Что больше пикофарад или микрофарад: The page cannot be found

Содержание

Фарады, микрофарады, нанофарады и пикофарады: измерение электрической емкости

Среди разных электрических параметров, которые необходимо измерять при наладке электросхем, есть электрическая ёмкость.

Конденсаторы

Важно! Электрическая ёмкость конденсаторов и проводов не имеет ничего общего с электрохимической ёмкостью батарей и аккумуляторов.

В каких единицах измеряется ёмкость

Электрическая ёмкость – это способность тел накапливать заряд. Таким свойством обладают кабеля, конденсаторы и другие элементы электросетей и схем. Она есть также у отдельно расположенных (находящихся далеко от других тел) проводников и измеряется в фарадах. Своё название эта единица получила по имени физика Майкла Фарадея.

1 фарад – это большая величина. Такую ёмкость имеет металлический шар в 13 раз больше Солнца. Шар размером в Землю имеет всего 710 микрофарад.

Обычно, говоря о том, что измеряется в фарадах, имеют в виду конденсатор. На элементах до 9999 пикофарад она указывается просто цифрами, без обозначения единиц измерения. С 9999 пикофарад до 9999 микрофарад кроме числа наносится обозначение единицы измерения: мкФ или uF.

Кроме пикофарад и микрофарад, ёмкость измеряется также в нанофарадах (nF). 1 микрофарад равен 1000 нанофарад. Соответственно, 0.1 uF равен 100 nF.

Кроме главного параметра, на корпусе элементов отмечается допустимое отклонение реальной ёмкости от указанной и напряжение, на которое рассчитано устройство. При его превышении прибор может выйти из строя.

Измерение электрической ёмкости

Основное свойство конденсаторов – они не пропускают постоянный ток, а сопротивление переменному току тем меньше, чем выше его частота. Поэтому измерение элемента сводится к измерению его сопротивления на определённой частоте и вычислению её по соответствующей формуле.

На практике это делается специальными приборами или мультиметром, в котором есть эта функция.

Измерение электрической ёмкости

Применение конденсаторов

Конденсаторы применяются во всех областях электротехники и в электронных устройствах любой сложности:

  • Вместе с катушками индуктивности или активными сопротивлениями входят в конструкцию фильтров определённой заранее заданной или меняющейся частоты, а также колебательных контурах и генераторах. Такие фильтры используются в радиоприёмниках, цветомузыкальных установках и других устройствах;
  • В блоках питания и выпрямителях сглаживают пульсации постоянного тока после диодного моста. Используются электролитические конденсаторы от нескольких до тысяч микрофарад;
  • Отдают свой заряд быстро, в результате чего образуется кратковременный импульс большой мощности. Это свойство используется в фотовспышках, электрошокерах, импульсных лазерах и многих других;
  • Конденсатор обладает реактивным сопротивлением и практически не греется во время работы. Это позволяет использовать его в качестве токоограничивающего сопротивления в блоках питания малой мощности;
  • При работе электродвигателей, трансформаторов и других индуктивных нагрузок, кроме активной, происходит потребление реактивной (индуктивной) мощности. Для её компенсации и снижения потребления электроэнергии параллельно вводным автоматам включаются конденсаторы;
  • Измерение перемещений на малые расстояния и влажности. Параметры устройства очень сильно зависят от расстояния между электродами и влажности диэлектрика между ними;
  • Фазосдвигающие устройства. Применяются для запуска электродвигателей от однофазной сети переменного тока, как однофазных, так и трёхфазных;
  • Заряд и разряд через сопротивление продолжается некоторое время, в течение которого напряжение меняется по экспоненциальному закону. Это позволяет, используя R-C-цепочки или генератор тока, реализовать схемы с задержкой времени на включение или отключение исполнительного механизма, а также генератор импульсов и другие схемы.

R-C-цепочки

Электрическая ёмкость – важная величина, без измерения которой невозможны электроника и электротехника.

Видео

Оцените статью:

Конденсатор 22n какая это емкость

Конденсатор можно сравнить с небольшим аккумулятором, он умеет быстро накапливать электрическую энергию и так же быстро ее отдавать. Основной параметр конденсатора – это его емкость (C). Важным свойством конденсатора, является то, что он оказывает переменному току сопротивление, чем больше частота переменного тока, тем меньше сопротивление. Постоянный ток конденсатор не пропускает.

Как и резисторы, конденсаторы бывают постоянной емкости и переменной емкости. Применение конденсаторы находят в колебательных контурах, различных фильтрах, для разделения цепей постоянного и переменного токов и в качестве блокировочных элементов.

Основная единица измерения емкости – фарад (Ф) – это очень большая величина, которая на практике не применяется. В электронике используют конденсаторы емкостью от долей пикофарада (пФ) до десятков тысяч микрофарад (мкФ). 1 мкФ равен одной миллионной доле фарада, а 1 пФ – одной миллионной доле микрофарада.

Обозначение конденсатора на схеме

На электрических принципиальных схемах конденсатор отображается в виде двух параллельных линий символизирующих его основные части: две обкладки и диэлектрик между ними. Возле обозначения конденсатора обычно указывают его номинальную емкость, а иногда его номинальное напряжение.

Номинальное напряжение – значение напряжения указанное на корпусе конденсатора, при котором гарантируется нормальная работа в течение всего срока службы конденсатора. Если напряжение в цепи будет превышать номинальное напряжение конденсатора, то он быстро выйдет из строя, может даже взорваться. Рекомендуется ставить конденсаторы с запасом по напряжению, например: в цепи напряжение 9 вольт – нужно ставить конденсатор с номинальным напряжением 16 вольт или больше.

Электролитические конденсаторы

Для работы в диапазоне звуковых частот, а так же для фильтрации выпрямленных напряжений питания, необходимы конденсаторы большой емкости. Называются такие конденсаторы – электролитическими. В отличие от других типов электролитические конденсаторы полярны, это значит, что их можно включать только в цепи постоянного или пульсирующего напряжения и только в той полярности, которая указана на корпусе конденсатора. Не выполнение этого условия приводит к выходу конденсатора из строя, что часто сопровождается взрывом.

Температурный коэффициент емкости конденсатора (ТКЕ)

ТКЕ показывает относительное изменение емкости при изменении температуры на один градус. ТКЕ может быть положительным и отрицательным. По значению и знаку этого параметра конденсаторы разделяются на группы, которым присвоены соответствующие буквенные обозначения на корпусе.

Маркировка конденсаторов

Емкость от 0 до 9999 пФ может быть указана без обозначения единицы измерения:

22 = 22p = 22П = 22пФ

Если емкость меньше 10пФ, то обозначение может быть таким:

Так же конденсаторы маркируют в нанофарадах (нФ), 1 нанофарад равен 1000пФ и микрофарадах (мкФ):

10n = 10Н = 10нФ = 0,01мкФ = 10000пФ

Н18 = 0,18нФ = 180пФ

1n0 = 1Н0 = 1нФ = 1000пФ

330Н = 330n = М33 = m33 = 330нФ = 0,33мкФ = 330000пФ

100Н = 100n = М10 = m10 = 100нФ = 0,1мкФ = 100000пФ

1Н5 = 1n5 = 1,5нФ = 1500пФ

4n7 = 4Н7 = 0,0047мкФ = 4700пФ

Цифровая маркировка конденсаторов

Если код трехзначный, то первые две цифры обозначают значение, третья – количество нулей, результат в пикофарадах.

Например: код 104, к первым двум цифрам приписываем четыре нуля, получаем 100000пФ = 100нФ = 0,1мкФ.

Если код четырехзначный, то первые три цифры обозначают значение, четвертая – количество нулей, результат тоже в пикофарадах.

4722 = 47200пФ = 47,2нФ

Параллельное соединение конденсаторов

Емкость конденсаторов при параллельном соединении складывается.

Последовательное соединение конденсаторов

Общая емкость конденсаторов при последовательном соединении рассчитывается по формуле:

Если последовательно соединены два конденсатора:

Если последовательно соединены два одинаковых конденсатора, то общая емкость равна половине емкости одного из них.

1. Маркировка тремя цифрами.

В этом случае первые две цифры определяют мантиссу, а последняя — показатель степени по основанию 10, для получения номинала в пикофарадах. Последняя цифра «9» обозначает показатель степени «-1». Если первая цифра «0», то емкость менее 1пФ (010 = 1. 0пФ).

код пикофарады, пФ, pF нанофарады, нФ, nF микрофарады, мкФ, μF
109 1.0 пФ
159 1.5 пФ
229 2.2 пФ
339 3.3 пФ
479 4.7 пФ
689 6.8 пФ
100 10 пФ 0.01 нФ
150 15 пФ 0.015 нФ
220 22 пФ 0.022 нФ
330 33 пФ 0.033 нФ
470 47 пФ 0.047 нФ
680 68 пФ 0.068 нФ
101 100 пФ 0.1 нФ
151 150 пФ 0. 15 нФ
221 220 пФ 0.22 нФ
331 330 пФ 0.33 нФ
471 470 пФ 0.47 нФ
681 680 пФ 0.68 нФ
102 1000 пФ 1 нФ
152 1500 пФ 1.5 нФ
222 2200 пФ 2.2 нФ
332 3300 пФ 3.3 нФ
472 4700 пФ 4.7 нФ
682 6800 пФ 6.8 нФ
103 10000 пФ 10 нФ 0.01 мкФ
153 15000 пФ 15 нФ 0.015 мкФ
223 22000 пФ 22 нФ 0. 022 мкФ
333 33000 пФ 33 нФ 0.033 мкФ
473 47000 пФ 47 нФ 0.047 мкФ
683 68000 пФ 68 нФ 0.068 мкФ
104 100000 пФ 100 нФ 0.1 мкФ
154 150000 пФ 150 нФ 0.15 мкФ
224 220000 пФ 220 нФ 0.22 мкФ
334 330000 пФ 330 нФ 0.33 мкФ
474 470000 пФ 470 нФ 0.47 мкФ
684 680000 пФ 680 нФ 0.68 мкФ
105 1000000 пФ 1000 нФ 1 мкФ

2. Маркировка четырьмя цифрами.

Эта маркировка аналогична описанной выше, но в этом случае первые три цифры определяют мантиссу, а последняя — показатель степени по основанию 10, для получения емкости в пикофарадах. Например:

1622 = 162*10 2 пФ = 16200 пФ = 16.2 нФ.

3. Буквенно-цифровая маркировка.

При такой маркировке буква указывает на десятичную запятую и обозначение (мкФ, нФ, пФ), а цифры — на значение емкости:

15п = 15 пФ , 22p = 22 пФ , 2н2 = 2.2 нФ , 4n7 = 4,7 нФ , μ33 = 0.33 мкФ

Очень часто бывает трудно отличить русскую букву «п» от английской «n».

Иногда для обозначения десятичной точки используется буква R. Обычно так маркируют емкости в микрофарадах, но если перед буквой R стоит ноль, то это пикофарады, например:

0R5 = 0,5 пФ , R47 = 0,47 мкФ , 6R8 = 6,8 мкФ

4. Планарные керамические конденсаторы.

Керамические SMD конденсаторы обычно или вообще никак не маркируются кроме цвета (цветовую маркировку не знаю, если кто расскажет — буду рад, знаю только, что чем светлее — тем меньше емкость) или маркируются одной или двумя буквами и цифрой. Первая буква, если она есть обозначает производителя, вторая буква обозначает мантиссу в соответствии с приведенной ниже таблицей, цифра — показатель степени по основанию 10, для получения емкости в пикофарадах. Пример:

N1 /по таблице определяем мантиссу: N=3.3/ = 3.3*10 1 пФ = 33пФ

S3 /по таблице S=4.7/ = 4.7*10 3 пФ = 4700пФ = 4,7нФ

маркировка значение маркировка значение маркировка значение маркировка значение
A 1.0 J 2.2 S 4.7 a 2.5
B 1.1 K 2.4 T 5.1 b 3.5
C 1.2 L 2.7 U 5. 6 d 4.0
D 1.3 M 3.0 V 6.2 e 4.5
E 1.5 N 3.3 W 6.8 f 5.0
F 1.6 P 3.6 X 7.5 m 6.0
G 1.8 Q 3.9 Y 8.2 n 7.0
H 2.0 R 4.3 Z 9.1 t 8.0

5. Планарные электролитические конденсаторы.

Электролитические SMD конденсаторы маркируются двумя способами:

1) Емкостью в микрофарадах и рабочим напряжением, например: 10 6. 3V = 10мкФ на 6,3В.

2) Буква и три цифры, при этом буква указывает на рабочее напряжение в соответствии с приведенной ниже таблицей, первые две цифры определяют мантиссу, последняя цифра — показатель степени по основанию 10, для получения емкости в пикофарадах. Полоска на таких конденсаторах указывает положительный вывод. Пример:

, по таблице «A» — напряжение 10В, 105 — это 10*10 5 пФ = 1 мкФ, т.е. это конденсатор 1 мкФ на 10В

Огромное разнообразие конденсаторов позволяет использовать их практически в любой схеме. Для правильного подбора параметров электрической сети необходимо четко владеть знаниями маркировки конденсаторов, которые имеют ключевое значение. Сложность возникает из-за того, что она разнится в большом количестве случаев – на нее влияет производитель, страна-экспортер, вид и параметры самого конденсатора, и даже его размеры.

В данной статье рассмотрим основные параметры конденсаторов, которые влияют на их маркировку, а также научимся правильно читать значения, нанесенные производителем даже на самые крохотные изделия.

Параметры конденсаторов

Эти устройства предназначены для накопления электрического заряда. Емкость измеряется в специальных единицах, именуемых фарадами (Ф, или F). Однако 1 фарад – колоссальная величина, которая не используется в радиотехнике. Для конденсаторов применяется микрофарад (мкФ, µF) – фарад, разделенный на миллион. Единица обозначается как мкФ практически на всех типах конденсаторов. В теоретических расчетах иногда можно увидеть миллифарад (мФ, mF), что равняется фараду, деленному на тысячу. В маленьких конденсаторах применяется нанофарад (нФ, nF) и пикофарад (пФ, pF), что соответственно равняется 10 -9 и 10 -12 фарад. Это обозначение очень важно, так как используется в маркировке либо напрямую, либо с помощью заменяемых значений.

Типы маркировок

На данный момент производителями используется несколько типов, которые могут располагаться на корпусе как по отдельности, так и взаимозаменяемыми значениями. Все значения ниже будут исключительно теоретическими, предоставленными для наглядного примера.

  • Самый простой тип маркировки – никаких шифров и табличных замещений, емкость напрямую пишется на корпусе, что без лишних движений сразу предоставляет конечному пользователю реальные параметры. И такой способ использовался бы везде, если бы не его громоздкость – полностью написать емкость получится только на довольно больших изделиях, иначе рассмотреть надпись будет невозможно даже с помощью лупы. Например: запись 100 µF±6% означает, что данный конденсатор имеет емкость 100 микрофарад с амортизацией в 6% от общей емкости, что равно значению 94–106 микрофарад. Также допускается использование маркировки вида 100 µF +8%/-10%, что означает неравнозначную амортизацию, равную 90–108 микрофарад. Это самый простой и понятный способ, однако такая маркировка очень громоздкая, поэтому применяется на больших и очень емких конденсаторах.
  • Цифровая маркировка конденсаторов (а также численно-буквенная) используется в тех случаях, когда маленькая площадь изделия не позволяет поместить подробную запись о емкости. Поэтому определенные значения заменяются обычными цифрами и латинскими буквами, которые поочередно расшифровываются для получения полной информации.

Все очень просто – если используются только цифры (а на подобных изделиях их обычно три штуки), то расшифровывать нужно следующим образом:

  • первые две цифры обозначают первые две цифры емкости;
  • третья цифра обозначает количество нулей, которое необходимо дописать после первых двух цифр;
  • такие конденсаторы всегда измеряются в пикофарадах.

Возьмем для примера первый вариант с картинки выше с записью 104. Первые две цифры так и оставляем – 10. К ним приписываем количество нулей, обозначенных третьей цифрой, то есть 4. Получаем значение в 100 000 пикофарад. Возвращаемся к таблице в начале статьи, уменьшаем количество нулей и получаем приемлемое значение в 100 микрофарад.

Если используется одна или две цифры, они так и остаются. Например, обозначения 5 и 15 обозначают 5 и 15 пикофарад соответственно. Маркировка .55 равна 0.55 микрофарад.

Интересная запись выполняется с использованием букв либо вместо точки, либо как другой величины. Например, 8n2 обозначает 8.2 нанофарад, когда как n82 означает 0.82 нанофарад. Для определенного класса конденсаторов в конце может дописываться дополнительная кодовая маркировка, например, 100V.

  • Маркировка керамических конденсаторов численно-буквенным способом является стандартом для этих изделий. Здесь используются точно такие же алгоритмы шифрования, а сами надписи физически наносятся производителем на керамическую поверхность.
  • Устаревшим, однако все еще используемым вариантом, считается цветовая индикация. Она применялась в советском производстве для упрощения считывания маркировки даже на очень маленьких изделиях. Минус в том, что запомнить сходу такую таблицу достаточно проблематично, поэтому желательно иметь ее под рукой, по крайней мере, поначалу. Цвета наносятся на конденсаторы, где маркировка выполняется в виде монотонных полосок. Считываются следующим образом:
  • первые два цвета означают емкость в пикофарадах;
  • третий цвет показывает количество нулей, которые необходимо дописать;
  • четвертый и пятый цвета соответственно показывают возможный допуск и номинал подаваемого напряжения на изделие.
Цвет Значение
Черный
Коричневый 1
Красный 2
Оранжевый 3
Желтый 4
Зеленый 5
Голубой 6
Фиолетовый 7
Серый 8
Белый 9
  • Маркировка импортных конденсаторов выполняется аналогичными способами, только вместо кириллицы может использоваться латиница. Например, на отечественных вариантах может встречаться 5мк1, что означает 5. 1 микрофарад. Тогда как на импортных это значение будет выглядеть как 5µ Если запись совершенно непонятна, то можно обратиться к официальному производителю за разъяснениями, скорее всего на сайте есть таблицы или программа, которые расшифровывают его маркировку. Однако это встречается только в исключительных случаях и редко попадается.

Заключение

Чем меньше конденсатор, тем более компактной записи он требует. Однако современное производство способно нанести на корпус достаточно маленькие значения, расшифровка которых выполняется вышеописанными способами. Внимательно проверяйте полученные значения во избежание поломки собранной электрической цепи.

Преобразовать нФ в пФ (нанофарад в пикофарад)

Прямая ссылка на этот калькулятор:
https://www.preobrazovaniye-yedinits.info/preobrazovat+nanofarad+v+pikofarad.php

  1. Выберите нужную категорию из списка, в данном случае ‘Ёмкость’. ), скобки и π (число пи), уже поддерживаются на настоящий момент.
  2. Из списка выберите единицу измерения переводимой величины, в данном случае ‘нанофарад [нФ]’.
  3. И, наконец, выберите единицу измерения, в которую вы хотите перевести величину, в данном случае ‘пикофарад [пФ]’.
  4. После отображения результата операции и всякий раз, когда это уместно, появляется опция округления результата до определенного количества знаков после запятой.

С помощью этого калькулятора можно ввести значение для конвертации вместе с исходной единицей измерения, например, ‘426 нанофарад’. При этом можно использовать либо полное название единицы измерения, либо ее аббревиатуруНапример, ‘нанофарад’ или ‘нФ’. После ввода единицы измерения, которую требуется преобразовать, калькулятор определяет ее категорию, в данном случае ‘Ёмкость’. После этого он преобразует введенное значение во все соответствующие единицы измерения, которые ему известны. В списке результатов вы, несомненно, найдете нужное вам преобразованное значение. Как вариант, преобразуемое значение можно ввести следующим образом: ’39 нФ в пФ‘ или ’88 нФ сколько пФ‘ или ’90 нанофарад -> пикофарад‘ или ’65 нФ = пФ‘ или ’17 нанофарад в пФ‘ или ’16 нФ в пикофарад‘ или ’53 нанофарад сколько пикофарад‘. В этом случае калькулятор также сразу поймет, в какую единицу измерения нужно преобразовать исходное значение. Независимо от того, какой из этих вариантов используется, исключается необходимость сложного поиска нужного значения в длинных списках выбора с бесчисленными категориями и бесчисленным количеством поддерживаемых единиц измерения. Все это за нас делает калькулятор, который справляется со своей задачей за доли секунды.

Кроме того, калькулятор позволяет использовать математические формулы. В результате, во внимание принимаются не только числа, такие как ‘(99 * 59) нФ’. Можно даже использовать несколько единиц измерения непосредственно в поле конверсии. 3′. Объединенные таким образом единицы измерения, естественно, должны соответствовать друг другу и иметь смысл в заданной комбинации.

Если поставить флажок рядом с опцией ‘Числа в научной записи’, то ответ будет представлен в виде экспоненциальной функции. Например, 9,235 209 915 959 6×1031. В этой форме представление числа разделяется на экспоненту, здесь 31, и фактическое число, здесь 9,235 209 915 959 6. В устройствах, которые обладают ограниченными возможностями отображения чисел (например, карманные калькуляторы), также используется способ записи чисел 9,235 209 915 959 6E+31. В частности, он упрощает просмотр очень больших и очень маленьких чисел. Если в этой ячейке не установлен флажок, то результат отображается с использованием обычного способа записи чисел. В приведенном выше примере он будет выглядеть следующим образом: 92 352 099 159 596 000 000 000 000 000 000. Независимо от представления результата, максимальная точность этого калькулятора равна 14 знакам после запятой. Такой точности должно хватить для большинства целей.

Сколько пикофарад в 1 нанофарад?

1 нанофарад [нФ] = 1 000 пикофарад [пФ] — Калькулятор измерений, который, среди прочего, может использоваться для преобразования нанофарад в пикофарад.

Работаем с цифровым мультиметром. Часть 3

Добрый день, друзья!
Не так давно мы с вами учились работать с  цифровым мультиметром и ознакомились с тем, как измерять ток и напряжение. Это две величины, с которыми чаще всего имеют дело. Но есть и другие параметры, которые могут измеряться цифровыми приборами.

Хорошо бы научиться измерять и их. Вы же хотите стать экспертом в измерениях, правда? Тогда давайте с вами посмотрим

Как измерить емкость конденсатора

Конденсаторы широко применяются в качестве накопителей энергии в источниках питания.

В компьютерном блоке питания их может быть более десятка.

И на материнской плате компьютера их натыкано видимо-невидимо.

За измерение емкости отвечает отдельная группа позиций (внизу слева, левее группы измерения тока). На корпусе вблизи этой области нанесена буква F (Farade, фарада, единица измерения емкости). Емкость измеряют в 5 поддиапазонах: 0 — 2 nF (нанофарад, нФ), 0 — 20 nF, 0 — 200 nF, 0 — 2 мкФ (микрофарад) , 0 — 20 мкФ.

Напомним, что 1 нФ = 1000 пФ (пикофарад), 1 мкФ = 1000 нФ. Отметим, что емкость в 1 Фарад очень велика. Электролитические конденсаторы в блоках питания и на материнской плате имеет емкость в сотни и тысячи микрофарад. Керамические блокировочные конденсаторы имеют емкость в десятки и сотни нанофарад.

Конденсатор при измерении емкости присоединяют не к щупам, а вставляют выводами в специальное гнездо. Это не всегда удобно, так как конденсатор (особенно выпаянный), часто имеет короткие выводы.

Если вставить в гнезда короткие металлические пластинки, удобство пользования тестером возрастает.

Теперь при измерении емкости достаточно коснуться выводами конденсатора металлических пластинок.

Отметим, что хорошо было бы в таких мультиметрах расширить пределы измерения в верхнюю сторону. Большинство электролитических конденсаторов, устанавливаемых в компьютерные блоки питания или на материнские платы, имеет гораздо большую емкость.

Существуют специальные измерители не только емкости, но и ESR (Equivalent Series Resistance, эквивалентное последовательное сопротивление) конденсаторов. Они позволяют оценить емкость в десятки и сотни тысяч микрофарад.

Измерения сопротивления

Следующая группа позиций — для измерения сопротивления (на 7 поддиаазонах): 0 — 200 Ом, 0 — 2 кОм, 0 — 20 кОм, 0 — 200 кОм, 0 — 2 МОм, 0 — 20 МОм, 0 — 200 МОм . Вблизи этой группы нанесен специальный значок (греческая буква Омега).

Деление на поддиапазоны обусловлено стремлением точнее измерить величину сопротивления.

Например, сопротивление в несколько Ом лучше  измерять на поддиапазоне 0 – 200 Ом, а не на верхних.

На верхних диапазонах будет либо пониженная точность, либо вообще «0» кОм (Мом). Если измерять большие значения сопротивления на нижних диапазонах, то прибор покажет превышение значения (минус и единицу в самом левом разряде).

На младшем поддиапазоне есть возможность «прозвонки» цепей, если их сопротивление не превышает некоей величины (для данного прибора — около 50 Ом).

При этом прибор издает звуковой сигнал. Это очень удобно, в частности, при поиске жил в кабельных соединениях. При этом можно не смотреть на табло прибора, что экономит время.

При измерении сопротивления на самом нижнем поддиапазоне надо учитывать, что щупы прибора также имеют некоторое сопротивление.

Если их замкнуть между собой, прибор покажет не «0» Ом, а некоторую небольшую величину (в диапазоне примерно 0,5 – 1 Ом). Эту величину надо вычесть из измеренного значения.

Отметим, что проводники из металлов имеют небольшое сопротивление. Лучшими проводниками являются медь и серебро. Поэтому, например, обмотки трансформаторов выполняют из медных проводов, а сильноточные контакты покрывают слоем серебра. Чем меньше сопротивление проводника, тем меньше он греется.

Сплавы металлов имеют повышенное сопротивление, соответственно, они сильнее греются, поэтому из них изготавливают различные нагреватели. Кстати сказать, в паяльниках, которые используют при пайке часто используется нихром (сплав НИкеля и ХРОМа).

Изоляторы, наоборот, имеют очень большое сопротивление, поэтому при прикладывании к ним напряжения ток через них практически не протекает. Пример изолятора – стеклотекстолит, из которого изготовлена материнская плата компьютера.

Заканчивая тему измерения сопротивления, отметим, что сопротивление тела человека лежит в пределах от нескольких килоом до нескольких десятков или сотен килоом и зависит от состояния его здоровья и кожных покровов.

Теперь вы знаете, как выполнять измерения и можете оценить сопротивление своего тела. И похвастаться этой величиной и своим умением перед товарищами :yes:

В заключение расскажем, как выполнить

Измерение температуры

Мультиметр может измерять и температуру.

При этом переключатель ставится напротив зеленой метки «Temp».

В гнездо выше переключателя ставится термопара типа К. Термопара — это два проводника из разных сплавов, спаянные в одной точке. При этом на противоположных концах возникает термоЭДС (электродвижущая сила).

Чем сильнее нагрето место спая, тем больше термоЭДС. Прибор измеряет это значение и выводит сразу температуру в привычных нам градусах Цельсия. Отметим, что термопара обладает некоторой инерционностью, особенно при измерении больших температур.

Термопарой можно измерить температуру жала паяльника. При этом важно обеспечить надежный тепловой контакт между нею (шариком спая) и жалом. Отметим, что паяльник в паяльных станциях имеет встроенный датчик, при этом температура жала показывается на специальном табло.

У нас осталась не рассмотренной важная тема – как проверять с помощью цифрового мультиметра полупроводниковые приборы. Этим мы займемся в следующих постах.

Всего наилучшего!

С вами бы Виктор Геронда. До встречи на блоге!

Как правильно заменить конденсатор — ООО «УК Энерготехсервис»

В элементной базе компьютера (и не только) есть одно узкое место – электролитические конденсаторы. Они содержат электролит, электролит – это жидкость. Поэтому нагрев такого конденсатора приводит к выходу его из строя, так как электролит испаряется. А нагрев в системном блоке – дело регулярное.

Поэтому замена конденсаторов – это вопрос времени. Больше половины отказов материнских плат средней и нижней ценовой категории происходит по вине высохших или вздувшихся конденсаторов. Еще чаще по этой причине ломаются компьютерные блоки питания.

Поскольку печать на современных платах очень плотная, производить замену конденсаторов нужно очень аккуратно. Можно повредить и при этом не заметить мелкий бескорпусой элемент или разорвать (замкнуть) дорожки, толщина и расстояние между которыми чуть больше толщины человеческого волоса. Исправить подобное потом достаточно сложно. Так что будьте внимательны.

  • Итак, для замены конденсаторов понадобится паяльник с тонким жалом мощностью 25-30Вт, кусок толстой гитарной струны или толстая игла, паяльный флюс или канифоль.
  • В том случае, если вы перепутаете полярность при замене электролитического конденсатора или установите конденсатор с низким номиналом по вольтажу, он вполне может взорваться. А вот как это выглядит:

Так что внимательнее подбирайте деталь для замены и правильно устанавливайте. На электролитических конденсаторах всегда отмечен минусовой контакт (обычно вертикальной полосой цвета, отличного от цвета корпуса).

На печатной плате отверстие под минусовой контакт отмечено тоже (обычно черной штриховкой или сплошным белым цветом). Номиналы написаны на корпусе конденсатора. Их несколько: вольтаж, ёмкость, допуски и температура.

Первые два есть всегда, остальные могут и отсутствовать. Вольтаж: 16V (16 вольт). Ёмкость: 220µF (220 микрофарад). Вот эти номиналы очень важны при замене. Вольтаж можно выбирать равный или с большим номиналом. А вот ёмкость влияет на время зарядки/разрядки конденсатора и в ряде случаев может иметь важное значение для участка цепи.

Поэтому ёмкость следует подбирать равную той, что указана на корпусе. Слева на фото ниже зелёный вздувшийся (или потёкший) конденсатор. Вообще с этими зелёными конденсаторами постоянные проблемы. Самые частые кандидаты на замену. Справа исправный конденсатор, который будем впаивать.

Выпаивается конденсатор следующим образом: сначала находите ножки конденсатора с обратной стороны платы (для меня это самый трудный момент). Затем нагреваете одну из ножек и слегка давите на корпус конденсатора со стороны нагреваемой ножки. Когда припой расплавляется, конденсатор наклоняется. Проводите аналогичную процедуру со второй ножкой. Обычно конденсатор вынимается в два приема.

Спешить не нужно, сильно давить тоже. Мат.плата – это не двухсторонний текстолит, а многослойный (представьте вафлю). Из-за чрезмерного усердия можно повредить контакты внутренних слоев печатной платы. Так что без фанатизма.

Кстати, долговременный нагрев тоже может повредить плату, например, привести к отслоению или отрыву контактной площадки. Поэтому сильно давить паяльником тоже не нужно. Паяльник прислоняем, на конденсатор слегка надавливаем.

После извлечения испорченного конденсатора необходимо сделать отверстия, чтобы новый конденсатор вставлялся свободно или с небольшим усилием. Я для этих целей использую гитарную струну той же толщины, что и ножки выпаиваемой детали.

Для этих целей подойдет и швейная игла, однако иглы сейчас делают из обычного железа, а струны из стали. Есть вероятность того, что игла схватится припоем и сломается при попытке ее вытащить.

А струна достаточно гибкая и схватывается сталь с припоем значительно хуже, чем железо.

При демонтаже конденсаторов припой чаще всего забивает отверстия в плате. Попробовав впаять конденсатор тем же способом, которым я советовал его выпаивать, можно повредить контактную площадку и дорожку, ведущую к ней. Не конец света, но очень нежелательное происшествие. Поэтому если отверстия не забил припой, их нужно просто расширить.

А если все же забил, то нужно плотно прижать конец струны или иглы к отверстию, а с другой стороны платы прислонить к этому отверстию паяльник. Если подобный вариант неудобен, то жало паяльника нужно прислонять к струне практически у основания. Когда припой расплавится, струна войдёт в отверстие.

В этот момент надо ее вращать, чтобы она не схватилась припоем.

После получения и расширения отверстия нужно снять с его краев излишки припоя, если таковые имеются, иначе во время припаивания конденсатора может образоваться оловянная шапка, которая может припаять соседние дорожки в тех местах, где печать плотная. Обратите внимание на фото ниже – насколько близко к отверстиям располагаются дорожки. Припаять такую очень легко, а заметить сложно, поскольку обзору мешает установленный конденсатор. Поэтому лишний припой очень желательно убирать.

Если у вас нет под боком радио-рынка, то скорее всего конденсатор для замены найдется только б/у. Перед монтажом следует обработать его ножки, если требуется. Желательно снять весь припой с ножек. Я обычно мажу ножки флюсом и чистым жалом паяльника облуживаю, припой собирается на жало паяльника. Потом скоблю ножки конденсатора канцелярским ножом (на всякий случай).

Вот, собственно, и все. Вставляем конденсатор, смазываем ножки флюсом и припаиваем. Кстати, если используется сосновая канифоль, лучше истолочь ее в порошок и нанести его на место монтажа, чем макать паяльник в кусок канифоли. Тогда получится аккуратно.

Замена конденсатора без выпаивания с платы

Условия ремонта бывают разные и менять конденсатор на многослойной (мат. плата ПК, например) печатной плате — это не то же самое что поменять конденсатор в блоке питания (однослойная односторонняя печатная плата). Надо быть предельно аккуратным и осторожным. К сожалению, не все родились с паяльником в руках, а отремонтировать (или попытаться отремонтировать) что-то бывает очень нужно.

Как я уже писал в первой половине статьи, чаще всего причиной поломок являются конденсаторы. Поэтому замена конденсаторов наиболее частый вид ремонта, по крайней мере в моём случае. В специализированных мастерских есть для этих целей специальное оборудование. Если оного нет, приходится пользоваться оборудованием обычным (флюс, припой и паяльник). В этом случае очень помогает опыт.

А если опыта нет, то попытка ремонта вполне может закончится плачевно. Как раз для таких случаев спешу поделиться способом замены конденсаторов без выпаивания из печатной платы. Способ внешне довольно не аккуратный и в некоторой степени более опасный, чем предыдущий, но для личного пользования сгодится.

Главным преимуществом данного метода является то, что контактные площадки платы придётся в значительно меньшей степени подвергать нагреву. Как минимум в два раза. Печать на дешёвых мат.платах достаточно часто отслаивается от нагрева. Дорожки отрываются, а исправить такое потом достаточно проблематично.

Минус данного способа в том, что на плату всё-таки придётся надавить, что тоже может привести к негативным последствиям. Хотя из моей личной практики давить сильно ни разу не приходилось. При этом есть все шансы припаяться к ножкам, оставшимся после механического удаления конденсатора.

 Итак, замена конденсатора начинается с удаления испорченной детали с мат.платы.

На конденсатор нужно поставить палец и с лёгким нажатием попробовать покачать его вверх-вниз и влево-вправо. Если конденсатор качается влево-вправо, значит ножки расположены по вертикальной оси (как на фото), в обратном случае по горизонтальной. Также можно определить положение ножек по минусовому маркеру (полоса на корпусе конденсатора, обозначающая минусовой контакт).

Дальше следует надавить на конденсатор по оси расположения его ножек, но не резко, а плавно, медленно увеличивая нагрузку. В результате ножка отделяется от корпуса, далее повторяем процедуру для второй ножки (давим с противоположной стороны).

Иногда ножка из-за плохого припоя вытаскивается вместе с конденсатором. В этом случае можно слегка расширить получившееся отверстие (я делаю это куском гитарной струны) и вставить туда кусок медной проволоки, желательно одинаковой с ножкой толщины.

Половина дела сделана, теперь переходим непосредственно к замене конденсатора. Стоит отметить, что припой плохо пристаёт к той части ножки, которая находилась внутри корпуса конденсатора и её лучше откусить кусачками, оставив небольшую часть.

Затем ножки конденсатора, приготовленного для замены и ножки старого конденсатора обрабатываются припоем и припаиваются. Удобнее всего паять конденсатор, приложив его к к плате под углом в 45 градусов.

Потом его легко можно поставить по стойке смирно.

Вид в результате, конечно неэстетичный, но зато работает и данный способ намного проще и безопаснее предыдущего с точки зрения нагрева платы паяльником. Удачного ремонта!

Если материалы сайта оказались для вас полезными, можете поддержать дальнейшее развитие ресурса, оказав ему (и мне ) моральную и материальную поддержку.

Замена конденсаторов на материнской плате: основы пайки — Александр Павлов

Реклама

Ремонт и настройка компьютера Вызов на дом. Решаем любую задачу. Профессиональная настройка. Бесплатная диагностика и консультация.

Всех приветствую! Сегодня я покажу вам основы замены конденсаторов на материнской плате. Будет производиться замена вышедшего из строя конденсатора.

Освоив данный метод пайки, вы легко сможете ремонтировать материнские платы, блоки питания и видеокарты.

Итак, для пайки нам понадобятся следующие инструменты:

  • ремонтируемая деталь (например, материнка),
  • пальник или термофен,
  • припой,
  • флюс,
  • оплётка,
  • плоскогубцы,
  • конденсатор,
  • обезжириватель,
  • кисточка.

Полный набор

Вздутие конденсаторов вызывает повышенное напряжение, высокая температура или заводской брак.

Как подобрать нужный конденсатор

На каждом конденсаторе имеется маркировка. Там указано 4 параметра:

  • напряжение в вольтах,
  • емкость в микрофарадах,
  • рабочая температура,
  • маркировка полярности.

Что касается маркировки полярностей на конденсаторе, то минус отмечается серой или золотой полосой. На ремонтируемой детали (в моем случае это материнская плата) полярность обозначается в виде двухцветного круга, рассеченного пополам.

Закрашенная часть круга — это минус. Конденсатор ставится на плату минус к минусу, плюс к плюсу.

Единственное исключение – это платы фирмы Asus. У них маркировка полярности сделана наоборот, т.е. закрашенный полукруг у них — это плюс.
Именно на материнской плате Asus мы сегодня и будем проводить замену конденсаторов.

Нам нужно определить, какие конденсаторы вздулись или полопались. Мне пришлось ломать «кондер» для демонстрации ???? Истинно вздутые конденсаторы выглядят немного иначе, но, надеюсь, что суть вам ясна.

Также мы должны найти этот конденсатор на обратной стороне платы.

Итак, мы с вами определили конденсатор под замену с обеих сторон материнки. Теперь можно приступать к пайке.

Отпаиваем старый конденсатор

Не забываем о технике безопасности и подкладываем под плату силиконовый коврик.

На ножки целевого конденсатора наносим флюс для того, чтобы пайка получилась качественной.

Для того что бы выпаять старый конденсатор было проще, желательно нагреть место пайки термофеном. Выставляем температуру на 300-320 градусов на паяльной станции.

И прогреваем место пайки на расстоянии 4-5 см.

Далее подготавливаем паяльник – для этого смачиваем жало флюсом и накладываем припой, делая каплю «жидкой пайки» на конце жала.

Должно получиться вот так.

Это нужно для того, чтобы старый (заводской) припой смешался с новым. Это упростит пайку.
Не забываем выставить температуру 300-320 градусов. Это температура плавления припоя.

  • На заготовленные ножки конденсатора прикладываем паяльник так, чтобы капля полностью покрыла ножку.

Стараемся вытащить конденсатор с другой стороны. Ни в коем случае не тянем его руками, так как можно сильно обжечься.

Можно поставить материнку вот так

После того, как вы выпаяли старый конденсатор, нужно убрать припой из отверстий на плате.
Это можно сделать оловоотсосом или же оплёткой. По мне так проще второй вариант.

Положите оплетку поверх отверстий и ведите жалом, пока не увидите, что медные усики забрали весь припой на себя.
Для большей эффективности сквозь оплётку проткните отверстия, но не прикладывайте чрезмерных усилий, так как можно повредить текстолит.

Ставим новый конденсатор

И вот финишная прямая.
Вставляем новый конденсатор в выпаянное нами отверстие.

Не забывайте про полярность на плате и конденсаторе (в особенности, что касается плат Asus).

  1. С обратной стороны у нас должно получиться вот так.

Наносим флюс по самый верх этих ножек и, проводя каплей «жидкой пайки» снизу вверх по ножке, запаиваем деталь. Припой сам сольётся по ножке и встанет на плату. Если конденсатор не шатается, значит, у вас всё получилось.

По окончании работ обязательно снимите остатки флюса обезжиривателем.
Дело в том, что оставленный флюс начнет разрушать текстолит на плате.

Ножки нужно будет обрезать, но прямо под корень их не рубите, так как конденсатор просто выпадет, и вся работа пойдет насмарку.

Вот и всё. Материнская плата снова работает, компьютер включается, а вы прокачали свой скил!
Финальный результат выглядит так.

Те самые ножки

Лицевая сторона. Все готово!

Всем пока! 

Проверка и замена пускового конденсатора

Для чего нужен пусковой конденсатор?

  • Пусковой и рабочий конденсаторы служат для запуска и работы элетродвигателей работающих в однофазной сети 220 В.
  • Поэтому их ещё называют фазосдвигающими.
  • Место установки — между линией питания и пусковой обмоткой электродвигателя. 
  • Условное обозначение конденсаторов на схемах
  • Графическое обозначение на схеме показано на рисунке, буквенное обозначение-С  и порядковый номер по схеме.

Основные параметры конденсаторов

Ёмкость конденсатора-характеризует энергию,которую способен накопить конденсатор,а также ток который он способен пропустить через себя. Измеряется в Фарадах с множительной приставкой (нано, микро и т.д.).

  1. Самые используемые номиналы для рабочих и пусковых конденсаторов от 1 мкФ (μF) до 100 мкФ (μF).
  2. Номинальное напряжение конденсатора- напряжение, при котором конденсатор способен надёжно и долговременно работать, сохраняя свои параметры.
  3. Известные производители конденсаторов указывают на его корпусе напряжение и соответствующую ему гарантированную наработку в часах,например:
  • 400 В — 10000 часов
  • 450 В —  5000 часов
  • 500 В —  1000 часов

Проверка пускового и рабочего конденсаторов

Проверить конденсатор можно с помощью измерителя ёмкости конденсаторов, такие приборы выпускаются как отдельно, так и в составе мультиметра- универсального прибора, который может измерять много параметров. Рассмотрим проверку мультиметром.

  • обесточиваем кондиционер
  • разряжаем конденсатор, закоротив еговыводы
  • снимаем одну из клемм (любую)
  • выставляем прибор на измерение ёмкости конденсаторов
  • прислоняем щупы к выводам конденсатора
  • считываем с экрана значение ёмкости

У всех приборов разное обозначение режима измерения конденсаторов, основные типы ниже на картинках.

В этом мультиметре режим выбирается переключателем, его необходимо поставить в режим Fcх.Щупы включить в гнёзда с обозначением Сх.

Переключение предела измерения ёмкости ручное. Максимальное значение 100 мкФ.

У этого измерительного прибора автоматический режим, необходимо только его выбрать, как показано на картинке.

Измерительный пинцет от Mastech также автоматически измеряет ёмкость, необходимо только выбрать режим кнопкой FUNC, нажимая её, пока не появится индикация F.

  •    
  • Для проверки ёмкости, считываем на корпусе конденсатора её значение и ставим заведомо больший предел измерения на приборе. (Если он не автоматический)
  • К примеру, номинал 2,5 мкФ (μF), на приборе ставим 20 мкФ (μF).
  • После подсоединения щупов к выводам конденсатора ждём показаний на экране, к примеру время измерения ёмкости 40 мкФ первым прибором — менее одной секунды, вторым — более одной минуты, так что следует ждать.
  • Если номинал не соответствует указанному на корпусе конденсатора, то его необходимо заменить и если нужно подобрать аналог.

Замена и подбор пускового/рабочего конденсатора

Если имеется оригинальный конденсатор, то понятно, что просто-напросто необходимо поставить его на место старого и всё. Полярность не имеет значения, то есть выводы конденсатора не имеют обозначений плюс «+» и минус «-» и их можно подключить как угодно.

Категорически нельзя применять электролитические конденсаторы (узнать их можно по меньшим размерам, при той же ёмкости, и обозначению плюс и минус на корпусе). Как следствие применения — термическое разрушение. Для этих целей производители специально выпускают неполярные конденсаторы для работы в цепи переменного тока, которые имеют удобное крепление и плоские клеммы, для быстрой установки.

Если нужного номинала нет, то его можно получить параллельным соединением конденсаторов. Общая ёмкость будет равна сумме двух конденсаторов:

Собщ=С1+С2+…Сп

  1. То есть, если соединить два конденсатора по 35 мкФ, получим общую ёмкость 70 мкФ, напряжение при котором они смогут работать будет соответствовать их номинальному напряжению.
  2. Такая замена абсолютно равноценна одному конденсатору большей ёмкости.
  3. Если во время замены перепутались провода, то правильное подключение можно посмотреть по схеме на корпусе или здесь: Схема подключения конденсатора к компрессору

Типы конденсаторов

Для запуска мощных двигателей компрессоров применяют маслонаполненные неполярные конденсаторы.

Корпус внутри заполнен маслом для хорошей передачи тепла на поверхность корпуса. Корпус обычно металлический, аллюминиевый. 

  • Самые доступные конденсаторы такого типа CBB65.
  • Для запуска менее мощной нагрузки, например двигателей вентиляторов, используют сухие конденсаторы, корпус которых, обычно, пластмассовый.
  • Наиболее распространённые конденсаторы   этого типа CBB60, CBB61.
  • Клеммы для удобства соединения сдвоенные или счетверённые.

Замена электролитического конденсатора ⋆ diodov.net

При выполнении ремонта или модернизации электронного устройства часто требуется замена электролитического конденсатора вышедшего из строя.

Однако аналога со стопроцентным совпадением может не оказаться в наличие, но имеются другие накопители, имеющие некоторые отличия от оригинала.

В этой статье мы рассмотрим, на какие параметры следует ориентироваться, чтобы правильно выполнить замену электролитического конденсатора для любой случая, при этом не нарушить режим работы электронного устройства.

Электролитический конденсатор характеризуется тремя основными параметрами: ориентируясь на которые, достаточно просто правильно подобрать замену. К этим параметрам относятся допустимое напряжение, емкость и температура.

Однако, прежде чем перейти к рассмотрению указанных параметров, следует не забывать, что данный накопитель энергии является полярным, поэтому необходимо соблюдать полярность. Положительный вывод паяем к плюсу, а отрицательный – к минусу.

Чтобы не спутать выводы вдоль всего корпуса со стороны отрицательного вывода наносится знак минус «-», более подробно о маркировке написано здесь.

Замена электролитического конденсатора – основные правила

Чаще всего ремонт блока питания любого электронного устройства заключается в замене вздутого или высохшего электролитического конденсатора.

При такой неисправности достаточно выпаять вышедший из строя конденсатор и заменить его новым.

Однако довольно редко имеется в наличие аналогичный электролитический конденсатор, но во многих случаях его можно заменить другим, имеющим несколько отличительные параметры.

В первую очередь следует ориентироваться на напряжение. При отсутствии подходящего номинала подойдет конденсатор с большим напряжением. Например, если на корпусе оригинального конденсатора написано 35 В, то подойдет аналог с напряжением 50 В, 63 В, 100 В и т. д. – в сторону увеличения. Нельзя выполнять замену на аналог с более низким напряжением: 25 В, 16 В или 9 В. Иначе он взорвется.

Получить требуемое напряжение можно путем последовательного соединения нескольких накопителей, о чем более подробно с примерами расчетов рассказано здесь.

Следующий параметр – емкость. Как правило, в преобладающем большинстве случаев, электролитические конденсаторы, особенно большой емкости, применяются для сглаживания пульсаций выпрямленного напряжения: чем большая емкость, тем лучше сглаживаются пульсации. Поэтому, в случае отсутствия накопителя такой же емкости, его можно заменить аналогом большей емкости.

Если отсутствуют электролитические конденсаторы нужной емкости и достаточно места на печатной плате устройства, то вместо одного накопителя можно впаять несколько параллельно соединенных. При этом емкости их будут складываться, о чем подробно с примерами расчетов рассказано здесь.

Урок 2.3 — Конденсаторы

Конденсатор встречается в наборах Мастер Кит (да и вообще в электронных устройствах) почти так же часто, как и резистор. Поэтому важно хотя бы в общих чертах представлять его основные характеристики и принцип работы.

Принцип работы конденсатора

В простейшем варианте конструкция состоит из двух электродов в форме пластин (называемых обкладками), разделённых диэлектриком, толщина которого мала по сравнению с размерами обкладок. Чем больше отношение площади пластин к толщине диэлектрика – тем выше ёмкость конденсатора.

Чтобы избежать физического увеличения размеров конденсатора до огромных размеров, конденсаторы изготавливают многослойными: например, сворачивают ленты пластин и диэлектриков в рулон.

Так как любой конденсатор имеет диэлектрик, то он не способен проводить постоянный ток, но он может сохранять электрический заряд, приложенный к его обкладкам, и в нужный момент отдавать его. Это важное свойство

Давайте договоримся: радиодеталь мы называем конденсатором, а его физическую величину – ёмкостью. То есть правильно сказать так: «конденсатор имеет ёмкость 1 мкФ», но некорректно сказать: «замени на плате вон ту ёмкость». Вас, конечно, поймут, но лучше соблюдать «правила хорошего тона».

Электрическая ёмкость конденсатора – это главный его параметрЧем больше ёмкость конденсатора, тем больший заряд он может сохранить. Электрическая ёмкость конденсатора измеряется в Фарадах, обозначается F.

1 Фарад — очень большая ёмкость (земной шар имеет ёмкость менее 1Ф), поэтому для обозначения ёмкости в радиолюбительской практике используются следующие основные размерные величины — префиксы: µ (микро), n (нано) и p (пико):• 1 микроФарад — 10-6 (одна миллионная часть), т.е.

1000000µF = 1F• 1 наноФарад — 10-9 (одна миллиардная часть), т.е. 1000nF = 1µF

• p (пико) — 10-12 (одна триллионная часть), т.е. 1000pF = 1nF

Как и Ом, Фарад – это фамилия физика. Поэтому, как культурные люди, пишем прописную букву «Ф»: 10 пФ, 33 нФ, 470 мкФ.

Номинальное напряжение конденсатораРасстояние между пластинами конденсатора (особенно конденсатора большой ёмкости) очень мало, и достигает единиц микрометра. Если приложить к обкладкам конденсатора слишком высокое напряжение, слой диэлектрика может быть нарушен.

Поэтому каждый конденсатор имеет такой параметр, как номинальное напряжение. При эксплуатации напряжение на конденсаторе не должно превышать номинального. Но лучше, когда номинальное напряжение конденсатора несколько выше напряжения в схеме.

То есть, например, в схеме с напряжением 16В могут работать конденсаторы с номинальным напряжением 16В (в крайнем случае), 25В, 50В и выше. Но нельзя ставить в эту схему конденсатор с номинальным напряжением 10В.

Конденсатор может выйти из строя, причём часто это происходит с неприятным хлопком и выбросом едкого дыма.

Как правило, в радиолюбительских конструкциях для начинающих не используется напряжение питания выше 12В, а современные конденсаторы чаще всего имеют номинальное напряжение 16В и выше. Но помнить о номинальном напряжении конденсатора очень важно.

Типы конденсаторовО разнообразных конденсаторах можно написать много томов. Впрочем, это уже сделали некоторые другие авторы, поэтому я расскажу только самое необходимое: конденсаторы бывают неполярные и полярные (электролитические).

  • Неполярные конденсаторыНеполярные конденсаторы (в зависимости от типа диэлектрика подразделяются на бумажные, керамические, слюдяные…) могут устанавливаться в схему как угодно – в этом они похожи на резисторы.
  • Как правило, неполярные конденсаторы имеют относительно небольшую ёмкость: до 1 мкФ.

Маркировка неполярных конденсаторовНа корпус конденсатора нанесён код из трёх цифр. Первые две цифры определяют значение ёмкости в пикофарадах (пФ), а третья – количество нулей. Так, на изображённом ниже рисунке на конденсатор нанесён код 103. Определим его ёмкость:

10 пФ + (3 нуля) = 10000 пФ = 10 нФ = 0,01 мкФ.

Конденсаторы ёмкостью до 10 пФ маркируются по-особенному: символ «R» в их кодировке обозначает запятую. Теперь Вы можете определить ёмкость любого конденсатора. Приведённая ниже табличка поможет Вам проверить себя.

Код Номинал Код Номинал Код Номинал
1R0 1 пФ 101 100 пФ 332 3.3 нФ
2R2 2.2 пФ 121 120 пФ 362 3.6 нФ
3R3 3.3 пФ 151 150 пФ 472 4.7 нФ
4R7 4.7 пФ 181 180 пФ 562 5.6 нФ
5R1 5.1 пФ 201 200 пФ 682 6.8 нФ
5R6 5.6 пФ 221 220 пФ 752 7.5 нФ
6R8 6.8 пФ 241 240 пФ 822 8.2 нФ
7R5 7. 5 пФ 271 270 пФ 912 9.1 нФ
8R2 8.2 пФ 301 300 пФ 103 10 нФ
100 10 пФ 331 330 пФ 153 15 нФ
120 12 пФ 361 360 пФ 223 22 нФ
150 15 пФ 391 390 пФ 333 33 нФ
160 16 пФ 431 430 пФ 473 47 нФ
180 18 пФ 471 470 пФ 683 68 нФ
200 20 пФ 511 510 пФ 104 0.1 мкФ
220 22 пФ 561 560 пФ 154 0.15 мкФ
240 24 пФ 621 620 пФ 224 0.22 мкФ
270 27 пФ 681 680 пФ 334 0. 33 мкФ
300 30 пФ 751 750 пФ 474 0.47 мкФ
330 33 пФ 821 820 пФ 684 0.68 мкФ
360 36 пФ 911 910 пФ 105 1 мкФ
390 39 пФ 102 1 нФ 155 1.5 мкФ
430 43 пФ 122 1.2 нФ 225 2.2 мкФ
470 47 пФ 132 1.3 нФ 475 4.7 мкФ
510 51 пФ 152 1.5 нФ 106 10 мкФ
560 56 пФ 182 1.8 нФ
680 68 пФ 202 2 нФ
750 75 пФ 222 2.2 нФ
820 82 пФ 272 2.7 нФ
910 91 пФ 302 3 нФ

Как правило, в радиолюбительских конструкциях допустима замена некоторых конденсаторов на близкие по номиналу. Например, вместо конденсатора 15 нФ набор может комплектоваться конденсатором 10 нФ или 22 нФ, и это не отразится на работе готовой конструкции. Керамические конденсаторы не имеют полярности и могут устанавливаться в любом положении выводов.

Некоторые мультиметры (кроме самых бюджетных) имеют функцию измерения ёмкости конденсаторов, и Вы можете воспользоваться этим способом.

Полярные (электролитические) конденсаторыЕсть два способа увеличения ёмкости конденсатора: либо увеличивать размер его пластин, либо уменьшать толщину диэлектрика. Чтобы минимизировать толщину диэлектрика, в конденсаторах большой ёмкости (выше нескольких микрофарад) применяется специальный диэлектрик в виде оксидной плёнки.

Этот диэлектрик нормально работает только при условии правильно приложенного напряжения на обкладках конденсатора. Если перепутать полярность напряжения, электролитический конденсатор может выйти из строя. Метка полярности всегда маркируется на корпусе конденсатора.

Это может быть либо значок «+», но чаще всего в современных конденсаторах полосой на корпусе маркируется вывод «минус». Другой, вспомогательный способ определения полярности: плюсовой вывод конденсатора длиннее, но ориентироваться на этот признак можно только до того, как выводы радиодетали обрезаны.

На печатной плате также присутствует метка полярности (как правило, значок «+»). Поэтому при установке электролитического конденсатора обязательно совмещайте метки полярности и на детали, и на печатной плате. Как правило, в радиолюбительских конструкциях допустима замена некоторых конденсаторов на близкие по номиналу.

Также допустима замена конденсатора на аналогичный с бОльшим значением допустимого рабочего напряжения. Например, вместо конденсатора 330 мкФ 25В набор можно применить конденсатор 470 мкФ 50В, и это не отразится на работе готовой конструкции.

Внешний вид электролитического конденсатора (правильно установленный на плату конденсатор)

Скачать урок в формате PDF

Как правильно заменить конденсатор на материнской плате

Всем привет, сегодня я покажу на своем примере, как можно быстро и правильно произвести замену вздутых конденсаторов на материнской плате компьютера своими руками.

Сразу предупрежу, замена конденсаторов своими руками требует определенных знаний и умений пользоваться таким инструментом как паяльник. В моем случае это китайская паяльная станция Lukey 702.

Моя паяльная станция

Если опыта в пользовании паяльника нет, то сто раз подумайте, прежде чем браться за замену конденсаторов.

На материнской плате компьютера, как правило, конденсаторы начинают выходить из строя через 3-4 года пользования им. Но бывают и исключения, в т.ч. брак. В современных реалиях это нормальное явление, поэтому будем менять их на новые.

Признаки неисправности конденсаторов в материнской плате компьютера

  1. При включении компьютер сначала включается, потом выключается. После трех-четырех раз включения он включается нормально, и грузится операционная система. После этого он работает без проблем, но только стоит его выключить и включить на следующий день, проблема опять повторяется.

    Эти признаки говорят о том, что возможно у вас высохли и вздулись конденсаторы на плате.

  2. Компьютер просто не включается. Возможно причиной не включения могут быть также конденсаторы, как на материнской плате, так и в блоке питания.
  3. При включении или работе компьютера часто появляется синий экран с указанием ошибки.

    Это также может быть причиной вздутия и неисправностей конденсаторов на материнской плате. Как правило это первичные признаки, когда конденсаторы только начинают вздуваться.

Начнем с внешнего осмотра, откройте боковую крышку системного блока и внимательно осмотрите материнскую плату.

Как правило визуально можно понять, что конденсаторы на материнской плате вздулись и требуют замены.

Вздутые конденсаторы на материнской платеЕще один пример вздутых конденсаторов

Постарайтесь осмотреть материнскую плату очень внимательно, т.к. если человек неопытен в данном вопросе, он не всегда с первого раза может выявить неисправный конденсатор. Далее, нам необходимо найти новые конденсаторы на замену.

Обычно есть два варианта, либо взять со старой материнской платы, либо купить в любом магазине радиодеталей, они совсем не дорогие.

Алгоритм простой, выпаиваете старые конденсаторы, смотрите номинал и покупаете новые, лучше взять с собой старые, чтобы показать продавцу (главное, необходимо помнить, что по вольтажу можно брать больше, но не меньше). Например, стояли 6.3 вольт 1500 мкф, на замену можно поставить 16 вольт 1500 мкф.

Конденсатор 6.3 В 1500 мкф

Опять же, если у вас или у ваших друзей есть старая материнская плата, можете выпаять и с нее. Ну вот, у нас все готово для перепайки, начнем замену конденсаторов на материнской плате своими руками.

Повторюсь, на всякий пожарный, замена конденсаторов на материнской плате своими руками требует определенных умений работы с паяльником, если же вы готовы, приступаем.

При замене конденсаторов нам потребуется следующее:

  • Паяльник
  • Канифоль
  • Припой
  • Зубочистки
  • Бензин очищенный (для удаления канифоли с платы)

Примерный набор для пайки конденсаторов

После того как мы выпаяли старый конденсатор, нужно прочистить отверстия для впаивания нового, иначе старый припой просто не даст его нормально вставить. Будем использовать для этого зубочистку или скрепку.

Аккуратно вставляем ее в отверстия и нагреваем паяльником с обратной стороны, чтобы вытолкнуть весь лишний припой.

Еще раз повторюсь, делать это нужно очень аккуратно, так как материнская плата многослойная и можно повредить дорожки внутри платы.

После прочистки отверстий вставляем конденсатор на место, обязательно соблюдая полярность.

Обычно, на материнской плате есть обозначения установки конденсаторов (закрашенная сторона это — минус), но лучше всего запомнить как был установлен старый.

Данное правило не относится к материнским платам ASUS, у них все наоборот. На самих конденсаторах также есть обозначения в виде полосы со знаком .

Полоса с минусом на конденсаторе

Конечная стадия нашего процесса, запаиваем конденсатор с обратной стороны платы. Затем обрезаем ножки конденсаторов.

Финальная стадия замены конденсаторов на материнской плате

Не забываем очистить плату от флюса или канифоли.

Ну вот и все, на этом наш ремонт завершен. Главное не бояться и аккуратно пробовать паять своими руками. Скажу вам по секрету, это очень увлекательный процесс.

Конденсаторы в БП?

Напряжение написанное на конденсаторе показывает по сути его запас прочности. Подадите более высокое — его пробьет. Вы просто увеличили «запас прочности» конденсаторам, и ничего более.

Если погуглите на тему блоков питания — ставить конденсаторы с запасом по напряжению рекомендуют практически все, единственное ограничение здесь — запас лучше делать разумным, т.к. конденсаторы бОльшего вольтажа, как правило, крупнее и дороже.

По поводу увеличения емкости — совет верен в отношении фильтров блоков питания, но не в остальных случаях (скажем, если вы значительно измените емкость конденсатора в кроссовере колонок, вы измените частоты среза и вероятно подпортите звук).

В традиционных трансформаторных блоках питания (с импульсными не знаком) конденсатор гасит пульсации, там с увеличением емкости увеличивается и подавление пульсаций, но при этом на старте значительно возрастает ток первичной зарядки конденсатора.

Сейчас вы подвергаете их определенному воздействию, которое немного выше номинальных показателей По идее, все должно работать и так, но я бы перестраховался Капитан, перелогиньтесь.

Китайцы в бп ставят 16В 1000мФ кондюки, потому что они дешевле, по сути если поставить на 25В 1000мФ ничего не случится, просто у конюков будет больше запас для пикового напряжения. К примеру стандартные 16В 1000мФ вздываются или взрываются иногда не только от пиковых напряжений, но и от температуры в бп. Я тоже ставлю вместо 16В кондюков 25В и бп живет еще дольше, чем до поломки.

Нравится 1 Комментировать

У каждой микросхемы есть определенный «запас прочности», иными словами- разность показателей, в пределах которых все составляющие схемы работают нормально (простой пример- лампочка «Ильича», расчитанная на 220-240В.).

Сейчас вы подвергаете их определенному воздействию, которое немного выше номинальных показателей (12.28 вместо 12 и 5. 13 вместо 5, хотя разумеется, что блок питания не выдает ровно 5 и ровно 12в). Основная характеристика конденсатора- это емкость. В Вашем случае она не изменилась.

По идее, все должно работать и так, но я бы перестраховался и сходил в магазин радиодеталей…

На материнской плате можно ставить электролитические конденсаторы меньшей емкости. Проверено. Я ставил вместо 3300 mkf 1800/ А с напряжением осторожнее. Дело в том, что конденсатор на 25 вольт при разрядке дает 25 вольт.

Если заменить конденсатор на 6,3 в на конд. 25 в, то возможен выход из строя материнки при разряде конденсатора при выключении компьютера. Хороше, если есть защита типа стабилитрона, варикапа… А если нет…

Однозначно — выход из строя материнки.

Введение в электронику. Конденсаторы

Серия статей известного автора множества радиолюбительских публикаций  Дригалкина В.В.  для начинающих радиолюбителей

Доброго дня уважаемые радиолюбители!
Приветствую вас на сайте “Радиолюбитель“

Конденсаторы

Надо сказать, что конденсатор, как и резистор, можно увидеть во многих устройствах. Как правило, простейший конденсаторэто две металлических пластинки и воздух между ними. Вместо воздуха может быть фарфор, слюда или другой материал, который не проводит ток. Если резистор пропускает постоянный ток, то через конденсатор он не проходит. А переменный ток через конденсатор проходит. Благодаря такому свойству конденсатор ставят там, где надо отделить постоянный ток от переменного.

Конденсаторы бывают постоянные, подстроечные, переменные и электролитические. Кроме этого, они отличаются материалом между пластинами и внешней конструкцией. Существуют конденсаторы воздушные, слюдяные, керамические, пленочные и т.п. Применение тех или иных видов конденсаторов обычно описано в сопровождающей документации к принципиальной схеме. Некоторые конденсаторы постоянной емкости и их обозначение на принципиальной схеме показаны на Рис.1.

Основной параметр конденсатора – емкость. Она измеряется в микро-, нано— и пикофарадах. На схемах Вы встретите все три единицы измерения. Обозначаются они следующим образом: микрофарады – мКф или мFнанофарады – нф, Н или п, пикофарады – пф или pf. Чаще буквенное обозначение пикофарад не указывают ни на схемах, ни на самой радиодетали, т.е. обозначение 27, 510 подразумевают 27 пф, 510 пф. Чтобы проще разбираться в емкости, запомните следующее: 0,001 мкф = 1 нф, или 1000 пф.

В отечественной электронике применяется буквенно-цифровая маркировка конденсаторов. Если емкость выражают целым числом, то буквенное обозначение емкости ставят после этого числа, например: 12П (12 пф) , 15Н (15 нф = 15 000 пф, или 0,015 мкф), ЮМ (10 мкф). Чтобы выразить номинальную емкость десятичной дробью, буквенное обозначение единицы емкости размещают перед числом: Н15 (0,15 нф = 150 пф) , М22 (0,22 мкф). Для выражения емкости конденсатора целым числом с десятичной дробью буквенное обозначение единицы ставят между целым числом и десятичной дробью, заменяя ее запятой, например: 1П2 (1,2 пф) , 4Н7 (4,7 нф = 4700 пф), 1М5 (1,5 мкф).
Буквенно-цифровая маркировка конденсаторов используется и в зарубежной электронике. Она нашла широкое применение на конденсаторах большой емкости. Например, надпись 0,47 |iF = 0,47 мкф. Не забыли разработчики и о цветовой маркировке, которая может содержать полосы, кольца или точки. Маркируемые параметры: номинальная емкостьмножитель; допускаемое отклонение напряжения; температурный коэффициент емкости (ТКЕ) и (или) номинальное напряжение. Определить емкость можно при помощи следующей таблицы.

Некоторые примеры цветовой маркировки постоянных конденсаторов показаны на Рис. 2.

Кроме буквенно-цифровой и цветовой маркировки применяется способ цифровой маркировки конденсаторов тремя или четырьмя цифрами (международный стандарт).  В случае трехзначной маркировки первые две цифры обозначают значение емкости в пикофарадах (пФ), а последняя цифра – количество нулей (здесь обращаю ваше внимание на маркировку конденсаторов емкостью менее 10 пикофарад: последней цифрой в этом случае может быть девятка):

(в таблице ошибка, должно быть: 10010 пикофарад0,01 нанофарада0,00001 мкф(!))

При кодировании четырехзначным числом последняя цифра так же указывает количество нулей, а первые три — емкость в пикофарадах (pF):

Некоторые примеры цифровой маркировки конденсаторов представлены на Рис. 3.

Среди большого разнообразия конденсаторов постоянной емкости особое место занимают электролитические конденсаторы. Сегодня чаще всего можно услышать название оксидные конденсаторы, т.к. в них используется оксидный диэлектрик.  Такие конденсаторы выпускают большой емкости – от 0,5 до 10000 мкф. Оксидные конденсаторы полярны, поэтому на принципиальных схемах для них указывают не только емкость, но и знак ” + ” (плюс), а на самом конденсаторе: в зарубежном варианте нанесен знак “-“, в отечественном устаревшем – ” + ” . Кроме этого, на принципиальных схемах указывают и максимальное напряжение, на котором их можно использовать. Например, надпись 5,0×10 В означает, что конденсатор емкостью 5 мкф надо взять на напряжение не ниже 10 В.

Многие начинающие бояться применять конденсаторы на большее напряжение, чем указанное в схемах. А зря! Возьмем, к примеру, устройство с питанием 9В. Здесь необходимо использовать конденсатор на напряжение не ниже 10В, но лучше – 16В. Дело в том, что “питание” не застраховано от скачков. А для конденсаторов резкие перепады в сторону увеличения приравниваются к смерти. Поэтому, если Вы примените электролит на напряжение 50В, 160В или еще большее, хуже работать устройство не будет! Разве что размеры увеличатся: чем больше напряжение конденсатора, тем больше его размеры.

Оксидные конденсаторы обладают неприятным свойством терять емкость – “высыхать” , что является одной из основных причин отказов радиоаппаратуры, находящейся в длительной эксплуатации. Такой неприятной особенностью в частности обладают отечественные электролиты, особенно старые. Поэтому старайтесь ставить зарубежные новые конденсаторы.
Выпускают производители и неполярные оксидные конденсаторы, хотя применяются они довольно редко. Существую еще и танталовые конденсаторы, которые отличаются долговечностью, высокой стабильностью рабочих характеристик, устойчивостью к повышению температуры. При небольшом внешнем виде они могут обладать достаточно большой емкостью.
Линия, нанесенная на корпусе танталового конденсатора, означает плюсовой вывод, а не минус, как многие думают.
Некоторые разновидности оксидных конденсаторов показаны на Рис. 4.

Особенностью подстроечных и переменных конденсаторов есть изменение емкости при обращении оси, которая выступает наружу. Раньше они широко применялись  радиоприемниках. Именно конденсатор переменной емкости крутили Ваши родители для настройки на нужную радиостанцию. Некоторые подстроечные и переменный конденсаторы показаны на Рис. 5.

Для подстроечных или переменных конденсаторов на схеме указывают крайние значения емкости, которые создаются, если вращать ось конденсатора от одного крайнего положения к другому или вертеть по кругу (как у подстроечных конденсаторов). Например, надпись 5-180 свидетельствует о том, что в одном крайнем положении оси емкость конденсатора составляет 5 пф, а в другом – 180 пф. При плавном возвращении с одного положения в другое емкость конденсатора также плавно будет изменяться от 5 до 180 пф или от 180 до 5 пф. Сегодня не используют конденсаторы переменной емкости, так как их вытеснили варикапы – полупроводниковый элемент, емкость которого зависит от приложенного напряжения.


Перейти к следующей статье: Диоды



Что обозначает маркировка м22 на конденсаторе.

Маркировка конденсаторов

При сборке самодельных электронных схем поневоле сталкиваешься с подбором необходимых конденсаторов. Притом, для сборки устройства можно использовать конденсаторы уже бывшие в употреблении и поработавшие какое-то время в радиоэлектронной аппаратуре. Естественно, перед вторичным использованием необходимо проверять конденсаторы
, особенно ёмкость электролитических
, которые сильнее подвержены старению.

При подборе конденсаторов постоянной ёмкости необходимо разбираться в маркировке этих радиоэлементов, иначе при ошибке собранное устройство либо откажется работать правильно, либо вообще не заработает.

У конденсатора существует несколько важных параметров, которые стоит учитывать при их использовании.

    Первое, это номинальная ёмкость конденсатора
    . Измеряется в долях Фарады.

    Второе – допуск. Или по-другому допустимое отклонение номинальной ёмкости
    от указанной. Этот параметр редко учитывается, так как в бытовой радиоаппаратуре используются радиоэлементы с допуском до ±20%, а иногда и более. Всё зависит от назначения устройства и особенностей конкретного прибора. На принципиальных схемах этот параметр, как правило, не указывается.

    Третье, что указывается в маркировке конденсатора, это допустимое рабочее напряжение
    . Это очень важный параметр, на него следует обращать внимание, если конденсатор будет эксплуатироваться в высоковольтных цепях.

Итак, разберёмся в том, как маркируют конденсаторы постоянной ёмкости.

Одни из самых ходовых конденсаторов, которые можно использовать – это конденсаторы постоянной ёмкости K73 – 17, К73 – 44, К78 – 2, керамические КМ-5, КМ-6 и им подобные. Также в радиоэлектронной аппаратуре импортного производства используются аналоги этих конденсаторов. Их маркировка отличается от маркировки отечественных производителей.

Конденсаторы отечественного производства К73-17 представляют собой плёночные полиэтилентерефталатные защищённые конденсаторы. На корпусе данных конденсаторов маркировка наноситься буквенно-числовым индексом, например 100nJ, 330nK, 220nM, 39nJ, 2n2M.

Конденсаторы серии К73 и их маркировка

Правила маркировки.

Номинальная ёмкость конденсатора.

Ёмкости от 100 пФ и до 0,1 мкФ маркируют в нанофарадах, указывая букву H
или n
.

Обозначение 100n
– это значение номинальной ёмкости конденсатора. Для 100n – 100 нанофарад (нФ) — 0,1 микрофарад (мкФ). Таким образом, конденсатор с индексом 100n имеет ёмкость 0,1мкФ. Для других обозначений аналогично. К примеру:
330n – 0,33 мкФ, 10n – 0,01 мкФ. Для 2n2 – 0,0022 мкФ или 2200 пикофарад (2200 пФ).

Можно встретить маркировку вида 47H
C. Данная маркировка ёмкости соответствует маркировке 47n
K и составляет 47 нанофарад или 0,047 мкФ. Аналогично 22НС – 0,022 мкФ.

Для того чтобы легко определять ёмкость, необходимо знать обозначения основных дольных единиц – милли, микро, нано, пико и их числовые значения.

Также в маркировке конденсаторов К73 встречаются такие обозначения, как M47C, M10C.
Здесь, буква М
условно означает микрофарад. Значение 47 стоит после М, т.е номинальная ёмкость конденсатора является дольной частью микрофарады, т.е 0,47 мкФ. Для M10C — 0,1 мкФ. Получается, что ёмкость конденсатора с маркировкой M10С равно ёмкости конденсатора с маркировкой 100nJ. Только условная маркировка чуть отличается.

Таким образом, ёмкость от 0,1 мкФ и выше указывается с буквой M
, m
вместо десятичной запятой, незначащий ноль опускается.

Номинальную ёмкость отечественных конденсаторов до 100 пФ обозначают в пикофарадах, ставя букву П
или p
после числа. Если ёмкость менее 10 пФ, то ставиться буква R
и две цифры. Например, 1R5 = 1,5 пФ.

На керамических конденсаторах (типа КМ5, КМ6), которые имеют малые размеры, обычно указывается только числовой код ёмкости.

Керамические конденсаторы с нанесённой маркировкой ёмкости числовым кодом

Например, числовая маркировка 224
соответствует значению 220 000 пикофарад, или 220 нанофарад и 0,22 мкФ. В данном случае 22 это числовое значение величины номинала. Цифра 4 указывает на количество нулей. Получившееся число является значением ёмкости в пикофарадах
. При 221, ёмкость равна 220 пФ, при 220 – 22 пФ. Если же в маркировке конденсатора используется код из четырёх цифр, то первые три цифры – числовое значение величины номинала, а последняя, четвёртая – количество нулей. Так при 4722, ёмкость равна 47200 – 47,2 нФ.

Допускаемое отклонение ёмкости маркируется либо числом в процентах (±5%, 10%, 20%), либо латинской буквой. Иногда можно встретить старое обозначение допуска, закодированного русской буквой. Допустимое отклонение ёмкости для конденсатора аналогично допуску у резисторов.

Буквенный код отклонения ёмкости конденсатора (допуск).


Так если конденсатор со следующей маркировкой – M47C, то его ёмкость 0,047 мкФ, а допуск составляет ±10% (по старой маркировке русской буквой). Встретить конденсатор с допуском ±0,25% (по маркировке латинской буквой) в бытовой аппаратуре довольно сложно, поэтому и выбрано значение с большей погрешностью. В основном в бытовой аппаратуре широко применяются конденсаторы с допуском H
, M
, J
, K
. Буква, обозначающая допуск указывается после значения номинальной ёмкости конденсатора, вот так 22nK
, 220nM
, 470nJ
.

Таблица для расшифровки условного буквенного кода допустимого отклонения ёмкости конденсаторов.

Д
опуск в %
Б
уквенное обозначение
лат. рус.
± 0,05p A
± 0,1p B Ж
± 0,25p C У
± 0,5p D Д
± 1,0 F Р
± 2,0 G Л
± 2,5 H
± 5,0 J И
± 10 K С
± 15 L
± 20 M В
± 30 N Ф
-0. ..+100 P
-10…+30 Q
± 22 S
-0…+50 T
-0…+75 U Э
-10…+100 W Ю
-20…+5 Y Б
-20…+80 Z А

Допустимое рабочее напряжение конденсатора.


Немаловажным параметром конденсатора также является допустимое рабочее напряжение. Его стоит учитывать при сборке самодельной электроники и ремонте бытовой радиоаппаратуры. Так, например, при ремонте компактных люминесцентных ламп необходимо подбирать конденсатор на соответствующее напряжение при замене вышедших из строя конденсаторов. Не лишним будет брать конденсатор с запасом по рабочему напряжению.

Обычно, значение допустимого рабочего напряжения конденсатора указывается после номинальной ёмкости и допуска. Обозначается в вольтах с буквы В (старая маркировка), и V (новая маркировка). Например, так: 250В, 400В, 1600V, 200V. В некоторых случаях, буква V опускается.

Иногда применяется кодирование латинской буквой. Для расшифровки следует пользоваться таблицей буквенного кодирования рабочего напряжения конденсаторов.

Н
оминальное рабочее напряжение
, B
Б
уквенный код
1,0 I
1,6 R
2,5 M
3,2 A
4,0 C
6,3 B
10 D
16 E
20 F
25 G
32 H
40 S
50 J
63 K
80 L
100 N
125 P
160 Q
200 Z
250 W
315 X
350 T
400 Y
450 U
500 V

Это наиболее важные параметры конденсаторов, которые стоит знать при подборе нужного конденсатора. Маркировка импортных конденсаторов отличается, но во многом соответствует изложенной.

1. Маркировка тремя цифрами
.

В этом случае первые две цифры определяют мантиссу, а последняя — показатель степени по основанию 10, для получения номинала в пикофарадах. Последняя цифра «9» обозначает показатель степени «-1». Если первая цифра «0», то емкость менее 1пФ (010 = 1.0пФ).

код
пикофарады, пФ, pF
нанофарады, нФ, nF
микрофарады, мкФ, μF
109
1.0 пФ
159
1.5 пФ
229
2.2 пФ
339
3. 3 пФ
479
4.7 пФ
689
6.8 пФ
100
10 пФ
0.01 нФ
150
15 пФ
0.015 нФ
220
22 пФ
0.022 нФ
330
33 пФ
0.033 нФ
470
47 пФ
0. 047 нФ
680
68 пФ
0.068 нФ
101
100 пФ
0.1 нФ
151
150 пФ
0.15 нФ
221
220 пФ
0.22 нФ
331
330 пФ
0.33 нФ
471
470 пФ
0.47 нФ
681
680 пФ
0. 68 нФ
102
1000 пФ
1 нФ
152
1500 пФ
1.5 нФ
222
2200 пФ
2.2 нФ
332
3300 пФ
3.3 нФ
472
4700 пФ
4.7 нФ
682
6800 пФ
6.8 нФ
103
10000 пФ
10 нФ
0. 01 мкФ
153
15000 пФ
15 нФ
0.015 мкФ
223
22000 пФ
22 нФ
0.022 мкФ
333
33000 пФ
33 нФ
0.033 мкФ
473
47000 пФ
47 нФ
0.047 мкФ
683
68000 пФ
68 нФ
0.068 мкФ
104
100000 пФ
100 нФ
0. 1 мкФ
154
150000 пФ
150 нФ
0.15 мкФ
224
220000 пФ
220 нФ
0.22 мкФ
334
330000 пФ
330 нФ
0.33 мкФ
474
470000 пФ
470 нФ
0.47 мкФ
684
680000 пФ
680 нФ
0.68 мкФ
105
1000000 пФ
1000 нФ
1 мкФ

2. Маркировка четырьмя цифрами
.

Эта маркировка аналогична описанной выше, но в этом случае первые три цифры определяют мантиссу, а последняя — показатель степени по основанию 10, для получения емкости в пикофарадах. Например:

1622 = 162*10 2 пФ = 16200 пФ = 16.2 нФ
.

3. Буквенно-цифровая маркировка
.

При такой маркировке буква указывает на десятичную запятую и обозначение (мкФ, нФ, пФ), а цифры — на значение емкости:

15п = 15 пФ, 22p = 22 пФ, 2н2 = 2.2 нФ, 4n7 = 4,7 нФ, μ33 = 0.33 мкФ

Очень часто бывает трудно отличить русскую букву «п» от английской «n».

Иногда для обозначения десятичной точки используется буква R. Обычно так маркируют емкости в микрофарадах, но если перед буквой R стоит ноль, то это пикофарады, например:

0R5 = 0,5 пФ, R47 = 0,47 мкФ, 6R8 = 6,8 мкФ

4. Планарные керамические конденсаторы
.

Керамические SMD конденсаторы обычно или вообще никак не маркируются кроме цвета (цветовую маркировку не знаю, если кто расскажет — буду рад, знаю только, что чем светлее — тем меньше емкость) или маркируются одной или двумя буквами и цифрой. Первая буква, если она есть обозначает производителя, вторая буква обозначает мантиссу в соответствии с приведенной ниже таблицей, цифра — показатель степени по основанию 10, для получения емкости в пикофарадах. Пример:

N1 /по таблице определяем мантиссу: N=3.3/ = 3.3*10 1 пФ = 33пФ

S3 /по таблице S=4.7/ = 4.7*10 3 пФ = 4700пФ = 4,7нФ

маркировка
значение
маркировка
значение
маркировка
значение
маркировка
значение
A
1.0
J
2.2
S
4.7
a
2. 5
B
1.1
K
2.4
T
5.1
b
3.5
C
1.2
L
2.7
U
5.6
d
4.0
D
1.3
M
3.0
V
6.2
e
4.5
E
1.5
N
3. 3
W
6.8
f
5.0
F
1.6
P
3.6
X
7.5
m
6.0
G
1.8
Q
3.9
Y
8.2
n
7.0
H
2.0
R
4.3
Z
9.1
t
8. 0

5. Планарные электролитические конденсаторы
.

Электролитические SMD конденсаторы маркируются двумя способами:

1) Емкостью в микрофарадах и рабочим напряжением, например: 10 6.3V = 10мкФ на 6,3В.

2) Буква и три цифры, при этом буква указывает на рабочее напряжение в соответствии с приведенной ниже таблицей, первые две цифры определяют мантиссу, последняя цифра — показатель степени по основанию 10, для получения емкости в пикофарадах. Полоска на таких конденсаторах указывает положительный вывод. Пример:

По таблице «A» — напряжение 10В, 105 — это 10*10 5 пФ = 1 мкФ, т.е. это конденсатор 1 мкФ на 10В

Конденсатор можно сравнить с небольшим аккумулятором, он умеет быстро накапливать и так же быстро ее отдавать. Основной параметр конденсатора – это его емкость (C)
. Важным свойством конденсатора, является то, что он оказывает переменному току сопротивление, чем больше частота переменного тока, тем меньше сопротивление. Постоянный ток конденсатор не пропускает.

Как и , конденсаторы бывают постоянной емкости и переменной емкости. Применение конденсаторы находят в колебательных контурах, различных фильтрах, для разделения цепей постоянного и переменного токов и в качестве блокировочных элементов.

Основная единица измерения емкости – фарад (Ф)
– это очень большая величина, которая на практике не применяется. В электронике используют конденсаторы емкостью от долей пикофарада (пФ)
до десятков тысяч микрофарад (мкФ)
. 1 мкФ равен одной миллионной доле фарада, а 1 пФ – одной миллионной доле микрофарада.

На электрических принципиальных схемах конденсатор отображается в виде двух параллельных линий символизирующих его основные части: две обкладки и диэлектрик между ними. Возле обозначения конденсатора обычно указывают его номинальную емкость, а иногда его номинальное напряжение.

Номинальное напряжение
– значение напряжения указанное на корпусе конденсатора, при котором гарантируется нормальная работа в течение всего срока службы конденсатора. Если напряжение в цепи будет превышать номинальное напряжение конденсатора, то он быстро выйдет из строя, может даже взорваться. Рекомендуется ставить конденсаторы с запасом по напряжению, например: в цепи напряжение 9 вольт – нужно ставить конденсатор с номинальным напряжением 16 вольт или больше.

Температурный коэффициент емкости конденсатора (ТКЕ)

ТКЕ показывает относительное изменение емкости при изменении температуры на один градус. ТКЕ может быть положительным и отрицательным. По значению и знаку этого параметра конденсаторы разделяются на группы, которым присвоены соответствующие буквенные обозначения на корпусе.

Маркировка емкости конденсаторов

Емкость от 0 до 9999 пФ может быть указана без обозначения единицы измерения:

22 = 22p = 22П = 22пФ

Если емкость меньше 10пФ, то обозначение может быть таким:

1R5 = 1П5 = 1,5пФ

Так же конденсаторы маркируют в нанофарадах (нФ)
, 1 нанофарад равен 1000пФ и микрофарадах (мкФ)
:

10n = 10Н = 10нФ = 0,01мкФ = 10000пФ

Н18 = 0,18нФ = 180пФ

1n0 = 1Н0 = 1нФ = 1000пФ

330Н = 330n = М33 = m33 = 330нФ = 0,33мкФ = 330000пФ

100Н = 100n = М10 = m10 = 100нФ = 0,1мкФ = 100000пФ

1Н5 = 1n5 = 1,5нФ = 1500пФ

4n7 = 4Н7 = 0,0047мкФ = 4700пФ

6М8 = 6,8мкФ

Цифровая маркировка конденсаторов

Если код трехзначный, то первые две цифры обозначают значение, третья – количество нулей, результат в пикофарадах.

Например: код 104, к первым двум цифрам приписываем четыре нуля, получаем 100000пФ = 100нФ = 0,1мкФ.

Если код четырехзначный, то первые три цифры обозначают значение, четвертая – количество нулей, результат тоже в пикофарадах.

4722 = 47200пФ = 47,2нФ

Электролитические конденсаторы

Для работы в диапазоне звуковых частот, а так же для фильтрации выпрямленных напряжений питания, необходимы конденсаторы большой емкости. Такие конденсаторы называются – электролитическими. В отличие от других типов электролитические конденсаторы полярны, это значит, что их можно включать только в цепи постоянного или пульсирующего напряжения и только в той полярности, которая указана на корпусе конденсатора. Не выполнение этого условия приводит к выходу конденсатора из строя, что часто сопровождается взрывом.

пикофарад в микрофарады преобразование (пФ в мкФ)

Введите ниже емкость в пикофарадах, чтобы получить значение, переведенное в микрофарады.

Как преобразовать пикофарады в микрофарады

Чтобы преобразовать измерение пикофарад в измерение микрофарад, разделите емкость на коэффициент преобразования.

Поскольку один микрофарад равен 1000000 пикофарад, вы можете использовать эту простую формулу для преобразования:

микрофарады = пикофарады ÷ 1000000

Емкость в микрофарадах равна пикофарадам, разделенным на 1000000.

Например, вот как преобразовать 5 000 000 пикофарад в микрофарады, используя формулу выше.

5 000 000 пФ = (5 000 000 ÷ 1 000 000) = 5 мкФ

Пикофарады и микрофарады — это единицы, используемые для измерения емкости. Продолжайте читать, чтобы узнать больше о каждой единице измерения.

Пикофарад составляет 1/1 000 000 000 000 фарад, что представляет собой емкость конденсатора с разностью потенциалов в один вольт, когда он заряжается одним кулоном электричества.

Пикофарад кратен фараду, который является производной единицей измерения емкости в системе СИ. В метрической системе «пико» является префиксом для 10 -12 . Пикофарады можно обозначать сокращенно как пФ ; например, 1 пикофарад можно записать как 1 пФ.

Микрофарада равна 1/1 000 000 фарад, что представляет собой емкость конденсатора с разностью потенциалов в один вольт, когда он заряжается одним кулоном электричества.

Микрофарад является производной единицей измерения емкости в системе СИ, кратной фараду. В метрической системе «микро» является префиксом для 10 -6 . Микрофарады можно обозначить как мкФ ; например, 1 мкФ можно записать как 1 мкФ.

Перевести пикофарады в микрофарады — Перевод единиц измерения

››
Перевести пикофарады в микрофарады

Пожалуйста, включите Javascript для использования
конвертер величин.
Обратите внимание, что вы можете отключить большинство объявлений здесь:
https://www.convertunits.com/contact/remove-some-ads.php

››
Дополнительная информация в конвертере величин

Сколько пикофарад в 1 микрофараде?
Ответ — 1000000.
Мы предполагаем, что вы конвертируете пикофарад и микрофарад .
Вы можете просмотреть более подробную информацию о каждой единице измерения:
пикофарад или
микрофарад
Производная единица СИ для емкости — фарад.
1 фарад равен 1000000000000 пикофарад, или 1000000 мкФ.
Обратите внимание, что могут возникать ошибки округления, поэтому всегда проверяйте результаты.
Используйте эту страницу, чтобы узнать, как преобразовать пикофарады в микрофарады.
Введите свои числа в форму, чтобы преобразовать единицы!

››
Хотите другие единицы?

Вы можете произвести обратное преобразование единиц измерения из
микрофарады в пикофарады, или введите любые две единицы ниже:

››
Преобразование общей емкости

пикофарад в декафарад
пикофарад в децифарад
пикофарад в гектофарад
пикофарад в мегафарад
пикофарад в гигафарад
пикофарад в банку
пикофарад в ампер-секунду / вольт
пикофарад в градусах от 9000 до 41 пикофарад в градусах от 9000 до 941 пикофарад в градусах от 9000 до 41 пикофарад в градусах.

››
Определение: Пикофарад

Префикс SI «pico» представляет коэффициент
10 -12 , или в экспоненциальной записи 1E-12.

Итак, 1 пикофарад = 10 -12 фарад.

››
Определение: микрофарад

Префикс SI «micro» представляет собой коэффициент
10 -6 , или в экспоненциальной записи 1E-6.

Итак, 1 микрофарад = 10 -6 фарад.

››
Метрические преобразования и др.

ConvertUnits.com предоставляет онлайн
калькулятор преобразования для всех типов единиц измерения.
Вы также можете найти метрические таблицы преобразования для единиц СИ.
в виде английских единиц, валюты и других данных.Введите единицу
символы, аббревиатуры или полные названия единиц длины,
площадь, масса, давление и другие типы. Примеры включают мм,
дюйм, 100 кг, жидкая унция США, 6 футов 3 дюйма, 10 стоун 4, кубический см,
метры в квадрате, граммы, моль, футы в секунду и многое другое!

Пикофарад в Микрофарад Калькулятор преобразования


Используйте следующий калькулятор для преобразования в пикофарад
и мкФ . Если вам нужно преобразовать пикофарад в другие единицы, попробуйте наш универсальный
Конвертер единиц электростатической емкости.
пикофарад [пФ]:
микрофарад [мкФ]:

Как использовать калькулятор преобразования пикофарад в микрофарады
Введите значение в поле рядом с « пикофарад [пФ] ». Результат появится в поле рядом с « микрофарад [мкФ] ».

Сделайте закладку пикофарад в Микрофарад. Калькулятор преобразования — он вам, вероятно, понадобится в будущем.

Загрузить преобразователь единиц электростатической емкости

наша мощная программная утилита, которая поможет вам легко преобразовать более 2100 различных единиц измерения в более чем 70 категорий.
Откройте для себя универсального помощника для всех ваших потребностей в преобразовании единиц измерения —
скачайте бесплатную демо-версию прямо сейчас!

Сделайте 78 764 преобразования с помощью простого в использовании, точного и мощного калькулятора единиц измерения

Мгновенно добавьте бесплатный виджет преобразователя электростатической емкости на свой веб-сайт

Это займет меньше минуты, это так же просто, как вырезать и наклеить.Конвертер органично впишется в ваш веб-сайт, так как его можно полностью изменить.

Щелкните здесь, чтобы просмотреть пошаговое руководство по размещению этого конвертера единиц на своем веб-сайте.

Ищете интерактивную таблицу преобразования электростатической емкости
?
Посетите наш форум, чтобы обсудить проблемы преобразования
и попросить о бесплатной помощи!
Попробуйте мгновенный поиск по категориям и единицам
, он дает результаты по мере ввода!

Преобразование пикофарадов [пФ] в микрофарады [мкФ, мкФ] • Конвертер емкости • Электротехника • Компактный калькулятор • Онлайн-конвертеры единиц , Преобразователь напряжения, модуля ЮнгаПреобразователь энергии и работыПреобразователь мощностиПреобразователь силыКонвертер времениЛинейный преобразователь скорости и скоростиКонвертер угловТопливная эффективность, расход топлива и экономия топливаПреобразователь чиселПреобразователь единиц информации и хранения данныхКурсы обмена валютЖенская одежда и размеры обувиМужская одежда и размеры обувиКонвертер угловой скорости и скорости вращения Конвертер ускорения Конвертер плотности Конвертер удельного объема Конвертер момента инерции Конвертер момента силы Конвертер крутящего момента Конвертер удельной энергии, теплоты сгорания (на массу) rter Конвертер удельной энергии, теплоты сгорания (на объем) Конвертер температурного интервалаКонвертер коэффициента теплового расширенияКонвертер теплового сопротивленияКонвертер теплопроводностиКонвертер удельной теплоемкостиКонвертер удельной теплоемкостиПреобразователь плотности тепла, плотности пожарной нагрузкиКонвертер плотности теплового потокаКонвертер коэффициента теплопередачиКонвертер плотности потока Конвертер массового расходаМолярный расход потока Конвертер массового расхода Конвертер раствора Конвертер динамической (абсолютной) вязкости Конвертер кинематической вязкости Конвертер поверхностного натяженияПроницаемость, проницаемость, проницаемость водяного пара Конвертер скорости передачи водяного параКонвертер уровня звукаКонвертер чувствительности микрофонаКонвертер уровня звукового давления (SPL) Конвертер уровня звукового давления с выбираемым эталонным давлениемПреобразователь световой интенсивностиКонвертер световой интенсивности и светового разрешения От мощности (диоптрии) до фокуса Конвертер длиныПреобразователь оптической мощности (диоптрия) в увеличение (X )Преобразователь электрического зарядаЛинейный преобразователь плотности зарядаПреобразователь поверхностной плотности зарядаПреобразователь плотности электрического токаЛинейный преобразователь плотности токаПреобразователь плотности поверхностного токаПреобразователь напряженности электрического поляПреобразователь электрического потенциала и удельной проводимостиПреобразователь электрического сопротивления Конвертер американского калибра проводовПреобразование уровней в дБм, дБВ, ваттах и ​​других единицахПреобразователь магнитодвижущей силыПреобразователь напряженности магнитного поляПреобразователь магнитного потокаПреобразователь плотности магнитного потокаМощность поглощенной дозы излучения, Конвертер мощности суммарной дозы ионизирующего излученияРадиоактивность.

Преобразователь радиоактивного распада Преобразователь радиационного воздействияРадиация. Конвертер поглощенной дозы Конвертер метрических префиксов Конвертер передачи данных Конвертер единиц типографии и цифровой визуализации Конвертер единиц измерения объема древесины Калькулятор молярной массы Периодическая таблица

Экран сенсора этого планшета изготовлен с использованием технологии проекции емкости

Обзор

Измерение емкости конденсатора с номинальной емкостью 10 мкФ , используя осциллограф мультиметра.

Емкость — это физическая величина, которая представляет способность проводника накапливать заряд.Он определяется делением величины электрического заряда на разность потенциалов между проводниками:

C = Q / ∆φ

Здесь Q — электрический заряд, который измеряется в кулонах (Кл), а ∆φ — разность потенциалов, измеряемая в вольтах (В).

Емкость измеряется в фарадах (Ф) в СИ. Этот блок назван в честь британского физика Майкла Фарадея.

Один фарад представляет собой чрезвычайно большую емкость для изолированного проводника.Например, изолированный металлический шар с радиусом в 13 раз большим, чем у Солнца, будет иметь емкость в одну фарад, а емкость металлического шара с радиусом Земли будет около 710 микрофарад (мкФ).

Поскольку один фарад — это такая большая величина, используются меньшие единицы, такие как микрофарад (мкФ), что соответствует одной миллионной фарада, нанофарад (нФ), равный одной миллиардной фарада, и пикофарад (пФ). , что составляет одну триллионную фарада.

В расширенной CGS для электромагнитных устройств основная единица измерения емкости описывается в сантиметрах (см).Один сантиметр электромагнитной емкости представляет собой емкость шара в вакууме, имеющего радиус 1 см. Система CGS расшифровывается как система сантиметр-грамм-секунда — в ней сантиметры, граммы и секунды используются в качестве основных единиц длины, массы и времени. Расширения CGS также устанавливают одну или несколько констант равными 1, что позволяет упростить определенные формулы и вычисления.

Использование емкости

Конденсаторы — электронные компоненты для накопления электрических зарядов

Электронные символы

Емкость — это величина, имеющая значение не только для электрических проводников, но и для конденсаторов (первоначально называемых конденсаторами).Конденсаторы состоят из двух проводников, разделенных диэлектриком или вакуумом. Самый простой вариант конденсатора имеет две пластины, которые действуют как электроды. Конденсатор (от латинского condender — конденсировать) — это двухслойный электронный компонент, используемый для хранения электрического заряда и энергии электромагнитного поля. Самый простой конденсатор состоит из двух электрических проводников, между которыми находится диэлектрик. Энтузиасты радиоэлектроники, как известно, делают подстроечные конденсаторы для своих схем с эмалированными проводами разного диаметра.Более тонкая проволока наматывается на более толстую. Цепь RLC настраивается на желаемую частоту путем изменения количества витков провода. На изображении есть несколько примеров того, как конденсатор может быть представлен на принципиальной схеме.

Параллельная RLC-цепь: резистор, катушка индуктивности и конденсатор

Немного истории

Ученые смогли изготавливать конденсаторы еще 275 лет назад. В 1745 году в Лейдене немецкий физик Эвальд Георг фон Клейст и физик из Нидерландов Питер ван Мушенбрук создали первое конденсаторное устройство, получившее название «лейденская банка».Стенки сосуда служили диэлектриком, а вода в сосуде и рука экспериментатора — проводящими пластинами. В такой банке может накапливаться заряд порядка одного микрокулона (мкКл). В то время были популярны эксперименты и демонстрации с лейденскими кувшинами. В них банку заряжали статическим электричеством за счет трения. Затем участник эксперимента касался банки и подвергался поражению электрическим током. Однажды 700 монахов в Париже провели Лейденский эксперимент. Они взялись за руки, и один из них коснулся кувшина.В этот момент все 700 человек воскликнули от ужаса, почувствовав толчок.

«Лейденская банка» попала в Россию благодаря русскому царю Петру Великому. Он встретился с Питером ван Мушенбруком во время своего путешествия по Европе и познакомился с его творчеством. Когда Петр Великий основал Российскую академию наук, он поручил Мушенбруку изготовить различное оборудование для Академии.

Со временем конденсаторы были усовершенствованы, и их размер уменьшался по мере увеличения емкости.Сегодня конденсаторы широко используются в электронике. Например, конденсатор и катушка индуктивности образуют цепь резистора, катушки индуктивности и конденсатора, также известную как RLC, или LCR, или цепь CRL. Эта схема используется для установки частоты приема на радио.

Существует несколько типов конденсаторов, которые различаются постоянной или переменной емкостью, а также типом используемого диэлектрического материала.

Примеры конденсаторов

Конденсаторы электролитические в блоке питания.

Сегодня существует множество различных типов конденсаторов для самых разных целей, но их основная классификация основана на их емкости и номинальном напряжении.

Как правило, емкость конденсаторов находится в диапазоне от нескольких пикофарад до нескольких сотен микрофарад. Исключением являются суперконденсаторы, поскольку их емкость формируется иначе, чем у других конденсаторов — это, по сути, двухслойная емкость. Это похоже на принцип действия электрохимических ячеек.Суперконденсаторы, построенные из углеродных нанотрубок, имеют повышенную емкость из-за большей поверхности электродов. Емкость суперконденсаторов составляет десятки фарад, и иногда они могут заменить электрохимические ячейки в качестве источника электрического тока.

Вторым по важности свойством конденсатора является его номинальное напряжение . Превышение этого значения может сделать конденсатор непригодным для использования. Вот почему при построении цепей обычно используются конденсаторы, номинальное напряжение которых вдвое превышает напряжение, приложенное к ним в цепи.Таким образом, даже если напряжение в цепи немного превышает норму, с конденсатором все будет в порядке, пока увеличение не станет вдвое больше нормы.

Конденсаторы могут быть объединены в батареи для увеличения общего номинального напряжения или емкости системы. Последовательное соединение двух конденсаторов одного типа увеличивает номинальное напряжение вдвое и вдвое снижает общую емкость. При параллельном подключении конденсаторов общая емкость удваивается, а номинальное напряжение остается прежним.

Третьим наиболее важным свойством конденсаторов является их температурный коэффициент емкости . Он отражает взаимосвязь между емкостью и температурой.

В зависимости от назначения конденсаторы подразделяются на конденсаторы общего назначения, которые не должны отвечать высоким требованиям, и специальные конденсаторы. К последней группе относятся высоковольтные конденсаторы, прецизионные конденсаторы и конденсаторы с различным температурным коэффициентом емкости.

Маркировка конденсаторов

Как и резисторы, конденсаторы маркируются в соответствии с их емкостью и другими свойствами. Маркировка может включать информацию о номинальной емкости, степени отклонения от номинального значения и номинальном напряжении. Малогабаритные конденсаторы маркируются трех- или четырехзначным или буквенно-цифровым кодом, а также могут иметь цветовую маркировку.

Таблицы с кодами и соответствующими им значениями номинального напряжения, номинальной емкости и температурного коэффициента емкости доступны в Интернете, но самый надежный способ проверить емкость и определить, правильно ли работает конденсатор, — это удалить конденсатор из цепи. и производить измерения с помощью мультиметра.

Электролитический конденсатор в разобранном виде. Он изготовлен из двух алюминиевых фольг. Один из них покрыт изолирующим оксидным слоем и действует как анод. Бумага, пропитанная электролитом, вместе с другой фольгой действует как катод. Алюминиевая фольга протравливается для увеличения площади поверхности.

Предупреждение: конденсаторы могут накапливать очень большой заряд при очень высоком напряжении. Во избежание поражения электрическим током крайне важно принять меры предосторожности перед выполнением измерений. В частности, важно разряжать конденсаторы путем короткого замыкания их выводов с помощью провода, изолированного из высокопрочного материала. В этой ситуации хорошо подойдут обычные провода измерительного прибора.

Электролитические конденсаторы: эти конденсаторы имеют большой объемный КПД. Это означает, что они имеют большую емкость для данной единицы веса конденсатора. Одна из пластин такого конденсатора обычно представляет собой алюминиевую ленту, покрытую тонким слоем оксида алюминия.Электролитическая жидкость действует как вторая пластина. Эта жидкость имеет электрическую полярность, поэтому крайне важно обеспечить правильное добавление такого конденсатора в схему в соответствии с его полярностью.

Полимерные конденсаторы: в конденсаторах этих типов в качестве второй пластины используется полупроводник или органический полимер, проводящий электричество, а не электролитическая жидкость. Их анод обычно изготавливается из металла, такого как алюминий или тантал.

3-секционный воздушный конденсатор переменной емкости

Переменные конденсаторы: емкость этих конденсаторов можно изменять механически, регулируя электрическое напряжение или изменяя температуру.

Пленочные конденсаторы: их емкость может составлять от 5 пФ до 100 мкФ.

Есть и другие типы конденсаторов.

Суперконденсаторы

Суперконденсаторы в наши дни становятся популярными. Суперконденсатор — это гибрид конденсатора и химического источника питания. Заряд сохраняется на границе, где встречаются две среды, электрод и электролит. Первый электрический компонент, который был предшественником суперконденсатора, был запатентован в 1957 году.Это был конденсатор с двойным электрическим слоем и пористым материалом, который помог увеличить емкость из-за увеличенной площади поверхности. Этот подход теперь известен как двухслойная емкость. Электроды были угольными и пористыми. С тех пор конструкция постоянно улучшалась, и первые суперконденсаторы появились на рынке в начале 1980-х годов.

Суперконденсаторы используются в электрических цепях как источник электрической энергии. У них много преимуществ по сравнению с традиционными аккумуляторами, включая их долговечность, небольшой вес и быструю зарядку.Вероятно, что благодаря этим преимуществам суперконденсаторы в будущем заменят батареи. Главный недостаток использования суперконденсаторов заключается в том, что они вырабатывают меньшее количество удельной энергии (энергии на единицу веса), имеют низкое номинальное напряжение и большой саморазряд.

В гонках Формулы 1 суперконденсаторы используются в системах рекуперации энергии. Энергия вырабатывается, когда автомобиль замедляется. Он хранится в маховике, батарее или суперконденсаторах для дальнейшего использования.

Электромобиль A2B производства Университета Торонто. Общий вид

В бытовой электронике суперконденсаторы используются для обеспечения стабильного электрического тока или в качестве резервного источника питания. Они часто обеспечивают питание во время пиков потребления энергии в устройствах, которые используют питание от батареи и имеют переменную потребность в электроэнергии, например, MP3-плееры, фонарики, автоматические счетчики электроэнергии и другие устройства.

Суперконденсаторы также используются в транспортных средствах общественного транспорта, особенно в троллейбусах, поскольку они обеспечивают более высокую маневренность и автономность движения при проблемах с внешним источником питания.Суперконденсаторы также используются в некоторых автобусах и электромобилях.

Электромобиль A2B производства Университета Торонто. Под капотом

В наши дни многие компании производят электромобили, в том числе General Motors, Nissan, Tesla Motors и Toronto Electric. Исследовательская группа из Университета Торонто совместно с компанией Toronto Electric, занимающейся дистрибьюцией электродвигателей, разработала канадскую модель электромобиля A2B. В нем используются как химические источники энергии, так и суперконденсаторы — такой способ хранения энергии называется гибридным накопителем электроэнергии.Двигатели этого электромобиля питаются от аккумуляторов массой 380 кг. Солнечные батареи также используются за дополнительную плату — они устанавливаются на крыше автомобиля.

Емкостные сенсорные экраны

В современных устройствах все чаще используются сенсорные экраны, которые управляют устройствами с помощью сенсорных панелей или экранов. Существуют различные типы сенсорных экранов, в том числе емкостные и резистивные, а также многие другие. Некоторые могут реагировать только на одно прикосновение, другие — на несколько прикосновений.Принцип работы емкостных экранов основан на том, что большое тело проводит электричество. Это большое тело в нашем случае и есть человеческое тело.

Поверхностные емкостные сенсорные экраны

Сенсорный экран для iPhone выполнен с использованием технологии проецируемой емкости.

Поверхностный емкостный сенсорный экран представляет собой стеклянную панель, покрытую прозрачным резистивным материалом. Как правило, этот материал отличается высокой прозрачностью и низким поверхностным сопротивлением. Часто используется сплав оксида индия и оксида олова.Электроды в углах экрана прикладывают к резистивному материалу низкое колебательное напряжение. Когда палец касается этого экрана, возникает небольшая утечка электрического заряда. Эта утечка обнаруживается датчиками в четырех углах, и информация отправляется контроллеру, который определяет координаты касания.

Преимущество этих экранов в их долговечности. Они могут выдерживать прикосновения с частотой до одного раза в секунду в течение 6,5 лет. Это означает около 200 миллионов касаний.Эти экраны обладают высокой степенью прозрачности — до 90%. Благодаря своим преимуществам, емкостные сенсорные экраны заменяют резистивные сенсорные экраны на рынке с 2009 года.

Недостатки емкостных экранов заключаются в том, что они плохо работают при минусовых температурах и их трудно использовать в перчатках, потому что перчатки действовать как изолятор. Сенсорный экран чувствителен к воздействию элементов, поэтому, если он расположен на внешней панели устройства, он используется только в устройствах, защищающих экран от воздействия.

Проекционные емкостные сенсорные экраны

Помимо поверхностных емкостных экранов, существуют также проекционные емкостные сенсорные экраны. Они отличаются тем, что на внутренней стороне экрана находится сетка электродов. Когда пользователь прикасается к электроду, тело и электрод работают вместе как конденсатор. Благодаря сетке электродов легко получить координаты той области экрана, к которой прикоснулись. Этот тип экрана реагирует на прикосновения даже в тонких перчатках.

Проекционные емкостные сенсорные экраны также обладают высокой прозрачностью, до 90%. Они прочные и долговечные, что делает их популярными не только в личных электронных устройствах, но и в устройствах, предназначенных для общественного использования, таких как торговые автоматы, электронные платежные системы и другие.

Эту статью написали Сергей Акишкин, Татьяна Кондратьева

Есть ли у вас трудности с переводом единицы измерения на другой язык? Помощь доступна! Задайте свой вопрос в TCTerms , и вы получите ответ от опытных технических переводчиков в считанные минуты.

Таблица преобразования конденсаторов

»Электроника

Значения конденсатора могут быть выражены в мкФ, нФ и пФ, и часто требуется преобразование значений между ними, нФ в мкФ, нФ в пФ и наоборот.


Capacitance Tutorial:
Capacitance.
Формулы конденсатора
Емкостное реактивное сопротивление
Параллельные конденсаторы
Последовательные конденсаторы
Диэлектрическая проницаемость и относительная диэлектрическая проницаемость
Коэффициент рассеяния, тангенс угла потерь, ESR
Таблица преобразования конденсаторов


Конденсаторы — это очень распространенная форма электронных компонентов, и емкость конденсаторов обычно выражается в микрофарадах, мкФ (иногда мкФ, когда микроконтроллер недоступен), нанофарадах, нФ и пикофарадах, пФ.

Часто эти множители перекрываются. Например, 0,1 мкФ также можно выразить как 100 нФ, и есть еще много примеров такого рода путаницы в обозначениях.

Также в некоторых областях использование нанофарад, нФ, менее распространено, и значения выражаются в долях мкФ и большим кратным пикофарадам, пФ. В этих обстоятельствах может потребоваться преобразование в нанофарады, нФ, когда доступны компоненты, отмеченные в нанофарадах.

Иногда может сбивать с толку, когда на принципиальной схеме или в списке электронных компонентов может упоминаться значение, например, в пикофарадах, а в списках дистрибьютора электронных компонентов в магазине электронных компонентов может упоминаться это в другом.

Также при проектировании электронной схемы необходимо убедиться, что значения электронных компонентов указаны в текущем кратном десяти. Вылет в десять раз может быть катастрофой!

Таблица преобразования конденсаторов ниже показывает эквиваленты между & microF, nF и pF в удобном табличном формате. Часто при покупке у дистрибьютора электронных компонентов или в магазине электронных компонентов в маркировке спецификаций могут использоваться другие обозначения, и может потребоваться их преобразование.

Конденсаторы могут находиться в диапазоне 10 9 и даже больше, поскольку в настоящее время используются суперконденсаторы. Во избежание путаницы с большим количеством нулей, прикрепленных к значениям различных конденсаторов, широко используются общие префиксы pico (10 -12 ), nano (10 -9 ) и micro (10 -6 ). При преобразовании между ними иногда полезно иметь таблицу преобразования конденсаторов или таблицу преобразования конденсаторов для различных значений конденсаторов.

Еще одно требование для преобразования емкости состоит в том, что для некоторых схем маркировки конденсаторов фактическое значение емкости указывается в пикофарадах, а затем требуется преобразование значения в более обычные нанофарады или микрофарады.

Также другие формы электронных компонентов используют те же формы умножителя. Резисторы, как правило, не подходят, поскольку их значения измеряются в Ом и более высоких кратных, таких как кОм или & МОм, но индуктивности измеряются в Генри, а значения намного меньше.Поэтому милли-Генри и микро-Генри широко используются, и поэтому могут потребоваться аналогичные преобразования.

Калькулятор преобразования емкости

Калькулятор преобразования значений емкости, представленный ниже, позволяет легко преобразовывать значения, выраженные в микрофарадах: мкФ, нанофарадах: нФ и пикофарадах: пФ. Просто введите значение и то, в чем оно выражается, и значение будет отображаться в мкФ, нФ и пФ, а также значение в фарадах!

Калькулятор преобразования емкости

Преобразовать электростатическую емкость.

Конденсатор Таблица преобразования

Диаграмма или таблица, подтверждающая простой перевод между микрофарадами, мкФ; нанофарады, нФ, и пикофарады, пФ приведены ниже. Это помогает уменьшить путаницу, которая может возникнуть при переключении между разными множителями значений.

Таблица преобразования значений емкости конденсатора
пФ в нФ, мк в нФ и т. Д. .
микрофарад (мкФ) нанофарад (нФ) Пикофарады (пФ)
0.000001 0,001 1
0,00001 0,01 10
0,0001 0,1 100
0,001 1 1000
0,01 10 10000
0,1 100 100000
1 1000 1000000
10 10000 10000000
100 100000 100000000

Эта таблица преобразования конденсаторов или таблица преобразования конденсаторов позволяет быстро и легко найти различные значения, указанные для конденсаторов, и преобразовать их между пикофарадами, нанофарадами и микрофарадами.

Популярные преобразования конденсаторов

Существует несколько популярных способов записи значений конденсаторов. Часто, например, керамический конденсатор может иметь значение 100 нФ. При использовании в схемах с электролитическими конденсаторами часто бывает интересно понять, что это 0,1 мкФ. Эти полезные преобразования могут помочь при проектировании, создании или обслуживании схем.

Преобразование обычных конденсаторов
100 пФ = 0,1 нФ
1000pf = 1 нФ
100 нФ = 0.1 мкФ

При проектировании схем или любом использовании конденсаторов часто бывает полезно иметь в виду эти преобразования конденсаторов, поскольку значения переходят от пикофарад к нанофарадам, а затем от нанофарад к микрофарадам.

Более подробная таблица коэффициентов преобразования для преобразования между различными значениями, нФ в пФ, мкФ в нФ и т. Д., Приведена ниже.

Таблица коэффициентов преобразования для преобразования между мкФ, нФ и пФ
Преобразовать Умножить на:
от пФ до нФ 1 x 10 -3
пФ до мкФ 1 x 10 -6
нФ до пФ 1 х 10 3
нФ до мкФ 1 x 10 -3
мкФ до пФ 1 х 10 6
мкФ до нФ 1 х 10 3

Номенклатура преобразования конденсаторов

Хотя большинство современных схем и описаний компонентов используют номенклатуру мкФ, нФ и пФ для детализации значений конденсаторов, часто в старых схемах цепей, описаниях схем и даже самих компонентах может использоваться множество нестандартных сокращений, и это не всегда может быть понятно именно то, что они означают.

Основные варианты для различных подкратных значений емкости приведены ниже:

  • Микрофарад, мкФ: Значения для конденсаторов большей емкости, таких как электролитические конденсаторы, танталовые конденсаторы и даже некоторых бумажных конденсаторов, измеренные в микрофарадах, могли быть обозначены в мкФ, МФД, МФД, МФ или UF. Все они относятся к величине, измеренной в мкФ. Эта терминология обычно связана с электролитическими конденсаторами и танталовыми конденсаторами.
  • Нано-Фарад, нФ: Терминология нФ или нано-Фарад не использовалась широко до стандартизации терминологии, и, следовательно, это подмножество не имело множества сокращений. Термин нанофарад стал гораздо более использоваться в последние годы, хотя в некоторых странах его использование не так широко, поскольку значения выражаются в большом количестве пикофарад, например 1000 пФ на 1 нФ или доли микрофарады, например 0,001 мкФ, опять же для нанофарада.Эта терминология обычно ассоциируется с керамическими конденсаторами, металлизированными пленочными конденсаторами, включая многослойные керамические конденсаторы для поверхностного монтажа, и даже с некоторыми современными конденсаторами из серебряной слюды.
  • Пико-Фарад, пФ: Снова использовались различные сокращения, чтобы указать значение в пикофарадах, пФ. Используемые термины включали: микроромикрофарады, mmfd, MMFD, uff, мкФ. Все они относятся к значениям в пФ. Значения конденсаторов, измеряемые в пикофарадах, часто используются в радиочастотных, радиочастотных цепях и оборудовании.Соответственно, эта терминология используется в основном с керамическими конденсаторами, но она также используется для серебряных слюдяных конденсаторов и некоторых пленочных конденсаторов.

Стандартизация терминологии помогла в преобразовании значений из одного подмножества в другое. Это означает, что места для недопонимания значительно меньше. Проще преобразовать из мкФ в нФ и пФ. Это часто бывает полезно, когда на принципиальной схеме может упоминаться номинал конденсатора, упомянутый одним способом, а в списках дистрибьюторов электронных компонентов — другим.

Таблица преобразования емкости очень полезна, потому что разные производители электронных компонентов могут маркировать компоненты по-разному, иногда обозначая их как несколько нанофарад, тогда как другие производители могут маркировать свои эквивалентные конденсаторы как доли микрофарад и так далее. Очевидно, что дистрибьюторы электронных компонентов и магазины электронных компонентов будут стремиться использовать номенклатуру производителей.

Точно так же принципиальные схемы могут по-разному обозначать компоненты, часто для сохранения общности и т. Д.Соответственно, это помогает иметь возможность конвертировать пикофарады в нанофарады и микрофарады и наоборот. Это может помочь идентифицировать компоненты, отмеченные значениями, выраженными в нанофарадах, если в спецификации или списке деталей для схемы могут быть значения, выраженные в микрофарадах, мкФ и пикофарадах, пФ.

Часто бывает полезно иметь возможность использовать калькулятор преобразования емкости, подобный приведенному выше, но часто вы знакомы с преобразованиями, и популярные эквиваленты, такие как 1000 пФ — это нанофарад, а 100 нФ — 0.1 мкФ.

При использовании электронных компонентов и проектировании электронных схем эти преобразования быстро становятся второй натурой, но даже в этом случае таблицы преобразования емкости и калькуляторы часто могут быть очень полезными. Эти преобразования, очевидно, полезны для конденсаторов, а также других электронных компонентов, таких как индукторы.

Дополнительные основные понятия:
Напряжение
Текущий
Сопротивление
Емкость
Мощность
Трансформеры
RF шум
Децибел, дБ
Q, добротность

Вернуться в меню «Основные понятия».. .

Как пересчитать омы в микрофарады

Обновлено 28 декабря 2020 г.

Дэвид Латчман

Конденсатор — это электрический компонент, который накапливает энергию в электрическом поле. Устройство состоит из двух металлических пластин, разделенных диэлектриком или изолятором. Когда на его выводы подается постоянное напряжение, конденсатор потребляет ток и продолжает заряжаться, пока напряжение на выводах не сравняется с напряжением питания.В цепи переменного тока, в которой приложенное напряжение постоянно изменяется, конденсатор непрерывно заряжается или разряжается со скоростью, зависящей от частоты источника питания.

Конденсаторы часто используются для фильтрации составляющей постоянного тока в сигнале. На очень низких частотах конденсатор действует как разомкнутая цепь, а на высоких частотах устройство действует как замкнутая цепь. Когда конденсатор заряжается и разряжается, ток ограничивается внутренним сопротивлением, формой электрического сопротивления.Этот внутренний импеданс известен как емкостное реактивное сопротивление и измеряется в омах.

Сколько стоит 1 фарад?

Фарад (Ф) — это единица измерения электрической емкости в системе СИ, которая измеряет способность компонента накапливать заряд. Конденсатор емкостью один фарад накапливает один кулон заряда с разностью потенциалов в один вольт на своих выводах. Емкость можно рассчитать по формуле

C = \ frac {Q} {V}

, где C — емкость в фарадах (Ф), Q — заряд в кулонах (Кл). , а В — разность потенциалов в вольтах (В).

Конденсатор размером в один фарад довольно большой, так как он может хранить много заряда. Большинству электрических цепей не нужна такая большая емкость, поэтому большинство продаваемых конденсаторов намного меньше, обычно в диапазоне пико-, нано- и микрофарад.

Калькулятор мФ в мкФ

Преобразование миллифарадов в микрофарады — простая операция. Можно использовать онлайн-калькулятор мФ в мкФ или загрузить таблицу преобразования конденсаторов в формате pdf, но математическое решение — простая операция.3 \ text {μF}

Таким же образом можно преобразовать пикофарады в микрофарады.

Емкостное реактивное сопротивление: сопротивление конденсатора

Когда конденсатор заряжается, ток через него быстро и экспоненциально падает до нуля, пока его пластины не будут полностью заряжены. На низких частотах конденсатор имеет больше времени для зарядки и пропускает меньший ток, что приводит к меньшему протеканию тока на низких частотах. На более высоких частотах конденсатор тратит меньше времени на зарядку и разрядку и накапливает меньше заряда между своими пластинами. Это приводит к тому, что через устройство проходит больше тока.

Это «сопротивление» протеканию тока аналогично резистору, но решающее отличие состоит в том, что сопротивление конденсатора по току — емкостное реактивное сопротивление — изменяется в зависимости от приложенной частоты. По мере увеличения приложенной частоты реактивное сопротивление, которое измеряется в омах (Ом), уменьшается.

Емкостное реактивное сопротивление ( X c ) рассчитывается по следующей формуле

X_c = \ frac {1} {2 \ pi fC}

, где X c — емкостное реактивное сопротивление в омах, f — частота в герцах (Гц), а C — емкость в фарадах (F).{-9}} = 37.9 \ Omega

Можно видеть, что реактивное сопротивление конденсатора уменьшается с увеличением приложенной частоты. В этом случае частота увеличивается в 10 раз, а реактивное сопротивление уменьшается на аналогичную величину.

Пикофарад Таблица преобразования значений конденсатора

Вот моя таблица стандартных значений конденсаторов в пикофарадах. Моя диаграмма также показывает преобразование пикофарад в нанофарад , а также преобразование пикофарад в микрофарад для всех размеров и значений конденсаторов в серии E6.

9013 9013 9013

9013 9013

9013 1,5 нФ

9011 9011 9011

9011

9013 150

пикофарад нанофарад мкФ
10 пФ 0,01 нФ 0,00001 мкФ 0,00001 мкФ
0,022 нФ 0,000022 мкФ
33 пФ 0,033 нФ 0,000033 мкФ
47 пФ 0,047 нФ 0.000047 мкФ
68 пФ 0,068 мкФ 0,000068 мкФ
100 pF 0,1 nF 0131 011 0,00015 мкФ
220 пФ 0,22 нФ 0,00022 мкФ
330 пФ 0,33 нФ 0,00033 мкФ
470137 013147 нФ 0,00047 мкФ
680 пФ 0,68 нФ 0,00068 мкФ
1000 15001 0,0015 мкФ
2200 пФ 2,2 нФ 0,0022 мкФ
3300 пФ 3,3 нФ 0,0033 мкФ
47007 нФ 0,0047 мкФ
6800 пФ 6,8 нФ 0,0068 мкФ
10000 pF
10000 pF 15 нФ 0,015 мкФ
22000 пФ 22 нФ 0,022 мкФ
33000 пФ 33 нФ 0,033 мкФ
470131
047 мкФ
68000 пФ 68 нФ 0,068 мкФ
100000 pF 100 nF 0,15 мкФ
220000 пФ 220 нФ 0,22 мкФ
330000 пФ 330 нФ 0,33 мкФ
470000 470000 pF

013747 мкФ
680000 пФ 680 нФ 0,68 мкФ
1000000 pF 1000 nF 15001

1000 nF 1 мкФ 1,5 мкФ
2200000 пФ 2200 нФ 2,2 мкФ
3300000 пФ 3300 нФ 3,3 мкФ
47001371 4700137 7 мкФ
6800000 пФ 6800 нФ 6,8 мкФ
10000000 pF 10000 nF

10000 nF 15 мкФ
22000000 пФ 22000 нФ 22 мкФ
33000000 пФ 33000 нФ 33 мкФ
470000137 47137 470000137 47136 9011 9011 9011

470000137 68000 нФ 68 мкФ
100000000 пФ 100000 нФ 100 мкФ
150000
150000 907 220000 нФ 220 мкФ
330000000 пФ 330000 нФ 330 мкФ
470000000 пФ 470000 нФ 470 мкФ
680000000 пФ 680000 нФ 680 мкФ

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *