потенциалов между концами проводника. Иногда говорят, что ЭДС создает электрический ток в цепи. Нужно помнить об условности такого определения, так как выше мы уже установили, что причина возникновения и существования электрического тока — электрическое поле.

Источник электрической энергии производит определенную работу, перемещая электрические заряды по всей замкнутой цепи..

Определение: Работа, совершаемая источником электрической энергии при переносе единицы положительного заряда по всей замкнутой цепи, называется ЭДС источника

За единицу измерения электродвижущей силы принят вольт (сокращенно вольт обозначается буквой В или V — «вэ» латинское).

ЭДС источника электрической энергии равна одному вольту, если при перемещении одного кулона электричества по всей замкнутой, цепи источник электрической энергии совершает работу, равную одному джоулю:

В практике для измерения ЭДС используются как более крупные, так и более мелкие единицы, а именно:

1 киловольт (кВ, kV), равный 1000 В;

1 милливольт (мВ, mV), равный одной тысячной доле вольта (10-3 В),

1 микровольт (мкВ, μV), равный одной миллионной доле вольта (10-6 В).

Очевидно, что 1 кВ = 1000 В; 1 В = 1000 мВ = 1 000 000 мкВ; 1 мВ= 1000 мкВ.

В настоящее, время существует несколько видов источников электрической энергии. Впервые в качестве источника электрической энергии была использована гальваническая батарея, состоящая из нескольких цинковых и медных кружков, между которыми была проложена кожа, смоченная в подкисленной воде. В гальванической батарее химическая энергия превращалась в электрическую (подробнее об этом будет рассказано в главе XVI). Свое название гальваническая батарея получила по имени итальянского физиолога Луиджи Гальвани (1737—1798), одного из основателей учения об электричестве.

Многочисленные опыты по усовершенствованию и практическому использованию гальванических батарей были проведены русским ученым Василием Владимировичем Петровым. Еще в начале прошлого века он создал самую большую в мире гальваническую батарею и использовал ее для ряда блестящих опытов.

Источники электрической энергии, работающие по принципу преобразования химической энергии в электрическую, называются химическими источниками электрической энергии.

Другим основным источником электрической энергий, получившим широкое применение в электротехнике и радиотехнике, является генератор. В генераторах механическая энергия преобразуется в электрическую.

На электрических схемах источники электрической энергии и генераторы обозначаются так, как это показано на рис. 1.

Рисунок 1. Условные обозначения источников электрической энергии: а — источник ЭДС, общее обозначение, б — источник тока, общее обозначение; в — химический источник электрической энергии; г — батарея химических источников; д — источник потоянного напряжения; е — источник переменного нарияжения; ж —  генератор.

 

У химических источников электрической энергии и у генераторов электродвижущая сила проявляется одинаково, создавая на зажимах источника разность потенциалов и поддерживая ее длительное время. Эти зажимы называются полюсами источника электрической энергии. Один полюс источника электрической энергии имеет положительный потенциал (недостаток электронов), обозначается знаком плюс ( + ) и называется положительным полюсом. Другой полюс имеет отрицательный потенциал (избыток электронов), обозначается знаком минус (—) и называется отрицательным полюсом.

От источников электрической энергии электрическая энергия передается по проводам к ее потребителям (электрические лампы, электродвигатели, электрические дуги, электронагревательные приборы и т. д.).

Определение: Совокупность источника электрической энергии, ее потребителя и соединительных проводов называется электрической цепью.

Простейшая электрическая цепь показана на рис. 2.

Рисунок 2. Простейшая электрическая цепь: Б — источник электрической энергии; SA — выключатель; EL — потребитель электрической энергии (лампа).

Для того чтобы по цепи проходил электрический ток, она должна быть замкнутой. По замкнутой электрической цепи непрерывно проходит ток, так как между полюсами источника электрической энергии существует некоторая разность потенциалов. Эта разность потенциалов называется напряжением источника и обозначается буквой U. Единицей измерения напряжения служит вольт. Так же как и ЭДС, напряжение может измеряться в киловольтах, милливольтах и микровольтах.

Для измерения величины ЭДС и напряжения применяется прибор, называемый вольтметром. Если вольтметр подключить непосредственно к полюсам источника электрической энергии, то при разомкнутой электрической цепи он покажет ЭДС источника электрической энергии, а при замкнутой — напряжение на его зажимах: (рис. 3).

Рисунок 3. Измерение ЭДС и напряжения источника электрической энергии: а— измерение ЭДС источника электрической энергии; б — измерение напряжения на зажимах источника электрической энергии..

Заметим, что напряжение на зажимах источника электрической энергии всегда меньше его ЭДС.  

ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!

Похожие материалы:

Добавить комментарий

Электродвижущая сила и её виды

В физике такое понятие, как электродвижущая сила (сокращенно – ЭДС) используется в качестве основной энергетической характеристики источников тока.

Электродвижущая сила ( ЭДС )

 

 

Электродвижущая сила (ЭДС) – способность источника энергии создавать и поддерживать на зажимах разность потенциалов.

ЭДС – измеряется в Вольтах

E = 1в

Напряжение на зажимах источника всегда меньше ЭДС на величину падения напряжения.

Электродвижущая сила

 

 

E = UR0 + URH

URH = E – UR0

URH – напряжение на зажимах источника. Измеряется при замкнутой внешней цепи.

Е ЭДС – измеряется на заводе изготовителе.

Электродвижущая сила (ЭДС) представляет собой физическую величину, которая равна частному от деления той работы, которая при перемещении электрического заряда совершается сторонними силами в условиях замкнутой цепи, к самому этому заряду.

Следует заметить, что электродвижущая сила в источнике тока возникает и при отсутствии самого тока, то есть тогда, когда цепь является разомкнутой. Такую ситуацию принято именовать «холостым ходом», а сама величина ЭДС при ней равняется разнице тех потенциалов, которые имеются на зажимах источника тока.

Химическая электродвижущая сила

Химическая электродвижущая сила наличествует в аккумуляторах, гальванических батареях при протекании коррозионных процессов. В зависимости от того, на каком именно принципе построена работа того или иного источника питания, они именуются либо аккумуляторами, либо гальваническими элементами.

Одной из основных отличительных характеристик гальванических элементов является то, что эти источники тока являются, так сказать, одноразовыми. При их функционировании те активные вещества, благодаря которым выделяется электрическая энергия, в результате протекания химических реакций распадаются практически полностью. Именно поэтому если гальванический элемент разряжен полностью, то в качестве источника тока использовать его далее невозможно.

В отличие от гальванических элементов аккумуляторы предполагают многократное использование. Это возможно потому, что те химические реакции, которые в них протекают, имеют обратимый характер.

Электромагнитная электродвижущая сила

Электромагнитная ЭДС возникает при функционировании таких устройств, как динамо-машины, электродвигатели, дроссели, трансформаторы и т.п.

Суть ее состоит в следующем: при помещении проводников в магнитное поле и их перемещении в нем таким образом, чтобы происходило пересечение магнитных силовых линий, происходит наведение ЭДС. Если цепь замкнута, то в ней возникает электрический ток.

В физике описанное выше явление называется электромагнитной индукцией. Электродвижущую силу, которая при этом индуктируется, именуют ЭДС индукции.

Следует заметить, что наведение ЭДС индукции происходит не только в тех случаях, когда в магнитном поле проводник перемещается, но и тогда, когда он остается неподвижным, но при этом осуществляется изменение величины самого магнитного поля.

Фотоэлектрическая электродвижущая сила

Эта разновидность электродвижущей силы возникает тогда, когда наличествует или внешний, или внутренний фотоэффект.

В физике под фотоэффектом (фотоэлектрическим эффектом) подразумевается та группа явлений, которая возникает тогда, когда на вещество воздействует свет, и при этом в нем происходит эмиссия электронов. Это называют внешним фотоэффектом. Если же при этом появляется электродвижущая сила или изменяется электропроводимость вещества, то говорят о внутреннем фотоэффекте.

Сейчас и внешний, и внутренний фотоэффекты очень широко используются для проектирования и производства огромного количества таких приемников светового излучения, которые преобразуют световые сигналы в электрические. Все эти устройства называются фотоэлементами и используются как в технике, так и при проведении разнообразных научных исследований. В частности, именно фотоэлементы используются для того, чтобы производить наиболее объективные оптические измерения.

Электростатическая движущая сила

Что касается этого типа электродвижущей силы, то она, к примеру, возникает при механическом трении, возникающем в электрофорных агрегатах (специальных лабораторных демонстрационных и вспомогательных приборах), она же имеет место быть и в грозовых облаках.

Генераторы Вимшурста (это еще одно название электрофорных машин) для своего функционирования используют такое явление, как электростатическая индукция. При их работе электрические заряды накапливаются на полюсах, в лейденских банках, причем разность потенциалов может достигать очень солидных величин (до нескольких сотен тысяч вольт).

Природа статического электричества заключается в том, что оно возникает тогда, когда из-за потери или приобретения электронов нарушается внутримолекулярное или внутриатомное равновесие.

Пьезоэлектрическая электродвижущая сила

Эта разновидность электродвижущей силы возникает тогда, когда происходит или сдавливание, или растяжение веществ, называемых пьезоэлектриками. Они широко используются в таких конструкциях, как пьезодатчики, кварцевых генераторах, гидрофонах и некоторых другиех.

Именно пьезоэлектрический эффект положен в основу работы пьезоэлектрических датчиков. Сами они относятся к датчикам так называемого генераторного типа. В них входной величиной является прилагаемая сила, а выходной – количество электричества.

Что касается таких устройств, как гидрофоны, то в основу их функционирования заложен принцип так называемого прямого пьезоэлектрического эффекта, который имеют пьезокерамические материалы. Суть его состоит в том, что если на поверхность этих материалов оказывается звуковое давление, то на их электродах возникает разность потенциалов. При этом она пропорциональна величине звукового давления.

Одной из основных сфер применения пьезоэлектрических материалов является производство кварцевых генераторов, имеющих в своей конструкции кварцевые резонаторы. Предназначены такие устройства для того, чтобы получать колебания строго фиксированной частоты, которые стабильны как по времени, так и при изменении температуры, а также имеют совсем невысокий уровень фазовых шумов.

Термоионная электродвижущая сила

Эта разновидность электродвижущей силы возникает тогда, когда с поверхности разогретых электродов происходит термоэмиссия заряженных частиц. Термоионная эмиссия на практике применяется достаточно широко, например, на ней основана работа практически всех радиоламп.

Термоэлектрическая электродвижущая сила

Эта разновидность ЭДС возникает тогда, когда на различных концах разнородных проводников или же просто на различных участках цепи температура распределяется очень неоднородно.

Термоэлектрическая электродвижущая сила используется в таких устройствах, как пирометры, термопары и холодильные машины. Датчики, работа которых основана на этом явлении, называются термоэлектрическими, и являются, по сути дела, термопарами, состоящими из спаянных между собой электродов, изготовленных из разных металлов. Когда эти элементы или нагреваются, или охлаждаются, между ними возникает ЭДС, которая по своей величине пропорциональна изменению температуры.

Разница между ЭДС и разницей потенциалов

Difference between emf and potential difference ЭДС против разности потенциалов

ЭДС (электродвижущая сила) — это разность потенциалов между клеммами батареи, когда ток не течет через внешнюю цепь, когда цепь разомкнута. Разница потенциалов — это напряжение на клеммах батареи, когда ток проходит от нее к внешнему устройству.

Если вы хотите узнать разницу между ЭДС и разностью потенциалов, то вы попали в нужное место.Итак, продолжайте читать несколько минут.

Разница между электродвижущей силой и разностью потенциалов

Электродвижущая сила (ЭДС) Разница потенциалов (Pd)
E.m.f — энергия, передаваемая элементу единичному заряду. Разница потенциалов — это энергия, рассеиваемая при прохождении единичного заряда через компоненты.
E.m.f является причиной. Возможная разница — это эффект.
ЭДС присутствует даже тогда, когда через аккумулятор не проходит ток. При отсутствии тока разность потенциалов на проводнике равна нулю.
Единица измерения — вольт. Единица измерения — вольт.
Остается неизменным. Не остается постоянной.
Всегда больше разности потенциалов. Всегда меньше ЭДС.
Пропускает ток как внутри, так и снаружи ячейки. Разница потенциалов передачи тока между двумя точками ячейки.
Его символ — E. Его символ — V.
Его формула: E = I (Rtr)
Rtr = общее внешнее и внутреннее сопротивление.
Его формула: V = E — Ir
Не зависит от сопротивления цепи. Это напрямую зависит от сопротивления между двумя точками измерения.
Возникает в электрическом, магнитном и гравитационном поле. Возникает только в электрическом поле.

Сейчас!
Узнаем подробно об электродвижущей силе (ЭДС) и разности потенциалов (pd).

Электродвижущая сила

Электродвижущая сила E источника — это энергия, переданная элементу единичному заряду.
Когда источник электроэнергии подключен к сопротивлению R, он поддерживает постоянный ток через сопротивление. Батарея заставляет положительный заряд течь во внешней цепи.
Предположим, что заряд Δq прошел через цепь за время Δt. Этот заряд входит в ячейку с ее более низким потенциалом (отрицательный вывод) и покидает его положительный конец (положительный вывод), тогда источник должен совершить работу ΔW над зарядом Δq, перенося его на положительный вывод, который имеет более высокий потенциал.
Таким образом, ЭДС источника определяется как «энергия, передаваемая элементом на единицу заряда».

E = Энергия / удельный заряд

или

.

Наведенные токи и поля

Энергия кванта электромагнитных полей частотой 50 Гц слишком мала для разрыва химических связей. Ясно, что ЭМП промышленной частоты или излучение не вызывают ионизацию так же, как рентгеновские лучи или альфа-частицы. Вместо этого, основной известный способ взаимодействия полей 50 Гц с людьми — это индукция токов.

Микрошоки — это связанное, но другое явление.

Какие токи производят магнитные поля?

Любое переменное магнитное поле будет индуцировать электрическое поле, которое, в свою очередь, создает ток в проводящей среде.Человеческое тело проводит, и поэтому в нем будет индуцированный ток, хотя, как правило, очень слабый. Как показано справа, ток циркулирует по телу.

При расчетах промышленной частоты принято считать, что человеческое тело имеет радиус 0,2 м и проводимость 0,2 См. –1 . Используя эту модель, магнитное поле в 160 микротесла (мкТл) индуцирует периферийную плотность тока 1 мА · м -2 . Можно выполнить более точные численные расчеты, которые учитывают фактическую форму тела и различную электропроводность различных тканей.

Какие токи производят электрические поля?

Переменные электрические поля также вызывают токи в теле. Как показано справа, для вертикального поля они бегают вверх и вниз по телу. При расчете необходимо учитывать возмущение поля, вызванное самим телом. Для обычного человека, стоящего в вертикальном поле, ток 1 мА через тело индуцируется силой 70 кВ · м -1 ; подробнее о численных расчетах.

Действие наведенных токов на тело

Внутри тела токи, индуцированные полями, имеют тот же диапазон эффектов, что и токи, вводимые через электроды, например.грамм. при поражении электрическим током. Но эти эффекты полностью зависят от силы тока. Таким образом, плотность тока около 0,1 А · м -2 может стимулировать возбудимую ткань, а плотность тока выше примерно 1 А · м -2 может вызывать фибрилляцию желудочков, а также вызывать нагрев. Однако эти плотности тока соответствуют полям, намного большим, чем когда-либо встречались при 50 Гц.

Сообщается о ряде возможных эффектов при более низких полях. Установленный эффект, наблюдаемый у людей при самом низком магнитном поле, — это эффект магнитофосфена, когда в периферическом зрении возникает ощущение мерцания магнитными полями с частотой 50 Гц и выше примерно 10 мТл (т.е.е. 10,000 мкТл). Магнитофосфены, вероятно, вызваны индуцированной плотностью тока в сетчатке; порог на 20 Гц (наиболее чувствительная частота) составляет около 20 мА · м -2 .

Микроудары — это связанное, но отдельное явление, вызванное не постоянным током, а одноразовым разрядом.

Какой безопасный уровень наведенного тока?

Нормы воздействия обычно разработаны для предотвращения всех эффектов наведенных токов на том основании, что любое воздействие на мозг или нервную систему потенциально вредно.Например, руководящие принципы воздействия ICNIRP в настоящее время рекомендуют, чтобы люди на работе не подвергались воздействию плотностей тока в голове, шее и туловище более 10 мА · м -2 («основное ограничение») с нижним пределом 2 мА м -2 для населения в целом, которое может включать людей, которые более чувствительны по состоянию здоровья.

Подробнее о том, как рассчитываются наведенные токи

.

Воздействие ЭМП на оборудование

Есть несколько типов оборудования, на которое могут воздействовать поля. Однако требуемые поля обычно намного выше, чем те, которые обычно встречаются в среде.

  • Кредитные карты, железнодорожные билеты и т. Д. содержат информацию, закодированную на магнитной полосе. Это может быть искажено магнитными полями выше примерно 10 000 мкТл. Такие поля почти никогда не возникают при частоте 50 Гц, но могут возникнуть проблемы со статическими полями, например, от магнитных защелок на сумках.
  • Было обнаружено, что около автомобилей с электронными системами управления чувствительны к помехам от магнитных полей промышленной частоты выше примерно 2000 мкТл. Опять же, такие поля редки на частоте 50 Гц. Это, как правило, больше проблем на более высоких частотах.
  • Время от времени поступают сообщения о разряде автомобильных аккумуляторов под воздушными линиями, но если это происходит, это просто совпадение — уровни поля под воздушной линией не могут повлиять на химический состав аккумуляторов или разрядку из них. другое оборудование в автомобиле.
  • Нет прямого воздействия ЭМП на велосипеды , но езда на велосипеде под высоковольтной линией электропередачи может вызвать микрошок.
  • Кварцевые часы с аналоговым циферблатом используют небольшой шаговый двигатель для привода стрелок. Этот шаговый двигатель может приводиться в движение соответствующим образом ориентированным внешним магнитным полем промышленной частоты силой около 1000 мкТл или более, заставляя руки вращаться в 100 или более раз быстрее, чем обычно.Эффект впечатляющий, но причин для повреждения часов не установлено.
  • Электрические и магнитные поля промышленной частоты являются возможным источником помех для работы некоторых типов имплантированных кардиостимуляторов или других активных имплантатов. Помехи — это хорошо известная проблема с некоторыми другими источниками ЭМП — устройствами безопасности магазинов, некоторыми электроинструментами, сделанными своими руками и т. Д. — но в Великобритании не было зарегистрировано случаев, когда пациенту причинялся бы какой-либо вред в результате полей, создаваемых мощностью система.Агентство по регулированию здравоохранения, лекарственных средств и товаров для здоровья Великобритании (MHRA) не считает, что электрические или магнитные поля в линиях электропередачи представляют собой серьезную опасность. Большинство кардиостимуляторов рассчитаны на отказоустойчивость за счет возврата к работе с фиксированной скоростью, когда они почувствовать присутствие помех выше определенного уровня. Напряженность поля, необходимая для того, чтобы вызвать такое поведение, варьируется от одной модели кардиостимулятора к другой, но обычно выше, чем поля, встречающиеся в окружающей среде.Подробнее об ЭМП и имплантированных медицинских устройствах.
  • Магнитные поля могут в некоторых случаях влиять на устойчивость изображения на устаревших блоках визуального отображения (VDU), которые используют электронно-лучевые трубки. Жидкокристаллические, плазменные и другие современные технологии отображения практически не подвержены подобным проблемам, так что это все более историческая проблема. Это произошло, если частота кадров УВО близка, но отличается от частоты сети (50 Гц).Эффект заключается в том, что изображение колеблется с частотой, которая зависит от разницы между частотой кадров и частотой сети. Некоторые модели дисплеев обычно чувствительны к полям в 0,5 микротесла. Ограниченное улучшение может быть достигнуто путем внимательной ориентации УВО и скрининга. Однако экранировать магнитные поля сложно; Даже при использовании сплавов с высокой проницаемостью, таких как «муметал», для эффективных факторов просеивания все же требуется большое количество просеивающего материала. Подробнее о проверочных полях.
  • Люминесцентная лампа работает за счет электрического поля внутри трубки, вызывая разряд, и это электрическое поле может возникать, как обычно, либо от приложения сетевого напряжения к трубке, либо от электрического поля, создаваемого линией электропередачи. Таким образом, люминесцентные лампы будут производить видимое свечение под линией электропередач, хотя обычно оно видно только после наступления темноты, поскольку оно намного слабее, чем свет, который они обычно излучают. Ток через люминесцентную лампу под линией питания, вероятно, будет составлять 20–200 микроампер (мкА) в зависимости от поля.Это намного меньше, чем обычно может воспринимать человек, поэтому вы можете подержать трубку под линией электропередачи, не повредив ее. (Для сравнения, лампа мощностью 10 Вт при 230 В потребляет 40 мА — в 200 раз больше). Иногда вы также можете заставить люминесцентную лампу производить видимое мерцание, взявшись за один конец и потерев ногой о ковер для генерации статического электричества, хотя, опять же, это нужно делать в темной комнате.

,

Поля больше 0,2 или 0,4 мкТл

Мы часто предполагаем, что сильные магнитные поля должны исходить от видимых высоковольтных линий электропередач. Такие линии, безусловно, могут создавать поля более 0,4 мкТл. Средняя линия передачи National Grid производит 0,4 мкТл в пределах примерно 60 м (это среднее значение, и для определенных линий расстояние может быть больше или меньше). Подробнее о полях от линий электропередачи и, в частности, о том, как далеко от разных воздушных линий поле падает до 0,4 мкТл.

Однако только некоторые из домов с такими полями находятся достаточно близко к высоковольтной линии электропередачи, чтобы испытывать сильное поле от нее., Лучшие цифры, которые у нас есть в настоящее время (см. Выше):

  • Поля более 0,4 мкТл: 43% этих домов
  • Поля более 0,2 мкТл: 23% этих домов

Если поле не исходит от высоковольтная линия электропередачи, вероятно, это происходит либо от распределительной проводки за пределами дома, либо от какой-то особенности проводки в доме. Для этих источников необычно создавать такие высокие поля, но это возможно.

Чтобы точно узнать, откуда взялись эти поля, электроэнергетика и DTI совместно профинансировали тогдашний Фонд исследований лейкемии для посещения домов.Работы выполняла HPA-RPD. Результаты были опубликованы в июле 2005 г. в виде отчета, а в марте 2007 г. — в виде рецензируемого документа.

Они исследовали 21 дом с полями (24-часовое среднее в общем объеме дома) более 0,4 мкТл. 43% из них приходятся на воздушные линии высокого напряжения. Разбивка показана на следующей диаграмме.

Они также проделали подобное упражнение для домов с полем более 0,2 мкТл. Как и ожидалось, меньше из них — 23% — поступает от линий электропередач и больше от источников низкого напряжения, как показано на следующей диаграмме.

В исходной статье UKCCS предполагалось, что только 1 из 9 контрольных образцов с полем более 0,4 мкТл получил такое воздействие от высоковольтной линии электропередачи. Эта новая работа показывает, что это больше — чуть меньше половины — но это еще не все.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *