Чему равно эдс: This page is blocked by service provider.

Содержание

Электродвижущая сила (ЭДС): формула расчета и определение

Электродвижущая сила или сокращено ЭДС – это способность источника тока ил по-другому питающий элемент, создавать в электрической цепи разность потенциалов. Элементами питания являются аккумуляторы или батареи. Это скалярная физическая величина, равная работе сторонних сил для перемещения одного заряда с положительной величиной. В данной статье будут рассмотрены теоритические вопросы ЭДС, как она образуется, а также для чего она может быть использована на практике и где используются, а главное как рассчитать ее.

Формула ЭДС.

Формула ЭДС.

Что такое ЭДС: объяснение простыми словами

Под ЭДС понимается удельная работа сторонних сил по перемещению единичного заряда в контуре электрической цепи. Это понятие в электричестве предполагает множество физических толкований, относящихся к различным областям технических знаний. В электротехнике — это удельная работа сторонних сил, появляющаяся в индуктивных обмотках при наведении в них переменного поля. В химии она означает разность потенциалов, возникающее при электролизе, а также при реакциях, сопровождающихся разделением электрических зарядов.

В физике она соответствует электродвижущей силе, создаваемой на концах электрической термопары, например. Чтобы объяснить суть ЭДС простыми словами – потребуется рассмотреть каждый из вариантов ее трактовки. Прежде чем перейти к основной части статьи отметим, что ЭДС и напряжение очень близкие по смыслу понятия, но всё же несколько отличаются. Если сказать кратко, то ЭДС — на источнике питания без нагрузки, а когда к нему подключают нагрузку — это уже напряжение. Потому что количество вольт на ИП под нагрузкой почти всегда несколько меньше, чем без неё. Это связано с наличием внутреннего сопротивления таких источников питания, как трансформаторы и гальванические элементы.

Дополнительный материал по теме: Простыми словами о преобразователях напряжения.

Электродвижущая сила (эдс), физическая величина, характеризующая действие сторонних (непотенциальных) сил в источниках постоянного или переменного тока; в замкнутом проводящем контуре равна работе этих сил по перемещению единичного положительного заряда вдоль контура. Если через Eстр обозначить напряжённость поля сторонних сил, то эдс в замкнутом контуре (L) равна , где dl — элемент длины контура. Потенциальные силы электростатического (или стационарного) поля не могут поддерживать постоянный ток в цепи, т. к. работа этих сил на замкнутом пути равна нулю. Прохождение же тока по проводникам сопровождается выделением энергии — нагреванием проводников.

Сторонние силы приводят в движение заряженные частицы внутри источников тока: генераторов, гальванических элементов, аккумуляторов и т. д. Происхождение сторонних сил может быть различным. В генераторах сторонние силы — это силы со стороны вихревого электрического поля, возникающего при изменении магнитного поля со временем, или Лоренца сила, действующая со стороны магнитного поля на электроны в движущемся проводнике; в гальванических элементах и аккумуляторах — это химические силы и т. д. Эдс определяет силу тока в цепи при заданном её сопротивлении (см. Ома закон). Измеряется эдс, как и напряжение, в вольтах.

Что такое ЭДС.

Что такое ЭДС.

Природа ЭДС

Причина возникновения ЭДС в разных источниках тока разная. По природе возникновения различают следующие типы:

  •  Химическая ЭДС.  Возникает в батарейках и аккумуляторах вследствие  химических реакций.
  • Термо ЭДС.  Возникает, когда находящиеся при разных температурах контакты  разнородных проводников соединены.
  • ЭДС индукции. Возникает в генераторе при  помещении вращающегося проводника в магнитное поле. ЭДС будет наводиться в проводнике, когда проводник  пересекает силовые линии постоянного магнитного поля или когда магнитное поле изменяется по величине.
  • Фотоэлектрическая ЭДС. Возникновению этой ЭДС способствует явление  внешнего или внутреннего фотоэффекта.
  • Пьезоэлектрическая ЭДС. ЭДС возникает при растяжении или сдавливании веществ.

Электромагнитная индукция (самоиндукция)

Начнем с электромагнитной индукции. Это явление описывает закон электромагнитной индукции Фарадея. Физический смысл этого явления состоит в способности электромагнитного поля наводить ЭДС в находящемся рядом проводнике. При этом или поле должно изменяться, например, по величине и направлению векторов, или перемещаться относительно проводника, или должен двигаться проводник относительно этого поля. На концах проводника в этом случае возникает разность потенциалов.

Опыт демонстрирует появление ЭДС в катушке при воздействии изменяющегося магнитного поля постоянного магнита. Есть и другое похожее по смыслу явление — взаимоиндукция. Оно заключается в том, что изменение направления и силы тока одной катушки индуцирует ЭДС на выводах расположенной рядом катушки, широко применяется в различных областях техники, включая электрику и электронику. Оно лежит в основе работы трансформаторов, где магнитный поток одной обмотки наводит ток и напряжение во второй.

Что такое самоиндукция.

Что такое самоиндукция.

В электрике физический эффект под названием ЭДС используется при изготовлении специальных преобразователей переменного тока, обеспечивающих получение нужных значений действующих величин (тока и напряжения). Благодаря явлениям индукции и самоиндукции инженерам удалось разработать множество электротехнических устройств: от обычной катушки индуктивности (дросселя) и вплоть до трансформатора. Понятие взаимоиндукции касается только переменного тока, при протекании которого в контуре или проводнике меняется магнитный поток.

Электродвижущая сила индукции

Таблица параметров электродвижущей силы индукции.

ЭДС в быту и единицы измерения

Другие примеры встречаются в практической жизни любого рядового человека. Под эту категорию попадают такие привычные вещи, как малогабаритные батарейки, а также другие миниатюрные элементы питания. В этом случае рабочая ЭДС формируется за счет химических процессов, протекающих внутри источников постоянного напряжения. Когда оно возникает на клеммах (полюсах) батареи вследствие внутренних изменений – элемент полностью готов к работе. Со временем величина ЭДС несколько снижается, а внутреннее сопротивление заметно возрастает.

В результате если вы измеряете напряжение на не подключенной ни к чему пальчиковой батарейке вы видите нормальные для неё 1.5В (или около того), но когда к батарейке подключается нагрузка, допустим, вы установили её в какой-то прибор — он не работает. Почему? Потому что если предположить, что у вольтметра внутреннее сопротивление во много раз выше, чем внутреннее сопротивлении батарейки — то вы измеряли её ЭДС. Когда батарейка начала отдавать ток в нагрузке на её выводах стало не 1.5В, а, допустим, 1.2В — прибору недостаточно ни напряжения, ни тока для нормальной работы.

Расчет ЭДС.

Расчет ЭДС.

Как раз вот эти 0.3 В и упали на внутреннем сопротивлении гальванического элемента. Если батарейка совсем старая и её электроды разрушены, то на клеммах батареи может не быть вообще никакой электродвижущей силы или напряжения — т.е. ноль. Совсем небольшая по величине электродвижущая сила наводится и в рамках антенны приемника, которая усиливается затем специальными каскадами, и мы получаем наш телевизионный, радио и даже Wi-Fi сигнал.

Материал по теме: Выбираем цифро-аналоговый преобразователь.

Как образуется ЭДС

Идеальный источник ЭДС – генератор, внутреннее сопротивление которого равно нулю, а напряжение на его зажимах не зависит от нагрузки. Мощность идеального источника ЭДС бесконечна. Реальный источник ЭДС, в отличие от идеального, содержит внутреннее сопротивление Ri и его напряжение зависит от нагрузки (рис. 1., б), а мощность источника конечна. Электрическая схема реального генератора ЭДС представляет собой последовательное соединение идеального генератора ЭДС Е и его внутреннего сопротивления Ri.

На практике для того чтобы приблизить режим работы реального генератора ЭДС к режиму работы идеального, внутреннее сопротивление реального генератора Ri стараются делать как можно меньше, а сопротивление нагрузки Rн необходимо подключать величиной не менее чем в 10 раз большей величины внутреннего сопротивления генератора, т.е. необходимо выполнять условие: Rн >> Ri

Для того чтобы выходное напряжение реального генератора ЭДС не зависело от нагрузки, его стабилизируют применением специальных электронных схем стабилизации напряжения. Поскольку внутреннее сопротивление реального генератора ЭДС не может быть выполнено бесконечно малым, его минимизируют и выполняют стандартным для возможности согласованного подключения к нему потребителей энергии. В радиотехнике величины стандартного выходного сопротивления генераторов ЭДС составляют 50 Ом (промышленный стандарт) и 75 Ом (бытовой стандарт).

Например, все телевизионные приемники имеют входное сопротивление 75 Ом и подключены к антеннам коаксиальным кабелем именно такого волнового сопротивления. Для приближения к идеальным генераторам ЭДС источники питающего напряжения, используемые во всей промышленной и бытовой радиоэлектронной аппаратуре, выполняют с применением специальных электронных схем стабилизации выходного напряжения, которые позволяют выдерживать практически неизменное выходное напряжение источника питания в заданном диапазоне токов, потребляемых от источника ЭДС (иногда его называют источником напряжения).

На электрических схемах источники ЭДС изображаются так: Е — источник постоянной ЭДС, е(t) – источник гармонической (переменной) ЭДС в форме функции времени. Электродвижущая сила Е батареи последовательно соединенных одинаковых элементов равна электродвижущей силе одного элемента Е, умноженной на число элементов n батареи: Е = nЕ.

Постоянный ток и ЭДС.

Постоянный ток и ЭДС.

Электродвижущая сила (ЭДС) источника энергии

Для поддержания электрического тока в проводнике требуется внешний источник энергии, создающий все время разность потенциалов между концами этого проводника. Такие источники энергии получили название источников электрической энергии (или источников тока). Источники электрической энергии обладают определенной электродвижущей силой (сокращенно ЭДС), которая создает и длительное время поддерживает разность потенциалов между концами проводника.

Лагутин Виталий Сергеевич

Инженер по специальности «Программное обеспечение вычислительной техники и автоматизированных систем», МИФИ, 2005–2010 гг.

Задать вопрос

Иногда говорят, что ЭДС создает электрический ток в цепи. Нужно помнить об условности такого определения, так как выше мы уже установили, что причина возникновения и существования электрического тока — электрическое поле.

Источник электрической энергии производит определенную работу, перемещая электрические заряды по всей замкнутой цепи. За единицу измерения электродвижущей силы принят вольт (сокращенно вольт обозначается буквой В или V — «вэ» латинское). ЭДС источника электрической энергии равна одному вольту, если при перемещении одного кулона электричества по всей замкнутой, цепи источник электрической энергии совершает работу, равную одному джоулю:

Электродвижущая сила (ЭДС) источника энергии.

Электродвижущая сила (ЭДС) источника энергии.

В практике для измерения ЭДС используются как более крупные, так и более мелкие единицы, а именно:

  • 1 киловольт (кВ, kV), равный 1000 В;
  • 1 милливольт (мВ, mV), равный одной тысячной доле вольта (10-3 В),
  • 1 микровольт (мкВ, μV), равный одной миллионной доле вольта (10-6 В).

Очевидно, что 1 кВ = 1000 В; 1 В = 1000 мВ = 1 000 000 мкВ; 1 мВ= 1000 мкВ.

В настоящее, время существует несколько видов источников электрической энергии. Впервые в качестве источника электрической энергии была использована гальваническая батарея, состоящая из нескольких цинковых и медных кружков, между которыми была проложена кожа, смоченная в подкисленной воде. В гальванической батарее химическая энергия превращалась в электрическую (подробнее об этом будет рассказано в главе XVI). Свое название гальваническая батарея получила по имени итальянского физиолога Луиджи Гальвани (1737—1798), одного из основателей учения об электричестве.

Многочисленные опыты по усовершенствованию и практическому использованию гальванических батарей были проведены русским ученым Василием Владимировичем Петровым. Еще в начале прошлого века он создал самую большую в мире гальваническую батарею и использовал ее для ряда блестящих опытов. Источники электрической энергии, работающие по принципу преобразования химической энергии в электрическую, называются химическими источниками электрической энергии.

Полезно знать: Как рассчитать мощность электрического тока.

Другим основным источником электрической энергий, получившим широкое применение в электротехнике и радиотехнике, является генератор. В генераторах механическая энергия преобразуется в электрическую. У химических источников электрической энергии и у генераторов электродвижущая сила проявляется одинаково, создавая на зажимах источника разность потенциалов и поддерживая ее длительное время.

Что такое электродвижущая сила (ЭДС) и как ее рассчитать

Эти зажимы называются полюсами источника электрической энергии. Один полюс источника электрической энергии имеет положительный потенциал (недостаток электронов), обозначается знаком плюс ( + ) и называется положительным полюсом.

Другой полюс имеет отрицательный потенциал (избыток электронов), обозначается знаком минус (—) и называется отрицательным полюсом. От источников электрической энергии электрическая энергия передается по проводам к ее потребителям (электрические лампы, электродвигатели, электрические дуги, электронагревательные приборы и т. д.).

Как образуется ЭДС.

Примеры решения задач

К каждой позиции первого столбца подберите соответствующую позицию второго:

ФИЗИЧЕСКИЕ ВЕЛИЧИНЫ

ФОРМУЛЫ
Электродвижущая сила
Сила тока
Сопротивление
Разность потенциалов

Решение: Электродвижущая сила гальванического элемента есть величина, численно равная работе сторонних сил при перемещении единичного положительного заряда внутри элемента от одного полюса к другому.

Работа сторонних сил не может быть выражена через разность потенциалов, так как сторонние силы непотенциальны и их работа зависит от формы траектории перемещения зарядов.

ЭДС определяется по формуле:

Сила тока определяется по формуле:

Сопротивление определяется по формуле:

Разность потенциалов определяется по формуле:

Правильный ответ:

ФИЗИЧЕСКИЕ ВЕЛИЧИНЫ ФОРМУЛЫ
Электродвижущая сила
Сила тока
Сопротивление
Разность потенциалов

Что такое электродвижущая сила?

Это отношение работы сторонних сил при перемещении заряда по замкнутому контуру к абсолютной величине этого заряда.

Что такое электрическая цепь?

Набор устройств, которые соединены проводниками, предназначенный для протекания тока.

Как звучит закон Ома для полной цепи?

Сила тока в полной цепи равна отношению ЭДС цепи к ее полному сопротивлению.

Заключение

Лагутин Виталий Сергеевич

Инженер по специальности «Программное обеспечение вычислительной техники и автоматизированных систем», МИФИ, 2005–2010 гг.

Задать вопрос

Если в проводнике создать электрическое поле и не поддерживать это поле, то перемещение носителей тока приведет к тому, что поле внутри проводника исчезнет, и ток прекратится. Для того чтобы поддерживать ток в цепи достаточно долго, необходимо осуществить движение зарядов по замкнутой траектории, то есть сделать линии постоянного тока замкнутыми. Следовательно, в замкнутой цепи должны быть участки, на которых носители заряда будут двигаться против сил электростатического поля, то есть от точек с меньшим потенциалом к точкам с большим потенциалом. Это возможно лишь при наличии неэлектрических сил, называемых сторонними силами. Сторонними силами являются силы любой природы, кроме кулоновских.

Дополнительную информацию о предмете статьи можно узнать из файла «Электродвижущая сила в цепях электрического тока». А также в нашей группе ВК публикуются интересные материалы, с которыми вы можете познакомиться первыми. Для этого приглашаем читателей подписаться и вступить в группу.

В завершение хочу выразить благодарность источникам, откуда почерпнут материал для подготовки статьи:

www.booksite.ru

www.scsiexplorer.com.ua

www.samelectrik.ru

www.electricalschool.info

www.sxemotehnika.ru

www.zaochnik.ru

www.ido.tsu.ru

Мне нравится1Не нравится Предыдущая

ТеорияЧто такое термопара: об устройстве простыми словами

Следующая

ТеорияЧто такое заземление простыми словами

электродвижущая сила — это… Что такое электродвижущая сила?

(эдс), величина, характеризующая источник энергии неэлектростатической природы в электрической цепи, необходимый для поддержания в ней электрического тока. Эдс численно равна работе по перемещению единичного положительного заряда вдоль замкнутой цепи. Полная эдс в цепи постоянного тока равна разности потенциалов на концах разомкнутой цепи. Эдс индукции создаётся вихревым электрическим полем, порождаемым переменным магнитным полем. В СИ измеряется в вольтах.

ЭЛЕКТРОДВИ́ЖУЩАЯ СИ́ЛА (эдс; e) — величина, характеризующая источник энергии неэлектростатической природы в электрической цепи, необходимый для поддержания в ней электрического тока (см. ЭЛЕКТРИЧЕСКИЙ ТОК). Потенциальные силы электростатического (или стационарного) поля не могут поддерживать постоянный ток в цепи. Для поддержания в цепи непрерывного тока необходим источник тока (см. ИСТОЧНИКИ ТОКА), или генератор (см. ГЕНЕРАТОР) электрического тока, обеспечивающий действие сторонних сил (см. СТОРОННИЕ СИЛЫ). Сторонние силы имеют неэлектростатическое происхождение и действуют внутри источников тока, (генераторов, гальванических элементов, аккумуляторов и т. д.), создавая разность потенциалов между концами остальной части цепи и приводя в движение заряженные частицы внутри источников тока.

Так как при перемещении электрического заряда по замкнутой цепи работа, совершаемая электростатическими силами, равна нулю, то заряд перемещается лишь под действием сторонних сил. Поэтому электродвижущая сила источника тока будет численно равна работе сторонних сил А в источниках постоянного или переменного тока по перемещению единичного положительного заряда Q вдоль замкнутой цепи.

ЭДС, действующая в цепи, определяется как циркуляция вектора напряженности сторонних сил.

Происхождение сторонних сил может быть различным. В качестве меры электродвижущей силы, действующей в генераторе, принимают разность потенциалов, создаваемую на зажимах разомкнутого генератора. Один и тот же источник тока, в зависимости от силы отбираемого тока, может обладать различным напряжением на электродах. Источники тока — аккумуляторы, термоэлементы, электрические генераторы – одновременно замыкают электрическую цепь. Ток течет по внешней части цепи — проводнику и по внутренней — источнику тока. Источник тока имеет два полюса: положительный (с более высоким потенциалом) и отрицательный (с более низким потенциалом). Сторонние силы, природа которых может быть различной (химической, механической, тепловой), разделяют заряды в источнике тока. Полная ЭДС в цепи постоянного тока (максимальное из этих напряжений, существующее при разомкнутой цепи), равна разности потенциалов на концах разомкнутой цепи и показывает ЭДС источника.

ЭДС определяет силу тока в цепи при заданном ее сопротивлении (Ома закон (см. ОМА ЗАКОН)). Измеряется ЭДС, как и напряжение, в вольтах (см. ВОЛЬТ). Для поддержания непрерывного электрического тока используются генераторы, являющиеся источником электродвижущей силы. В генераторах сторонние силы — это силы со стороны вихревого электрического поля, возникающего при изменении магнитного поля со временем, или Лоренца сила (см. ЛОРЕНЦА СИЛА), действующая со стороны магнитного поля на электроны в движущемся проводнике; в гальванических элементах (см. ГАЛЬВАНИЧЕСКИЙ ЭЛЕМЕНТ) и аккумуляторах — это химические силы.

Электродвижущая сила (ЭДС)

Невозможно получать в проводнике постоянный электрический ток, если для создания напряжения на его концах имеются только, например, заряженные конденсаторы. Электростатическое поле будет перемещать заряды так, что разности потенциалов будут уменьшаться.

Для того чтобы в цепи проводников непрерывно поддерживался электрический ток необходимо наличие в ней какого – либо устройства, в котором происходило бы разделение электрических зарядов и таким образом поддерживалось напряжение в цепи.

Такое устройство называют источником (генератором) электрического тока.

Определение 1

Силы, которые разделяют заряды в источнике тока, называют сторонними. Сторонние силы — это силы неэлектростатического происхождения, они работают внутри источника тока.

Сторонние силы создают разность потенциалов между концами части цепи. Тогда в рассматриваемой части цепи электрический ток вызывает поле, которое порождает разность потенциалов между концами цепи.

Сторонние силы могут иметь разную природу:

  • механическую,
  • электромагнитную,
  • химическую и другую.

Готовые работы на аналогичную тему

При движении электрического заряда в замкнутой цепи, работа, которую выполняют электростатические силы, равна нулю. Поэтому, результирующая работа сил, которые действуют на заряд при таком движении, будет равна работе сторонних сил.

Определение 2

Электродвижущей силой (ЭДС) генератора тока называют физическую величину, равную:

$Ɛ=\frac{A}{q}\left( 1 \right)$,

где $A$ – работа сторонних сил при перемещении положительного заряда $q$ внутри источника от отрицательного полюса к положительному.

Направлением ЭДС считают направление, в котором внутри источника движутся положительные заряды. Если источник ЭДС в цепи один, то направление ЭДС совпадет с направлением тока в контуре цепи.

Словосочетание «электродвижущая сила» не надо понимать дословно, так как размерность ЭДС отлична от размерности силы или работы.

$[Ɛ]=В.$

B – вольт в Международной системе единиц (СИ).

В качестве меры ЭДС, которую создает генератор, принимают разность потенциалов, создаваемую на его зажимах, когда генератор разомкнут.

Электрическое напряжение и ЭДС

Допустим, у нас имеется электрическое поле. Рассмотрим в нем произвольную кривую (рис.1) $l$, которая соединяет точки $A$ и $B$. Укажем на этой криво положительное направление.

Рисунок 1. Электрическое поле. Автор24 — интернет-биржа студенческих работ

Напряжение по избранной нами кривой равно:

$U=\int\limits_l {\vec{E}d\vec{l}=\int\limits_l {E_{l}dl} \left( 2 \right).} $

Так как напряженность $\vec E$ имеет смысл силы, которая действует на единичный положительный заряд, то интеграл (2) – это работа поля по движению заряда по кривой $l$. Напряжение равно разности потенциалов в начале и конце рассматриваемой кривой:

$U=\varphi_{1}-\varphi_{2}\left( 3 \right)$.

Электрическое напряжение вдоль кривой не зависит от ее формы и полностью определено положением начала и конца линии.

Рассмотрим циркуляцию вектора напряженности по контуру $L$ рис.2.

Рисунок 2. Циркуляция вектора напряженности по контуру. Автор24 — интернет-биржа студенческих работ

Выделим на рассматриваемом контуре две точки $A$ и $B$, которые делят наш контур на два незамкнутых криволинейных отрезка $l_{12}$ и $l_{21}$, учитывая (2) и (3), имеем:

$\oint\limits_L {\vec{E}d\vec{l}=\int\limits_A^B{\vec{E}d\vec{l}+\int\limits_B^A {\vec{E}d\vec{l}=} } } \left( \varphi{1}-\varphi_{2} \right)+\left( \varphi_{2}-\varphi_{1} \right)=0\,\left( 4 \right)$

Мы получили, что циркуляция вектора напряженности по замкнутому контуру равна нулю.

Определение 3

В теории электричества электродвижущей силой контура (ЭДС) называют циркуляцию вектора напряженности по этому контуру.

$Ɛ=\oint\limits_L {\vec{E}d\vec{l}=0\, \left( 5 \right).} $

В электростатическом поле ЭДС любого замкнутого контура равна нулю.

Закон Ома для цепи с ЭДС

Пусть у нас имеется химический источник ЭДС — элемент Вольта. Он состоит из двух электродов:

  • медного,
  • цинкового,

которые находятся в растворе серной кислоты.

Цинк растворяется в кислоте, при этом теряет положительные ионы и получает относительно раствора до отрицательного потенциала. Медный электрод имеет положительный потенциал. Результирующая сторонняя ЭДС получается примерно равна 1,1 В. Она сосредоточена в тонких слоях контактов цинк – электролит и электролит – медь. При включении элемента в цепь (рис.3), по контуру $L$ будет течь ток $I$. При этом на сопротивлениях внешней (1) и внутренней частей цепи появятся разности потенциала.

Рисунок 3. Цепь. Автор24 — интернет-биржа студенческих работ

Допустим, что сопротивления участков цепи имеют равномерные распределения вдоль контура $L$.

По закону сохранения энергии работа электрического поля ($A_q$) по движению заряда $q$ вдоль внешнего участка цепи $1$ и в электролите ($2$) равна:

$A_{q}=\left( \varphi_{1}-\varphi_{2} \right)q+\left( \varphi_{3}-\varphi_{4} \right)q\left( 6 \right)$.

Суммарную работу сторонних сил запишем как:

$Ɛ_q=A_{st}=\left( \varphi_{3}-\varphi_{2} \right)q+\left( \varphi_{1}-\varphi_{4} \right)q\left( 7 \right)$.

Сравнив правые части выражений (6) и (7) имеем:

$A_{q}=A_{st}\left( 8 \right)$.

Формула (8) означает, что работа электрического поля равна работе сторонних сил источника. Принимая во внимание, что:

$\varphi_{1}-\varphi_{2}=IR\, ;\, \varphi_{3}-\varphi_{4}=Ir\, \left( 9\right)$.
получим:

$Ɛ=I\left( R+r \right)\left( 10 \right)$.

Формула (10) называется законом Ома для замкнутой цепи.

Второе правило Кирхгофа

Из закона Ома (10) следует, что ЭДС, которая включена в цепь, равна сумме произведений силы тока на сопротивления, которые имеются в цепи. Утверждение данного рода, относимое к любым замкнутым цепям, называют вторым правилом Кирхгофа.

Сформулируем данное правило так:

Алгебраическая сумма произведений сил токов на сопротивления по любому замкнутому контуру, равна суммарной ЭДС, которые входят в рассматриваемый контур.

Произведение силы тока на сопротивление участка цепи считают большим нуля, если избранное направление обхода контура совпадает с направлением течения тока на этом участке. В противном случае произведение отрицательно.

ЭДС считают положительной, если в результате обхода контура в источнике осуществляется переход от полюса со знаком минус к полюсу со знаком плюс.

При неизвестном направлении токов, их направления принимают произвольно. Если в результате вычислений получают знак минус для рассматриваемого тока, то это значит, что верным направлением тока будет противоположное принятому.

Математически второе правило Кирхгофа записывают так:

$\sum\limits_{m=1}^N {Ɛ_{m}=} \sum\limits_{m=1}^N {I_{m}R_{m}\left( 11\right),} $

где $N$ — количество участков избранного контура.

Второе правило Кирхгофа позволяет записать независимые уравнения только для контуров сложной цепи, которые не получены наложением уже описанных.

Количество независимых контуров ($n_2$) можно определить:

$n_2=p-m+1$(12),

где $p$ — количество ветвей в цепи; $m$- количество узлов.

Что такое ЭДС (электродвижущая сила) — объяснение и описание

Когда родилось понятие «электрон», люди сразу связали его с определенной работой. Электрон – это по-гречески «янтарь». То, что грекам для того, чтобы найти этот бесполезный, в общем-то, магический камушек, надо было довольно далеко проехать на север — такие усилия тут, в общем-то, не в счет. А вот стоило проделать некоторую работу — руками по натиранию камушка о шерстяную сухую тряпочку — и он приобретал новые свойства. Это знали все. Натереть просто так, ради сугубо бескорыстного интереса, чтобы понаблюдать, как теперь к «электрону» начинает притягиваться мелкий мусор: пылинки, шерстинки, ниточки, перышки. В дальнейшем, когда появился целый класс явлений, объединенных потом в понятие «электричество», работа, которую надо обязательно затратить, не давала людям покоя. Раз нужно затратить, чтобы получился фокус с пылинками — значит, хорошо бы эту работу как-то сохранить, накопить, а потом и получить обратно.

Иллюстрация 1
Иллюстрация 1

Таким образом из все более усложнявшихся фокусов с разными материалами и философских рассуждений и научились эту магическую силу собирать в баночку. А потом сделать и так, чтобы она из баночки постепенно высвобождалась, вызывая действия, которые стало уже можно ощутить, а очень скоро и померить. И померили настолько остроумно, имея всего-то пару шелковых шариков или палочек и пружинные крутильные весы, что и теперь мы вполне серьезно пользуемся все теми же формулами для расчетов электрических цепей, которые уже пронизали теперь всю планету, бесконечно сложных, сравнительно с теми первыми приспособлениями.

Иллюстрация 2 
Иллюстрация 2

А название этого могучего джинна, сидящего в баночке, так до сих пор и содержит восторг давних открывателей: «Электродвижущая сила». Но только сила эта — совсем не электрическая. А наоборот, посторонняя страшная сила, заставляющая электрические заряды двигаться «против воли», то есть преодолевая взаимное отталкивание, и собираться где-то с одной стороны. От этого получается разность потенциалов. Ее и можно использовать, пустив заряды другим путем. Где их «не сторожит» эта страшная ЭДС. И заставить, тем самым, выполнить некоторую работу.

Принцип работы

ЭДС — это сила самой разной природы, хотя измеряется она в вольтах:

Схема простейшего прибора
Схема простейшего прибора

  • Химической. Происходит от процессов химического замещения ионов одних металлов ионами других (более активных). В результате образуются лишние электроны, стремящиеся «спастись» на краю ближайшего проводника. Такой процесс бывает обратимым или необратимым. Обратимый — в аккумуляторах. Их можно зарядить, вернув заряженные ионы обратно в раствор, отчего он приобретет больше, например, кислотности (в кислотных аккумуляторах). Кислотность электролита и есть причина ЭДС аккумулятора, работает непрерывно, пока раствор не станет абсолютно нейтральным химически.

Аккумуляторная батарея в разрезе
Аккумуляторная батарея в разрезе      Схематическое изображение аккумуляторной батареи
Схематическое изображение аккумуляторной батареи

  • Магнитодинамической. Возникает при воздействии на проводник, некоторым образом ориентированный в пространстве, изменяющегося магнитного поля. Или от магнита, движущегося относительно проводника, или от движения проводника относительно магнитного поля. Электроны в этом случае тоже стремятся двигаться в проводнике, что позволяет их улавливать и помещать на выходные контакты устройства, создавая разность потенциалов.

Работа фотоэлемента
Работа фотоэлемента  Электрогенератор
Электрогенератор

  • Электромагнитной. Переменное магнитное поле создается в магнитном материале переменным электрическим напряжением первичной обмотки. Во вторичной обмотке возникает движение электронов, а значит и напряжение, пропорциональное напряжению в первичной обмотке. Значком ЭДС трансформаторы могут обозначаться в схемах эквивалентного замещения.

Схема работы трансформатора
Схема работы трансформатора

  • Фотоэлектрической. Свет, попадая на некоторые проводящие материалы, способен выбивать электроны, то есть делать их свободными. Создается избыток этих частиц, отчего лишние выталкиваются к одному из электродов (аноду). Возникает напряжение, которое и способно породить электрический ток. Такие приборы называются фотоэлементами. Первоначально были придуманы вакуумные фотоэлементы, в которых электроды были установлены в колбе с вакуумом. Электроны в этом случае выталкивались за пределы металлической пластинки (катод), а улавливались другим электродом (анод). Такие фотоэлементы нашли применение в датчиках света. С изобретением же более практичных полупроводниковых фотоэлементов стало возможным создавать из них мощные батареи, чтобы суммированием электродвижущей силы каждого из них вырабатывать существенное напряжение.

Схема работы солнечной батареи
Схема работы солнечной батареи

  • Теплоэлектрической. Если два разных металла или полупроводника спаять в одной точке, а потом в эту точку доставить тепло, например, свечи, то на противоположных концах пары металлов (термопары) возникает разница в плотностях электронного газа. Эта разница может накапливаться, если соединить термопары последовательной цепочкой, подобно соединению гальванических элементов в батарее или отдельных фотоэлементов в солнечной батарее. ТермоЭДС используется в очень точных датчиках температуры. С этим явлением связано несколько эффектов (Пельтье, Томсона, Зеебека), которые успешно исследуются. Фактом является то, что теплота способна непосредственно превратиться в электродвижущую силу, то есть напряжение.

Схема работы тепловой батареи
Схема работы тепловой батареи

  • Электростатической. Такие источники ЭДС были придуманы практически одновременно с гальваническими элементами или даже раньше (если считать натирание янтаря шелком нормальным производством ЭДС). Они еще называются электрофорными машинами, или, по имени изобретателя, генераторами Вимшурста. Хотя Вимшурст создал внятное техническое решение, позволяющее снятый потенциал накапливать в лейденской банке — первом конденсаторе (причем, хорошей емкости). Первой же электрофорной машиной можно считать огромный шар из серы, насаженный на ось, — аппарат магдебургского бургомистра Отто фон Герике в середине XVII века. Принцип работы — натирание легко электризующихся от трения материалов. Правда прогресс у фон Герике можно назвать, по поговорке, движимым ленью, когда нет охоты натирать янтарь или что-то другое вручную. Хотя, конечно, этому любознательному политику чего-чего, а фантазии и активности было не занимать. Вспомним хотя бы его же всем известный опыт с разрыванием двумя вереницами ослов (или мулов) шара без воздуха за цепи на два полушария.

Электрофорная машина
Электрофорная машина

Электризация, как первоначально предполагали, происходит именно от «трения», то есть, натирая янтарь тряпкой, мы «срываем» с его поверхности электроны. Однако исследования показали, что здесь не так все просто. Оказывается, на поверхности диэлектриков всегда имеются неравномерности заряда, и к этим неравномерностям притягиваются ионы из воздуха. Образуется такая воздушно-ионная шуба, которую мы и повреждаем, натирая поверхность.

  • Термоэмиссионной. При нагревании металлов с их поверхности срываются электроны. В вакууме они достигают другого электрода и наводят там отрицательный потенциал. Очень перспективное сейчас направление. На рисунке приведена схема защиты гиперзвукового летательного аппарата от перегрева частей корпуса встречным потоком воздуха, причем термоэлектроны, испускаемые катодом (который при этом охлаждается — одновременное действие эффектов Пельтье и/или Томсона), достигают анода, наводя на нем заряд. Заряд, вернее, напряжение, которое равно полученной ЭДС, можно использовать в цепи потребления внутри аппарата.

Термоэмиссионный заряд
Термоэмиссионный заряд

1 — катод, 2 — анод, 3, 4 — отводы катода и анода, 5 — потребитель

  • Пьезоэлектрической. Многие кристаллические диэлектрики, когда испытывают механическое давление на себя в каком-либо направлении, реагируют на него наведением разницы потенциалов между своими поверхностями. Эта разность зависит от приложенного давления, поэтому уже используется в датчиках давления. Пьезоэлектрические зажигалки для газовых плит не требуют никакого другого источника энергии — только нажатия пальцем на кнопочку. Известны попытки создания пьезоэлектрической системы зажигания в автомобилях на основе пьезокерамики, получающей давление от системы кулачков, связанных с главным валом двигателя. «Хорошие» пьезоэлектрики — у которых пропорциональность ЭДС от давления высоко точна — бывают очень тверды (например, кварц), при механическом давлении почти не деформируются.

Пьезоэлектрический элемент  
Пьезоэлектрический элемент Схема пьезоэлектрического элемента
Схема пьезоэлектрического элемента

  • Однако долгое воздействие давлением на них вызывает их разрушение. В природе мощные слои каменных пород также являются пьезоэлектриками, давления земных толщ наводят громадные заряды на их поверхностях, что порождает в глубинах земли титанические бури и грозы. Однако, не все так страшно.Уже были разработаны и эластичные пьезоэлектрики, и даже уже началось изготовление на их основе (и на основе нанотехнологий) изделий, идущих на продажу.

То, что единицей измерения ЭДС является единица электрического напряжения, понятно. Так как самые разнородные механизмы, создающие электродвижущую силу источника тока, все преобразуют свои виды энергии в движение и накопление электронов, а это в конечном счете и приводит к появлению такого напряжения.

Ток, возникающий от ЭДС

Электродвижущая сила источника тока на то и движущая сила, что электроны от нее начинают двигаться, если замкнуть электрическую цепь. Их к этому принуждает ЭДС, пользуясь своей неэлектрической «половиной» природы, которая не зависит, все-таки, от половины, связанной с электронами. Так как считается, что ток в цепи течет от плюса к минусу (такое определение направления было сделано раньше, чем все узнали, что электрон — отрицательная частица), то внутри прибора с ЭДС ток делает движение завершающее — от минуса к плюсу. И всегда рисуют у знака ЭДС, куда направлена стрелочка – +. Только в обоих случаях — и внутри ЭДС источника тока, и снаружи, то есть в потребляющей цепи, — мы имеем дело с электрическим током со всеми его обязательными свойствами. В проводниках ток наталкивается на их сопротивление. И здесь, в первой половине цикла, имеем сопротивление нагрузки, во второй, внутренней, — сопротивление источника или внутреннее сопротивление.

Внутренний процесс работает не мгновенно (хотя очень быстро), а с определенной интенсивностью. Он совершает работу по доставке зарядов от минуса к плюсу, и это тоже встречает сопротивление…

Работа электрической батарейки
Работа электрической батарейки

Сопротивление это двоякого рода.

  1. Внутреннее сопротивление работает против сил, разъединяющих заряды, оно имеет природу, «близкую» этим разъединяющим силам. По крайней мере, работает с ними в едином механизме. Например, кислота, отбирающая кислород у двуокиси свинца и замещающая его на ионы SO4-, определенно испытывает некоторое химическое сопротивление. И это как раз и проявляется как работа внутреннего сопротивления аккумулятора.
  2. Когда наружная (выходная) половина цепи не замкнута, появление все новых и новых электронов на одном из полюсов (и убывание их с другого полюса) вызывает усиление напряженности электростатического поля на полюсах аккумулятора и усиление отталкивания между электронами. Что позволяет системе «не идти вразнос» и остановиться на некотором состоянии насыщенности. Больше электронов из аккумулятора наружу не принимается. И это внешне выглядит как наличие постоянного электрического напряжения между клеммами аккумулятора, которое называется Uхх, напряжением холостого хода. И оно численно равно ЭДС — электродвижущей силе. Поэтому и единицей измерения ЭДС является вольт (в системе СИ).

Но если только подключить к аккумулятору нагрузку из проводников, имеющих отличное от нуля сопротивление, то немедленно потечет ток, сила которого определяется по закону Ома.  

Померить внутреннее сопротивление источника ЭДС, казалось бы, можно. Стоит включить в цепь амперметр и шунтировать (закоротить) внешнее сопротивление. Однако внутреннее сопротивление настолько низко, что аккумулятор начнет разряжаться катастрофически, вырабатывая огромное количество теплоты, как на внешних закороченных проводниках, так и во внутреннем пространстве источника.

Однако можно поступить иначе:

  1.  Измерить E (помним, напряжение холостого хода, единица измерения — вольт).
  2. Подключить в качестве нагрузки некоторый резистор и померить падение напряжения на нем. Вычислить ток I1.
  3. Вычислить значение внутреннего сопротивления источника ЭДС можно, воспользовавшись выражением для r  

Иллюстрация
Иллюстрация

Обычно способность аккумулятора выдавать электроэнергию оценивается его энергетической «емкостью» в амперчасах. Но интересно было бы посмотреть, какой максимальный ток он может вырабатывать. Несмотря на то, что, быть может, электродвижущая сила источника тока заставит его взорваться. Так как идея устроить на нем короткое замыкание показалась не очень заманчивой, можно вычислить эту величину чисто теоретически. ЭДС равно Uхх. Просто нужно дорисовать график зависимости падения напряжения на резисторе от тока (следовательно, и от сопротивления нагрузки) до точки, в которой сопротивление нагрузки будет равно нулю. Это точка Iкз, пересечения красной линии с линией координаты I, в которой напряжение U стало нулевым, а все напряжение E источника будет падать на внутреннее сопротивление.

Часто кажущие простыми основные понятия не всегда бывает можно понять без привлечения примеров и аналогий. Что такое электродвижущая сила, и как она работает, можно представить, только рассмотрев множество ее проявлений. А стоит рассмотреть определение ЭДС, как оно дается солидными источниками посредством умных академических слов — и все начинай с начала: электродвижущая сила источника тока. Или просто выбей на стене золотыми буквами:

Надпись
Надпись

Похожие статьи:

Что означает EMF?

9005

Оцените:

EMF

Electron Разное »Unclassified 90 008

Интернет

ЭМП

Электромагнитное поле

Академия и наука »Электроника

Оцените это:
ЭМП

Электродвижущая сила и многое другое …

Оцените:
EMF

Enhanced MetaFile

Computing »Драйверы

Оценить it5

EMF

Eclipse Modeling Framework

Вычисления »Программное обеспечение

Оцените его:
EMF

Enhanced File

Enhanced Computing

9 0015 Оцените:
EMF

Развивающиеся рынки Бесплатно

Бизнес »Международный бизнес

Оцените:
EMF Electric Область

Академия и наука »Электроника

Оцените это:
ЭМП

Электромагнитное поле

Разное»

EMF

Templeton Emerging Markets Fund

Business »Символы NYSE

Оцените:
Оцените:
EMF

Европейский музейный форум

Сообщество »Конференции

EMF

Расширенный мета-файл

Разное »Несекретный

Оцените его:
EMF Оценить:
EMF

Everett-Metzger-Flanders Automobile Company

Бизнес »Компании и фирмы

Зарегистрированный мастер-файл

Governm ental »Военный

Оценить:
EMF

Электромагнитные частоты

Разное» Несекретные

EMF

Электронное магнитное поле

Академия и наука »Электроника

Оцените это:
EMF

Etat

Etat

Государственный военный департамент

Оцените:
EMF

Elite Mercenary Force

Governmental »Военные

Эффективность t Ошибка рынка

Бизнес »Фондовая биржа

Оцените это:
EMF

Обнаружена электрическая неисправность

Вычислительная техника» Аппаратное обеспечение

Оцените его:
EMF

Enhanced MetaFile Файл векторной графики

Вычисления »Расширения файлов

Оцените его:
Оцените:
EMF

Ожидаемый маржинальный штраф

Разное» Несекретный

EMF

Epsom Mad Funkers

Разное »Несекретное

Оцените: