Чему равна энергия заряженного конденсатора: Чему равна энергия заряженного конденсатора

Содержание

Чему равна энергия заряженного конденсатора

Пусть потенциал обкладки конденсатора, на которой находится заряд равен а потенциал обкладки, на которой находится заряд , равен Тогда каждый из элементарных зарядов на которые можно разделить заряд находится в точке с потенциалом а каждый из зарядов, на которые можно разделить заряд , в точке с потенциалом .

Согласно формуле (28.1) энергия такой системы зарядов равна

Воспользовавшись соотношением (27.2), можно написать три выражения для энергии заряженного конденсатора:

Формулы (29.2) отличаются от формул (28.3) только заменой на

С помощью выражения для потенциальной энергии можно найти силу, с которой пластины плоского конденсатора притягивают друг друга. Допустим, что расстояние между пластинами может меняться. Свяжем начало оси х с левой пластиной (рис. 29.1). Тогда координата х второй пластины будет определять зазор d между обкладками. Согласно формулам (27.3) и (29.2)

Продифференцируем это выражение по х, полагая заряд на обкладках неизменным (конденсатор отключен от источника напряжения). В результате получим проекцию на ось х силы, действующей на правую пластину:

Модуль этого выражения дает величину силы, с которой обкладки притягивают друг друга:

Теперь попытаемся вычислить силу притяжения между обкладками плоского конденсатора как произведение напряженности поля, создаваемого одной из обкладок, на заряд, сосредоточенный на другой. Согласно формуле (14.3) напряженность поля, создаваемого одной обкладкой, равна

Диэлектрик ослабляет поле в зазоре в раз, но это имеет место только внутри диэлектрика (см. формулу (20.2) и связанный с нею текст). Заряды на обкладках располагаются вне диэлектрика и поэтому находятся под действием поля напряженности (29.4).

Умножив заряд обкладки q на эту напряженность, получим для силы выражение

Формулы (29.3) и (29.5) не совпадают. С опытом согласуется значение силы (29.3), получающееся из выражения для энергии. Это объясняется тем, что, кроме «электрической» силы (29.5), на обкладки действуют со стороны диэлектрика механические силы, стремящиеся их раздвинуть (см. § 22; отметим, что мы имеем в виду жидкий или газообразный диэлектрик). У края обкладок имеется рассеянное поле, убывающее по величине при удалении от краев (рис. 29.2). Молекулы диэлектрика, обладая дипольным моментом, испытывают дйствие силы, втягивающей их в область более сильного поля (см. формулу (9.16)). В результате давление между обкладками повышается и появляется сила, ослабляющая действие силы (29.5) в раз.

Если заряженный конденсатор с воздушным зазором частично погрузить в жидкий диэлектрик, наблюдается втягивание диэлектрика в пространство между пластинами (рис. 29.3). Это явление объясняется следующим образом. -Диэлектрическая проницаемость воздуха практически равна единице. Поэтому до погружения пластин в диэлектрик емкость конденсатора можно считать равной а энергию равной При частичном заполнении зазора диэлектриком конденсатор можно рассматривать как два параллельно включенных конденсатора, один из которых имеет площадь обкладки, равную — относительная часть зазора, заполненная жидкостью), и заполнен диэлектриком с второй с воздушным зазором имеет площадь обкладки, равную При параллельном включении конденсаторов емкости складываются:

Поскольку энергия будет меньше, чем (заряд q предполагается неизменным — перед погружением в жидкость конденсатор был отключен от источника напряжения). Следовательно, заполнение зазора диэлектриком оказывается энергетически выгодным. Поэтому диэлектрик втягивается в конденсатор и уровень его в зазоре поднимается. Это в свою очередь приводит к возрастанию потенциальной энергии диэлектрика в поле сил тяжести. В конечном итоге уровень диэлектрика в зазоре установится на некоторой высоте, соответствующей минимуму суммарной энергии (электрической и гравитационной). Рассмотренное явление сходно с капиллярным поднятием жидкости в узком зазоре между пластинками (см. § 119 1-го

Чему равна энергия заряженного конденсатора

  • Новейшая история
  • Здоровье
  • Всемирная история
  • Биология развития
  • Атомная физика
  • Микробиология

Поиск

  • Экология
  • География
  • Анатомия человека
  • Зоология
  • Этика

Энергия заряженного конденсатора. Применение конденсаторов

Энергия заряженного конденсатора. Применение конденсаторов

Подробности
Просмотров: 299

«Физика — 10 класс»

Как и любая система заряженных тел, конденсатор обладает энергией.

Вычислить энергию заряженного плоского конденсатора с однородным полем внутри него несложно.

Энергия заряженного конденсатора.

Для того чтобы зарядить конденсатор, нужно совершить работу по разделению положительных и отрицательных зарядов.

Согласно закону сохранения энергии эта работа равна энергии конденсатора.

В том, что заряженный конденсатор обладает энергией, можно убедиться, если разрядить его через цепь, содержащую лампу накаливания, рассчитанную на напряжение в несколько вольт (рис.14.37).

При разрядке конденсатора лампа вспыхивает.

Энергия конденсатора превращается в тепло и энергию света.

Выведем формулу для энергии плоского конденсатора.

Напряженность поля, созданного зарядом одной из пластин, равна Е/2, где Е — напряженность поля в конденсаторе.

В однородном поле одной пластины находится заряд q, распределенный по поверхности другой пластины (рис.14.38).

Согласно формуле (14.14) для потенциальной энергии заряда в однородном поле энергия конденсатора равна:

где q — заряд конденсатора, а d — расстояние между пластинами.

Так как Ed=U, где U — разность потенциалов между обкладками конденсатора, то его энергия равна:

Эта энергия равна работе, которую совершит электрическое поле при сближении пластин вплотную.

Если заряд на пластинах остаётся постоянным, при сближении пластин поле совершает положительную работу:

При этом энергия электрического поля уменьшается.

Заменив в формуле (14.25) разность потенциалов или заряд с помощью выражения (14.22) для электроемкости конденсатора, получим:

Можно доказать, что эти формулы справедливы для любого конденсатора, а не только для плоского.

Энергия электрического поля.

Согласно теории близкодействия вся энергия взаимодействия заряженных тел сконцентрирована в электрическом поле этих тел.

Значит, энергия может быть выражена через основную характеристику поля — напряженность.

Так как напряженность электрического поля прямо пропорциональна разности потенциалов (U=Ed), то согласно формуле

энергия конденсатора прямопропорциональна квадрату напряженности электрического поля внутри него:

.

Применение конденсаторов.

Зависимость электроемкости конденсатора от расстояния между его пластинами используется при создании одного из типов клавиатур компьютера.

На тыльной стороне каждой клавиши располагается одна пластина конденсатора, а на плате, расположенной под клавишами, — другая.

Нажатие клавиши изменяет емкость конденсатора.

Электронная схема, подключенная к этому конденсатору, преобразует сигнал в соответствующий код, передаваемый в компьютер.

Энергия конденсатора обычно не очень велика — не более сотен джоулей.

К тому же она не сохраняется долго из-за неизбежной утечки заряда.

Поэтому заряженные конденсаторы не могут заменить, например, аккумуляторы в качестве источников электрической энергии.

Но это совсем не означает, что конденсаторы как накопители энергии не получили практического применения.

Они имеют одно важное свойство: конденсаторы могут накапливать энергию более или менее длительное время, а при разрядке через цепь с малым сопротивлением они отдают энергию почти мгновенно.

Именно это свойство широко используют на практике.

Лампа-вспышка, применяемая в фотографии, питается электрическим током разряда конденсатора, заряжаемого предварительно специальной батареей.

Возбуждение квантовых источников света — лазеров осуществляется с помощью газоразрядной трубки, вспышка которой происходит при разрядке батареи конденсаторов большой электроемкости.

Однако основное применение конденсаторы находят в радиотехнике.

Энергия конденсатора пропорциональна его электроемкости и квадрату напряжения между пластинами. Вся эта энергия сосредоточена в электрическом поле. Энергия поля пропорциональна квадрату напряженности поля.

Источник: «Физика — 10 класс», 2014, учебник Мякишев, Буховцев, Сотский

Электростатика — Физика, учебник для 10 класса — Класс!ная физика


Что такое электродинамика —
Электрический заряд и элементарные частицы. Закон сохранения заряд —
Закон Кулона. Единица электрического заряда —
Примеры решения задач по теме «Закон Кулона» —
Близкодействие и действие на расстоянии —
Электрическое поле —
Напряжённость электрического поля. Силовые линии —
Поле точечного заряда и заряженного шара. Принцип суперпозиции полей —
Примеры решения задач по теме «Напряжённость электрического поля. Принцип суперпозиции полей» —
Проводники в электростатическом поле —
Диэлектрики в электростатическом поле —
Потенциальная энергия заряженного тела в однородном электростатическом поле —
Потенциал электростатического поля и разность потенциалов —
Связь между напряжённостью электростатического поля и разностью потенциалов. Эквипотенциальные поверхности —
Примеры решения задач по теме «Потенциальная энергия электростатического поля. Разность потенциалов» —
Электроёмкость. Единицы электроёмкости. Конденсатор —
Энергия заряженного конденсатора. Применение конденсаторов —
Примеры решения задач по теме «Электроёмкость. Энергия заряженного конденсатора»

Энергия заряженного конденсатора | Все Формулы

    \[ \]

Энергия заряженного конденсатора — когда потенциал обкладки конденсатора, на которой находится заряд + q, равен

    \[\varphi _1\]

а потенциал обкладки, на которой находится заряд — q, равен

    \[\varphi _2\]

. Формула выглядит так:

    \[\large W_p=\frac{1}{2}\left[(+q)\varphi _1 +(-q)\varphi _2 \right]= \frac{1}{2}q(\varphi _1-\varphi _2)=\frac{1}{2}qU\]

Или можно преобразовать

    \[ \Large W_p=\frac{U q}{2}=\frac{q^2}{2C}=\frac{CU^2}{2}\]

Энергия заряженного конденсатора

В формуле мы использовали :

    \[ W_p \]

— Энергия заряженного конденсатора

    \[\varphi\]

— Потенциал проводника

    \[ q\]

— Точечный заряд

    \[ U\]

— Напряжение

Энергия заряженного конденсатора. Калькулятор онлайн для любых конденсаторов.


Онлайн калькулятор вычисления энергии электростатического поля заряженного конденсатора, позволит найти энергию заряженного конденсатора через напряжение, емкость и электрический заряд на одной из обкладок. Калькулятор произведет вычисление и даст подробное решение. Единицы измерения, могут включать любые приставки Си. Калькулятор автоматически переведет одни единицы в другие.

Калькулятор вычислит:
Энергию заряженного конденсатора через напряжение (разность потенциалов), до которого заряжен конденсатор и емкость.
Энергию заряженного конденсатора через напряжение (разность потенциалов), до которого заряжен конденсатор и электрический заряд на одной из обкладок
Энергию заряженного конденсатора через электрический заряд на одной из обкладок и емкость

Для записи десятичной дроби используйте точку либо запятую (например, 1.12 или 1,12), для ввода обыкновенных дробей воспользуйтесь знаком «/» (например, 1/2 или 3/4),
для записи произведения двух чисел используйте знак «*» (например, 5*6), для возведения числа в целую степень (не более 100 и не меньше -100) используйте знак «^»
(например, 5^-12 или 6^3), для умножения числа на число в целой степени используйте запись типа, 5*10^2 или 2.3*10^-4 или (1/2)*4^6 или 17*3^-12 и т.д.

Если значение включает приставку Си, например 5 Нанофарад, то Вы можете выбрать соответствующую приставку из раскрывающегося списка,
что равносильно домножению на 10 в соответствующей целой степени, либо непосредственно домножить значение на 10 в целой степени, например 5*10^-9 Фарад.


Так же для вычисления энергии электростатического поля плоского, цилиндрического и сферического конденсаторов, можно воспользоваться
калькулятором вычисления энергии заряженного конденсатора для плоского, цилиндрического и сферического конденсаторов.

Вам могут также быть полезны следующие сервисы
Калькуляторы (физика)

Механика

Калькулятор вычисления скорости, времени и расстояния
Калькулятор вычисления ускорения, скорости и перемещения
Калькулятор вычисления времени движения
Калькулятор времени
Второй закон Ньютона. Калькулятор вычисления силы, массы и ускорения.
Закон всемирного тяготения. Калькулятор вычисления силы притяжения, массы и расстояния.
Импульс тела. Калькулятор вычисления импульса, массы и скорости
Импульс силы. Калькулятор вычисления импульса, силы и времени действия силы.
Вес тела. Калькулятор вычисления веса тела, массы и ускорения свободного падения

Оптика

Калькулятор отражения и преломления света

Электричество и магнетизм

Калькулятор Закона Ома
Калькулятор Закона Кулона
Калькулятор напряженности E электрического поля
Калькулятор нахождения точечного электрического заряда Q
Калькулятор нахождения силы F действующей на заряд q
Калькулятор вычисления расстояния r от заряда q
Калькулятор вычисления потенциальной энергии W заряда q
Калькулятор вычисления потенциала φ электростатического поля
Калькулятор вычисления электроемкости C проводника и сферы

Конденсаторы

Калькулятор вычисления электроемкости C плоского, цилиндрического и сферического конденсаторов
Калькулятор вычисления напряженности E электрического поля плоского, цилиндрического и сферического конденсаторов
Калькулятор вычисления напряжения U (разности потенциалов) плоского, цилиндрического и сферического конденсаторов
Калькулятор вычисления расстояния d между пластинами в плоском конденсаторе
Калькулятор вычисления площади пластины (обкладки) S в плоском конденсаторе
Калькулятор вычисления энергии W заряженного конденсатора

Калькулятор вычисления энергии W заряженного конденсатора. Для плоского, цилиндрического и сферического конденсаторов

Калькулятор вычисления объемной плотности энергии w электрического поля для плоского, цилиндрического и сферического конденсаторов
Калькуляторы по астрономии
Вес тела на других планетах
Ускорение свободного падения на планетах Солнечной системы и их спутниках
Калькуляторы (Теория чисел)
Калькулятор со скобками
Калькулятор разложения числа на простые множители
Калькулятор НОД и НОК
Калькулятор НОД и НОК по алгоритму Евклида
Представление многозначных чисел в виде суммы разрядных слагаемых
Калькулятор деления числа в данном отношении
Калькулятор процентов
Калькулятор перевода числа с Е в десятичное
Калькулятор нахождения факториала числа
Калькулятор нахождения логарифма числа
Калькулятор квадратных уравнений
Калькулятор остатка от деления
Калькулятор корней с решением
Калькулятор нахождения периода десятичной дроби
Дроби
Калькулятор интервальных повторений
Учим дроби наглядно
Калькулятор сокращения дробей
Калькулятор преобразования неправильной дроби в смешанную
Калькулятор преобразования смешанной дроби в неправильную
Калькулятор сложения, вычитания, умножения и деления дробей
Калькулятор возведения дроби в степень
Калькулятор перевода десятичной дроби в обыкновенную
Калькулятор перевода обыкновенной дроби в десятичную
Калькулятор сравнения дробей
Калькуляторы систем счисления
Калькулятор перевода чисел из арабских в римские и из римских в арабские
Калькулятор перевода чисел в различные системы счисления
Системы счисления теория
N2 | Двоичная система счисления
N3 | Троичная система счисления
N4 | Четырехичная система счисления
N5 | Пятеричная система счисления
N6 | Шестеричная система счисления
N7 | Семеричная система счисления
N8 | Восьмеричная система счисления
N9 | Девятеричная система счисления
N11 | Одиннадцатиричная система счисления
N12 | Двенадцатеричная система счисления
N13 | Тринадцатеричная система счисления
N14 | Четырнадцатеричная система счисления
N15 | Пятнадцатеричная система счисления
N16 | Шестнадцатеричная система счисления
N17 | Семнадцатеричная система счисления
N18 | Восемнадцатеричная система счисления
N19 | Девятнадцатеричная система счисления
N20 | Двадцатеричная система счисления
N21 | Двадцатиодноричная система счисления
N22 | Двадцатидвухричная система счисления
N23 | Двадцатитрехричная система счисления
N24 | Двадцатичетырехричная система счисления
N25 | Двадцатипятеричная система счисления
N26 | Двадцатишестеричная система счисления
N27 | Двадцатисемеричная система счисления
N28 | Двадцативосьмеричная система счисления
N29 | Двадцатидевятиричная система счисления
N30 | Тридцатиричная система счисления
N31 | Тридцатиодноричная система счисления
N32 | Тридцатидвухричная система счисления
N33 | Тридцатитрехричная система счисления
N34 | Тридцатичетырехричная система счисления
N35 | Тридцатипятиричная система счисления
N36 | Тридцатишестиричная система счисления
Калькуляторы площади геометрических фигур
Площадь квадрата
Площадь прямоугольника
Калькуляторы (Комбинаторика)
Калькулятор нахождения числа перестановок из n элементов
Калькулятор нахождения числа сочетаний из n элементов
Калькулятор нахождения числа размещений из n элементов
Калькуляторы линейная алгебра и аналитическая геометрия
Калькулятор сложения и вычитания матриц
Калькулятор умножения матриц
Калькулятор транспонирование матрицы
Калькулятор нахождения определителя (детерминанта) матрицы
Калькулятор нахождения обратной матрицы
Длина отрезка. Онлайн калькулятор расстояния между точками
Онлайн калькулятор нахождения координат вектора по двум точкам
Калькулятор нахождения модуля (длины) вектора
Калькулятор сложения и вычитания векторов
Калькулятор скалярного произведения векторов через длину и косинус угла между векторами
Калькулятор скалярного произведения векторов через координаты
Калькулятор векторного произведения векторов через координаты
Калькулятор смешанного произведения векторов
Калькулятор умножения вектора на число
Калькулятор нахождения угла между векторами
Калькулятор проверки коллинеарности векторов
Калькулятор проверки компланарности векторов
Генератор Pdf с примерами
Тренажёры решения примеров
Тренажер сложения
Тренажёр вычитания
Тренажёр умножения
Тренажёр деления
Тренажёр таблицы умножения
Тренажер счета для дошкольников
Тренажер счета на внимательность для дошкольников
Тренажер решения примеров на сложение, вычитание, умножение, деление. Найди правильный ответ.
Тренажер решения примеров с разными действиями
Тренажёры решения столбиком
Тренажёр сложения столбиком
Тренажёр вычитания столбиком
Тренажёр умножения столбиком
Тренажёр деления столбиком с остатком
Калькуляторы решения столбиком
Калькулятор сложения, вычитания, умножения и деления столбиком
Калькулятор деления столбиком с остатком
Генераторы
Генератор примеров по математике
Генератор случайных чисел
Генератор паролей

Конденсатор. Энергия электрического поля — материалы для подготовки к ЕГЭ по Физике

Автор статьи — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

Темы кодификатора ЕГЭ: электрическая ёмкость, конденсатор, энергия электрического поля конденсатора.

Предыдущие две статьи были посвящены отдельному рассмотрению того, каким образом ведут себя в электрическом поле проводники и каким образом — диэлектрики. Сейчас нам понадобится объединить эти знания. Дело в том, что большое практическое значение имеет совместное использование проводников и диэлектриков в специальных устройствах — конденсаторах.

Но прежде введём понятие электрической ёмкости.

Ёмкость уединённого проводника

Предположим, что заряженный проводник расположен настолько далеко от всех остальных тел, что взаимодействие зарядов проводника с окружающими телами можно не принимать во внимание. В таком случае проводник называется уединённым.

Потенциал всех точек нашего проводника, как мы знаем, имеет одно и то же значение , которое называется потенциалом проводника. Оказывается, что потенциал уединённого проводника прямо пропорционален его заряду. Коэффициент пропорциональности принято обозначать , так что

Величина называется электрической ёмкостью проводника и равна отношению заряда проводника к его потенциалу:

(1)

Например, потенциал уединённого шара в вакууме равен:

где — заряд шара, — его радиус. Отсюда ёмкость шара:

(2)

Если шар окружён средой-диэлектриком с диэлектрической проницаемостью , то его потенциал уменьшается в раз:

Соответственно, ёмкость шара в раз увеличивается:

(3)

Увеличение ёмкости при наличии диэлектрика — важнейший факт. Мы ещё встретимся с ним при рассмотрении конденсаторов.

Из формул (2) и (3) мы видим, что ёмкость шара зависит только от его радиуса и диэлектрической проницаемости окружающей среды. То же самое будет и в общем случае: ёмкость уединённого проводника не зависит от его заряда; она определяется лишь размерами и формой проводника, а также диэлектрической проницаемостью среды, окружающей проводник. От вещества проводника ёмкость также не зависит.

В чём смысл понятия ёмкости? Ёмкость показывает, какой заряд нужно сообщить проводнику, чтобы увеличить его потенциал на В. Чем больше ёмкость — тем, соответственно, больший заряд требуется поместить для этого на проводник.

Единицей измерения ёмкости служит фарад (Ф). Из определения ёмкости (1) видно, что Ф = Кл/В.

Давайте ради интереса вычислим ёмкость земного шара (он является проводником!). Радиус считаем приближённо равным км.

мкФ.

Как видите, Ф — это очень большая ёмкость.

Единица измерения ёмкости полезна ещё и тем, что позволяет сильно сэкономить на обозначении размерности диэлектрической постоянной . В самом деле, выразим из формулы (2):

Следовательно, диэлектрическая постоянная может измеряться в Ф/м:

Ф.

Так легче запомнить, не правда ли?

Ёмкость плоского конденсатора

Ёмкость уединённого проводника на практике используется редко. В обычных ситуациях проводники не являются уединёнными. Заряженный проводник взаимодействует с окружающими телами и наводит на них заряды, а потенциал поля этих индуцированных зарядов (по принципу суперпозиции!) изменяет потенциал самого проводника. В таком случае уже нельзя утверждать, что потенциал проводника будет прямо пропорционален его заряду, и понятие ёмкости проводника самого по себе фактически утрачивает смысл.

Можно, однако, создать систему заряженных проводников, которая даже при накоплении на них значительного заряда почти не взаимодействует с окружающими телами. Тогда мы сможем снова говорить о ёмкости — но на сей раз о ёмкости этой системы проводников.

Наиболее простым и важным примером такой системы является плоский конденсатор. Он состоит из двух параллельных металлических пластин (называемых обкладками), разделённых слоем диэлектрика. При этом расстояние между пластинами много меньше их собственных размеров.

Для начала рассмотрим воздушный конденсатор, у которого между обкладками находится воздух

Пусть заряды обкладок равны и . Именно так и бывает в реальных электрических схемах: заряды обкладок равны по модулю и противоположны по знаку. Величина — заряд положительной обкладки — называется зарядом конденсатора.

Пусть — площадь каждой обкладки. Найдём поле, создаваемое обкладками в окружающем пространстве.

Поскольку размеры обкладок велики по сравнению с расстоянием между ними, поле каждой обкладки вдали от её краёв можно считать однородным полем бесконечной заряженной плоскости:

Здесь — напряжённость поля положительной обкладки, — напряженность поля отрицательной обкладки, — поверхностная плотность зарядов на обкладке:

На рис. 1 (слева) изображены векторы напряжённости поля каждой обкладки в трёх областях: слева от конденсатора, внутри конденсатора и справа от конденсатора.

\sigma =\frac{\displaystyle q}{\displaystyle S \vphantom{1^a}}.

Рис. 1. Электрическое поле плоского конденсатора

Согласно принципу суперпозиции, для результирующего поля имеем:

Нетрудно видеть, что слева и справа от конденсатора поле обращается в нуль (поля обкладок погашают друг друга):

Внутри конденсатора поле удваивается:

или

(4)

Результирующее поле обкладок плоского конденсатора изображено на рис. 1 справа. Итак:

Внутри плоского конденсатора создаётся однородное электрическое поле, напряжённость которого находится по формуле (4). Снаружи конденсатора поле равно нулю, так что конденсатор не взаимодействует с окружающими телами.

Не будем забывать, однако, что данное утверждение выведено из предположения, будто обкладки являются бесконечными плоскостями. На самом деле их размеры конечны, и вблизи краёв обкладок возникают так называемые краевые эффекты: поле отличается от однородного и проникает в наружное пространство конденсатора. Но в большинстве ситуаций (и уж тем более в задачах ЕГЭ по физике) краевыми эффектами можно пренебречь и действовать так, словно утверждение, выделенное курсивом, является верным без всяких оговорок.

Пусть расстояние между обкладками конденсатора равно . Поскольку поле внутри конденсатора является однородным, разность потенциалов между обкладками равна произведению на (вспомните связь напряжения и напряжённости в однородном поле!):

(5)

Разность потенциалов между обкладками конденсатора, как видим, прямо пропорциональна заряду конденсатора. Данное утверждение аналогично утверждению «потенциал уединённого проводника прямо пропорционален заряду проводника», с которого и начался весь разговор о ёмкости. Продолжая эту аналогию, определяем ёмкость конденсатора как отношение заряда конденсатора к разности потенциалов между его обкладками:

(6)

Ёмкость конденсатора показывает, какой заряд ему нужно сообщить, чтобы разность потенциалов между его обкладками увеличилась на В. Формула (6), таким образом, является модификацией формулы (1) для случая системы двух проводников — конденсатора.

Из формул (6) и (5) легко находим ёмкость плоского воздушного конденсатора:

(7)

Она зависит только от геометрических характеристик конденсатора: площади обкладок и расстояния между ними.
Предположим теперь, что пространство между обкладками заполнено диэлектриком с диэлектрической проницаемостью . Как изменится ёмкость конденсатора?

Напряжённость поля внутри конденсатора уменьшится в раз, так что вместо формулы (4) теперь имеем:

(8)

Соответственно, напряжение на конденсаторе:

(9)

Отсюда ёмкость плоского конденсатора с диэлектриком:

(10)

Она зависит от геометрических характеристик конденсатора (площади обкладок и расстояния между ними) и от диэлектрической проницаемости диэлектрика, заполняющего конденсатор.

Важное следствие формулы (10): заполнение конденсатора диэлектриком увеличивает его ёмкость.

Энергия заряженного конденсатора

Заряженный конденсатор обладает энергией. В этом можно убедиться на опыте. Если зарядить конденсатор и замкнуть его на лампочку, то (при условии, что ёмкость конденсатора достаточно велика) лампочка ненадолго загорится.

Следовательно, в заряженном конденсаторе запасена энергия, которая и выделяется при его разрядке. Нетрудно понять, что этой энергией является потенциальная энергия взаимодействия обкладок конденсатора — ведь обкладки, будучи заряжены разноимённо, притягиваются друг к другу.

Мы сейчас вычислим эту энергию, а затем увидим, что существует и более глубокое понимание происхождения энергии заряженного конденсатора.

Начнём с плоского воздушного конденсатора. Ответим на такой вопрос: какова сила притяжения его обкладок друг к другу? Величины используем те же: заряд конденсатора , площадь обкладок .

Возьмём на второй обкладке настолько маленькую площадку, что заряд этой площадки можно считать точечным. Данный заряд притягивается к первой обкладке с силой

где — напряжённость поля первой обкладки:

Следовательно,

Направлена эта сила параллельно линиям поля (т. е. перпендикулярно пластинам).

Результирующая сила притяжения второй обкладки к первой складывается из всех этих сил , с которыми притягиваются к первой обкладке всевозможные маленькие заряды второй обкладки. При этом суммировании постоянный множитель вынесется за скобку, а в скобке просуммируются все и дадут . В результате получим:

(11)

Предположим теперь, что расстояние между обкладками изменилось от начальной величины до конечной величины . Сила притяжения пластин совершает при этом работу:

Знак правильный: если пластины сближаются , то сила совершает положительную работу, так как пластины притягиваются друг к другу. Наоборот, если удалять пластины , то работа силы притяжения получается отрицательной, как и должно быть.

С учётом формул (11) и (7) имеем:

где

Это можно переписать следующим образом:

где

(12)

Работа потенциальной силы притяжения обкладок оказалась равна изменению со знаком минус величины . Это как раз и означает, что — потенциальная энергия взаимодействия обкладок, или энергия заряженного конденсатора.

Используя соотношение , из формулы (12) можно получить ещё две формулы для энергии конденсатора (убедитесь в этом самостоятельно!):

(13)

(14)

Особенно полезными являются формулы (12) и (14).

Допустим теперь, что конденсатор заполнен диэлектриком с диэлектрической проницаемостью . Сила притяжения обкладок уменьшится в раз, и вместо (11) получим:

При вычислении работы силы , как нетрудно видеть, величина войдёт в ёмкость , и формулы (12) — (14) останутся неизменными. Ёмкость конденсатора в них теперь будет выражаться по формуле (10).

Итак, формулы (12) — (14) универсальны: они справедливы как для воздушного конденсатора, так и для конденсатора с диэлектриком.

Энергия электрического поля

Мы обещали, что после вычисления энергии конденсатора дадим более глубокое истолкование происхождения этой энергии. Что ж, приступим.

Рассмотрим воздушный конденсатор и преобразуем формулу (14) для его энергии:

Но — объём конденсатора. Получаем:

(15)

Посмотрите внимательно на эту формулу. Она уже не содержит ничего, что являлось бы специфическим для конденсатора! Мы видим энергию электрического поля , сосредоточенного в некотором объёме .

Энергия конденсатора есть не что иное, как энергия заключённого внутри него электрического поля.

Итак, электрическое поле само по себе обладает энергией. Ничего удивительного для нас тут нет. Радиоволны, солнечный свет — это примеры распространения энергии, переносимой в пространстве электромагнитными волнами.

Величина — энергия единицы объёма поля — называется объёмной плотностью энергии. Из формулы (15) получим:

(16)

В этой формуле не осталось вообще никаких геометрических величин. Она даёт максимально чистую связь энергии электрического поля и его напряжённости.

Если конденсатор заполнен диэлектриком, то его ёмкость увеличивается в раз, и вместо формул (15) и (16) будем иметь:

(17)

(18)

Как видим, энергия электрического поля зависит ещё и от диэлектрической проницаемости среды, в которой поле находится.
Замечательно, что полученные формулы для энергии и плотности энергии выходят далеко за пределы электростатики: они справедливы не только для электростатического поля, но и для электрических полей, меняющихся во времени.

Энергия конденсатора

Господа, всем приветище! Сегодня речь пойдет про энергию конденсаторов. Внимание, сейчас будет спойлер: конденсатор может накапливать в себе энергию. Причем иногда очень большую. Что? Это не спойлер, это и так было всем очевидно? Здорово если так! Тогда поехали в этом более подробно разбираться!


В прошлой статье мы пришли к выводу, что заряженный конденсатор, отсоединенный от источника напряжения, может сам в течении некоторого времени (пока не разрядится) давать некоторый ток. Например, через какой-то резистор. По закону Джоуля-Ленца если через резистор течет ток, то на нем выделяется тепло. Тепло – значит, энергия. И берется эта самая энергия из конденсатора – больше, собственно, неоткуда. Значит, в конденсаторе может хранится некоторая энергия. Итак, физика процессов более-менее понятна, поэтому теперь давайте поговорим, как это все описать математически. Потому что одно дело все описать на словах – это круто, замечательно, это должно быть, но в жизни часто надо что-то рассчитать и тут уже обычных слов не достаточно.

Для начала давайте вспомним определение работы из механики. Работа A силы F это произведение этой самой силы F на вектор перемещения s.

Полагаю, что механику вы изучали когда-то и это знаете . Страшные значки векторов нужны только в случае, если направление силы не совпадает с перемещением: вроде случая, когда сила тянет строго прямо, а перемещение идет под каким-то углом к силе. Такое бывает, например, когда груз перемещается по наклонной плоскости. Если же направление силы и перемещения совпадают, то можно смело отбросить вектора и просто перемножать силу на длину пути, получая таким образом работу:

Вспомним теперь статью про закон Кулона. Мы там получили замечательную формулу, которую сейчас самое время вспомнить:

То есть, если у нас есть электрическое поле с напряженностью Е и мы в него помещаем некоторый заряд q, то на этот заряд будет действовать сила F, которую можно рассчитать по этой формуле.

Нам никто не мешает подставить эту формулу в чуть выше написанную формулу для работы. И таким образом найти работу, которую совершает поле при перемещении в нем заряда q на расстояние s. Будем полагать, что мы перемещаем наш заряд q точно по направлению силовых линий поля.  Это позволяет использовать формулу работы без векторов:

Теперь, господа, внимание. Напоминаю одну важную штуку из той же механики. Есть такой особый класс сил, которые называются потенциальные. Если говорить упрощенным языком, то для них верно утверждение, что если эта сила на каком-то отрезке пути совершила работу А, то это значит, что в начале этого пути у тела, над которым совершалась работа, энергия была на это самое А больше, чем в конце. То есть на сколько поработали, на столько и изменилась потенциальная энергия. Работа потенциальных сил не зависит от траектрии и определяется только начальной и конечной точкой. А на замнкнутом пути она вообще равна нулю. Как раз-таки сила электрического поля относится к этому классу сил.

Вот мы помещаем наш зарядик q в поле. Он под действием этого поля перемещается на некоторое расстояние от точки С до точки D. Пусть для определенности в точке D энергия заряда будет равна 0. При этом перемещении поле совершает работу А. Из этого следует, что в начале пути (в точке C) наш зарядик обладал некоторой энергией W=A. То есть, мы можем записать

Теперь самое время рисовать картинки. Взглянем на рисунок 1. Это немного упрощенная иллюстрация физики процессов плоского конденсатора. Более полное мы рассматривали это в прошлый раз.

Рисунок 1 – Плоский конденсатор

Давайте теперь чуть-чуть искривим свое сознание и глянем на наш конденсатор по-другому, чем раньше. Давайте предположим, что у нас за основу взята, например, синяя пластина. Она создает некоторое поле с некоторой напряженностью. Безусловно, и красная пластина тоже создает поле, но в данный момент это не интересно. Давайте смотреть на красную пластину, как на некоторый заряд +q, расположенный в поле синей пластины. И сейчас мы попробуем применить все вышеописанное к красной пластине как будто это и не пластина вовсе, а просто некоторый заряд +q. Вот так вот хитро. Почему, собственно, нет? Возможно, вы скажите – как же так, раньше мы везде исходили из того, что заряды у нас точечные, а тут – целая большая пластина. Она как-то на точку не совсем тянет. Спокойствие, господа. Никто нам не мешает разбить красную пластину на огромную кучу маленьких частичек, каждую из которых можно считать точечным зарядом Δq. Тогда уже можно без проблем применять все вышеописанное. И если мы выполним все расчеты сил, напряженностей, энергий и прочего для вот таких вот отдельных Δq и потом сложим результаты между собой, то получится, что мы зря так переусердствовали – результат будет ровно таким же, как если бы мы просто при расчетах брали заряд +q. Кто хочет – может проверить, я только за . Однако мы будем сразу работать по упрощенной схеме. Хотелось бы только отметить, что это верно для случая, когда поле у нас однородно и заряды по всем пластинам распределены равномерно. В действительности это не всегда так, однако такое упрощение позволяет существенно облегчить все расчеты и избежать всяких градиентов и интегралов без существенного вреда для практики.

Итак, вернемся к рисунку 1. На нем показано, что между обкладками конденсатора существует поле с некоторой напряженностью Е. Но мы договорились сейчас разделить роли обкладок – синяя у нас источник поля, а красная – заряд в поле. Какое же поле создает одна синяя обкладка отдельно от красной? Какова его напряженность? Очевидно, что она в два раза меньше общей напряженности. Почема это так? Да потому, что если забыть про нашу абстракцию (типа красная пластина – и не пластина вовсе, а просто заряд), то в результирующую напряженность Е вносят одинаковый вклад обе обкладки – и красная, и синяя: каждая по Е/2. В результате суммы этих Е/2 как раз и получается та самая Е, которая у нас на картинке. Таким образом (отбрасывая вектора), можно записать

Теперь посчитаем, если можно так выразиться, потенциальную энергию красной обкладки в поле синей обкладки. Заряд мы знаем, напряженность мы знаем, расстояние между обкладками тоже знаем. Поэтому смело записываем

Идем дальше. На деле же никто не мешает поменять местами красную и синюю обкладки. Давайте рассуждать наоборот. Будем рассматривать теперь красную обкладку как источник поля, а синюю – как некоторый заряд –q в этом поле. Думаю, даже без проведения расчета будет очевидно, что результат будет точно такой же. То есть энергия красной пластины в поле синей пластины равна энергии синей пластины в поле красной пластины. И, как вы возможно уже догадались, это и есть энергия конденсатора. Да, вот по этой самой формуле можно произвести расчет энергии заряженного конденсатора:

Слышу, как мне уже кричат: стоп, стоп, опять ты втираешь мне какую-то дичь! Ну ладно, расстояние между пластинами я еще как-то смогу измерить. Но меня почему-то опять заставляют считать заряд, что не понятно как сделать, да еще и напряженность надо знать, а чем я ее померяю?! Мультиметр вроде как не умеет это делать! Все верно, господа, сейчас мы займемся преобразованиями, которые позволят вам измерить энергию конденсатора всего лишь с применением обыкновенного мультиметра.

Давайте сперва избавимся от напряженности. Для этого вспомним замечательную формулу, которая связывает напряженность с напряжение:

Да, напряжение между двумя точками в поле равно произведению напряженности этого поля на расстояние между этими двумя точками. Итак, подставляя это полезнейшее выражение в формулу для энергии, получаем

Уже легче, напряженность ушла. Но остался еще заряд, который не понятно как мерить. Что бы от него избавиться, давайте вспомним формулу емкости конденсатора из предыдущей статьи:

Да, для тех, кто забыл, напоминаю, что емкость определяется как отношение этого злополучного заряда, накопленного конденсатором, к напряжению на конденсаторе. Давайте из этой формулы выразим заряд q и подставим его в формулу энергии конденсатора. Получаем

Вот это уже дельная формула, для энергии заряженного конденсатора! Если нам нужно узнать, какая энергия запасена в конденсаторе с емкостью С, заряженного до напряжения U, мы вполне можем это сделать по вот этой вот формуле. Емкость С обычно пишется на самом конденсаторе или на его упаковке, а напряжение всегда можно измерить мультиметром. Из формулы видно, что энергии в конденсаторе тем больше, чем больше емкость самого конденсатора и напряжение на нем. Причем энергия растет прямо пропорционально квадрату напряжения. Это важно помнить. Увеличение напряжения гораздо быстрее приведет к росту энергии, запасенной в конденсаторе, чем увеличение его емкости.

Для особых любителей зарядов можно из формулы определения емкости выразить не заряд, а напряжение и подставить его в формулу для энергии конденсатора. Таким образом, получаем еще одну формулу энергии

Используется эта формула довольно редко, а на практике вообще не припомню, что б по ней что-то считал, но раз она есть, то путь тут тоже будет для полноты картины. Самая ходовая формула – это средняя.

Давайте для интереса произведем некоторые расчеты. Пусть у нас есть вот такой вот конденсатор

Рисунок 2 – Конденсатор

И давайте мы его зарядим до напряжения, скажем, 8000 В. Какая энергия будет запасена в таком конденсаторе? Как мы видим из фотографии, емкость данного конденсатора составляет 130 мкФ. Теперь легко выполнить расчет энергии:

Много это или мало? Безусловно, не мало! Даже очень не мало! Скажем так, разрешенная энергия электрошокеров составляет какие-то там смешные единицы джоулей, а тут их тысячи! Принимая во внимание высокое напряжение (8кВ) можно смело утверждать, что для человека контакт с таким заряженным конденсатором скорее всего закончится очень и очень печально. Следует соблюдать особую осторожность при больших напряжениях и энергиях! У нас был случай, когда произошло короткое замыкание нескольких таких вот конденсаторов, соединенных параллельно и заряженных до нескольких киловольт. Господа, это было зрелище не для слабонервных! Бабахнуло так, что у меня потом в ушах пол дня звенело! А на стенах лаборатории осела медь от расплавленных проводов! Спешу успокоить, никто не пострадал, но это стало хорошим поводом дополнительно подумать над способами отвода такой гигантской энергии в случае нештатных ситуаций.

Кроме того, господа, важно всегда помнить, что конденсаторы блоков питания приборов тоже не могут мгновенно разрядиться после отключения прибора от сети, хотя там, безусловно, должно быть какие-то цепи, предназначенные для их разряда. Но должны быть, это не значит, что они там точно есть . Поэтому в любом случае после отключения любого прибора от сети, прежде чем лезть к нему внутрь, лучше подождать пару минут для разряда всех кондеров. И потом, после снятия крышки, прежде чем лапками хвататься за все подряд, следует сначала померить напряжение на силовых накопительных конденсаторах и при необходимости выполнить их принудительный разряд каким-нибудь резистором. Можно, конечно, просто отверткой замкнуть их выводы, если емкости не слишком большие, но такое делать крайне не рекомендуется!

Итак, господа, сегодня мы познакомились с различными методами расчета энергии, запасенной в конденсаторе, а также обсудили, как эти расчеты можно выполнять на практике. На этом потихоньку закругляемся. Всем вам удачи, и до новых встреч!

Вступайте в нашу группу Вконтакте

Вопросы и предложения админу: This email address is being protected from spambots. You need JavaScript enabled to view it.



энергии в конденсаторе

Проблема «энергии, хранящейся в конденсаторе» — классическая, потому что в ней есть некоторые нелогичные элементы. Безусловно, батарея выделяет энергию QV b в процессе зарядки конденсатора до равновесия при напряжении батареи V b . Но половина этой энергии рассеивается в виде тепла в сопротивлении пути зарядки, и только QV b /2 в конечном итоге сохраняется на конденсаторе в состоянии равновесия. Противоинтуитивная часть начинается, когда вы говорите: «Это слишком большая потеря, чтобы терпеть ее.Я просто собираюсь понизить сопротивление пути зарядки, чтобы получить больше энергии на конденсаторе ». Это не работает, потому что скорость потерь энергии в сопротивлении I 2 R резко возрастает, даже если вы это делаете. заряжайте конденсатор быстрее.В этом процессе экспоненциальной зарядки совсем не интуитивно понятно, что вы все равно теряете половину энергии на тепло, поэтому эта классическая задача становится прекрасным примером ценности исчисления и интеграла как инженерного инструмента.

Часть интуитивной части, которая входит в настройку интеграла, заключается в том, что получение первого элемента заряда dq на пластинах конденсатора требует гораздо меньше работы, потому что большая часть напряжения батареи падает на сопротивлении R и только крошечная энергия dU = dqV хранится на конденсаторе. Переход к интегралу, который принимает квадратичную форму по q, дает суммарную энергию на конденсаторе Q 2 / 2C = CV b 2 /2 = QV b /2, где V b здесь напряжение аккумулятора.Итак, суть в том, что вам нужно вывести 2 джоуля из батареи, чтобы поместить 1 джоуль на конденсатор, а другой джоуль безвозвратно теряется из-за тепла — 2-й закон термодинамики снова кусает вас, независимо от вашей скорости зарядки. Неинтуитивный характер этой проблемы является причиной ценности интегрального подхода.

Хотя здесь это не будет показано, если вы продолжите решение этой проблемы, сделав сопротивление зарядки настолько малым, что начальный ток зарядки будет чрезвычайно высоким, значительная часть энергии зарядки фактически излучается в виде электромагнитной энергии.Это пересекает порог теории антенн, потому что не все потери при зарядке были термодинамическими, но все же потери в процессе составляли половину энергии, поставляемой батареей при зарядке конденсатора.

Таким образом, энергия, вырабатываемая батареей, равна E = CV b 2 , но только половина энергии находится на конденсаторе — другая половина была потеряна на нагрев или, в случае с чрезвычайно низким зарядным сопротивлением, на нагрев и электромагнитная энергия.

,

Как работает конденсатор — физика конденсатора и его применение

В этом руководстве мы узнаем, что такое конденсатор, как он работает, и рассмотрим некоторые основные примеры применения. Вы можете посмотреть следующее видео или прочитать письменное руководство ниже.

Обзор


Практически нет схемы, в которой не было бы конденсатора, и вместе с резисторами и индукторами они являются основными пассивными компонентами, которые мы используем в электронике.

Конденсатор — это устройство, способное накапливать энергию в виде электрического заряда. По сравнению с батареей того же размера, конденсатор может хранить гораздо меньшее количество энергии, примерно в 10 000 раз меньше, но достаточно полезен для многих схем.

Конденсатор состоит из двух металлических пластин, разделенных изоляционным материалом, называемым диэлектриком. Пластины являются проводящими, и они обычно изготавливаются из алюминия, тантала или других металлов, в то время как диэлектрик может быть сделан из любого изоляционного материала, такого как бумага, стекло, керамика или что-нибудь, что препятствует прохождению тока.

Capacitor construction and capacitance equation

Емкость конденсатора, измеренная в фарадах, прямо пропорциональна площади поверхности двух пластин, а также диэлектрической проницаемости диэлектрика ε, в то время как чем меньше расстояние между пластинами, тем больше емкость. При этом давайте посмотрим, как работает конденсатор.

Во-первых, мы можем отметить, что металл обычно имеет равное количество положительно и отрицательно заряженных частиц, что означает, что он электрически нейтрален.

Capacitor construction and capacitance equation

Если мы подключим источник питания или батарею к металлическим пластинам конденсатора, ток будет пытаться течь, или электроны от пластины, подключенной к положительному выводу батареи, начнут двигаться к подключенной пластине к отрицательному выводу аккумулятора. Однако из-за наличия диэлектрика между пластинами электроны не смогут проходить через конденсатор, поэтому они начнут накапливаться на пластине.

Capacitor working principle metal plates connected to a battery

После того, как определенное количество электронных компонентов накопится на пластине, у батареи будет недостаточно энергии, чтобы подтолкнуть любую новую электронику к пластине из-за отталкивания той электроники, которая уже там.

На этом этапе конденсатор фактически полностью заряжен. Первая пластина выработала чистый отрицательный заряд, а вторая пластина выработала равный суммарный положительный заряд, создавая электрическое поле с силой притяжения между ними, которая удерживает заряд конденсатора.

How Capacitor Works Fully Charged Electric Field

Принцип работы диэлектрика конденсатора

Давайте посмотрим, как диэлектрик может увеличить емкость конденсатора. Диэлектрик содержит полярные молекулы, что означает, что они могут изменять свою ориентацию в зависимости от зарядов на двух пластинах.Таким образом, молекулы выстраиваются в электрическом поле таким образом, что позволяет большему количеству электронов притягиваться к отрицательной пластине, отталкивая больше электронов из положительной пластины.

Capacitor Dielectric how it works

Итак, когда конденсатор полностью заряжен, если мы удалим аккумулятор, он будет удерживать электрический заряд в течение длительного времени, действуя как накопитель энергии.

Теперь, если мы укоротим два конца конденсатора через нагрузку, ток начнет течь через нагрузку. Накопленные электроны с первой пластины начнут перемещаться ко второй пластине, пока обе пластины снова не станут электрически нейтральными.

Capacitor discharge through a load LED - How It Works

Итак, это основной принцип работы конденсатора, а теперь давайте взглянем на некоторые примеры применения.

Конденсаторы развязки (байпаса)

Конденсаторы развязки или конденсаторы байпаса являются типичным примером. Развязочные конденсаторы часто используются вместе с интегральными схемами, и они размещаются между источником питания и землей ИС.

Decoupling Capacitor Bypass How it works

Их задача — фильтровать любой шум в источнике питания, например пульсации напряжения, которые возникают, когда источник питания в течение очень короткого периода времени понижает свое напряжение или когда часть цепи переключается, вызывая колебания мощности. поставка.В момент падения напряжения конденсатор временно действует как источник питания, минуя основной источник питания.

Преобразователь переменного тока в постоянный

Другой типичный пример применения — конденсаторы, используемые в адаптерах постоянного тока. Для преобразования переменного напряжения в постоянное обычно используется диодный выпрямитель, но без конденсаторов он не сможет справиться с этой задачей.

AC to DC Converter Circuit Schematics Diagram

Выходной сигнал выпрямителя представляет собой форму волны. Таким образом, когда на выходе выпрямителя увеличивается заряд конденсатора, а на выходе выпрямителя падает, конденсатор разряжается и, таким образом, сглаживает выход постоянного тока.

Связано: что такое триггер Шмитта и как он работает

Фильтрация сигналов

Фильтрация сигналов — еще один пример применения конденсаторов. Благодаря особому времени отклика они могут блокировать низкочастотные сигналы, позволяя проходить более высоким частотам.

3 way crossover circuit schematics capacitors usage

Используется в радиоприемниках для настройки нежелательных частот и в схемах кроссовера внутри громкоговорителей, для разделения низких частот для вуфера и высоких частот для твитера.

Конденсаторы как накопители энергии

Еще одно довольно очевидное применение конденсаторов — для накопления и подачи энергии. Хотя они могут накапливать значительно меньше энергии по сравнению с батареями того же размера, их срок службы намного больше, и они способны передавать энергию намного быстрее, что делает их более подходящими для приложений, где требуется большой всплеск мощности.

Capacitor specifications as energy storage device

Вот и все для этого урока, не стесняйтесь задавать любой вопрос в разделе комментариев ниже.

Capacitor specifications as energy storage device.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *