Cos формула: Подготовка школьников к ЕГЭ и ОГЭ (Справочник по математике — Тригонометрия

Содержание

Тригонометрические формулы

© Школяр. Математика (при поддержке «Ветвистого древа») 2009—2016

(1)  Основное тригонометрическое тождество sin2(α) + cos2(α) = 1

(2)  Основное тождество через тангенс и косинус 1 + tg2(α) = 1/cos2(α)

(3)  Основное тождество через котангенс и синус

1 + ctg2(α) = 1/sin2(α)

(4)  Соотношение между тангенсом и котангенсом tg(α)ctg(α) = 1
(5)  Синус двойного угла sin(2α) = 2sin(α)cos(α)
(6)  Косинус двойного угла cos(2α) = cos2(α) – sin2(α) = 2cos2(α) – 1 = 1 – 2sin2(α)
(7)  Тангенс двойного угла
tg(2α) =   2tg(α)


1 – tg2(α)
(8)  Котангенс двойного угла
ctg(2α) = ctg2(α) – 1


  2ctg(α)
(9)  Синус тройного угла sin(3α) = 3sin(α)cos2(α) – sin3(α)
(10)  Косинус тройного угла cos(3α) = cos3(α) – 3cos(α)sin2(α)
(11)  Косинус суммы/разности cos(α±β) = cos(α)cos(β) ∓ sin(α)sin(β)
(12)  Синус суммы/разности sin(α±β) = sin(α)cos(β) ± cos(α)sin(β)

(13)  Тангенс суммы/разности tg(α±β) = (tg(α) ± tg(β))/(1 ∓ tg(α)tg(β))

(14)  Котангенс суммы/разности ctg(α±β) = (-1 ± ctg(α)ctg(β))/(ctg(&alpha) ± ctg(β))

(15)  Произведение синусов sin(α)sin(β) = ½(cos(α–β) – cos(α+β))
(16)  Произведение косинусов cos(α)cos(β) = ½(cos(α+β) + cos(α–β))
(17)  Произведение синуса на косинус sin(α)cos(β) = ½(sin(α+β) + sin(α–β))
(18)  Сумма/разность синусов sin(α) ± sin(β) = 2sin(½(α±β))cos(½(α∓β))
(19)  Сумма косинусов cos(α) + cos(β) = 2cos(½(α+β))cos(½(α–β))
(20)  Разность косинусов cos(α) – cos(β) = –2sin(½(α+β))sin(½(α–β))

(21)  Сумма/разность тангенсов

tg(α) ± tg(β) = sin(α±β)/cos(α)cos(β)

(22)  Формула понижения степени синуса sin2(α) = ½(1 – cos(2α))
(23)  Формула понижения степени косинуса cos2(α) = ½(1 + cos(2α))

(24)

 Сумма/разность синуса и косинуса sin(α) ± cos(α) = &sqrt;2sin(α±π/4)

(25)  Сумма/разность синуса и косинуса с коэффициентами

Asin(α) ± Bcos(α) = Корень(A²+B²)(sin(α ± arccos(A/Корень(A²+B²)))

(26)  Основное соотношение арксинуса и арккосинуса arcsin(x) + arccos(x) = π/2
(27)  Основное соотношение арктангенса и арккотангенса arctg(x) + arcctg(x) = π/2

формулы cos, sin, tg, ctg

Основные формулы тригонометрии — это формулы, устанавливающие связи между основными тригонометрическими функциями. Синус, косинус, тангенс и котангенс связаны между собой множеством соотношений. Ниже приведем основные тригонометрические формулы, а для удобства сгруппируем их по назначению. С использованием данных формул можно решить практически любую задачу из стандартного курса тригонометрии. Сразу отметим, что ниже приведены лишь сами формулы, а не их вывод, которому будут посвящены отдельные статьи.

Основные тождества тригонометрии

Тригонометрические тождества дают связь между синусом, косинусом, тангенсом и котангенсом одного угла, позволяя выразить одну функцию через другую.

Тригонометрические тождества

sin2a+cos2a=1tgα=sinαcosα, ctgα=cosαsinαtgα·ctgα=1tg2α+1=1cos2α, ctg2α+1=1sin2α

Эти тождества напрямую вытекают из определений единичной окружности, синуса (sin), косинуса (cos), тангенса (tg) и котангенса (ctg).

Формулы приведения

Формулы приведения позволяют переходить от работы с произвольными и сколь угодно большими углами к работе с углами в пределах от 0 до 90 градусов.

Формулы приведения

sinα+2πz=sinα, cosα+2πz=cosαtgα+2πz=tgα, ctgα+2πz=ctgαsin-α+2πz=-sinα, cos-α+2πz=cosαtg-α+2πz=-tgα, ctg-α+2πz=-ctgαsinπ2+α+2πz=cosα, cosπ2+α+2πz=-sinαtgπ2+α+2πz=-ctgα, ctgπ2+α+2πz=-tgαsinπ2-α+2πz=cosα, cosπ2-α+2πz=sinαtgπ2-α+2πz=ctgα, ctgπ2-α+2πz=tgαsinπ+α+2πz=-sinα, cosπ+α+2πz=-cosαtgπ+α+2πz=tgα, ctgπ+α+2πz=ctgαsinπ-α+2πz=sinα, cosπ-α+2πz=-cosαtgπ-α+2πz=-tgα, ctgπ-α+2πz=-ctgαsin3π2+α+2πz=-cosα, cos3π2+α+2πz=sinαtg3π2+α+2πz=-ctgα, ctg3π2+α+2πz=-tgαsin3π2-α+2πz=-cosα, cos3π2-α+2πz=-sinαtg3π2-α+2πz=ctgα, ctg3π2-α+2πz=tgα

Формулы приведения являются следствием периодичности тригонометрических функций.

Тригонометрические формулы сложения

Формулы сложения в тригонометрии позволяют выразить тригонометрическую функцию суммы или разности углов через тригонометрические функции этих углов.

Тригонометрические формулы сложения

sinα±β=sinα·cosβ±cosα·sinβcosα+β=cosα·cosβ-sinα·sinβcosα-β=cosα·cosβ+sinα·sinβtgα±β=tgα±tgβ1±tgα·tgβctgα±β=-1±ctgα·ctgβctgα±ctgβ

На основе формул сложения выводятся тригонометрические формулы кратного угла. 

Формулы кратного угла: двойного, тройного и т.д.

Формулы двойного и тройного угла

sin2α=2·sinα·cosαcos2α=cos2α-sin2α, cos2α=1-2sin2α, cos2α=2cos2α-1tg2α=2·tgα1-tg2α сtg2α=сtg2α-12·сtgα sin3α=3sinα·cos2α-sin3α, sin3α=3sinα-4sin3αcos3α=cos3α-3sin2α·cosα, cos3α=-3cosα+4cos3αtg3α=3tgα-tg3α1-3tg2αctg3α=ctg3α-3ctgα3ctg2α-1

Нужна помощь преподавателя?

Опиши задание — и наши эксперты тебе помогут!

Описать задание

Формулы половинного угла

Формулы половинного угла в тригонометрии являются следствием формул двойного угла и выражают соотношения между основными функциями половинного угла и косинусом целого угла.

Формулы половинного угла

sin2α2=1-cosα2cos2α2=1+cosα2tg2α2=1-cosα1+cosαctg2α2=1+cosα1-cosα

Формулы понижения степени

Формулы понижения степени

sin2α=1-cos2α2cos2α=1+cos2α2sin3α=3sinα-sin3α4cos3α=3cosα+cos3α4sin4α=3-4cos2α+cos4α8cos4α=3+4cos2α+cos4α8

Часто при расчетах действовать с громоздктми степенями неудобно.  Формулы понижения степени позволяют понизить степень тригонометрической функции со сколь угодно большой до первой. Приведем их общий вид:

Общий вид формул понижения степени

для четных n

sinnα=Cn2n2n+12n-1∑k=0n2-1(-1)n2-k·Ckn·cos((n-2k)α)cosnα=Cn2n2n+12n-1∑k=0n2-1Ckn·cos((n-2k)α)

для нечетных n

sinnα=12n-1∑k=0n-12(-1)n-12-k·Ckn·sin((n-2k)α)cosnα=12n-1∑k=0n-12Ckn·cos((n-2k)α)

Сумма и разность тригонометрических функций

Разность и сумму тригонометрических функций можно представить в виде произведения. Разложение на множители разностей синусов и косинусов очень удобно применять при решении тригонометрических уравнений и упрощении выражений.

Сумма и разность тригонометрических функций

sinα+sinβ=2sinα+β2·cosα-β2sinα-sinβ=2sinα-β2·cosα+β2cosα+cosβ=2cosα+β2·cosα-β2cosα-cosβ=-2sinα+β2·sinα-β2, cosα-cosβ=2sinα+β2·sinβ-α2

Произведение тригонометрических функций

Если формулы суммы и разности функций позволяют перейти к их произведению, то формулы произведения тригонометрических функций осуществляют обратный переход — от произведения к сумме. Рассматриваются формулы произведения синусов, косинусов и синуса на косинус.

Формулы произведения тригонометрических функций

sinα·sinβ=12·(cos(α-β)-cos(α+β))cosα·cosβ=12·(cos(α-β)+cos(α+β))sinα·cosβ=12·(sin(α-β)+sin(α+β))

Универсальная тригонометрическая подстановка

Все основные тригонометрические функции — синус, косинус, тангенс и котангенс, — могут быть выражены через тангенс половинного угла. 

Универсальная тригонометрическая подстановка

sinα=2tgα21+tg2α2cosα=1-tg2α21+tg2α2tgα=2tgα21-tg2α2ctgα=1-tg2α22tgα2

формулы cos, sin, tg, ctg

Основные формулы тригонометрии — это формулы, устанавливающие связи между основными тригонометрическими функциями. Синус, косинус, тангенс и котангенс связаны между собой множеством соотношений. Ниже приведем основные тригонометрические формулы, а для удобства сгруппируем их по назначению. С использованием данных формул можно решить практически любую задачу из стандартного курса тригонометрии. Сразу отметим, что ниже приведены лишь сами формулы, а не их вывод, которому будут посвящены отдельные статьи.

Основные тождества тригонометрии

Тригонометрические тождества дают связь между синусом, косинусом, тангенсом и котангенсом одного угла, позволяя выразить одну функцию через другую.

Тригонометрические тождества

sin2a+cos2a=1tgα=sinαcosα, ctgα=cosαsinαtgα·ctgα=1tg2α+1=1cos2α, ctg2α+1=1sin2α

Эти тождества напрямую вытекают из определений единичной окружности, синуса (sin), косинуса (cos), тангенса (tg) и котангенса (ctg).

Формулы приведения

Формулы приведения позволяют переходить от работы с произвольными и сколь угодно большими углами к работе с углами в пределах от 0 до 90 градусов.

Формулы приведения

sinα+2πz=sinα, cosα+2πz=cosαtgα+2πz=tgα, ctgα+2πz=ctgαsin-α+2πz=-sinα, cos-α+2πz=cosαtg-α+2πz=-tgα, ctg-α+2πz=-ctgαsinπ2+α+2πz=cosα, cosπ2+α+2πz=-sinαtgπ2+α+2πz=-ctgα, ctgπ2+α+2πz=-tgαsinπ2-α+2πz=cosα, cosπ2-α+2πz=sinαtgπ2-α+2πz=ctgα, ctgπ2-α+2πz=tgαsinπ+α+2πz=-sinα, cosπ+α+2πz=-cosαtgπ+α+2πz=tgα, ctgπ+α+2πz=ctgαsinπ-α+2πz=sinα, cosπ-α+2πz=-cosαtgπ-α+2πz=-tgα, ctgπ-α+2πz=-ctgαsin3π2+α+2πz=-cosα, cos3π2+α+2πz=sinαtg3π2+α+2πz=-ctgα, ctg3π2+α+2πz=-tgαsin3π2-α+2πz=-cosα, cos3π2-α+2πz=-sinαtg3π2-α+2πz=ctgα, ctg3π2-α+2πz=tgα

Формулы приведения являются следствием периодичности тригонометрических функций.

Тригонометрические формулы сложения

Формулы сложения в тригонометрии позволяют выразить тригонометрическую функцию суммы или разности углов через тригонометрические функции этих углов.

Тригонометрические формулы сложения

sinα±β=sinα·cosβ±cosα·sinβcosα+β=cosα·cosβ-sinα·sinβcosα-β=cosα·cosβ+sinα·sinβtgα±β=tgα±tgβ1±tgα·tgβctgα±β=-1±ctgα·ctgβctgα±ctgβ

На основе формул сложения выводятся тригонометрические формулы кратного угла. 

Формулы кратного угла: двойного, тройного и т.д.

Формулы двойного и тройного угла

sin2α=2·sinα·cosαcos2α=cos2α-sin2α, cos2α=1-2sin2α, cos2α=2cos2α-1tg2α=2·tgα1-tg2α сtg2α=сtg2α-12·сtgα sin3α=3sinα·cos2α-sin3α, sin3α=3sinα-4sin3αcos3α=cos3α-3sin2α·cosα, cos3α=-3cosα+4cos3αtg3α=3tgα-tg3α1-3tg2αctg3α=ctg3α-3ctgα3ctg2α-1

Нужна помощь преподавателя?

Опиши задание — и наши эксперты тебе помогут!

Описать задание

Формулы половинного угла

Формулы половинного угла в тригонометрии являются следствием формул двойного угла и выражают соотношения между основными функциями половинного угла и косинусом целого угла.

Формулы половинного угла

sin2α2=1-cosα2cos2α2=1+cosα2tg2α2=1-cosα1+cosαctg2α2=1+cosα1-cosα

Формулы понижения степени

Формулы понижения степени

sin2α=1-cos2α2cos2α=1+cos2α2sin3α=3sinα-sin3α4cos3α=3cosα+cos3α4sin4α=3-4cos2α+cos4α8cos4α=3+4cos2α+cos4α8

Часто при расчетах действовать с громоздктми степенями неудобно. Формулы понижения степени позволяют понизить степень тригонометрической функции со сколь угодно большой до первой. Приведем их общий вид:

Общий вид формул понижения степени

для четных n

sinnα=Cn2n2n+12n-1∑k=0n2-1(-1)n2-k·Ckn·cos((n-2k)α)cosnα=Cn2n2n+12n-1∑k=0n2-1Ckn·cos((n-2k)α)

для нечетных n

sinnα=12n-1∑k=0n-12(-1)n-12-k·Ckn·sin((n-2k)α)cosnα=12n-1∑k=0n-12Ckn·cos((n-2k)α)

Сумма и разность тригонометрических функций

Разность и сумму тригонометрических функций можно представить в виде произведения. Разложение на множители разностей синусов и косинусов очень удобно применять при решении тригонометрических уравнений и упрощении выражений.

Сумма и разность тригонометрических функций

sinα+sinβ=2sinα+β2·cosα-β2sinα-sinβ=2sinα-β2·cosα+β2cosα+cosβ=2cosα+β2·cosα-β2cosα-cosβ=-2sinα+β2·sinα-β2, cosα-cosβ=2sinα+β2·sinβ-α2

Произведение тригонометрических функций

Если формулы суммы и разности функций позволяют перейти к их произведению, то формулы произведения тригонометрических функций осуществляют обратный переход — от произведения к сумме. Рассматриваются формулы произведения синусов, косинусов и синуса на косинус.

Формулы произведения тригонометрических функций

sinα·sinβ=12·(cos(α-β)-cos(α+β))cosα·cosβ=12·(cos(α-β)+cos(α+β))sinα·cosβ=12·(sin(α-β)+sin(α+β))

Универсальная тригонометрическая подстановка

Все основные тригонометрические функции — синус, косинус, тангенс и котангенс, — могут быть выражены через тангенс половинного угла. 

Универсальная тригонометрическая подстановка

sinα=2tgα21+tg2α2cosα=1-tg2α21+tg2α2tgα=2tgα21-tg2α2ctgα=1-tg2α22tgα2

формулы cos, sin, tg, ctg

Основные формулы тригонометрии — это формулы, устанавливающие связи между основными тригонометрическими функциями. Синус, косинус, тангенс и котангенс связаны между собой множеством соотношений. Ниже приведем основные тригонометрические формулы, а для удобства сгруппируем их по назначению. С использованием данных формул можно решить практически любую задачу из стандартного курса тригонометрии. Сразу отметим, что ниже приведены лишь сами формулы, а не их вывод, которому будут посвящены отдельные статьи.

Основные тождества тригонометрии

Тригонометрические тождества дают связь между синусом, косинусом, тангенсом и котангенсом одного угла, позволяя выразить одну функцию через другую.

Тригонометрические тождества

sin2a+cos2a=1tgα=sinαcosα, ctgα=cosαsinαtgα·ctgα=1tg2α+1=1cos2α, ctg2α+1=1sin2α

Эти тождества напрямую вытекают из определений единичной окружности, синуса (sin), косинуса (cos), тангенса (tg) и котангенса (ctg).

Формулы приведения

Формулы приведения позволяют переходить от работы с произвольными и сколь угодно большими углами к работе с углами в пределах от 0 до 90 градусов.

Формулы приведения

sinα+2πz=sinα, cosα+2πz=cosαtgα+2πz=tgα, ctgα+2πz=ctgαsin-α+2πz=-sinα, cos-α+2πz=cosαtg-α+2πz=-tgα, ctg-α+2πz=-ctgαsinπ2+α+2πz=cosα, cosπ2+α+2πz=-sinαtgπ2+α+2πz=-ctgα, ctgπ2+α+2πz=-tgαsinπ2-α+2πz=cosα, cosπ2-α+2πz=sinαtgπ2-α+2πz=ctgα, ctgπ2-α+2πz=tgαsinπ+α+2πz=-sinα, cosπ+α+2πz=-cosαtgπ+α+2πz=tgα, ctgπ+α+2πz=ctgαsinπ-α+2πz=sinα, cosπ-α+2πz=-cosαtgπ-α+2πz=-tgα, ctgπ-α+2πz=-ctgαsin3π2+α+2πz=-cosα, cos3π2+α+2πz=sinαtg3π2+α+2πz=-ctgα, ctg3π2+α+2πz=-tgαsin3π2-α+2πz=-cosα, cos3π2-α+2πz=-sinαtg3π2-α+2πz=ctgα, ctg3π2-α+2πz=tgα

Формулы приведения являются следствием периодичности тригонометрических функций.

Тригонометрические формулы сложения

Формулы сложения в тригонометрии позволяют выразить тригонометрическую функцию суммы или разности углов через тригонометрические функции этих углов.

Тригонометрические формулы сложения

sinα±β=sinα·cosβ±cosα·sinβcosα+β=cosα·cosβ-sinα·sinβcosα-β=cosα·cosβ+sinα·sinβtgα±β=tgα±tgβ1±tgα·tgβctgα±β=-1±ctgα·ctgβctgα±ctgβ

На основе формул сложения выводятся тригонометрические формулы кратного угла.  

Формулы кратного угла: двойного, тройного и т.д.

Формулы двойного и тройного угла

sin2α=2·sinα·cosαcos2α=cos2α-sin2α, cos2α=1-2sin2α, cos2α=2cos2α-1tg2α=2·tgα1-tg2α сtg2α=сtg2α-12·сtgα sin3α=3sinα·cos2α-sin3α, sin3α=3sinα-4sin3αcos3α=cos3α-3sin2α·cosα, cos3α=-3cosα+4cos3αtg3α=3tgα-tg3α1-3tg2αctg3α=ctg3α-3ctgα3ctg2α-1

Нужна помощь преподавателя?

Опиши задание — и наши эксперты тебе помогут!

Описать задание

Формулы половинного угла

Формулы половинного угла в тригонометрии являются следствием формул двойного угла и выражают соотношения между основными функциями половинного угла и косинусом целого угла.

Формулы половинного угла

sin2α2=1-cosα2cos2α2=1+cosα2tg2α2=1-cosα1+cosαctg2α2=1+cosα1-cosα

Формулы понижения степени

Формулы понижения степени

sin2α=1-cos2α2cos2α=1+cos2α2sin3α=3sinα-sin3α4cos3α=3cosα+cos3α4sin4α=3-4cos2α+cos4α8cos4α=3+4cos2α+cos4α8

Часто при расчетах действовать с громоздктми степенями неудобно.  Формулы понижения степени позволяют понизить степень тригонометрической функции со сколь угодно большой до первой. Приведем их общий вид:

Общий вид формул понижения степени

для четных n

sinnα=Cn2n2n+12n-1∑k=0n2-1(-1)n2-k·Ckn·cos((n-2k)α)cosnα=Cn2n2n+12n-1∑k=0n2-1Ckn·cos((n-2k)α)

для нечетных n

sinnα=12n-1∑k=0n-12(-1)n-12-k·Ckn·sin((n-2k)α)cosnα=12n-1∑k=0n-12Ckn·cos((n-2k)α)

Сумма и разность тригонометрических функций

Разность и сумму тригонометрических функций можно представить в виде произведения. Разложение на множители разностей синусов и косинусов очень удобно применять при решении тригонометрических уравнений и упрощении выражений.

Сумма и разность тригонометрических функций

sinα+sinβ=2sinα+β2·cosα-β2sinα-sinβ=2sinα-β2·cosα+β2cosα+cosβ=2cosα+β2·cosα-β2cosα-cosβ=-2sinα+β2·sinα-β2, cosα-cosβ=2sinα+β2·sinβ-α2

Произведение тригонометрических функций

Если формулы суммы и разности функций позволяют перейти к их произведению, то формулы произведения тригонометрических функций осуществляют обратный переход — от произведения к сумме. Рассматриваются формулы произведения синусов, косинусов и синуса на косинус.

Формулы произведения тригонометрических функций

sinα·sinβ=12·(cos(α-β)-cos(α+β))cosα·cosβ=12·(cos(α-β)+cos(α+β))sinα·cosβ=12·(sin(α-β)+sin(α+β))

Универсальная тригонометрическая подстановка

Все основные тригонометрические функции — синус, косинус, тангенс и котангенс, — могут быть выражены через тангенс половинного угла. 

Универсальная тригонометрическая подстановка

sinα=2tgα21+tg2α2cosα=1-tg2α21+tg2α2tgα=2tgα21-tg2α2ctgα=1-tg2α22tgα2

формулы cos, sin, tg, ctg

Основные формулы тригонометрии — это формулы, устанавливающие связи между основными тригонометрическими функциями. Синус, косинус, тангенс и котангенс связаны между собой множеством соотношений. Ниже приведем основные тригонометрические формулы, а для удобства сгруппируем их по назначению. С использованием данных формул можно решить практически любую задачу из стандартного курса тригонометрии. Сразу отметим, что ниже приведены лишь сами формулы, а не их вывод, которому будут посвящены отдельные статьи.

Основные тождества тригонометрии

Тригонометрические тождества дают связь между синусом, косинусом, тангенсом и котангенсом одного угла, позволяя выразить одну функцию через другую.

Тригонометрические тождества

sin2a+cos2a=1tgα=sinαcosα, ctgα=cosαsinαtgα·ctgα=1tg2α+1=1cos2α, ctg2α+1=1sin2α

Эти тождества напрямую вытекают из определений единичной окружности, синуса (sin), косинуса (cos), тангенса (tg) и котангенса (ctg).

Формулы приведения

Формулы приведения позволяют переходить от работы с произвольными и сколь угодно большими углами к работе с углами в пределах от 0 до 90 градусов.

Формулы приведения

sinα+2πz=sinα, cosα+2πz=cosαtgα+2πz=tgα, ctgα+2πz=ctgαsin-α+2πz=-sinα, cos-α+2πz=cosαtg-α+2πz=-tgα, ctg-α+2πz=-ctgαsinπ2+α+2πz=cosα, cosπ2+α+2πz=-sinαtgπ2+α+2πz=-ctgα, ctgπ2+α+2πz=-tgαsinπ2-α+2πz=cosα, cosπ2-α+2πz=sinαtgπ2-α+2πz=ctgα, ctgπ2-α+2πz=tgαsinπ+α+2πz=-sinα, cosπ+α+2πz=-cosαtgπ+α+2πz=tgα, ctgπ+α+2πz=ctgαsinπ-α+2πz=sinα, cosπ-α+2πz=-cosαtgπ-α+2πz=-tgα, ctgπ-α+2πz=-ctgαsin3π2+α+2πz=-cosα, cos3π2+α+2πz=sinαtg3π2+α+2πz=-ctgα, ctg3π2+α+2πz=-tgαsin3π2-α+2πz=-cosα, cos3π2-α+2πz=-sinαtg3π2-α+2πz=ctgα, ctg3π2-α+2πz=tgα

Формулы приведения являются следствием периодичности тригонометрических функций.

Тригонометрические формулы сложения

Формулы сложения в тригонометрии позволяют выразить тригонометрическую функцию суммы или разности углов через тригонометрические функции этих углов.

Тригонометрические формулы сложения

sinα±β=sinα·cosβ±cosα·sinβcosα+β=cosα·cosβ-sinα·sinβcosα-β=cosα·cosβ+sinα·sinβtgα±β=tgα±tgβ1±tgα·tgβctgα±β=-1±ctgα·ctgβctgα±ctgβ

На основе формул сложения выводятся тригонометрические формулы кратного угла. 

Формулы кратного угла: двойного, тройного и т.д.

Формулы двойного и тройного угла

sin2α=2·sinα·cosαcos2α=cos2α-sin2α, cos2α=1-2sin2α, cos2α=2cos2α-1tg2α=2·tgα1-tg2α сtg2α=сtg2α-12·сtgα sin3α=3sinα·cos2α-sin3α, sin3α=3sinα-4sin3αcos3α=cos3α-3sin2α·cosα, cos3α=-3cosα+4cos3αtg3α=3tgα-tg3α1-3tg2αctg3α=ctg3α-3ctgα3ctg2α-1

Нужна помощь преподавателя?

Опиши задание — и наши эксперты тебе помогут!

Описать задание

Формулы половинного угла

Формулы половинного угла в тригонометрии являются следствием формул двойного угла и выражают соотношения между основными функциями половинного угла и косинусом целого угла.

Формулы половинного угла

sin2α2=1-cosα2cos2α2=1+cosα2tg2α2=1-cosα1+cosαctg2α2=1+cosα1-cosα

Формулы понижения степени

Формулы понижения степени

sin2α=1-cos2α2cos2α=1+cos2α2sin3α=3sinα-sin3α4cos3α=3cosα+cos3α4sin4α=3-4cos2α+cos4α8cos4α=3+4cos2α+cos4α8

Часто при расчетах действовать с громоздктми степенями неудобно. Формулы понижения степени позволяют понизить степень тригонометрической функции со сколь угодно большой до первой. Приведем их общий вид:

Общий вид формул понижения степени

для четных n

sinnα=Cn2n2n+12n-1∑k=0n2-1(-1)n2-k·Ckn·cos((n-2k)α)cosnα=Cn2n2n+12n-1∑k=0n2-1Ckn·cos((n-2k)α)

для нечетных n

sinnα=12n-1∑k=0n-12(-1)n-12-k·Ckn·sin((n-2k)α)cosnα=12n-1∑k=0n-12Ckn·cos((n-2k)α)

Сумма и разность тригонометрических функций

Разность и сумму тригонометрических функций можно представить в виде произведения. Разложение на множители разностей синусов и косинусов очень удобно применять при решении тригонометрических уравнений и упрощении выражений.

Сумма и разность тригонометрических функций

sinα+sinβ=2sinα+β2·cosα-β2sinα-sinβ=2sinα-β2·cosα+β2cosα+cosβ=2cosα+β2·cosα-β2cosα-cosβ=-2sinα+β2·sinα-β2, cosα-cosβ=2sinα+β2·sinβ-α2

Произведение тригонометрических функций

Если формулы суммы и разности функций позволяют перейти к их произведению, то формулы произведения тригонометрических функций осуществляют обратный переход — от произведения к сумме. Рассматриваются формулы произведения синусов, косинусов и синуса на косинус.

Формулы произведения тригонометрических функций

sinα·sinβ=12·(cos(α-β)-cos(α+β))cosα·cosβ=12·(cos(α-β)+cos(α+β))sinα·cosβ=12·(sin(α-β)+sin(α+β))

Универсальная тригонометрическая подстановка

Все основные тригонометрические функции — синус, косинус, тангенс и котангенс, — могут быть выражены через тангенс половинного угла. 

Универсальная тригонометрическая подстановка

sinα=2tgα21+tg2α2cosα=1-tg2α21+tg2α2tgα=2tgα21-tg2α2ctgα=1-tg2α22tgα2

формула, следствия и примеры решений

Содержание:

Формула теоремы косинусов

Теорема

Квадрат стороны треугольника равен сумме квадратов двух других сторон минус удвоенное
произведение этих сторон на косинус угла между ними. {2}-2 b c \cos \alpha$

Теорема косинусов является обобщением теоремы Пифагора.
Утверждения, обобщающие теорему Пифагора и эквивалентные теореме косинусов,
были сформулированы отдельно для случаев острого и тупого угла в 12 и 13 предложениях II книги «Начал» древнегреческого математика Евклида
(ок. 300 г. до н. э.). Утверждения, эквивалентные теореме косинусов для сферического треугольника, применялись в сочинениях математиков
стран Средней Азии. Теорему косинусов для сферического треугольника в привычном нам виде сформулировал выдающийся немецкий астролог,
астроном и математик Региомонтан (1436 — 1476), назвав её «теоремой Альбатегния» (по имени выдающегося средневекового астронома и
математика Абу Абдаллах Мухаммад ибн Джабир ибн Синан ал-Баттани (858 — 929).

В Европе теорему косинусов популяризовал французский математик Франсуа Виет (1540 — 1603) в 16 столетии. В начале 19 века её
стали записывать в принятых по сей день алгебраических обозначениях. °-a\). К счастью, учить наизусть формулы привидения вам не придется, потому что есть легкий и надежный способ вывести нужную за пару секунд.

Как быстро получить любую формулу приведения


Для начала обратите внимание, что все формулы имеют похожий вид:



Здесь нужно пояснить термин «кофункция» — это та же самая функция с добавлением или убиранием приставки «ко-». То есть, для синуса кофункцией будет косинус, а для косинусасинус. С тангенсом и котангенсом – аналогично.


Функция:                Кофункция:

\(sin⁡\) \(a\)          \(→\)            \(cos⁡\) \(a\)

\(cos⁡\) \(a\)          \(→\)             \(sin⁡\) \(a\)

\(tg⁡\) \(a\)            \(→\)            \(ctg\) \(a\)

\(ctg⁡\) \(a\)          \(→\)             \(tg\) \(a\)


Таким образом, например, синус при применении этих формул никогда не поменяется на тангенс
или котангенс, он либо останется синусом, либо превратиться в косинус. °}}=\)


 


В числителе и знаменателе получились одинаковые косинусы. Сокращаем их.



\(= 18\)


 


Записываем ответ



Ответ:  \(18\)


Пример. Найдите значение выражения \(\frac{3 \sin{⁡(\pi-a)}-\cos(\frac{\pi}{2}+a) }{\cos⁡ {(\frac{3\pi}{2}-a)}}\)

Решение:








\(\frac{3 \sin{⁡(\pi-a)}-\cos(\frac{\pi}{2}+a) }{\cos⁡ {(\frac{3\pi}{2}-a)}}=\)



Рассмотрим первое слагаемое числителя: \(\sin⁡(π-a)\). Воспользуемся формулами приведения, выведя ее самостоятельно:

  • \((π-a)\) это вторая четверть, а синус во второй четверти положителен. Значит, знак будет плюс;
  • \(π\) это точка «горизонтальная», то есть мотаем головой, значит функция остается той же.


Таким образом, \(\sin⁡(π-a)=\sin⁡a\) 


\(=\frac{3 \sin{⁡a}-\cos(\frac{\pi}{2}+a) }{\cos⁡ {(\frac{3\pi}{2}-a)}}=\)


 


Второе слагаемое числителя: \(\cos⁡{(\frac{π}{2} + a)}\):

  • \((\frac{π}{2} + a)\) это опять вторая четверть, а косинус во второй четверти отрицателен. Значит, знак будет минус.
  • \(\frac{π}{2}\) это точка «вертикальная», то есть киваем, значит, функция меняется на кофункцию – синус.


Таким образом, \(\cos{⁡(\frac{π}{2} + a)}=-\sin⁡a\)


\(=\frac{3 \sin{⁡a}-(-\sin{a}) }{\cos⁡ {(\frac{3\pi}{2}-a)}}=\)


 


Теперь знаменатель: \(\cos⁡(\frac{3π}{2} — a)\). Его мы разобрали выше, он равен минус синусу. \(\cos⁡(\frac{3π}{2} — a)=-\sin{⁡a}\)


\(=\frac{3 \sin{⁡a}-(-\sin{a}) }{-\sin⁡ {a}}=\)


 


Раскрываем скобки и приводим подобные слагаемые.


\(=\frac{3 \sin{⁡a}+\sin{a}}{-\sin⁡ {a}}=\frac{4\sin{a}}{-\sin{a}}\)


 


Сократив на \(\sin⁡{a}\), получаем ответ.


\(=\frac{4 }{-1}=\)\(-4\)


 


Ответ:  \(-4\)


Пример. Вычислить чему равен \(ctg(-a-\frac{7π}{2})\), если \(tg\) \(⁡a=2\)


Решение:







\(ctg(-a-\frac{7π}{2}) =\)


Здесь сразу формулу приведения применять нельзя, так как аргумент нестандартный. Что не так? Прежде всего, \(a\) стоит первой, хотя должна быть после «точки привязки». Поменяем местами слагаемые аргумента, сохраняя знаки.


\(= ctg(-\frac{7π}{2}-a) =\)


 


Уже лучше, но все еще есть проблемы – «точка привязки» с минусом, а такого аргумента у нас нет. Избавимся от минуса, вынеся его за скобку внутри аргумента.



\(= ctg(-(\frac{7π}{2}+a)) =\)


 


Теперь вспомним о том, что котангенс – функция нечетная, то есть

\(ctg\) \((-t)=- ctg\) \(t\). Преобразовываем наше выражение.


\(= — ctg(\frac{7π}{2}+a) =\)


 


Несмотря на то, что точка привязки \(\frac{7π}{2}\) мы все равно можем использовать формулы приведения, потому что \(\frac{7π}{2}\) лежит на пересечении одной из осей и числовой окружности (смотри пояснение ниже). \((\frac{7π}{2}+a)\) это четвертая четверть, и котангенс там отрицателен. «Точка привязки» — вертикальная, то есть функцию меняем. Окончательно имеем \(ctg(\frac{7π}{2}+a)=-tg a\) .


\(= — (- tg\) \(a) = tg\) \(a = 2\)


 


Готов ответ.


Ответ:  \(2\)


Еще раз проговорим этот важный момент: с точки зрения формулы приведения \(\frac{7π}{2}\) — это тоже самое, что и \(\frac{3π}{2}\). Почему? Потому что \(\frac{7π}{2}=\frac{3π+4π}{2}=\frac{3π}{2}+\frac{4π}{2}=\frac{3π}{2}+2π\). Иными словами, они отличаются ровно на один оборот \(2π\). А на значения тригонометрических функций количество оборотов никак не влияет:


\(cos\) \(⁡t=cos ⁡(t+2π)=cos ⁡(t+4π)=cos ⁡(t+6π)= …=cos⁡ (t-2π)=cos ⁡(t-4π)=cos⁡ (t-6π)…\)

\(sin\) \(t=sin⁡ (t+2π)=sin ⁡(t+4π)=sin ⁡(t+6π)= . ..=sin⁡ (t-2π)=sin ⁡(t-4π)=sin ⁡(t-6π)…\)


Аналогично с тангенсом и котангенсом (только у них «оборот» равен \(π\)).

\(tg\) \(t=tg⁡(t+π)=tg⁡(t+2π)=tg⁡(t+3π)= …=tg⁡(t-π)=tg⁡(t-2π)=tg⁡(t-3π)…\)

\(ctg\) \(t=ctg⁡(t+π)=ctg⁡(t+2π)=ctg⁡(t+3π)= …=ctg⁡(t-π)=ctg⁡(t-2π)=ctg⁡(t-3π)…\)


Таким образом, \(-ctg(\frac{7π}{2}+a)=- ctg(\frac{3π}{2}+2π+a)=- ctg(\frac{3π}{2}+a)\).


То есть, для определения знака и необходимости смены функции важно лишь местоположение «точки привязки», а не её значение, поэтому так расписывать не обязательно (но можно если вы хотите впечатлить своими знаниями учительницу).

Ответы на часто задаваемые вопросы


Вопрос: Есть ли формулы приведения с аргументами \((\frac{π}{3}-a)\),\((\frac{π}{4}+a)\),\((\frac{7π}{6}+a)\) или тому подобное?
Ответ: К сожалению, нет. В таких ситуациях выгодно использовать формулы разности и суммы аргументов. Например, \(cos⁡(\frac{π}{3}-a)=cos⁡\frac{π}{3} cos⁡a+sin⁡\frac{π}{3} sin⁡a=\frac{1}{2}cos⁡a+\frac{\sqrt{3}}{2} sin⁡a\).


Смотрите также Как доказать тригонометрическое тождество?

Скачать статью

Сводка тригонометрических формул

Сводка тригонометрических формул

Эти формулы относятся к длине и площади определенных кругов или треугольников. На следующей странице вы найдете личности. Идентичности не относятся к конкретным геометрическим фигурам, но верны для всех углов.

Формулы дуг и секторов окружностей

Вы можете легко найти как длину дуги, так и площадь сектора для угла θ в окружности радиуса r .

Длина дуги. Длина дуги равна радиусу r, в умноженному на угол θ , где угол измеряется в радианах. Чтобы преобразовать градусы в радианы, умножьте количество градусов на π /180.
Площадь сектора. Площадь сектора равна половине квадрата радиуса, умноженного на угол, где, опять же, угол измеряется в радианах.
Формулы для прямоугольных треугольников

Наиболее важные формулы тригонометрии — формулы прямоугольного треугольника.Если θ — это один из острых углов в треугольнике, то синус тета — это отношение противоположной стороны к гипотенузе, косинус — это отношение соседней стороны к гипотенузе, а тангенс — это отношение сторона, противоположная соседней стороне.

Эти три формулы известны мнемоническим языком SohCahToa. Помимо этого, существует очень важная формула Пифагора, согласно которой квадрат гипотенузы равен сумме квадратов двух других сторон.

Зная, что два острых угла дополняют друг друга, то есть они складываются в 90 °, вы можете решить любой прямоугольный треугольник:

  • Если вы знаете две из трех сторон, вы можете найти третью сторону и оба острых угла.
  • Если вы знаете один острый угол и одну из трех сторон, вы можете найти другой острый угол и две другие стороны.
Формулы наклонных треугольников

Эти формулы работают для любого треугольника, будь то острый, тупой или прямой.Мы будем использовать стандартное обозначение, в котором три вершины треугольника обозначаются прописными буквами A , B и C , а три противоположные им стороны соответственно обозначаются строчными буквами a , . b и c .

Есть две важные формулы для наклонных треугольников. Их называют законом косинусов и законом синусов.

Закон косинусов обобщает формулу Пифагора на все треугольники.В нем говорится, что c 2 , квадрат одной стороны треугольника, равен a 2 + b 2 , сумме квадратов двух других сторон минус 2. ab cos & nbsp C , удвоить их произведение, умноженное на косинус противоположного угла. Когда угол ° C правильный, он становится формулой Пифагора.

Закон синусов гласит, что отношение синуса одного угла к противоположной стороне является одинаковым для всех трех углов.

С помощью этих двух формул вы можете решить любой треугольник:

  • Если вы знаете два угла и сторону, вы можете найти третий угол и две другие стороны.
  • Если вы знаете две стороны и включенный угол, вы можете найти третью сторону и оба других угла.
  • Если вы знаете две стороны и угол, противоположный одной из них, есть две возможности для угла, противоположного другой (острый и тупой), и для обеих возможностей вы можете определить оставшийся угол и оставшуюся сторону.
Формулы площади для треугольников

Есть три разные полезные формулы для вычисления площади треугольника, и какая из них вы используете, зависит от того, какая информация у вас есть.

Умножить половину основания на высоту. Это обычный вариант, поскольку он самый простой и обычно у вас есть такая информация. Выбирайте любую сторону, чтобы позвонить по базе b . Тогда, если h — это расстояние от противоположной вершины до b , то площадь равна половине bh .
Формула Герона. Это полезно, когда вы знаете три стороны треугольника: a , b и c , и все, что вам нужно знать, это площадь. Пусть с будет половиной их суммы, называемой полупериметром . Тогда площадь является квадратным корнем из произведения s , s a , s b и s c .
Формула стороны-угла-стороны. Используйте это, если вам известны две стороны, a и b , и включенный угол C . Площадь равна половине произведения двух сторон, умноженной на синус включенного угла.

Сводка тригонометрических отождествлений

На последних нескольких страницах вы видели довольно много тригонометрических отождествлений. Для справки удобно иметь их резюме. Эти тождества в основном относятся к одному углу, обозначенному θ , но есть некоторые, которые включают два угла, и для них два угла обозначены α и β .
Более важные идентичности.

Необязательно знать все личности с головы до ног. Но вы должны это сделать.

Определение отношений для тангенса, котангенса, секанса и косеканса в терминах синуса и косинуса.
Формула Пифагора для синусов и косинусов.
Это, наверное, самая важная триггерная идентичность.
Идентификаторы, выражающие триггерные функции в терминах их дополнений.
В этом нет ничего особенного. Каждая из шести триггерных функций равна своей совместной функции, оцениваемой под дополнительным углом.
Периодичность триггерных функций.
Синус, косинус, секанс и косеканс имеют период 2 π , а тангенс и котангенс имеют период π .
Тождества для отрицательных углов.
Синус, тангенс, котангенс и косеканс являются нечетными функциями, а косинус и секанс — четными функциями.
Тождества Птолемея, формулы суммы и разности для синуса и косинуса.
Формулы двойного угла для синуса и косинуса.
Обратите внимание, что существует три формы формулы двойного угла для косинуса. Вам нужно знать только одно, но уметь вывести два других из формулы Пифагора.
Менее важные идентичности.

Вы должны знать, что эти личности есть, но они не так важны, как упомянутые выше. Все они могут быть получены из вышеперечисленных, но иногда для этого требуется немного поработать.

Формула Пифагора для касательных и секущих.
Есть еще один для котангенсов и косекансов, но поскольку котангенсы и косекансы нужны редко, в нем нет необходимости.
Идентификаторы, выражающие триггерные функции в терминах их дополнений.
Формулы суммы, разности и двойного угла для тангенса.
Формулы половинных углов.
Для синуса и косинуса берут положительный или отрицательный квадратный корень в зависимости от квадранта угла θ /2. Например, если θ /2 — острый угол, тогда будет использоваться положительный корень.
Действительно непонятные личности.

Они здесь как раз для извращенности. Нет, не совсем. У них есть несколько приложений, но обычно это узкие приложения, и о них также можно забыть, пока они не понадобятся.

Идентификаторы суммы продукта.
Эта группа идентичностей позволяет вам преобразовать сумму или разность синусов или косинусов в произведение синусов и косинусов.
Идентификационные данные продукта.
Кроме того: как ни странно, эти идентификаторы продуктов использовались до того, как были изобретены логарифмы для выполнения умножения. Вот как можно использовать второй. Если вы хотите умножить x на y, используйте таблицу для поиска угла α , косинус которого равен x , и угла β , косинус которого равен y . Найдите косинусы суммы α + β .а разность α — β . Усредните эти два косинуса. Вы получаете товар xy ! Три просмотра таблиц и вычисление суммы, разницы и среднего, а не одно умножение. Тихо Браге (1546–1601), среди прочих, использовал этот алгоритм, известный как простафаэрез .
Формулы тройного угла.
Вы можете легко восстановить их по формулам сложения и двойного угла.
Еще формулы полууглов.
Они описывают основные триггерные функции в терминах тангенса половины угла. Они используются в исчислении для особого вида подстановки в интегралах, иногда называемого подстановкой Вейерштрасса t .

Тригонометрические тождества и формулы

Ниже приведены некоторые из наиболее важных определений, тождеств и формул в тригонометрии.

  1. Тригонометрические функции острых углов

    sin X = opp / hyp = a / c, csc X = hyp / opp = c / a
    tan X = opp / adj = a / b, cot X = adj / opp = b / a
    cos X = adj / hyp = b / c, sec X = hyp / adj = c / b,

  2. Тригонометрические функции произвольных углов

    sin X = b / r, csc X = r / b
    tan X = b / a, cot X = a / b
    cos X = a / r, sec X = r / a

  3. Специальные треугольники

    Специальные треугольники могут использоваться для нахождения тригонометрических функций специальных углов: 30, 45 и 60 град.

  4. Законы синуса и косинуса в треугольниках

    В любом треугольнике мы имеем:
    1 — Закон синуса
    sin A / a = sin B / b = sin C / c
    2 — Законы косинуса
    a 2 = b 2 + c 2 — 2 bc cos A
    b 2 = a 2 + c 2 — 2 ac cos B
    c 2 = a 2 + b 2 — 2 ab cos C

  5. Взаимосвязи между тригонометрическими функциями

    cscX = 1 / sinX
    sinX = 1 / cscX
    secX = 1 / cosX
    cosX = 1 / secX
    tanX = 1 / cotX
    cotX = 1 / tanX
    tanX = sinX / cosX
    cotX = cosX / sinX

  6. Пифагорейские тождества

    sin 2 X + cos 2 X = 1
    1 + tan 2 X = sec 2 X
    1 + кроватка 2 X = csc 2 X

  7. Отрицательные углы

    sin (-X) = — sinX, нечетная функция
    csc (-X) = — cscX, нечетная функция
    cos (-X) = cosX, четная функция
    sec (-X) = secX, четная функция
    tan (-X) = — tanX, нечетная функция
    cot (-X) = — cotX, нечетная функция

  8. Cofunctions Identities

    sin (π / 2 — X) = cosX
    cos (π / 2 — X) = sinX
    tan (π / 2 — X) = cotX
    cot (π / 2 — X) = tanX
    sec (π / 2 — X) = cscX
    csc (π / 2 — X) = secX

  9. Формулы сложения

    cos (X + Y) = cosX cosy — sinX sinY 9 0054 cos (X — Y) = cosX cosy + sinX sinY
    sin (X + Y) = sinX cosy + cosX sinY
    sin (X — Y) = sinX cosy — cosX sinY
    tan (X + Y) = [tanX + tanY] / [1 — tanX tanY]
    tan (X — Y) = [tanX — tanY] / [1 + tanX tanY]
    кроватка (X + Y) = [cotX cotY — 1] / [cotX + cotY]
    cot (X — Y) = [cotX cotY + 1] / [cotY — cotX]

  10. Сумма в формулы произведения

    cosX + cosy = 2cos [(X + Y) / 2] cos [(X — Y) / 2 ]
    sinX + sinY = 2sin [(X + Y) / 2] cos [(X — Y) / 2]

  11. Разница с формулами продукта

    cosX — cosy = — 2sin [(X + Y) / 2] sin [(X — Y) / 2]
    sinX — sinY = 2cos [(X + Y) / 2] sin [(X — Y) / 2]

  12. Формулы произведения суммы / разности

    cosX cosy = (1 / 2) [cos (X — Y) + cos (X + Y)]
    sinX cosy = (1/2) [sin (X + Y) + sin (X — Y)]
    cosX sinY = (1/2) [sin (X + Y) — sin [(X — Y)]
    sinX sinY = (1/2) [cos (X — Y) — cos (X + Y)]

  13. Формула разности квадратов

    sin 2 X — sin 2 Y = sin (X + Y) sin (X — Y)
    cos 2 X — cos 2 Y = — sin (X + Y) sin (X — Y)
    cos 2 X — sin 2 Y = cos (X + Y) cos (X — Y)

  14. Формулы двойного угла

    sin (2X) = 2 sinX cosX
    cos (2X) = 1-2sin 2 X = 2cos 2 X — 1
    tan (2X) = 2tanX / [1 — tan 2 X]

  15. Формулы множественных углов

    sin (3X) = 3sinX — 4sin 3 X
    cos ( 3X) = 4cos 3 X — 3cosX
    sin (4X) = 4sinXcosX — 8sin 3 XcosX
    cos (4X) = 8cos 4 X — 8cos 2 X + 1

  16. Формулы полуугла

    sin (X / 2) = + или — √ ((1 — cosX) / 2)
    cos (X / 2) = + или — √ ((1 + cosX) / 2)
    tan (X / 2) = + или — √ ((1 — cosX) / (1 + cosX))
    = sinX / (1 + cosX) = (1 — cosX) / sinX

  17. Формулы снижения мощности

    sin 2 X = 1/2 — ( 1/2) cos (2X))
    cos 2 X = 1/2 + (1/2) cos (2X))
    sin 3 X = (3/4) sinX — (1/4) sin (3X)
    cos 3 X = ( 3/4) cosX + (1/4) cos (3X)
    sin 4 X = (3/8) — (1/2) cos (2X) + (1/8) cos (4X)
    cos 4 X = (3/8) + (1/2) cos (2X) + (1/8) cos (4X)
    sin 5 X = (5/8) sinX — (5/16) sin ( 3X) + (1/16) sin (5X)
    cos 5 X = (5/8) cosX + (5/16) cos (3X) + (1/16) cos (5X)
    sin 6 X = 5/16 — (15/32) cos (2X) + (6/32) cos (4X) — (1/32) cos (6X)
    cos 6 X = 5/16 + (15/32 ) cos (2X) + (6/32) cos (4X) + (1/32) cos (6X)

  18. Тригонометрические функции Периодичность

    sin (X + 2π) = sin X, период 2π
    cos (X + 2π ) = cos X, период 2π
    сек (X + 2π) = sec X, период 2π
    csc (X + 2π) = csc X, период 2π
    tan (X + π) = tan X, период π
    cot (X + π) = cot X, период π

  19. Тригонометрические таблицы.
  20. Свойства шести тригонометрических функций. График, область, диапазон, асимптоты (если есть), симметрия, пересечения по осям x и y, а также точки максимума и минимума каждой из 6 тригонометрических функций.

Дополнительная литература и ссылки по тригонометрии

Тригонометрия.
Решите задачи тригонометрии.
Бесплатные вопросы по тригонометрии с ответами. сообщить об этом объявлении

тригонометрических и геометрических преобразований, Sin (A + B), Sin (A

Список всех тригонометрических тождеств (формул)

Коэффициенты суммирования углов

Как показали примеры, иногда нам нужны углы, отличные от 0, 30, 45, 60 и 90 градусов.В этой главе вам нужно узнать две вещи:

1. Sin (A + B) не равно sin A + sin B . Это не похоже на удаление скобок в алгебре.

2. Формула того, чему равен sin (A + B).

Во-первых, чтобы показать, что удаление скобок «не работает». Здесь: сделайте A 30 градусов и B 45 градусов.

Грех 30 равен 0,5. Sin 45 равен 0,7071. Складываем два — 1,2071.

Вы знаете, что ни один синус (или косинус) не может быть больше 1. Почему? знаменателем этого отношения является гипотенуза.Максимум, что может быть в числителе, равно знаменателю. Синус или косинус никогда не могут быть больше 1, поэтому значение 1,2071 должно быть неправильным.

Требуемый синус, косинус или тангенс полного угла (A + B)

В поисках греха (A + B)

Самый простой способ найти sin (A + B) — использовать показанную здесь геометрическую конструкцию. Большой угол (A + B) состоит из двух меньших, A и B. Конструкция (1) показывает, что противоположная сторона состоит из двух частей. Нижняя часть, разделенная линией между углами (2), равна sin A. Линия между двумя углами, разделенная гипотенузой (3), равна cos B. Умножьте два вместе. Средняя линия находится как в числителе, так и в знаменателе, поэтому каждая из них отменяет и оставляет нижнюю часть противоположной точки над гипотенузой (4).

Обратите внимание на маленький прямоугольный треугольник (5). Заштрихованный угол — A, потому что линия на его верхней стороне параллельна базовой линии. Подобные прямоугольные треугольники с углом A показывают, что верхний угол, отмеченный A, также равен исходному A.Верхняя часть противоположной гипотенузы (6) над самым длинным из этого заштрихованного треугольника — это cos A. Противоположная сторона главной гипотенузы (7) — это sin B. Поскольку сторона, отмеченная «противоположная» (7), находится в обоих числителях. и знаменатель при умножении cos A и sin B, cos A sin B — это верхняя часть исходной противоположности — для (A + B) — деленная на главную гипотенузу (8).

Теперь соберите все вместе (9). Sin (A + B) — две противоположные части, разделенные гипотенузой (9).
Помещаем это в его триггерную форму:

sin (A + B) = sin A cos B + cos A sin B

Нахождение cos (A + B)

Очень похожая конструкция находит формулу для косинуса угла, образованного двумя сложенными углами.

Используя ту же конструкцию (1), обратите внимание, что смежная сторона является полной базовой линией (для cos A), с вычтенной частью справа. Каждая часть должна использовать один и тот же знаменатель — гипотенузу треугольника (A + B).

Полная базовая линия, разделенная разделительной линией между углами A и E, равна cos A (2). Эта разделительная линия, разделенная гипотенузой треугольника (A + B), есть cos B (3). Итак, полная базовая линия, деленная на гипотенузу, представляет собой произведение cos A cos B (4).

Теперь о маленькой части, которую нужно вычесть. Заштрихованная часть (5) представляет sin A, который, умноженный на заштрихованную часть (6), равен sin E, что дает другой необходимый вам кусок (7). Вычитание дает cos (A + B) (8), поэтому нам нужна формула:

cos (A + B) = cos A cos B — sin A sin B

В поисках загара (A + B)

Полный геометрический вывод формулы для tan (A + B) сложен. Самый простой способ — вывести его из двух формул, которые вы уже сделали.Для любого угла тангенс равен синусу, деленному на косинус. Используя этот факт, tan (A + B) = sin (A + B) / cos (A + B). Так оно и есть, но вы можете расширить это до:

$ \ tan (A + B) = \ frac {\ sin \ A \ cos \ B + \ cos \ A \ \ sin \ B} {\ cos \ A \ cos \ B — \ sin \ A \ \ sin \ B} $

Разделим верхнюю и нижнюю части на cos A cos B, что превратит все члены в касательные, что даст:

$ \ tan (A + B) = \ frac {\ tan \ A + \ tan \ B} {1 — \ tan \ A \ \ tan \ B} $

Передаточное число для 75 градусов

Покажите соотношения для синуса, косинуса и тангенса, подставив их в формулу суммы, а затем уменьшив результат до его простейшей формы, прежде чем оценивать шумы. После внесения основных замен в каждом случае грубая работа заключается в закрашивании — чтобы показать, как результат приводится к простейшей форме для оценки.

Если вы используете свой карманный калькулятор для оценки, вероятно, не будет никакой разницы, упростите вы сначала выражения или просто пройдетесь по ним! Все зависит от калькулятора: некоторые имеют значение, некоторые — нет!

Углы более 90 градусов

До сих пор учитывались отношения острых углов (от 0 до 90 градусов).Другие треугольники с тупыми углами (более 90 градусов) могут быть более 180 градусов в более поздних задачах. Для упрощения классификации углов по размеру они разделены на квадранты.

Квадрант — это четверть круга. Поскольку круг обычно делится на 360 градусов, квадранты называются сегментами с углом 90 градусов. 0-90 градусов — это 1-й квадрант, 90-180 — 2-й, 180-270 — 3-й и 270-360 — 4-й.

Рисование линиями для представления границ квадранта с 0 или 360 по горизонтали вправо, 90 по вертикали вверх, 180 по горизонтали влево и 270 по вертикали вниз. Теперь воспользуйтесь этим методом для построения графиков.

Постепенно большие углы определяются вращающимся вектором, начинающимся с нуля и вращающимся против часовой стрелки. Горизонтальные элементы — это x: положительный справа, отрицательный слева. Вертикальные элементы — y. положительный вверх, отрицательный вниз. Вращающийся вектор — r. Итак, синус угла равен y / r, косинус x / r и тангенс y / x. Вектор r всегда положителен. Итак, знаком соотношений могут быть цифры для различных квадрантов.

Здесь знаки трех соотношений сведены в таблицу для четырех квадрантов.Также как эквивалентный угол в первом квадранте «переключается», когда вектор переходит от одного квадранта к другому. В первом квадранте стороны были определены в соотношениях для синуса, косинуса и тангенса. По мере того, как вы переходите к большим углам в оставшихся квадрантах, противоположная сторона всегда будет вертикальной (y). То, что называлось смежным, всегда является горизонтальным (x). Гипотенуза — это всегда вращающийся вектор (r). Вы начнете видеть закономерность в изменении этих тригонометрических соотношений углов.

Соотношения в четырех квадрантах

Передаточные числа для разностных углов

Теперь у вас есть два способа получить формулы для разностных углов. Во-первых, используйте геометрическую конструкцию, такую ​​как та, которая использовалась для суммирования углов, изменив ее так, чтобы (A — B) был углом B, вычтенным из угла A.

В рассуждениях, аналогичных тем, которые использовались для вычисления суммы углов, здесь представлены несколько сокращенные формулы синуса и косинуса:

sin (A — B) = sin A cos B — cos A sin B

и

cos (A — B) = cos A cos B + sin A sin B

Геометрическая конструкция

Формулы суммы и разности

Второй метод нахождения формулы для разностных углов использует уже полученную формулу суммы, но делает B отрицательным.Из нашего исследования знаков для различных квадрантов, отрицательные углы от 1-го квадранта будут в 4-м квадранте. Выполнение этой замены дает те же результаты, которые геометрически были получены в предыдущем разделе.

Для нахождения формулы тангенса используется тот же метод, либо путем подстановки в формулы синуса и косинуса, либо, более прямо, делая tan (-B) = — tan B. В любом случае вы получите:

$ \ tan (A — B) = \ frac {\ tan \ A — \ tan \ B} {1 + \ tan \ A \ \ tan \ B} $

Соотношения по четырем квадрантам

Вы можете вывести еще несколько соотношений с помощью формул суммы и разности.Вы уже сделали передаточные числа на 75 градусов. Теперь сделайте это на 15 градусов. Эти формулы дают соотношения для углов с 15-градусным интервалом в четырех квадрантах. Нанося их на полные 360 градусов, вы можете увидеть, как три соотношения меняются, когда вектор проходит через четыре квадранта.

И синус, и косинус «колеблются» вверх и вниз между +1 и -1. Обратите внимание, что «волны» смещены на 90 градусов одна относительно другой. Этот факт станет важным позже.

Касательная начинается как синусоида, но быстро поднимается вверх, достигая бесконечности под углом 90 градусов.Выходя за пределы шкалы в положительном направлении, он «появляется» из отрицательного направления по другую сторону 90 градусов. Проходя через точку 180 градусов, касательная кривая дублирует то, что она делает, проходя через 0 или 360 (в зависимости от того, как вы ее видите). При 270 градусах он повторяет то же самое, что и при 90 градусах.

Пифагор в тригонометрии

Формулу часто можно упростить, как это было обнаружено путем получения касательных формул из формул синуса и косинуса и изменения ее с членов, использующих одно отношение, на члены, использующие другое отношение.При этом очень удобна теорема Пифагора, выраженная в тригонометрических соотношениях.

Предположим, что в прямоугольном треугольнике длина гипотенузы равна 1 единице. Тогда одна из других сторон будет иметь длину sin A, а другая — cos A. Из этого теорема Пифагора показывает, что: cos 2 A + sin 2 A = 1. Это утверждение всегда верно, поскольку любое значение A.

Немного о том, как это написано. Cos 2 A означает (cos A) 2 .Если бы вы написали это cos A 2 , уравнение означало бы нечто иное. A — это число в некоторых угловых обозначениях, обозначающее угол. 2 будет тем же числом в квадрате. Его значение будет зависеть от используемой угловой записи, поэтому это не лучший термин для использования. Имеется в виду синус или косинус угла в квадрате, а не сам угол.

Формулу Пифагора можно транспонировать. Например, две другие формы:
cos 2 A = 1 — sin 2 A и sin 2 = 1 — cos 2 A.

Несколько углов

Формулы суммы, наряду с теоремой Пифагора, используются для углов, которые равны 2, 3 или более точному кратному любому исходному углу. Приведите формулы для 2A и 3A. Тот же метод используется далее в частях 3 и 4 этой книги.

Формула суммы работает независимо от того, одинаковы ли оба угла или разные: sin (A + B) или sin (A + A). Однако грех (А + А) на самом деле грех 2А. Итак, sin 2A — это sin A cos A + cos A sin A. Они оба являются одним и тем же произведением в противоположном порядке, поэтому это утверждение можно упростить до sin 2A = 2 sin A cos A.2 австралийских доллара

Теперь тройной угол (3A) используется только для того, чтобы показать, как получаются дальнейшие кратные.

По сути, это так же просто, как написать 3A = 2A + A и повторно применить формулы суммы. Но затем, чтобы получить результирующую формулу в работоспособной форме, вам нужно заменить часть 2A, чтобы получить все в терминах соотношений для простого угла A.

Пройдите по трем показанным здесь производным. Вы можете видеть, что при 4 А и более все усложняется (в частях 3 и 4 этой книги).

НЕСКОЛЬКИХ УГЛОВ, полученных из формул суммы

НЕСКОЛЬКО УГЛОВ для 3A

Свойства равнобедренного треугольника

Вы уже видели, что прямоугольный треугольник — полезный строительный блок для других форм. Равнобедренный треугольник используется несколько иначе. Но факт, на котором основано это использование, состоит в том, что равнобедренный треугольник имеет две равные стороны и два равных угла напротив этих двух сторон. Перпендикуляр от третьего угла (не одного из равных) к третьей стороне (не одной из равных) делит эту третью сторону пополам.То есть он делит его на две равные части, превращая весь треугольник в зеркальные прямоугольные треугольники.

С равнобедренными треугольниками любой треугольник, кроме прямоугольного, можно разделить на три смежных равнобедренных треугольника, разделив каждую сторону на две равные части и воздвигнув перпендикуляры из точек деления пополам. Там, где встречаются любые два из этих пополам перпендикуляров, если линии проводят к углам исходного треугольника, эти три линии должны быть равны, потому что две из них образуют стороны равнобедренного треугольника.Итак, перпендикуляр с третьей стороны исходного треугольника также должен пересекаться в той же точке.

Это утверждение верно, как мы показываем здесь, независимо от того, является ли исходный треугольник острым или тупым. Разница с треугольником с тупым углом заключается в том, что точка встречи находится за пределами исходного треугольника, а не внутри.

Что делает прямоугольный треугольник? Перпендикуляры от середины гипотенузы к двум другим сторонам разделят эти две стороны пополам — вы получите две из трех! Точка встречи находится на гипотенузе.

Углы по окружности

Основное свойство круга — то, что его центр находится на равном расстоянии от каждой точки на его окружности. Это равное расстояние и есть радиус круга.

Если вы нарисуете какой-либо треугольник внутри круга, перпендикуляры из средних точек его стороны встретятся в центре круга, а радиусы углов треугольника разделят его на три равнобедренных треугольника.

Теперь, если вы назовете равные пары углов в каждом равнобедренном треугольнике, A, A, B, B, C, C, вы обнаружите, что исходный треугольник имеет один угол A + B, один угол B + C и один угол A. + С.Сумма трех углов составляет 2A + 2B + 2C. Это, знаете ли, в сумме составляет 180 градусов.

В любом равнобедренном треугольнике угол при вершине равен 180 градусам минус удвоенный угол основания. Из-за факта, выведенного в предыдущем абзаце, например, 180 — 2A должно быть таким же, как 2B + 2C.

Рассмотрим углы, противоположные той части круга, против которой сидит верхняя левая сторона треугольника. Угол в центре равен 2B + 2C, как только что было вычислено. Угол на окружности B + C.»Вы обнаружите, что для любого сегмента круга угол в центре всегда в два раза больше угла на окружности.

Приведенное выше доказательство приводит к интересному факту об углах в окружностях. Вместо того, чтобы определять углы со стороной треугольника, используйте дугу (часть окружности) круга. Важен угол, соответствующий дуге в центре. Часть окружности круга, которая определяется углом в центре, называется хордой круга.

Угол в центре в два раза больше угла на окружности

Любой угол, касающийся окружности с использованием этой хорды в качестве завершения линий, ограничивающих угол, должен составлять лишь половину угла в центре. Таким образом, все углы в окружности, основанной на одной и той же хорде, должны быть равны. Предположим, что хорда имеет угол 120 градусов. Углы на окружности будут ровно 60 градусов.

Частный случай — полукруг (точный полукруг).Угол в центре представляет собой прямую линию (180 градусов). Каждый угол на окружности полукруга составляет ровно 90 градусов (прямой угол). Любой треугольник в полукруге — это прямоугольный треугольник.

Определения

Выше мы часто использовали углы, которые в сумме составляют либо прямой угол (90 градусов), либо два прямых угла (180 градусов). Когда два угла в сумме составляют 180 градусов (два прямых угла), они называются дополнительными . Когда два угла в сумме составляют 90 градусов (один прямой угол), они называются дополнительными .

Вопросы и проблемы

1. Синус угла A равен 0,8, а синус угла B равен 0,6. Из различных соотношений, полученных на данный момент, найдите следующее: tan A, tan B, sin (A + B), cos (A + B), sin (A — B), cos (A — B), tan (A + B) и tan (A — B), без использования таблиц или кнопок калькулятора.

2. На экваторе Земля имеет радиус 4000 миль. Углы вокруг экватора измеряются в меридианах долготы с линией с севера на юг через Гринвич, Англия, в качестве нулевой точки отсчета.Два места используются для наблюдения за луной: одно — гора. Кения, на экваторе в 37,5 км к востоку от Гринвича; другая — Суматра, на экваторе, в 100,5 м восточной долготы. Насколько далеко друг от друга находятся эти два места, если измерять их воображаемой прямой линией, проходящей через Землю?

3. Если визирование производилось горизонтально из точек наблюдения, упомянутых в вопросе 2 (на восток от первой, на запад от второй), под каким углом пересекались бы линии обзора?

4. В определенное время, точно синхронизированное в обоих местах, наблюдается спутник.В Кении угол обзора спутника с центром на 58 градусов выше горизонтали в восточном направлении. На Суматре высота 58 градусов над горизонтом в западном направлении. Как далеко находится спутник? Используйте расстояние между точками, вычисленное в вопросе 2.

5. Косинус определенного угла ровно в два раза больше синуса того же угла. Каков тангенс этого угла? Для этого вопроса не нужны ни таблицы, ни калькулятор.

6. Синус определенного угла равен нулю.28. Найдите косинус и тангенс без таблиц или триггерных функций на вашем калькуляторе.

7. Синус определенного угла равен 0,6. Найдите синус двойного этого угла и тройного этого угла.

8. Найдите синус и косинус угла, ровно вдвое больше, чем в вопросе 7.

9. Используя 15 градусов в качестве единицы угла и формулы для соотношений 2A и?> A, найдите значения синусов 30 и 45 градусов.

10. Используя 30 градусов в качестве единицы угла, найдите значения для синусов 60 и 90 градусов.

11. Используя 45 градусов как единичный угол, найдите значения для касательных 90 и 135 градусов.

12. Используя 60 градусов в качестве единицы угла, найдите значения косинусов 120 и 180 градусов.

13. Используя 90 градусов как единицу угла, найдите значения косинусов 180 и 270 градусов.

14. Используя формулы касательных для нескольких углов и таблицы, найдите касательные для трех, умноженных на 29, 31, 59 и 61 градус. Учтите изменения знака между 29 и 31 градусом и между 59 и 61 градусом.

15. Синус угла 0,96. Найдите синус и косинус для удвоенного угла.

16. Задача приводит к алгебраическому выражению в форме 8cos 2 A + cos A = 3. Решите для cos A и укажите, в каком квадранте будет угол, представляющий каждое решение. Приведите приблизительные значения из таблиц или вашего калькулятора.

Тригонометрия
Тригонометрические тождества (формулы)

Функции синуса и косинуса

Синус и косинус: свойства

Функция синуса имеет ряд свойств, которые
результат из-за того, что это периодический и нечетный .Функция косинуса имеет ряд свойств, которые
в результате периодический и даже .
Читателю не следует запоминать большинство следующих уравнений; пока что,
читатель должен иметь возможность мгновенно вывести их
от понимания характеристик функции.

Функции синуса и косинуса периодические
с периодом 2р. Это означает, что

sin (q) = sin (q + 2p)

cos (q) = cos (q + 2p)

или, в более общем смысле,

sin (q) = sin (q + 2pk)

cos (q) = cos (q + 2pk),

где k Î целые числа.

Функция синуса — нечетное ; следовательно,

sin (-q) = -sin (q)

Функция косинуса равна даже ; следовательно,

cos (-q) = cos (q)

Формула:

sin (x + y) = sin (x) cos (y) + cos (x) sin (y)

Тогда легко вывести , что

sin (x — y) = sin (x) cos (y) — cos (x) sin (y)

Или, в более общем смысле,

sin (x y) = sin (x) cos (y) cos (x) sin (y)

cos (x + y) = cos (x) cos (y) — sin (x) sin (y)

Тогда легко вывести , что

cos (x — y) = cos (x) cos (y) + sin (x) sin (y)

Или, в более общем смысле,

cos (x y) = cos (x) cos (y) (- / +) sin (x) sin (y)

Из приведенного выше синусоидального уравнения мы можем вывести, что

sin (2x) = 2sin (x) cos (x)

Из приведенного выше уравнения косинуса мы можем вывести, что

cos (2x) = cos 2 (x) — sin 2 (x)

(Обозначение sin 2 (x) эквивалентно (sin (x)) 2 . Предупреждение: sin -1 (x) означает arcsin (x), а не мультипликативный обратный
греха (х).)

Наблюдая за графиками синуса и косинуса, мы можем выразить
функция синуса через косинус и наоборот:

sin (x) = cos (90 ° — x)

и функция косинуса через синус:

cos (x) = sin (90 ° — x)

Такая триггерная функция (f), обладающая свойством

f (q) = g (дополнение (q))

называется c-функцией функции g,
отсюда и названия «синус» и « co sine».»

Пифагорейская идентичность,
sin 2 (x) + cos 2 (x) = 1,
дает альтернативное выражение
для синуса через косинус и наоборот

sin 2 (x) = 1 — cos 2 (x)

cos 2 (x) = 1 — sin 2 (x)

Закон синуса связывает различные стороны и углы
произвольного (не обязательно прямого) треугольника:

sin (A) / a = sin (B) / b = sin (C) / c = 2r.

где A, B и C — углы, противоположные сторонам a, b и
c соответственно. Кроме того, r — радиус
круг, описанный в этом треугольнике.

Закон косинусов связывает все три стороны и один из углов
произвольного (не обязательно прямого) треугольника:

c 2 = a 2 + b 2 — 2ab cos (C).

где A, B и C — углы, противоположные сторонам a, b и
c соответственно. Его можно рассматривать как обобщенную форму
теоремы Пифагора. Предупреждение : будьте осторожны
при решении для одной из сторон, смежных с интересующим углом,
ибо часто будет два треугольника, удовлетворяющих данным условиям.
Это можно понять из геометрии. Треугольник, определяемый
SAS (сторона-угол-сторона) уникален, поэтому любой треугольник с
ему должны соответствовать одни и те же параметры SAS. Определен треугольник
по SSA, однако, не всегда уникален, и два треугольника с
одни и те же параметры SSA могут совпадать, а могут и не совпадать.

4.Формулы полуугловых

М. Борна

Мы разработаем формулы для синуса, косинуса и тангенса половинного угла. 2 (α / 2) = (1 — cos α) / 2`

Решение дает нам следующий синус для тождества полуугла :

`sin (alpha / 2) = + — sqrt ((1-cos alpha) / 2`

Знак (положительный или отрицательный) sin (alpha / 2) зависит от квадранта.
в котором лежит `α / 2`.

Если α / 2 находится в первом или втором квадранте , в формуле используется положительный случай:

`sin (alpha / 2) = sqrt (1-cos alpha) / 2`

Если α / 2 находится в третьем или четвертом квадранте , формула использует отрицательный регистр:

`sin (alpha / 2) = — sqrt (1-cos alpha) / 2`

Формула полуугла — косинус

Используя аналогичный процесс, с той же заменой theta = alpha / 2 (таким образом, 2 θ = α ) мы подставляем в
личность

cos 2 θ = 2cos 2 θ — 1 (см. 2 (альфа / 2) = (1 + cos alpha) / 2`

Решая относительно cos (α / 2), получаем:

`cos (альфа / 2) = + — sqrt ((1 + cos alpha) / 2`

Как и раньше, нужный нам знак зависит от квадранта.

Если α / 2 находится в первом или четвертом квадранте , формула использует положительный случай:

`cos (альфа / 2) = sqrt ((1 + cos alpha) / 2`

Если α / 2 находится в втором или третьем квадранте , в формуле используется отрицательный регистр:

`cos (альфа / 2) = — sqrt ((1 + cos alpha) / 2`

Формула полуугла — касательная

Тангенс половины угла определяется по формуле:

`tan (alpha / 2) = (1-cos alpha) / (sin alpha)`

Проба

Сначала напомним `tan x = (sin x) / (cos x)`.2а)) `

Затем находим квадратный корень:

`= (1-cos a) / (sin a)`

Конечно, нам придется делать поправку на положительные и отрицательные знаки, в зависимости от рассматриваемого квадранта. @`, используя приведенное выше соотношение половинного угла синуса.(текст (o))) / 2) `

`= + — sqrt (((1 + 0.866)) / 2)`

`= 0,9659`

Первый квадрант, значит, положительный.

2. Найдите значение sin (alpha / 2), если cos alpha = 12/13, где 0 ° < α <90 °.

Ответ

`sin (альфа / 2) = + — sqrt ((1-cos alpha) / 2)`

`= sqrt ((1-12 / 13) / 2)`

`= sqrt ((1/13) / 2)`

`= sqrt (1/26)`

`= 0,1961`

Мы выбираем позитив, потому что находимся в первом квадранте.2сек \ theta`

`= (1 + cos theta) sec \ theta`

`= (1 + cos theta) 1 / (cos theta)`

`= сек \ тета + 1`

`=» RHS «`

тригонометрических идентичностей. Темы по тригонометрии.

Темы | Дом

20

Взаимные идентичности

Тангенс и котангенс

Пифагорейские тождества

Формулы суммы и разности

Формулы двойного угла

Формулы полууглов

Произведений суммой

Суммы как произведения

ИДЕНТИЧНОСТЬ — ЭТО РАВЕНСТВО, которое истинно для любого значения переменной. (Уравнение — это равенство, справедливое только для определенных значений переменной.)

В алгебре, например, это тождество:

( x + 5) ( x — 5) = x 2 — 25.

Значение идентичности состоит в том, что при вычислении мы можем заменить любой член другим. Мы используем идентичность, чтобы придать выражению более удобную форму. В исчислении и во всех его приложениях центральное значение имеют тригонометрические тождества.

На этой странице мы представим основные личности. У студента не будет лучшего способа практиковать алгебру, чем доказывать их. Ссылки на доказательства приведены ниже.

Взаимные идентичности

sin θ = 1
csc θ
csc θ = 1
sin θ
cos θ = 1
сек θ
сек θ = 1
cos θ
tan θ = 1
детская кроватка θ
детская кроватка θ = 1
тангенс угла θ

Проба

Опять же, при вычислении мы можем заменить любой член идентичности другим. Итак, если мы видим «sin θ», то можем, если захотим, заменить

»

это с « 1
csc θ
«; и симметрично, если мы видим» 1
csc θ
«,

, тогда мы можем заменить его на «sin θ».

Проблема 1. Что означает утверждение, что csc θ является обратной величиной
sin θ?

Чтобы увидеть ответ, наведите указатель мыши на цветную область.
Чтобы закрыть ответ еще раз, нажмите «Обновить» («Reload»).

Это означает, что их продукт 1.

sin θ csc θ = 1.

Урок 5 алгебры.

Проблема 2. Оценить

tan 30 ° csc 30 ° cot 30 °.

загар 30 ° csc 30 ° cot 30 ° = tan 30 ° cot 30 ° csc 30 °
= 1 · csc 30 °
= 2.

Тема 4.

Тангенс и котангенс

тангенс угла θ = sin θ
cos θ
детская кроватка θ = cos θ
sin θ

Проба

Пример 1. Покажите: tan θ cos θ = sin θ.

Решение: Проблема означает, что мы должны написать левую часть, а затем показать с помощью подстановок и алгебры, что мы можем преобразовать ее так, чтобы она выглядела как правая часть.

Начинаем:

Мы подошли к правой стороне.

Пифагорейские тождества

а) sin 2 θ + cos 2 θ = 1.
б) 1 + загар 2 θ = сек 2 θ
в) 1 + детская кроватка 2 θ = csc 2 θ
a ) sin 2 θ = 1 — cos 2 θ.
cos 2 θ = 1 — sin 2 θ.

Они называются тождествами Пифагора, потому что, как мы увидим в их доказательстве, они являются тригонометрической версией теоремы Пифагора.

Два идентификатора, помеченные как ) — «а-простое число» — просто разные версии а).Первый показывает, как мы можем выразить sin θ через cos θ; второй показывает, как мы можем выразить cos θ через sin θ.

Примечание: sin 2 θ — «синус-квадрат тета» — означает (sin θ) 2 .

Задача 3. Треугольник 3-4-5 прямоугольный.

а) Почему?

Чтобы увидеть ответ, наведите указатель мыши на цветную область.
Чтобы закрыть ответ еще раз, нажмите «Обновить» («Reload»).

Он удовлетворяет теореме Пифагора.

б) Оцените следующее:

sin 2 θ = 16
25
cos 2 θ = 9
25
sin 2 θ + cos 2 θ = 1.

Пример 2. Показать:

Это то, что мы хотели показать.

Формулы суммы и разности

sin (α + β) = sin α cos β + cos α sin β
sin (α — β) = sin α cos β — cos α sin β
cos (α + β) = cos α cos β — sin α sin β
cos (α — β) = cos α cos β + sin α sin β

Примечание: В формулах синуса + или — слева также + или — справа.Но в формулах косинуса + слева становится — справа; наоборот.

Поскольку эти тождества доказываются непосредственно из геометрии, от студента обычно не требуется усваивать доказательство. Однако все последующие тождества основаны на этих формулах суммы и разности. Студент обязательно должен их знать.

Вот доказательство формул суммы.

Пример 3. Оценить sin 15 °.

Решение. sin 15 °
Формулы
Темы 4 и 5

Пример 4.Доказательство:

Это то, что мы хотели доказать.

Формулы двойного угла

Проба

Существует три версии cos 2α. Первый касается как

cos α и sin α. Второй — только по cos α. Третий — только с точки зрения sin α

Пример 5. Показать: sin 2α

Это то, что мы хотели доказать.

Пример 6. Показать:
Решение. грех x

— согласно предыдущему тождеству с α =.

Формулы полууглов

Следующие ниже формулы половинного угла являются инверсией формул двойного угла, поскольку α равно половине 2α.

Знак плюс или минус зависит от квадранта. Под корнем косинус имеет знак +; синус, знак -.

Проба

Пример 7. Вычислить cos π
8
.
Пример 8. Вывести идентификатор для tan α
2
.

при делении числителя и знаменателя на cos α.

Произведений суммой

а) sin α cos β = ½ [грех (α + β) + грех (α — β)]
б) cos α sin β = ½ [sin (α + β) — sin (α — β)]
в) cos α cos β = ½ [cos (α + β) + cos (α — β)]
г) sin α sin β = −½ [cos (α + β) — cos (α — β)]

Проба

Суммы как произведения

д) sin A + sin B = 2 sin ½ ( A + B ) cos ½ ( A B )
е) sin A — sin B = 2 sin ½ ( A B ) cos ½ ( A + B )
г) cos A + cos B = 2 cos ½ ( A + B ) cos ½ ( A B )
ч) cos A — cos B = −2 sin ½ ( A + B ) sin ½ ( A B )

В доказательствах ученик увидит, что тождества с e) по h) являются обращениями от a) до d) соответственно, которые доказываются в первую очередь.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *